Sample records for complex multidisciplinary systems

  1. Application of advanced multidisciplinary analysis and optimization methods to vehicle design synthesis

    NASA Technical Reports Server (NTRS)

    Consoli, Robert David; Sobieszczanski-Sobieski, Jaroslaw

    1990-01-01

    Advanced multidisciplinary analysis and optimization methods, namely system sensitivity analysis and non-hierarchical system decomposition, are applied to reduce the cost and improve the visibility of an automated vehicle design synthesis process. This process is inherently complex due to the large number of functional disciplines and associated interdisciplinary couplings. Recent developments in system sensitivity analysis as applied to complex non-hierarchic multidisciplinary design optimization problems enable the decomposition of these complex interactions into sub-processes that can be evaluated in parallel. The application of these techniques results in significant cost, accuracy, and visibility benefits for the entire design synthesis process.

  2. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    NASA Astrophysics Data System (ADS)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  3. Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations

    NASA Technical Reports Server (NTRS)

    Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.

    2017-01-01

    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.

  4. Using Systems Thinking to train future leaders in global health.

    PubMed

    Paxton, Anne; Frost, Laura J

    2017-07-09

    Systems Thinking provides a useful set of concepts and tools that can be used to train students to be effective and innovative global health leaders in an ever-changing and often chaotic world. This paper describes an experiential, multi-disciplinary curriculum that uses Systems Thinking to frame and analyse global health policies and practices. The curriculum uses case studies and hands-on activities to deepen students' understanding of the following concepts: complex adaptive systems, dynamic complexity, inter-relationships, feedback loops, policy resistance, mental models, boundary critique, leverage points, and multi-disciplinary, multi-sectoral, and multi-stakeholder thinking and action. A sample of Systems Thinking tools for analysing global health policies and practices are also introduced.

  5. Heuristic decomposition for non-hierarchic systems

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.; Hajela, P.

    1991-01-01

    Design and optimization is substantially more complex in multidisciplinary and large-scale engineering applications due to the existing inherently coupled interactions. The paper introduces a quasi-procedural methodology for multidisciplinary optimization that is applicable for nonhierarchic systems. The necessary decision-making support for the design process is provided by means of an embedded expert systems capability. The method employs a decomposition approach whose modularity allows for implementation of specialized methods for analysis and optimization within disciplines.

  6. Progress in multidisciplinary design optimization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    1993-01-01

    Multidisciplinary Design Optimization refers to some combination of disciplinary analyses, sensitivity analysis, and optimization techniques used to design complex engineering systems. The ultimate objective of this research at NASA Langley Research Center is to help the US industry reduce the costs associated with development, manufacturing, and maintenance of aerospace vehicles while improving system performance. This report reviews progress towards this objective and highlights topics for future research. Aerospace design problems selected from the author's research illustrate strengths and weaknesses in existing multidisciplinary optimization techniques. The techniques discussed include multiobjective optimization, global sensitivity equations and sequential linear programming.

  7. Critical issues in NASA information systems

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The National Aeronautics and Space Administration has developed a globally-distributed complex of earth resources data bases since LANDSAT 1 was launched in 1972. NASA envisages considerable growth in the number, extent, and complexity of such data bases, due to the improvements expected in its remote sensing data rates, and the increasingly multidisciplinary nature of its scientific investigations. Work already has begun on information systems to support multidisciplinary research activities based on data acquired by the space station complex and other space-based and terrestrial sources. In response to a request from NASA's former Associate Administrator for Space Science and Applications, the National Research Council convened a committee in June 1985 to identify the critical issues involving information systems support to space science and applications. The committee has suggested that OSSA address four major information systems issues; centralization of management functions, interoperability of user involvement in the planning and implementation of its programs, and technology.

  8. On Developing a Taxonomy for Multidisciplinary Design Optimization: A Decision-Based Perspective

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper; Mistree, Farrokh

    1995-01-01

    In this paper, we approach MDO from a Decision-Based Design (DBD) perspective and explore classification schemes for designing complex systems and processes. Specifically, we focus on decisions, which are only a small portion of the Decision Support Problem (DSP) Technique, our implementation of DBD. We map coupled nonhierarchical and hierarchical representations from the DSP Technique into the Balling-Sobieski (B-S) framework (Balling and Sobieszczanski-Sobieski, 1994), and integrate domain-independent linguistic terms to complete our taxonomy. Application of DSPs to the design of complex, multidisciplinary systems include passenger aircraft, ships, damage tolerant structural and mechanical systems, and thermal energy systems. In this paper we show that Balling-Sobieski framework is consistent with that of the Decision Support Problem Technique through the use of linguistic entities to describe the same type of formulations. We show that the underlying linguistics of the solution approaches are the same and can be coalesced into a homogeneous framework with which to base the research, application, and technology MDO upon. We introduce, in the Balling-Sobieski framework, examples of multidisciplinary design, namely, aircraft, damage tolerant structural and mechanical systems, and thermal energy systems.

  9. Collaborative simulation method with spatiotemporal synchronization process control

    NASA Astrophysics Data System (ADS)

    Zou, Yisheng; Ding, Guofu; Zhang, Weihua; Zhang, Jian; Qin, Shengfeng; Tan, John Kian

    2016-10-01

    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system's dynamic behaviors because it involves multi-disciplinary subsystems. Currently,a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness.

  10. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Green, Lawrence L.

    1999-01-01

    A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.

  11. Challenges and Experiences of Building Multidisciplinary Datasets across Cultures

    NASA Astrophysics Data System (ADS)

    Jamiyansharav, K.; Laituri, M.; Fernandez-Gimenez, M.; Fassnacht, S. R.; Venable, N. B. H.; Allegretti, A. M.; Reid, R.; Baival, B.; Jamsranjav, C.; Ulambayar, T.; Linn, S.; Angerer, J.

    2017-12-01

    Efficient data sharing and management are key challenges to multidisciplinary scientific research. These challenges are further complicated by adding a multicultural component. We address the construction of a complex database for social-ecological analysis in Mongolia. Funded by the National Science Foundation (NSF) Dynamics of Coupled Natural and Human (CNH) Systems, the Mongolian Rangelands and Resilience (MOR2) project focuses on the vulnerability of Mongolian pastoral systems to climate change and adaptive capacity. The MOR2 study spans over three years of fieldwork in 36 paired districts (Soum) from 18 provinces (Aimag) of Mongolia that covers steppe, mountain forest steppe, desert steppe and eastern steppe ecological zones. Our project team is composed of hydrologists, social scientists, geographers, and ecologists. The MOR2 database includes multiple ecological, social, meteorological, geospatial and hydrological datasets, as well as archives of original data and survey in multiple formats. Managing this complex database requires significant organizational skills, attention to detail and ability to communicate within collective team members from diverse disciplines and across multiple institutions in the US and Mongolia. We describe the database's rich content, organization, structure and complexity. We discuss lessons learned, best practices and recommendations for complex database management, sharing, and archiving in creating a cross-cultural and multi-disciplinary database.

  12. Multi-disciplinary interoperability challenges (Ian McHarg Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Annoni, Alessandro

    2013-04-01

    Global sustainability research requires multi-disciplinary efforts to address the key research challenges to increase our understanding of the complex relationships between environment and society. For this reason dependence on ICT systems interoperability is rapidly growing but, despite some relevant technological improvement is observed, in practice operational interoperable solutions are still lacking. Among the causes is the absence of a generally accepted definition of "interoperability" in all its broader aspects. In fact the concept of interoperability is just a concept and the more popular definitions are not addressing all challenges to realize operational interoperable solutions. The problem become even more complex when multi-disciplinary interoperability is required because in that case solutions for interoperability of different interoperable solution should be envisaged. In this lecture the following definition will be used: "interoperability is the ability to exchange information and to use it". In the lecture the main challenges for addressing multi-disciplinary interoperability will be presented and a set of proposed approaches/solutions shortly introduced.

  13. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017.

  14. A methodology towards virtualisation-based high performance simulation platform supporting multidisciplinary design of complex products

    NASA Astrophysics Data System (ADS)

    Ren, Lei; Zhang, Lin; Tao, Fei; (Luke) Zhang, Xiaolong; Luo, Yongliang; Zhang, Yabin

    2012-08-01

    Multidisciplinary design of complex products leads to an increasing demand for high performance simulation (HPS) platforms. One great challenge is how to achieve high efficient utilisation of large-scale simulation resources in distributed and heterogeneous environments. This article reports a virtualisation-based methodology to realise a HPS platform. This research is driven by the issues concerning large-scale simulation resources deployment and complex simulation environment construction, efficient and transparent utilisation of fine-grained simulation resources and high reliable simulation with fault tolerance. A framework of virtualisation-based simulation platform (VSIM) is first proposed. Then the article investigates and discusses key approaches in VSIM, including simulation resources modelling, a method to automatically deploying simulation resources for dynamic construction of system environment, and a live migration mechanism in case of faults in run-time simulation. Furthermore, the proposed methodology is applied to a multidisciplinary design system for aircraft virtual prototyping and some experiments are conducted. The experimental results show that the proposed methodology can (1) significantly improve the utilisation of fine-grained simulation resources, (2) result in a great reduction in deployment time and an increased flexibility for simulation environment construction and (3)achieve fault tolerant simulation.

  15. Diabetic foot wounds: the value of negative pressure wound therapy with instillation.

    PubMed

    Dalla Paola, Luca

    2013-12-01

    Chronic wounds such as diabetic foot wounds are a tremendous burden to the health care system and often require a multidisciplinary approach to prevent amputations. Advanced technologies such as negative pressure wound therapy (NPWT) and bioengineered tissues have been successfully used in the treatment of these types of complex wounds. However, the introduction of NPWT with instillation (NPWTi) has provided an alternative treatment for treating complex and difficult-to-heal wounds. This article provides an overview of NPWT and the new NPWTi system and describes preliminary experience using NPWTi on patients with complicated infected diabetic foot wounds after surgical debridement and in a multidisciplinary setting. © 2013 The Author. International Wound Journal © 2013 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  16. A combined nurse-pharmacist managed pain clinic: joint venture of public and private sectors.

    PubMed

    Hadi, Muhammad Abdul; Alldred, David Phillip; Briggs, Michelle; Closs, S José

    2012-02-01

    Chronic pain has become one of the most prevalent problems in primary care. The management of chronic pain is complex and often requires a multidisciplinary approach. The limited capacity of general practitioners to manage chronic pain and long waiting time for secondary care referrals further add to the complexity of chronic pain management. Restricted financial and skilled human capital make it hard for healthcare systems across the world to establish and maintain multidisciplinary pain clinics, in spite of their documented effectiveness. Affordability and accessibility to such multidisciplinary pain clinics is often problematic for patients. The purpose of this paper is to share our experience and relevant research evidence of a community based combined nurse-pharmacist managed pain clinic. The pain clinic serves as an example of public-private partnership in healthcare.

  17. Multidisciplinary Information System of Assyrian Cuneiform Tablets Enhancing New Research Possibilities via Heterogeneous Data in Records

    NASA Astrophysics Data System (ADS)

    Valach, J.; Štefcová, P.; Bruna, R.; Zemánek, P.

    2017-08-01

    This paper outlines recently started project dedicated to creation and development of information system for cuneiform tablets. The contribution deals with the architecture of a virtual collection of cuneiform tablets, conceived as a complex system combining and integrating several domains of information obtained from various types of analyses. The research team includes experts from the field of collection conservation with philologists and researchers in the 3D scanning and physical measurement. Multidisciplinary databases like the one described, represent a new tool in digital humanities and help to improve accessibility of collections to public and researchers.

  18. Transforming Multidisciplinary Customer Requirements to Product Design Specifications

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-Jie; Ding, Guo-Fu; Qin, Sheng-Feng; Li, Rong; Yan, Kai-Yin; Xiao, Shou-Ne; Yang, Guang-Wu

    2017-09-01

    With the increasing of complexity of complex mechatronic products, it is necessary to involve multidisciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisciplinary customer requirements modeling method is provided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with different team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.

  19. Trends in modeling Biomedical Complex Systems

    PubMed Central

    Milanesi, Luciano; Romano, Paolo; Castellani, Gastone; Remondini, Daniel; Liò, Petro

    2009-01-01

    In this paper we provide an introduction to the techniques for multi-scale complex biological systems, from the single bio-molecule to the cell, combining theoretical modeling, experiments, informatics tools and technologies suitable for biological and biomedical research, which are becoming increasingly multidisciplinary, multidimensional and information-driven. The most important concepts on mathematical modeling methodologies and statistical inference, bioinformatics and standards tools to investigate complex biomedical systems are discussed and the prominent literature useful to both the practitioner and the theoretician are presented. PMID:19828068

  20. Saudi lung cancer management guidelines 2017

    PubMed Central

    Jazieh, Abdul Rahman; Al Kattan, Khaled; Bamousa, Ahmed; Al Olayan, Ashwaq; Abdelwarith, Ahmed; Ansari, Jawaher; Al Twairqi, Abdullah; Al Fayea, Turki; Al Saleh, Khalid; Al Husaini, Hamed; Abdelhafiez, Nafisa; Mahrous, Mervat; Faris, Medhat; Al Omair, Ameen; Hebshi, Adnan; Al Shehri, Salem; Al Dayel, Foad; Bamefleh, Hanaa; Khalbuss, Walid; Al Ghanem, Sarah; Loutfi, Shukri; Khankan, Azzam; Al Rujaib, Meshael; Al Ghamdi, Majed; Ibrahim, Nagwa; Swied, Abdulmonem; Al Kayait, Mohammad; Datario, Marie

    2017-01-01

    BACKGROUND: Lung cancer management is getting more complex due to the rapid advances in all aspects of diagnostic and therapeutic options. Developing guidelines is critical to help practitioners provide standard of care. METHODS: The Saudi Lung Cancer Guidelines Committee (SLCGC) multidisciplinary members from different specialties and from various regions and healthcare sectors of the country reviewed and updated all lung cancer guidelines with appropriate labeling of level of evidence. Supporting documents to help healthcare professionals were developed. RESULTS: Detailed lung cancer management guidelines were finalized with appropriate resources for systemic therapy and short reviews highlighting important issues. Stage based disease management recommendation were included. A summary explanation for complex topics were included in addition to tables of approved systemic therapy. CONCLUSION: A multidisciplinary lung cancer guidelines was developed and will be disseminated across the country. PMID:29118855

  1. Saudi lung cancer management guidelines 2017.

    PubMed

    Jazieh, Abdul Rahman; Al Kattan, Khaled; Bamousa, Ahmed; Al Olayan, Ashwaq; Abdelwarith, Ahmed; Ansari, Jawaher; Al Twairqi, Abdullah; Al Fayea, Turki; Al Saleh, Khalid; Al Husaini, Hamed; Abdelhafiez, Nafisa; Mahrous, Mervat; Faris, Medhat; Al Omair, Ameen; Hebshi, Adnan; Al Shehri, Salem; Al Dayel, Foad; Bamefleh, Hanaa; Khalbuss, Walid; Al Ghanem, Sarah; Loutfi, Shukri; Khankan, Azzam; Al Rujaib, Meshael; Al Ghamdi, Majed; Ibrahim, Nagwa; Swied, Abdulmonem; Al Kayait, Mohammad; Datario, Marie

    2017-01-01

    Lung cancer management is getting more complex due to the rapid advances in all aspects of diagnostic and therapeutic options. Developing guidelines is critical to help practitioners provide standard of care. The Saudi Lung Cancer Guidelines Committee (SLCGC) multidisciplinary members from different specialties and from various regions and healthcare sectors of the country reviewed and updated all lung cancer guidelines with appropriate labeling of level of evidence. Supporting documents to help healthcare professionals were developed. Detailed lung cancer management guidelines were finalized with appropriate resources for systemic therapy and short reviews highlighting important issues. Stage based disease management recommendation were included. A summary explanation for complex topics were included in addition to tables of approved systemic therapy. A multidisciplinary lung cancer guidelines was developed and will be disseminated across the country.

  2. OPTIMAL CONTROL THEORY FOR SUSTAINABLE ENVIRONMENTAL MANAGEMENT

    EPA Science Inventory

    Sustainable management of the human and natural systems, taking into account their interactions, has become paramount. To achieve this complex multidisciplinary objective, systems theory based techniques prove useful. The proposed work is a step in that direction. Taking a food w...

  3. The Emergence of Dominant Design(s) in Large Scale Cyber-Infrastructure Systems

    ERIC Educational Resources Information Center

    Diamanti, Eirini Ilana

    2012-01-01

    Cyber-infrastructure systems are integrated large-scale IT systems designed with the goal of transforming scientific practice by enabling multi-disciplinary, cross-institutional collaboration. Their large scale and socio-technical complexity make design decisions for their underlying architecture practically irreversible. Drawing on three…

  4. A Web-Based Monitoring System for Multidisciplinary Design Projects

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; Salas, Andrea O.; Weston, Robert P.

    1998-01-01

    In today's competitive environment, both industry and government agencies are under pressure to reduce the time and cost of multidisciplinary design projects. New tools have been introduced to assist in this process by facilitating the integration of and communication among diverse disciplinary codes. One such tool, a framework for multidisciplinary computational environments, is defined as a hardware and software architecture that enables integration, execution, and communication among diverse disciplinary processes. An examination of current frameworks reveals weaknesses in various areas, such as sequencing, displaying, monitoring, and controlling the design process. The objective of this research is to explore how Web technology, integrated with an existing framework, can improve these areas of weakness. This paper describes a Web-based system that optimizes and controls the execution sequence of design processes; and monitors the project status and results. The three-stage evolution of the system with increasingly complex problems demonstrates the feasibility of this approach.

  5. Safety and operations of hydrogen fuel infrastructure in northern climates : a collaborative complex systems approach.

    DOT National Transportation Integrated Search

    2010-10-07

    "This project examined the safety and operation of hydrogen (H2) fueling system infrastructure in : northern climates. A multidisciplinary team lead by the University of Vermont (UVM), : combined with investigators from Zhejiang and Tsinghua Universi...

  6. Geoinformatics: Transforming data to knowledge for geosciences

    USGS Publications Warehouse

    Sinha, A.K.; Malik, Z.; Rezgui, A.; Barnes, C.G.; Lin, K.; Heiken, G.; Thomas, W.A.; Gundersen, L.C.; Raskin, R.; Jackson, I.; Fox, P.; McGuinness, D.; Seber, D.; Zimmerman, H.

    2010-01-01

    An integrative view of Earth as a system, based on multidisciplinary data, has become one of the most compelling reasons for research and education in the geosciences. It is now necessary to establish a modern infrastructure that can support the transformation of data to knowledge. Such an information infrastructure for geosciences is contained within the emerging science of geoinformatics, which seeks to promote the utilizetion and integration of complex, multidisciplinary data in seeking solutions to geosciencebased societal challenges.

  7. General System Theory: Toward a Conceptual Framework for Science and Technology Education for All.

    ERIC Educational Resources Information Center

    Chen, David; Stroup, Walter

    1993-01-01

    Suggests using general system theory as a unifying theoretical framework for science and technology education for all. Five reasons are articulated: the multidisciplinary nature of systems theory, the ability to engage complexity, the capacity to describe system dynamics, the ability to represent the relationship between microlevel and…

  8. Multidisciplinary strategies in the management of early chronic kidney disease.

    PubMed

    Martínez-Ramírez, Héctor R; Cortés-Sanabria, Laura; Rojas-Campos, Enrique; Hernández-Herrera, Aurora; Cueto-Manzano, Alfonso M

    2013-11-01

    Chronic kidney disease (CKD) is a worldwide epidemic especially in developing countries, with clear deficiencies in identification and treatment. Better care of CKD requires more than only economic resources, utilization of health research in policy-making and health systems changes that produce better outcomes. A multidisciplinary approach may facilitate and improve management of patients from early CKD in the primary health-care setting. This approach is a strategy for improving comprehensive care, initiating and maintaining healthy behaviors, promoting teamwork, eliminating barriers to achieve goals and improving the processes of care. A multidisciplinary intervention may include educational processes guided by health professional, use of self-help groups and the development of a CKD management plan. The complex and fragmented care management of patients with CKD, associated with poor outcome, enhances the importance of implementing a multidisciplinary approach in the management of this disease from the early stages. Multidisciplinary strategies should focus on the needs of patients (to increase their empowerment) and should be adapted to the resources and health systems prevailing in each country; its systematic implementation can help to improve patient care and slow the progression of CKD. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  9. Computational Systems for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Soni, Bharat; Haupt, Tomasz; Koomullil, Roy; Luke, Edward; Thompson, David

    2002-01-01

    In this paper, we briefly describe our efforts to develop complex simulation systems. We focus first on four key infrastructure items: enterprise computational services, simulation synthesis, geometry modeling and mesh generation, and a fluid flow solver for arbitrary meshes. We conclude by presenting three diverse applications developed using these technologies.

  10. Multidisciplinary collaboration in primary care: through the eyes of patients.

    PubMed

    Cheong, Lynn H; Armour, Carol L; Bosnic-Anticevich, Sinthia Z

    2013-01-01

    Managing chronic illness is highly complex and the pathways to access health care for the patient are unpredictable and often unknown. While multidisciplinary care (MDC) arrangements are promoted in the Australian primary health care system, there is a paucity of research on multidisciplinary collaboration from patients' perspectives. This exploratory study is the first to gain an understanding of the experiences, perceptions, attitudes and potential role of people with chronic illness (asthma) on the delivery of MDC in the Australian primary health care setting. In-depth semi-structured interviews were conducted with asthma patients from Sydney, Australia. Qualitative analysis of data indicates that patients are significant players in MDC and their perceptions of their chronic condition, perceived roles of health care professionals, and expectations of health care delivery, influence their participation and attitudes towards multidisciplinary services. Our research shows the challenges presented by patients in the delivery and establishment of multidisciplinary health care teams, and highlights the need to consider patients' perspectives in the development of MDC models in primary care.

  11. Multidisciplinary Optimization Approach for Design and Operation of Constrained and Complex-shaped Space Systems

    NASA Astrophysics Data System (ADS)

    Lee, Dae Young

    The design of a small satellite is challenging since they are constrained by mass, volume, and power. To mitigate these constraint effects, designers adopt deployable configurations on the spacecraft that result in an interesting and difficult optimization problem. The resulting optimization problem is challenging due to the computational complexity caused by the large number of design variables and the model complexity created by the deployables. Adding to these complexities, there is a lack of integration of the design optimization systems into operational optimization, and the utility maximization of spacecraft in orbit. The developed methodology enables satellite Multidisciplinary Design Optimization (MDO) that is extendable to on-orbit operation. Optimization of on-orbit operations is possible with MDO since the model predictive controller developed in this dissertation guarantees the achievement of the on-ground design behavior in orbit. To enable the design optimization of highly constrained and complex-shaped space systems, the spherical coordinate analysis technique, called the "Attitude Sphere", is extended and merged with an additional engineering tools like OpenGL. OpenGL's graphic acceleration facilitates the accurate estimation of the shadow-degraded photovoltaic cell area. This technique is applied to the design optimization of the satellite Electric Power System (EPS) and the design result shows that the amount of photovoltaic power generation can be increased more than 9%. Based on this initial methodology, the goal of this effort is extended from Single Discipline Optimization to Multidisciplinary Optimization, which includes the design and also operation of the EPS, Attitude Determination and Control System (ADCS), and communication system. The geometry optimization satisfies the conditions of the ground development phase; however, the operation optimization may not be as successful as expected in orbit due to disturbances. To address this issue, for the ADCS operations, controllers based on Model Predictive Control that are effective for constraint handling were developed and implemented. All the suggested design and operation methodologies are applied to a mission "CADRE", which is space weather mission scheduled for operation in 2016. This application demonstrates the usefulness and capability of the methodology to enhance CADRE's capabilities, and its ability to be applied to a variety of missions.

  12. Sensitivity based coupling strengths in complex engineering systems

    NASA Technical Reports Server (NTRS)

    Bloebaum, C. L.; Sobieszczanski-Sobieski, J.

    1993-01-01

    The iterative design scheme necessary for complex engineering systems is generally time consuming and difficult to implement. Although a decomposition approach results in a more tractable problem, the inherent couplings make establishing the interdependencies of the various subsystems difficult. Another difficulty lies in identifying the most efficient order of execution for the subsystem analyses. The paper describes an approach for determining the dependencies that could be suspended during the system analysis with minimal accuracy losses, thereby reducing the system complexity. A new multidisciplinary testbed is presented, involving the interaction of structures, aerodynamics, and performance disciplines. Results are presented to demonstrate the effectiveness of the system reduction scheme.

  13. Multidisciplinary aerospace design optimization: Survey of recent developments

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1995-01-01

    The increasing complexity of engineering systems has sparked increasing interest in multidisciplinary optimization (MDO). This paper presents a survey of recent publications in the field of aerospace where interest in MDO has been particularly intense. The two main challenges of MDO are computational expense and organizational complexity. Accordingly the survey is focussed on various ways different researchers use to deal with these challenges. The survey is organized by a breakdown of MDO into its conceptual components. Accordingly, the survey includes sections on Mathematical Modeling, Design-oriented Analysis, Approximation Concepts, Optimization Procedures, System Sensitivity, and Human Interface. With the authors' main expertise being in the structures area, the bulk of the references focus on the interaction of the structures discipline with other disciplines. In particular, two sections at the end focus on two such interactions that have recently been pursued with a particular vigor: Simultaneous Optimization of Structures and Aerodynamics, and Simultaneous Optimization of Structures Combined With Active Control.

  14. Lowering Entry Barriers for Multidisciplinary Cyber(e)-Infrastructures

    NASA Astrophysics Data System (ADS)

    Nativi, S.

    2012-04-01

    Multidisciplinarity is more and more important to study the Earth System and address Global Changes. To achieve that, multidisciplinary cyber(e)-infrastructures are an important instrument. In the last years, several European, US and international initiatives have been started to carry out multidisciplinary infrastructures, including: the Spatial Information in the European Community (INSPIRE), the Global Monitoring for Environment and Security (GMES), the Data Observation Network for Earth (DataOne), and the Global Earth Observation System of Systems (GEOSS). The majority of these initiatives are developing service-based digital infrastructures asking scientific Communities (i.e. disciplinary Users and data Producers) to implement a set of standards for information interoperability. For scientific Communities, this has represented an entry barrier which has proved to be high, in several cases. In fact, both data Producers and Users do not seem to be willing to invest precious resources to become expert on interoperability solutions -on the contrary, they are focused on developing disciplinary and thematic capacities. Therefore, an important research topic is lowering entry barriers for joining multidisciplinary cyber(e)-Infrastructures. This presentation will introduce a new approach to achieve multidisciplinary interoperability underpinning multidisciplinary infrastructures and lowering the present entry barriers for both Users and data Producers. This is called the Brokering approach: it extends the service-based paradigm by introducing a new a Brokering layer or cloud which is in charge of managing all the interoperability complexity (e.g. data discovery, access, and use) thus easing Users' and Producers' burden. This approach was successfully experimented in the framework of several European FP7 Projects and in GEOSS.

  15. Mapping fuels at multiple scales: landscape application of the fuel characteristic classification system.

    Treesearch

    D. McKenzie; C.L. Raymond; L.-K.B. Kellogg; R.A. Norheim; A.G. Andreu; A.C. Bayard; K.E. Kopper; E. Elman

    2007-01-01

    Fuel mapping is a complex and often multidisciplinary process, involving remote sensing, ground-based validation, statistical modeling, and knowledge-based systems. The scale and resolution of fuel mapping depend both on objectives and availability of spatial data layers. We demonstrate use of the Fuel Characteristic Classification System (FCCS) for fuel mapping at two...

  16. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    1999-01-01

    Advances in computational technology and in physics-based modeling are making large scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze ma or propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of design process and to provide the designer with critical information about the components early in the design process. This paper describes the development of the Numerical Propulsion System Simulation (NPSS), a multidisciplinary system of analysis tools that is focussed on extending the simulation capability from components to the full system. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  17. Securing Information with Complex Optical Encryption Networks

    DTIC Science & Technology

    2015-08-11

    Network Security, Network Vulnerability , Multi-dimentional Processing, optoelectronic devices 16. SECURITY CLASSIFICATION OF: 17. LIMITATION... optoelectronic devices and systems should be analyzed before the retrieval, any hostile hacker will need to possess multi-disciplinary scientific...sophisticated optoelectronic principles and systems where he/she needs to process the information. However, in the military applications, most military

  18. To Use or Not to Use--ERP Resistance Is the Question: The Roles of Tacit Knowledge and Complexity

    ERIC Educational Resources Information Center

    Freeze, Ronald D.; Schmidt, Pamela J.

    2015-01-01

    Enterprise Resource Planning (ERP) systems in business environments demand multidisciplinary understanding and collaboration between functional departments. The traditional educational paradigm isolates the learning of each functional discipline as if business people operated in functional isolation. ERP system value can only be realized by…

  19. Active and Healthy Ageing as a Wicked Problem: The Contribution of a Multidisciplinary Research University.

    PubMed

    Riva, Giuseppe; Graffigna, Guendalina; Baitieri, Maddalena; Amato, Alessandra; Bonanomi, Maria Grazia; Valentini, Paolo; Castelli, Guido

    2014-01-01

    The quest for an active and healthy ageing can be considered a "wicked problem." It is a social and cultural problem, which is difficult to solve because of incomplete, changing, and contradictory requirements. These problems are tough to manage because of their social complexity. They are a group of linked problems embedded in the structure of the communities in which they occur. First, they require the knowledge of the social and cultural context in which they occur. They can be solved only by understanding of what people do and why they do it. Second, they require a multidisciplinary approach. Wicked problems can have different solutions, so it is critical to capture the full range of possibilities and interpretations. Thus, we suggest that Università Cattolica del Sacro Cuore (UCSC) is well suited for accepting and managing this challenge because of its applied research orientation, multidisciplinary approach, and integrated vision. After presenting the research activity of UCSC, we describe a possible "systems thinking" strategy to consider the complexity and interdependence of active ageing and healthy living.

  20. Multidisciplinary management of chronic heart failure: principles and future trends.

    PubMed

    Davidson, Patricia M; Newton, Phillip J; Tankumpuan, Thitipong; Paull, G; Dennison-Himmelfarb, Cheryl

    2015-10-01

    Globally, the management of chronic heart failure (CHF) challenges health systems. The high burden of disease and the costs associated with hospitalization adversely affect individuals, families, and society. Improved quality, access, efficiency, and equity of CHF care can be achieved by using multidisciplinary care approaches if there is adherence and fidelity to the program's elements. The goal of this article was to summarize evidence and make recommendations for advancing practice, education, research, and policy in the multidisciplinary management of patients with CHF. Essential elements of multidisciplinary management of CHF were identified from meta-analyses and clinical practice guidelines. The study factors were discussed from the perspective of the health care system, providers, patients, and their caregivers. Identified gaps in evidence were used to identify areas for future focus in CHF multidisciplinary management. Although there is high-level evidence (including several meta-analyses) for the efficacy of management programs for CHF, less evidence exists to determine the benefit attributable to individual program components or to identify the specific content of effective components and the manner of their delivery. Health care system, provider, and patient factors influence health care models and the effective management of CHF and require focus and attention. Extrapolating trial findings to clinical practice settings is limited by the heterogeneity of study populations and the implementation of models of intervention beyond academic health centers, where practice environments differ considerably. Ensuring that individual programs are both developed and assessed that consider these factors is integral to ensuring adherence and fidelity with the core dimensions of disease management necessary to optimize patient and organizational outcomes. Recognizing the complexity of the multidisciplinary CHF interventions will be important in advancing the design, implementation, and evaluation of the interventions. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  1. Problems in merging Earth sensing satellite data sets

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.; Goldberg, Michael J.

    1987-01-01

    Satellite remote sensing systems provide a tremendous source of data flow to the Earth science community. These systems provide scientists with data of types and on a scale previously unattainable. Looking forward to the capabilities of Space Station and the Earth Observing System (EOS), the full realization of the potential of satellite remote sensing will be handicapped by inadequate information systems. There is a growing emphasis in Earth science research to ask questions which are multidisciplinary in nature and global in scale. Many of these research projects emphasize the interactions of the land surface, the atmosphere, and the oceans through various physical mechanisms. Conducting this research requires large and complex data sets and teams of multidisciplinary scientists, often working at remote locations. A review of the problems of merging these large volumes of data into spatially referenced and manageable data sets is presented.

  2. Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Braun, R. D.; Kroo, I. M.

    1995-01-01

    Collaborative optimization is a design architecture applicable in any multidisciplinary analysis environment but specifically intended for large-scale distributed analysis applications. In this approach, a complex problem is hierarchically de- composed along disciplinary boundaries into a number of subproblems which are brought into multidisciplinary agreement by a system-level coordination process. When applied to problems in a multidisciplinary design environment, this scheme has several advantages over traditional solution strategies. These advantageous features include reducing the amount of information transferred between disciplines, the removal of large iteration-loops, allowing the use of different subspace optimizers among the various analysis groups, an analysis framework which is easily parallelized and can operate on heterogenous equipment, and a structural framework that is well-suited for conventional disciplinary organizations. In this article, the collaborative architecture is developed and its mathematical foundation is presented. An example application is also presented which highlights the potential of this method for use in large-scale design applications.

  3. The physiology of stress and effects on immune health in ruminants

    USDA-ARS?s Scientific Manuscript database

    As researchers have continued to explore the complex interactions among stress and production parameters such as growth, feed efficiency, and health, multidisciplinary efforts have emerged leading to a greater understanding of homeostatic regulation. The immune system can be regulated by several dif...

  4. A systematic literature review of the key challenges for developing the structure of public health economic models.

    PubMed

    Squires, Hazel; Chilcott, James; Akehurst, Ronald; Burr, Jennifer; Kelly, Michael P

    2016-04-01

    To identify the key methodological challenges for public health economic modelling and set an agenda for future research. An iterative literature search identified papers describing methodological challenges for developing the structure of public health economic models. Additional multidisciplinary literature searches helped expand upon important ideas raised within the review. Fifteen articles were identified within the formal literature search, highlighting three key challenges: inclusion of non-healthcare costs and outcomes; inclusion of equity; and modelling complex systems and multi-component interventions. Based upon these and multidisciplinary searches about dynamic complexity, the social determinants of health, and models of human behaviour, six areas for future research were specified. Future research should focus on: the use of systems approaches within health economic modelling; approaches to assist the systematic consideration of the social determinants of health; methods for incorporating models of behaviour and social interactions; consideration of equity; and methodology to help modellers develop valid, credible and transparent public health economic model structures.

  5. Multi-disciplinary decision making in general practice.

    PubMed

    Kirby, Ann; Murphy, Aileen; Bradley, Colin

    2018-04-09

    Purpose Internationally, healthcare systems are moving towards delivering care in an integrated manner which advocates a multi-disciplinary approach to decision making. Such an approach is formally encouraged in the management of Atrial Fibrillation patients through the European Society of Cardiology guidelines. Since the emergence of new oral anticoagulants switching between oral anticoagulants (OACs) has become prevalent. This case study considers the role of multi-disciplinary decision making, given the complex nature of the agents. The purpose of this paper is to explore Irish General Practitioners' (GPs) experience of switching between all OACs for Arial Fibrillation (AF) patients; prevalence of multi-disciplinary decision making in OAC switching decisions and seeks to determine the GP characteristics that appear to influence the likelihood of multi-disciplinary decision making. Design/methodology/approach A probit model is used to determine the factors influencing multi-disciplinary decision making and a multinomial logit is used to examine the factors influencing who is involved in the multi-disciplinary decisions. Findings Results reveal that while some multi-disciplinary decision-making is occurring (64 per cent), it is not standard practice despite international guidelines on integrated care. Moreover, there is a lack of patient participation in the decision-making process. Female GPs and GPs who have initiated prescriptions for OACs are more likely to engage in multi-disciplinary decision-making surrounding switching OACs amongst AF patients. GPs with training practices were less likely to engage with cardiac consultants and those in urban areas were more likely to engage with other (non-cardiac) consultants. Originality/value For optimal decision making under uncertainty multi-disciplinary decision-making is needed to make a more informed judgement and to improve treatment decisions and reduce the opportunity cost of making the wrong decision.

  6. Framework to Define Structure and Boundaries of Complex Health Intervention Systems: The ALERT Project

    PubMed Central

    Boriani, Elena; Esposito, Roberto; Frazzoli, Chiara; Fantke, Peter; Hald, Tine; Rüegg, Simon R.

    2017-01-01

    Health intervention systems are complex and subject to multiple variables in different phases of implementation. This constitutes a concrete challenge for the application of translational science in real life. Complex systems as health-oriented interventions call for interdisciplinary approaches with carefully defined system boundaries. Exploring individual components of such systems from different viewpoints gives a wide overview and helps to understand the elements and the relationships that drive actions and consequences within the system. In this study, we present an application and assessment of a framework with focus on systems and system boundaries of interdisciplinary projects. As an example on how to apply our framework, we analyzed ALERT [an integrated sensors and biosensors’ system (BEST) aimed at monitoring the quality, health, and traceability of the chain of the bovine milk], a multidisciplinary and interdisciplinary project based on the application of measurable biomarkers at strategic points of the milk chain for improved food security (including safety), human, and ecosystem health (1). In fact, the European food safety framework calls for science-based support to the primary producers’ mandate for legal, scientific, and ethical responsibility in food supply. Because of its multidisciplinary and interdisciplinary approach involving human, animal, and ecosystem health, ALERT can be considered as a One Health project. Within the ALERT context, we identified the need to take into account the main actors, interactions, and relationships of stakeholders to depict a simplified skeleton of the system. The framework can provide elements to highlight how and where to improve the project development when project evaluations are required. PMID:28804707

  7. Framework to Define Structure and Boundaries of Complex Health Intervention Systems: The ALERT Project.

    PubMed

    Boriani, Elena; Esposito, Roberto; Frazzoli, Chiara; Fantke, Peter; Hald, Tine; Rüegg, Simon R

    2017-01-01

    Health intervention systems are complex and subject to multiple variables in different phases of implementation. This constitutes a concrete challenge for the application of translational science in real life. Complex systems as health-oriented interventions call for interdisciplinary approaches with carefully defined system boundaries. Exploring individual components of such systems from different viewpoints gives a wide overview and helps to understand the elements and the relationships that drive actions and consequences within the system. In this study, we present an application and assessment of a framework with focus on systems and system boundaries of interdisciplinary projects. As an example on how to apply our framework, we analyzed ALERT [an integrated sensors and biosensors' system (BEST) aimed at monitoring the quality, health, and traceability of the chain of the bovine milk], a multidisciplinary and interdisciplinary project based on the application of measurable biomarkers at strategic points of the milk chain for improved food security (including safety), human, and ecosystem health (1). In fact, the European food safety framework calls for science-based support to the primary producers' mandate for legal, scientific, and ethical responsibility in food supply. Because of its multidisciplinary and interdisciplinary approach involving human, animal, and ecosystem health, ALERT can be considered as a One Health project. Within the ALERT context, we identified the need to take into account the main actors, interactions, and relationships of stakeholders to depict a simplified skeleton of the system. The framework can provide elements to highlight how and where to improve the project development when project evaluations are required.

  8. An information driven strategy to support multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rangan, Ravi M.; Fulton, Robert E.

    1990-01-01

    The design of complex engineering systems such as aircraft, automobiles, and computers is primarily a cooperative multidisciplinary design process involving interactions between several design agents. The common thread underlying this multidisciplinary design activity is the information exchange between the various groups and disciplines. The integrating component in such environments is the common data and the dependencies that exist between such data. This may be contrasted to classical multidisciplinary analyses problems where there is coupling between distinct design parameters. For example, they may be expressed as mathematically coupled relationships between aerodynamic and structural interactions in aircraft structures, between thermal and structural interactions in nuclear plants, and between control considerations and structural interactions in flexible robots. These relationships provide analytical based frameworks leading to optimization problem formulations. However, in multidisciplinary design problems, information based interactions become more critical. Many times, the relationships between different design parameters are not amenable to analytical characterization. Under such circumstances, information based interactions will provide the best integration paradigm, i.e., there is a need to model the data entities and their dependencies between design parameters originating from different design agents. The modeling of such data interactions and dependencies forms the basis for integrating the various design agents.

  9. The potential application of the blackboard model of problem solving to multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.

  10. Time-driven activity-based costing to estimate cost of care at multidisciplinary aerodigestive centers.

    PubMed

    Garcia, Jordan A; Mistry, Bipin; Hardy, Stephen; Fracchia, Mary Shannon; Hersh, Cheryl; Wentland, Carissa; Vadakekalam, Joseph; Kaplan, Robert; Hartnick, Christopher J

    2017-09-01

    Providing high-value healthcare to patients is increasingly becoming an objective for providers including those at multidisciplinary aerodigestive centers. Measuring value has two components: 1) identify relevant health outcomes and 2) determine relevant treatment costs. Via their inherent structure, multidisciplinary care units consolidate care for complex patients. However, their potential impact on decreasing healthcare costs is less clear. The goal of this study was to estimate the potential cost savings of treating patients with laryngeal clefts at multidisciplinary aerodigestive centers. Retrospective chart review. Time-driven activity-based costing was used to estimate the cost of care for patients with laryngeal cleft seen between 2008 and 2013 at the Massachusetts Eye and Ear Infirmary Pediatric Aerodigestive Center. Retrospective chart review was performed to identify clinic utilization by patients as well as patient diet outcomes after treatment. Patients were stratified into neurologically complex and neurologically noncomplex groups. The cost of care for patients requiring surgical intervention was five and three times as expensive of the cost of care for patients not requiring surgery for neurologically noncomplex and complex patients, respectively. Following treatment, 50% and 55% of complex and noncomplex patients returned to normal diet, whereas 83% and 87% of patients experienced improved diets, respectively. Additionally, multidisciplinary team-based care for children with laryngeal clefts potentially achieves 20% to 40% cost savings. These findings demonstrate how time-driven activity-based costing can be used to estimate and compare patient costs in multidisciplinary aerodigestive centers. 2c. Laryngoscope, 127:2152-2158, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  11. HIV Education in the Formal Curriculum

    ERIC Educational Resources Information Center

    Nsubuga, Yusuf K.; Bonnet, Sandrine

    2009-01-01

    The AIDS epidemic presents a complex of issues that require global answers, involving entire societies. The only sustainable solution is to include all sectors of society in a multidisciplinary collaboration, within which the formal education system plays a key role in delivering a comprehensive response to the disease at the national level.…

  12. Decision Making/The Chesapeake Bay. An Interdisciplinary Environmental Education Curriculum Unit.

    ERIC Educational Resources Information Center

    Maryland Univ., College Park. Science Teaching Center.

    This multidisciplinary, self-contained curriculum unit focuses on the management of the Chesapeake Bay, a threatened and complex environmental system. Major unit goals include identifying and analyzing conflicting interests, issues, and public policies concerning the Bay, and determining their effects on people and the environment. The unit…

  13. Multidisciplinary approaches to climate change questions

    USGS Publications Warehouse

    Middleton, Beth A.; LePage, Ben A.

    2011-01-01

    Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.

  14. Aeromedical Factors in Aviator Fatigue, Crew Work/Rest Schedules and Extended Flight Operations: An Annotated Bibliography.

    DTIC Science & Technology

    1981-01-01

    complex is a common psychological reaction to stress, which causes a chronic overactivity of the higher brain centers and the vagal-parasympathetic...continuous military operations in which other complex man-machine systems were being used. In addition, we found great interest in multidisciplinary...2. Adams, J. T. 1967. Fatigue in helicopter aircrews in combat. In: Aeromedical aspects of helicopter operations in the tac- tical situation

  15. A Multidisciplinary Breast Cancer Brain Metastases Clinic: The University of North Carolina Experience.

    PubMed

    McKee, Megan J; Keith, Kevin; Deal, Allison M; Garrett, Amy L; Wheless, Amy A; Green, Rebecca L; Benbow, Julie M; Dees, E Claire; Carey, Lisa A; Ewend, Matthew G; Anders, Carey K; Zagar, Timothy M

    2016-01-01

    Breast cancer brain metastasis (BCBM) confers a poor prognosis and is unusual in requiring multidisciplinary care in the metastatic setting. The University of North Carolina at Chapel Hill (UNC-CH) has created a BCBM clinic to provide medical and radiation oncology, neurosurgical, and supportive services to this complex patient population. We describe organization and design of the clinic as well as characteristics, treatments, and outcomes of the patients seen in its first 3 years. Clinical and demographic data were collected from patients in a prospectively maintained database. Descriptive statistics are reported as percentages and means. The Kaplan-Meier method was used to estimate time-to-event outcomes. Sixty-five patients were seen between January 2012 and January 2015. At the time of presentation to the BCBM clinic, most patients (74%) had multiple (≥2) brain metastases and had received prior systemic (77%) and whole-brain radiation therapy and/or central nervous system stereotactic radiosurgery (65%) in the metastatic setting. Seventy-eight percent returned for a follow-up visit; 32% were enrolled in a clinical trial. Median time from diagnosis of brain metastasis to death was 2.11 years (95% confidence interval [CI] 1.31-2.47) for all patients, 1.15 years (95% CI 0.4-2.43) for triple-negative breast cancer, 1.31 years (95% CI 0.51-2.52) for hormone receptor-positive/HER2- breast cancer, and 3.03 years (95% CI lower limit 1.94, upper limit not estimable) for HER2+ breast cancer (p = .0037). Patients with BCBM have unique and complex needs that require input from several oncologic disciplines. The development of the UNC-CH multidisciplinary BCBM clinic is a model that can be adapted at other centers to provide coordinated care for patients with a challenging and complex disease. Patients with breast cancer brain metastases often require unique multidisciplinary care to meet the numerous and uncommon challenges associated with their conditions. Here, the development and characteristics of a clinic designed specifically to provide for the multidisciplinary needs of patients with breast cancer brain metastases are described. This clinic may serve as a model for other institutions interested in creating specialty clinics with similar objectives. ©AlphaMed Press.

  16. Model-based engineering for laser weapons systems

    NASA Astrophysics Data System (ADS)

    Panthaki, Malcolm; Coy, Steve

    2011-10-01

    The Comet Performance Engineering Workspace is an environment that enables integrated, multidisciplinary modeling and design/simulation process automation. One of the many multi-disciplinary applications of the Comet Workspace is for the integrated Structural, Thermal, Optical Performance (STOP) analysis of complex, multi-disciplinary space systems containing Electro-Optical (EO) sensors such as those which are designed and developed by and for NASA and the Department of Defense. The CometTM software is currently able to integrate performance simulation data and processes from a wide range of 3-D CAD and analysis software programs including CODE VTM from Optical Research Associates and SigFitTM from Sigmadyne Inc. which are used to simulate the optics performance of EO sensor systems in space-borne applications. Over the past year, Comet Solutions has been working with MZA Associates of Albuquerque, NM, under a contract with the Air Force Research Laboratories. This funded effort is a "risk reduction effort", to help determine whether the combination of Comet and WaveTrainTM, a wave optics systems engineering analysis environment developed and maintained by MZA Associates and used by the Air Force Research Laboratory, will result in an effective Model-Based Engineering (MBE) environment for the analysis and design of laser weapons systems. This paper will review the results of this effort and future steps.

  17. Managing Programmatic Risk for Complex Space System Developments

    NASA Technical Reports Server (NTRS)

    Panetta, Peter V.; Hastings, Daniel; Brumfield, Mark (Technical Monitor)

    2001-01-01

    Risk management strategies have become a recent important research topic to many aerospace organizations as they prepare to develop the revolutionary complex space systems of the future. Future multi-disciplinary complex space systems will make it absolutely essential for organizations to practice a rigorous, comprehensive risk management process, emphasizing thorough systems engineering principles to succeed. Project managers must possess strong leadership skills to direct high quality, cross-disciplinary teams for successfully developing revolutionary space systems that are ever increasing in complexity. Proactive efforts to reduce or eliminate risk throughout a project's lifecycle ideally must be practiced by all technical members in the organization. This paper discusses some of the risk management perspectives that were collected from senior managers and project managers of aerospace and aeronautical organizations by the use of interviews and surveys. Some of the programmatic risks which drive the success or failure of projects are revealed. Key findings lead to a number of insights for organizations to consider for proactively approaching the risks which face current and future complex space systems projects.

  18. Integrated care: theory to practice.

    PubMed

    Stokes, Jonathan; Checkland, Kath; Kristensen, Søren Rud

    2016-10-01

    'Integrated care' is pitched as the solution to current health system challenges. In the literature, what integrated care actually involves is complex and contested. Multi-disciplinary team case management is frequently the primary focus of integrated care when implemented internationally. We examine the practical application of integrated care in the NHS in England to exemplify the prevalence of the case management focus. We look at the evidence for effectiveness of multi-disciplinary team case management, for the focus on high-risk groups and for integrated care more generally. We suggest realistic expectations of what integration of care alone can achieve and additional research questions. © The Author(s) 2016.

  19. Building a Workforce for Future Health Systems: Reflections from Health Policy and Systems Research.

    PubMed

    Javadi, Dena; Tran, Nhan; Ghaffar, Abdul

    2018-05-24

    The era of the Sustainable Development Goals calls for multidisciplinary research and intersectoral approaches to addressing health challenges. This presents a unique opportunity for multidisciplinary fields concerned with complex systems. Those working in system-oriented fields such as health policy and systems research (HPSR) and health services research must be forward-thinking in optimizing their collective ability to address these global challenges. The objective of this commentary was to share reflections on challenges and strategies in managing the HPSR workforce in order to stimulate dialogue and cross-learning across similar fields. The following strategies are discussed here: definitional clarity of expected competencies and coordination across HPS researchers, national investment in HPSR, institutional capacity for coproduction of knowledge across different types of actors, and participatory leadership. Creative approaches in training, financing, developing, and leading the diverse workforce required to strengthen health systems can pave the way for its full-time and part-time members to work together. © Health Research and Educational Trust.

  20. Shared decision-making at the end of life: A focus group study exploring the perceptions and experiences of multi-disciplinary healthcare professionals working in the home setting.

    PubMed

    Brogan, Paula; Hasson, Felicity; McIlfatrick, Sonja

    2018-01-01

    Globally recommended in healthcare policy, Shared Decision-Making is also central to international policy promoting community palliative care. Yet realities of implementation by multi-disciplinary healthcare professionals who provide end-of-life care in the home are unclear. To explore multi-disciplinary healthcare professionals' perceptions and experiences of Shared Decision-Making at end of life in the home. Qualitative design using focus groups, transcribed verbatim and analysed thematically. A total of 43 participants, from multi-disciplinary community-based services in one region of the United Kingdom, were recruited. While the rhetoric of Shared Decision-Making was recognised, its implementation was impacted by several interconnecting factors, including (1) conceptual confusion regarding Shared Decision-Making, (2) uncertainty in the process and (3) organisational factors which impeded Shared Decision-Making. Multiple interacting factors influence implementation of Shared Decision-Making by professionals working in complex community settings at the end of life. Moving from rhetoric to reality requires future work exploring the realities of Shared Decision-Making practice at individual, process and systems levels.

  1. Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite

    NASA Astrophysics Data System (ADS)

    Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian; Yuan, Bin

    2017-09-01

    State-of-the-art all-electric geostationary earth orbit (GEO) satellites use electric thrusters to execute all propulsive duties, which significantly differ from the traditional all-chemical ones in orbit-raising, station-keeping, radiation damage protection, and power budget, etc. Design optimization task of an all-electric GEO satellite is therefore a complex multidisciplinary design optimization (MDO) problem involving unique design considerations. However, solving the all-electric GEO satellite MDO problem faces big challenges in disciplinary modeling techniques and efficient optimization strategy. To address these challenges, we presents a surrogate assisted MDO framework consisting of several modules, i.e., MDO problem definition, multidisciplinary modeling, multidisciplinary analysis (MDA), and surrogate assisted optimizer. Based on the proposed framework, the all-electric GEO satellite MDO problem is formulated to minimize the total mass of the satellite system under a number of practical constraints. Then considerable efforts are spent on multidisciplinary modeling involving geosynchronous transfer, GEO station-keeping, power, thermal control, attitude control, and structure disciplines. Since orbit dynamics models and finite element structural model are computationally expensive, an adaptive response surface surrogate based optimizer is incorporated in the proposed framework to solve the satellite MDO problem with moderate computational cost, where a response surface surrogate is gradually refined to represent the computationally expensive MDA process. After optimization, the total mass of the studied GEO satellite is decreased by 185.3 kg (i.e., 7.3% of the total mass). Finally, the optimal design is further discussed to demonstrate the effectiveness of our proposed framework to cope with the all-electric GEO satellite system design optimization problems. This proposed surrogate assisted MDO framework can also provide valuable references for other all-electric spacecraft system design.

  2. Renewal Processes in the Critical Brain

    NASA Astrophysics Data System (ADS)

    Allegrini, Paolo; Paradisi, Paolo; Menicucci, Danilo; Gemignani, Angelo

    We describe herein a multidisciplinary research, as it developes and applies concepts of the theory of complexity, in turn stemming from recent advancements of statistical physics, onto cognitive neuroscience. We discuss (define) complexity, and how the human brain is a paradigm of it. We discuss how the hypothesis of brain activity dynamically behaving as a critical system is taking momentum in literature, then we focus on a feature of critical systems (hence of the brain), which is the intermittent passage between metastable states, marked by events, locally resetting the memory, but giving rise to correlation functions with infinite correlation times. The events, extracted from multi-channel ElectroEncephaloGrams, mark (are interpreted as) a birth/death process of cooperation, namely of system elements being recruited into collective states. Finally we discuss a recently discovered form of control (in the form of a new Linear Response Theory), that allows an optimized information transmission between complex systems, named Complexity Matching.

  3. Interconnecting Multidiscilinary Data Infrastructures: From Federation to Brokering Framework

    NASA Astrophysics Data System (ADS)

    Nativi, S.

    2014-12-01

    Standardization and federation activities have been played an essential role to push interoperability at the disciplinary and cross-disciplinary level. However, they demonstrated not to be sufficient to resolve important interoperability challenges, including: disciplinary heterogeneity, cross-organizations diversities, cultural differences. Significant international initiatives like GEOSS, IODE, and CEOS demonstrated that a federation system dealing with global and multi-disciplinary domain turns out to be rater complex, raising more the already high entry level barriers for both Providers and Users. In particular, GEOSS demonstrated that standardization and federation actions must be accompanied and complemented by a brokering approach. Brokering architecture and its implementing technologies are able to implement an effective interoperability level among multi-disciplinary systems, lowering the entry level barriers for both data providers and users. This presentation will discuss the brokering philosophy as a complementary approach for standardization and federation to interconnect existing and heterogeneous infrastructures and systems. The GEOSS experience will be analyzed, specially.

  4. Hannah's Feeding Journey: A Multidisciplinary Treatment Approach to Establishing Oral Acceptance for a Toddler with a Complex Medical History

    ERIC Educational Resources Information Center

    Dunn, Dena M.; Galbally, Sandra Lynn; Markowitz, Goldie; Pucci, Kristy N.; Brochi, Ligia; Cohen, Sherri Shubin

    2017-01-01

    This article presents the importance of multidisciplinary, family-centered care, and a developmental bio-psycho-social approach to treating feeding difficulties in a child with a complex medical history. Hannah spent the first 9 months of her life in the hospital and was discharged dependent on nasogastric tube feeding. Her journey to recovery…

  5. Pragmatic trial of a multidisciplinary lung cancer care model in a community healthcare setting: study design, implementation evaluation, and baseline clinical results

    PubMed Central

    Smeltzer, Matthew P.; Rugless, Fedoria E.; Jackson, Bianca M.; Berryman, Courtney L.; Faris, Nicholas R.; Ray, Meredith A.; Meadows, Meghan; Patel, Anita A.; Roark, Kristina S.; Kedia, Satish K.; DeBon, Margaret M.; Crossley, Fayre J.; Oliver, Georgia; McHugh, Laura M.; Hastings, Willeen; Osborne, Orion; Osborne, Jackie; Ill, Toni; Ill, Mark; Jones, Wynett; Lee, Hyo K.; Signore, Raymond S.; Fox, Roy C.; Li, Jingshan; Robbins, Edward T.; Ward, Kenneth D.; Klesges, Lisa M.

    2018-01-01

    Background Responsible for 25% of all US cancer deaths, lung cancer presents complex care-delivery challenges. Adoption of the highly recommended multidisciplinary care model suffers from a dearth of good quality evidence. Leading up to a prospective comparative-effectiveness study of multidisciplinary vs. serial care, we studied the implementation of a rigorously benchmarked multidisciplinary lung cancer clinic. Methods We used a mixed-methods approach to conduct a patient-centered, combined implementation and effectiveness study of a multidisciplinary model of lung cancer care. We established a co-located multidisciplinary clinic to study the implementation of this care-delivery model. We identified and engaged key stakeholders from the onset, used their input to develop the program structure, processes, performance benchmarks, and study endpoints (outcome-related process measures, patient- and caregiver-reported outcomes, survival). In this report, we describe the study design, process of implementation, comparative populations, and how they contrast with patients within the local and regional healthcare system. Trial Registration: ClinicalTrials.gov Identifier: NCT02123797. Results Implementation: the multidisciplinary clinic obtained an overall treatment concordance rate of 90% (target >85%). Satisfaction scores were high, with >95% of patients and caregivers rating themselves as being “very satisfied” with all aspects of care from the multidisciplinary team (patient/caregiver response rate >90%). The Reach of the multidisciplinary clinic included a higher proportion of minority patients, more women, and younger patients than the regional population. Comparative effectiveness: The comparative effectiveness trial conducted in the last phase of the study met the planned enrollment per statistical design, with 178 patients in the multidisciplinary arm and 348 in the serial care arm. The multidisciplinary cohort had older age and a higher percentage of racial minorities, with a higher proportion of stage IV patients in the serial care arm. Conclusions This study demonstrates a comprehensive implementation of a multidisciplinary model of lung cancer care, which will advance the science behind implementing this much-advocated clinical care model. PMID:29535915

  6. Developing dimensions for a multicomponent multidisciplinary approach to obesity management: a qualitative study.

    PubMed

    Cochrane, Anita J; Dick, Bob; King, Neil A; Hills, Andrew P; Kavanagh, David J

    2017-10-16

    There have been consistent recommendations for multicomponent and multidisciplinary approaches for obesity management. However, there is no clear agreement on the components, disciplines or processes to be considered within such an approach. In this study, we explored multicomponent and multidisciplinary approaches through an examination of knowledge, skills, beliefs, and recommendations of stakeholders involved in obesity management. These stakeholders included researchers, practitioners, educators, and patients. We used qualitative action research methods, including convergent interviewing and observation, to assist the process of inquiry. The consensus was that a multicomponent and multidisciplinary approach should be based on four central meta-components (patient, practitioner, process, and environmental factors), and specific components of these factors were identified. Psychologists, dieticians, exercise physiologists and general practitioners were nominated as key practitioners to be included. A complex condition like obesity requires that multiple components be addressed, and that both patients and multiple disciplines are involved in developing solutions. Implementing cycles of continuous improvement to deal with complexity, instead of trying to control for it, offers an effective way to deal with complex, changing multisystem problems like obesity.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Philip LaRoche

    At the end of his life, Stephen Jay Kline, longtime professor of mechanical engineering at Stanford University, completed a book on how to address complex systems. The title of the book is 'Conceptual Foundations of Multi-Disciplinary Thinking' (1995), but the topic of the book is systems. Kline first establishes certain limits that are characteristic of our conscious minds. Kline then establishes a complexity measure for systems and uses that complexity measure to develop a hierarchy of systems. Kline then argues that our minds, due to their characteristic limitations, are unable to model the complex systems in that hierarchy. Computers aremore » of no help to us here. Our attempts at modeling these complex systems are based on the way we successfully model some simple systems, in particular, 'inert, naturally-occurring' objects and processes, such as what is the focus of physics. But complex systems overwhelm such attempts. As a result, the best we can do in working with these complex systems is to use a heuristic, what Kline calls the 'Guideline for Complex Systems.' Kline documents the problems that have developed due to 'oversimple' system models and from the inappropriate application of a system model from one domain to another. One prominent such problem is the Procrustean attempt to make the disciplines that deal with complex systems be 'physics-like.' Physics deals with simple systems, not complex ones, using Kline's complexity measure. The models that physics has developed are inappropriate for complex systems. Kline documents a number of the wasteful and dangerous fallacies of this type.« less

  8. Clients with chronic conditions: community nurse role in a multidisciplinary team.

    PubMed

    Wilkes, Lesley; Cioffi, Jane; Cummings, Joanne; Warne, Bronwyn; Harrison, Kathleen

    2014-03-01

    To define and validate the role of the community nurse in a multidisciplinary team caring for clients with chronic and complex needs. A key factor in optimising care for clients with chronic and complex conditions in the community is the use of multidisciplinary teams. A team approach is more effective as it enables better integration of services. The role of the community nurse in the multidisciplinary team has as yet not been delineated. A modified Delphi technique was used in this study. A group of 17 volunteer registered nurses who were experienced in the care of clients with chronic conditions and complex care needs in the community formed a panel of experts. Experts were emailed a series of three questionnaires. Main findings show that the role of the community nurse in a multidisciplinary team for clients with chronic conditions has six main domains - advocate, supporter, coordinator, educator, team member and assessor. A consensus on the role of the community nurse in the multidisciplinary team is described. The six key role domains reaffirm the generic role of the nurse and the validation of the role clarifies and reinforces the centrality of the community nurse in the team. Further refinement of the community nurse role is indicated to increase comprehensiveness of role descriptors particularly for the role domain, advocate. Community nurses working in multidisciplinary teams caring for clients with chronic conditions can define their role as a team member. The working relationship of the community nurse with other health professionals in the multidisciplinary team as a key approach to more integrated care for clients and carers enables the use of this approach to be better understood by all team members. With this increased understanding, community nurses are in a position to build stronger and more effective care teams. © 2013 John Wiley & Sons Ltd.

  9. A grid generation system for multi-disciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Samareh-Abolhassani, Jamshid

    1995-01-01

    A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.

  10. The Teaching of Creativity in Information Systems Programmes at South African Higher Education Institutions

    ERIC Educational Resources Information Center

    Turpin, Marita; Matthee, Machdel; Kruger, Anine

    2015-01-01

    The development of problem solving skills is a shared goal in science, engineering, mathematics and technology education. In the applied sciences, problems are often open-ended and complex, requiring a multidisciplinary approach as well as new designs. In such cases, problem solving requires not only analytical capabilities, but also creativity…

  11. Understanding, creating, and managing complex techno-socio-economic systems: Challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Helbing, D.; Balietti, S.; Bishop, S.; Lukowicz, P.

    2011-05-01

    This contribution reflects on the comments of Peter Allen [1], Bikas K. Chakrabarti [2], Péter Érdi [3], Juval Portugali [4], Sorin Solomon [5], and Stefan Thurner [6] on three White Papers (WP) of the EU Support Action Visioneer (www.visioneer.ethz.ch). These White Papers are entitled "From Social Data Mining to Forecasting Socio-Economic Crises" (WP 1) [7], "From Social Simulation to Integrative System Design" (WP 2) [8], and "How to Create an Innovation Accelerator" (WP 3) [9]. In our reflections, the need and feasibility of a "Knowledge Accelerator" is further substantiated by fundamental considerations and recent events around the globe. newpara The Visioneer White Papers propose research to be carried out that will improve our understanding of complex techno-socio-economic systems and their interaction with the environment. Thereby, they aim to stimulate multi-disciplinary collaborations between ICT, the social sciences, and complexity science. Moreover, they suggest combining the potential of massive real-time data, theoretical models, large-scale computer simulations and participatory online platforms. By doing so, it would become possible to explore various futures and to expand the limits of human imagination when it comes to the assessment of the often counter-intuitive behavior of these complex techno-socio-economic-environmental systems. In this contribution, we also highlight the importance of a pluralistic modeling approach and, in particular, the need for a fruitful interaction between quantitative and qualitative research approaches. newpara In an appendix we briefly summarize the concept of the FuturICT flagship project, which will build on and go beyond the proposals made by the Visioneer White Papers. EU flagships are ambitious multi-disciplinary high-risk projects with a duration of at least 10 years amounting to an envisaged overall budget of 1 billion EUR [10]. The goal of the FuturICT flagship initiative is to understand and manage complex, global, socially interactive systems, with a focus on sustainability and resilience.

  12. Complex multidisciplinary system composition for aerospace vehicle conceptual design

    NASA Astrophysics Data System (ADS)

    Gonzalez, Lex

    Although, there exists a vast amount of work concerning the analysis, design, integration of aerospace vehicle systems, there is no standard for how this data and knowledge should be combined in order to create a synthesis system. Each institution creating a synthesis system has in house vehicle and hardware components they are attempting to model and proprietary methods with which to model them. This leads to the fact that synthesis systems begin as one-off creations meant to answer a specific problem. As the scope of the synthesis system grows to encompass more and more problems, so does its size and complexity; in order for a single synthesis system to answer multiple questions the number of methods and method interface must increase. As a means to curtail the requirement that the increase of an aircraft synthesis systems capability leads to an increase in its size and complexity, this research effort focuses on the idea that each problem in aerospace requires its own analysis framework. By focusing on the creation of a methodology which centers on the matching of an analysis framework towards the problem being solved, the complexity of the analysis framework is decoupled from the complexity of the system that creates it. The derived methodology allows for the composition of complex multi-disciplinary systems (CMDS) through the automatic creation and implementation of system and disciplinary method interfaces. The CMDS Composition process follows a four step methodology meant to take a problem definition and progress towards the creation of an analysis framework meant to answer said problem. The unique implementation of the CMDS Composition process take user selected disciplinary analysis methods and automatically integrates them, together in order to create a syntactically composable analysis framework. As a means of assessing the validity of the CMDS Composition process a prototype system (AVDDBMS) has been developed. AVD DBMS has been used to model the Generic Hypersonic Vehicle (GHV), an open source family of hypersonic vehicles originating from the Air Force Research Laboratory. AVDDBMS has been applied in three different ways in order to assess its validity: Verification using GHV disciplinary data, Validation using selected disciplinary analysis methods, and Application of the CMDS Composition Process to assess the design solution space for the GHV hardware. The research demonstrates the holistic effect that selection of individual disciplinary analysis methods has on the structure and integration of the analysis framework.

  13. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  14. Multidisciplinary cancer care: does it improve outcomes?

    PubMed

    Brar, Savtaj S; Hong, Nicole Look; Wright, Frances C

    2014-10-01

    Multidisciplinary care has been advocated as a solution for increasingly complex treatment decisions in cancer patients. The impact of multidisciplinary care on patient survival has been studied, but evidence is limited by poor methodological quality. Lack of conclusive evidence for increased survival is balanced against improvements in quality of care, guideline adherence, reduction in wait times, and greater satisfaction for patients and care providers. © 2014 Wiley Periodicals, Inc.

  15. Do endothelial cells dream of eclectic shape?

    PubMed

    Bentley, Katie; Philippides, Andrew; Ravasz Regan, Erzsébet

    2014-04-28

    Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Development of a Multi-Disciplinary Computing Environment (MDICE)

    NASA Technical Reports Server (NTRS)

    Kingsley, Gerry; Siegel, John M., Jr.; Harrand, Vincent J.; Lawrence, Charles; Luker, Joel J.

    1999-01-01

    The growing need for and importance of multi-component and multi-disciplinary engineering analysis has been understood for many years. For many applications, loose (or semi-implicit) coupling is optimal, and allows the use of various legacy codes without requiring major modifications. For this purpose, CFDRC and NASA LeRC have developed a computational environment to enable coupling between various flow analysis codes at several levels of fidelity. This has been referred to as the Visual Computing Environment (VCE), and is being successfully applied to the analysis of several aircraft engine components. Recently, CFDRC and AFRL/VAAC (WL) have extended the framework and scope of VCE to enable complex multi-disciplinary simulations. The chosen initial focus is on aeroelastic aircraft applications. The developed software is referred to as MDICE-AE, an extensible system suitable for integration of several engineering analysis disciplines. This paper describes the methodology, basic architecture, chosen software technologies, salient library modules, and the current status of and plans for MDICE. A fluid-structure interaction application is described in a separate companion paper.

  17. Multi-disciplinary coupling effects for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions which govern the accurate response of propulsion systems. Results are presented for propulsion system responses including multi-disciplinary coupling effects using coupled multi-discipline thermal, structural, and acoustic tailoring; an integrated system of multi-disciplinary simulators; coupled material behavior/fabrication process tailoring; sensitivities using a probabilistic simulator; and coupled materials, structures, fracture, and probabilistic behavior simulator. The results demonstrate that superior designs can be achieved if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated coupled multi-discipline numerical propulsion system simulator.

  18. A basis for a visual language for describing, archiving and analyzing functional models of complex biological systems

    PubMed Central

    Cook, Daniel L; Farley, Joel F; Tapscott, Stephen J

    2001-01-01

    Background: We propose that a computerized, internet-based graphical description language for systems biology will be essential for describing, archiving and analyzing complex problems of biological function in health and disease. Results: We outline here a conceptual basis for designing such a language and describe BioD, a prototype language that we have used to explore the utility and feasibility of this approach to functional biology. Using example models, we demonstrate that a rather limited lexicon of icons and arrows suffices to describe complex cell-biological systems as discrete models that can be posted and linked on the internet. Conclusions: Given available computer and internet technology, BioD may be implemented as an extensible, multidisciplinary language that can be used to archive functional systems knowledge and be extended to support both qualitative and quantitative functional analysis. PMID:11305940

  19. NETIMIS: Dynamic Simulation of Health Economics Outcomes Using Big Data.

    PubMed

    Johnson, Owen A; Hall, Peter S; Hulme, Claire

    2016-02-01

    Many healthcare organizations are now making good use of electronic health record (EHR) systems to record clinical information about their patients and the details of their healthcare. Electronic data in EHRs is generated by people engaged in complex processes within complex environments, and their human input, albeit shaped by computer systems, is compromised by many human factors. These data are potentially valuable to health economists and outcomes researchers but are sufficiently large and complex enough to be considered part of the new frontier of 'big data'. This paper describes emerging methods that draw together data mining, process modelling, activity-based costing and dynamic simulation models. Our research infrastructure includes safe links to Leeds hospital's EHRs with 3 million secondary and tertiary care patients. We created a multidisciplinary team of health economists, clinical specialists, and data and computer scientists, and developed a dynamic simulation tool called NETIMIS (Network Tools for Intervention Modelling with Intelligent Simulation; http://www.netimis.com ) suitable for visualization of both human-designed and data-mined processes which can then be used for 'what-if' analysis by stakeholders interested in costing, designing and evaluating healthcare interventions. We present two examples of model development to illustrate how dynamic simulation can be informed by big data from an EHR. We found the tool provided a focal point for multidisciplinary team work to help them iteratively and collaboratively 'deep dive' into big data.

  20. The Loci Multidisciplinary Simulation System

    NASA Technical Reports Server (NTRS)

    Luke, Ed

    2002-01-01

    Contents include the following: 1. An overview of the Loci Multidisciplinary Simulation System. 2. Topologically adaptive mesh generation. 3. Multidisciplinary simulations using Loci with the CHEM chemically reacting flow solver.

  1. The importance of multidisciplinary team management of patients with non-small-cell lung cancer

    PubMed Central

    Ellis, P.M.

    2012-01-01

    Historically, a simple approach to the treatment of non-small-cell lung cancer (nsclc) was applicable to nearly all patients. Recently, a more complex treatment algorithm has emerged, driven by both pathologic and molecular phenotype. This increasing complexity underscores the importance of a multidisciplinary team approach to the diagnosis, treatment, and supportive care of patients with nsclc. A team approach to management is important at all points: from diagnosis, through treatment, to end-of-life care. It also needs to be patient-centred and must involve the patient in decision-making concerning treatment. Multidisciplinary case conferencing is becoming an integral part of care. Early integration of palliative care into the team approach appears to contribute significantly to quality of life and potentially extends overall survival for these patients. Supportive approaches, including psychosocial and nutrition support, should be routinely incorporated into the team approach. Challenges to the implementation of multidisciplinary care require institutional commitment and support. PMID:22787414

  2. Challenges in integrating multidisciplinary data into a single e-infrastructure

    NASA Astrophysics Data System (ADS)

    Atakan, Kuvvet; Jeffery, Keith G.; Bailo, Daniele; Harrison, Matthew

    2015-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS is now getting into its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. TCS data, data products and services will be integrated into a platform "the ICS system" that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and as such need to be harmonized and provided within the ICS. In order to develop a metadata catalogue and the ICS system, the content from the entire spectrum of services included in TCS, ICS-Ds as well as CES activities, need to be organized in a systematic manner taking into account global and European IT-standards, while complying with the user needs and data provider requirements.

  3. The efficacy of an iterative "sequence of prevention" approach to injury prevention by a multidisciplinary team in professional rugby union.

    PubMed

    Tee, Jason C; Bekker, Sheree; Collins, Rob; Klingbiel, Jannie; van Rooyen, Ivan; van Wyk, David; Till, Kevin; Jones, Ben

    2018-02-14

    Due to the complex systems nature of injuries, the responsibility for injury risk management cannot lie solely within a single domain of professional practice. Interdisciplinary collaboration between technical/tactical coaches, strength and conditioning coaches, team doctors, physical therapists and sport scientists is likely to have a meaningful impact on injury risk. This study describes the application and efficacy of a multidisciplinary approach to reducing team injury risk in professional rugby union. Observational longitudinal cohort study. Epidemiological injury data was collected from a professional rugby union team for 5 consecutive seasons. Following each season, these data informed multidisciplinary intervention strategies to reduce injury risk. The effectiveness of these strategies was iteratively assessed to inform future interventions. Specific examples of intervention strategies are provided. Overall team injury burden displayed a likely beneficial decrease (-8%; injury rate ratio (IRR) 0.9, 95%CI 0.9-1.0) from 2012 to 2016. This was achieved through a most likely beneficial improvement in non-contact injury burden (-39%; IRR 0.6, 95%CI 0.6-0.7). Contact injury burden was increased, but to a lesser extent (+18%; IRR 1.2, 95%CI 1.1-1.3, most likely harmful) during the same period. The range of skills required to effectively manage complex injury phenomena in professional collision sport crosses disciplinary boundaries. The evidence presented here points to the effectiveness of a multidisciplinary approach to reducing injury risk. This model will likely be applicable across a range of team and individual sports. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. A general neurologist's perspective on the urgent need to apply resilience thinking to the prevention and treatment of Alzheimer's disease.

    PubMed

    Pomorska, Grazyna; Ockene, Judith K

    2017-11-01

    The goal of this article was to look at the problem of Alzheimer's disease (AD) through the lens of a socioecological resilience-thinking framework to help expand our view of the prevention and treatment of AD. This serious and complex public health problem requires a holistic systems approach. We present the view that resilience thinking, a theoretical framework that offers multidisciplinary approaches in ecology and natural resource management to solve environmental problems, can be applied to the prevention and treatment of AD. Resilience thinking explains a natural process that occurs in all complex systems in response to stressful challenges. The brain is a complex system, much like an ecosystem, and AD is a disturbance (allostatic overload) within the ecosystem of the brain. Resilience thinking gives us guidance, direction, and ideas about how to comprehensively prevent and treat AD and tackle the AD epidemic.

  5. Improving outcomes in veterans with oropharyngeal squamous cell carcinoma through implementation of a multidisciplinary clinic.

    PubMed

    Light, Tyler; Rassi, Edward El; Maggiore, Ronald J; Holland, John; Reed, Julie; Suriano, Kathleen; Stooksbury, Marcelle; Tobin, Nora; Gross, Neil; Clayburgh, Daniel

    2017-06-01

    Treatment of head and neck cancer is complex, and a multidisciplinary clinic may improve the coordination of care. The value of a head and neck multidisciplinary clinic has not yet been established in oropharyngeal squamous cell carcinoma (SCC). A retrospective review was conducted of Veterans Affairs patients with oropharyngeal SCC undergoing concurrent chemoradiation before and after implementation of the head and neck multidisciplinary clinic. Fifty-two patients before and 54 patients after multidisciplinary clinic were included in this study. Age, tobacco use, and p16+ status were similar between groups. With multidisciplinary clinic, time to treatment decreased, and utilization of supportive services, including speech pathology, dentistry, and nutrition increased. The 5-year disease-specific survival rate increased from 63% to 81% (p = .043) after implementation of the multidisciplinary clinic. Multivariate analysis showed that disease stage (p = .016), p16 status (p = .006), and multidisciplinary clinic participation (p = .042) were predictors of disease-specific survival. Implementation of a multidisciplinary clinic improved care coordination and disease-specific survival in patients with oropharyngeal SCC. © 2017 Wiley Periodicals, Inc. Head Neck 39: 1106-1112, 2017. © 2017 Wiley Periodicals, Inc.

  6. Stronger Disciplinary Identities in Multidisciplinary Research Schools

    ERIC Educational Resources Information Center

    Geschwind, Lars; Melin, Göran

    2016-01-01

    In this study, two multidisciplinary Social Sciences and Humanities research schools in Sweden have been investigated regarding disciplinary identity-making. This study investigates the meetings between different disciplines around a common thematic area of study for Ph.D. students. The Ph.D. students navigate through a complex social and…

  7. Percutaneous treatment of complex biliary stone disease using endourological technique and literature review

    PubMed Central

    Korkes, Fernando; Carneiro, Ariê; Nasser, Felipe; Affonso, Breno Boueri; Galastri, Francisco Leonardo; de Oliveira, Marcos Belotto; Macedo, Antônio Luiz de Vasconcellos

    2015-01-01

    Most biliary stone diseases need to be treated surgically. However, in special cases that traditional biliary tract endoscopic access is not allowed, a multidisciplinary approach using hybrid technique with urologic instrumental constitute a treatment option. We report a case of a patient with complex intrahepatic stones who previously underwent unsuccessful conventional approaches, and who symptoms resolved after treatment with hybrid technique using an endourologic technology. We conducted an extensive literature review until October 2012 of manuscripts indexed in PubMed on the treatment of complex gallstones with hybrid technique. The multidisciplinary approach with hybrid technique using endourologic instrumental represents a safe and effective treatment option for patients with complex biliary stone who cannot conduct treatment with conventional methods. PMID:26061073

  8. Complex Intelligent Systems: Juxtaposition of Foundational Notions and a Research Agenda

    NASA Astrophysics Data System (ADS)

    Gelepithis, Petros A.

    2001-11-01

    The cardinality of the class, C , of complex intelligent systems, i.e., systems of intelligent systems and their resources, is steadily increasing. Such an increase, whether designed, sometimes changes significantly and fundamentally, the structure of C . Recently,the study of members of C and its structure comes under a variety of multidisciplinary headings the most prominent of which include General Systems Theory, Complexity Science, Artificial Life, and Cybernetics. Their common characteristic is the quest for a unified theory of a certain class of systems like a living system or an organisation. So far, the only candidate for a general theory of intelligent systems is Newell's Soar. To my knowledge there is presently no candidate theory of C except Newell's claimed extensibility of Soar. This paper juxtaposes the elements of Newell's conceptual basis with those of an alternative conceptual framework based on the thesis that communication and understanding are the primary processes shaping the structure of C and its members. It is patently obvious that a research agenda for the study of C can be extremely varied and long. The third section of this paper presents a highly selective research agenda that aims to provoke discussion among complexity theory scientists.

  9. Integrated approach to pain management for a patient with multiple bone metastases of uterine cervical cancer.

    PubMed

    Qin, De-An; Song, Jie-Fu; Song, Li-Ping; Feng, Gui-Sheng

    2018-05-01

    Background Pain management for multiple bone metastases is complex and often requires multidisciplinary treatment. We herein describe patient-centered multidisciplinary pain management for metastatic cancer. A 61-year-old woman with multiple bone metastases of uterine cervical cancer developed intractable low back pain. After external beam radiotherapy failed, we performed lumbar spinal intralesional curettage, pedicle screw fixation, and nerve decompression. However, the neuralgia persisted. We then percutaneously injected epirubicin into the intervertebral foramina under computed tomography guidance for L5 dorsal root ganglion destruction. Osteoplasty was performed under C-arm X-ray guidance; however, the sacrum was mistaken for the ilium, and treatment was ineffective. We administered zoledronic acid and strontium-89. The last resort was outpatient implantation of an epidural bupivacaine-morphine infusion system. A visual analog scale (VAS) was used for pain evaluation. Lumbar spinal intralesional curettage and fixation, epirubicin-induced ganglion destruction, and administration of zoledronic acid and strontium-89 decreased her VAS pain score from 7-8 to 3-4. Radiotherapy and nerve decompression and release were ineffective, as was osteoplasty because of the location error. The epidural infusion system decreased the VAS score from 7-8 to 2-3 and was highly efficient. Conclusions Multidisciplinary integrated treatment for metastatic cancer can be effective.

  10. Decision Making Under Uncertainty and Complexity: A Model-Based Scenario Approach to Supporting Integrated Water Resources Management

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gupta, H.; Wagener, T.; Stewart, S.; Mahmoud, M.; Hartmann, H.; Springer, E.

    2007-12-01

    Some of the most challenging issues facing contemporary water resources management are those typified by complex coupled human-environmental systems with poorly characterized uncertainties. In other words, major decisions regarding water resources have to be made in the face of substantial uncertainty and complexity. It has been suggested that integrated models can be used to coherently assemble information from a broad set of domains, and can therefore serve as an effective means for tackling the complexity of environmental systems. Further, well-conceived scenarios can effectively inform decision making, particularly when high complexity and poorly characterized uncertainties make the problem intractable via traditional uncertainty analysis methods. This presentation discusses the integrated modeling framework adopted by SAHRA, an NSF Science & Technology Center, to investigate stakeholder-driven water sustainability issues within the semi-arid southwestern US. The multi-disciplinary, multi-resolution modeling framework incorporates a formal scenario approach to analyze the impacts of plausible (albeit uncertain) alternative futures to support adaptive management of water resources systems. Some of the major challenges involved in, and lessons learned from, this effort will be discussed.

  11. IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J., Jr.

    1984-01-01

    During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.

  12. Critical Education for Work: Multidisciplinary Approaches. Social and Policy Issues in Education: The David C. Anchin Series.

    ERIC Educational Resources Information Center

    Lakes, Richard D., Ed.

    This book expands the meaning of today's education for work by offering five multidisciplinary approaches--school-to-work transitions, gender equity, labor education, economic democracy, and vocational education--revealing the complexities of personal, social, and cultural transformation. "Critical Education for Work" (Richard D. Lakes)…

  13. Multi-disciplinary coupling for integrated design of propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Effective computational simulation procedures are described for modeling the inherent multi-disciplinary interactions for determining the true response of propulsion systems. Results are presented for propulsion system responses including multi-discipline coupling effects via (1) coupled multi-discipline tailoring, (2) an integrated system of multidisciplinary simulators, (3) coupled material-behavior/fabrication-process tailoring, (4) sensitivities using a probabilistic simulator, and (5) coupled materials/structures/fracture/probabilistic behavior simulator. The results show that the best designs can be determined if the analysis/tailoring methods account for the multi-disciplinary coupling effects. The coupling across disciplines can be used to develop an integrated interactive multi-discipline numerical propulsion system simulator.

  14. Multidisciplinary chronic pain management in a rural Canadian setting.

    PubMed

    Burnham, Robert; Day, Jeremiah; Dudley, Wallace

    2010-01-01

    Chronic pain is prevalent, complex and most effectively treated by a multidisciplinary team, particularly if psychosocial issues are dominant. The limited access to and high costs of such services are often prohibitive for the rural patient. We describe the development and 18-month outcomes of a small multidisciplinary chronic pain management program run out of a physician's office in rural Alberta. The multidisciplinary team consisted of a family physician, physiatrist, psychologist, physical therapist, kinesiologist, nurse and dietician. The allied health professionals were involved on a part-time basis. The team triaged referral information and patients underwent either a spine or medical care assessment. Based on the findings of the assessment, the team managed the care of patients using 1 of 4 methods: consultation only, interventional spine care, supervised medication management or full multidisciplinary management. We prospectively and serially recorded self-reported measures of pain and disability for the supervised medication management and full multidisciplinary components of the program. Patients achieved clinically and statistically significant improvements in pain and disability. Successful multidisciplinary chronic pain management services can be provided in a rural setting.

  15. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    PubMed

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. © 2016 The Authors.

  16. A Conceptual Model of the Pasadena Housing System

    NASA Technical Reports Server (NTRS)

    Hirshberg, Alan S.; Barber, Thomas A.

    1971-01-01

    During the last 5 years, there have been several attempts at applying systems analysis to complex urban problems. This paper describes one such attempt by a multidisciplinary team of students, engineers, professors, and community representatives. The Project organization is discussed and the interaction of the different disciplines (the process) described. The two fundamental analysis questions posed by the Project were: "Why do houses deteriorate?" and "Why do people move?" The analysis of these questions led to the development of a conceptual system model of housing in Pasadena. The major elements of this model are described, and several conclusions drawn from it are presented.

  17. Development of Computer-Assisted Virtual Field Trips to Support Multidisciplinary Learning

    ERIC Educational Resources Information Center

    Jacobson, Astrid R.; Militello, Roberta; Baveye, Philippe C.

    2009-01-01

    Multidisciplinary courses are being developed at a number of US colleges and universities to highlight the connections between the rise or fall of world civilizations and the sustainable or unsustainable uses of soil and water resources. The content presented in these courses is complex because it includes concepts from disciplines as varied as…

  18. Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.

    1998-01-01

    This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.

  19. Multidisciplinary Approach in the Management of a Complex Case: Implant-Prosthetic Rehabilitation of a Periodontal Smoking Patient with Partial Edentulism, Malocclusion, and Aesthetic Diseases

    PubMed Central

    Di Francesco, Fabrizio; De Marco, Gennaro; Scognamiglio, Fabio; Aruta, Valeria; Itro, Angelo

    2017-01-01

    Complex periprosthetic cases are considered as challenges by clinicians. Clinical and radiographic parameters should be considered separately to make the right choice between an endodontically or periodontally compromised treated tooth and implant. Therefore, in order to decide whether the tooth is safe or not, data that have to be collected are specific parameters of both the patient and the clinician. In addition, the presence of periodontal, prosthetic, and orthodontic diseases requires patients to be set in multidisciplinary approach. The aim of this case report is to describe how the multidisciplinary approach could be the best way to manage difficult cases of implant-prosthetic rehabilitation. How to rehabilitate with fixed prosthesis on natural teeth and dental implants a smoker patient who presents with active periodontitis, multiple edentulous areas, dental malocclusion, and severe aesthetic problems was also described. PMID:28421148

  20. Overcoming parochialism: interdisciplinary training of the generalist team.

    PubMed

    Benson, J A

    1997-01-01

    The work force that will staff most health care systems of the future will include a complex array of professionals working together in teams. The traditional inpatient model of patient care has been only multidisciplinary--nurses, medical social workers, dietitians, pharmacists, and physicians, all interested in each patient, but with divided responsibilities, training formats, and faculties--whereas interdisciplinary teams openly share decision making, expectations for care, goals for the team, and mutual respect.

  1. Development of a Multi-Disciplinary Aerothermostructural Model Applicable to Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Kostyk, Chris; Risch, Tim

    2013-01-01

    The harsh and complex hypersonic flight environment has driven design and analysis improvements for many years. One of the defining characteristics of hypersonic flight is the coupled, multi-disciplinary nature of the dominant physics. In an effect to examine some of the multi-disciplinary problems associated with hypersonic flight engineers at the NASA Dryden Flight Research Center developed a non-linear 6 degrees-of-freedom, full vehicle simulation that includes the necessary model capabilities: aerothermal heating, ablation, and thermal stress solutions. Development of the tool and results for some investigations will be presented. Requirements and improvements for future work will also be reviewed. The results of the work emphasize the need for a coupled, multi-disciplinary analysis to provide accurate

  2. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly S.; Barta, Daniel; Douglas, Grace; Fritsche, Ralph; Massa, Gioia; Wheeler, Ray; Quincy, Charles; Romeyn, Matthew; Motil, Brian; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented both in media and in serious concept studies. The complexity of controlled environment agriculture and of plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. The criticality of the research, and the ideal solution, will vary depending on the mission and type of system implementation being considered.

  3. Biomarkers of adult and developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slikker, William; Bowyer, John F.

    2005-08-07

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessarymore » for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.« less

  4. Hypercompetitive Environments: An Agent-based model approach

    NASA Astrophysics Data System (ADS)

    Dias, Manuel; Araújo, Tanya

    Information technology (IT) environments are characterized by complex changes and rapid evolution. Globalization and the spread of technological innovation have increased the need for new strategic information resources, both from individual firms and management environments. Improvements in multidisciplinary methods and, particularly, the availability of powerful computational tools, are giving researchers an increasing opportunity to investigate management environments in their true complex nature. The adoption of a complex systems approach allows for modeling business strategies from a bottom-up perspective — understood as resulting from repeated and local interaction of economic agents — without disregarding the consequences of the business strategies themselves to individual behavior of enterprises, emergence of interaction patterns between firms and management environments. Agent-based models are at the leading approach of this attempt.

  5. Design Change Model for Effective Scheduling Change Propagation Paths

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Zhu; Ding, Guo-Fu; Li, Rong; Qin, Sheng-Feng; Yan, Kai-Yin

    2017-09-01

    Changes in requirements may result in the increasing of product development project cost and lead time, therefore, it is important to understand how requirement changes propagate in the design of complex product systems and be able to select best options to guide design. Currently, a most approach for design change is lack of take the multi-disciplinary coupling relationships and the number of parameters into account integrally. A new design change model is presented to systematically analyze and search change propagation paths. Firstly, a PDS-Behavior-Structure-based design change model is established to describe requirement changes causing the design change propagation in behavior and structure domains. Secondly, a multi-disciplinary oriented behavior matrix is utilized to support change propagation analysis of complex product systems, and the interaction relationships of the matrix elements are used to obtain an initial set of change paths. Finally, a rough set-based propagation space reducing tool is developed to assist in narrowing change propagation paths by computing the importance of the design change parameters. The proposed new design change model and its associated tools have been demonstrated by the scheduling change propagation paths of high speed train's bogie to show its feasibility and effectiveness. This model is not only supportive to response quickly to diversified market requirements, but also helpful to satisfy customer requirements and reduce product development lead time. The proposed new design change model can be applied in a wide range of engineering systems design with improved efficiency.

  6. Intelligent freeform manufacturing of complex organs.

    PubMed

    Wang, Xiaohong

    2012-11-01

    Different from the existing tissue engineering strategies, rapid prototyping (RP) techniques aim to automatically produce complex organs directly from computer-aided design freeform models with high resolution and sophistication. Analogous to building a nuclear power plant, cell biology (especially, renewable stem cells), implantable biomaterials, tissue engineering, and single/double/four nozzle RP techniques currently enable researchers in the field to realize a part of the task of complex organ manufacturing. To achieve this multifaceted undertaking, a multi-nozzle rapid prototyping system which can simultaneously integrate an anti-suture vascular system, multiple cell types, and a cocktail of growth factors in a construct should be developed. This article reviews the pros and cons of the existing cell-laden RP techniques for complex organ manufacturing. It is hoped that with the comprehensive multidisciplinary efforts, the implants can virtually replace the functions of a solid internal organ, such as the liver, heart, and kidney. © 2012, Copyright the Author. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  7. Development of a Prototype Simulation Executive with Zooming in the Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Afjeh, Abdollah A.

    1995-01-01

    A major difficulty in designing aeropropulsion systems is that of identifying and understanding the interactions between the separate engine components and disciplines (e.g., fluid mechanics, structural mechanics, heat transfer, material properties, etc.). The traditional analysis approach is to decompose the system into separate components with the interaction between components being evaluated by the application of each of the single disciplines in a sequential manner. Here, one discipline uses information from the calculation of another discipline to determine the effects of component coupling. This approach, however, may not properly identify the consequences of these effects during the design phase, leaving the interactions to be discovered and evaluated during engine testing. This contributes to the time and cost of developing new propulsion systems as, typically, several design-build-test cycles are needed to fully identify multidisciplinary effects and reach the desired system performance. The alternative to sequential isolated component analysis is to use multidisciplinary coupling at a more fundamental level. This approach has been made more plausible due to recent advancements in computation simulation along with application of concurrent engineering concepts. Computer simulation systems designed to provide an environment which is capable of integrating the various disciplines into a single simulation system have been proposed and are currently being developed. One such system is being developed by the Numerical Propulsion System Simulation (NPSS) project. The NPSS project, being developed at the Interdisciplinary Technology Office at the NASA Lewis Research Center is a 'numerical test cell' designed to provide for comprehensive computational design and analysis of aerospace propulsion systems. It will provide multi-disciplinary analyses on a variety of computational platforms, and a user-interface consisting of expert systems, data base management and visualization tools, to allow the designer to investigate the complex interactions inherent in these systems. An interactive programming software system, known as the Application Visualization System (AVS), was utilized for the development of the propulsion system simulation. The modularity of this system provides the ability to couple propulsion system components, as well as disciplines, and provides for the ability to integrate existing, well established analysis codes into the overall system simulation. This feature allows the user to customize the simulation model by inserting desired analysis codes. The prototypical simulation environment for multidisciplinary analysis, called Turbofan Engine System Simulation (TESS), which incorporates many of the characteristics of the simulation environment proposed herein, is detailed.

  8. Whale Multi-Disciplinary Studies: A Marine Education Infusion Unit. Northern New England Marine Education Project.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. Coll. of Education.

    This multidisciplinary unit deals with whales, whaling lore and history, and the interaction of the whale with the complex marine ecosystem. It seeks to teach adaptation of marine organisms. It portrays the concept that man is part of the marine ecosystem and man's activities can deplete and degrade marine ecosystems, endangering the survival of…

  9. Multidisciplinary studies of wildlife trade in primates: Challenges and priorities.

    PubMed

    Blair, Mary E; Le, Minh D; Sterling, Eleanor J

    2017-11-01

    Wildlife trade is increasingly recognized as an unsustainable threat to primate populations and informing its management is a growing focus and application of primatological research. However, management policies based on ecological research alone cannot address complex socioeconomic or cultural contexts as drivers of wildlife trade. Multidisciplinary research is required to understand trade complexity and identify sustainable management strategies. Here, we define multidisciplinary research as research that combines more than one academic discipline, and highlight how the articles in this issue combine methods and approaches to fill key gaps and offer a more comprehensive understanding of underlying drivers of wildlife trade including consumer demand, enforcement patterns, source population status, and accessibility of targeted species. These articles also focus on how these drivers interact at different scales, how trade patterns relate to ethics, and the potential effectiveness of different policy interventions in reducing wildlife trade. We propose priorities for future research on primate trade including expanding from multidisciplinary to interdisciplinary research questions and approaches co-created by research teams that integrate across different disciplines such as cultural anthropology, ecology, economics, and public policy. We also discuss challenges that limit the integration of information across disciplines to meet these priorities. © 2017 Wiley Periodicals, Inc.

  10. Improving the Aircraft Design Process Using Web-Based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.; Follen, Gregory J. (Technical Monitor)

    2000-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and multifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  11. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  12. Embracing Complexity of Crop Phytobiomes with a Multidisciplinary Roadmap for Phytobiomes Research and an Industry-Academic Research Alliance

    NASA Astrophysics Data System (ADS)

    Eversole, K.

    2016-12-01

    To meet the demands of a global human population expected to exceed 9.6 billion by 2055, crop productivity in sustainable agricultural systems must improve considerably in the face of a steadily changing climate and increased biotic and abiotic stressors. Traditional agricultural sciences have relied mostly on research within individual disciplines and linear, reductionist approaches for crop improvement. While significant advancements have been made in developing and characterizing genetic and genomic resources for crops, we still have a very limited understanding of genotype by environment x management (GxExM) interactions that determine productivity, sustainability, quality, and the ability to withstand biotic and abiotic stressors. Embracing complexity and the non-linear organization and regulation of biological systems would enable a paradigm shift in breeding and crop production by allowing us to move towards a holistic, systems level approach that integrates a wide range of disciplines (e.g., geophysics, biology, agronomy, physiology, genomics, genetics, breeding, physics, pattern recognition, feedback loops, modeling, and engineering) and knowledge about crop phytobiomes (i.e., plants, their associated macro- and micro-organisms, and the geophysical environment of distinct geographical sites). By focusing on the phytobiome, we will be able to elucidate, quantify, model, predict, act, manipulate, and prevent and ultimately prescribe the cropping systems, methods, and management practices most suited for a particular farm, grassland, or forest. The recently released, multidisciplinary roadmap entitled Phytobiomes: A Roadmap for Research and Translation and the new International Alliance for Phytobiomes Research, an industry-academic consortium, will be presented.

  13. New Approaches to HSCT Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schrage, D. P.; Craig, J. I.; Fulton, R. E.; Mistree, F.

    1996-01-01

    The successful development of a capable and economically viable high speed civil transport (HSCT) is perhaps one of the most challenging tasks in aeronautics for the next two decades. At its heart it is fundamentally the design of a complex engineered system that has significant societal, environmental and political impacts. As such it presents a formidable challenge to all areas of aeronautics, and it is therefore a particularly appropriate subject for research in multidisciplinary design and optimization (MDO). In fact, it is starkly clear that without the availability of powerful and versatile multidisciplinary design, analysis and optimization methods, the design, construction and operation of im HSCT simply cannot be achieved. The present research project is focused on the development and evaluation of MDO methods that, while broader and more general in scope, are particularly appropriate to the HSCT design problem. The research aims to not only develop the basic methods but also to apply them to relevant examples from the NASA HSCT R&D effort. The research involves a three year effort aimed first at the HSCT MDO problem description, next the development of the problem, and finally a solution to a significant portion of the problem.

  14. Seamount ecology and dynamics: A multidisciplinary data set from repeated surveys at different seamounts in the Northeast Atlantic and Mediterranean (2003 - 2013).

    NASA Astrophysics Data System (ADS)

    Mohn, C.; Christiansen, B.; Denda, A.; George, K. H.; Kaufmann, M.; Maranhão, M.; Martin, B.; Metzger, T.; Peine, F.; Schuster, A.; Springer, B.; Stefanowitsch, B.; Turnewitsch, R.; Wehrmann, H.

    2016-02-01

    Seamounts are amongst the most common physiographic open ocean systems, but remoteness and geographic complexity have limited the number of integrated and multidisciplinary seamount surveys in the past. As a consequence, important aspects of seamount ecology and dynamics remain poorly studied. Here we present a multi-parameter data set from individual and repeated seamount surveys conducted at different sites in the Northeast Atlantic and Eastern Mediterranean between 2003 and 2013. The main objective of these surveys was to establish a collection of ecosystem relevant descriptors and to develop a better understanding of seamount ecosystem composition and variability in different dynamical and bio-geographic environments. Measurements were conducted at four seamounts in the Northeast Atlantic (Ampère, Sedlo, Seine, Senghor) and two seamounts in the Eastern Mediterranean (Anaximenes, Eratosthenes). The data set comprises records from a total number of 11 cruises including physical oceanography (temperature, salinity, pressure, currents), biology (phytoplankton, zooplankton, fish, benthos) and biogeochemistry (sedimentary particle dynamics, carbon flux). The resulting multi-disciplinary data collection provides a unique opportunity for comparative studies of seamount ecosystem structure and dynamics between different physical, biological and biogeochemical regimes

  15. Model-guided fieldwork: practical guidelines for multidisciplinary research on wildlife ecological and epidemiological dynamics

    PubMed Central

    Restif, Olivier; Hayman, David T S; Pulliam, Juliet R C; Plowright, Raina K; George, Dylan B; Luis, Angela D; Cunningham, Andrew A; Bowen, Richard A; Fooks, Anthony R; O'Shea, Thomas J; Wood, James L N; Webb, Colleen T

    2012-01-01

    Infectious disease ecology has recently raised its public profile beyond the scientific community due to the major threats that wildlife infections pose to biological conservation, animal welfare, human health and food security. As we start unravelling the full extent of emerging infectious diseases, there is an urgent need to facilitate multidisciplinary research in this area. Even though research in ecology has always had a strong theoretical component, cultural and technical hurdles often hamper direct collaboration between theoreticians and empiricists. Building upon our collective experience of multidisciplinary research and teaching in this area, we propose practical guidelines to help with effective integration among mathematical modelling, fieldwork and laboratory work. Modelling tools can be used at all steps of a field-based research programme, from the formulation of working hypotheses to field study design and data analysis. We illustrate our model-guided fieldwork framework with two case studies we have been conducting on wildlife infectious diseases: plague transmission in prairie dogs and lyssavirus dynamics in American and African bats. These demonstrate that mechanistic models, if properly integrated in research programmes, can provide a framework for holistic approaches to complex biological systems. PMID:22809422

  16. Development and application of optimum sensitivity analysis of structures

    NASA Technical Reports Server (NTRS)

    Barthelemy, J. F. M.; Hallauer, W. L., Jr.

    1984-01-01

    The research focused on developing an algorithm applying optimum sensitivity analysis for multilevel optimization. The research efforts have been devoted to assisting NASA Langley's Interdisciplinary Research Office (IRO) in the development of a mature methodology for a multilevel approach to the design of complex (large and multidisciplinary) engineering systems. An effort was undertaken to identify promising multilevel optimization algorithms. In the current reporting period, the computer program generating baseline single level solutions was completed and tested out.

  17. Current Standards of Care and Long Term Outcomes for Thalassemia and Sickle Cell Disease.

    PubMed

    Chonat, Satheesh; Quinn, Charles T

    2017-01-01

    Thalassemia and sickle cell disease (SCD) are disorders of hemoglobin that affect millions of people worldwide. The carrier states for these diseases arose as common, balanced polymorphisms during human history because they afforded protection against severe forms of malaria. These complex, multisystem diseases are reviewed here with a focus on current standards of clinical management and recent research findings. The importance of a comprehensive, multidisciplinary and lifelong system of care is also emphasized.

  18. Sensitivity analysis and multidisciplinary optimization for aircraft design: Recent advances and results

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1988-01-01

    Optimization by decomposition, complex system sensitivity analysis, and a rapid growth of disciplinary sensitivity analysis are some of the recent developments that hold promise of a quantum jump in the support engineers receive from computers in the quantitative aspects of design. Review of the salient points of these techniques is given and illustrated by examples from aircraft design as a process that combines the best of human intellect and computer power to manipulate data.

  19. Charting Multidisciplinary Team External Dynamics Using a Systems Thinking Approach

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois; Waszak, Martin R.; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

    1998-01-01

    Using the formalism provided by the Systems Thinking approach, the dynamics present when operating multidisciplinary teams are examined in the context of the NASA Langley Research and Technology Group, an R&D organization organized along functional lines. The paper focuses on external dynamics and examines how an organization creates and nurtures the teams and how it disseminates and retains the lessons and expertise created by the multidisciplinary activities. Key variables are selected and the causal relationships between the variables are identified. Five "stories" are told, each of which touches on a different aspect of the dynamics. The Systems Thinking Approach provides recommendations as to interventions that will facilitate the introduction of multidisciplinary teams and that therefore will increase the likelihood of performing successful multidisciplinary developments. These interventions can be carried out either by individual researchers, line management or program management.

  20. Probing the chemical environments of early star formation: A multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Hardegree-Ullman, Emily Elizabeth

    Chemical compositions of prestellar and protostellar environments in the dense interstellar medium are best quantified using a multidisciplinary approach. For my dissertation, I completed two projects to measure molecular abundances during the earliest phases of star formation. The first project investigates gas phase CO depletion in molecular cloud cores, the progenitors of star systems, using infrared photometry and molecular line spectroscopy at radio wavelengths. Hydrogenation of CO depleted onto dust is an important first step toward building complex organic molecules. The second project constrains polycyclic aromatic hydrocarbon (PAH) abundances toward young stellar objects (YSO). Band strengths measured from laboratory spectroscopy of pyrene/water ice mixtures were applied to estimate abundances from features attributed to PAHs in observational YSO spectra. PAHs represent a distinct but important component of interstellar organic material that is widely observed but not well quantified in star-forming regions.

  1. Breaking down silos: engaging students to help fix the US health care system.

    PubMed

    Kumarasamy, Mathu A; Sanfilippo, Fred P

    2015-01-01

    The field of health care is becoming a team effort as patient care becomes increasingly complex and multifaceted. Despite the need for multidisciplinary education, there persists a lack of student engagement and collaboration among health care disciplines, which presents a growing concern as students join the workforce. In October 2013, the Emory-Georgia Tech Healthcare Innovation Program organized a student driven symposium entitled "US Healthcare: What's Broken and How to Fix It: The Student Perspective". The symposium engaged students from multiple disciplines to work together in addressing problems associated with US health care delivery. The symposium was organized and carried out by a diverse group of student leaders from local institutions who adopted a multidisciplinary approach throughout the planning process. The innovative planning process leading up to the symposium revealed that many of the student-discipline groups lacked an understanding of one another's role in health care, and that students were interested in learning how to work together to leverage each other's profession. The symposium was widely attended and positively received by students and faculty from the Atlanta metropolitan area, and has since helped to promote interdepartmental collaboration and multidisciplinary education across institutions. The student symposium will become an annual event and incorporate broader discipline representation, as well as a patient perspective. Proposals for additional institution-wide, multidisciplinary educational offerings are being addressed with the help of faculty and health care providers across the network. Accordingly, the implementation of student-driven symposia to engage students and stimulate institution-wide changes may be a beneficial and cost-effective means for academic health centers looking to facilitate multidisciplinary health care education.

  2. Sleep and the Cardiovascular System in Children.

    PubMed

    Paul, Grace R; Pinto, Swaroop

    2017-06-01

    Subspecialty pediatric practice provides comprehensive medical care for a range of ages, from premature infants to children, and often includes adults with complex medical and surgical issues that warrant multidisciplinary care. Normal physiologic variations involving different body systems occur during sleep and these vary with age, stage of sleep, and underlying health conditions. This article is a concise review of the cardiovascular (CV) physiology and pathophysiology in children, sleep-disordered breathing (SDB) contributing to CV morbidity, congenital and acquired CV pathology resulting in SDB, and the relationship between SDB and CV morbidity in different clinical syndromes and systemic diseases in the expanded pediatric population. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Chemistry, manufacturing and controls in passive transdermal drug delivery systems.

    PubMed

    Goswami, Tarun; Audett, Jay

    2015-01-01

    Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.

  4. The 6-year attendance of a multidisciplinary prostate cancer clinic in Italy: incidence of management changes.

    PubMed

    Magnani, Tiziana; Valdagni, Riccardo; Salvioni, Roberto; Villa, Sergio; Bellardita, Lara; Donegani, Simona; Nicolai, Nicola; Procopio, Giuseppe; Bedini, Nice; Rancati, Tiziana; Zaffaroni, Nadia

    2012-10-01

    Study Type - Therapy (decision analysis) Level of Evidence 2b. What's known on the subject? and What does the study add? The benefits of the multidisciplinary approach in oncology are widely recognised. In particular, managing patients with prostate cancer within a multidisciplinarity and multiprofessional context is of paramount importance, to address the complexity of a disease where patients may be offered multiple therapeutic and observational options handled by different specialists and having severe therapy-induced side-effects. The present study describes the establishing of a multidisciplinary clinic at the Prostate Cancer Programme of Milan Istituto Nazionale dei Tumori, its effects on the quality of care provided, and strategies implemented to meet upcoming needs and improve quality standards. Having analysed the data of the 2260 multidisciplinary clinics held from March 2005 to March 2011, our dynamic and modifiable organisational model was evaluated for ways to optimise the human resources, offer high-quality standards, meet new needs and ultimately reduce costs. The study is focused on the organisational aspects and adds a perspective from one of the major oncological centres of reference in Italy and in Europe. To describe the establishing of a multidisciplinary clinic for men with prostate cancer at the Istituto Nazionale Tumori, Milan. • To evaluate the quality of care provided and to describe the management changes implemented to improve standards and meet new needs. In March 2005, we established a multidisciplinary clinic comprising weekly clinics and case-discussion sessions. • We have altered the organisational model periodically to meet new needs and improve quality. We held 2260 multidisciplinary clinics up to March 2011. • For stage distribution, patients with low-risk prostate cancer increased to a peak of 61% in 2009, probably because of the anticipation of diagnosis and the active surveillance expertise of the Prostate Cancer Programme at Istituto Nazionale Tumori, Milan. The slight decrease in 2010 might be due to the availability of robot-assisted prostatectomy in several hospitals in Milan, and the start of a multicentre active surveillance protocol in December 2009. • In terms of the efficacy of our multidisciplinary strategy, 11% of drug therapies (mostly hormones) prescribed outside our institute were terminated in the multidisciplinary clinic, and 6% of indications formulated in the multidisciplinary clinics were altered during the case-discussion sessions. The multidisciplinary approach needs to be adaptable to meet new needs and improve quality. • Our experience has proved successful for both physicians and patients. The team agrees on strategies; complex cases are managed by a multidisciplinary team; dedicated psychologists contribute their knowledge and perspectives; and patients report the feeling of being cared for. © 2012 BJU INTERNATIONAL.

  5. Electronic Chemotherapy Order Entry: A Major Cancer Center's Implementation

    PubMed Central

    Sklarin, Nancy T.; Granovsky, Svetlana; O'Reilly, Eileen M.; Zelenetz, Andrew D.

    2011-01-01

    Implementation of a computerized provider order entry system for complex chemotherapy regimens at a large cancer center required intense effort from a multidisciplinary team of clinical and systems experts with experience in all facets of the chemotherapy process. The online tools had to resemble the paper forms used at the time and parallel the successful established process as well as add new functionality. Close collaboration between the institution and the vendor was necessary. This article summarizes the institutional efforts, challenges, and collaborative processes that facilitated universal chemotherapy computerized electronic order entry across multiple sites during a period of several years. PMID:22043182

  6. Electronic Chemotherapy Order Entry: A Major Cancer Center's Implementation.

    PubMed

    Sklarin, Nancy T; Granovsky, Svetlana; O'Reilly, Eileen M; Zelenetz, Andrew D

    2011-07-01

    Implementation of a computerized provider order entry system for complex chemotherapy regimens at a large cancer center required intense effort from a multidisciplinary team of clinical and systems experts with experience in all facets of the chemotherapy process. The online tools had to resemble the paper forms used at the time and parallel the successful established process as well as add new functionality. Close collaboration between the institution and the vendor was necessary. This article summarizes the institutional efforts, challenges, and collaborative processes that facilitated universal chemotherapy computerized electronic order entry across multiple sites during a period of several years.

  7. Applications in Robotics and Controls

    NASA Astrophysics Data System (ADS)

    Youcef-Toumi, Kamal

    2008-06-01

    Recent industry trends have set new standards in business dealings and trades. Issues such as time to market, shoter market wondows, product performance, rapid increase of product complexity, costly mistakes, costly late introductions, and customer expectations have changed significantly. These trends have also influenced to a great extend the academic world. Some of these trends will be illustrated through examples which include automated systems, robotics, biotechnollogy, and nanotechnology. The examples will include concepts and prototypes of engineering systems in the macro, micro and nanodomains. The presentation also amphasizes the merging of the traditionally segregated disciplines into one multidisciplinary modeling, design, optimization and control approach.

  8. Extreme events and natural hazards: The complexity perspective

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-10-01

    Advanced societies have become quite proficient at defending against moderate-size earthquakes, hurricanes, floods, or other natural assaults. What still pose a significant threat, however, are the unknowns, the extremes, the natural phenomena encompassed by the upper tail of the probability distribution. Alongside the large or powerful events, truly extreme natural disasters are those that tie different systems together: an earthquake that causes a tsunami, which leads to flooding, which takes down a nuclear reactor. In the geophysical monograph Extreme Events and Natural Hazards: The Complexity Perspective, editors A. Surjalal Sharma, Armin Bunde, Vijay P. Dimro, and Daniel N. Baker present a lens through which such multidisciplinary phenomena can be understood. In this interview, Eos talks to Sharma about complexity science, predicting extreme events and natural hazards, and the push for "big data."

  9. SeaRISE: A Multidisciplinary Research Initiative to Predict Rapid Changes in Global Sea Level Caused by Collapse of Marine Ice Sheets

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1990-01-01

    The results of a workshop held to discuss the role of the polar ice sheets in global climate change are reported. The participants agreed that the most important aspect of the ice sheets' involvement in climate change is the potential of marine ice sheets to cause a rapid change in global sea level. To address this concern, a research initiative is called for that considers the full complexity of the coupled atmosphere-ocean-cryosphere-lithosphere system. This initiative, called SeaRISE (Sea-level Response to Ice Sheet Evolution) has the goal of predicting the contribution of marine ice sheets to rapid changes in global sea level in the next decade to few centuries. To attain this goal, a coordinated program of multidisciplinary investigations must be launched with the linked objectives of understanding the current state, internal dynamics, interactions, and history of this environmental system. The key questions needed to satisfy these objectives are presented and discussed along with a plan of action to make the SeaRISE project a reality.

  10. Presynaptic Inhibition in the Striatum of the Basal Ganglia Improves Pattern Classification and Thus Promotes Superior Goal Selection

    PubMed Central

    Schwab, David J.; Houk, James C.

    2015-01-01

    This review article takes a multidisciplinary approach to understand how presynaptic inhibition in the striatum of the basal ganglia (BG) contributes to pattern classification and the selection of goals that control behavior. It is a difficult problem both because it is multidimensional and because it is has complex system dynamics. We focus on the striatum because, as the main site for input to the BG, it gets to decide what goals are important to consider. PMID:26696840

  11. Current Standards of Care and Long Term Outcomes for Thalassemia and Sickle Cell Disease

    PubMed Central

    Chonat, Satheesh

    2017-01-01

    Thalassemia and sickle cell disease (SCD) are disorders of hemoglobin that affect millions of people worldwide. The carrier states for these diseases arose as common, balanced polymorphisms during human history because they afforded protection against severe forms of malaria. These complex, multisystem diseases are reviewed here with a focus on current standards of clinical management and recent research findings. The importance of a comprehensive, multidisciplinary and lifelong system of care is also emphasized. PMID:29127677

  12. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a System Model

    NASA Technical Reports Server (NTRS)

    Cole, Bjorn; Chung, Seung H.

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must tradeoff time and cost for analysis quality and quantity. The quality is associated with the fidelity of the multidisciplinary models and the quantity is associated with the design space that can be analyzed. The tradeoff is due to the resource intensive process of creating a cohesive multidisciplinary system model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than handwritten translation scripts or codes of multidisciplinary models and their analyses. The key is to work from a core system model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query-View- Transform (QVT), from the OMG community. SysML was designed to model multidisciplinary systems and analyses. The QVT standard was designed to transform SysML models. The Europa Hability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, a symbolic mathematical framework (supported by Wolfram Mathematica) is coordinated by data objects transformed from the system model, enabling extremely flexible and powerful tradespace exploration and analytical investigations of expected system performance.

  13. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a Systems Model

    NASA Technical Reports Server (NTRS)

    Cole, Bjorn; Chung, Seung

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must trade between time and cost for analysis quality and quantity. The quality often correlates with greater run time in multidisciplinary models and the quantity is associated with the number of alternatives that can be analyzed. The trade-off is due to the resource intensive process of creating a cohesive multidisciplinary systems model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than hand-written translation scripts between multi-disciplinary models and their analyses. The key is to work from a core systems model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query/View/Transformation (QVT), from the OMG community. SysML was designed to model multidisciplinary systems. The QVT standard was designed to transform SysML models into other models, including those leveraged by engineering analyses. The Europa Habitability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, symbolic analysis (supported by Wolfram Mathematica) is coordinated by data objects transformed from the systems model, enabling extremely flexible and powerful design exploration and analytical investigations of expected system performance.

  14. A modular approach to large-scale design optimization of aerospace systems

    NASA Astrophysics Data System (ADS)

    Hwang, John T.

    Gradient-based optimization and the adjoint method form a synergistic combination that enables the efficient solution of large-scale optimization problems. Though the gradient-based approach struggles with non-smooth or multi-modal problems, the capability to efficiently optimize up to tens of thousands of design variables provides a valuable design tool for exploring complex tradeoffs and finding unintuitive designs. However, the widespread adoption of gradient-based optimization is limited by the implementation challenges for computing derivatives efficiently and accurately, particularly in multidisciplinary and shape design problems. This thesis addresses these difficulties in two ways. First, to deal with the heterogeneity and integration challenges of multidisciplinary problems, this thesis presents a computational modeling framework that solves multidisciplinary systems and computes their derivatives in a semi-automated fashion. This framework is built upon a new mathematical formulation developed in this thesis that expresses any computational model as a system of algebraic equations and unifies all methods for computing derivatives using a single equation. The framework is applied to two engineering problems: the optimization of a nanosatellite with 7 disciplines and over 25,000 design variables; and simultaneous allocation and mission optimization for commercial aircraft involving 330 design variables, 12 of which are integer variables handled using the branch-and-bound method. In both cases, the framework makes large-scale optimization possible by reducing the implementation effort and code complexity. The second half of this thesis presents a differentiable parametrization of aircraft geometries and structures for high-fidelity shape optimization. Existing geometry parametrizations are not differentiable, or they are limited in the types of shape changes they allow. This is addressed by a novel parametrization that smoothly interpolates aircraft components, providing differentiability. An unstructured quadrilateral mesh generation algorithm is also developed to automate the creation of detailed meshes for aircraft structures, and a mesh convergence study is performed to verify that the quality of the mesh is maintained as it is refined. As a demonstration, high-fidelity aerostructural analysis is performed for two unconventional configurations with detailed structures included, and aerodynamic shape optimization is applied to the truss-braced wing, which finds and eliminates a shock in the region bounded by the struts and the wing.

  15. Early Experience with a Brief, Multimodal, Multidisciplinary Treatment Program for Fibromyalgia

    PubMed Central

    Vincent, Ann; Whipple, Mary O.; Oh, Terry H.; Guderian, Janet A.; Barton, Debra L.; Luedtke, Connie A.

    2014-01-01

    Fibromyalgia is a complex, heterogeneous disorder for which a multidisciplinary individualized approach is currently advocated. We executed a 1 week multidisciplinary fibromyalgia clinical program with 7 patients, based on our previous experience with our existing 1.5 day multidisciplinary fibromyalgia program that has demonstrated both short- and long-term benefits. The current expanded program was not designed as a clinical study, but rather as a clinical feasibility assessment and was multidisciplinary in nature, with cognitive behavioral therapy, activity pacing and graded exercise therapy as major components. We assessed changes in individual patients at 1 week and 3 months following the program utilizing validated self-report measures of pain, fatigue, and self-efficacy. All patients indicated at least small improvements in pain and physical symptoms both at 1 week and 3 months and all but one patient showed improvement in self-efficacy at 1 week and 3 months. Similar trends were observed for fatigue. Based on our early clinical experience, we conclude that the 1 week multidisciplinary fibromyalgia program is logistically feasible and has potential for clinical efficacy. Further research is needed and is planned to test the clinical efficacy of this program and compare it with other interventions. PMID:24315246

  16. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  17. Healthy soils healthy people: Unraveling the complexity

    USDA-ARS?s Scientific Manuscript database

    The linkage between soil and human health is undoubtedly a complex and multidisciplinary issue. The recognition that soil can influence human health is not a novelty; it has been recognized scientifically for decades. However, the advancement in understanding soil health/quality has renewed interest...

  18. A Multidisciplinary Approach to a Pediatric Difficult Airway Simulation Course.

    PubMed

    Lind, Meredith Merz; Corridore, Marco; Sheehan, Cameron; Moore-Clingenpeel, Melissa; Maa, Tensing

    2018-02-01

    Objective To design and assess an advanced pediatric airway management course, through simulation-based team training and with multiple disciplines, to emphasize communication and cooperation across subspecialties and to provide a common skill set and knowledge base. Methods Trainees from anesthesiology, emergency medicine, critical care, pediatric surgery, and otolaryngology at a tertiary children's hospital participated in a 1-day workshop emphasizing airway skills and complex airway simulations. Small groups were multidisciplinary to promote teamwork. Participants completed pre- and postworkshop questionnaires. Results Thirty-nine trainees participated over the 3-year study period. Compared with their precourse responses, participants' postcourse responses indicated either agreement or strong agreement that the multidisciplinary format (1) helped in the development of team communication skills and (2) was preferred over single-discipline training. Improvement in confidence in managing critical airway situations and in advanced airway management skills was significant ( P < .05). Eighty-one percent of participants had improved confidence in following the hospital's critical airway protocol, and 64% were better able to locate advanced airway management equipment. Discussion Multiple subspecialists manage pediatric respiratory failure, where successful care requires complex handoffs and teamwork. Multidisciplinary education to teach advanced airway management, teamwork, and communication skills is practical and preferred by learners and is possible to achieve despite differences in experience. Future study is required to better understand the impact of this course on patient care outcomes. Implications for Practice Implementation of a pediatric difficult airway course through simulation-based team training is feasible and preferred by learners among multiple disciplines. A multidisciplinary approach exposes previously unrecognized knowledge gaps and allows for better communication and collaboration among the fields.

  19. GRC RBCC Concept Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Suresh, Ambady

    2001-01-01

    This report outlines the GRC RBCC Concept for Multidisciplinary Analysis. The multidisciplinary coupling procedure is presented, along with technique validations and axisymmetric multidisciplinary inlet and structural results. The NPSS (Numerical Propulsion System Simulation) test bed developments and code parallelization are also presented. These include milestones and accomplishments, a discussion of running R4 fan application on the PII cluster as compared to other platforms, and the National Combustor Code speedup.

  20. Can there be a physics of financial markets? Methodological reflections on econophysics

    NASA Astrophysics Data System (ADS)

    Huber, Tobias A.; Sornette, Didier

    2016-12-01

    We address the question whether there can be a physical science of financial markets. In particular, we examine the argument that, given the reflexivity of financial markets (i.e., the feedback mechanism between expectations and prices), there is a fundamental difference between social and physical systems, which demands a new scientific method. By providing a selective history of the mutual cross-fertilization between physics and economics, we reflect on the methodological differences of how models and theories get constructed in these fields. We argue that the novel conception of financial markets as complex adaptive systems is one of the most important contributions of econophysics and show that this field of research provides the methods, concepts, and tools to scientifically account for reflexivity. We conclude by arguing that a new science of economic and financial systems should not only be physics-based, but needs to integrate findings from other scientific fields, so that a truly multi-disciplinary complex systems science of financial markets can be built.

  1. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and geographic information systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated in ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  2. Scale in Remote Sensing and GIS: An Advancement in Methods Towards a Science of Scale

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.

    1998-01-01

    The term "scale", both in space and time, is central to remote sensing and Geographic Information Systems (GIS). The emergence and widespread use of GIS technologies, including remote sensing, has generated significant interest in addressing scale as a generic topic, and in the development and implementation of techniques for dealing explicitly with the vicissitudes of scale as a multidisciplinary issue. As science becomes more complex and utilizes databases that are capable of performing complex space-time data analyses, it becomes paramount that we develop the tools and techniques needed to operate at multiple scales, to work with data whose scales are not necessarily ideal, and to produce results that can be aggregated or disaggregated ways that suit the decision-making process. Contemporary science is constantly coping with compromises, and the data available for a particular study rarely fit perfectly with the scales at which the processes being investigated operate, or the scales that policy-makers require to make sound, rational decisions. This presentation discusses some of the problems associated with scale as related to remote sensing and GIS, and describes some of the questions that need to be addressed in approaching the development of a multidisciplinary "science of scale". Techniques for dealing with multiple scaled data that have been developed or explored recently are described as a means for recognizing scale as a generic issue, along with associated theory and tools that can be of simultaneous value to a large number of disciplines. These can be used to seek answers to a host of interrelated questions in the interest of providing a formal structure for the management and manipulation of scale and its universality as a key concept from a multidisciplinary perspective.

  3. Interdisciplinary analysis procedures in the modeling and control of large space-based structures

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Stockwell, Alan E.; Kim, Zeen C.

    1987-01-01

    The paper describes a computer software system called the Integrated Multidisciplinary Analysis Tool, IMAT, that has been developed at NASA Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven interactive executive program, IMAT links a relational database to commercial structural and controls analysis codes. The paper describes the procedures followed to analyze a complex satellite structure and control system. The codes used to accomplish the analysis are described, and an example is provided of an application of IMAT to the analysis of a reference space station subject to a rectangular pulse loading at its docking port.

  4. Health care multidisciplinary teams: The sociotechnical approach for an integrated system-wide perspective.

    PubMed

    Marsilio, Marta; Torbica, Aleksandra; Villa, Stefano

    The current literature on the enabling conditions of multidisciplinary teams focuses on the singular dimensions of the organizations (i.e., human resources, clinical pathways, objects) without shedding light on to the way in which these organizational factors interact and mutually influence one another. Drawing on a system perspective of organizations, the authors analyze the organizational patterns that promote and support multidisciplinary teams and how they interrelate and interact to enforce the organization work system. The authors develop a modified sociotechnical system (STS) model to understand how the two dimensions of technical (devices/tools, layout/organization of space, core process standardization) and social (organizational structure, management of human resources and operations) can facilitate the implementation of multidisciplinary teams in health care. The study conducts an empirical analysis based on a sample of hospital adopters of transcatheter aortic valve implantation using the revised STS model. The modified STS model applied to the case studies improves our understanding of the critical implementation factors of a multidisciplinary approach and the importance of coordinating radical changes in the technical and the social subsystems of health care organizations. The analysis informs that the multidisciplinary effort is not a sequential process and that the interplay between the two subsystems needs to be managed efficaciously as an integrated organizational whole to deliver the goals set. Hospital managers must place equal focus on the closely interrelated technical and social dimensions by investing in (a) shared layouts and spaces that cross the boundaries of the specialized health care units, (b) standardization of the core processes through the implementation of local clinical pathways, (c) structured knowledge management mechanisms, (d) the creation of clinical directorates, and (e) the design of a planning and budgeting system that integrates the multidisciplinary concept.

  5. [Complex automatic data processing in multi-profile hospitals].

    PubMed

    Dovzhenko, Iu M; Panov, G D

    1990-01-01

    The computerization of data processing in multi-disciplinary hospitals is the key factor in raising the quality of medical care provided to the population, intensifying the work of the personnel, improving the curative and diagnostic process and the use of resources. Even a small experience in complex computerization at the Botkin Hospital indicates that due to the use of the automated system the quality of data processing in being improved, a high level of patients' examination is being provided, a speedy training of young specialists is being achieved, conditions are being created for continuing education of physicians through the analysis of their own activity. At big hospitals a complex solution of administrative and curative diagnostic tasks on the basis of general hospital network of display connection and general hospital data bank is the most prospective form of computerization.

  6. Enforcing compatibility and constraint conditions and information retrieval at the design action

    NASA Technical Reports Server (NTRS)

    Woodruff, George W.

    1990-01-01

    The design of complex entities is a multidisciplinary process involving several interacting groups and disciplines. There is a need to integrate the data in such environments to enhance the collaboration between these groups and to enforce compatibility between dependent data entities. This paper discusses the implementation of a workstation based CAD system that is integrated with a DBMS and an expert system, CLIPS, (both implemented on a mini computer) to provide such collaborative and compatibility enforcement capabilities. The current implementation allows for a three way link between the CAD system, the DBMS and CLIPS. The engineering design process associated with the design and fabrication of sheet metal housing for computers in a large computer manufacturing facility provides the basis for this prototype system.

  7. Review of battery powered embedded systems design for mission-critical low-power applications

    NASA Astrophysics Data System (ADS)

    Malewski, Matthew; Cowell, David M. J.; Freear, Steven

    2018-06-01

    The applications and uses of embedded systems is increasingly pervasive. Mission and safety critical systems relying on embedded systems pose specific challenges. Embedded systems is a multi-disciplinary domain, involving both hardware and software. Systems need to be designed in a holistic manner so that they are able to provide the desired reliability and minimise unnecessary complexity. The large problem landscape means that there is no one solution that fits all applications of embedded systems. With the primary focus of these mission and safety critical systems being functionality and reliability, there can be conflicts with business needs, and this can introduce pressures to reduce cost at the expense of reliability and functionality. This paper examines the challenges faced by battery powered systems, and then explores at more general problems, and several real-world embedded systems.

  8. Molecular switches in carbon-rich organometallic compounds: Theoretical aspects

    NASA Astrophysics Data System (ADS)

    Costuas, Karine

    2015-01-01

    Organometallic complexes associated with an appropriate choice of ancillary ligands reveal to have a wide range of physical properties leading to promising applications when incorporated in nano-size devices. The challenge is to design innovative multifunctional compounds based on redox active carbon-rich organometallics associated with spin carriers and/or photochromic units. A multidisciplinary approach in this area has proved to be efficient in a series a systems combining carbon-rich bridging ligands and redox metallic moieties. In this domain, the role of theoretical investigations based on quantum mechanics tools have a crucial role in rationalizing and in helping designing systems possessing target properties.

  9. Management of metastatic retroperitoneal sarcoma: a consensus approach from the Trans-Atlantic Retroperitoneal Sarcoma Working Group (TARPSWG).

    PubMed

    2018-04-01

    Retroperitoneal sarcoma (RPS) is a rare disease accounting for 0.1%-0.2% of all malignancies. Management of RPS is complex and requires multidisciplinary, tailored treatment strategies at all stages, but especially in the context of metastatic or multifocal recurrent disease. Due to the rarity and heterogeneity of this family of diseases, the literature to guide management is limited. The Trans-Atlantic Retroperitoneal Sarcoma Working Group (TARPSWG) is an international collaboration of sarcoma experts from all disciplines convened in an effort to overcome these limitations. The TARPSWG has compiled the available evidence surrounding metastatic and multifocally recurrent RPS along with expert opinion in an iterative process to generate a consensus document regarding the complex management of this disease. The objective of this document is to guide sarcoma specialists from all disciplines in the diagnosis and treatment of multifocal recurrent or metastatic RPS. All aspects of patient assessment, diagnostic processes, local and systemic treatments, and palliation are reviewed in this document, and consensus recommendations provided accordingly. Recommendations were guided by available evidence, in conjunction with expert opinion where evidence was lacking. This consensus document combines the available literature regarding the management of multifocally recurrent or metastastic RPS with the practical expertise of high-volume sarcoma centers from multiple countries. It is designed as a tool for decision making in the complex multidisciplinary management of this condition and is expected to standardize management across centers, thereby ensuring that patients receive the highest quality care.

  10. Validation workflow for a clinical Bayesian network model in multidisciplinary decision making in head and neck oncology treatment.

    PubMed

    Cypko, Mario A; Stoehr, Matthaeus; Kozniewski, Marcin; Druzdzel, Marek J; Dietz, Andreas; Berliner, Leonard; Lemke, Heinz U

    2017-11-01

    Oncological treatment is being increasingly complex, and therefore, decision making in multidisciplinary teams is becoming the key activity in the clinical pathways. The increased complexity is related to the number and variability of possible treatment decisions that may be relevant to a patient. In this paper, we describe validation of a multidisciplinary cancer treatment decision in the clinical domain of head and neck oncology. Probabilistic graphical models and corresponding inference algorithms, in the form of Bayesian networks, can support complex decision-making processes by providing a mathematically reproducible and transparent advice. The quality of BN-based advice depends on the quality of the model. Therefore, it is vital to validate the model before it is applied in practice. For an example BN subnetwork of laryngeal cancer with 303 variables, we evaluated 66 patient records. To validate the model on this dataset, a validation workflow was applied in combination with quantitative and qualitative analyses. In the subsequent analyses, we observed four sources of imprecise predictions: incorrect data, incomplete patient data, outvoting relevant observations, and incorrect model. Finally, the four problems were solved by modifying the data and the model. The presented validation effort is related to the model complexity. For simpler models, the validation workflow is the same, although it may require fewer validation methods. The validation success is related to the model's well-founded knowledge base. The remaining laryngeal cancer model may disclose additional sources of imprecise predictions.

  11. Science as a general education: Conceptual science should constitute the compulsory core of multi-disciplinary undergraduate degrees.

    PubMed

    Charlton, Bruce G

    2006-01-01

    It is plausible to assume that in the future science will form the compulsory core element both of school curricula and multi-disciplinary undergraduate degrees. But for this to happen entails a shift in the emphasis and methods of science teaching, away from the traditional concern with educating specialists and professionals. Traditional science teaching was essentially vocational, designed to provide precise and comprehensive scientific knowledge for practical application. By contrast, future science teaching will be a general education, hence primarily conceptual. Its aim should be to provide an education in flexible rationality. Vocational science teaching was focused on a single-discipline undergraduate degree, but a general education in abstract systematic thinking is best inculcated by studying several scientific disciplines. In this sense, 'science' is understood as mathematics and the natural sciences, but also the abstract and systematic aspects of disciplines such as economics, linguistics, music theory, history, sociology, political science and management science. Such a wide variety of science options in a multi-disciplinary degree will increase the possibility of student motivation and aptitude. Specialist vocational science education will progressively be shifted to post-graduate level, in Masters and Doctoral programs. A multi-disciplinary and conceptually-based science core curriculum should provide an appropriate preparation for dealing with the demands of modern societies; their complex and rapidly changing social systems; and the need for individual social and professional mobility. Training in rational conceptual thinking also has potential benefits to human health and happiness, since it allows people to over-ride inappropriate instincts, integrate conflicting desires and pursue long-term goals.

  12. A novel combined interventional radiologic and hepatobiliary surgical approach to a complex traumatic hilar biliary stricture.

    PubMed

    NeMoyer, Rachel E; Shah, Mihir M; Hasan, Omar; Nosher, John L; Carpizo, Darren R

    2018-01-01

    Benign strictures of the biliary system are challenging and uncommon conditions requiring a multidisciplinary team for appropriate management. The patient is a 32-year-old male that developed a hilar stricture as sequelae of a gunshot wound. Due to the complex nature of the stricture and scarring at the porta hepatis a combined interventional radiologic and surgical approach was carried out to approach the hilum of the right and left hepatic ducts. The location of this stricture was found by ultrasound guidance intraoperatively using a balloon tipped catheter placed under fluoroscopy in the interventional radiology suite prior to surgery. This allowed the surgeons to select the line of parenchymal transection for best visualization of the stricture. A left hepatectomy was performed, the internal stent located and the right hepatic duct opened tangentially to allow a side-to-side Roux-en-Y hepaticojejunostomy (a Puestow-like anastomosis). Injury to the intrahepatic biliary ductal confluence is rarely fatal, however, the associated injuries lead to severe morbidity as seen in this example. Management of these injuries poses a considerable challenge to the surgeon and treating physicians. Here we describe an innovative multi-disciplinary approach to the repair of this rare injury. Copyright © 2018. Published by Elsevier Ltd.

  13. Health and Functional Status of Adults with Intellectual Disability Referred to the Specialist Health Care Setting: A Five-Year Experience

    PubMed Central

    Lee, L.; Rianto, J.; Raykar, V.; Creasey, H.; Waite, L.; Berry, A.; Xu, J.; Chenoweth, B.; Kavanagh, S.; Naganathan, V.

    2011-01-01

    Aims and Method. The Developmental Disability Database in the Department of Rehabilitation Medicine at a metropolitan hospital was audited for observations on adults with Intellectual Disability living in the local region (total population 180,000) who were seen in an identified multidisciplinary specialist clinic, during 2006–2010. Results. There were 162 people (representing half the known number of adults with Intellectual Disability living in the region): 77 females, 85 males, age range 16–86 years. The most common complex disabilities referred to the specialists in this clinic were epilepsy (52%), challenging or changing behavior (42%) and movement disorders (34%). Early onset dementia was a feature of the group (7%). The prevalence of prescription of medications for gastro-oesophageal reflux was high (36%) and similar to the numbers of people taking psychotropic medications. The rates of chronic cardiovascular disease (2%), chronic respiratory disease (10%) and generalised arthritis (11%) were low overall, but did rise with increasing age. Conclusions. Complex neurological disabilities are common, and chronic medical illnesses are uncommon in adults with Intellectual Disability referred to specialist clinicians in this region. A combined, coordinated, multidisciplinary clinic model addresses some of the barriers experienced by adults with Intellectual Disability in the secondary health system. PMID:22295183

  14. [The role of multidisciplinary tumor board discussions in treatment decisions].

    PubMed

    Jerusalem, G; Coucke, P

    2011-01-01

    The diagnosis and treatment of cancer is complex. Multidisciplinary tumor board discussions optimise the care of patients suffering from cancer. The most promising and rational treatment is chosen taking into account the opinion from all participants. Quality of life is important if only a palliative approach can be offered. The final decision concerning the treatment will be taken by the patient because he/she has the right to refuse the best treatment for personal reasons.

  15. The correction of maxillary defciency with internal distraction devices: a multidisciplinary approach.

    PubMed

    Oz, A Alper; Ozer, Mete; Eroglu, Lütfi; Ozdemir, Oguz Suleyman

    2013-09-01

    The purpose of this case report is to present the orthodontic, surgical and restorative treatments in the case of an operated cleft lip and palate and severe maxillary defciency in a 14-year-old female patient. Only orthodontic treatment could be ineffcient for cleft lip and palate patients characterized with maxillary hypoplasia. Orthodontic and surgical treatment shows suffcient results, especially with severe skeletal defciency. A cleft lip and palate patient required complex multidisciplinary treatment to preserve health and restore esthetics. Dental leveling and alignment of the maxillary and mandibular teeth were provided before the surgery. Maxillary advancement and clockwise rotation of the maxillary-mandibular complex was applied by a Le Fort 1 osteotomy with two internal distraction devices. After the active treatment including orthodontic treatment and orthognathic surgery, upper full mouth ceramic restoration was applied. This report shows the efficiency of internal distraction devices in cleft lip palate patients and exemplifes the multidisciplinary care required for such diffcult cases. Clinical signifcance: Stable improved occlusion and skeletal relations were observed after a follow-up examination period of 12 months.

  16. The EuroGEOSS Advanced Operating Capacity

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Vaccari, L.; Stock, K.; Diaz, L.; Santoro, M.

    2012-04-01

    The concept of multidisciplinary interoperability for managing societal issues is a major challenge presently faced by the Earth and Space Science Informatics community. With this in mind, EuroGEOSS project was launched on May 1st 2009 for a three year period aiming to demonstrate the added value to the scientific community and society of providing existing earth observing systems and applications in an interoperable manner and used within the GEOSS and INSPIRE frameworks. In the first period, the project built an Initial Operating Capability (IOC) in the three strategic areas of Drought, Forestry and Biodiversity; this was then enhanced into an Advanced Operating Capacity (AOC) for multidisciplinary interoperability. Finally, the project extended the infrastructure to other scientific domains (geology, hydrology, etc.). The EuroGEOSS multidisciplinary AOC is based on the Brokering Approach. This approach aims to achieve multidisciplinary interoperability by developing an extended SOA (Service Oriented Architecture) where a new type of "expert" components is introduced: the Broker. These implement all mediation and distribution functionalities needed to interconnect the distributed and heterogeneous resources characterizing a System of Systems (SoS) environment. The EuroGEOSS AOC is comprised of the following components: • EuroGEOSS Discovery Broker: providing harmonized discovery functionalities by mediating and distributing user queries against tens of heterogeneous services; • EuroGEOSS Access Broker: enabling users to seamlessly access and use heterogeneous remote resources via a unique and standard service; • EuroGEOSS Web 2.0 Broker: enhancing the capabilities of the Discovery Broker with queries towards the new Web 2.0 services; • EuroGEOSS Semantic Discovery Broker: enhancing the capabilities of the Discovery Broker with semantic query-expansion; • EuroGEOSS Natural Language Search Component: providing users with the possibilities to search for resources using natural language queries; • Service Composition Broker: allowing users to compose and execute complex Business Processes, based on the technology developed by the FP7 UncertWeb project. Recently, the EuroGEOSS Brokering framework was presented at the GEO-VIII Plenary and Exhibition in Istanbul and introduced into the GEOSS Common Infrastructure.

  17. Use of failure mode and effects analysis for proactive identification of communication and handoff failures from organ procurement to transplantation.

    PubMed

    Steinberger, Dina M; Douglas, Stephen V; Kirschbaum, Mark S

    2009-09-01

    A multidisciplinary team from the University of Wisconsin Hospital and Clinics transplant program used failure mode and effects analysis to proactively examine opportunities for communication and handoff failures across the continuum of care from organ procurement to transplantation. The team performed a modified failure mode and effects analysis that isolated the multiple linked, serial, and complex information exchanges occurring during the transplantation of one solid organ. Failure mode and effects analysis proved effective for engaging a diverse group of persons who had an investment in the outcome in analysis and discussion of opportunities to improve the system's resilience for avoiding errors during a time-pressured and complex process.

  18. Distributed Cognition and Process Management Enabling Individualized Translational Research: The NIH Undiagnosed Diseases Program Experience

    PubMed Central

    Links, Amanda E.; Draper, David; Lee, Elizabeth; Guzman, Jessica; Valivullah, Zaheer; Maduro, Valerie; Lebedev, Vlad; Didenko, Maxim; Tomlin, Garrick; Brudno, Michael; Girdea, Marta; Dumitriu, Sergiu; Haendel, Melissa A.; Mungall, Christopher J.; Smedley, Damian; Hochheiser, Harry; Arnold, Andrew M.; Coessens, Bert; Verhoeven, Steven; Bone, William; Adams, David; Boerkoel, Cornelius F.; Gahl, William A.; Sincan, Murat

    2016-01-01

    The National Institutes of Health Undiagnosed Diseases Program (NIH UDP) applies translational research systematically to diagnose patients with undiagnosed diseases. The challenge is to implement an information system enabling scalable translational research. The authors hypothesized that similar complex problems are resolvable through process management and the distributed cognition of communities. The team, therefore, built the NIH UDP integrated collaboration system (UDPICS) to form virtual collaborative multidisciplinary research networks or communities. UDPICS supports these communities through integrated process management, ontology-based phenotyping, biospecimen management, cloud-based genomic analysis, and an electronic laboratory notebook. UDPICS provided a mechanism for efficient, transparent, and scalable translational research and thereby addressed many of the complex and diverse research and logistical problems of the NIH UDP. Full definition of the strengths and deficiencies of UDPICS will require formal qualitative and quantitative usability and process improvement measurement. PMID:27785453

  19. Managing Increasing Complexity in Undergraduate Digital Media Design Education: The Impact and Benefits of Multidisciplinary Collaboration

    ERIC Educational Resources Information Center

    Fleischmann, Katja; Daniel, Ryan

    2013-01-01

    Increasing complexity is one of the most pertinent issues when discussing the role and future of design, designers and their education. The evolving nature of digital media technology has resulted in a profession in a state of flux with increasingly complex communication and design problems. The ability to collaborate and interact with other…

  20. The Congolobe project, a multidisciplinary study of Congo deep-sea fan lobe complex: Overview of methods, strategies, observations and sampling

    NASA Astrophysics Data System (ADS)

    Rabouille, C.; Olu, K.; Baudin, F.; Khripounoff, A.; Dennielou, B.; Arnaud-Haond, S.; Babonneau, N.; Bayle, C.; Beckler, J.; Bessette, S.; Bombled, B.; Bourgeois, S.; Brandily, C.; Caprais, J. C.; Cathalot, C.; Charlier, K.; Corvaisier, R.; Croguennec, C.; Cruaud, P.; Decker, C.; Droz, L.; Gayet, N.; Godfroy, A.; Hourdez, S.; Le Bruchec, J.; Saout, J.; Le Saout, M.; Lesongeur, F.; Martinez, P.; Mejanelle, L.; Michalopoulos, P.; Mouchel, O.; Noel, P.; Pastor, L.; Picot, M.; Pignet, P.; Pozzato, L.; Pruski, A. M.; Rabiller, M.; Raimonet, M.; Ragueneau, O.; Reyss, J. L.; Rodier, P.; Ruesch, B.; Ruffine, L.; Savignac, F.; Senyarich, C.; Schnyder, J.; Sen, A.; Stetten, E.; Sun, Ming Yi; Taillefert, M.; Teixeira, S.; Tisnerat-Laborde, N.; Toffin, L.; Tourolle, J.; Toussaint, F.; Vétion, G.; Jouanneau, J. M.; Bez, M.; Congolobe Group:

    2017-08-01

    The presently active region of the Congo deep-sea fan (around 330,000 km2), called the terminal lobes or lobe complex, covers an area of 2500 km2 at 4700-5100 m water depth and 750-800 km offshore. It is a unique sedimentary area in the world ocean fed by a submarine canyon and a channel-levee system which presently deliver large amounts of organic carbon originating from the Congo River by turbidity currents. This particularity is due to the deep incision of the shelf by the Congo canyon, up to 30 km into the estuary, which funnels the Congo River sediments into the deep-sea. The connection between the river and the canyon is unique for major world rivers. In 2011, two cruises (WACS leg 2 and Congolobe) were conducted to simultaneously investigate the geology, organic and inorganic geochemistry, and micro- and macro-biology of the terminal lobes of the Congo deep-sea fan. Using this multidisciplinary approach, the morpho-sedimentary features of the lobes were characterized along with the origin and reactivity of organic matter, the recycling and burial of biogenic compounds, the diversity and function of bacterial and archaeal communities within the sediment, and the biodiversity and functioning of the faunal assemblages on the seafloor. Six different sites were selected for this study: Four distributed along the active channel from the lobe complex entrance to the outer rim of the sediment deposition zone, and two positioned cross-axis and at increasing distance from the active channel, thus providing a gradient in turbidite particle delivery and sediment age. This paper aims to provide the general context of this multidisciplinary study. It describes the general features of the site and the overall sampling strategy and provides the initial habitat observations to guide the other in-depth investigations presented in this special issue. Detailed bathymetry of each sampling site using 0.1-1 m resolution multibeam obtained with a remotely operated vehicle (ROV) shows progressive widening and smoothing of the channel-levees with increasing depth and reveals a complex morphology with channel bifurcations, erosional features and massive deposits. Dense ecosystems surveyed in the study area gather high density clusters of two large-sized species of symbiotic Vesicomyidae bivalves and microbial mats. These assemblages, which are rarely observed in sedimentary zones, resemble those based on chemosynthesis at cold-seep sites, such as the active pockmarks encountered along the Congo margin, and share with these sites the dominant vesicomyid species Christineconcha regab. Sedimentation rates estimated in the lobe complex range between 0.5 and 10 cm yr-1, which is 2-3 orders of magnitude higher than values generally encountered at abyssal depths. The bathymetry, faunal assemblages and sedimentation rates make the Congo lobe complex a highly peculiar deep-sea habitat driven by high inputs of terrigenous material delivered by the Congo channel-levee system.

  1. Air pollution and detrimental effects on children's brain. The need for a multidisciplinary approach to the issue complexity and challenges.

    PubMed

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J; Park, Su-Bin; D'Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health.

  2. Air pollution and detrimental effects on children’s brain. The need for a multidisciplinary approach to the issue complexity and challenges

    PubMed Central

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J.; Park, Su-Bin; D’Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health. PMID:25161617

  3. The Loci Multidisciplinary Simulation System Overview and Status

    NASA Technical Reports Server (NTRS)

    Luke, Edward A.; Tong, Xiao-Ling; Tang, Lin

    2002-01-01

    This paper will discuss the Loci system, an innovative tool for developing tightly coupled multidisciplinary three dimensional simulations. This presentation will overview some of the unique capabilities of the Loci system to automate the assembly of numerical simulations from libraries of fundamental computational components. We will discuss the demonstration of the Loci system on coupled fluid-structure problems related to RBCC propulsion systems.

  4. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1986-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  5. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  6. [Necrotizing fasciitis in head and neck area].

    PubMed

    Sántha, Beáta; Sári, Katalin; Fülep, Zoltán; Patyi, Márta; Oberna, Ferenc

    2017-03-01

    Necrotizing fasciitis is a fulminant infection of the deeper layers of skin and subcutaneous tissues characterized by progressive soft tissue necrosis and high mortality. It rarely occurs in the head and neck area. The clinical picture includes non-specific but typical local and systemic symptoms. The treatment is a complex, multidisciplinary task which includes radical surgical exploration, debridement and drainage, empirically started and then targeted intravenous antibiotics and supportive therapy. Authors report a case of necrotizing fasciitis localized on the right side of the face which caused multi-organ failure and phlegmone of the neck.

  7. Developing a framework for qualitative engineering: Research in design and analysis of complex structural systems

    NASA Technical Reports Server (NTRS)

    Franck, Bruno M.

    1990-01-01

    The research is focused on automating the evaluation of complex structural systems, whether for the design of a new system or the analysis of an existing one, by developing new structural analysis techniques based on qualitative reasoning. The problem is to identify and better understand: (1) the requirements for the automation of design, and (2) the qualitative reasoning associated with the conceptual development of a complex system. The long-term objective is to develop an integrated design-risk assessment environment for the evaluation of complex structural systems. The scope of this short presentation is to describe the design and cognition components of the research. Design has received special attention in cognitive science because it is now identified as a problem solving activity that is different from other information processing tasks (1). Before an attempt can be made to automate design, a thorough understanding of the underlying design theory and methodology is needed, since the design process is, in many cases, multi-disciplinary, complex in size and motivation, and uses various reasoning processes involving different kinds of knowledge in ways which vary from one context to another. The objective is to unify all the various types of knowledge under one framework of cognition. This presentation focuses on the cognitive science framework that we are using to represent the knowledge aspects associated with the human mind's abstraction abilities and how we apply it to the engineering knowledge and engineering reasoning in design.

  8. A Multidisciplinary Research Team Approach to Computer-Aided Drafting (CAD) System Selection. Final Report.

    ERIC Educational Resources Information Center

    Franken, Ken; And Others

    A multidisciplinary research team was assembled to review existing computer-aided drafting (CAD) systems for the purpose of enabling staff in the Design Drafting Department at Linn Technical College (Missouri) to select the best system out of the many CAD systems in existence. During the initial stage of the evaluation project, researchers…

  9. Twenty years of multidisciplinary research and practice: the Journal of Occupational Rehabilitation then and now.

    PubMed

    Shaw, William S; Findley, Patricia A; Feuerstein, Michael

    2011-12-01

    Early research of work disability in the 1980s showed a complexity of factors influencing pain and health-related functional limitation at work; hence, multidisciplinary perspectives were necessary to understand the complex interplay between biomechanical, organizational, social, and psychological factors impacting work disability. To address this need, the Journal of Occupational Rehabilitation was founded in 1991 with the goal of providing a scientific, yet practical forum for presenting multidisciplinary research and practice in work disability. Now, the 20-year collection of articles in the Journal reflects important trends and directions in the field of occupational rehabilitation. We conducted a retrospective summary of the past 20 years of the Journal of Occupational Rehabilitation, including its inaugural goals and intent, rates of submission and acceptance, trends in the types of articles published, study topics, global distribution of authors, and future directions. The original goal of providing a multidisciplinary scientific and practical forum has been met, but current trends reflect a maturing scientific evidence base, with less representation of employer-based case studies and practical innovations. There has been a dramatic increase in the international representation of studies, authors, and peer reviewers outside of the US. Also, published studies now address work disability for a larger number of health concerns. Contributions to the Journal continue to reflect a multidisciplinary perspective, but the Journal has seen significant changes with respect to international representation, the expanding study of non-musculoskeletal sources of work disability, and the maturing scientific evidence base in the field of occupational rehabilitation. Future volumes of the Journal will likely reflect continuing changes in the global economy, workforce fitness, and job demands.

  10. Use of High Fidelity Methods in Multidisciplinary Optimization-A Preliminary Survey

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Multidisciplinary optimization is a key element of design process. To date multidiscipline optimization methods that use low fidelity methods are well advanced. Optimization methods based on simple linear aerodynamic equations and plate structural equations have been applied to complex aerospace configurations. However, use of high fidelity methods such as the Euler/ Navier-Stokes for fluids and 3-D (three dimensional) finite elements for structures has begun recently. As an activity of Multidiscipline Design Optimization Technical Committee (MDO TC) of AIAA (American Institute of Aeronautics and Astronautics), an effort was initiated to assess the status of the use of high fidelity methods in multidisciplinary optimization. Contributions were solicited through the members MDO TC committee. This paper provides a summary of that survey.

  11. Rationale and methodology of a collaborative learning project in congenital cardiac care

    PubMed Central

    Wolf, Michael J.; Lee, Eva K.; Nicolson, Susan C.; Pearson, Gail D.; Witte, Madolin K.; Huckaby, Jeryl; Gaies, Michael; Shekerdemian, Lara S.; Mahle, William T.

    2018-01-01

    Background Collaborative learning is a technique through which individuals or teams learn together by capitalizing on one another’s knowledge, skills, resources, experience, and ideas. Clinicians providing congenital cardiac care may benefit from collaborative learning given the complexity of the patient population and team approach to patient care. Rationale and development Industrial system engineers first performed broad-based time-motion and process analyses of congenital cardiac care programs at 5 Pediatric Heart Network core centers. Rotating multidisciplinary team site visits to each center were completed to facilitate deep learning and information exchange. Through monthly conference calls and an in-person meeting, we determined that duration of mechanical ventilation following infant cardiac surgery was one key variation that could impact a number of clinical outcomes. This was underscored by one participating center’s practice of early extubation in the majority of its patients. A consensus clinical practice guideline using collaborative learning was developed and implemented by multidisciplinary teams from the same 5 centers. The 1-year prospective initiative was completed in May 2015, and data analysis is under way. Conclusion Collaborative learning that uses multidisciplinary team site visits and information sharing allows for rapid structured fact-finding and dissemination of expertise among institutions. System modeling and machine learning approaches objectively identify and prioritize focused areas for guideline development. The collaborative learning framework can potentially be applied to other components of congenital cardiac care and provide a complement to randomized clinical trials as a method to rapidly inform and improve the care of children with congenital heart disease. PMID:26995379

  12. Rationale and methodology of a collaborative learning project in congenital cardiac care.

    PubMed

    Wolf, Michael J; Lee, Eva K; Nicolson, Susan C; Pearson, Gail D; Witte, Madolin K; Huckaby, Jeryl; Gaies, Michael; Shekerdemian, Lara S; Mahle, William T

    2016-04-01

    Collaborative learning is a technique through which individuals or teams learn together by capitalizing on one another's knowledge, skills, resources, experience, and ideas. Clinicians providing congenital cardiac care may benefit from collaborative learning given the complexity of the patient population and team approach to patient care. Industrial system engineers first performed broad-based time-motion and process analyses of congenital cardiac care programs at 5 Pediatric Heart Network core centers. Rotating multidisciplinary team site visits to each center were completed to facilitate deep learning and information exchange. Through monthly conference calls and an in-person meeting, we determined that duration of mechanical ventilation following infant cardiac surgery was one key variation that could impact a number of clinical outcomes. This was underscored by one participating center's practice of early extubation in the majority of its patients. A consensus clinical practice guideline using collaborative learning was developed and implemented by multidisciplinary teams from the same 5 centers. The 1-year prospective initiative was completed in May 2015, and data analysis is under way. Collaborative learning that uses multidisciplinary team site visits and information sharing allows for rapid structured fact-finding and dissemination of expertise among institutions. System modeling and machine learning approaches objectively identify and prioritize focused areas for guideline development. The collaborative learning framework can potentially be applied to other components of congenital cardiac care and provide a complement to randomized clinical trials as a method to rapidly inform and improve the care of children with congenital heart disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Quality assurance strategies for investigating IAQ problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, C.W.; Ross, J.A.; Sterling, E.M.

    Thousands of buildings have now been investigated throughout North America and western Europe. The evaluative strategies and protocols used by various investigators have been described in the scientific and protocols used by various investigators have been described in the scientific and technical literature, including those used by government agencies, private consultants, researchers, and physicians. Review of these strategies shows a consistency and commonly in approach, despite differences in terminology and organization. Most of the published protocols recognize the need to employ a multidisciplinary approach to the evaluation of indoor environmental problems, an approach that views buildings as complex, dynamic systems.more » The multidisciplinary approaches advocated by investigators gather information about the physical building (architectural), the mechanical systems that control indoor environmental conditions (engineering), the type and extent of occupant health and comfort concerns (medical), the objective quality of the air (industrial hygiene) and the occupants subjective perceptions of conditions in their work environment (social science). These components have generally been organized into a series of steps or phases, with each phase extending the information gathered from the preceding phase until a point when the causes of problems may be identified.« less

  14. The role of fractional calculus in modeling biological phenomena: A review

    NASA Astrophysics Data System (ADS)

    Ionescu, C.; Lopes, A.; Copot, D.; Machado, J. A. T.; Bates, J. H. T.

    2017-10-01

    This review provides the latest developments and trends in the application of fractional calculus (FC) in biomedicine and biology. Nature has often showed to follow rather simple rules that lead to the emergence of complex phenomena as a result. Of these, the paper addresses the properties in respiratory lung tissue, whose natural solutions arise from the midst of FC in the form of non-integer differ-integral solutions and non-integer parametric models. Diffusion of substances in human body, e.g. drug diffusion, is also a phenomena well known to be captured with such mathematical models. FC has been employed in neuroscience to characterize the generation of action potentials and spiking patters but also in characterizing bio-systems (e.g. vegetable tissues). Despite the natural complexity, biological systems belong as well to this class of systems, where FC has offered parsimonious yet accurate models. This review paper is a collection of results and literature reports who are essential to any versed engineer with multidisciplinary applications and bio-medical in particular.

  15. TU-CD-303-05: Unveiling Tumor Heterogeneity by Molecular Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeraj, R.

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less

  16. TU-CD-303-02: Beyond Radiation Induced Double Strand Breaks - a New Horizon for Radiation Therapy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less

  17. Regional Multiteam Systems in Cancer Care Delivery

    PubMed Central

    Monson, John R.T.; Rizvi, Irfan; Savastano, Ann; Green, James S.A.; Sevdalis, Nick

    2016-01-01

    Teamwork is essential for addressing many of the challenges that arise in the coordination and delivery of cancer care, especially for the problems that are presented by patients who cross geographic boundaries and enter and exit multiple health care systems at various times during their cancer care journeys. The problem of coordinating the care of patients with cancer is further complicated by the growing number of treatment options and modalities, incompatibilities among the vast variety of technology platforms that have recently been adopted by the health care industry, and competing and misaligned incentives for providers and systems. Here we examine the issue of regional care coordination in cancer through the prism of a real patient journey. This article will synthesize and elaborate on existing knowledge about coordination approaches for complex systems, in particular, in general and cancer care multidisciplinary teams; define elements of coordination derived from organizational psychology and human factors research that are applicable to team-based cancer care delivery; and suggest approaches for improving multidisciplinary team coordination in regional cancer care delivery and avenues for future research. The phenomenon of the mobile, multisystem patient represents a growing challenge in cancer care. Paradoxically, development of high-quality, high-volume centers of excellence and the ease of virtual communication and data sharing by using electronic medical records have introduced significant barriers to effective team-based cancer care. These challenges urgently require solutions. PMID:27650833

  18. Convergence Estimates for Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Arian, Eyal

    1997-01-01

    A quantitative analysis of coupling between systems of equations is introduced. This analysis is then applied to problems in multidisciplinary analysis, sensitivity, and optimization. For the sensitivity and optimization problems both multidisciplinary and single discipline feasibility schemes are considered. In all these cases a "convergence factor" is estimated in terms of the Jacobians and Hessians of the system, thus it can also be approximated by existing disciplinary analysis and optimization codes. The convergence factor is identified with the measure for the "coupling" between the disciplines in the system. Applications to algorithm development are discussed. Demonstration of the convergence estimates and numerical results are given for a system composed of two non-linear algebraic equations, and for a system composed of two PDEs modeling aeroelasticity.

  19. Study protocol: realist evaluation of effectiveness and sustainability of a community health workers programme in improving maternal and child health in Nigeria.

    PubMed

    Mirzoev, Tolib; Etiaba, Enyi; Ebenso, Bassey; Uzochukwu, Benjamin; Manzano, Ana; Onwujekwe, Obinna; Huss, Reinhard; Ezumah, Nkoli; Hicks, Joseph P; Newell, James; Ensor, Timothy

    2016-06-07

    Achievement of improved maternal and child health (MCH) outcomes continues to be an issue of international priority, particularly for sub-Saharan African countries such as Nigeria. Evidence suggests that the use of Community Health Workers (CHWs) can be effective in broadening access to, and coverage of, health services and improving MCH outcomes in such countries. In this paper, we report the methodology for a 5-year study which aims to evaluate the context, processes, outcomes and longer-term sustainability of a Nigerian CHW scheme. Evaluation of complex interventions requires a comprehensive understanding of intervention context, mechanisms and outcomes. The multidisciplinary and mixed-method realist approach will facilitate such evaluation. A favourable policy environment within which the study is conducted will ensure the successful uptake of results into policy and practice. A realist evaluation provides an overall methodological framework for this multidisciplinary and mixed methods research, which will be undertaken in Anambra state. The study will draw upon health economics, social sciences and statistics. The study comprises three steps: (1) initial theory development; (2) theory validation and (3) theory refinement and development of lessons learned. Specific methods for data collection will include in-depth interviews and focus group discussions with purposefully identified key stakeholders (managers, service providers and service users), document reviews, analyses of quantitative data from the CHW programme and health information system, and a small-scale survey. The impact of the programme on key output and outcome indicators will be assessed through an interrupted time-series analysis (ITS) of monthly quantitative data from health information system and programme reports. Ethics approvals for this study were obtained from the University of Leeds and the University of Nigeria. This study will provide a timely and important contribution to health systems strengthening specifically within Anambra state in southeast Nigeria but also more widely across Nigeria. This paper should be of interest to researchers who are interested in adapting and applying robust methodologies for assessing complex health system interventions. The paper will also be useful to policymakers and practitioners who are interested in commissioning and engaging in such complex evaluations to inform policies and practices.

  20. Impact of developing a multidisciplinary coded dataset standard on administrative data accuracy for septoplasty, septorhinoplasty and nasal trauma surgery.

    PubMed

    Nouraei, S A R; Hudovsky, A; Virk, J S; Saleh, H A

    2017-04-01

    This study aimed to develop a multidisciplinary coded dataset standard for nasal surgery and to assess its impact on data accuracy. An audit of 528 patients undergoing septal and/or inferior turbinate surgery, rhinoplasty and/or septorhinoplasty, and nasal fracture surgery was undertaken. A total of 200 septoplasties, 109 septorhinoplasties, 57 complex septorhinoplasties and 116 nasal fractures were analysed. There were 76 (14.4 per cent) changes to the primary diagnosis. Septorhinoplasties were the most commonly amended procedures. The overall audit-related income change for nasal surgery was £8.78 per patient. Use of a multidisciplinary coded dataset standard revealed that nasal diagnoses were under-coded; a significant proportion of patients received more precise diagnoses following the audit. There was also significant under-coding of both morbidities and revision surgery. The multidisciplinary coded dataset standard approach can improve the accuracy of both data capture and information flow, and, thus, ultimately create a more reliable dataset for use outcomes and health planning.

  1. Multidisciplinary tailoring of hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Chamis, Christos C.

    1993-01-01

    A computational simulation procedure is described for multidisciplinary analysis and tailoring of layered multi-material hot composite engine structural components subjected to simultaneous multiple discipline-specific thermal, structural, vibration, and acoustic loads. The effect of aggressive environments is also simulated. The simulation is based on a three-dimensional finite element analysis technique in conjunction with structural mechanics codes, thermal/acoustic analysis methods, and tailoring procedures. The integrated multidisciplinary simulation procedure is general-purpose including the coupled effects of nonlinearities in structure geometry, material, loading, and environmental complexities. The composite material behavior is assessed at all composite scales, i.e., laminate/ply/constituents (fiber/matrix), via a nonlinear material characterization hygro-thermo-mechanical model. Sample tailoring cases exhibiting nonlinear material/loading/environmental behavior of aircraft engine fan blades, are presented. The various multidisciplinary loads lead to different tailored designs, even those competing with each other, as in the case of minimum material cost versus minimum structure weight and in the case of minimum vibration frequency versus minimum acoustic noise.

  2. Identifying characteristics and practices of multidisciplinary team reviews for patients with severe mental illness: a systematic review.

    PubMed

    Woody, Charlotte A; Baxter, Amanda J; Harris, Meredith G; Siskind, Dan J; Whiteford, Harvey A

    2018-06-01

    Multidisciplinary teams in mental health receive limited guidance, leading to inconsistent practices. We undertook a systematic review of the characteristics and practices of multidisciplinary team reviews for patients with severe mental illness or in relevant mental health service settings. Sources published since 2000 were located via academic database and web searches. Results were synthesised narratively. A total of 14 sources were analysed. Important characteristics and practices identified included routine monitoring and evaluation, good communication, equality between team members, and clear documentation practices. Success factors included defined leadership and clear team goals. Four sources described considerations for patients with complex clinical needs, including allocating sufficient time for discussion, maintaining connections with community providers, and ensuring culturally sensitive practices. No single best practice model was found, due to variations in team caseload, casemix, and resourcing levels. However, key ingredients for success were proposed. Sources were mostly descriptive; there remains a lack of evidence-based guidance regarding multidisciplinary team review characteristics and practices.

  3. System Risk Assessment and Allocation in Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Smith, Natasha L.; Zang, Thomas A. (Technical Monitor)

    2003-01-01

    As aerospace systems continue to evolve in addressing newer challenges in air and space transportation, there exists a heightened priority for significant improvement in system performance, cost effectiveness, reliability, and safety. Tools, which synthesize multidisciplinary integration, probabilistic analysis, and optimization, are needed to facilitate design decisions allowing trade-offs between cost and reliability. This study investigates tools for probabilistic analysis and probabilistic optimization in the multidisciplinary design of aerospace systems. A probabilistic optimization methodology is demonstrated for the low-fidelity design of a reusable launch vehicle at two levels, a global geometry design and a local tank design. Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system. Furthermore, decoupling strategies are introduced to reduce the computational effort required for multidisciplinary systems with feedback coupling.

  4. An Optimization Code for Nonlinear Transient Problems of a Large Scale Multidisciplinary Mathematical Model

    NASA Astrophysics Data System (ADS)

    Takasaki, Koichi

    This paper presents a program for the multidisciplinary optimization and identification problem of the nonlinear model of large aerospace vehicle structures. The program constructs the global matrix of the dynamic system in the time direction by the p-version finite element method (pFEM), and the basic matrix for each pFEM node in the time direction is described by a sparse matrix similarly to the static finite element problem. The algorithm used by the program does not require the Hessian matrix of the objective function and so has low memory requirements. It also has a relatively low computational cost, and is suited to parallel computation. The program was integrated as a solver module of the multidisciplinary analysis system CUMuLOUS (Computational Utility for Multidisciplinary Large scale Optimization of Undense System) which is under development by the Aerospace Research and Development Directorate (ARD) of the Japan Aerospace Exploration Agency (JAXA).

  5. TU-CD-303-03: Localized Radiation Can Induce Systemic Anti-Cancer Immune and Non-Immune Responses and How We Might Utilize It

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less

  6. Multidisciplinary workshops: learning to work together.

    PubMed

    Fatchett, Anita; Taylor, Dawn

    2013-03-01

    Health and social care professional practice needs to move with the times and to respond to the ever-changing combination of health needs, economic realities and health-policy imperatives. A clear understanding of the variety of forces at play and the ability to marshal these to good effect by working in partnership with multidisciplinary colleagues and children/families is a must, not least in this time of economic austerity and ever-rising health inequalities, when vulnerable children's lives and complex family relationships and behaviours so easily become increasingly strained and challenged. This sad reality calls out for relevant joined-up solutions by all participants--an agenda so often called into question by court judgement after court judgement. The multidisciplinary workshops to be discussed have developed and changed over the past decade and provide a safe but realistic learning environment for students from health and social care backgrounds to experience the difficulties and barriers to good multidisciplinary working, to better understand others' perspectives and activities and consider and develop new and better practical strategies for working with multidisciplinary professional colleagues, children and families. All of the workshops are underpinned by specific discipline-focused theoretical work.

  7. Visual Computing Environment Workshop

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles (Compiler)

    1998-01-01

    The Visual Computing Environment (VCE) is a framework for intercomponent and multidisciplinary computational simulations. Many current engineering analysis codes simulate various aspects of aircraft engine operation. For example, existing computational fluid dynamics (CFD) codes can model the airflow through individual engine components such as the inlet, compressor, combustor, turbine, or nozzle. Currently, these codes are run in isolation, making intercomponent and complete system simulations very difficult to perform. In addition, management and utilization of these engineering codes for coupled component simulations is a complex, laborious task, requiring substantial experience and effort. To facilitate multicomponent aircraft engine analysis, the CFD Research Corporation (CFDRC) is developing the VCE system. This system, which is part of NASA's Numerical Propulsion Simulation System (NPSS) program, can couple various engineering disciplines, such as CFD, structural analysis, and thermal analysis.

  8. Multi-disciplinary management of complex pressure sore reconstruction: 5-year review of experience in a spinal injuries centre

    PubMed Central

    Choudry, M; White, C; Mecci, M; Siddiqui, H

    2017-01-01

    INTRODUCTION In our regional spinal injuries unit, complex pressure ulcer reconstruction is facilitated by a monthly multidisciplinary team clinic. This study reviews a series of the more complex of these patients who underwent surgery as a joint case between plastics and other surgical specialties, aiming to provide descriptive data as well as share the experience of treating these complex wounds. MATERIALS AND METHODS Patients operated on as a joint case from 2010 to 2014 were identified through a locally held database and hospital records were then retrospectively reviewed for perioperative variables. Descriptive statistics were collected. RESULTS 12 patients underwent 15 procedures as a joint collaboration between plastic surgery and other surgical specialties: one with spinal surgery, 12 with orthopaedic and two with both orthopaedic and urology involvement. Ischial and trochanteric wounds accounted for 88% of cases with five Girdlestone procedures being performed and 12 requiring soft-tissue flap reconstruction. Mean operative time was 3.8hours. Four patients required high-dependency care and 13 patients received long-term antibiotics. Only three minor complications (20%) were seen with postoperative wound dehiscence. DISCUSSION The multidisciplinary team clinic allows careful assessment and selection of patients appropriate for surgical reconstruction and to help match expectations and limitations imposed by surgery, which are likely to influence their current lifestyle in this largely independent patient group. Collaboration with other specialties gives the best surgical outcome both for the present episode as well as leaving avenues open for potential future reconstruction. PMID:27490980

  9. Multidisciplinary analysis of invasive meningococcal disease as a framework for continuous quality and safety improvement in regional Australia

    PubMed Central

    Taylor, Kathryn A; Durrheim, David N; Merritt, Tony; Massey, Peter; Ferguson, John; Ryan, Nick; Hullick, Carolyn

    2018-01-01

    Background System factors in a regional Australian health district contributed to avoidable care deviations from invasive meningococcal disease (IMD) management guidelines. Traditional root cause analysis (RCA) is not well-suited to IMD, focusing on individual cases rather than system improvements. As IMD requires complex care across healthcare silos, it presents an opportunity to explore and address system-based patient safety issues. Context Baseline assessment of IMD cases (2005–2006) identified inadequate triage, lack of senior clinician review, inconsistent vital sign recording and laboratory delays as common issues, resulting in antibiotic administration delays and inappropriate or premature discharge. Methods Clinical governance, in partnership with clinical and public health services, established a multidisciplinary Meningococcal Reference Group (MRG) to routinely review management of all IMD cases. The MRG comprised representatives from primary care, acute care, public health, laboratory medicine and clinical governance. Baseline data were compared with two subsequent evaluation points (2011–2012 and 2013–2015). Interventions Phase I involved multidisciplinary process mapping and development of a standardised audit tool from national IMD management guidelines. Phase II involved formalisation of group processes and advocacy for operational change. Phase III focused on dissemination of findings to clinicians and managers. Results Greatest care improvements were observed in the final evaluation. Median antibiotic delay decreased from 72 to 42 min and proportion of cases triaged appropriately improved from 38% to 75% between 2013 and 2015. Increasing fatal outcomes were attributed to the emergence of more virulent meningococcal serotypes. Conclusions The MRG was a key mechanism for identifying system gaps, advocating for change and enhancing communication and coordination across services. Employing IMD case review as a focus for district-level process reflection presents an innovative patient safety approach, combining the strengths of prospective hazard analysis with more traditional RCA methodologies. PMID:29527576

  10. Psychological management for head and neck cancer patients: United Kingdom National Multidisciplinary Guidelines.

    PubMed

    Humphris, G

    2016-05-01

    This is the official guideline endorsed by the specialty associations involved in the care of head and neck cancer patients in the UK. It provides recommendations on the assessment and interventions for the psychological management in this patient group. Recommendations • Audit of information supplied to patients and carers should be conducted on an annual basis to update and review content and media presentation. (G) • Patients and carers should be invited to discuss treatment options and relate possible outcomes to functional retention or loss to provide a patient-centred approach. (G) • Clinical staff should inspect their systems of assessment to make them sensitive enough to identify patients with psychological difficulties. (G) • Flexibility, rather than rigid formulation is required to assess patients frequently, and to allow for change in circumstances to be noted. (G) • Multidisciplinary teams should determine the supportive care services available and commission extra assistance to provide patients and carers with timely information, education or brief supportive advice. (G) • Multidisciplinary teams need to inspect specialist services for mental health interventions at structured and complex levels for the small proportion of patients with more serious, but rarer, psychological difficulties. (G) • Clinical staff at all levels should receive communication skills training to raise and maintain consultation expertise with difficult patient and/or carer interactions. (G).

  11. [Multidisciplinary development of robotic surgery in a University Tertiary Hospital: Organization and outcomes].

    PubMed

    Ortiz Oshiro, Elena; Ramos Carrasco, Angel; Moreno Sierra, Jesús; Pardo Martínez, Cristina; Galante Romo, Isabel; Bullón Sopelana, Fernando; Coronado Martín, Pluvio; Mansilla García, Iván; Escudero Mate, María; Vidart Aragón, José A; Silmi Moyano, Angel; Alvarez Fernández-Represa, Jesús

    2010-02-01

    Da Vinci system (Intuitive Surgical) is a surgical telemanipulator providing many technical advantages over conventional laparoscopic approach (3-D vision, ergonomics, highly precise movements, endowrist instrumentation...) and it is currently applied to several specialties throughout the world since 2000. The first Spanish public hospital incorporating this robotic technology was Hospital Clinico San Carlos (HCSC) in Madrid, in July 2006. We present the multidisciplinary organization and clinical, research and training outcomes of the Robotic Surgery Plan developed in the HCSC. Starting from joint management and joint scrub nurses team, General and Digestive Surgery, Urology and Gynaecology Departments were progressively incorporated into the Robotic Surgery Plan, with several procedures increasing in complexity. A number of intra and extra-hospital teaching and information activities were planned to report on the Robotic Surgery Plan. Between July 2006 and July 2008, 306 patients were operated on: 169 by General Surgery, 107 by Urology and 30 by Gynaecology teams. The outcomes showed feasibility and a short learning curve. The educational plan included residents and staff interested in robotic technology application. The structured and gradual incorporation of robotic surgery throughout the PCR-HCSC has made it easier to learn, to share designed infrastructure, to coordinate information activities and multidisciplinary collaboration. This preliminary experience has shown the efficiency of an adequate organization and motivated team. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  12. The Aged Residential Care Healthcare Utilization Study (ARCHUS): a multidisciplinary, cluster randomized controlled trial designed to reduce acute avoidable hospitalizations from long-term care facilities.

    PubMed

    Connolly, Martin J; Boyd, Michal; Broad, Joanna B; Kerse, Ngaire; Lumley, Thomas; Whitehead, Noeline; Foster, Susan

    2015-01-01

    To assess effect of a complex, multidisciplinary intervention aimed at reducing avoidable acute hospitalization of residents of residential aged care (RAC) facilities. Cluster randomized controlled trial. RAC facilities with higher than expected hospitalizations in Auckland, New Zealand, were recruited and randomized to intervention or control. A total of 1998 residents of 18 intervention facilities and 18 control facilities. A facility-based complex intervention of 9 months' duration. The intervention comprised gerontology nurse specialist (GNS)-led staff education, facility bench-marking, GNS resident review, and multidisciplinary (geriatrician, primary-care physician, pharmacist, GNS, and facility nurse) discussion of residents selected using standard criteria. Primary end point was avoidable hospitalizations. Secondary end points were all acute admissions, mortality, and acute bed-days. Follow-up was for a total of 14 months. The intervention did not affect main study end points: number of acute avoidable hospital admissions (RR 1.07; 95% CI 0.85-1.36; P = .59) or mortality (RR 1.11; 95% CI 0.76-1.61; P = .62). This multidisciplinary intervention, packaging selected case review, and staff education had no overall impact on acute hospital admissions or mortality. This may have considerable implications for resourcing in the acute and RAC sectors in the face of population aging. Australian and New Zealand Clinical Trials Registry (ACTRN12611000187943). Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  13. Seasonal forecasting and health impact models: challenges and opportunities.

    PubMed

    Ballester, Joan; Lowe, Rachel; Diggle, Peter J; Rodó, Xavier

    2016-10-01

    After several decades of intensive research, steady improvements in understanding and modeling the climate system have led to the development of the first generation of operational health early warning systems in the era of climate services. These schemes are based on collaborations across scientific disciplines, bringing together real-time climate and health data collection, state-of-the-art seasonal climate predictions, epidemiological impact models based on historical data, and an understanding of end user and stakeholder needs. In this review, we discuss the challenges and opportunities of this complex, multidisciplinary collaboration, with a focus on the factors limiting seasonal forecasting as a source of predictability for climate impact models. © 2016 New York Academy of Sciences.

  14. Multidisciplinary teams of case managers in the implementation of an innovative integrated services delivery for the elderly in France.

    PubMed

    de Stampa, Matthieu; Vedel, Isabelle; Trouvé, Hélène; Ankri, Joël; Saint Jean, Olivier; Somme, Dominique

    2014-04-07

    The case management process is now well defined, and teams of case managers have been implemented in integrated services delivery. However, little is known about the role played by the team of case managers and the value in having multidisciplinary case management teams. The objectives were to develop a fuller understanding of the role played by the case manager team and identify the value of inter-professional collaboration in multidisciplinary teams during the implementation of an innovative integrated service in France. We conducted a qualitative study with focus groups comprising 14 multidisciplinary teams for a total of 59 case managers, six months after their recruitment to the MAIA program (Maison Autonomie Integration Alzheimer). Most of the case managers saw themselves as being part of a team of case managers (91.5%). Case management teams help case managers develop a comprehensive understanding of the integration concept, meet the complex needs of elderly people and change their professional practices. Multidisciplinary case management teams add value by helping case managers move from theory to practice, by encouraging them develop a comprehensive clinical vision, and by initiating the interdisciplinary approach. The multidisciplinary team of case managers is central to the implementation of case management and helps case managers develop their new role and a core inter-professional competency.

  15. Efficient GIS-based model-driven method for flood risk management and its application in central China

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhou, J.; Song, L.; Zou, Q.; Guo, J.; Wang, Y.

    2014-02-01

    In recent years, an important development in flood management has been the focal shift from flood protection towards flood risk management. This change greatly promoted the progress of flood control research in a multidisciplinary way. Moreover, given the growing complexity and uncertainty in many decision situations of flood risk management, traditional methods, e.g., tight-coupling integration of one or more quantitative models, are not enough to provide decision support for managers. Within this context, this paper presents a beneficial methodological framework to enhance the effectiveness of decision support systems, through the dynamic adaptation of support regarding the needs of the decision-maker. In addition, we illustrate a loose-coupling technical prototype for integrating heterogeneous elements, such as multi-source data, multidisciplinary models, GIS tools and existing systems. The main innovation is the application of model-driven concepts, which put the system in a state of continuous iterative optimization. We define the new system as a model-driven decision support system (MDSS ). Two characteristics that differentiate the MDSS are as follows: (1) it is made accessible to non-technical specialists; and (2) it has a higher level of adaptability and compatibility. Furthermore, the MDSS was employed to manage the flood risk in the Jingjiang flood diversion area, located in central China near the Yangtze River. Compared with traditional solutions, we believe that this model-driven method is efficient, adaptable and flexible, and thus has bright prospects of application for comprehensive flood risk management.

  16. Growth and Development of Three-Dimensional Plant Form.

    PubMed

    Whitewoods, Christopher D; Coen, Enrico

    2017-09-11

    Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Complex regional pain syndrome (CRPS) : An update].

    PubMed

    Dimova, V; Birklein, F

    2018-04-17

    The acute phase of complex regional pain syndrome (CRPS) is pathophysiologically characterized by an activation of the immune system and its associated inflammatory response. During the course of CRPS, central nervous symptoms like mechanical hyperalgesia, loss of sensation, and body perception disorders develop. Psychological factors such as pain-related anxiety and traumatic events might have a negative effect on the treatment outcome. While the visible inflammatory symptoms improve, the pain often persists. A stage adapted, targeted treatment could improve the prognosis. Effective multidisciplinary treatment includes the following: pharmacotherapy with steroids, bisphosphonates, or dimethylsulfoxide cream (acute phase), and antineuropathic analgesics (all phases); physiotherapy and behavioral therapy for pain-related anxiety and avoidance of movement; and interventional treatment like spinal cord or dorsal root ganglion stimulation if noninvasive options failed.

  18. The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites.

  19. Calculation of Sensitivity Derivatives in an MDAO Framework

    NASA Technical Reports Server (NTRS)

    Moore, Kenneth T.

    2012-01-01

    During gradient-based optimization of a system, it is necessary to generate the derivatives of each objective and constraint with respect to each design parameter. If the system is multidisciplinary, it may consist of a set of smaller "components" with some arbitrary data interconnection and process work ow. Analytical derivatives in these components can be used to improve the speed and accuracy of the derivative calculation over a purely numerical calculation; however, a multidisciplinary system may include both components for which derivatives are available and components for which they are not. Three methods to calculate the sensitivity of a mixed multidisciplinary system are presented: the finite difference method, where the derivatives are calculated numerically; the chain rule method, where the derivatives are successively cascaded along the system's network graph; and the analytic method, where the derivatives come from the solution of a linear system of equations. Some improvements to these methods, to accommodate mixed multidisciplinary systems, are also presented; in particular, a new method is introduced to allow existing derivatives to be used inside of finite difference. All three methods are implemented and demonstrated in the open-source MDAO framework OpenMDAO. It was found that there are advantages to each of them depending on the system being solved.

  20. Multidisciplinary perspectives on banana (Musa spp.) domestication

    PubMed Central

    Perrier, Xavier; De Langhe, Edmond; Donohue, Mark; Lentfer, Carol; Vrydaghs, Luc; Bakry, Frédéric; Carreel, Françoise; Hippolyte, Isabelle; Horry, Jean-Pierre; Jenny, Christophe; Lebot, Vincent; Risterucci, Ange-Marie; Tomekpe, Kodjo; Doutrelepont, Hugues; Ball, Terry; Manwaring, Jason; de Maret, Pierre; Denham, Tim

    2011-01-01

    Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future. PMID:21730145

  1. Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.

    PubMed

    Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen

    2016-05-01

    Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.

  2. An Algorithm for Integrated Subsystem Embodiment and System Synthesis

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper

    1997-01-01

    Consider the statement,'A system has two coupled subsystems, one of which dominates the design process. Each subsystem consists of discrete and continuous variables, and is solved using sequential analysis and solution.' To address this type of statement in the design of complex systems, three steps are required, namely, the embodiment of the statement in terms of entities on a computer, the mathematical formulation of subsystem models, and the resulting solution and system synthesis. In complex system decomposition, the subsystems are not isolated, self-supporting entities. Information such as constraints, goals, and design variables may be shared between entities. But many times in engineering problems, full communication and cooperation does not exist, information is incomplete, or one subsystem may dominate the design. Additionally, these engineering problems give rise to mathematical models involving nonlinear functions of both discrete and continuous design variables. In this dissertation an algorithm is developed to handle these types of scenarios for the domain-independent integration of subsystem embodiment, coordination, and system synthesis using constructs from Decision-Based Design, Game Theory, and Multidisciplinary Design Optimization. Implementation of the concept in this dissertation involves testing of the hypotheses using example problems and a motivating case study involving the design of a subsonic passenger aircraft.

  3. Podiatry evaluation of a chitosan gelling fibre dressing in diabetic foot ulceration.

    PubMed

    Walker, Angela

    2016-06-23

    The purpose of this small evaluation on five patients presenting to community podiatry services in Birmingham with foot ulceration was to explore common problems associated with diabetes and other high-risk conditions and illustrate the clinical effectiveness and experience of using a chitosan absorbent gelling fibre dressing (KytoCel®, Aspen Medical). Each of these case studies bought their individual complex issues and complications that affected the healing process. General wound care involved debridement, if required, dressings, pressure redistribution addressing footwear needs, systemic antibiotics where required, and shared care with the multidisciplinary team (MDT) in secondary care where appropriate.

  4. From, by, and for the OSSD: Software Engineering Education Using an Open Source Software Approach

    ERIC Educational Resources Information Center

    Huang, Kun; Dong, Yifei; Ge, Xun

    2006-01-01

    Computing is a complex, multidisciplinary field that requires a range of professional proficiencies. Computing students are expected to develop in-depth knowledge and skills, integrate and apply their knowledge flexibly to solve complex problems, and work successfully in teams. However, many students who graduate with degrees in computing fail to…

  5. Scripting for Construction of a Transactive Memory System in Multidisciplinary CSCL Environments

    ERIC Educational Resources Information Center

    Noroozi, Omid; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin; Chizari, Mohammad

    2013-01-01

    Establishing a Transactive Memory System (TMS) is essential for groups of learners, when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) could be designed to facilitate the TMS. This study investigates how various aspects of a TMS (i.e., specialization, coordination, and trust)…

  6. Dance between biology, mechanics, and structure: A systems-based approach to developing osteoarthritis prevention strategies.

    PubMed

    Chu, Constance R; Andriacchi, Thomas P

    2015-07-01

    Osteoarthritis (OA) is a leading cause of human suffering and disability for which disease-modifying treatments are lacking. OA occurs through complex and dynamic interplays between diverse factors over long periods of time. The traditional research and clinical focus on OA, the end stage disease, obscured understanding pathogenesis prior to reaching a common pathway defined by pain and functional deficits, joint deformity, and radiographic changes. To emphasize disease modification and prevention, we describe a multi-disciplinary systems-based approach encompassing biology, mechanics, and structure to define pre-osteoarthritic disease processes. Central to application of this model is the concept of "pre-osteoarthritis," conditions where clinical OA has not yet developed. Rather, joint homeostasis has been compromised and there are potentially reversible markers for heightened OA risk. Key messages from this perspective are (i) to focus research onto defining pre-OA through identifying and validating biological, mechanical, and imaging markers of OA risk, (ii) to emphasize multi-disciplinary approaches, and (iii) to propose that developing personalized interventions to address reversible markers of OA risk in healthy joints may be the key to prevention. Ultimately, a systems-based analysis of OA pathogenesis shows potential to transform clinical practice by facilitating development and testing of new strategies to prevent or delay the onset of osteoarthritis. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Development of Response Surface Models for Rapid Analysis & Multidisciplinary Optimization of Launch Vehicle Design Concepts

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1999-01-01

    Multdisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO. An alternative has been to utilize response surface methodology (RSM) to obtain polynomial models that approximate the functional relationships between performance characteristics and design variables. These approximation models, called response surface models, are then used to integrate the disciplines using mathematical programming methods for efficient system level design analysis, MDO and fast sensitivity simulations. A second-order response surface model of the form given has been commonly used in RSM since in many cases it can provide an adequate approximation especially if the region of interest is sufficiently limited.

  8. National guidelines for evaluating pain-Patients' legal right to prioritised health care at multidisciplinary pain clinics in Norway implemented 2009.

    PubMed

    Hara, Karen Walseth; Borchgrevink, Petter

    2017-12-29

    Background All nations are posed with the challenge of deciding how to allocate limited health care resources. A Patients' Rights Law from 1999 gives patients in Norway with a serious health condition, for which there is efficacious and cost-effective treatment, a legal right to receive health care from the National Health Care system. Methods Recently national guidelines have been produced for implementing these legal rights within 32 fields of specialist health care. One of these fields deals with serious chronic pain conditions. A task force established by the Directorate of Health, comprising pain specialists, primary care and patient representatives, have produced guidelines for pain conditions. The newly published guidelines seek to answer the difficult questions of which patients should be prioritised at pain clinics and what is a medically acceptable waiting time. Results The guidelines deal with non-acute pain conditions that are too complex for primary care and organ- or disease-specific fields of specialist care. The guidelines state that if health-related quality of life is severely affected by the pain condition and efficacious and cost-effective treatment is available, then patients have a legal right to receive prioritised specialist health care in multidisciplinary pain clinics. The guidelines describe 5 categories of complex pain disorders that as a main rule should be given the right to prioritised health care in pain clinics. The 5 categories are Category 1 Sub-acute (≤6 months) pain conditions with reason to fear chronification. Maximum waiting time 2 weeks, e.g., progressing complex regional pain syndrome (CRPS) 5 months after an ankle-fracture. Category 2 Chronic complex pain condition, with or without known initiating cause, combined with substance abuse and/or psychiatric illness. These patients need concomitant follow-up by psychiatric and/or addiction medicine department(s) and a multidisciplinary pain clinic approach. Maximum waiting time 16 weeks, e.g., CRPS of an arm combined with depression and addiction to heroin. Category 3 Chronic complex pain condition WITH known initiating cause (that can no longer be treated with a curative approach). Maximum waiting time 16 weeks, e.g., Post-herpetic neuralgia. Category 4 Chronic complex pain condition WITHOUT known initiating cause. Maximum waiting time 16 weeks, e.g., chronic muscle pain syndrome. Category 5 Severe and difficult to treat pain condition in patients suffering from a known serious and advanced illness. Maximum waiting time 2 weeks, e.g., advanced cancer, COLD, heart failure, end stage multiple sclerosis. The maximum medically accepted waiting time is set at either 2 or 16 weeks depending on the condition. The full version of the guidelines describes pain categories in detail and gives information on cases that do not qualify to be prioritised for care in a pain clinic. Conclusions Norwegian national guidelines for prioritising among pain conditions are in the process of being implemented. Epidemiologic data and expert opinion suggest that in order to meet the chronic pain patient's legal claim to prioritised specialist health care, the national health care system in Norway will have to establish new pain clinics and increase capacity at existing pain clinics.

  9. AMMO-Prot: amine system project 3D-model finder.

    PubMed

    Navas-Delgado, Ismael; Montañez, Raúl; Pino-Angeles, Almudena; Moya-García, Aurelio A; Urdiales, José Luis; Sánchez-Jiménez, Francisca; Aldana-Montes, José F

    2008-04-25

    Amines are biogenic amino acid derivatives, which play pleiotropic and very important yet complex roles in animal physiology. For many other relevant biomolecules, biochemical and molecular data are being accumulated, which need to be integrated in order to be effective in the advance of biological knowledge in the field. For this purpose, a multidisciplinary group has started an ontology-based system named the Amine System Project (ASP) for which amine-related information is the validation bench. In this paper, we describe the Ontology-Based Mediator developed in the Amine System Project (http://asp.uma.es) using the infrastructure of Semantic Directories, and how this system has been used to solve a case related to amine metabolism-related protein structures. This infrastructure is used to publish and manage not only ontologies and their relationships, but also metadata relating to the resources committed with the ontologies. The system developed is available at http://asp.uma.es/WebMediator.

  10. Integrated multidisciplinary analysis tool IMAT users' guide

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system developed at Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite controls systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  11. Optimization in the systems engineering process

    NASA Technical Reports Server (NTRS)

    Lemmerman, Loren A.

    1993-01-01

    The essential elements of the design process consist of the mission definition phase that provides the system requirements, the conceptual design, the preliminary design and finally the detailed design. Mission definition is performed largely by operations analysts in conjunction with the customer. The result of their study is handed off to the systems engineers for documentation as the systems requirements. The document that provides these requirements is the basis for the further design work of the design engineers at the Lockheed-Georgia Company. The design phase actually begins with conceptual design, which is generally conducted by a small group of engineers using multidisciplinary design programs. Because of the complexity of the design problem, the analyses are relatively simple and generally dependent on parametric analyses of the configuration. The result of this phase is a baseline configuration from which preliminary design may be initiated.

  12. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  13. A Matrix-Free Algorithm for Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Lambe, Andrew Borean

    Multidisciplinary design optimization (MDO) is an approach to engineering design that exploits the coupling between components or knowledge disciplines in a complex system to improve the final product. In aircraft design, MDO methods can be used to simultaneously design the outer shape of the aircraft and the internal structure, taking into account the complex interaction between the aerodynamic forces and the structural flexibility. Efficient strategies are needed to solve such design optimization problems and guarantee convergence to an optimal design. This work begins with a comprehensive review of MDO problem formulations and solution algorithms. First, a fundamental MDO problem formulation is defined from which other formulations may be obtained through simple transformations. Using these fundamental problem formulations, decomposition methods from the literature are reviewed and classified. All MDO methods are presented in a unified mathematical notation to facilitate greater understanding. In addition, a novel set of diagrams, called extended design structure matrices, are used to simultaneously visualize both data communication and process flow between the many software components of each method. For aerostructural design optimization, modern decomposition-based MDO methods cannot efficiently handle the tight coupling between the aerodynamic and structural states. This fact motivates the exploration of methods that can reduce the computational cost. A particular structure in the direct and adjoint methods for gradient computation. motivates the idea of a matrix-free optimization method. A simple matrix-free optimizer is developed based on the augmented Lagrangian algorithm. This new matrix-free optimizer is tested on two structural optimization problems and one aerostructural optimization problem. The results indicate that the matrix-free optimizer is able to efficiently solve structural and multidisciplinary design problems with thousands of variables and constraints. On the aerostructural test problem formulated with thousands of constraints, the matrix-free optimizer is estimated to reduce the total computational time by up to 90% compared to conventional optimizers.

  14. Physician-Pharmacist collaboration in a pay for performance healthcare environment.

    PubMed

    Farley, T M; Izakovic, M

    2015-01-01

    Healthcare is becoming more complex and costly in both European (Slovak) and American models. Healthcare in the United States (U.S.) is undergoing a particularly dramatic change. Physician and hospital reimbursement are becoming less procedure focused and increasingly outcome focused. Efforts at Mercy Hospital have shown promise in terms of collaborative team based care improving performance on glucose control outcome metrics, linked to reimbursement. Our performance on the Centers for Medicare and Medicaid Services (CMS) post-operative glucose control metric for cardiac surgery patients increased from a 63.6% pass rate to a 95.1% pass rate after implementing interventions involving physician-pharmacist team based care.Having a multidisciplinary team that is able to adapt quickly to changing expectations in the healthcare environment has aided our institution. As healthcare becomes increasingly saturated with technology, data and quality metrics, collaborative efforts resulting in increased quality and physician efficiency are desirable. Multidisciplinary collaboration (including physician-pharmacist collaboration) appears to be a viable route to improved performance in an outcome based healthcare system (Fig. 2, Ref. 12).

  15. XML-based scripting of multimodality image presentations in multidisciplinary clinical conferences

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Allada, Vivekanand; Dahlbom, Magdalena; Marcus, Phillip; Fine, Ian; Lapstra, Lorelle

    2002-05-01

    We developed a multi-modality image presentation software for display and analysis of images and related data from different imaging modalities. The software is part of a cardiac image review and presentation platform that supports integration of digital images and data from digital and analog media such as videotapes, analog x-ray films and 35 mm cine films. The software supports standard DICOM image files as well as AVI and PDF data formats. The system is integrated in a digital conferencing room that includes projections of digital and analog sources, remote videoconferencing capabilities, and an electronic whiteboard. The goal of this pilot project is to: 1) develop a new paradigm for image and data management for presentation in a clinically meaningful sequence adapted to case-specific scenarios, 2) design and implement a multi-modality review and conferencing workstation using component technology and customizable 'plug-in' architecture to support complex review and diagnostic tasks applicable to all cardiac imaging modalities and 3) develop an XML-based scripting model of image and data presentation for clinical review and decision making during routine clinical tasks and multidisciplinary clinical conferences.

  16. Configuration Management of an Optimization Application in a Research Environment

    NASA Technical Reports Server (NTRS)

    Townsend, James C.; Salas, Andrea O.; Schuler, M. Patricia

    1999-01-01

    Multidisciplinary design optimization (MDO) research aims to increase interdisciplinary communication and reduce design cycle time by combining system analyses (simulations) with design space search and decision making. The High Performance Computing and Communication Program's current High Speed Civil Transport application, HSCT4.0, at NASA Langley Research Center involves a highly complex analysis process with high-fidelity analyses that are more realistic than previous efforts at the Center. The multidisciplinary processes have been integrated to form a distributed application by using the Java language and Common Object Request Broker Architecture (CORBA) software techniques. HSCT4.0 is a research project in which both the application problem and the implementation strategy have evolved as the MDO and integration issues became better understood. Whereas earlier versions of the application and integrated system were developed with a simple, manual software configuration management (SCM) process, it was evident that this larger project required a more formal SCM procedure. This report briefly describes the HSCT4.0 analysis and its CORBA implementation and then discusses some SCM concepts and their application to this project. In anticipation that SCM will prove beneficial for other large research projects, the report concludes with some lessons learned in overcoming SCM implementation problems for HSCT4.0.

  17. Support for global science: Remote sensing's challenge

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Star, J. L.

    1986-01-01

    Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.

  18. Bridging Gaps in Multidisciplinary Head and Neck Cancer Care: Nursing Coordination and Case Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiederholt, Peggy A.; Connor, Nadine P.; Hartig, Gregory K.

    Patients with advanced head and neck cancer face not only a life-threatening malignancy, but also a remarkably complex treatment regimen that can affect their cosmetic appearance and ability to speak, breathe, and swallow. These patients benefit from the coordinated interaction of a multidisciplinary team of specialists and a comprehensive plan of care to address their physical and psychosocial concerns, manage treatment-related toxicities, and prevent or limit long-term morbidities affecting health-related quality of life. Although little has been published on patient-provider communication with a multidisciplinary team, evidence has suggested that gaps often occur in communication between patients and providers, as wellmore » as between specialists. These communication gaps can hinder the multidisciplinary group from working toward common patient-centered goals in a coordinated 'interdisciplinary' manner. We discuss the role of a head-and-neck oncology nurse coordinator at a single institution in bridging gaps across the continuum of care, promoting an interdisciplinary team approach, and enhancing the overall quality of patient-centered head-and-neck cancer care.« less

  19. Development of a model to guide decision making in amyotrophic lateral sclerosis multidisciplinary care.

    PubMed

    Hogden, Anne; Greenfield, David; Nugus, Peter; Kiernan, Matthew C

    2015-10-01

    Patients with amyotrophic lateral sclerosis (ALS) face numerous decisions for symptom management and quality of life. Models of decision making in chronic disease and cancer care are insufficient for the complex and changing needs of patients with ALS . The aim was to examine the question: how can decision making that is both effective and patient-centred be enacted in ALS multidisciplinary care? Fifty-four respondents (32 health professionals, 14 patients and eight carers) from two specialized ALS multidisciplinary clinics participated in semi-structured interviews. Interviews were transcribed, coded and analysed thematically. Comparison of stakeholder perspectives revealed six key themes of ALS decision making. These were the decision-making process; patient-centred focus; timing and planning; information sources; engagement with specialized ALS services; and access to non-specialized services. A model, embedded in the specialized ALS multidisciplinary clinic, was derived to guide patient decision making. The model is cyclic, with four stages: 'Participant Engagement'; 'Option Information'; 'Option Deliberation'; and 'Decision Implementation'. Effective and patient-centred decision making is enhanced by the structure of the specialized ALS clinic, which promotes patients' symptom management and quality of life goals. However, patient and carer engagement in ALS decision making is tested by the dynamic nature of ALS, and patient and family distress. Our model optimizes patient-centred decision making, by incorporating patients' cyclic decision-making patterns and facilitating carer inclusion in decision processes. The model captures the complexities of patient-centred decision making in ALS. The framework can assist patients and carers, health professionals, researchers and policymakers in this challenging disease environment. © 2013 John Wiley & Sons Ltd.

  20. Brokerage services for Earth Science data: the EuroGEOSS legacy (Invited)

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Craglia, M.; Pearlman, J.

    2013-12-01

    Global sustainability research requires an integrated multidisciplinary effort underpinned by a collaborative environment discovering and accessing heterogeneous data across disciplines. Traditionally, interoperability has been achieved by implementing federation of systems. The federating approach entails the adoption of a set of common technologies and standards. This presentation argues that for complex (and uncontrolled) environments (such as global, multidisciplinary, and voluntary-based infrastructures) federated solutions must be completed and enhanced by a brokering approach -making available a set of brokerage services. In fact, brokerage services allows a cyber-infrastructure to lower entry barriers (for both data producers and users) and to better address the different domain specificities. The brokering interoperability approach was successfully experimented by the EuroGEOSS project, funded by the European Commission in the FP7 framework (see http://www.eurogeoss.eu). The EuroGEOSS Brokering framework provided the EuroGEOSS Capacity with multidisciplinary interoperability functionalities. This platform was developed applying several of the principles/requirements that characterize the System of Systems (SoS) approach and the Internet of Services (IoS) philosophy. The framework consists of three main brokers (middleware components implementing intermediation and harmonization services): a basic Discovery Broker, an advanced Semantic Discovery Broker, and an Access Broker. They are empowered by a suite of tools developed by the ESSI-lab of the CNR-IIA, called: GI-cat, GI-sem, and GI-axe. The EuroGEOSS brokering framework was considered and successfully adopted by cross-disciplinary initiatives (notably GEOSS: Global Earth Observation System of Systems). The brokerage services have been advanced and extended; the new brokering framework is called GEO DAB (Discovery and Access Broker). New brokerage services have been developed in the framework of other European Commission funded projects (e.g. GeoViQua). More recently, the NSF EarthCube initiative decided to fund a project dealing with brokerage services. In the framework of the GEO AIP-6 (Architecture Implementation Pilot -phase 6), the presented brokerage platform has been used by the Water Working Group to carry out improved data access for parameterization and model development.

  1. Comparing and contrasting 'innovation platforms' with other forms of professional networks for strengthening primary healthcare systems for Indigenous Australians.

    PubMed

    Bailie, Jodie; Cunningham, Frances Clare; Bainbridge, Roxanne Gwendalyn; Passey, Megan E; Laycock, Alison Frances; Bailie, Ross Stewart; Larkins, Sarah L; Brands, Jenny S M; Ramanathan, Shanthi; Abimbola, Seye; Peiris, David

    2018-01-01

    Efforts to strengthen health systems require the engagement of diverse, multidisciplinary stakeholder networks. Networks provide a forum for experimentation and knowledge creation, information exchange and the spread of good ideas and practice. They might be useful in addressing complex issues or 'wicked' problems, the solutions to which go beyond the control and scope of any one agency. Innovation platforms are proposed as a novel type of network because of their diverse stakeholder composition and focus on problem solving within complex systems. Thus, they have potential applicability to health systems strengthening initiatives, even though they have been predominantly applied in the international agricultural development sector. In this paper, we compare and contrast the concept of innovation platforms with other types of networks that can be used in efforts to strengthen primary healthcare systems, such as communities of practice, practice-based research networks and quality improvement collaboratives. We reflect on our ongoing research programme that applies innovation platform concepts to drive large-scale quality improvement in primary healthcare for Aboriginal and Torres Strait Islander Australians and outline our plans for evaluation. Lessons from our experience will find resonance with others working on similar initiatives in global health.

  2. A Therapeutic Confrontation Approach to Treating Patients with Factitious Illness

    ERIC Educational Resources Information Center

    Wedel, Kenneth R.

    1971-01-01

    Patients suffering from factitious illness present complex problems for themselves and hospital personnel. This article describes a multidisciplinary intervention through confrontation approach that has proved to be successful with such patients. (Author)

  3. TU-CD-303-04: Radiation-Induced Long Distance Tumor Cell Migration Into and Out of the Radiation Field and Its Clinical Implication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, E.

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation alsomore » initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of these advances in cancer biology research will give medical physicists a new perspective in daily clinical physics practice and in future radiation therapy technological development. Furthermore, academic medical physics should continue to be an integral part of the multidisciplinary cancer research community, harnessing our newly acquired understanding of radiation effects, and developing novel cost-effective treatment strategies to better combat cancer. Learning Objectives: Understand that localized radiation can lead to non-localized secondary effects such as radiation-induced immune response, bystander effect, and abscopal effect. Understand that the non-localized radiation effects may be harnessed to improve cancer treatment. Learn examples of physics participation in multidisciplinary research to advance cancer biology. Recognize the challenges and possibilities of physics applications in cancer research. Chang: NIH 5RC2CA148487-02 and 1U54CA151652-01 Graves: IDEA award (19IB-0106) from the California Breast Cancer Research Program (CBCRP), and by NIH P01 CA67166.« less

  4. Magnetic storms and solar flares: can be analysed within similar mathematical framework with other extreme events?

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Potirakis, Stelios M.; Papadimitriou, Constantinos; Zitis, Pavlos I.; Eftaxias, Konstantinos

    2015-04-01

    The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up to different extreme events, in order to support the suggestion that a dynamical analogy characterizes the generation of a single magnetic storm, solar flare, earthquake (in terms of pre-seismic electromagnetic signals) , epileptic seizure, and economic crisis. The analysis reveals that all the above mentioned different extreme events can be analyzed within similar mathematical framework. More precisely, we show that the populations of magnitudes of fluctuations included in all the above mentioned pulse-like-type time series follow the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar nonextensive q-parameter values. Moreover, based on a multidisciplinary statistical analysis we show that the extreme events are characterized by crucial common symptoms, namely: (i) high organization, high compressibility, low complexity, high information content; (ii) strong persistency; and (iii) existence of clear preferred direction of emerged activities. These symptoms clearly discriminate the appearance of the extreme events under study from the corresponding background noise.

  5. An Educational Program of Mechatronics for Multidisciplinary Knowledge Acquisition

    NASA Astrophysics Data System (ADS)

    Watanuki, Keiichi; Kojima, Kazuyuki

    Recently, as the technologies surrounding mechanical engineering have improved remarkably, the expectations for students who graduate from departments of mechanical engineering have increased. For example, in order to develop a mechatronics system, a student needs to integrate a wide variety of technologies, such as mechanical engineering, electrical and electronics engineering, and information technology. Therefore, from the perspective of educators, the current education system, which stresses expertizing each technology, should be replaced by an education system that stresses integrating multidisciplinary knowledge. In this paper, a trial education program for students of the department of mechanical engineering in our university, in which students are required to integrate multidisciplinary knowledge in order to develop a biologically-based robot, is described. Finally, the efficacy of the program is analyzed.

  6. NASA multidisciplinary research grant

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Research is discussed in the multidisciplinary areas of space and planetary science; materials and radiation; systems, instrumentation, and structures; and technology and man. Highlights are identified as an alpha-recoil track method of archeological dating; infrared astronomical telescope; reaction rates data, semiconductor radiation detectors, and analysis of time-dependent systems; Gunn effect devices for microwave generation and detection, mode-locked lasers, and radiation theory; and the application of a satellite communication system to educational development. Detectors to be flown on Apollo 16 to measure heavy particle flux in the solar wind and to be part of the HEAO-A experiment on extremely heavy nuclei in cosmic rays were developed. The impact of the multidisciplinary research on university activities is described, and individual departmental reports are included.

  7. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  8. A bioinformatics roadmap for the human vaccines project.

    PubMed

    Scheuermann, Richard H; Sinkovits, Robert S; Schenkelberg, Theodore; Koff, Wayne C

    2017-06-01

    Biomedical research has become a data intensive science in which high throughput experimentation is producing comprehensive data about biological systems at an ever-increasing pace. The Human Vaccines Project is a new public-private partnership, with the goal of accelerating development of improved vaccines and immunotherapies for global infectious diseases and cancers by decoding the human immune system. To achieve its mission, the Project is developing a Bioinformatics Hub as an open-source, multidisciplinary effort with the overarching goal of providing an enabling infrastructure to support the data processing, analysis and knowledge extraction procedures required to translate high throughput, high complexity human immunology research data into biomedical knowledge, to determine the core principles driving specific and durable protective immune responses.

  9. Virtual reality in surgical skills training.

    PubMed

    Palter, Vanessa N; Grantcharov, Teodor P

    2010-06-01

    With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.

  10. The Genome-based Knowledge Management in Cycles model: a complex adaptive systems framework for implementation of genomic applications.

    PubMed

    Arar, Nedal; Knight, Sara J; Modell, Stephen M; Issa, Amalia M

    2011-03-01

    The main mission of the Genomic Applications in Practice and Prevention Network™ is to advance collaborative efforts involving partners from across the public health sector to realize the promise of genomics in healthcare and disease prevention. We introduce a new framework that supports the Genomic Applications in Practice and Prevention Network mission and leverages the characteristics of the complex adaptive systems approach. We call this framework the Genome-based Knowledge Management in Cycles model (G-KNOMIC). G-KNOMIC proposes that the collaborative work of multidisciplinary teams utilizing genome-based applications will enhance translating evidence-based genomic findings by creating ongoing knowledge management cycles. Each cycle consists of knowledge synthesis, knowledge evaluation, knowledge implementation and knowledge utilization. Our framework acknowledges that all the elements in the knowledge translation process are interconnected and continuously changing. It also recognizes the importance of feedback loops, and the ability of teams to self-organize within a dynamic system. We demonstrate how this framework can be used to improve the adoption of genomic technologies into practice using two case studies of genomic uptake.

  11. Scan to Bim for 3d Reconstruction of the Papal Basilica of Saint Francis in Assisi in Italy

    NASA Astrophysics Data System (ADS)

    Angelini, M. G.; Baiocchi, V.; Costantino, D.; Garzia, F.

    2017-05-01

    The historical building heritage, present in the most of Italian cities centres, is, as part of the construction sector, a working potential, but unfortunately it requires planning of more complex and problematic interventions. However, policies to support on the existing interventions, together with a growing sensitivity for the recovery of assets, determine the need to implement specific studies and to analyse the specific problems of each site. The purpose of this paper is to illustrate the methodology and the results obtained from integrated laser scanning activity in order to have precious architectural information useful not only from the cultural heritage point of view but also to construct more operative and powerful tools, such as BIM (Building Information Modelling) aimed to the management of this cultural heritage. The Papal Basilica and the Sacred Convent of Saint Francis in Assisi in Italy are, in fact, characterized by unique and complex peculiarities, which require a detailed knowledge of the sites themselves to ensure visitor's security and safety. For such a project, we have to take in account all the people and personnel normally present in the site, visitors with disabilities and finally the needs for cultural heritage preservation and protection. This aim can be reached using integrated systems and new technologies, such as Internet of Everything (IoE), capable of connecting people, things (smart sensors, devices and actuators; mobile terminals; wearable devices; etc.), data/information/knowledge and processes to reach the desired goals. The IoE system must implement and support an Integrated Multidisciplinary Model for Security and Safety Management (IMMSSM) for the specific context, using a multidisciplinary approach.

  12. Inside the Black Box: The Case Review Process of an Elder Abuse Forensic Center.

    PubMed

    Navarro, Adria E; Wysong, Julia; DeLiema, Marguerite; Schwartz, Elizabeth L; Nichol, Michael B; Wilber, Kathleen H

    2016-08-01

    Preliminary evidence suggests that elder abuse forensic centers improve victim welfare by increasing necessary prosecutions and conservatorships and reducing the recurrence of protective service referrals. Center team members gather information and make decisions designed to protect clients and their assets, yet the collective process of how these case reviews are conducted remains unexamined. The purpose of this study is to present a model describing the interprofessional approach of investigation and response to financial exploitation (FE), a frequent and complex type of abuse of vulnerable adults. To develop an understanding of the case review process at the Los Angeles County Elder Abuse Forensic Center (Center), a quasi-Delphi field study approach was used involving direct observations of meetings, surveying team members, and review from the Center's Advisory Council. The goal of this iterative analysis was to understand the case review process for suspected FE in Los Angeles County. A process map of key forensic center elements was developed that may be useful for replication in other settings. The process map includes: (a) multidisciplinary data collection, (b) key decisions for consideration, and (c) strategic actions utilized by an interprofessional team focused on elder justice. Elder justice relies on a complex system of providers. Elder abuse forensic centers provide a process designed to efficiently address client safety, client welfare, and protection of assets. Study findings provide a process map that may help other communities replicate an established multidisciplinary team, one experienced with justice system outcomes designed to protect FE victims. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. [Advocating for the Inclusion of Psychologists in Family Health Teams in Ontario, Canada].

    PubMed

    Grenier, Jean; Chomienne, Marie-Hélène; Gaboury, Isabelle

    Objectives This article advocates in favor of increasing the accessibility of psychological services in primary health care by focusing more specifically on the relevance of including psychologists in family health teams in primary care in Ontario.Methods The authors present their advocacy from two levels of information: 1) the main results of a demonstration project funded by the Primary Health Care Transition Fund (PHCTF) in which psychologists were integrated into family practices; and 2) experiences and general observations drawn from the combined experiences of the authors from the last decade regarding the inclusion of psychologists in primary care.Results Main results from the demonstration project: 1) highly prevalent mental illnesses (anxiety & mood disorders) are amenable to psychological interventions; 2) psychologists and family physicians are natural and complementary allies in primary care; 3) the cost of integrating psychologists to provide psychological interventions can be off-set by a reduction in physicians' mental health billing. Main observations drawn from authors' combined experiences in primary care: 1) relatively few psychologists work in family health teams in Ontario; 2) most non-pharmacological mental health interventions in primary care involve generic counselling, problem solving, educational groups, and linking to community resources; 3) lack of understanding of the difference between evidence-based psychological treatments and generic counselling; 4) many multidisciplinary clinics unfortunately benefit from only one type of non-medical mental health professional as part of their team to see all cases, independent of the level of complexity on the patient's side, and independent of the level of expertise or supervised training on the provider side; 5) multidisciplinary teams in primary care need various mental health professionals to cover for a wide range of presenting problems and levels of complexity/co-morbidities.Conclusion Our demonstration project combined with our continued clinical experience in primary care is consistent with the scientific literature on the topic of psychological services in primary care. Common mental health problems are highly prevalent. Societal costs are high. Accurate diagnosis is crucial. There are psychological treatments proven to work, and that are cost-effective. We can build on existing multidisciplinary teams and structures in place and also innovate by finding creative mechanisms linking the public and private sectors such as in the Australian primary care system. Interdisciplinary teams should integrate a judicious mix of pertinent skills with the right balance of varying levels of competencies to efficiently address varying levels of problem complexities and co-morbidities. At the moment, there is a gap to be filled in multidisciplinary primary care teams and psychologists are already extensively trained and available to fill this gap.

  14. Damage assessment of bridge infrastructure subjected to flood-related hazards

    NASA Astrophysics Data System (ADS)

    Michalis, Panagiotis; Cahill, Paul; Bekić, Damir; Kerin, Igor; Pakrashi, Vikram; Lapthorne, John; Morais, João Gonçalo Martins Paulo; McKeogh, Eamon

    2017-04-01

    Transportation assets represent a critical component of society's infrastructure systems. Flood-related hazards are considered one of the main climate change impacts on highway and railway infrastructure, threatening the security and functionality of transportation systems. Of such hazards, flood-induced scour is a primarily cause of bridge collapses worldwide and one of the most complex and challenging water flow and erosion phenomena, leading to structural instability and ultimately catastrophic failures. Evaluation of scour risk under severe flood events is a particularly challenging issue considering that depth of foundations is very difficult to evaluate in water environment. The continual inspection, assessment and maintenance of bridges and other hydraulic structures under extreme flood events requires a multidisciplinary approach, including knowledge and expertise of hydraulics, hydrology, structural engineering, geotechnics and infrastructure management. The large number of bridges under a single management unit also highlights the need for efficient management, information sharing and self-informing systems to provide reliable, cost-effective flood and scour risk management. The "Intelligent Bridge Assessment Maintenance and Management System" (BRIDGE SMS) is an EU/FP7 funded project which aims to couple state-of-the art scientific expertise in multidisciplinary engineering sectors with industrial knowledge in infrastructure management. This involves the application of integrated low-cost structural health monitoring systems to provide real-time information towards the development of an intelligent decision support tool and a web-based platform to assess and efficiently manage bridge assets. This study documents the technological experience and presents results obtained from the application of sensing systems focusing on the damage assessment of water-hazards at bridges over watercourses in Ireland. The applied instrumentation is interfaced with an open-source platform that can offer a more economical remote monitoring solution. The results presented in this investigation provide an important guide for a multidisciplinary approach to bridge monitoring and can be used as a benchmark for the field application of cost-effective and robust sensing methods. This will deliver key information regarding the impact of water-related hazards at bridge structures through an integrated structural health monitoring and management system. Acknowledgement: The authors wish to acknowledge the financial support of the European Commission, through the Marie Curie action Industry-Academia Partnership and Pathways Network BRIDGE SMS (Intelligent Bridge Assessment Maintenance and Management System) - FP7-People-2013-IAPP- 612517.

  15. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  16. Reducing pre-operative length of stay for enterocutaneous fistula repair with a multi-disciplinary approach.

    PubMed

    Chamberlain, Mark; Dwyer, Rebecca

    2015-01-01

    Pre-operative assessment of complex surgical patients can be a lengthy process, albeit essential to minimise complication rates. In a tertiary referral unit specialising in the surgical repair of entercutaneous fistulas, a baseline audit revealed an average in-patient length of stay of 30.1 days, mainly caused by poor co-ordination between specialities. After the introduction of a weekly multi-disciplinary team meeting and the formalisation of a patient pathway, this admission length was reduced to 5.7 days (p<0.01), resulting in significant savings to the department.

  17. Bicuspid aortic valve syndrome: a multidisciplinary approach for a complex entity

    PubMed Central

    Lorca, Rebeca; Rozado, José; Alvarez-Cabo, Rubén; Calvo, Juan; Pascual, Isaac; Cigarrán, Helena; Rodríguez, Isabel; Morís, César

    2017-01-01

    Bicuspid aortic valve (BAV) or bicuspid aortopathy is the most common congenital heart disease. It can be clinically silent and it is often identified as an incidental finding in otherwise healthy, asymptomatic patients. However, it can be dysfunctioning at birth, even requiring neonatal intervention, or, in time, lead to aortic stenosis, aortic insufficiency, and endocarditis, and also be associated with aortic aneurysm and aortic dissection. Given its prevalence and significant complications, it is estimated that BAV is responsible for more deaths and morbidity than the combined effects of all the other congenital heart defects. Pathology of BAV is still not well known and many questions are unresolved. In this manuscript we review some aspects on bicuspid aortopathy, a heterogeneous and frequent disease in which like some authors have previously described, complex gene environment are present. Further investigations and, what is more, multidisciplinary teams are needed to improve our knowledge on this really fascinating disease. PMID:28616342

  18. SEMPATH Ontology: modeling multidisciplinary treatment schemes utilizing semantics.

    PubMed

    Alexandrou, Dimitrios Al; Pardalis, Konstantinos V; Bouras, Thanassis D; Karakitsos, Petros; Mentzas, Gregoris N

    2012-03-01

    A dramatic increase of demand for provided treatment quality has occurred during last decades. The main challenge to be confronted, so as to increase treatment quality, is the personalization of treatment, since each patient constitutes a unique case. Healthcare provision encloses a complex environment since healthcare provision organizations are highly multidisciplinary. In this paper, we present the conceptualization of the domain of clinical pathways (CP). The SEMPATH (SEMantic PATHways) Oontology comprises three main parts: 1) the CP part; 2) the business and finance part; and 3) the quality assurance part. Our implementation achieves the conceptualization of the multidisciplinary domain of healthcare provision, in order to be further utilized for the implementation of a Semantic Web Rules (SWRL rules) repository. Finally, SEMPATH Ontology is utilized for the definition of a set of SWRL rules for the human papillomavirus) disease and its treatment scheme. © 2012 IEEE

  19. Multidisciplinary trauma team care in Kandahar, Afghanistan: current injury patterns and care practices.

    PubMed

    Beckett, Andrew; Pelletier, Pierre; Mamczak, Christiaan; Benfield, Rodd; Elster, Eric

    2012-12-01

    Multidisciplinary trauma care systems have been shown to improve patient outcomes. Medical care in support of the global war on terror has provided opportunities to refine these systems. We report on the multidisciplinary trauma care system at the Role III Hospital at Kandahar Airfield, Afghanistan. We reviewed the Joint Trauma System Registry, Kandahar database from 1 October 2009 to 31 December 2010 and extracted data regarding patient demographics, clinical variables and outcomes. We also queried the operating room records from 1 January 2009 to 31 December 2010. In the study period of 1 October 2009 to 31 December 2010, 2599 patients presented to the trauma bay, with the most common source of injury being from Improvised Explosive Device (IED) blasts (915), followed by gunshot wounds (GSW) (327). Importantly, 19 patients with triple amputations as a result of injuries from IEDs were seen. 127 patients were massively transfused. The in-hospital mortality was 4.45%. From 1 January 2010 to 31 December 2010, 4106.24 operating room hours were logged to complete 1914 patient cases. The mean number of procedures per case in 2009 was 1.27, compared to 3.11 in 2010. Multinational, multidisciplinary care is required for the large number of severely injured patients seen at Kandahar Airfield. Multidisciplinary trauma care in Kandahar is effective and can be readily employed in combat hospitals in Afghanistan and serve as a model for civilian centres. Published by Elsevier Ltd.

  20. A River Discharge Model for Coastal Taiwan during Typhoon Morakot

    DTIC Science & Technology

    2012-08-01

    Multidisciplinary Simulation, Estimation, and Assimilation Systems Reports in Ocean Science and Engineering MSEAS-13 A River Discharge...in this region. The island’s major rivers have correspondingly large drainage basins, and outflow from these river mouths can substantially reduce the...Multidisciplinary Simulation, Estimation, and Assimilation System (MSEAS) has been used to simulate the ocean dynamics and forecast the uncertainty

  1. IMAT (Integrated Multidisciplinary Analysis Tool) user's guide for the VAX/VMS computer

    NASA Technical Reports Server (NTRS)

    Meissner, Frances T. (Editor)

    1988-01-01

    The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system for the VAX/VMS computer developed at the Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.

  2. The Problem of Size in Robust Design

    NASA Technical Reports Server (NTRS)

    Koch, Patrick N.; Allen, Janet K.; Mistree, Farrokh; Mavris, Dimitri

    1997-01-01

    To facilitate the effective solution of multidisciplinary, multiobjective complex design problems, a departure from the traditional parametric design analysis and single objective optimization approaches is necessary in the preliminary stages of design. A necessary tradeoff becomes one of efficiency vs. accuracy as approximate models are sought to allow fast analysis and effective exploration of a preliminary design space. In this paper we apply a general robust design approach for efficient and comprehensive preliminary design to a large complex system: a high speed civil transport (HSCT) aircraft. Specifically, we investigate the HSCT wing configuration design, incorporating life cycle economic uncertainties to identify economically robust solutions. The approach is built on the foundation of statistical experimentation and modeling techniques and robust design principles, and is specialized through incorporation of the compromise Decision Support Problem for multiobjective design. For large problems however, as in the HSCT example, this robust design approach developed for efficient and comprehensive design breaks down with the problem of size - combinatorial explosion in experimentation and model building with number of variables -and both efficiency and accuracy are sacrificed. Our focus in this paper is on identifying and discussing the implications and open issues associated with the problem of size for the preliminary design of large complex systems.

  3. Software Testing and Verification in Climate Model Development

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Rood, RIchard B.

    2011-01-01

    Over the past 30 years most climate models have grown from relatively simple representations of a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure over that period has gone from punch card mainframes to modem parallel clusters. Model implementations have become complex, brittle, and increasingly difficult to extend and maintain. Existing verification processes for model implementations rely almost exclusively upon some combination of detailed analysis of output from full climate simulations and system-level regression tests. In additional to being quite costly in terms of developer time and computing resources, these testing methodologies are limited in terms of the types of defects that can be detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the commercial software sector, recent advances in tools and methodology have led to a renaissance for systematic fine-grained testing. We discuss the availability of analogous tools for scientific software and examine benefits that similar testing methodologies could bring to climate modeling software. We describe the unique challenges faced when testing complex numerical algorithms and suggest techniques to minimize and/or eliminate the difficulties.

  4. Numerical difficulties associated with using equality constraints to achieve multi-level decomposition in structural optimization

    NASA Technical Reports Server (NTRS)

    Thareja, R.; Haftka, R. T.

    1986-01-01

    There has been recent interest in multidisciplinary multilevel optimization applied to large engineering systems. The usual approach is to divide the system into a hierarchy of subsystems with ever increasing detail in the analysis focus. Equality constraints are usually placed on various design quantities at every successive level to ensure consistency between levels. In many previous applications these equality constraints were eliminated by reducing the number of design variables. In complex systems this may not be possible and these equality constraints may have to be retained in the optimization process. In this paper the impact of such a retention is examined for a simple portal frame problem. It is shown that the equality constraints introduce numerical difficulties, and that the numerical solution becomes very sensitive to optimization parameters for a wide range of optimization algorithms.

  5. Building a multidisciplinary team for burn treatment - Lessons learned from the Montreal tendon transfer experience.

    PubMed

    Karam, E; Lévesque, M C; Jacquemin, G; Delure, A; Robidoux, I; Laramée, M T; Odobescu, A; Harris, P G; Danino, A M

    2014-03-31

    Multidisciplinary teams (MDTs) represent a recognized component of care in the treatment of complex conditions such as burns. However, most institutions do not provide adequate support for the formation of these teams. Furthermore, the majority of specialists lack the managerial skills required to create a team and have difficulties finding the proper tools. Our objective is to provide an insight for health care professionals, who wish to form a MDT for burn treatment, on the challenges that are likely to be faced, and to identify key elements that may facilitate the establishment of such a project. The setting for this was a plastic surgery department and rehabilitation center at a national reference center. A qualitative analysis was performed on all correspondences related to our tetraplegia project, from 2006 to 2008. To guide our thematic analysis, we used a form of systems theory known as the complexity theory. The qualitative analysis was performed using the NVivo software (Version 8.0 QSR International Melbourne, Australia). Lastly, the data was organized in chronologic order. Three main themes emerged from the results: knowledge acquisition, project organizational setup and project steps design. These themes represented respectively 24%, 50% and 26% of all correspondences. Project steps design and knowledge acquisition correspondences increased significantly after the introduction of the mentor team to our network. We conclude that an early association with a mentor team is beneficial for the establishment of a MDT.

  6. Update on chronic complex patient malnutrition

    PubMed

    Álvarez Hernández, Julia

    2017-05-08

    The Scientific Committee of the Sociedad Española de Nutrición Parenteral y Enteral (SENPE) and the Nutricia Advanced Medical Nutrition company began this Course some years ago, and now, it is a referent course in the multidisciplinary training of Clinical Nutrition. With this issue we review the advances in Clinical Nutrition in different situations and, this year, the topic is the malnutrition in chronic complex patients.

  7. A Software Tool for Integrated Optical Design Analysis

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; DePlachett, Charles; Montgomery, Edward (Technical Monitor)

    2001-01-01

    Design of large precision optical systems requires multi-disciplinary analysis, modeling, and design. Thermal, structural and optical characteristics of the hardware must be accurately understood in order to design a system capable of accomplishing the performance requirements. The interactions between each of the disciplines become stronger as systems are designed lighter weight for space applications. This coupling dictates a concurrent engineering design approach. In the past, integrated modeling tools have been developed that attempt to integrate all of the complex analysis within the framework of a single model. This often results in modeling simplifications and it requires engineering specialist to learn new applications. The software described in this presentation addresses the concurrent engineering task using a different approach. The software tool, Integrated Optical Design Analysis (IODA), uses data fusion technology to enable a cross discipline team of engineering experts to concurrently design an optical system using their standard validated engineering design tools.

  8. Security Policy and Infrastructure in the Context of a Multi-Centeric Information System Dedicated to Autism Spectrum Disorder.

    PubMed

    Ben Said, Mohamed; Robel, Laurence; Golse, Bernard; Jais, Jean Philippe

    2017-01-01

    Autism spectrum disorders (ASD) are complex neuro-developmental disorders affecting children in their early age. The diagnosis of ASD relies on multidisciplinary investigations, in psychiatry, neurology, genetics, electrophysiology, neuro-imagery, audiology and ophthalmology. In order to support clinicians, researchers and public health decision makers, we designed an information system dedicated to ASD, called TEDIS. TEDIS was designed to manage systematic, exhaustive and continuous multi-centric patient data collection via secured Internet connections. In this paper, we present the security policy and security infrastructure we developed to protect ASD' patients' clinical data and patients' privacy. We tested our system on 359 ASD patient records in a local secured intranet environment and showed that the security system is functional, with a consistent, transparent and safe encrypting-decrypting behavior. It is ready for deployment in the nine ASD expert assessment centers in the Ile de France district.

  9. Multi-disciplinary team meetings in stroke rehabilitation: an observation study and conceptual framework.

    PubMed

    Tyson, S F; Burton, L; McGovern, A

    2014-12-01

    To explore how multi-disciplinary team meetings operate in stroke rehabilitation. Non-participant observation of multi-disciplinary team meetings and semi-structured interviews with attending staff. Twelve meetings were observed (at least one at each site) and 18 staff (one psychologist, one social worker; four nurses; four physiotherapists four occupational therapists, two speech and language therapists, one stroke co-ordinator and one stroke ward manager) were interviewed in eight in-patient stroke rehabilitation units. Multi-disciplinary team meetings in stroke rehabilitation were complex, demanding and highly varied. A model emerged which identified the main inputs to influence conduct of the meetings were personal contributions of the members and structure and format of the meetings. These were mediated by the team climate and leadership skills of the chair. The desired outputs; clinical decisions and the attributes of apparently effective meetings were identified by the staff. A notable difference between the meetings that staff considered effective and those that were not, was their structure and format. Successful meetings tended to feature a set agenda, structured documentation; formal use of measurement tools; pre-meeting preparation and skilled chairing. These features were often absent in meetings perceived to be ineffective. The main features of operation of multi-disciplinary team meetings have been identified which will enable assessment tools and interventions to improve effectiveness to be developed. © The Author(s) 2014.

  10. Access to computer-based leisure for individuals with profound disabilities.

    PubMed

    Bache, Jane; Derwent, Gary

    2008-01-01

    Advances in computer technology and the Internet have meant that more and more occupations can be made available to disabled individuals, including occupations generally considered to be leisure. However, computers and the Internet also provide barriers to access for these individuals. This article discusses some of these barriers, solutions to them and highlights the complexities involved in the provision of a computer-based assistive technology solution for access to leisure for a profoundly disabled young lady. It also points out the need for the input of a highly skilled, multi-disciplinary team in the assessment for and provision of such a system.

  11. Lower extremity manifestations of "skin-popping" an illicit drug use technique: A report of two cases.

    PubMed

    Canales, Michael; Gerhard, John; Younce, Erin

    2015-06-01

    Presented is a rare case of tibial and fibular osteomyelitis and a case of fibular periositis, both a direct consequence of a peculiar drug use technique. The osseous manifestations secondary to presentation of necrotic wounds with indurated rim and serous drainage with associated cellulitis, both resulting from "skin popping." Due to the complex treatment plan required, the importance of a motivated patient, a strong social support system, a controlled environment, and a multidisciplinary team cannot be overstated. Despite comprehensive efforts, devastating consequences may be unavoidable as individuals plunge downward, victimized by their addiction. 4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Vestiges of Submarine Serpentinization Recorded in the Microbiology of Continental Ophiolite Complexes

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Sabuda, M.; Brazelton, W. J.; Twing, K. I.

    2017-12-01

    The study of serpentinization-influenced microbial ecosystems at and below the seafloor has accelerated in recent years with multidisciplinary drilling expeditions to the Atlantis Massif (X357), Southwest Indian Ridge (X360) and Mariana Forearc (X366). In parallel, a number of studies have surveyed serpentinizing systems in ophiolite complexes which host a range of geologic histories, geochemical characteristics, fluid pathways, and consequently microbiology. As ophiolite complexes originate as seafloor materials, it is likely that a microbiological record of seafloor serpentinization processes is maintained through the emplacement and weathering of continental serpentinites. This hypothesis was evaluated through a global comparison of continental serpentinite springs and groundwater, ranging from highly brackish (saline) to freshwater. One of the most saline sites, known as the Coast Range Ophiolite Microbial Observatory (CROMO), was used as a point-of-comparison to marine serpentinizing systems, such as the Lost City Hydrothermal Field. Although there was little taxonomic overlap between microbial populations in marine and terrestrial systems, both communities harbored an abundance of genes involved in sulfur metabolism, including sulfide oxidation, thiosulfate disproportionation, and sulfate reduction. The phylogeny of key genes involved in these metabolic processes was evaluated relative to published studies and compared between sites. Together, these data provide insights into both the functioning of microbial communities in modern-day serpentinizing systems, and the transport processes that disperse microorganisms between marine and terrestrial serpentinites.

  13. Multidisciplinary In Situ Simulation-Based Training as a Postpartum Hemorrhage Quality Improvement Project.

    PubMed

    Lutgendorf, Monica A; Spalding, Carmen; Drake, Elizabeth; Spence, Dennis; Heaton, Jason O; Morocco, Kristina V

    2017-03-01

    Postpartum hemorrhage is a common obstetric emergency affecting 3 to 5% of deliveries, with significant maternal morbidity and mortality. Effective management of postpartum hemorrhage requires strong teamwork and collaboration. We completed a multidisciplinary in situ postpartum hemorrhage simulation training exercise with structured team debriefing to evaluate hospital protocols, team performance, operational readiness, and real-time identification of system improvements. Our objective was to assess participant comfort with managing obstetric hemorrhage following our multidisciplinary in situ simulation training exercise. This was a quality improvement project that utilized a comprehensive multidisciplinary in situ postpartum hemorrhage simulation exercise. Participants from the Departments of Obstetrics and Gynecology, Anesthesia, Nursing, Pediatrics, and Transfusion Services completed the training exercise in 16 scenarios run over 2 days. The intervention was a high fidelity, multidisciplinary in situ simulation training to evaluate hospital protocols, team performance, operational readiness, and system improvements. Structured debriefing was conducted with the participants to discuss communication and team functioning. Our main outcome measure was participant self-reported comfort levels for managing postpartum hemorrhage before and after simulation training. A 5-point Likert scale (1 being very uncomfortable and 5 being very comfortable) was used to measure participant comfort. A paired t test was used to assess differences in participant responses before and after the simulation exercise. We also measured the time to prepare simulated blood products and followed the number of postpartum hemorrhage cases before and after the simulation exercise. We trained 113 health care professionals including obstetricians, midwives, residents, anesthesiologists, nurse anesthetists, nurses, and medical assistants. Participants reported a higher comfort level in managing obstetric emergencies and postpartum hemorrhage after simulation training compared to before training. For managing hypertensive emergencies, the post-training mean score was 4.14 compared to a pretraining mean score of 3.88 (p = 0.01, 95% confidence interval [CI] = 0.06-0.47). For shoulder dystocia, the post-training mean score was 4.29 compared to a pretraining mean score of 3.66 (p = 0.001, 95% CI = 0.41-0.88). For postpartum hemorrhage, the post-training mean score was 4.35 compared to pretraining mean score of 3.86 (p = 0.001, 95% CI = 0.36-0.63). We also observed a decrease in the time to prepare simulated blood products over the course of the simulation, and a decreasing trend of postpartum hemorrhage cases, which continued after initiating the postpartum hemorrhage simulation exercise. Postpartum hemorrhage remains a leading cause of maternal morbidity and mortality in the United States. Comprehensive hemorrhage protocols have been shown to improve outcomes related to postpartum hemorrhage, and a critical component in these processes include communication, teamwork, and team-based practice/simulation. As medicine becomes increasingly complex, the ability to practice in a safe setting is ever more critical, especially for low-volume, high-stakes events such as postpartum hemorrhage. These events require well-functioning teams and systems coupled with rapid assessment and appropriate clinical action to ensure best patient outcomes. We have shown that a multidisciplinary in situ simulation exercise improves self-reported comfort with managing obstetric emergencies, and is a safe and effective way to practice skills and improve systems processes in the health care setting. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  14. Children's Behavior Responses to TV Food Advertisements

    ERIC Educational Resources Information Center

    Clancy-Hepburn, Katherine; And Others

    1974-01-01

    Two preliminary studies of children's responses to TV advertisements demonstrate the complexity of responses and indicate the need for research conducted within a multidisciplinary framework. The use of the entire family as the unit of analysis is suggested. (Author/RH)

  15. A Spector over the Earth.

    ERIC Educational Resources Information Center

    Murphy, Michael E.

    1990-01-01

    Discusses the disciplinary make up of the study of the greenhouse effect, suggesting that physics, chemistry, earth science, social studies, and religion classes are all appropriate arenas for discussions of the topic. Highlights resources available to teach this complex multidisciplinary topic. (DMM)

  16. Curriculum Development for the Achievement of Multiple Goals in the Agri-Food Industry.

    ERIC Educational Resources Information Center

    Stonehouse, D. P.

    1994-01-01

    The agri-food industry is concerned with maximizing global food output while preventing environmental damage. Agricultural education focuses on multidisciplinary, holistic, and integrative approaches that enhance student capabilities to address this complex issue. (SK)

  17. Effectiveness of an intensive multidisciplinary headache treatment program.

    PubMed

    Gunreben-Stempfle, Birgit; Griessinger, Norbert; Lang, Eberhard; Muehlhans, Barbara; Sittl, Reinhard; Ulrich, Kathrin

    2009-07-01

    To investigate if the effectiveness of a 96-hour multidisciplinary headache treatment program exceeds the effectiveness of a 20-hour program and primary care. When dealing with chronic back pain, low-intensity multidisciplinary treatment yields no significantly better results than standard care and monodisciplinary therapy; however, high-intensity treatment does. For multidisciplinary headache treatment, such comparisons are not yet available. In a previous study undertaken by our Pain Center, the outcome of a minimal multidisciplinary intervention model (20-hour) did not exceed primary care. Forty-two patients suffering from frequent headaches (20 +/- 9 headache days/month; range: 8-30) were treated and evaluated in a 96-hour group program. The results were compared with the outcomes of the previous study. Subjects who had undergone either the 20-hour multidisciplinary program or the primary care were used as historical control groups. A significant reduction in migraine days (P < .001), tension-type headache days (P < .001), frequency of migraine attacks (P = .004), and depression score (P < .001) was seen at the follow-up after 22 (+/-2) weeks. Comparing the intensive multidisciplinary program with primary care, repeated measures ANOVAs revealed significant time x group interactions for migraine days (P = .020), tension-type headache days (P = .016), and frequency of migraine attacks (P = .016). In comparison with the 20-hour multidisciplinary program, the 96-hour program showed significantly better effects only in the reduction of migraine days (P = .037) and depression score (P = .003). The responder-rates (> or =50% improvement) in the 96-hour program were significantly higher than in the 20-hour program (migraine days, P = .008; tension-type headache days, P = .044) and primary care (migraine days, P = .007; tension-type headache days, P = .003; tension-type headache intensity, P = .037). The effect sizes were small to medium in the 96-hour program. Particularly with the reduction of migraine symptomatology, the 96-hour program performed better than the 20-hour program, which produced only negligible or small effects. Intensive multidisciplinary headache treatment is highly effective for patients with chronic headaches. Furthermore, migraine symptomatology responds especially well to this intensive treatment program, whereas effects on tension-type headaches were realized by both multidisciplinary programs. Randomized controlled trials and subgroup analysis are needed to find out if these results can be replicated and which patient characteristics allow for sufficient improvements for headache sufferers even with less complex treatment.

  18. Multidisciplinary design optimization: An emerging new engineering discipline

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1993-01-01

    This paper defines the Multidisciplinary Design Optimization (MDO) as a new field of research endeavor and as an aid in the design of engineering systems. It examines the MDO conceptual components in relation to each other and defines their functions.

  19. Is the co-location of GPs in primary care centres associated with a higher patient satisfaction? Evidence from a population survey in Italy.

    PubMed

    Bonciani, Manila; Barsanti, Sara; Murante, Anna Maria

    2017-04-04

    Several countries have co-located General Practitioners (GPs) in Primary Care Centres (PCCs) with other health and social care professionals in order to improve integrated care. It is not clear whether the co-location of a multidisciplinary team actually facilitates a positive patient experience concerning GP care. The aim of this study was to verify whether the co-location of GPs in PCCs is associated positively with patient satisfaction with their GP when patients have experience of a multidisciplinary team. We also investigated whether patients who frequently use health services, due to their complex needs, benefitted the most from the co-location of a multidisciplinary team. The study used data from a population survey carried out in Tuscany (central Italy) at the beginning of 2015 to evaluate the patients' experience and satisfaction with their GPs. Multilevel linear regression models were implemented to verify the relationship between patient satisfaction and co-location. This key explanatory variable was measured by considering both the list of GPs working in PCCs and the answers of surveyed patients who had experienced the co-location of their GP in a multidisciplinary team. We also explored the effect modification on patient satisfaction due to the use of hospitalisation, access to emergency departments and visits with specialists, by performing the multilevel modelling on two strata of patient data: frequent and non-frequent health service users. A sample of 2025 GP patients were included in the study, 757 of which were patients of GPs working in a PCC. Patient satisfaction with their GP was generally positive. Results showed that having a GP working within a PCC and the experience of the co-located multidisciplinary team were associated with a higher satisfaction (p < 0.01). For non-frequent users of health services on the other hand, the co-location of multidisciplinary team in PCCs was not significantly associated with patient satisfaction, whereas for frequent users, the strength of relationships identified in the overall model increased (p < 0.01). The co-location of GPs with other professionals and their joint working as experienced in PCCs seems to represent a greater benefit for patients, especially for those with complex needs who use primary care, hospitals, emergency care and specialized care frequently.

  20. A descriptive model for a multidisciplinary unit for colorectal and pelvic malformations.

    PubMed

    Vilanova-Sanchez, Alejandra; Halleran, Devin R; Reck-Burneo, Carlos A; Gasior, Alessandra C; Weaver, Laura; Fisher, Meghan; Wagner, Andrea; Nash, Onnalisa; Booth, Kristina; Peters, Kaleigh; Williams, Charae; Brown, Sarah Mayer; Lu, Peter; Fuchs, Molly; Diefenbach, Karen; Leonard, Jeffrey R; Hewitt, Geri; McCracken, Kate; Di Lorenzo, Carlo; Wood, Richard J; Levitt, Marc A

    2018-04-19

    Patients with anorectal malformations (ARM), Hirschsprung disease (HD), and colonic motility disorders often require care from specialists across a variety of fields, including colorectal surgery, urology, gynecology, and GI motility. We sought to describe the process of creating a collaborative process for the care of these complex patients. We developed a model of a devoted center for these conditions that includes physicians, psychologists, social workers, nurses, and advanced practice nurses. Our weekly planning strategy includes a meeting with representatives of all specialties to review all patients prior to evaluation in our multidisciplinary clinic, followed by combined exams under anesthesia or surgical intervention as needed. There are 31 people working directly in the Center at present. From the Center's start in 2014 until 2017, 1258 patients were cared for from all 50 United States and 62 countries. 360 patients had an ARM (110 had a cloacal malformation, 11 had cloacal exstrophy), 223 presented with HD, 71 had a spinal malformation or injury causing neurogenic bowel, 321 had severe functional constipation or colonic dysmotility, and 162 had other diagnoses including familial polyposis, Crohn's disease, or ulcerative colitis. We have had 170 multidisciplinary meetings, 170 multispecialty outpatient, and 52 nurse practitioner clinics. In our bowel management program we have seen a total of 514 patients in 36 sessions. This is the first report describing the design of a multidisciplinary team approach for patients with colorectal and complex pelvic malformations. We found that approaching these patients in a collaborative way allows for combined medical and surgical decisions with many providers simultaneously, facilitates therapy, and can potentially improve patient outcomes. We hope that this model will help establish new-devoted centers in other locations to encourage centralized care for these rare malformations. IV. Copyright © 2018. Published by Elsevier Inc.

  1. Concurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Final Report: Advanced Long-Life Lander Investigating the Venus Environment (ALIVE)

    NASA Technical Reports Server (NTRS)

    Oleson, Steven R.

    2018-01-01

    The COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team partnered with the Applied Research Laboratory to perform a NASA Innovative Advanced Concepts (NIAC) Program study to evaluate chemical based power systems for keeping a Venus lander alive (power and cooling) and functional for a period of days. The mission class targeted was either a Discovery ($500M) or New Frontiers ($750M to $780M) class mission.

  2. National Combustion Code, a Multidisciplinary Combustor Design System, Will Be Transferred to the Commercial Sector

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    1999-01-01

    The NASA Lewis Research Center and Flow Parametrics will enter into an agreement to commercialize the National Combustion Code (NCC). This multidisciplinary combustor design system utilizes computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. This integrated system can facilitate and enhance various phases of the design and analysis process.

  3. Next generation of network medicine: interdisciplinary signaling approaches.

    PubMed

    Korcsmaros, Tamas; Schneider, Maria Victoria; Superti-Furga, Giulio

    2017-02-20

    In the last decade, network approaches have transformed our understanding of biological systems. Network analyses and visualizations have allowed us to identify essential molecules and modules in biological systems, and improved our understanding of how changes in cellular processes can lead to complex diseases, such as cancer, infectious and neurodegenerative diseases. "Network medicine" involves unbiased large-scale network-based analyses of diverse data describing interactions between genes, diseases, phenotypes, drug targets, drug transport, drug side-effects, disease trajectories and more. In terms of drug discovery, network medicine exploits our understanding of the network connectivity and signaling system dynamics to help identify optimal, often novel, drug targets. Contrary to initial expectations, however, network approaches have not yet delivered a revolution in molecular medicine. In this review, we propose that a key reason for the limited impact, so far, of network medicine is a lack of quantitative multi-disciplinary studies involving scientists from different backgrounds. To support this argument, we present existing approaches from structural biology, 'omics' technologies (e.g., genomics, proteomics, lipidomics) and computational modeling that point towards how multi-disciplinary efforts allow for important new insights. We also highlight some breakthrough studies as examples of the potential of these approaches, and suggest ways to make greater use of the power of interdisciplinarity. This review reflects discussions held at an interdisciplinary signaling workshop which facilitated knowledge exchange from experts from several different fields, including in silico modelers, computational biologists, biochemists, geneticists, molecular and cell biologists as well as cancer biologists and pharmacologists.

  4. A galactose-functionalized dendritic siRNA-nanovector to potentiate hepatitis C inhibition in liver cells

    NASA Astrophysics Data System (ADS)

    Lakshminarayanan, Abirami; Reddy, B. Uma; Raghav, Nallani; Ravi, Vijay Kumar; Kumar, Anuj; Maiti, Prabal K.; Sood, A. K.; Jayaraman, N.; Das, Saumitra

    2015-10-01

    A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector.A RNAi based antiviral strategy holds the promise to impede hepatitis C viral (HCV) infection overcoming the problem of emergence of drug resistant variants, usually encountered in the interferon free direct-acting antiviral therapy. Targeted delivery of siRNA helps minimize adverse `off-target' effects and maximize the efficacy of therapeutic response. Herein, we report the delivery of siRNA against the conserved 5'-untranslated region (UTR) of HCV RNA using a liver-targeted dendritic nano-vector functionalized with a galactopyranoside ligand (DG). Physico-chemical characterization revealed finer details of complexation of DG with siRNA, whereas molecular dynamic simulations demonstrated sugar moieties projecting ``out'' in the complex. Preferential delivery of siRNA to the liver was achieved through a highly specific ligand-receptor interaction between dendritic galactose and the asialoglycoprotein receptor. The siRNA-DG complex exhibited perinuclear localization in liver cells and co-localization with viral proteins. The histopathological studies showed the systemic tolerance and biocompatibility of DG. Further, whole body imaging and immunohistochemistry studies confirmed the preferential delivery of the nucleic acid to mice liver. Significant decrease in HCV RNA levels (up to 75%) was achieved in HCV subgenomic replicon and full length HCV-JFH1 infectious cell culture systems. The multidisciplinary approach provides the `proof of concept' for restricted delivery of therapeutic siRNAs using a target oriented dendritic nano-vector. Electronic supplementary information (ESI) available: Spectral data and experimental details. See DOI: 10.1039/c5nr02898a

  5. Multidisciplinary design optimization - An emerging new engineering discipline

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1993-01-01

    A definition of the multidisciplinary design optimization (MDO) is introduced, and functionality and relationship of the MDO conceptual components are examined. The latter include design-oriented analysis, approximation concepts, mathematical system modeling, design space search, an optimization procedure, and a humane interface.

  6. The Numerical Propulsion System Simulation: An Overview

    NASA Technical Reports Server (NTRS)

    Lytle, John K.

    2000-01-01

    Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.

  7. Art Therapy for Chronic Pain: Applications and Future Directions

    ERIC Educational Resources Information Center

    Angheluta, Anne-Marie; Lee, Bonnie K.

    2011-01-01

    Chronic pain is acknowledged as a phenomenological experience resulting from biological, psychological, and social interactions. Consequently, treatment for this complex and debilitating health phenomenon is often approached from multidisciplinary and biopsychosocial perspectives. One approach to treating chronic pain involves implementing…

  8. Multidisciplinary design integration system for a supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Dovi, A. R.; Wrenn, G. A.; Barthelemy, J.-F. M.; Coen, P. G.; Hall, L. E.

    1992-01-01

    An aircraft preliminary design system which provides the multidisciplinary communications and couplings between several engineering disciplines is described. A primary benefit of this system is to demonstrate advanced technology multidisciplinary design integration methodologies. The current version includes the disciplines of aerodynamics and structures. Contributing engineering disciplines are coupled using the Global Sensitivity Equation approach to influence the global design optimization problem. A high speed civil transport configuration is used for configuration trade studies. Forty four independent design variables are used to control the cross-sectional areas of wing rib and spar caps and the thicknesses of wingskincover panels. A total of 300 stress, strain, buckling and displacement behavioral constraints and minimum gages on the design variables were used to optimize the idealized wing structure. The goal of the designs to resize the wing cover panels and internal structure for minimum mass.

  9. Revascularization heart team recommendations as an adjunct to appropriate use criteria for coronary revascularization in patients with complex coronary artery disease.

    PubMed

    Sanchez, Carlos E; Dota, Anthony; Badhwar, Vinay; Kliner, Dustin; Smith, A J Conrad; Chu, Danny; Toma, Catalin; Wei, Lawrence; Marroquin, Oscar C; Schindler, John; Lee, Joon S; Mulukutla, Suresh R

    2016-10-01

    To evaluate how a comprehensive evidence-based clinical review by a multidisciplinary revascularization heart team on treatment decisions for revascularization in patients with complex coronary artery disease using SYNTAX scores combined with Society of Thoracic Surgeons-derived clinical variables can be additive to the utilization of Appropriate Use Criteria for coronary revascularization. Decision-making regarding the use of revascularization for coronary artery disease has come under major scrutiny due to inappropriate overuse of revascularization. There is little data in routine clinical practice evaluating how a structured, multidisciplinary heart team approach may be used in combination with the Appropriate Use Criteria for revascularization. From May 1, 2012 to January 1, 2015, multidisciplinary revascularization heart team meetings were convened to discuss evidence-based management of 301 patients with complex coronary artery disease. Heart team recommendations were adjudicated with the Appropriate Use Criteria for coronary revascularization for each clinical scenario using the Society for Cardiovascular Angiography and Interventions' Quality Improvement Toolkit (SCAI-QIT) Appropriate Use Criteria App. Concordance of the Heart Team to Appropriate Use Criteria had a 99.3% appropriate primary indication for coronary revascularization. Among patients who underwent percutaneous revascularization, 34.9% had an inappropriate or uncertain indication as recommended by the Heart Team. Patients with uncertain or inappropriate percutaneous coronary interventions had significantly higher SYNTAX score (27.3 ± 6.6; 28.5 ± 5.5; 19.2 ± 6; P < 0.0001) and Society of Thoracic Surgeons-Predicted Risk of Mortality (6.1% ± 4.7%; 8.1% ± 6.3%; 3.7% ± 4.1%; P < 0.0081) compared to appropriate indications, frequently had concomitant forms of advanced comorbidities and frailty in the setting of symptomatic coronary artery disease. A formal, multidisciplinary revascularization heart team can provide proper validation for clinical decisions and should be considered in combination with the Appropriate Use Criteria for coronary revascularization to formulate revascularization strategies for individuals in a patient-centered fashion. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. A global, multi-disciplinary, multi-sectorial initiative to combat leptospirosis: Global Leptospirosis Environmental Action Network (GLEAN).

    PubMed

    Durski, Kara N; Jancloes, Michel; Chowdhary, Tej; Bertherat, Eric

    2014-06-05

    Leptospirosis has emerged as a major public health problem in both animals and humans. The true burden of this epidemic and endemic disease is likely to be grossly under-estimated due to the non-specific clinical presentations of the disease and the difficulty of laboratory confirmation. The complexity that surrounds the transmission dynamics, particularly in epidemic situations, requires a coordinated, multi-disciplinary effort. Therefore, the Global Leptospirosis Environmental Action Network (GLEAN) was developed to improve global and local strategies of how to predict, prevent, detect, and intervene in leptospirosis outbreaks in order to prevent and control leptospirosis in high-risk populations.

  11. A Global, Multi-Disciplinary, Multi-Sectorial Initiative to Combat Leptospirosis: Global Leptospirosis Environmental Action Network (GLEAN)

    PubMed Central

    Durski, Kara N.; Jancloes, Michel; Chowdhary, Tej; Bertherat, Eric

    2014-01-01

    Leptospirosis has emerged as a major public health problem in both animals and humans. The true burden of this epidemic and endemic disease is likely to be grossly under-estimated due to the non-specific clinical presentations of the disease and the difficulty of laboratory confirmation. The complexity that surrounds the transmission dynamics, particularly in epidemic situations, requires a coordinated, multi-disciplinary effort. Therefore, the Global Leptospirosis Environmental Action Network (GLEAN) was developed to improve global and local strategies of how to predict, prevent, detect, and intervene in leptospirosis outbreaks in order to prevent and control leptospirosis in high-risk populations. PMID:24905245

  12. Nanovehicles as a novel target strategy for hyperthermic intraperitoneal chemotherapy: a multidisciplinary study of peritoneal carcinomatosis

    PubMed Central

    Nowacki, Maciej; Wisniewski, Marek; Werengowska-Ciecwierz, Karolina; Roszek, Katarzyna; Czarnecka, Joanna; Łakomska, I.; Kloskowski, Tomasz; Tyloch, Dominik; Debski, Robert; Pietkun, Katarzyna; Pokrywczynska, Marta; Grzanka, Dariusz; Czajkowski, Rafał; Drewa, Gerard; Jundziłł, A.; Agyin, Joseph K.; Habib, Samy L.; Terzyk, Artur P.; Drewa, Tomasz

    2015-01-01

    In general, detection of peritoneal carcinomatosis (PC) occurs at the late stage when there is no treatment option. In the present study, we designed novel drug delivery systems that are functionalized with anti-CD133 antibodies. The C1, C2 and C3 complexes with cisplatin were introduced into nanotubes, either physically or chemically. The complexes were reacted with anti-CD133 antibody to form the labeled product of A0-o-CX-chem-CD133. Cytotoxicity screening of all the complexes was performed on CHO cells. Data showed that both C2 and C3 Pt-complexes are more cytotoxic than C1. Flow-cytometry analysis showed that nanotubes conjugated to CD133 antibody have the ability to target cells expressing the CD133 antigen which is responsible for the emergence of resistance to chemotherapy and disease recurrence. The shortest survival rate was observed in the control mice group (K3) where no hyperthermic intraperitoneal chemotherapy procedures were used. On the other hand, the longest median survival rate was observed in the group treated with A0-o-C1-chem-CD133. In summary, we designed a novel drug delivery system based on carbon nanotubes loaded with Pt-prodrugs and functionalized with anti-CD133 antibodies. Our data demonstrates the effectiveness of the new drug delivery system and provides a novel therapeutic modality in the treatment of melanoma. PMID:26254295

  13. Impact of a Multidisciplinary Round Visit for the Management of Dysphagia Utilizing a Wi-Fi-Based Wireless Flexible Endoscopic Evaluation of Swallowing.

    PubMed

    Sakakura, Koichi; Tazawa, Masayuki; Otani, Natsuko; Takagi, Masato; Morita, Mariko; Kurosaki, Minori; Chiyoda, Tomoko; Kanai, Yuri; Endo, Ayaka; Murata, Takaaki; Shino, Masato; Yokobori, Yuki; Shirakura, Kenji; Wada, Naoki; Chikamatsu, Kazuaki

    2017-01-01

    The management of dysphagia requires a multidisciplinary approach, especially in large-scale hospitals. We introduce a novel protocol using a Wi-Fi-based flexible endoscopic evaluation of swallowing (FEES) system and aim to verify its effectiveness in evaluation and rehabilitation of inpatients with dysphagia. We conducted novel Wi-Fi-based FEES at the bedside using 3 iPads as monitors and recorders. Functional outcomes of swallowing in 2 different hospitals for acute care with conventional wired or wireless FEES were compared retrospectively. Using the wireless system, we could visit more patients in a short period of time. Furthermore, a large multidisciplinary team was able to be present at the bedside, which made it easy to hold discussions and rapidly devise appropriate rehabilitation strategies. Aspiration pneumonia recurred in a few cases following our intervention with wireless FEES. Functional oral intake score was significantly increased following the intervention. Moreover, the number of deaths during hospitalization using wireless FEES evaluation was lower than those observed using the conventional system. Wi-Fi-based wireless FEES system, the first of its kind, allowed our multidisciplinary team to easily and effectively assess inpatients with dysphagia by facilitating simple examinations and intensive transprofessional discussions for patient rehabilitation. © The Author(s) 2016.

  14. Amyloidosis involving the respiratory system: 5-year's experience of a multi-disciplinary group's activity.

    PubMed

    Scala, Raffaele; Maccari, Uberto; Madioni, Chiara; Venezia, Duccio; La Magra, Lidia Calogera

    2015-01-01

    Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients' clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma). It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice.

  15. Amyloidosis involving the respiratory system: 5-year's experience of a multi-disciplinary group's activity

    PubMed Central

    Scala, Raffaele; Maccari, Uberto; Madioni, Chiara; Venezia, Duccio; La Magra, Lidia Calogera

    2015-01-01

    Amyloidosis may involve the respiratory system with different clinical-radiological-functional patterns which are not always easy to be recognized. A good level of knowledge of the disease, an active integration of the pulmonologist within a multidisciplinary setting and a high level of clinical suspicion are necessary for an early diagnosis of respiratory amyloidosis. The aim of this retrospective study was to evaluate the number and the patterns of amyloidosis involving the respiratory system. We searched the cases of amyloidosis among patients attending the multidisciplinary rare and diffuse lung disease outpatients' clinic of Pulmonology Unit of the Hospital of Arezzo from 2007 to 2012. Among the 298 patients evaluated during the study period, we identified three cases of amyloidosis with involvement of the respiratory system, associated or not with other extra-thoracic localizations, whose diagnosis was histo-pathologically confirmed after the pulmonologist, the radiologist, and the pathologist evaluation. Our experience of a multidisciplinary team confirms that intra-thoracic amyloidosis is an uncommon disorder, representing 1.0% of the cases of rare and diffuse lung diseases referred to our center. The diagnosis of the disease is not always easy and quick as the amyloidosis may involve different parts of the respiratory system (airways, pleura, parenchyma). It is therefore recommended to remind this orphan disease in the differential diagnosis of the wide clinical scenarios the pulmonologist may intercept in clinical practice. PMID:26229565

  16. CONDUIT: A New Multidisciplinary Integration Environment for Flight Control Development

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Colbourne, Jason D.; Morel, Mark R.; Biezad, Daniel J.; Levine, William S.; Moldoveanu, Veronica

    1997-01-01

    A state-of-the-art computational facility for aircraft flight control design, evaluation, and integration called CONDUIT (Control Designer's Unified Interface) has been developed. This paper describes the CONDUIT tool and case study applications to complex rotary- and fixed-wing fly-by-wire flight control problems. Control system analysis and design optimization methods are presented, including definition of design specifications and system models within CONDUIT, and the multi-objective function optimization (CONSOL-OPTCAD) used to tune the selected design parameters. Design examples are based on flight test programs for which extensive data are available for validation. CONDUIT is used to analyze baseline control laws against pertinent military handling qualities and control system specifications. In both case studies, CONDUIT successfully exploits trade-offs between forward loop and feedback dynamics to significantly improve the expected handling, qualities and minimize the required actuator authority. The CONDUIT system provides a new environment for integrated control system analysis and design, and has potential for significantly reducing the time and cost of control system flight test optimization.

  17. System controls challenges of hypersonic combined-cycle engine powered vehicles

    NASA Technical Reports Server (NTRS)

    Morrison, Russell H.; Ianculescu, George D.

    1992-01-01

    Hypersonic aircraft with air-breathing engines have been described as the most complex and challenging air/space vehicle designs ever attempted. This is particularly true for aircraft designed to accelerate to orbital velocities. The propulsion system for the National Aerospace Plane will be an active factor in maintaining the aircraft on course. Typically addressed are the difficulties with the aerodynamic vehicle design and development, materials limitations and propulsion performance. The propulsion control system requires equal materials limitations and propulsion performance. The propulsion control system requires equal concern. Far more important than merely a subset of propulsion performance, the propulsion control system resides at the crossroads of trajectory optimization, engine static performance, and vehicle-engine configuration optimization. To date, solutions at these crossroads are multidisciplinary and generally lag behind the broader performance issues. Just how daunting these demands will be is suggested. A somewhat simplified treatment of the behavioral characteristics of hypersonic aircraft and the issues associated with their air-breathing propulsion control system design are presented.

  18. Profile of patients with uveitis referred to a multidisciplinary unit in northern Spain.

    PubMed

    Fanlo, P; Heras, H; Pérez, D; Tiberio, G; Espinosa, G; Adan, A

    2017-05-01

    To describe the main characteristics of a cohort of patients with uveitis referred to a multidisciplinary unit in northern Spain. Retrospective analysis of clinical records of patients evaluated in the Multidisciplinary Unit of the Navarra Hospital Complex from the period January 2010 until March 2015. An analysis was performed on the demographic characteristics, origin, types of uveitis, laterality, and aetiology. The present series was also compared with 2 previous series from Castilla y León and Barcelona. A total of 500 patients were identified, with a mean age of 47.9±16.4 years, with 50% women. The most frequent type of uveitis was anterior uveitis (65.4%), followed by posterior uveitis (17.6%), panuveitis (15.2%), and intermediate uveitis (1.8%). The origin was unclassifiable in 31.2%, followed by non-infectious systemic disease in 29.2%. Ankylosing spondylitis was the most frequent cause in 10.8% of patients, followed by herpes infection in 9.2%, and toxoplasmosis in 7.8%, respectively. Compared with the 2other cohorts, the present cohort showed a higher proportion of unilateral anterior uveitis. Furthermore, the patients from the Navarra series had a higher prevalence of unilateral and idiopathic uveitis compared to the series from Barcelona. The main characteristics of the present cohort of patients with uveitis are similar to those of patients from other regions of our country. Unilateral anterior uveitis and idiopathic uveitis were the most frequent in our series. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. STARS: An Integrated, Multidisciplinary, Finite-Element, Structural, Fluids, Aeroelastic, and Aeroservoelastic Analysis Computer Program

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1997-01-01

    A multidisciplinary, finite element-based, highly graphics-oriented, linear and nonlinear analysis capability that includes such disciplines as structures, heat transfer, linear aerodynamics, computational fluid dynamics, and controls engineering has been achieved by integrating several new modules in the original STARS (STructural Analysis RoutineS) computer program. Each individual analysis module is general-purpose in nature and is effectively integrated to yield aeroelastic and aeroservoelastic solutions of complex engineering problems. Examples of advanced NASA Dryden Flight Research Center projects analyzed by the code in recent years include the X-29A, F-18 High Alpha Research Vehicle/Thrust Vectoring Control System, B-52/Pegasus Generic Hypersonics, National AeroSpace Plane (NASP), SR-71/Hypersonic Launch Vehicle, and High Speed Civil Transport (HSCT) projects. Extensive graphics capabilities exist for convenient model development and postprocessing of analysis results. The program is written in modular form in standard FORTRAN language to run on a variety of computers, such as the IBM RISC/6000, SGI, DEC, Cray, and personal computer; associated graphics codes use OpenGL and IBM/graPHIGS language for color depiction. This program is available from COSMIC, the NASA agency for distribution of computer programs.

  20. A Multidisciplinary Model for Development of Intelligent Computer-Assisted Instruction.

    ERIC Educational Resources Information Center

    Park, Ok-choon; Seidel, Robert J.

    1989-01-01

    Proposes a schematic multidisciplinary model to help developers of intelligent computer-assisted instruction (ICAI) identify the types of required expertise and integrate them into a system. Highlights include domain types and expertise; knowledge acquisition; task analysis; knowledge representation; student modeling; diagnosis of learning needs;…

  1. An Extensible, Interchangeable and Sharable Database Model for Improving Multidisciplinary Aircraft Design

    NASA Technical Reports Server (NTRS)

    Lin, Risheng; Afjeh, Abdollah A.

    2003-01-01

    Crucial to an efficient aircraft simulation-based design is a robust data modeling methodology for both recording the information and providing data transfer readily and reliably. To meet this goal, data modeling issues involved in the aircraft multidisciplinary design are first analyzed in this study. Next, an XML-based. extensible data object model for multidisciplinary aircraft design is constructed and implemented. The implementation of the model through aircraft databinding allows the design applications to access and manipulate any disciplinary data with a lightweight and easy-to-use API. In addition, language independent representation of aircraft disciplinary data in the model fosters interoperability amongst heterogeneous systems thereby facilitating data sharing and exchange between various design tools and systems.

  2. [Evaluation of electronic health programs in Peru: multidisciplinary approach and current perspectives].

    PubMed

    Henríquez-Suarez, Milagro; Becerra-Vera, Charito E; Laos-Fernández, Elena L; Espinoza-Portilla, Elizabeth

    2017-01-01

    Electronic health (eHealth) requires a multidisciplinary approach and involves different areas of knowledge, including medicine, computer science, engineering, sociology, anthropology, social work, administration, law, and communication sciences. The assessment of eHealth should consider that information and communication technologies (ICTs) are only part of the information system of an organization. Understanding the human factors involved in health systems, the environment, and the contexts in which ICTs are used in health is essential. The objectives of this study were to describe the status of the assessment of eHealth in Peru and to discuss the strategies for multidisciplinary evaluation that should be considered to achieve the success and sustainability of these initiatives based on national and international experience.

  3. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    NASA Technical Reports Server (NTRS)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  4. Effective Team Support: From Task and Cognitive Modeling to Software Agents for Time-Critical Complex Work Environments

    NASA Technical Reports Server (NTRS)

    Remington, Roger W. (Technical Monitor); John, Bonnie E.; Sycara, Katia

    2005-01-01

    The purpose of this research contract was to perform multidisciplinary research between CMU psychologists, computer scientists and NASA researchers to design a next generation collaborative system to support a team of human experts and intelligent agents. To achieve robust performance enhancement of such a system, we had proposed to perform task and cognitive modeling to thoroughly understand the impact technology makes on the organization and on key individual personnel. Guided by cognitively-inspired requirements, we would then develop software agents that support the human team in decision making, information filtering, information distribution and integration to enhance team situational awareness. During the period covered by this final report, we made substantial progress in completing a system for empirical data collection, cognitive modeling, and the building of software agents to support a team's tasks, and in running experiments for the collection of baseline data.

  5. Sensor Integration in a Low Cost Land Mobile Mapping System

    PubMed Central

    Madeira, Sergio; Gonçalves, José A.; Bastos, Luísa

    2012-01-01

    Mobile mapping is a multidisciplinary technique which requires several dedicated equipment, calibration procedures that must be as rigorous as possible, time synchronization of all acquired data and software for data processing and extraction of additional information. To decrease the cost and complexity of Mobile Mapping Systems (MMS), the use of less expensive sensors and the simplification of procedures for calibration and data acquisition are mandatory features. This article refers to the use of MMS technology, focusing on the main aspects that need to be addressed to guarantee proper data acquisition and describing the way those aspects were handled in a terrestrial MMS developed at the University of Porto. In this case the main aim was to implement a low cost system while maintaining good quality standards of the acquired georeferenced information. The results discussed here show that this goal has been achieved. PMID:22736985

  6. [Application of digital design of orthodontic-prosthodontic multidisciplinary treatment plan in esthetic rehabilitation of anterior teeth].

    PubMed

    Liu, Y S; Li, Z; Zhao, Y J; Ye, H Q; Zhou, Y Q; Hu, W J; Liu, Y S; Xun, C L; Zhou, Y S

    2018-02-18

    To develop a digital workflow of orthodontic-prosthodontic multidisciplinary treatment plan which can be applied in complicated anterior teeth esthetic rehabilitation, in order to enhance the efficiency of communication between dentists and patients, and improve the predictability of treatment outcome. Twenty patients with the potential needs of orthodontic-prosthodontic multidisciplinary treatment to solve their complicated esthetic problems in anterior teeth were recruited in this study. Digital models of patients' both dental arches and soft tissues were captured using intra oral scanner. Direct prosthodontic (DP) treatment plan and orthodontic-prosthodontic (OP) treatment plan were carried out for each patient. For DP treatment plans, digital wax-up models were directly designed on original digital models using prosthodontic design system. For OP treatment plans, virtual-setups were performed using orthodontic analyze system according to orthodontic and esthetic criteria and imported to prosthodontic design system to finalize the digital wax-up models. These two treatment plans were shown to the patients and demonstrated elaborately. Each patient rated two treatment plans using visual analogue scales and the medians of scores of two treatment plans were analyzed using signed Wilcoxon test. Having taken into consideration various related factors, including time, costs of treatment, each patient chose a specific treatment plan. For the patients chose DP treatment plans, digital wax-up models were exported and printed into resin diagnostic models which would be utilized in the prosthodontic treatment process. For the patients chose OP treatment plans, virtual-setups were used to fabricate aligners or indirect bonding templates and digital wax-up models were also exported and printed into resin diagnostic models for prosthodontic treatment after orthodontic treatment completed. The medians of scores of DP treatment plan and OP treatment plan were calculated and analyzed by IBM SPSS 20. The median of scores of DP treatment plan was 8.4, the minimum value was 6.9 and the maximum value was 9.3. The median of scores of OP treatment plan was 9.0, the minimum value was 7.9 and the maximum value was 9.6. The median of scores of OP was significantly higher than that of DP (Z=-3.23, P<0.01). Finally, 12 patients chose OP treatment plans and 8 patients chose DP treatment plans. For cases with complex esthetic problems in anterior teeth, a digital workflow can demonstrate final treatment outcome and help patients make suitable treatment decisions. In our study, the orthodontic-prosthodontic multidisciplinary treatment plan is feasible which can provide predictions of treatment outcome and improve esthetic outcome with patients' satisfaction.

  7. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  8. A practice-based information system for multi-disciplinary care of chronically ill patients: what information do we need? The Community Care Coordination Network Database Group.

    PubMed Central

    Moran, W. P.; Messick, C.; Guerette, P.; Anderson, R.; Bradham, D.; Wofford, J. L.; Velez, R.

    1994-01-01

    Primary care physicians provide longitudinal care for chronically ill individuals in concert with many other community-based disciplines. The care management of these individuals requires data not traditionally collected during the care of well, or acutely ill individuals. These data not only concern the patient, in the form of patient functional status, mental status and affect, but also pertain to the caregiver, home environment, and the formal community health and social service system. The goal of the Community Care Coordination Network is to build a primary care-based information system to share patient data and communicate patient related information among the community-based multi-disciplinary teams. One objective of the Community Care Coordination Network is to create a Community Care Database for chronically ill individuals by identifying those data elements necessary for efficient multi-disciplinary care. PMID:7949995

  9. Why and how to include anthropological perspective into multidisciplinary research in the Polish health system.

    PubMed

    Witeska-Młynarczyk, Anna D

    2012-01-01

    The article focuses on ways in which anthropological knowledge, incorporated into multidisciplinary and multilevel research projects, can be applied for understanding health- and illness-related behaviours and functioning of the health system in Poland. It selectively presents potential theoretical and methodological contributions of the anthropological discipline to the field of applied health research, and briefly reviews selected ethnographic theories and methods for researching and interpreting socio-cultural conditioning of healing, health and illness related practices. The review focuses on the following approaches: Critical Medical Anthropology, Cultural Interpretive Theory, phenomenology, narrative analysis, and the biography of pharmaceuticals. The author highlights the need for team work and use of a holistic perspective while analyzing the health system in Poland, and underlines the need for serious attention and financial support to be given to multidisciplinary research projects of which anthropology is a part.

  10. Sensitivity Analysis Based Approaches for Mitigating the Effects of Reducible Interval Input Uncertainty on Single- and Multi-Disciplinary Systems Using Multi-Objective Optimization

    DTIC Science & Technology

    2010-01-01

    Multi-Disciplinary, Multi-Output Sensitivity Analysis ( MIMOSA ) .........29 3.1 Introduction to Research Thrust 1...39 3.3 MIMOSA Approach ..........................................................................................41 3.3.1...Collaborative Consistency of MIMOSA .......................................................41 3.3.2 Formulation of MIMOSA

  11. User's guide for ENSAERO: A multidisciplinary program for fluid/structural/control interaction studies of aircraft (release 1)

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    1994-01-01

    Strong interactions can occur between the flow about an aerospace vehicle and its structural components resulting in several important aeroelastic phenomena. These aeroelastic phenomena can significantly influence the performance of the vehicle. At present, closed-form solutions are available for aeroelastic computations when flows are in either the linear subsonic or supersonic range. However, for aeroelasticity involving complex nonlinear flows with shock waves, vortices, flow separations, and aerodynamic heating, computational methods are still under development. These complex aeroelastic interactions can be dangerous and limit the performance of aircraft. Examples of these detrimental effects are aircraft with highly swept wings experiencing vortex-induced aeroelastic oscillations, transonic regime at which the flutter speed is low, aerothermoelastic loads that play a critical role in the design of high-speed vehicles, and flow separations that often lead to buffeting with undesirable structural oscillations. The simulation of these complex aeroelastic phenomena requires an integrated analysis of fluids and structures. This report presents a summary of the development, applications, and procedures to use the multidisciplinary computer code ENSAERO. This code is based on the Euler/Navier-Stokes flow equations and modal/finite-element structural equations.

  12. New Approaches to HSCT Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schrage, Daniel P.; Craig, James I.; Fulton, Robert E.; Mistree, Farrokh

    1999-01-01

    New approaches to MDO have been developed and demonstrated during this project on a particularly challenging aeronautics problem- HSCT Aeroelastic Wing Design. To tackle this problem required the integration of resources and collaboration from three Georgia Tech laboratories: ASDL, SDL, and PPRL, along with close coordination and participation from industry. Its success can also be contributed to the close interaction and involvement of fellows from the NASA Multidisciplinary Analysis and Optimization (MAO) program, which was going on in parallel, and provided additional resources to work the very complex, multidisciplinary problem, along with the methods being developed. The development of the Integrated Design Engineering Simulator (IDES) and its initial demonstration is a necessary first step in transitioning the methods and tools developed to larger industrial sized problems of interest. It also provides a framework for the implementation and demonstration of the methodology. Attachment: Appendix A - List of publications. Appendix B - Year 1 report. Appendix C - Year 2 report. Appendix D - Year 3 report. Appendix E - accompanying CDROM.

  13. Job Loss: An Individual Level Review and Model.

    ERIC Educational Resources Information Center

    DeFrank, Richard S.; Ivancevich, John M.

    1986-01-01

    Reviews behavioral, medical, and social science literature to illustrate the complexity and multidisciplinary nature of the job loss experience and provides a conceptual model to examine individual responses to job loss. Emphasizes the importance of including organizational-relevant variables in individual level conceptualizations and proposed…

  14. Facilitating Argumentative Knowledge Construction through a Transactive Discussion Script in CSCL

    ERIC Educational Resources Information Center

    Noroozi, Omid; Weinberger, Armin; Biemans, Harm J. A.; Mulder, Martin; Chizari, Mohammad

    2013-01-01

    Learning to argue is prerequisite to solving complex problems in groups, especially when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) can be designed to facilitate argumentative knowledge construction. This study investigates how argumentative knowledge construction in…

  15. Interdisciplinary Analysis and Global Policy Studies.

    ERIC Educational Resources Information Center

    Meeks, Philip

    This paper examines ways in which interdisciplinary and multidisciplinary analysis of global policy studies can increase understanding of complex global problems. Until recently, social science has been the discipline most often turned to for techniques and methodology to analyze social problems and behaviors. However, because social science…

  16. Recent patents therapeutic agents for cancer.

    PubMed

    Li, Xun; Xu, Wenfang

    2006-06-01

    Cancer is one of the most dreaded diseases with a complex pathogenesis, which threats human life greatly. Multidisciplinary scientific investigations are making best efforts to combat this disease and put to the identification of novel anticancer agents. Patent anticancer agents registered in China are therefore increasing dramatically during the past ten years, which will be reviewed briefly in this article. platinum complexes anthracycline analogs (including doxorubicin derivatives) quinoline analogs podophyllotoxins analogs taxane analogs camptothecin (CPT) analogs.

  17. Evaluating the effect of a web-based quality improvement system with feedback and outreach visits on guideline concordance in the field of cardiac rehabilitation: rationale and study protocol.

    PubMed

    van Engen-Verheul, Mariëtte M; de Keizer, Nicolette F; van der Veer, Sabine N; Kemps, Hareld M C; Scholte op Reimer, Wilma J M; Jaspers, Monique W M; Peek, Niels

    2014-12-31

    Implementation of clinical practice guidelines into daily care is hampered by a variety of barriers related to professional knowledge and collaboration in teams and organizations. To improve guideline concordance by changing the clinical decision-making behavior of professionals, computerized decision support (CDS) has been shown to be one of the most effective instruments. However, to address barriers at the organizational level, additional interventions are needed. Continuous monitoring and systematic improvement of quality are increasingly used to achieve change at this level in complex health care systems. The study aims to assess the effectiveness of a web-based quality improvement (QI) system with indicator-based performance feedback and educational outreach visits to overcome organizational barriers for guideline concordance in multidisciplinary teams in the field of cardiac rehabilitation (CR). A multicenter cluster-randomized trial with a balanced incomplete block design will be conducted in 18 Dutch CR clinics using an electronic patient record with CDS at the point of care. The intervention consists of (i) periodic performance feedback on quality indicators for CR and (ii) educational outreach visits to support local multidisciplinary QI teams focussing on systematically improving the care they provide. The intervention is supported by a web-based system which provides an overview of the feedback and facilitates development and monitoring of local QI plans. The primary outcome will be concordance to national CR guidelines with respect to the CR needs assessment and therapy indication procedure. Secondary outcomes are changes in performance of CR clinics as measured by structure, process and outcome indicators, and changes in practice variation on these indicators. We will also conduct a qualitative process evaluation (concept-mapping methodology) to assess experiences from participating CR clinics and to gain insight into factors which influence the implementation of the intervention. To our knowledge, this will be the first study to evaluate the effect of providing performance feedback with a web-based system that incorporates underlying QI concepts. The results may contribute to improving CR in the Netherlands, increasing knowledge on facilitators of guideline implementation in multidisciplinary health care teams and identifying success factors of multifaceted feedback interventions. NTR3251.

  18. [Multidisciplinary oncopalliative meeting: Aims and pratical recommendations].

    PubMed

    Goldwasser, François; Nisenbaum, Nathalie; Vinant, Pascale; Balladur, Elisabeth; Dauchy, Sarah; Farota-Romejko, Idriss; Colombet, Isabelle; Alby, Marie-Laure; Giroux, Julie; Larrouy, Anne; Destaintot, Elisabeth; Garcon, Luc; Legrand, Danièle; Marin, Isabelle

    2018-05-01

    Progress leads to increase life duration at the metastatic stage but metastatic disease is most often lethal. Decision-making is necessary for an increasing period of care, beyond evidence-based medicine, dealing with complexity and uncertain benefit/risk ratio. This requires to inform the patient realistically, to discuss prognostication, to develop anticipated written preferences. These changes mean to pass from a medicine based on informed consent to medicine based on respect of the patient wishes even if it can be complex to determine. A new multidisciplinarity is needed, centered on the meaning of the care, the proportionality of the care, the anticipated patient trajectory. The ASCO has published recommendations on early palliative care. The timing and the quality of the discussion between palliative care specialists and oncologists is crucial. We propose 10 steps to organize a multidisciplinary onco-palliative meeting, as it appears the key for the organization of care in non-curable disease. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  19. Multidisciplinary team, working with elderly persons living in the community: a systematic literature review.

    PubMed

    Johansson, Gudrun; Eklund, Kajsa; Gosman-Hedström, Gunilla

    2010-01-01

    As the number of elderly persons with complex health needs is increasing, teams for their care have been recommended as a means of meeting these needs, particularly in the case of elderly persons with multi-diseases. Occupational therapists, in their role as team members, exert significant influence in guiding team recommendations. However, it has been emphasized that there is a lack of sound research to show the impact of teamwork from the perspective of elderly persons. The aim of this paper was to explore literature concerning multidisciplinary teams that work with elderly persons living in the community. The research method was a systematic literature review and a total of 37 articles was analysed. The result describes team organisation, team intervention and outcome, and factors that influence teamwork. Working in a team is multifaceted and complex. It is important to enhance awareness about factors that influence teamwork. The team process itself is also of great importance. Clinical implications for developing effective and efficient teamwork are also presented and discussed.

  20. Innovative health care delivery teams: learning to be a team player is as important as learning other specialised skills.

    PubMed

    Fitzgerald, Anneke; Davison, Graydon

    2008-01-01

    The purpose of the paper is to show that free flowing teamwork depends on at least three aspects of team life: functional diversity, social cohesion and superordinate identity. The paper takes the approach of a discussion, arguing for a strong need to understand multidisciplinary and cross-functional barriers for achieving team goals in the context of health care. These barriers include a strong medically dominated business model, historically anchored delineations between professional identities and a complex organisational environment where individuals may have conflicting goals. The paper finds that the complexity is exacerbated by the differences between and within health care teams. It illustrates the differences by presenting the case of an operating theatre team. Whilst the paper recommends some ideas for acquiring these skills, further research is needed to assess effectiveness and influence of team skills training on optimising multidisciplinary interdependence in the health care environment. The paper shows that becoming a team member requires team membership skills.

  1. Multidisciplinary Analysis and Optimization Generation 1 and Next Steps

    NASA Technical Reports Server (NTRS)

    Naiman, Cynthia Gutierrez

    2008-01-01

    The Multidisciplinary Analysis & Optimization Working Group (MDAO WG) of the Systems Analysis Design & Optimization (SAD&O) discipline in the Fundamental Aeronautics Program s Subsonic Fixed Wing (SFW) project completed three major milestones during Fiscal Year (FY)08: "Requirements Definition" Milestone (1/31/08); "GEN 1 Integrated Multi-disciplinary Toolset" (Annual Performance Goal) (6/30/08); and "Define Architecture & Interfaces for Next Generation Open Source MDAO Framework" Milestone (9/30/08). Details of all three milestones are explained including documentation available, potential partner collaborations, and next steps in FY09.

  2. Integrating team training strategies into obstetrical emergency simulation training.

    PubMed

    Daniel, Linda T; Simpson, Ellen K

    2009-01-01

    Successful management of obstetrical emergencies such as shoulder dystocia requires the coordinated efforts of a multidisciplinary team of professionals. Simulation education provides an opportunity to learn and master simple as well as complex technical skills needed in emergent situations. Team training has been shown to improve the quality of communication among team members and consequently has an enormous impact on human performance. In the healthcare environment, especially obstetrics where the stakes are high, integrating team training into simulation education can advance efforts to create and sustain a culture of safety. With over 7,100 deliveries annually, our 1,100-bed, two-hospital regional healthcare system embarked on this journey to advance the culture of safety.

  3. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    NASA Technical Reports Server (NTRS)

    Tumer, Irem; Mehr, Ali Farhang

    2005-01-01

    In this paper, a two-level multidisciplinary design approach is described to optimize the effectiveness of ISHM s. At the top level, the overall safety of the mission consists of system-level variables, parameters, objectives, and constraints that are shared throughout the system and by all subsystems. Each subsystem level will then comprise of these shared values in addition to subsystem-specific variables, parameters, objectives and constraints. A hierarchical structure will be established to pass up or down shared values between the two levels with system-level and subsystem-level optimization routines.

  4. A multidisciplinary approach to solving computer related vision problems.

    PubMed

    Long, Jennifer; Helland, Magne

    2012-09-01

    This paper proposes a multidisciplinary approach to solving computer related vision issues by including optometry as a part of the problem-solving team. Computer workstation design is increasing in complexity. There are at least ten different professions who contribute to workstation design or who provide advice to improve worker comfort, safety and efficiency. Optometrists have a role identifying and solving computer-related vision issues and in prescribing appropriate optical devices. However, it is possible that advice given by optometrists to improve visual comfort may conflict with other requirements and demands within the workplace. A multidisciplinary approach has been advocated for solving computer related vision issues. There are opportunities for optometrists to collaborate with ergonomists, who coordinate information from physical, cognitive and organisational disciplines to enact holistic solutions to problems. This paper proposes a model of collaboration and examples of successful partnerships at a number of professional levels including individual relationships between optometrists and ergonomists when they have mutual clients/patients, in undergraduate and postgraduate education and in research. There is also scope for dialogue between optometry and ergonomics professional associations. A multidisciplinary approach offers the opportunity to solve vision related computer issues in a cohesive, rather than fragmented way. Further exploration is required to understand the barriers to these professional relationships. © 2012 The College of Optometrists.

  5. Six easy steps on how to create a lean sigma value stream map for a multidisciplinary clinical operation.

    PubMed

    Lee, Emily; Grooms, Richard; Mamidala, Soumya; Nagy, Paul

    2014-12-01

    Value stream mapping (VSM) is a very useful technique to visualize and quantify the complex workflows often seen in clinical environments. VSM brings together multidisciplinary teams to identify parts of processes, collect data, and develop interventional ideas. An example involving pediatric MRI with general anesthesia VSM is outlined. As the process progresses, the map shows a large delay between the fax referral and the date of the scheduled and registered appointment. Ideas for improved efficiency and metrics were identified to measure improvement within a 6-month period, and an intervention package was developed for the department. Copyright © 2014. Published by Elsevier Inc.

  6. Managing MDO Software Development Projects

    NASA Technical Reports Server (NTRS)

    Townsend, J. C.; Salas, A. O.

    2002-01-01

    Over the past decade, the NASA Langley Research Center developed a series of 'grand challenge' applications demonstrating the use of parallel and distributed computation and multidisciplinary design optimization. All but the last of these applications were focused on the high-speed civil transport vehicle; the final application focused on reusable launch vehicles. Teams of discipline experts developed these multidisciplinary applications by integrating legacy engineering analysis codes. As teams became larger and the application development became more complex with increasing levels of fidelity and numbers of disciplines, the need for applying software engineering practices became evident. This paper briefly introduces the application projects and then describes the approaches taken in project management and software engineering for each project; lessons learned are highlighted.

  7. [Care continuity for patients with Prader-Willi syndrome during transition from childhood to adulthood].

    PubMed

    Saitoh, Shinji

    2010-01-01

    Prader-Willi syndrome(PWS) is a complex multisystem genetic disorder, of which characteristic phenotypes include neonatal hypotonia, hyperphagia resulting in obesity, mental retardation, hypogonadism, and behavioral and psychiatric problems. The diagnosis can be obtained as early as during neonatal period thanks to development of genetic testing. Clinical features of PWS will change depending on age, although core phenotypes of hyperphagia, obesity and psychiatric issues stay for lifetime. Therefore, integrated multidisciplinary approach starting from neonatal period is mandatory to ensure optimal management to improve lifelong quality of life. For successful transition from childhood to adulthood, multidisciplinary team need to share clinical information, and should keep the same policy about food, environment and psychiatric issues.

  8. A multidisciplinary database for global distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, P.J.

    The issue of selenium toxicity in the environment has been documented in the scientific literature for over 50 years. Recent studies reveal a complex connection between selenium and human and animal populations. This article introduces a bibliographic citation database on selenium in the environment developed for global distribution via the Internet by the University of Wyoming Libraries. The database incorporates material from commercial sources, print abstracts, indexes, and U.S. government literature, resulting in a multidisciplinary resource. Relevant disciplines include, biology, medicine, veterinary science, botany, chemistry, geology, pollution, aquatic sciences, ecology, and others. It covers the years 1985-1996 for most subjectmore » material, with additional years being added as resources permit.« less

  9. A Health Information System for Scalable and Comprehensive Assessment of Well-Being: A Multidisciplinary Team Solution.

    PubMed

    Zhou, Leming; Watzlaf, Valerie; Abernathy, Paul; Abdelhak, Mervat

    2017-01-01

    To improve the health and well-being of the medically underserved in a free clinic in Pittsburgh, Pennsylvania, a multidisciplinary team representing several health information management and information technology (IT) professionals, including faculty, students, researchers, and clinicians, created a novel IT system called imHealthy. The imHealthy system includes four critical components: a multidomain well-being questionnaire, a mobile app for data collection and tracking, a customization of an open-source electronic health record (EHR), and a data integration and well-being evaluation program leading to recommendations for personalized interventions to caregivers serving the medically underserved. This multidisciplinary team has worked closely on this project and finished critical components of the imHealthy system. Evaluations of these components will be conducted, and factors facilitating the design and adoption of the imHealthy system will be presented. The results from this research can serve as a model for free clinics with similar needs that identified by the research team in Cleveland, Indianapolis, Minnesota, Motor City, Orange County, San Diego, and St. Louis.

  10. Untreated pain, narcotics regulation, and global health ideologies.

    PubMed

    King, Nicholas B; Fraser, Veronique

    2013-01-01

    Pain management is marginalized or ignored, with millions of people worldwide unnecessarily living with untreated pain. Reducing global inequalities in untreated pain requires a concerted global effort, say Veronique Fraser and colleagues, which must attend to the complexity of pain and promote multimodal, multidisciplinary pain management.

  11. Authentic Education, the Deeper and Multidisciplinary Perspective of Education, from the Viewpoint of Analytical Psychology

    ERIC Educational Resources Information Center

    Watagodakumbura, Chandana

    2014-01-01

    In this paper, the authentic education system defined with multidisciplinary perspectives (Watagodakumbura, 2013a, 2013b) is viewed from an additional perspective of analytical psychology. Analytical psychology provides insights into human development and is becoming more and more popular among practicing psychologist in the recent past. In…

  12. Multidisciplinary Concurrent Design Optimization via the Internet

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Kelkar, Atul G.; Koganti, Gopichand

    2001-01-01

    A methodology is presented which uses commercial design and analysis software and the Internet to perform concurrent multidisciplinary optimization. The methodology provides a means to develop multidisciplinary designs without requiring that all software be accessible from the same local network. The procedures are amenable to design and development teams whose members, expertise and respective software are not geographically located together. This methodology facilitates multidisciplinary teams working concurrently on a design problem of common interest. Partition of design software to different machines allows each constituent software to be used on the machine that provides the most economy and efficiency. The methodology is demonstrated on the concurrent design of a spacecraft structure and attitude control system. Results are compared to those derived from performing the design with an autonomous FORTRAN program.

  13. Management of skeletal metastases: An orthopaedic surgeon's guide

    PubMed Central

    Agarwal, Manish G; Nayak, Prakash

    2015-01-01

    Skeletal metastasis is a common cause of severe morbidity, reduction in quality of life (QOL) and often early mortality. Its prevalence is rising due to a higher rate of diagnosis, better systemic treatment, longer lives with the disease and higher disease burden rate. As people with cancer live longer and with rising sensitivity of body imaging and surveillance, the incidence of pathological fracture, metastatic epidural cord compression is rising and constitutes a challenge for the orthopedic surgeon to maintain their QOL. Metastatic disease is no longer a death sentence condemning patients to “terminal care.” In the era of multidisciplinary care and effective systemic targeted and nontargeted therapy, patient expectations of QOL, even during palliative end of care period is high. We lay emphasis on proving the diagnosis of metastasis by biopsy and histopathology and discuss imaging modalities to help estimate fracture risk and map disease extent. This article discusses at length the evidence and decision-making process of various modalities to treat skeletal metastasis. The modalities range from radiation including image-guided, stereotactic and whole body radiation, systemic targeted or hormonal therapy, spinal decompression with or without stabilization, extended curettage with stabilization, resection in select cases with megaprosthetic or biological reconstruction, percutaneous procedures using radio frequency ablation, cementoplasties and discusses the role of emerging modalities like high frequency ultrasound-guided ablation, cryotherapy and whole body radionuclide therapy. The focus lies on the role of multidisciplinary care, which considers complex decisions on patient centric prognosis, comorbidities, cost, feasibility and expectations in order to maximize outcomes on QOL issues. PMID:25593359

  14. Multidisciplinary Design Technology Development: A Comparative Investigation of Integrated Aerospace Vehicle Design Tools

    NASA Technical Reports Server (NTRS)

    Renaud, John E.; Batill, Stephen M.; Brockman, Jay B.

    1999-01-01

    This research effort is a joint program between the Departments of Aerospace and Mechanical Engineering and the Computer Science and Engineering Department at the University of Notre Dame. The purpose of the project was to develop a framework and systematic methodology to facilitate the application of Multidisciplinary Design Optimization (MDO) to a diverse class of system design problems. For all practical aerospace systems, the design of a systems is a complex sequence of events which integrates the activities of a variety of discipline "experts" and their associated "tools". The development, archiving and exchange of information between these individual experts is central to the design task and it is this information which provides the basis for these experts to make coordinated design decisions (i.e., compromises and trade-offs) - resulting in the final product design. Grant efforts focused on developing and evaluating frameworks for effective design coordination within a MDO environment. Central to these research efforts was the concept that the individual discipline "expert", using the most appropriate "tools" available and the most complete description of the system should be empowered to have the greatest impact on the design decisions and final design. This means that the overall process must be highly interactive and efficiently conducted if the resulting design is to be developed in a manner consistent with cost and time requirements. The methods developed as part of this research effort include; extensions to a sensitivity based Concurrent Subspace Optimization (CSSO) NMO algorithm; the development of a neural network response surface based CSSO-MDO algorithm; and the integration of distributed computing and process scheduling into the MDO environment. This report overviews research efforts in each of these focus. A complete bibliography of research produced with support of this grant is attached.

  15. Phase-based treatment of a complex severely mentally ill case involving complex posttraumatic stress disorder and psychosis related to Dandy Walker syndrome.

    PubMed

    Mauritz, Maria W; van de Sande, Roland; Goossens, Peter J J; van Achterberg, Theo; Draijer, Nel

    2014-01-01

    For patients with comorbid complex posttraumatic stress disorder (PTSD) and psychotic disorder, trauma-focused therapy may be difficult to endure. Phase-based treatment including (a) stabilization, (b) trauma-focused therapy, and (c) integration of personality with recovery of connection appears to be the treatment of choice. The objective of this article is to describe and evaluate the therapeutic process of a single case from a holistic perspective. We present a case report of a 47-year-old woman treated for severe complex PTSD resulting from repeated sexual and physical abuse in early childhood and moderate psychotic symptoms stemming from Dandy Walker Syndrome with hydrocephalus. The patient was treated with quetiapine (600-1,000 mg) and citalopram (40 mg). Stabilization consisted of intensive psychiatric nursing care in the home and stabilizing group treatment for complex PTSD. After stabilization, the following symptom domains showed improvement: self-regulation, self-esteem, assertiveness, avoidance of social activities, and negative cognitions. However, intrusions and arousal persisted and were therefore subsequently treated with prolonged imaginary exposure that also included narrative writing assignments and a final closing ritual. This intensive multidisciplinary, phase-based approach proved effective: All symptoms of complex PTSD were in full remission. Social integration and recovery were promoted with the reduction of polypharmacy and the provision of social skills training and lifestyle training. The present case shows a phase-based treatment approach with multidisciplinary collaborative care to be effective for the treatment of a case of complex PTSD with comorbid psychotic disorder stemming from severe neurological impairment. Replication of this promising approach is therefore called for.

  16. Evaluation of the impact of a clinical pathway on the organization of a multidisciplinary dental sleep clinic.

    PubMed

    Ten Berge, D M; Braem, M J; Altenburg, A; Dieltjens, M; Van de Heyning, P H; Vanhaecht, K; Vanderveken, O M

    2014-05-01

    Clinical pathways are used to organize complex care processes by providing structure and standardization. The multidisciplinary approach of oral appliance (OA) therapy for sleep-disordered breathing (SDB) is a complex and dynamic process suitable for such a structured pathway approach. A clinical pathway for patients referred for OA therapy was developed and implemented. The aim of this study was to evaluate the impact of this clinical pathway on the time to delivery of the OA and the organization of the multidisciplinary dental sleep clinic (MDSC). The latter was achieved using the care process self-evaluation tool (CPSET). First, development and implementation of the clinical pathway gave structure and shortened the mean time to delivery by 102 days (240 ± 70 vs. 138 ± 33 days) (Mann-Whitney U: P < 0.001). Second, the CPSET scores were obtained in a cohort of 49 healthcare professionals involved in the pathway. Overall, patient-focused organization received the highest scores (80.5 ± 9.0%), whereas cooperation with primary care received the lowest score (66.7 ± 12.4%). This is the first project on clinical pathways in OA therapy for SDB. The implementation of the pathway in our MDSC has created a significant shortening of the time to delivery. A first evaluation of the clinical pathway using the CPSET scores indicates that all disciplines involved should be thoroughly informed in an ongoing approach.

  17. Integrated Multidisciplinary Assessment of Environmentally Realistic Complex Mixtures of Drinking Water Disinfection ByProducts (DBPs) (The 4Lab Study)

    EPA Science Inventory

    More than 600 DBPs have been identified; yet ~50% of the total organic halide from chlorination is unidentified. Epidemiology studies suggest associations between human use of chlorinated water and reproductive/developmental effects (pregnancy loss, low birth weight), that are un...

  18. Management and treatment of mucosal melanoma of the genital tract.

    PubMed

    Vaccari, Sabina; Barisani, Alessia; Dika, Emi; Fanti, Pier A; DE Iaco, Pierandrea; Gurioli, Carlotta; Tosti, Giulio

    2017-06-01

    The melanoma of the genital mucosa is a rare melanocytic neoplasm that affects both sexes. The diagnosis is often delayed; videodermatoscopy may represent a useful diagnostic tool. The treatment is complex and multidisciplinary. We report the main diagnostic features and therapeutic approaches for mucosal melanoma of the genital tract.

  19. Voice of Experience International Research Infrastructure and the Impact of Export Control Regulations

    ERIC Educational Resources Information Center

    Kulakowski, Elliott C.; Chronister, Lynne; Molfese, Victoria; Slocum, Michael; Studman, Cliff; Waugaman, Paul

    2007-01-01

    Research today has become very complex, often involving international collaborations among multidisciplinary teams. Many institutions, especially those in less economically developed countries, have a great deal of expertise to contribute to these collaborations, but often lack the instrumentation, training, and research management infrastructure…

  20. Book Review: "The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, Second Edition"

    USDA-ARS?s Scientific Manuscript database

    The complexity of the biological, chemical, and physical interactions occurring in the volume of soil surrounding the root of a growing plant dictates that a multidisciplinary approach must be taken to improve our understanding of this rhizosphere. Hence, "The Rhizosphere: Biochemistry and Organic S...

  1. The Integration of Children Dependent on Medical Technology into Public Schools

    ERIC Educational Resources Information Center

    Raymond, Jill A.

    2009-01-01

    Advances in medicine have increased the survival rates of children with complex medical conditions, including those who are dependent on technology such as ventilators and tracheostomies. The process of integrating children dependent on medical technology into public schools requires the collaboration of a multidisciplinary team to ensure that…

  2. Enhanced Podcasts for Teaching Biochemistry to Veterinary Students

    ERIC Educational Resources Information Center

    Gough, Kevin C.

    2011-01-01

    The teaching of biochemistry within medical disciplines presents certain challenges; firstly to relay a large body of complex facts and abstract concepts, and secondly to motivate students that this relatively difficult topic is worth their time to study. Here, nutrient biochemistry was taught within a multidisciplinary module as part of an…

  3. Military Design Insights for Online Education Program Evaluation: A Revised Theoretical Construct

    ERIC Educational Resources Information Center

    Culkin, David T.

    2017-01-01

    This theoretical development article examines how design methodology currently applied in United States military doctrine can offer insights into the increasingly complex arena of program evaluations of online modes for adult distance education. The article presents key themes that emerge from a multidisciplinary literature review. These themes…

  4. Collaborative Observation and Research (CORE) Watersheds: new strategies for tracking the regional effects of climate change on complex systems

    NASA Astrophysics Data System (ADS)

    Murdoch, P. S.

    2007-12-01

    The past 30 years of environmental research have shown that our world is not made up of discrete components acting independently, but rather of a mosaic of complex relations among air, land, water, living resources, and human activities. Recent warming of the climate is having a significant effect on the functioning of those systems. A national imperative is developing to quickly establish local, regional, and national systems for anticipating environmental degradation from a changing climate and developing cost-effective adaptation or mitigation strategies. In these circumstances, the debate over research versus monitoring becomes moot--there is a clear need for the integrated application of both across a range of temporal and spatial scales. A national framework that effectively addresses the multiple scales and complex multi-disciplinary processes of climate change is being assembled largely from existing programs through collaboration among Federal, State, local, and NGO organizations. The result will be an observation and research network capable of interpreting complex environmental changes at a range of spatial and temporal scales, but at less cost than if the network were funded as an independent initiative. A pilot implementation of the collaborative framework in the Delaware River Basin yielded multi-scale assessments of carbon storage and flux, and the effects of forest fragmentation and soil calcium depletion on ecosystem function. A prototype of a national climate-effects observation and research network linking research watersheds, regional surveys, remote sensing, and ecosystem modeling is being initiated in the Yukon River Basin where carbon flux associated with permafrost thaw could accelerate global warming.

  5. Affordability Engineering: Bridging the Gap Between Design and Cost

    NASA Technical Reports Server (NTRS)

    Reeves, J. D.; DePasquale, Dominic; Lim, Evan

    2010-01-01

    Affordability is a commonly used term that takes on numerous meanings depending on the context used. Within conceptual design of complex systems, the term generally implies comparisons between expected costs and expected resources. This characterization is largely correct, but does not convey the many nuances and considerations that are frequently misunderstood and underappreciated. In the most fundamental sense, affordability and cost directly relate to engineering and programmatic decisions made throughout development programs. Systems engineering texts point out that there is a temporal aspect to this relationship, for decisions made earlier in a program dictate design implications much more so than those made during latter phases. This paper explores affordability engineering and its many sub-disciplines by discussing how it can be considered an additional engineering discipline to be balanced throughout the systems engineering and systems analysis processes. Example methods of multidisciplinary design analysis with affordability as a key driver will be discussed, as will example methods of data visualization, probabilistic analysis, and other ways of relating design decisions to affordability results.

  6. Automatic Selection of Clinical Trials Based on A Semantic Web Approach.

    PubMed

    Cuggia, Marc; Campillo-Gimenez, Boris; Bouzille, Guillaume; Besana, Paolo; Jouini, Wassim; Dufour, Jean-Charles; Zekri, Oussama; Gibaud, Isabelle; Garde, Cyril; Duvauferier, Regis

    2015-01-01

    Recruitment of patients in clinical trials is nowadays preoccupying, as the inclusion rate is particularly low. The main identified factors are the multiplicity of open clinical trials, the high number and complexity of eligibility criteria, and the additional workload that a systematic search of the clinical trials a patient could be enrolled in for a physician. The principal objective of the ASTEC project is to automate the prescreening phase during multidisciplinary meetings (MDM). This paper presents the evaluation of a computerized recruitment support systems (CRSS) based on semantic web approach. The evaluation of the system was based on data collected retrospectively from a 6 month period of MDM in Urology and on 4 clinical trials of prostate cancer. The classification performance of the ASTEC system had a precision of 21%, recall of 93%, and an error rate equal to 37%. Missing data was the main issue encountered. The system was designed to be both scalable to other clinical domains and usable during MDM process.

  7. A shared electronic health record: lessons from the coalface.

    PubMed

    Silvester, Brett V; Carr, Simon J

    2009-06-01

    A shared electronic health record system has been successfully implemented in Australia by a Division of General Practice in northern Brisbane. The system grew out of coordinated care trials that showed the critical need to share summary patient information, particularly for patients with complex conditions who require the services of a wide range of multisector, multidisciplinary health care professionals. As at 30 April 2008, connected users of the system included 239 GPs from 66 general practices, two major public hospitals, three large private hospitals, 11 allied health and community-based provider organisations and 1108 registered patients. Access data showed a patient's shared record was accessed an average of 15 times over a 12-month period. The success of the Brisbane implementation relied on seven key factors: connectivity, interoperability, change management, clinical leadership, targeted patient involvement, information at the point of care, and governance. The Australian Commission on Safety and Quality in Health Care is currently evaluating the system for its potential to reduce errors relating to inadequate information transfer during clinical handover.

  8. Multidsciplinary heart failure management and end of life care.

    PubMed

    Ryder, Mary; Beattie, James M; O'Hanlon, Rory; McDonald, Kenneth

    2011-12-01

    There has been much improvement in the treatment of heart failure over the past decade through the implementation of a multidisciplinary team approach to disease management focused on optimizing medication, the application of device-based therapy, surgical intervention and in promoting the education of patients and carers in self-management. This multidisciplinary strategy has now been extended to try and improve the care of those with advanced heart failure in the latter phases of the disease trajectory nearing the end of their lives. A growing consensus has emerged in the literature that confirms the need to extend multidisciplinary management beyond the early targets of reducing heart failure-related mortality and morbidity to address the significant care needs of those who decline due to the often inexorable progression of this syndrome. Multidisciplinary management facilitates the development of a comprehensive care plan that is specifically tailored to accommodate the requirements of individual patients and their families and fosters a collaborative approach to care to optimize symptom management, avoid potential treatments conflicts, and to fulfil their supportive care needs. Partnership working between the three principal clinical disciplines of cardiology, specialist palliative care and general practice is central to this process and promotes coordinated care across hospital, hospice and community-based services. Advanced heart failure management has improved over time; however, the incorporation of a multidisciplinary care model appears to offer significant promise in dealing with complex care needs of heart failure patients towards the end of life. Delivery of this practice requires the development of bespoke care structures that are relevant to the spectrum of healthcare service environments.

  9. Enhancements of the "eHabitat

    NASA Astrophysics Data System (ADS)

    Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.

    2012-04-01

    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and standard discovery service; b) A Discovery Augmentation Component (DAC): this component builds on existing discovery and semantic services in order to provide the infrastructure with semantics enabled queries; c) A Data Access Broker: this component provides a seamless access of heterogeneous remote resources via a unique and standard service; d) Environmental Modeling Components (i.e. OGC WPS): these implement algorithms to predict evolution of protected areas This presentation introduces the advanced infrastructure developed to enhance the "eHabitat" use scenario. The presented infrastructure will be accessible through the GEO Portal and was used for demonstrating the "eHabitat" model at the last GEO Plenary Meeting - Istanbul, November 2011.

  10. Measuring health outcomes of a multidisciplinary care approach in individuals with chronic environmental conditions using an abbreviated symptoms questionnaire

    PubMed Central

    Fox, Roy; Sampalli, Tara; Fox, Jonathan

    2008-01-01

    The Nova Scotia Environmental Health Centre is a treatment facility for individuals with chronic environmental conditions such as multiple chemical sensitivity, chronic fatigue syndrome, fibromyalgia, chronic respiratory conditions and in some cases chronic pain. The premise of care is to provide a patient-centred multidisciplinary care approach leading to self-management strategies. In order to measure the outcome of the treatment in these complex problems, with overlapping diagnoses, symptoms in many body systems and suspected environmental triggers, a detailed symptoms questionnaire was developed specifically for this patient population and validated. Results from a pilot study in which an abbreviated symptoms questionnaire based on the top reported symptoms captured in previous research was used to measure the efficacy of a multidisciplinary care approach in individuals with multiple chemical sensitivity are presented in this paper. The purpose of this study was to examine the extent, type and patterns of changes over time in the top reported symptoms with treatment measured using the abbreviated symptoms questionnaire. A total of 183 active and 109 discharged patients participated in the study where the health status was measured at different time periods of follow up since the commencement of treatment at the Centre. The findings from this study were successful in generating an initial picture of the nature and type of changes in these symptoms. For instance, symptoms such as difficulty concentrating, sinus conditions and tiredness showed early improvement, within the first 6 months of being in treatment, while others, such as fatigue, hoarseness or loss of voice, took longer while others showed inconsistent changes warranting further enquiry. A controlled longitudinal study is planned to confirm the findings of the pilot study. PMID:21197341

  11. A Way Forward: Cooperative Solutions to Our Climate Challenges

    NASA Astrophysics Data System (ADS)

    Little, L. J.; Byrne, J. M.

    2014-12-01

    Solving the global climate crisis is a multidisciplinary challenge. The world is seeking solutions to climate change. The climate research and education community must move beyond the realm of debating the science - we MUST provide the solutions. The research community understands the science and many of the solutions very well. This project will address the specifics of solutions involving social, political and science disciplines. The content is targeted to multidisciplinary education at the senior undergraduate and graduate levels in universities and colleges. Humanity has already changed the climate and current greenhouse gas emission (GHG) projections indicate our world will warm 2-6° C within a young person's lifetime. We must coordinate societal mitigation and adaptation policies, programs and technology transformations. There is now a dramatic need for many, many highly trained multidisciplinary climate change solutions professionals that understand the complexities of the challenges and can work through the social, political and science tribulations needed to sustain communities around the world. This proposed education project: Provides an introduction to the social, political, technical, health and well-being challenges of climate change; Defines and describes the unprecedented changes to personal and community lifestyle, and consumption of energy and other resources; Examines ways and means for rapid transition of energy systems from fossil fuels to clean renewable technologies. Evaluates redevelopment of our infrastructure to withstand increasing weather extremes; Inventories possible abandonment and/or protection of infrastructure that cannot be redeveloped or reworked, particularly with respect to coastal zones where substantial populations currently live. We propose an online living textbook project. Chapter contributions will be invited from outstanding solutions research professionals from around the world. The online presence is the best means to facilitate a multimedia presentation of the core content of the proposed text.

  12. Process improvement for the safe delivery of multidisciplinary-executed treatments-A case in Y-90 microspheres therapy.

    PubMed

    Cai, Bin; Altman, Michael B; Garcia-Ramirez, Jose; LaBrash, Jason; Goddu, S Murty; Mutic, Sasa; Parikh, Parag J; Olsen, Jeffrey R; Saad, Nael; Zoberi, Jacqueline E

    To develop a safe and robust workflow for yttrium-90 (Y-90) radioembolization procedures in a multidisciplinary team environment. A generalized Define-Measure-Analyze-Improve-Control (DMAIC)-based approach to process improvement was applied to a Y-90 radioembolization workflow. In the first DMAIC cycle, events with the Y-90 workflow were defined and analyzed. To improve the workflow, a web-based interactive electronic white board (EWB) system was adopted as the central communication platform and information processing hub. The EWB-based Y-90 workflow then underwent a second DMAIC cycle. Out of 245 treatments, three misses that went undetected until treatment initiation were recorded over a period of 21 months, and root-cause-analysis was performed to determine causes of each incident and opportunities for improvement. The EWB-based Y-90 process was further improved via new rules to define reliable sources of information as inputs into the planning process, as well as new check points to ensure this information was communicated correctly throughout the process flow. After implementation of the revised EWB-based Y-90 workflow, after two DMAIC-like cycles, there were zero misses out of 153 patient treatments in 1 year. The DMAIC-based approach adopted here allowed the iterative development of a robust workflow to achieve an adaptable, event-minimizing planning process despite a complex setting which requires the participation of multiple teams for Y-90 microspheres therapy. Implementation of such a workflow using the EWB or similar platform with a DMAIC-based process improvement approach could be expanded to other treatment procedures, especially those requiring multidisciplinary management. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  13. Evaluation of Multidisciplinary Tobacco Cessation Training Program in a Large Health Care System

    ERIC Educational Resources Information Center

    Chen, Timothy C.; Hamlett-Berry, Kim W.; Watanabe, Jonathan H.; Bounthavong, Mark; Zillich, Alan J.; Christofferson, Dana E.; Myers, Mark G.; Himstreet, Julianne E.; Belperio, Pamela S.; Hudmon, Karen Suchanek

    2015-01-01

    Background: Health care professionals can have a dramatic impact by assisting patients with tobacco cessation but most have limited training. Purpose: To evaluate the effectiveness of a 4-hour tobacco cessation training program. Methods: A team of multidisciplinary health care professionals created a veteran-specific tailored version of the Rx for…

  14. A Multidisciplinary PBL Robot Control Project in Automation and Electronic Engineering

    ERIC Educational Resources Information Center

    Hassan, Houcine; Domínguez, Carlos; Martínez, Juan-Miguel; Perles, Angel; Capella, Juan-Vicente; Albaladejo, José

    2015-01-01

    This paper presents a multidisciplinary problem-based learning (PBL) project consisting of the development of a robot arm prototype and the implementation of its control system. The project is carried out as part of Industrial Informatics (II), a compulsory third-year course in the Automation and Electronic Engineering (AEE) degree program at the…

  15. Initial Multidisciplinary Design and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Ozoroski, L. P.; Geiselhart, K. A.; Padula, S. L.; Li, W.; Olson, E. D.; Campbell, R. L.; Shields, E. W.; Berton, J. J.; Gray, J. S.; Jones, S. M.; hide

    2010-01-01

    Within the Supersonics (SUP) Project of the Fundamental Aeronautics Program (FAP), an initial multidisciplinary design & analysis framework has been developed. A set of low- and intermediate-fidelity discipline design and analysis codes were integrated within a multidisciplinary design and analysis framework and demonstrated on two challenging test cases. The first test case demonstrates an initial capability to design for low boom and performance. The second test case demonstrates rapid assessment of a well-characterized design. The current system has been shown to greatly increase the design and analysis speed and capability, and many future areas for development were identified. This work has established a state-of-the-art capability for immediate use by supersonic concept designers and systems analysts at NASA, while also providing a strong base to build upon for future releases as more multifidelity capabilities are developed and integrated.

  16. Implementing an Antibiotic Stewardship Information System to Improve Hospital Infection Control: A Co-Design Process.

    PubMed

    Maia, Mélanie R; Simões, Alexandra; Lapão, Luís V

    2018-01-01

    HAITooL information system design and implementation was based on Design Science Research Methodology, ensuring full participation, in close collaboration, of researchers and a multidisciplinary team of healthcare professionals. HAITooL enables effective monitoring of antibiotic resistance, antibiotic use and provides an antibiotic prescription decision-supporting system by clinicians, strengthening the patient safety procedures. The design, development and implementation process reveals benefits in organizational and behavior change with significant success. Leadership commitment multidisciplinary team and mainly informaticians engagement was crucial to the implementation process. Participants' motivation and the final product delivery and evolution depends on that.

  17. PropeR revisited.

    PubMed

    van der Linden, Helma; Talmon, Jan; Tange, Huibert; Grimson, Jane; Hasman, Arie

    2005-03-01

    The PropeR EHR system (PropeRWeb) is a multidisciplinary electronic health record (EHR) system for multidisciplinary use in extramural patient care for stroke patients. The system is built using existing open source components and is based on open standards. It is implemented as a web application using servlets and Java Server Pages (JSP's) with a CORBA connection to the database servers, which are based on the OMG HDTF specifications. PropeRWeb is a generic system which can be readily customized for use in a variety of clinical domains. The system proved to be stable and flexible, although some aspects (a.o. user friendliness) could be improved. These improvements are currently under development in a second version.

  18. a Multidisciplinary Analytical Framework for Studying Active Mobility Patterns

    NASA Astrophysics Data System (ADS)

    Orellana, D.; Hermida, C.; Osorio, P.

    2016-06-01

    Intermediate cities are urged to change and adapt their mobility systems from a high energy-demanding motorized model to a sustainable low-motorized model. In order to accomplish such a model, city administrations need to better understand active mobility patterns and their links to socio-demographic and cultural aspects of the population. During the last decade, researchers have demonstrated the potential of geo-location technologies and mobile devices to gather massive amounts of data for mobility studies. However, the analysis and interpretation of this data has been carried out by specialized research groups with relatively narrow approaches from different disciplines. Consequently, broader questions remain less explored, mainly those relating to spatial behaviour of individuals and populations with their geographic environment and the motivations and perceptions shaping such behaviour. Understanding sustainable mobility and exploring new research paths require an interdisciplinary approach given the complex nature of mobility systems and their social, economic and environmental impacts. Here, we introduce the elements for a multidisciplinary analytical framework for studying active mobility patterns comprised of three components: a) Methodological, b) Behavioural, and c) Perceptual. We demonstrate the applicability of the framework by analysing mobility patterns of cyclists and pedestrians in an intermediate city integrating a range of techniques, including: GPS tracking, spatial analysis, auto-ethnography, and perceptual mapping. The results demonstrated the existence of non-evident spatial behaviours and how perceptual features affect mobility. This knowledge is useful for developing policies and practices for sustainable mobility planning.

  19. Changes in long-term eruption dynamics at Santiaguito, Guatemala: Observations from seismic data

    NASA Astrophysics Data System (ADS)

    Lamb, O. D.; Lavallée, Y.; De Angelis, S.; Lamur, A.; Hornby, A. J.; von Aulock, F. W.; Kendrick, J. E.; Chigna, G.; Rietbrock, A.

    2016-12-01

    Santiaguito (Guatemala) is an ideal laboratory for the study of the eruption dynamics of long-lived silicic eruptions. Here we present seismic observations of ash-and-gas explosions recorded between November 2014 and June 2016 during a multi-disciplinary experiment by the University of Liverpool. The instruments, deployed around the active dome complex between 0.5 to 7 km from the vent, included 5 broadband and 6 short-period seismometers, as well as 5 infrasound sensors. The geophysical data is complemented by thermal images, optical images from a UAV, and geochemical measurements of erupted material. Regular, small-to-moderate sized explosions from the El Caliente dome at Santiaguito have been common since at least the early 1970s. However, in 2015, a shift in character took place in terms of the regularity and magnitude of the explosions. Explosions became larger and less regular, and often accompanied by pyroclastic density currents. The larger explosions have caused a major morphological change at the vent, as a rubble-filled vent was replaced by a crater of 150 m depth. This shift in behaviour likely represents a change in the eruptive mechanism in the upper conduit beneath the Caliente vent, possibly triggered by processes at a greater depth in the volcanic system. This experiment represents a unique opportunity to use multi-disciplinary research to help understand the long-term eruptive dynamics of lava dome eruptions. Our observations may have implications for hazard assessment not only at Santiaguito, but at many other volcanic systems worldwide.

  20. [Creation of expert centers on endometriosis].

    PubMed

    Daraï, Emile; Bendifallah, Sofiane; Chabbert-Buffet, Nathalie; Golfier, François

    2017-12-01

    Endometriosis is a frequent pathology with a high incidence of deep infiltrating endometriosis and complex forms that can affect 20% of patients with endometriosis. The incidence of infertility associated with endometriosis can reach 50%. The complexity of care requires the creation of expert centers working in networks with general practitioners. Criteria for defining these expert centers are being drawn up, based on structural criteria (multidisciplinary consultation meeting), links with medical assistance structures for procreation and activity criteria for severe and complex forms (number of interventions per center and per surgeon). Copyright © 2017. Published by Elsevier Masson SAS.

  1. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  2. From user needs to system specifications: multi-disciplinary thematic seminars as a collaborative design method for development of health information systems.

    PubMed

    Scandurra, I; Hägglund, M; Koch, S

    2008-08-01

    This paper presents a new multi-disciplinary method for user needs analysis and requirements specification in the context of health information systems based on established theories from the fields of participatory design and computer supported cooperative work (CSCW). Whereas conventional methods imply a separate, sequential needs analysis for each profession, the "multi-disciplinary thematic seminar" (MdTS) method uses a collaborative design process. Application of the method in elderly homecare resulted in prototypes that were well adapted to the intended user groups. Vital information in the points of intersection between different care professions was elicited and a holistic view of the entire care process was obtained. Health informatics-usability specialists and clinical domain experts are necessary to apply the method. Although user needs acquisition can be time-consuming, MdTS was perceived to efficiently identify in-context user needs, and transformed these directly into requirements specifications. Consequently the method was perceived to expedite the entire ICT implementation process.

  3. The Multidisciplinary Management of Colorectal Cancer: Present and Future Paradigms

    PubMed Central

    Sievers, Chelsie K.; Kratz, Jeremy D.; Zurbriggen, Luke D.; LoConte, Noelle K.; Lubner, Sam J.; Uboha, Natalya; Mulkerin, Daniel; Matkowskyj, Kristina A.; Deming, Dustin A.

    2016-01-01

    As treatment strategies for patients with colorectal cancer advance, there has now become an ever-increasing need for multidisciplinary teams to care for these patients. Recent investigations into the timing and duration of perioperative therapy, as well as, the rise of molecular profiling have led to more systemic chemotherapeutic options. The most efficacious use, in terms of timing and patient selection, of these therapies in the setting of modern operative and radiotherapy techniques requires the generation of care teams discussing cases at multidisciplinary conferences. This review highlights the role of multidisciplinary team conferences, advances in perioperative chemotherapy, current clinical biomarkers, and emerging therapeutic agents for molecular subtypes of metastatic colon cancer. As our understanding of relevant molecular subtypes increases and as data becomes available on treatment response, the treatment of colorectal cancer will become more precise and effective. PMID:27582648

  4. The Multidisciplinary Management of Colorectal Cancer: Present and Future Paradigms.

    PubMed

    Sievers, Chelsie K; Kratz, Jeremy D; Zurbriggen, Luke D; LoConte, Noelle K; Lubner, Sam J; Uboha, Natalya; Mulkerin, Daniel; Matkowskyj, Kristina A; Deming, Dustin A

    2016-09-01

    As treatment strategies for patients with colorectal cancer advance, there has now become an ever-increasing need for multidisciplinary teams to care for these patients. Recent investigations into the timing and duration of perioperative therapy, as well as, the rise of molecular profiling have led to more systemic chemotherapeutic options. The most efficacious use, in terms of timing and patient selection, of these therapies in the setting of modern operative and radiotherapy techniques requires the generation of care teams discussing cases at multidisciplinary conferences. This review highlights the role of multidisciplinary team conferences, advances in perioperative chemotherapy, current clinical biomarkers, and emerging therapeutic agents for molecular subtypes of metastatic colon cancer. As our understanding of relevant molecular subtypes increases and as data becomes available on treatment response, the treatment of colorectal cancer will become more precise and effective.

  5. Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling

    NASA Technical Reports Server (NTRS)

    Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw

    2005-01-01

    The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.

  6. Formal and heuristic system decomposition methods in multidisciplinary synthesis. Ph.D. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Bloebaum, Christina L.

    1991-01-01

    The multidisciplinary interactions which exist in large scale engineering design problems provide a unique set of difficulties. These difficulties are associated primarily with unwieldy numbers of design variables and constraints, and with the interdependencies of the discipline analysis modules. Such obstacles require design techniques which account for the inherent disciplinary couplings in the analyses and optimizations. The objective of this work was to develop an efficient holistic design synthesis methodology that takes advantage of the synergistic nature of integrated design. A general decomposition approach for optimization of large engineering systems is presented. The method is particularly applicable for multidisciplinary design problems which are characterized by closely coupled interactions among discipline analyses. The advantage of subsystem modularity allows for implementation of specialized methods for analysis and optimization, computational efficiency, and the ability to incorporate human intervention and decision making in the form of an expert systems capability. The resulting approach is not a method applicable to only a specific situation, but rather, a methodology which can be used for a large class of engineering design problems in which the system is non-hierarchic in nature.

  7. Multi-Disciplinary Knowledge Synthesis for Human Health Assessment on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Christakos, G.

    We discuss methodological developments in multi-disciplinary knowledge synthesis (KS) of human health assessment. A theoretical KS framework can provide the rational means for the assimilation of various information bases (general, site-specific etc.) that are relevant to the life system of interest. KS-based techniques produce a realistic representation of the system, provide a rigorous assessment of the uncertainty sources, and generate informative health state predictions across space-time. The underlying epistemic cognition methodology is based on teleologic criteria and stochastic logic principles. The mathematics of KS involves a powerful and versatile spatiotemporal random field model that accounts rigorously for the uncertainty features of the life system and imposes no restriction on the shape of the probability distributions or the form of the predictors. KS theory is instrumental in understanding natural heterogeneities, assessing crucial human exposure correlations and laws of physical change, and explaining toxicokinetic mechanisms and dependencies in a spatiotemporal life system domain. It is hoped that a better understanding of KS fundamentals would generate multi-disciplinary models that are useful for the maintenance of human health on Earth and in Space.

  8. Development of a Robust and Efficient Parallel Solver for Unsteady Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    West, Jeff; Wright, Jeffrey; Thakur, Siddharth; Luke, Ed; Grinstead, Nathan

    2012-01-01

    The traditional design and analysis practice for advanced propulsion systems relies heavily on expensive full-scale prototype development and testing. Over the past decade, use of high-fidelity analysis and design tools such as CFD early in the product development cycle has been identified as one way to alleviate testing costs and to develop these devices better, faster and cheaper. In the design of advanced propulsion systems, CFD plays a major role in defining the required performance over the entire flight regime, as well as in testing the sensitivity of the design to the different modes of operation. Increased emphasis is being placed on developing and applying CFD models to simulate the flow field environments and performance of advanced propulsion systems. This necessitates the development of next generation computational tools which can be used effectively and reliably in a design environment. The turbomachinery simulation capability presented here is being developed in a computational tool called Loci-STREAM [1]. It integrates proven numerical methods for generalized grids and state-of-the-art physical models in a novel rule-based programming framework called Loci [2] which allows: (a) seamless integration of multidisciplinary physics in a unified manner, and (b) automatic handling of massively parallel computing. The objective is to be able to routinely simulate problems involving complex geometries requiring large unstructured grids and complex multidisciplinary physics. An immediate application of interest is simulation of unsteady flows in rocket turbopumps, particularly in cryogenic liquid rocket engines. The key components of the overall methodology presented in this paper are the following: (a) high fidelity unsteady simulation capability based on Detached Eddy Simulation (DES) in conjunction with second-order temporal discretization, (b) compliance with Geometric Conservation Law (GCL) in order to maintain conservative property on moving meshes for second-order time-stepping scheme, (c) a novel cloud-of-points interpolation method (based on a fast parallel kd-tree search algorithm) for interfaces between turbomachinery components in relative motion which is demonstrated to be highly scalable, and (d) demonstrated accuracy and parallel scalability on large grids (approx 250 million cells) in full turbomachinery geometries.

  9. Developing and evaluating interventions that are applicable and relevant to inpatients and those who care for them; a multiphase, pragmatic action research approach.

    PubMed

    Bell, Jack J; Rossi, Tony; Bauer, Judith D; Capra, Sandra

    2014-08-18

    Randomised controlled trials may be of limited use to evaluate the multidisciplinary and multimodal interventions required to effectively treat complex patients in routine clinical practice; pragmatic action research approaches may provide a suitable alternative. A multiphase, pragmatic, action research based approach was developed to identify and overcome barriers to nutritional care in patients admitted to a metropolitan hospital hip-fracture unit. Four sequential action research cycles built upon baseline data including 614 acute hip-fracture inpatients and 30 purposefully sampled clinicians. Reports from Phase I identified barriers to nutrition screening and assessment. Phase II reported post-fracture protein-energy intakes and intake barriers. Phase III built on earlier results; an explanatory mixed-methods study expanded and explored additional barriers and facilitators to nutritional care. Subsequent changes to routine clinical practice were developed and implemented by the treating team between Phase III and IV. These were implemented as a new multidisciplinary, multimodal nutritional model of care. A quasi-experimental controlled, 'before-and-after' study was then used to compare the new model of care with an individualised nutritional care model. Engagement of the multidisciplinary team in a multiphase, pragmatic action research intervention doubled energy and protein intakes, tripled return home discharge rates, and effected a 75% reduction in nutritional deterioration during admission in a reflective cohort of hip-fracture inpatients. This approach allowed research to be conducted as part of routine clinical practice, captured a more representative patient cohort than previously reported studies, and facilitated exploration of barriers and engagement of the multidisciplinary healthcare workers to identify and implement practical solutions. This study demonstrates substantially different findings to those previously reported, and is the first to demonstrate that multidisciplinary, multimodal nutrition care reduces intake barriers, delivers a higher proportional increase in protein and energy intake compared with baseline than other published intervention studies, and improves patient outcomes when compared with individualised nutrition care. The findings are considered highly relevant to clinical practice and have high translation validity. The authors strongly encourage the development of similar study designs to investigate complex health problems in elderly, multi-morbid patient populations as a way to evaluate and change clinical practice.

  10. Developing and evaluating interventions that are applicable and relevant to inpatients and those who care for them; a multiphase, pragmatic action research approach

    PubMed Central

    2014-01-01

    Background Randomised controlled trials may be of limited use to evaluate the multidisciplinary and multimodal interventions required to effectively treat complex patients in routine clinical practice; pragmatic action research approaches may provide a suitable alternative. Methods A multiphase, pragmatic, action research based approach was developed to identify and overcome barriers to nutritional care in patients admitted to a metropolitan hospital hip-fracture unit. Results Four sequential action research cycles built upon baseline data including 614 acute hip-fracture inpatients and 30 purposefully sampled clinicians. Reports from Phase I identified barriers to nutrition screening and assessment. Phase II reported post-fracture protein-energy intakes and intake barriers. Phase III built on earlier results; an explanatory mixed-methods study expanded and explored additional barriers and facilitators to nutritional care. Subsequent changes to routine clinical practice were developed and implemented by the treating team between Phase III and IV. These were implemented as a new multidisciplinary, multimodal nutritional model of care. A quasi-experimental controlled, ‘before-and-after’ study was then used to compare the new model of care with an individualised nutritional care model. Engagement of the multidisciplinary team in a multiphase, pragmatic action research intervention doubled energy and protein intakes, tripled return home discharge rates, and effected a 75% reduction in nutritional deterioration during admission in a reflective cohort of hip-fracture inpatients. Conclusions This approach allowed research to be conducted as part of routine clinical practice, captured a more representative patient cohort than previously reported studies, and facilitated exploration of barriers and engagement of the multidisciplinary healthcare workers to identify and implement practical solutions. This study demonstrates substantially different findings to those previously reported, and is the first to demonstrate that multidisciplinary, multimodal nutrition care reduces intake barriers, delivers a higher proportional increase in protein and energy intake compared with baseline than other published intervention studies, and improves patient outcomes when compared with individualised nutrition care. The findings are considered highly relevant to clinical practice and have high translation validity. The authors strongly encourage the development of similar study designs to investigate complex health problems in elderly, multi-morbid patient populations as a way to evaluate and change clinical practice. PMID:25135226

  11. Malignant Bowel Obstruction in Advanced Gynecologic Cancers: An Updated Review from a Multidisciplinary Perspective

    PubMed Central

    Lee, Yeh Chen; Jivraj, Nazlin; O'Brien, Catherine; Chawla, Tanya; Shlomovitz, Eran; Buchanan, Sarah; Lau, Jenny; Croke, Jennifer; Allard, Johane P.; Dhar, Preeti; Laframboise, Stephane; Ferguson, Sarah E.; Dhani, Neesha; Butler, Marcus; Ng, Pamela; Stuart-McEwan, Terri; Savage, Pamela; Tinker, Lisa; Oza, Amit M.

    2018-01-01

    Malignant bowel obstruction (MBO) is a major complication in women with advanced gynecologic cancers which imposes a significant burden on patients, caregivers, and healthcare systems. Symptoms of MBO are challenging to palliate and result in progressive decompensation of already vulnerable patients with limited therapeutic options and a short prognosis. However, there is a paucity of guidelines or innovative approaches to improve the care of women who develop MBO. MBO is a complex clinical situation that requires a multidisciplinary approach to ensure the appropriate treatment modality and interprofessional care to optimally manage these patients. This review summarizes the current literature on the different approaches targeting MBO management including surgical intervention, chemotherapy, total parenteral nutrition, and pharmacological treatment. In addition, the impact of MBO management on patients' quality of life (QOL) is examined. This article focuses on the challenges in developing evidence-based treatment guidelines for MBO and barriers in clinical trial design for MBO and proposes strategies to advance the MBO management. Collaboration is essential to design studies that may improve the overall care and quality of life for these patients. Prospective data are needed to inform clinical practice, establish a new benchmark for evidence-based MBO management, and better understand the biology of MBO. PMID:29887891

  12. Students' Perceptions of Terrascope, A Project-Based Freshman Learning Community

    NASA Astrophysics Data System (ADS)

    Lipson, Alberta; Epstein, Ari W.; Bras, Rafael; Hodges, Kip

    2007-08-01

    We present a descriptive case study of Terrascope, an innovative, year-long, project-based learning community at MIT. Each year, Terrascope students study a particular environmental or Earth-system problem from a multidisciplinary perspective. Terrascope includes both academic and non-academic components; this paper focuses on the academic components. The objectives of the academic subjects, and of the program as a whole, involve helping students develop their team-building, communication, problem-solving, and self-regulatory learning skills. This study focuses on cohorts of students from the first and second years of the program (2002-2003 and 2003-2004); it is based on end-of-semester surveys and focus groups, and on additional focus groups conducted when these students were upperclassmen. Students felt Terrascope helped them make significant improvements in their ability to work in teams and to take on complex, multidisciplinary problems. They felt that the program's two-semester structure gave them an opportunity to develop and nurture these skills, and that the program prepared them well for their later work at MIT. They also felt that being engaged, as freshmen, in a distinct learning community, significantly eased their transition into MIT. We describe lessons learned in the development of Terrascope and offer suggestions for other institutions planning to develop similar programs.

  13. Coordination of healthcare for transsexual persons: a multidisciplinary approach.

    PubMed

    Esteva de Antonio, Isabel; Gómez-Gil, Esther

    2013-12-01

    To describe the experience in Spain concerning the public healthcare for transsexual persons using a multidisciplinary approach and to review the relevant literature. Treatment includes social and psychological support, cross-hormone treatment, and sex reassignment surgeries. Although the recommendations of The World Professional Association for Transgender Health are used as guidelines, the application of these standards of care varies considerably, probably because of specific clinical and country factors. The sex reassignment process is complex and requires not only coordination of multiple procedures, but also lifetime follow-up of transsexual individuals. Gender units must provide high-quality services, been essential the principle of accessibility to resources together with a protocolized follow-up and anticipation of secondary effects from the clinical surgical treatment. Two recent challenges are juvenile gender dysphoria and gender variants, which increasingly consult professionals. Transsexualism affects all adaptive physical and psychosocial aspects of a person. As diagnosis is based only on the history and personal perceptions, a broad social debate exists about the need for treatment financed by the public health systems. Some countries restrict the care to transsexuals with private medical policies. Thus, coordination of care also requires participation of the family and associations, with continuous information to the health authorities, the judiciary, and the media of each country.

  14. Multidisciplinary and multisectoral coalitions as catalysts for action against antimicrobial resistance: Implementation experiences at national and regional levels.

    PubMed

    Joshi, Mohan P; Chintu, Chifumbe; Mpundu, Mirfin; Kibuule, Dan; Hazemba, Oliver; Andualem, Tenaw; Embrey, Martha; Phulu, Bayobuya; Gerba, Heran

    2018-03-20

    The multi-faceted complexities of antimicrobial resistance (AMR) require consistent action, a multidisciplinary approach, and long-term political commitment. Building coalitions can amplify stakeholder efforts to carry out effective AMR prevention and control strategies. We have developed and implemented an approach to help local stakeholders kick-start the coalition-building process. The five-step process is to (1) mobilise support, (2) understand the local situation, (3) develop an action plan, (4) implement the plan, and (5) monitor and evaluate. We first piloted the approach in Zambia in 2004, then used the lessons learned to expand it for use in Ethiopia and Namibia and to the regional level through the Ecumenical Pharmaceutical Network [EPN]. Call-to-action declarations and workshops helped promote a shared vision, resulting in the development of national AMR action plans, revision of university curricula to incorporate relevant topics, infection control activities, engagement with journalists from various mass media outlets, and strengthening of drug quality assurance systems. Our experience with the coalition-building approach in Ethiopia, Namibia, Zambia, and with the EPN shows that coalitions can form in a variety of ways with many different stakeholders, including government, academia, and faith-based organisations, to organise actions to preserve the effectiveness of existing antimicrobials and contain AMR.

  15. The use of failure mode and effect analysis in a radiation oncology setting: the Cancer Treatment Centers of America experience.

    PubMed

    Denny, Diane S; Allen, Debra K; Worthington, Nicole; Gupta, Digant

    2014-01-01

    Delivering radiation therapy in an oncology setting is a high-risk process where system failures are more likely to occur because of increasing utilization, complexity, and sophistication of the equipment and related processes. Healthcare failure mode and effect analysis (FMEA) is a method used to proactively detect risks to the patient in a particular healthcare process and correct potential errors before adverse events occur. FMEA is a systematic, multidisciplinary team-based approach to error prevention and enhancing patient safety. We describe our experience of using FMEA as a prospective risk-management technique in radiation oncology at a national network of oncology hospitals in the United States, capitalizing not only on the use of a team-based tool but also creating momentum across a network of collaborative facilities seeking to learn from and share best practices with each other. The major steps of our analysis across 4 sites and collectively were: choosing the process and subprocesses to be studied, assembling a multidisciplinary team at each site responsible for conducting the hazard analysis, and developing and implementing actions related to our findings. We identified 5 areas of performance improvement for which risk-reducing actions were successfully implemented across our enterprise. © 2012 National Association for Healthcare Quality.

  16. Advancing research opportunities and promoting pathways in graduate education: a systemic approach to BUILD training at California State University, Long Beach (CSULB).

    PubMed

    Urizar, Guido G; Henriques, Laura; Chun, Chi-Ah; Buonora, Paul; Vu, Kim-Phuong L; Galvez, Gino; Kingsford, Laura

    2017-01-01

    First-generation college graduates, racial and ethnic minorities, people with disabilities, and those from disadvantaged backgrounds are gravely underrepresented in the health research workforce representing behavioral health sciences and biomedical sciences and engineering (BHS/BSE). Furthermore, relative to their peers, very few students from these underrepresented groups (URGs) earn scientific bachelor's degrees with even fewer earning doctorate degrees. Therefore, programs that engage and retain URGs in health-related research careers early on in their career path are imperative to promote the diversity of well-trained research scientists who have the ability to address the nation's complex health challenges in an interdisciplinary way. The purpose of this paper is to describe the challenges, lessons learned, and sustainability of implementing a large-scale, multidisciplinary research infrastructure at California State University, Long Beach (CSULB) - a minority-serving institution - through federal funding received by the National Institutes of Health (NIH) Building Infrastructure Leading to Diversity (BUILD) Initiative. The CSULB BUILD initiative consists of developing a research infrastructure designed to engage and retain URGs on the research career path by providing them with the research training and skills needed to make them highly competitive for doctoral programs and entry into the research workforce. This initiative unites many research disciplines using basic, applied, and translational approaches to offer insights and develop technologies addressing prominent community and national health issues from a multidisciplinary perspective. Additionally, this initiative brings together local (e.g., high school, community college, doctoral research institutions) and national (e.g., National Research Mentoring Network) collaborative partners to alter how we identify, develop, and implement resources to enhance student and faculty research. Finally, this initiative establishes a student research training program that engages URGs earlier in their academic development, is larger and multidisciplinary in scope, and is responsive to the life contexts and promotes the cultural capital that URGs bring to their career path. Although there have been many challenges to planning for and developing CSULB BUILD's large-scale, multidisciplinary research infrastructure, there have been many lessons learned in the process that could aid other campuses in the development and sustainability of similar research programs.

  17. Reference centres for adults with rare and complex cancers - Policy recommendations to improve the organisation of care in Belgium.

    PubMed

    Stordeur, S; Vrijens, F; Leroy, R

    2016-02-01

    Rare and/or complex cancers call for a very specific expertise and adequate infrastructure. In Belgium, every hospital with a programme in oncology can deliver care for adults with rare and/or complex cancer types, without having demonstrated a specific know-how to adequately manage these patients. Therefore, the Minister of Health ordered a scenario for the organisation of care for adults with rare and/or complex cancers, taking into account the current Belgian situation and relevant foreign experience. Combined methods were used in this study: a literature review, the consultation of stakeholders, in depth discussions in 14 multidisciplinary groups leading to concrete proposals for several rare/complex cancers and the consultation of a panel of expert pathologists. The core recommendation is the set-up of shared care networks around reference centres, with multidisciplinary teams of recognised expertise in specific rare/complex cancers. The definition of minimum caseloads for hospitals and medical specialists, the evaluation of the quality of care, a model of diagnostic confirmation and the set-up of a national portal website which provides information on rare and/or complex cancers and reference centres are highly recommended. It is no longer practicable, efficient or ethical that every hospital or every practitioner continues to offer care for every rare/complex cancer. Improving the quality of rare/complex cancer care requires to concentrate expertise and sophisticated infrastructure in reference centres. Furthermore, the formation of networks between reference centres and peripheral centres will allow a delivery of care combining expertise and proximity. The next step is the translation of the recommendations into policy decisions. It is very well realised that this will take some courage and that a certain degree of resistance will have to be surmounted, but eventually, the best interest of the patient should prevail. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. A Standard Platform for Testing and Comparison of MDAO Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Moore, Kenneth T.; Hearn, Tristan A.; Naylor, Bret A.

    2012-01-01

    The Multidisciplinary Design Analysis and Optimization (MDAO) community has developed a multitude of algorithms and techniques, called architectures, for performing optimizations on complex engineering systems which involve coupling between multiple discipline analyses. These architectures seek to efficiently handle optimizations with computationally expensive analyses including multiple disciplines. We propose a new testing procedure that can provide a quantitative and qualitative means of comparison among architectures. The proposed test procedure is implemented within the open source framework, OpenMDAO, and comparative results are presented for five well-known architectures: MDF, IDF, CO, BLISS, and BLISS-2000. We also demonstrate how using open source soft- ware development methods can allow the MDAO community to submit new problems and architectures to keep the test suite relevant.

  19. Improving Health Care Management in Primary Care for Homeless People: A Literature Review.

    PubMed

    Jego, Maeva; Abcaya, Julien; Ștefan, Diana-Elena; Calvet-Montredon, Céline; Gentile, Stéphanie

    2018-02-10

    Homeless people have poorer health status than the general population. They need complex care management, because of associated medical troubles (somatic and psychiatric) and social difficulties. We aimed to describe the main characteristics of the primary care programs that take care of homeless people, and to identify which could be most relevant. We performed a literature review that included articles which described and evaluated primary care programs for homeless people. Most of the programs presented a team-based approach, multidisciplinary and/or integrated care. They often proposed co-located services between somatic health services, mental health services and social support services. They also tried to answer to the specific needs of homeless people. Some characteristics of these programs were associated with significant positive outcomes: tailored primary care organizations, clinic orientation, multidisciplinary team-based models which included primary care physicians and clinic nurses, integration of social support, and engagement in the community's health. Primary health care programs that aimed at taking care of the homeless people should emphasize a multidisciplinary approach and should consider an integrated (mental, somatic and social) care model.

  20. Induction chemotherapy vs post-operative adjuvant therapy for malignant pleural mesothelioma.

    PubMed

    Marulli, Giuseppe; Faccioli, Eleonora; Bellini, Alice; Mammana, Marco; Rea, Federico

    2017-08-01

    Malignant pleural mesothelioma (MPM) is an aggressive neoplasia. Multidisciplinary treatments, including the association of induction and/or adjuvant therapeutic regimens with surgery, have been reported to give encouraging results. Current therapeutic options are not well standardized yet, especially regarding the best association between surgery and medical treatments. The present review aims to assess safety, efficacy and outcomes of different therapies for MPM. Areas covered: This article focuses on the multimodality treatment of mesothelioma. A systematic review was performed by using electronic databases to identify studies that considered induction and adjuvant approaches in MPM therapy in a multidisciplinary setting, including surgery. Endpoints included overall survival, disease free survival, disease recurrence, and complications. Expert commentary: This systematic review offers a comprehensive view of current multidisciplinary therapeutic strategies for MPM, suggesting that multimodality therapy offers acceptable outcomes with better results reported for trimodality approaches. Individualization of care for each patient is fundamental in choosing the most appropriate treatment. The growing complexity of treatment protocols mandates that MPM patients be referred to specialized Centers, in which every component of the interdisciplinary team can provide the necessary expertise and quality of care.

  1. Towards sustainable infrastructure management: knowledge-based service-oriented computing framework for visual analytics

    NASA Astrophysics Data System (ADS)

    Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd

    2009-05-01

    Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.

  2. Multidisciplinary Education in Transportation. Proceedings of a Conference conducted by the Highway Research Board (University of Pennsylvania, Philadelphia, September 7 and 8, 1973).

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Transportation Research Board.

    A discussion of the problem of providing multidisciplinary education in transportation and a means for educators to communicate their approaches and experiences provided the purpose of the conference. Among the areas discussed were the comprehensiveness of transportation education, societal issues, systems aspects, transportation research,…

  3. A dynamic, embodied paradigm to investigate the role of serotonin in decision-making

    PubMed Central

    Asher, Derrik E.; Craig, Alexis B.; Zaldivar, Andrew; Brewer, Alyssa A.; Krichmar, Jeffrey L.

    2013-01-01

    Serotonin (5-HT) is a neuromodulator that has been attributed to cost assessment and harm aversion. In this review, we look at the role 5-HT plays in making decisions when subjects are faced with potential harmful or costly outcomes. We review approaches for examining the serotonergic system in decision-making. We introduce our group’s paradigm used to investigate how 5-HT affects decision-making. In particular, our paradigm combines techniques from computational neuroscience, socioeconomic game theory, human–robot interaction, and Bayesian statistics. We will highlight key findings from our previous studies utilizing this paradigm, which helped expand our understanding of 5-HT’s effect on decision-making in relation to cost assessment. Lastly, we propose a cyclic multidisciplinary approach that may aid in addressing the complexity of exploring 5-HT and decision-making by iteratively updating our assumptions and models of the serotonergic system through exhaustive experimentation. PMID:24319413

  4. Design and implementation of relational databases relevant to the diverse needs of a tuberculosis case contact study in the Gambia.

    PubMed

    Jeffries, D J; Donkor, S; Brookes, R H; Fox, A; Hill, P C

    2004-09-01

    The data requirements of a large multidisciplinary tuberculosis case contact study are complex. We describe an ACCESS-based relational database system that meets our rigorous requirements for data entry and validation, while being user-friendly, flexible, exportable, and easy to install on a network or stand alone system. This includes the development of a double data entry package for epidemiology and laboratory data, semi-automated entry of ELISPOT data directly from the plate reader, and a suite of new programmes for the manipulation and integration of flow cytometry data. The double entered epidemiology and immunology databases are combined into a separate database, providing a near-real-time analysis of immuno-epidemiological data, allowing important trends to be identified early and major decisions about the study to be made and acted on. This dynamic data management model is portable and can easily be applied to other studies.

  5. Lay Navigator Model for Impacting Cancer Health Disparities

    PubMed Central

    Meade, Cathy D.; Wells, Kristen J.; Arevalo, Mariana; Calcano, Ercilia R.; Rivera, Marlene; Sarmiento, Yolanda; Freeman, Harold P; Roetzheim, Richard G.

    2014-01-01

    This paper recounts experiences, challenges, and lessons learned when implementing a lay patient navigator program to improve cancer care among medically underserved patients who presented in a primary care clinic with a breast or colorectal cancer abnormality. The program employed five lay navigators to navigate 588 patients. Central programmatic elements were: 1) use of bilingual lay navigators with familiarity of communities they served; 2) provision of training, education and supportive activities; 3) multidisciplinary clinical oversight that factored in caseload intensity; and 4) well-developed partnerships with community clinics and social service entities. Deconstruction of health care system information was fundamental to navigation processes. We conclude that a lay model of navigation is well suited to assist patients through complex health care systems; however, a stepped care model that includes both lay and professional navigation may be optimal to help patients across the entire continuum. PMID:24683043

  6. Lay navigator model for impacting cancer health disparities.

    PubMed

    Meade, Cathy D; Wells, Kristen J; Arevalo, Mariana; Calcano, Ercilia R; Rivera, Marlene; Sarmiento, Yolanda; Freeman, Harold P; Roetzheim, Richard G

    2014-09-01

    This paper recounts experiences, challenges, and lessons learned when implementing a lay patient navigator program to improve cancer care among medically underserved patients who presented in a primary care clinic with a breast or colorectal cancer abnormality. The program employed five lay navigators to navigate 588 patients. Central programmatic elements were the following: (1) use of bilingual lay navigators with familiarity of communities they served; (2) provision of training, education, and supportive activities; (3) multidisciplinary clinical oversight that factored in caseload intensity; and (4) well-developed partnerships with community clinics and social service entities. Deconstruction of healthcare system information was fundamental to navigation processes. We conclude that a lay model of navigation is well suited to assist patients through complex healthcare systems; however, a stepped care model that includes both lay and professional navigation may be optimal to help patients across the entire continuum.

  7. Physics of Cell Adhesion Failure and Human Diseases

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon

    Emergent phenomena in living systems, including your ability to read these lines, do not obviously follow as a consequence of the fundamental laws of physics. Understanding the physics of living systems clearly falls outside the conventional boundaries of scientific disciplines and requires a collaborative, multidisciplinary approach. Here I will discuss how theoretical and computational techniques from statistical physics can be used to make progress in explaining the physical mechanisms that underlie complex biological phenomena, including major diseases. In the specific cases of macular degeneration and cancer that we have studied recently, we find that the breakdown of the mechanical stability in the local tissue structure caused by weakening of the cell-cell adhesion plays a key role in the initiation and progression of the disease. This finding can help in the development of new therapies that would prevent or halt the initiation and progression of these diseases.

  8. Photonics approach to traffic signs

    NASA Astrophysics Data System (ADS)

    Litwin, Dariusz; Galas, Jacek; CzyŻewski, Adam; Rymsza, Barbara; Kornalewski, Leszek; Kryszczyński, Tadeusz; Mikucki, Jerzy; Wikliński, Piotr; Daszkiewicz, Marek; Malasek, Jacek

    2016-12-01

    The automotive industry has been always a driving force for all economies. Despite of its beneficial meaning to every society it brings also many issues including wide area of road safety. The latter has been enforced by the increasing number of cars and the dynamic development of the traffic as a whole. Road signs and traffic lights are crucial in context of good traffic arrangement and its fluency. Traffic designers are used to treat horizontal road signs independently of vertical signs. However, modern light sources and growing flexibility in shaping optical systems create opportunity to design more advanced and smart solutions. In this paper we present an innovative, multidisciplinary approach that consists in tight interdependence of different traffic signals. We describe new optical systems together with their influence on the perception of the road user. The analysis includes maintenance and visibility in different weather conditions. A special attention has been focused on intersections of complex geometry.

  9. Utilization and impact of a pulsed-xenon ultraviolet room disinfection system and multidisciplinary care team on Clostridium difficile in a long-term acute care facility.

    PubMed

    Miller, Renee; Simmons, Sarah; Dale, Charles; Stachowiak, Julie; Stibich, Mark

    2015-12-01

    Health care-associated transmission of Clostridium difficile has been well documented in long-term acute care facilities. This article reports on 2 interventions aimed at reducing the transmission risk: multidisciplinary care teams and no-touch pulsed-xenon disinfection. C difficile transmission rates were tracked over a 39-month period while these 2 interventions were implemented. After a baseline period of 1 year, multidisciplinary teams were implemented for an additional 1-year period with a focus on reducing C difficile infection. During this time, transmission rates dropped 17% (P = .91). In the following 15-month period, the multidisciplinary teams continued, and pulsed-xenon disinfection was added as an adjunct to manual cleaning of patient rooms and common areas. During this time, transmission rates dropped 57% (P = .02). These results indicate that the combined use of multidisciplinary teams and pulsed-xenon disinfection can have a significant impact on C difficile transmission rates in long-term care facilities. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Extracellular Electron Transfer and Survival Strategies in Acid Mine Drainage Impacted Soils

    NASA Astrophysics Data System (ADS)

    Gorby, Y. A.; Senko, J.

    2011-12-01

    Acid mine drainage (AMD) is a prominent and increasing problem in the greater Appalachian region of the United States and throughout the world. Recognition of the importance of extracellular electron transfer (EET) in microbial communities has provided a fertile research environment for multidisciplinary collaborations to emerge and effectively address complex questions with important environmental implications. Our research focuses on the components, strategies and mechanisms of EET in soil systems impacted by AMD and extends to other biogeochemical systems typified by steep redox gradients. Organisms within acid mine drainage use Fe(II) as their primary electron donor and couple Fe(II) oxidation to the reduction of oxygen as the terminal electron acceptor. Biogenic minerals formed by this process completely encase microbes in think deposits that would seem to limit diffusion of both Fe(II) and O2 for access by the organisms. We have developed methods for catalytically removing biogenic minerals revealing microorganisms and a fine network of filamentous extracellular material. Here we present a status report of our efforts to characterize the molecular and electronic properties of these filaments and to address the hypothesis that at least some of these filaments are electrically conductive microbial nanowires that facilitate electron transfer reactions within this complex biogeochemical system.

  11. BNCI systems as a potential assistive technology: ethical issues and participatory research in the BrainAble project.

    PubMed

    Carmichael, Clare; Carmichael, Patrick

    2014-01-01

    This paper highlights aspects related to current research and thinking about ethical issues in relation to Brain Computer Interface (BCI) and Brain-Neuronal Computer Interfaces (BNCI) research through the experience of one particular project, BrainAble, which is exploring and developing the potential of these technologies to enable people with complex disabilities to control computers. It describes how ethical practice has been developed both within the multidisciplinary research team and with participants. The paper presents findings in which participants shared their views of the project prototypes, of the potential of BCI/BNCI systems as an assistive technology, and of their other possible applications. This draws attention to the importance of ethical practice in projects where high expectations of technologies, and representations of "ideal types" of disabled users may reinforce stereotypes or drown out participant "voices". Ethical frameworks for research and development in emergent areas such as BCI/BNCI systems should be based on broad notions of a "duty of care" while being sufficiently flexible that researchers can adapt project procedures according to participant needs. They need to be frequently revisited, not only in the light of experience, but also to ensure they reflect new research findings and ever more complex and powerful technologies.

  12. Research Report for GeSCI Meta-Review of ICT in Education

    ERIC Educational Resources Information Center

    LeBaron, John; McDonough, Elizabeth

    2009-01-01

    The purpose of this research is to provide a multi-disciplinary, multi-methodological meta-review of literature for understanding the global complexity and exponential growth of information and communication technologies (ICT). The scope of the literature review behind this research is limited to studies published between 2006 and 2008. It…

  13. Commentary on "Management Education and the Base of the Pyramid"

    ERIC Educational Resources Information Center

    Rosile, Grace Ann

    2008-01-01

    This commentary asks some critical questions concerning the article "Management Education and the Base of the Pyramid" included in this special issue. Are "bottom of the pyramid" (BOP) multidisciplinary action project (MAP) students prepared to critically assess the impact of their interventions beyond a narrow definition of profit in complex and…

  14. Exploring Effective Teaching Strategies: Simulation Case Studies and Indigenous Studies at the University Level

    ERIC Educational Resources Information Center

    Norman, Heidi

    2004-01-01

    This paper explores teaching strategies for communicating complex issues and ideas to a diverse group of students, with different educational and vocational interests, that encourage them to develop critical thinking, and explores pedagogies appropriate to the multidisciplinary field of Aboriginal studies. These issues will be investigated through…

  15. Development of a Florida Seafood Program Using a Multi-Disciplinary Team

    ERIC Educational Resources Information Center

    Abeels, Holly; Fluech, Bryan; Krimsky, Lisa; Saari, Brooke; Shephard, Elizabeth; Zamojski, Kendra

    2015-01-01

    The seafood industry in Florida is complex, with more than 80 varieties of Florida seafood commodities and an increasing number of imported products. This variety increases consumer confusion, especially with the growing concern about the origin, sustainability, and safety of seafood products. The objective of the Florida Seafood At Your…

  16. Integrative taxonomy: Where we are now, with a focus on the resolution of three tropical fruit fly species complexes

    USDA-ARS?s Scientific Manuscript database

    Accurate species delimitation underpins good taxonomy. Formalisation of integrative taxonomy in the last decade has provided a framework for using multidisciplinary data to increase rigor in species delimitation hypotheses. We address the state of integrative taxonomy by using an international proje...

  17. A Developmental Perspective on the Virginia Student Threat Assessment Guidelines

    ERIC Educational Resources Information Center

    Cornell, Dewey G.

    2011-01-01

    The Virginia Student Threat Assessment Guidelines were developed to help multidisciplinary school-based teams use a decision tree to evaluate student threats and take appropriate preventive action. A main goal of this approach is to allow school-based teams to recognize and respond to the developmental complexities of children and adolescents…

  18. Collaboration in a Multidisciplinary, Distributed Research Organization: A Case Study

    ERIC Educational Resources Information Center

    Duysburgh, Pieter; Naessens, Kris; Konings, Wim; Jacobs, An

    2012-01-01

    Collaboration has become a main characteristic of academic research today. New forms of research organizations, colaboratories, have come to the fore, with distributed research centres as their most complex example. In this study, we aim to provide some insight into the collaboration strategies of researchers in their daily researching activities…

  19. Troubling the Boundaries: Overcoming Methodological Challenges in a Multi-Sectoral and Multi-Jurisdictional HIV/HCV Policy Scoping Review

    ERIC Educational Resources Information Center

    Hare, Kathleen A.; Dubé, Anik; Marshall, Zack; Gahagan, Jacqueline; Harris, Gregory E.; Tucker, Maryanne; Dykeman, Margaret; MacDonald, Jo-Ann

    2016-01-01

    Policy scoping reviews are an effective method for generating evidence-informed policies. However, when applying guiding methodological frameworks to complex policy evidence, numerous, unexpected challenges can emerge. This paper details five challenges experienced and addressed by a policy trainee-led, multi-disciplinary research team, while…

  20. The Transformation from Multidisciplinarity to Interdisciplinarity: A Case Study of a Course Involving the Status of Arab Citizens of Israel

    ERIC Educational Resources Information Center

    Tayler, Marilyn R.

    2014-01-01

    The author demonstrates that entry-level students can achieve a more comprehensive understanding of complex problems through an explicitly interdisciplinary approach than through a merely multidisciplinary approach, using the process described in Repko's (2014) "Introduction to Interdisciplinary Studies." Repko takes the…

  1. Traditional medicines and globalization: current and future perspectives in ethnopharmacology.

    PubMed

    Leonti, Marco; Casu, Laura

    2013-01-01

    The ethnopharmacological approach toward the understanding and appraisal of traditional and herbal medicines is characterized by the inclusions of the social as well as the natural sciences. Anthropological field-observations describing the local use of nature-derived medicines are the basis for ethnopharmacological enquiries. The multidisciplinary scientific validation of indigenous drugs is of relevance to modern societies at large and helps to sustain local health care practices. Especially with respect to therapies related to aging related, chronic and infectious diseases traditional medicines offer promising alternatives to biomedicine. Bioassays applied in ethnopharmacology represent the molecular characteristics and complexities of the disease or symptoms for which an indigenous drug is used in "traditional" medicine to variable depth and extent. One-dimensional in vitro approaches rarely cope with the complexity of human diseases and ignore the concept of polypharmacological synergies. The recent focus on holistic approaches and systems biology in medicinal plant research represents the trend toward the description and the understanding of complex multi-parameter systems. Ethnopharmacopoeias are non-static cultural constructs shaped by belief and knowledge systems. Intensified globalization and economic liberalism currently accelerates the interchange between local and global pharmacopoeias via international trade, television, the World Wide Web and print media. The increased infiltration of newly generated biomedical knowledge and introduction of "foreign" medicines into local pharmacopoeias leads to syncretic developments and generates a feedback loop. While modern and post-modern cultures and knowledge systems adapt and transform the global impact, they become more relevant for ethnopharmacology. Moreover, what is traditional, alternative or complementary medicine depends on the adopted historic-cultural perspective.

  2. Traditional medicines and globalization: current and future perspectives in ethnopharmacology

    PubMed Central

    Leonti, Marco; Casu, Laura

    2013-01-01

    The ethnopharmacological approach toward the understanding and appraisal of traditional and herbal medicines is characterized by the inclusions of the social as well as the natural sciences. Anthropological field-observations describing the local use of nature-derived medicines are the basis for ethnopharmacological enquiries. The multidisciplinary scientific validation of indigenous drugs is of relevance to modern societies at large and helps to sustain local health care practices. Especially with respect to therapies related to aging related, chronic and infectious diseases traditional medicines offer promising alternatives to biomedicine. Bioassays applied in ethnopharmacology represent the molecular characteristics and complexities of the disease or symptoms for which an indigenous drug is used in “traditional” medicine to variable depth and extent. One-dimensional in vitro approaches rarely cope with the complexity of human diseases and ignore the concept of polypharmacological synergies. The recent focus on holistic approaches and systems biology in medicinal plant research represents the trend toward the description and the understanding of complex multi-parameter systems. Ethnopharmacopoeias are non-static cultural constructs shaped by belief and knowledge systems. Intensified globalization and economic liberalism currently accelerates the interchange between local and global pharmacopoeias via international trade, television, the World Wide Web and print media. The increased infiltration of newly generated biomedical knowledge and introduction of “foreign” medicines into local pharmacopoeias leads to syncretic developments and generates a feedback loop. While modern and post-modern cultures and knowledge systems adapt and transform the global impact, they become more relevant for ethnopharmacology. Moreover, what is traditional, alternative or complementary medicine depends on the adopted historic-cultural perspective. PMID:23898296

  3. Forward Bay Cover Separation Modeling and Testing for the Orion Multi-Purpose Crew Vehicle

    NASA Technical Reports Server (NTRS)

    Ali, Yasmin; Chuhta, Jesse D.; Hughes, Michael P.; Radke, Tara S.

    2015-01-01

    Spacecraft multi-body separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics models used to verify no re-contact. The NASA Orion Multi-Purpose Crew Vehicle (MPCV) architecture includes a highly-integrated Forward Bay Cover (FBC) jettison assembly design that combines parachutes and piston thrusters to separate the FBC from the Crew Module (CM) and avoid re-contact. A multi-disciplinary team across numerous organizations examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the FBC separation event for Exploration Flight Test-1 (EFT-1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multi-parameter interactions (coupling and feedback) among the various model elements, and encompassing distinct near-field, mid-field, and far-field regimes. The test campaign was composed of component-level testing (for example gas-piston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison air-drop tests that were accomplished by a highly multi-disciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two air-drop tests added aerodynamic and parachute elements, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort-1 (PA-1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT-1. Additional testing will be required to support human certification of this separation event, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT-1 testing and modeling to develop a robust human-rated FBC separation event.

  4. The management of cardiovascular disease in the Netherlands: analysis of different programmes

    PubMed Central

    Cramm, Jane M.; Tsiachristas, Apostolos; Walters, Bethany H.; Adams, Samantha A.; Bal, Roland; Huijsman, Robbert; Rutten-Van Mölken, Maureen P.M.H.; Nieboer, Anna P.

    2013-01-01

    Background Disease management programmes are increasingly used to improve the efficacy and effectiveness of chronic care delivery. But, disease management programme development and implementation is a complex undertaking that requires effective decision-making. Choices made in the earliest phases of programme development are crucial, as they ultimately impact costs, outcomes and sustainability. Methods To increase our understanding of the choices that primary healthcare practices face when implementing such programmes and to stimulate successful implementation and sustainability, we compared the early implementation of eight cardiovascular disease management programmes initiated and managed by healthcare practices in various regions of the Netherlands. Using a mixed-methods design, we identified differences in and challenges to programme implementation in terms of context, patient characteristics, disease management level, healthcare utilisation costs, development costs and health-related quality of life. Results Shifting to a multidisciplinary, patient-centred care pathway approach to disease management is demanding for organisations, professionals and patients, and is especially vulnerable when sustainable change is the goal. Funding is an important barrier to sustainable implementation of cardiovascular disease management programmes, although development costs of the individual programmes varied considerably in relation to the length of the development period. The large number of professionals involved in combination with duration of programme development was the largest cost drivers. While Information and Communication Technology systems to support the new care pathways did not directly contribute to higher costs, delays in implementation indirectly did. Conclusions Developing and implementing cardiovascular disease management programmes is time-consuming and challenging. Multidisciplinary, patient-centred care demands multifaceted changes in routine care. As care pathways become more complex, they also become more expensive. Better preparedness and training can prevent unnecessary delays during the implementation period and are crucial to reducing costs. PMID:24167456

  5. The management of cardiovascular disease in the Netherlands: analysis of different programmes.

    PubMed

    Cramm, Jane M; Tsiachristas, Apostolos; Walters, Bethany H; Adams, Samantha A; Bal, Roland; Huijsman, Robbert; Rutten-Van Mölken, Maureen P M H; Nieboer, Anna P

    2013-01-01

    Disease management programmes are increasingly used to improve the efficacy and effectiveness of chronic care delivery. But, disease management programme development and implementation is a complex undertaking that requires effective decision-making. Choices made in the earliest phases of programme development are crucial, as they ultimately impact costs, outcomes and sustainability. To increase our understanding of the choices that primary healthcare practices face when implementing such programmes and to stimulate successful implementation and sustainability, we compared the early implementation of eight cardiovascular disease management programmes initiated and managed by healthcare practices in various regions of the Netherlands. Using a mixed-methods design, we identified differences in and challenges to programme implementation in terms of context, patient characteristics, disease management level, healthcare utilisation costs, development costs and health-related quality of life. Shifting to a multidisciplinary, patient-centred care pathway approach to disease management is demanding for organisations, professionals and patients, and is especially vulnerable when sustainable change is the goal. Funding is an important barrier to sustainable implementation of cardiovascular disease management programmes, although development costs of the individual programmes varied considerably in relation to the length of the development period. The large number of professionals involved in combination with duration of programme development was the largest cost drivers. While Information and Communication Technology systems to support the new care pathways did not directly contribute to higher costs, delays in implementation indirectly did. Developing and implementing cardiovascular disease management programmes is time-consuming and challenging. Multidisciplinary, patient-centred care demands multifaceted changes in routine care. As care pathways become more complex, they also become more expensive. Better preparedness and training can prevent unnecessary delays during the implementation period and are crucial to reducing costs.

  6. Modeling and Analysis of Multidiscipline Research Teams at NASA Langley Research Center: A Systems Thinking Approach

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.; Barthelemy, Jean-Francois; Jones, Kenneth M.; Silcox, Richard J.; Silva, Walter A.; Nowaczyk, Ronald H.

    1998-01-01

    Multidisciplinary analysis and design is inherently a team activity due to the variety of required expertise and knowledge. As a team activity, multidisciplinary research cannot escape the issues that affect all teams. The level of technical diversity required to perform multidisciplinary analysis and design makes the teaming aspects even more important. A study was conducted at the NASA Langley Research Center to develop a model of multidiscipline teams that can be used to help understand their dynamics and identify key factors that influence their effectiveness. The study sought to apply the elements of systems thinking to better understand the factors, both generic and Langley-specific, that influence the effectiveness of multidiscipline teams. The model of multidiscipline research teams developed during this study has been valuable in identifying means to enhance team effectiveness, recognize and avoid problem behaviors, and provide guidance for forming and coordinating multidiscipline teams.

  7. Multidisciplinary Care Models for Patients With Psoriatic Arthritis.

    PubMed

    Queiro, Rubén; Coto, Pablo; Rodríguez, Jesús; Notario, Jaume; Navío Marco, Teresa; de la Cueva, Pablo; Pujol Busquets, Manel; García Font, Mercè; Joven, Beatriz; Rivera, Raquel; Alvarez Vega, Jose Luis; Chaves Álvarez, Antonio Javier; Sánchez Parera, Ricardo; Ruiz Carrascosa, Jose Carlos; Rodríguez Martínez, Fernando José; Pardo Sánchez, José; Feced Olmos, Carlos; Pujol, Conrad; Galindez, Eva; Pérez Barrio, Silvia; Urruticoechea Arana, Ana; Hergueta, Mercedes; Luelmo, Jesús; Gratacós, Jordi

    To describe (structure, processes) of the multidisciplinary care models in psoriatic arthritis (PsA) in Spain, as well as barriers and facilitators of their implementation. A qualitative study was performed following structured interviews with 24 professionals (12 rheumatologists, 12 dermatologists who provide multidisciplinary care for patients with PsA). We collected data related to the hospital, department, population and multidisciplinary care model (type, physical and human resources, professional requirements, objectives, referral criteria, agendas, protocols, responsibilities, decision- making, research and education, clinical sessions, development and planning of the model, advantages and disadvantages of the model, barriers and facilitators in the implementation of the model. The models characteristics are described. We analyzed 12 multidisciplinary care models in PsA, with at least 1-2 years of experience, and 3 subtypes of models, face-to-face, parallel, and preferential circuit. All are adapted to the hospital and professionals characteristics. A proper implementation planning is essential. The involvement and empathy between professionals and an access and well-defined referral criteria are important facilitators in the implementation of a model. The management of agendas and data collection to measure the multidisciplinary care models health outcomes are the main barriers. There are different multidisciplinary care models in PsA that can improve patient outcomes, system efficiency and collaboration between specialists. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  8. INTAROS: Development of an integrated Arctic observation system under Horizon 2020

    NASA Astrophysics Data System (ADS)

    Beszczynska-Möller, Agnieszka; Sandven, Stein; Sagen, Hanne

    2017-04-01

    INTAROS is a research and innovation action funded under the H2020-BG-09 call for the five-year period 2016-2021. INTAROS will develop an integrated Arctic Observation System (iAOS) by extending, improving and unifying existing systems in the different regions of the Arctic. INTAROS will have a strong multidisciplinary focus, with tools for integration of data from atmosphere, ocean, cryosphere and terrestrial sciences, provided by institutions in Europe, North America and Asia. Satellite earth observation (EO) data plays an increasingly important role in such observing systems, because the amount of EO data for observing the global climate and environment grows year by year. EO data will therefore be integrated into iAOS based on existing products and databases. In situ observing systems are much more limited due to logistical constraints and cost limitations. The sparseness of in situ data is therefore the largest gap in the overall observing system. INTAROS will assess strengths and weaknesses of existing Arctic observing systems and contribute with innovative solutions to fill some of the critical gaps in the selected networks. INTAROS will develop a platform, iAOS, to search for and access data from distributed databases. The evolution into a sustainable Arctic observing system requires coordination, mobilization and cooperation between the existing European and international infrastructures (in-situ and remote, including space-based), the modeling communities and relevant stakeholder groups. INTAROS will include development of community-based observing systems, where local knowledge is merged with scientific data. Multidisciplinary data integrated under INTAROS will contribute to better understanding of interactions and coupling in the complex Arctic ice-ocean-land-atmosphere system. An integrated Arctic Observation System will enable better-informed decisions and better-documented processes within key sectors (e.g. local communities, shipping, tourism, fishing), in order to strengthen the societal and economic role of the Arctic region and support the EU strategy for the Arctic and related maritime and environmental policies. Following the SAON goal, INTAROS will support and strengthen the EU engagement in developing the sustained and coordinated pan-Arctic observing and data sharing systems.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.; Patchen, D.G.; Heald, M.

    Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict,more » especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.« less

  10. A Geometry Based Infra-structure for Computational Analysis and Design

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1997-01-01

    The computational steps traditionally taken for most engineering analysis (CFD, structural analysis, and etc.) are: Surface Generation - usually by employing a CAD system; Grid Generation - preparing the volume for the simulation; Flow Solver - producing the results at the specified operational point; and Post-processing Visualization - interactively attempting to understand the results For structural analysis, integrated systems can be obtained from a number of commercial vendors. For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. Specifically the problems with this procedure are: (1) File based. Information flows from one step to the next via data files with formats specified for that procedure. (2) 'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in tens of minutes (even with a complex configuration) using unstructured techniques. (3) One-Way communication. All information travels on from one phase to the next. Until this process can be automated, more complex problems such as multi-disciplinary analysis or using the above procedure for design becomes prohibitive.

  11. Community-oriented integrated care and health promotion - views from the street.

    PubMed

    Thomas, Paul; Burch, Tony; Ferlie, Ewan; Jenkins, Rachel; Wright, Fiona; Sachar, Amrit; Ruprah-Shah, Baljeet

    2015-09-03

    On the 1st and 2nd May 2015, participants at the RCGP London City Health Conference debated practical ways to achieve integrated care at community level. In five connected workshops, participants reviewed current work and identified ways to overcome some of the problems that had become apparent. In this paper, we summarise the conclusions of each workshop, and provide an overall comment. There are layers of complexity in community-oriented integrated care that are not apparent at first sight. The difficult thing is not persuading people that it matters, but finding ways to do it that are practical and sustainable. The dynamic and complex nature of the territory is bewildering. The expectation of silo-operating and linear thinking, and the language and models that encourage it, pervade health and social care. Comprehensive integration is possible, but the theory and practice are unfamiliar to many. Images, theories and models are needed to help people from all parts of the system to see big pictures and focused detail at the same time and oscillate between them to envision-integrated whole systems. Infrastructure needs to enable this, with coordination hubs, locality-based multidisciplinary meetings and cycles of inter-organisational improvement to nurture relationships across organisational boundaries.

  12. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  13. Multidisciplinary Techniques and Novel Aircraft Control Systems

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shapechange devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  14. The European Plate Observing System (EPOS) Services for Solid Earth Science

    NASA Astrophysics Data System (ADS)

    Cocco, Massimo; Atakan, Kuvvet; Pedersen, Helle; Consortium, Epos

    2016-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The main vision of the European Plate Observing System (EPOS) is to address the three basic challenges in Earth Sciences: (i) unravelling the Earth's deformational processes which are part of the Earth system evolution in time, (ii) understanding the geo-hazards and their implications to society, and (iii) contributing to the safe and sustainable use of geo-resources. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS has now started its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and is planned to be harmonized and provided within the ICS. The EPOS Thematic Services will rely in part on strong and sustainable participation by national organisations and international consortia. While this distributed architecture will contribute to ensure pan European involvement in EPOS, it also raises specific challenges: ensuring similar granularity of services, compatibility of technical solutions, homogeneous legal agreements and sustainable financial engagement from the partner institutions and organisations. EPOS is engaging actions to address all of these issues during 2016-2017, after which the services will enter a final validation phase by the EPOS Board of Governmental Representatives.

  15. From big data analysis to personalized medicine for all: challenges and opportunities.

    PubMed

    Alyass, Akram; Turcotte, Michelle; Meyre, David

    2015-06-27

    Recent advances in high-throughput technologies have led to the emergence of systems biology as a holistic science to achieve more precise modeling of complex diseases. Many predict the emergence of personalized medicine in the near future. We are, however, moving from two-tiered health systems to a two-tiered personalized medicine. Omics facilities are restricted to affluent regions, and personalized medicine is likely to widen the growing gap in health systems between high and low-income countries. This is mirrored by an increasing lag between our ability to generate and analyze big data. Several bottlenecks slow-down the transition from conventional to personalized medicine: generation of cost-effective high-throughput data; hybrid education and multidisciplinary teams; data storage and processing; data integration and interpretation; and individual and global economic relevance. This review provides an update of important developments in the analysis of big data and forward strategies to accelerate the global transition to personalized medicine.

  16. Somatic evolution of head and neck cancer - biological robustness and latent vulnerability.

    PubMed

    Masuda, Muneyuki; Toh, Satoshi; Wakasaki, Takahiro; Suzui, Masumi; Joe, Andrew K

    2013-02-01

    Despite recent advancements in multidisciplinary treatments, the overall survival and quality of life of patients with advanced head and neck squamous cell carcinoma (HNSCC) have not improved significantly over the past decade. Molecular targeted therapies, which have been addressed and advanced by the concept of "oncogene addiction", have demonstrated only limited successes so far. To explore a novel clue for clinically effective targeted therapies, we analyzed the molecular circuitry of HNSCC through the lens that HNSCC is an evolving system. In the trajectory of this somatic evolution, HNSCC acquires biological robustness under a variety of selective pressures including genetic, epigenetic, micro-environmental and metabolic stressors, which well explains the major mechanism of "escaping from oncogene addiction". On the other hand, this systemic view appears to instruct us approaches to target latent vulnerability of HNSCC that is masked behind the plasticity and evolvability of this complex adaptive system. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. [Are therapeutics decisions homogeneous in multidisciplinary onco-urology staff meeting? Comparison of therapeutic options taken in four departments from Paris].

    PubMed

    Audenet, F; Lejay, V; Mejean, A; De La Taille, A; Abbou, C-C; Lebret, T; Botto, H; Bitker, M-O; Roupret, M

    2012-06-01

    One of the priorities of the "Plan against the Cancer" in France is to ensure the discussion of all cancer cases in a multidisciplinary meeting staff (RCP). The multidisciplinary collaboration is proposed to guarantee a discussion between specialists in every cases, particularly in complex cases. The aim of this study was to compare the therapeutic decision taken in four RCP in Paris Île-de-France academic centres for three identical cases. Three cases of urological oncology (prostate cancer [PCa], renal cell carcinoma [RCC] and bladder tumour) were selected by a single urologist, not involved in further discussion. These cases were blindly presented in four academic urology department from Paris: Pitié-Salpêtrière Hospital, Mondor Hospital, the Georges-Pompidou European Hospital and Foch Hospital. The four centres met the criteria of quality of RCP in terms of multidisciplinarity, frequency and standardization. The therapeutic suggestions were similar in the RCC cases, there were differences in the surgical approaches and preoperative work-up in the PCa case and, lastly, the proposals were different for the bladder cancer case. The decisions relies on clinical data and preoperative work-up but also on the experience and habits of the centre of excellence. For complex cases that does not fit with current guidelines, the panel discussion can lead to different therapeutic options from a centre to another and is largely influenced by the local organisation of the RCP. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Building the capacity to solve complex health challenges in sub-Saharan Africa: CARTA's multidisciplinary PhD training.

    PubMed

    Fonn, Sharon; Egesah, Omar; Cole, Donald; Griffiths, Frances; Manderson, Lenore; Kabiru, Caroline; Ezeh, Alex; Thorogood, Margaret; Izugbara, Chimaraoke

    2016-12-27

    To develop a curriculum (Joint Advanced Seminars [JASs]) that produced PhD fellows who understood that health is an outcome of multiple determinants within complex environments and that approaches from a range of disciplines is required to address health and development within the Consortium for Advanced Research Training in Africa (CARTA). We sought to attract PhD fellows, supervisors and teaching faculty from a range of disciplines into the program. Multidisciplinary teams developed the JAS curriculum. CARTA PhD fellowships were open to academics in consortium member institutions, irrespective of primary discipline, interested in doing a PhD in public and population health. Supervisors and JAS faculty were recruited from CARTA institutions. We use routine JAS evaluation data (closed and open-ended questions) collected from PhD fellows at every JAS, a survey of one CARTA cohort, and an external evaluation of CARTA to assess the impact of the JAS curriculum on learning. We describe our pedagogic approach, arguing its centrality to an appreciation of multiple disciplines, and illustrate how it promotes working in multidisciplinary ways. CARTA has attracted PhD fellows, supervisors and JAS teaching faculty from across a range of disciplines. Evaluations indicate PhD fellows have a greater appreciation of how disciplines other than their own are important to understanding health and its determinants and an appreciation and capacity to employ mixed methods research. In the short term, we have been effective in promoting an understanding of multidisciplinarity, resulting in fellows using methods from beyond their discipline of origin. This curriculum has international application.

  19. Optimal Design of Integrated Systems Health Management (ISHM) Systems for improving safety in NASA's Exploration Vehicles: A Two-Level Multidisciplinary Design Approach

    NASA Technical Reports Server (NTRS)

    Mehr, Ali Farhang; Tumer, Irem; Barszcz, Eric

    2005-01-01

    Integrated Vehicle Health Management (ISHM) systems are used to detect, assess, and isolate functional failures in order to improve safety of space systems such as Orbital Space Planes (OSPs). An ISHM system, as a whole, consists of several subsystems that monitor different components of an OSP including: Spacecraft, Launch Vehicle, Ground Control, and the International Space Station. In this research, therefore, we propose a new methodology to design and optimize ISHM as a distributed system with multiple disciplines (that correspond to different subsystems of OSP safety). A paramount amount of interest has been given in the literature to the multidisciplinary design optimization of problems with such architecture (as will be reviewed in the full paper).

  20. Genetic predisposition to peripheral nerve neoplasia: Diagnostic criteria and pathogenesis of neurofibromatoses, Carney complex, and related syndromes

    PubMed Central

    Rodriguez, Fausto J.; Stratakis, Constantine A.; Evans, D Gareth

    2013-01-01

    Neoplasms of the peripheral nerve sheath represent essential clinical manifestations of the syndromes known as the neurofibromatoses. Although involvement of multiple organ systems, including skin, central nervous system and skeleton, may also be conspicuous, peripheral nerve neoplasia is often the most important and frequent cause of morbidity in these patients. Clinical characteristics of neurofibromatosis type 1 (NF1) and neurofibromatosis type 2 (NF2) have been extensively described and studied during the last century, and the identification of mutations in the NF1 and NF2 genes by contemporary molecular techniques have created a separate multidisciplinary field in genetic medicine. In schwannomatosis, the most recent addition to the neurofibromatosis group, peripheral nervous system involvement is the exclusive (or almost exclusive) clinical manifestation. Although the majority of cases of schwannomatosis are sporadic, approximately a third occur in families and a subset of these has recently been associated with germline mutations in the tumor suppressor gene SMARCB1/INI1. Other curious syndromes that involve the peripheral nervous system are associated with predominant endocrine manifestations, and include Carney Complex and MEN2b, secondary to inactivating mutations in the PRKAR1A gene in a subset, and activating mutations in RET respectively. In this review, we provide a concise update on the diagnostic criteria, pathology and molecular pathogenesis of these enigmatic syndromes in relation to peripheral nerve sheath neoplasia. PMID:22210082

  1. Genetic predisposition to peripheral nerve neoplasia: diagnostic criteria and pathogenesis of neurofibromatoses, Carney complex, and related syndromes.

    PubMed

    Rodriguez, Fausto J; Stratakis, Constantine A; Evans, D Gareth

    2012-03-01

    Neoplasms of the peripheral nerve sheath represent essential clinical manifestations of the syndromes known as the neurofibromatoses. Although involvement of multiple organ systems, including skin, central nervous system, and skeleton, may also be conspicuous, peripheral nerve neoplasia is often the most important and frequent cause of morbidity in these patients. Clinical characteristics of neurofibromatosis type 1 (NF1) and neurofibromatosis type 2 (NF2) have been extensively described and studied during the last century, and the identification of mutations in the NF1 and NF2 genes by contemporary molecular techniques have created a separate multidisciplinary field in genetic medicine. In schwannomatosis, the most recent addition to the neurofibromatosis group, peripheral nervous system involvement is the exclusive (or almost exclusive) clinical manifestation. Although the majority of cases of schwannomatosis are sporadic, approximately one-third occur in families and a subset of these has recently been associated with germline mutations in the tumor suppressor gene SMARCB1/INI1. Other curious syndromes that involve the peripheral nervous system are associated with predominant endocrine manifestations, and include Carney complex and MEN2b, secondary to inactivating mutations in the PRKAR1A gene in a subset, and activating mutations in RET, respectively. In this review, we provide a concise update on the diagnostic criteria, pathology and molecular pathogenesis of these enigmatic syndromes in relation to peripheral nerve sheath neoplasia.

  2. Measuring System Value in the Ares 1 Rocket Using an Uncertainty-Based Coupling Analysis Approach

    NASA Astrophysics Data System (ADS)

    Wenger, Christopher

    Coupling of physics in large-scale complex engineering systems must be correctly accounted for during the systems engineering process to ensure no unanticipated behaviors or unintended consequences arise in the system during operation. Structural vibration of large segmented solid rocket motors, known as thrust oscillation, is a well-documented problem that can affect the health and safety of any crew onboard. Within the Ares 1 rocket, larger than anticipated vibrations were recorded during late stage flight that propagated from the engine chamber to the Orion crew module. Upon investigation engineers found the root cause to be the structure of the rockets feedback onto fluid flow within the engine. The goal of this paper is to showcase a coupling strength analysis from the field of Multidisciplinary Design Optimization to identify the major impacts that caused the Thrust Oscillation event in the Ares 1. Once identified an uncertainty analysis of the coupled system using an uncertainty based optimization technique is used to identify the likelihood of occurrence for these strong or weak interactions to take place.

  3. A versatile mathematical work-flow to explore how Cancer Stem Cell fate influences tumor progression.

    PubMed

    Fornari, Chiara; Balbo, Gianfranco; Halawani, Sami M; Ba-Rukab, Omar; Ahmad, Ab Rahman; Calogero, Raffaele A; Cordero, Francesca; Beccuti, Marco

    2015-01-01

    Nowadays multidisciplinary approaches combining mathematical models with experimental assays are becoming relevant for the study of biological systems. Indeed, in cancer research multidisciplinary approaches are successfully used to understand the crucial aspects implicated in tumor growth. In particular, the Cancer Stem Cell (CSC) biology represents an area particularly suited to be studied through multidisciplinary approaches, and modeling has significantly contributed to pinpoint the crucial aspects implicated in this theory. More generally, to acquire new insights on a biological system it is necessary to have an accurate description of the phenomenon, such that making accurate predictions on its future behaviors becomes more likely. In this context, the identification of the parameters influencing model dynamics can be advantageous to increase model accuracy and to provide hints in designing wet experiments. Different techniques, ranging from statistical methods to analytical studies, have been developed. Their applications depend on case-specific aspects, such as the availability and quality of experimental data, and the dimension of the parameter space. The study of a new model on the CSC-based tumor progression has been the motivation to design a new work-flow that helps to characterize possible system dynamics and to identify those parameters influencing such behaviors. In detail, we extended our recent model on CSC-dynamics creating a new system capable of describing tumor growth during the different stages of cancer progression. Indeed, tumor cells appear to progress through lineage stages like those of normal tissues, being their division auto-regulated by internal feedback mechanisms. These new features have introduced some non-linearities in the model, making it more difficult to be studied by solely analytical techniques. Our new work-flow, based on statistical methods, was used to identify the parameters which influence the tumor growth. The effectiveness of the presented work-flow was firstly verified on two well known models and then applied to investigate our extended CSC model. We propose a new work-flow to study in a practical and informative way complex systems, allowing an easy identification, interpretation, and visualization of the key model parameters. Our methodology is useful to investigate possible model behaviors and to establish factors driving model dynamics. Analyzing our new CSC model guided by the proposed work-flow, we found that the deregulation of CSC asymmetric proliferation contributes to cancer initiation, in accordance with several experimental evidences. Specifically, model results indicated that the probability of CSC symmetric proliferation is responsible of a switching-like behavior which discriminates between tumorigenesis and unsustainable tumor growth.

  4. Design and Optimization Method of a Two-Disk Rotor System

    NASA Astrophysics Data System (ADS)

    Huang, Jingjing; Zheng, Longxi; Mei, Qing

    2016-04-01

    An integrated analytical method based on multidisciplinary optimization software Isight and general finite element software ANSYS was proposed in this paper. Firstly, a two-disk rotor system was established and the mode, humorous response and transient response at acceleration condition were analyzed with ANSYS. The dynamic characteristics of the two-disk rotor system were achieved. On this basis, the two-disk rotor model was integrated to the multidisciplinary design optimization software Isight. According to the design of experiment (DOE) and the dynamic characteristics, the optimization variables, optimization objectives and constraints were confirmed. After that, the multi-objective design optimization of the transient process was carried out with three different global optimization algorithms including Evolutionary Optimization Algorithm, Multi-Island Genetic Algorithm and Pointer Automatic Optimizer. The optimum position of the two-disk rotor system was obtained at the specified constraints. Meanwhile, the accuracy and calculation numbers of different optimization algorithms were compared. The optimization results indicated that the rotor vibration reached the minimum value and the design efficiency and quality were improved by the multidisciplinary design optimization in the case of meeting the design requirements, which provided the reference to improve the design efficiency and reliability of the aero-engine rotor.

  5. A Strategy to Overcome the Radiology Lottery in the Staging of Head and Neck Cancer: An Aid to Attaining the 30-Day Rule

    PubMed Central

    Elloy, Marianne; Jarvis, Sara; Davis, Anne

    2009-01-01

    INTRODUCTION Rapid access to radiological services is essential, if the British Association of Otolaryngologists – Head and Neck Surgeons Minimum Temporal Standards are to be met in the management of head and neck cancer patients. This study assesses a new initiative whereby the multidisciplinary team prioritises allocated imaging appointments rather than using the traditional radiological triage system. PATIENTS AND METHODS This study was a prospective audit of all patients referred over a 3-month period with suspected head and neck cancer. The main outcome measures were: (i) median interval in days from general practitioner (GP) referral to staging scan; and (ii) median interval in days from first clinic appointment to staging scan. RESULTS The new multidisciplinary team booking system led to a statistically significant reduction in the ‘request-to-scan time’ (from 12 days to 5 days). The time from ‘GP to scan’ also improved. CONCLUSIONS This new multidisciplinary team-led booking system, could, in the future, speed up access to radiology services lead and neck cancer patients, allowing earlier definitive treatment. PMID:19126338

  6. Rational design on controlled release ion-exchange polymeric microspheres and polymer-lipid hybrid nanoparticles for the delivery of water-soluble drugs through a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang

    Sulfopropyl dextran sulfate (SP-DS) microspheres and polymer-lipid hybrid nanoparticles (PLN) for the delivery of water-soluble anticancer drugs and P-glycoprotein inhibitors were developed by our group recently and demonstrated effectiveness in local chemotherapy. To optimize the delivery performance of these particulate systems, particularly PLN, an integrated multidisciplinary approach was developed, based on an in-depth understanding of drug-excipient interactions, internal structure, drug loading and release mechanisms, and application of advanced modeling/optimization techniques. An artificial neural networks (ANN) simulator capable of formulation optimization and drug release prediction was developed. In vitro drug release kinetics of SP-DS microspheres, with various drug loading and in different release media, were predicted by ANN. The effects of independent variables on drug release were evaluated. Good modeling performance suggested that ANN is a useful tool to predict drug release from ion-exchange microspheres. To further improve the performance of PLN, drug-polymer-lipid interactions were characterized theoretically and experimentally using verapamil hydrochloride (VRP) as a model drug and dextran sulfate sodium (DS) as a counter-ion polymer. VRP-DS complexation followed a stoichiometric rule and solid-state transformation of VRP were observed. Dodecanoic acid (DA) was identified as the lead lipid carrier material. Based upon the optimized drug-polymer-lipid interactions, PLN with high drug loading capacity (36%, w/w) and sustained release without initial burst release were achieved. VRP remained amorphous and was molecularly dispersed within PLN. H-bonding contributed to the miscibility between the VRP-DS complex and DA. Drug release from PLN was mainly controlled by diffusion and ion-exchange processes. Drug loading capacity and particle size of PLN depend on the formulation factors of the weight ratio of drug to lipid and concentrations of surfactants applied. A three-factor spherical composite experimental design was used to map the cause-and-effect relationship. PLN with high drug loading efficiency (92%) and small particle size (100 nm) were predicted by ANN and confirmed by experiment. The roles of various factors on the properties of PLN were also investigated. In summary, this thesis demonstrates that an integrated multidisciplinary strategy ranging from preformulation to formulation to optimization is suitable for the rational design of SP-DS microspheres and PLN with desired properties.

  7. A Multidisciplinary Approach to the Treatment of Co-occurring Opioid Use Disorder and Posttraumatic Stress Disorder in Pregnancy: A Case Report.

    PubMed

    Goodman, Daisy J; Milliken, Catherine U; Theiler, Regan N; Nordstrom, Benjamin R; Akerman, Sarah C

    2015-01-01

    Perinatal opioid use disorders negatively impact maternal and neonatal outcomes and are a public health problem of increasing severity. More than half of women with a substance use disorder have a history of posttraumatic stress disorder that, if not adequately addressed, can impede substance use disorder treatment. This case report describes complexities in the treatment of a pregnant woman with opioid use disorder and posttraumatic stress disorder and reviews the psychotherapeutic and pharmacologic approaches available to treat these co-occurring disorders in pregnancy. This case demonstrates the importance of early screening and intervention for co-occurring posttraumatic stress disorder in pregnant women who use substances in a closely coordinated, multidisciplinary approach to improve outcomes for women and their infants.

  8. [Multidisciplinary treatment of orofacial pain].

    PubMed

    Geurts, J W; Haumann, J; van Kleef, M

    2016-11-01

    The diagnosis and treatment of orofacial pain can be complex. The differential diagnosis is very extensive. Therefore, multidisciplinary diagnosis and treatment are often indicated. The diagnosis of chronic pain also entails the investigation of psychological factors. This is because psychological problems can play a role in the chronification of pain, but they can also be a consequence of chronic pain. Patients with persistent orofacial complaints should be seen by a medical team consisting of an oral and maxillofacial surgeon, a neurologist, an anaesthesiologist/pain specialist, a dentist-gnathologist, an orofacial physical therapist, and a psychologist or psychiatrist specialising in orofacial pain. Treatment options should be discussed, taking into account literature concerning their effectiveness. The general conclusion is that much research remains to be done into the causes of, and treatments for, orofacial pain.

  9. A Multidisciplinary Approach to the Treatment of Co-occurring Opioid Use Disorder and Posttraumatic Stress Disorder in Pregnancy: A Case Report

    PubMed Central

    Goodman, Daisy J.; Milliken, Catherine U.; Theiler, Regan N.; Nordstrom, Benjamin R.; Akerman, Sarah C.

    2016-01-01

    Perinatal opioid use disorders negatively impact maternal and neonatal outcomes and are a public health problem of increasing severity. More than half of women with a substance use disorder have a history of posttraumatic stress disorder that, if not adequately addressed, can impede substance use disorder treatment. This case report describes complexities in the treatment of a pregnant woman with opioid use disorder and posttraumatic stress disorder and reviews the psychotherapeutic and pharmacologic approaches available to treat these co-occurring disorders in pregnancy. This case demonstrates the importance of early screening and intervention for co-occurring posttraumatic stress disorder in pregnant women who use substances, in a closely coordinated, multidisciplinary approach to improve outcomes for women and their infants. PMID:26457976

  10. Multidisciplinary, multimodal approach for a child with a traumatic facial scar.

    PubMed

    Admani, Shehla; Gertner, Jeffrey W; Grosman, Amanda; Shumaker, Peter R; Uebelhoer, Nathan S; Krakowski, Andrew C

    2015-03-01

    The treatment of disfiguring and disabling scars remains a field of active study, reinvigorated with recent advances in techniques and technologies. A variety of approaches can be utilized depending on scar characteristics, location, degree of tissue loss, and associated contractures. Just as traumatic scars can be complex and heterogeneous, the corresponding paradigm for treatment must also be flexible and multimodal for optimal improvement. This report describes a 3-year-old girl with a "mixed" (atrophic/hypertrophic), violaceous, contracted facial scar from a dog bite. It was treated with a novel approach utilizing a multidisciplinary pediatric scar team to combine autologous fat grafting, ablative fractional laser resurfacing, pulsed-dye laser, and laser-assisted delivery of a corticosteroid as concurrent, multimodal therapy to optimize the outcome. ©2015 Frontline Medical Communications.

  11. Multidisciplinary Interventions in Motor Neuron Disease

    PubMed Central

    Williams, U. E.; Philip-Ephraim, E. E.; Oparah, S. K.

    2014-01-01

    Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease. PMID:26317009

  12. Strabo: An App and Database for Structural Geology and Tectonics Data

    NASA Astrophysics Data System (ADS)

    Newman, J.; Williams, R. T.; Tikoff, B.; Walker, J. D.; Good, J.; Michels, Z. D.; Ash, J.

    2016-12-01

    Strabo is a data system designed to facilitate digital storage and sharing of structural geology and tectonics data. The data system allows researchers to store and share field and laboratory data as well as construct new multi-disciplinary data sets. Strabo is built on graph database technology, as opposed to a relational database, which provides the flexibility to define relationships between objects of any type. This framework allows observations to be linked in a complex and hierarchical manner that is not possible in traditional database topologies. Thus, the advantage of the Strabo data structure is the ability of graph databases to link objects in both numerous and complex ways, in a manner that more accurately reflects the realities of the collecting and organizing of geological data sets. The data system is accessible via a mobile interface (iOS and Android devices) that allows these data to be stored, visualized, and shared during primary collection in the field or the laboratory. The Strabo Data System is underlain by the concept of a "Spot," which we define as any observation that characterizes a specific area. This can be anything from a strike and dip measurement of bedding to cross-cutting relationships between faults in complex dissected terrains. Each of these spots can then contain other Spots and/or measurements (e.g., lithology, slickenlines, displacement magnitude.) Hence, the Spot concept is applicable to all relationships and observation sets. Strabo is therefore capable of quantifying and digitally storing large spatial variations and complex geometries of naturally deformed rocks within hierarchically related maps and images. These approaches provide an observational fidelity comparable to a traditional field book, but with the added benefits of digital data storage, processing, and ease of sharing. This approach allows Strabo to integrate seamlessly into the workflow of most geologists. Future efforts will focus on extending Strabo to other sub-disciplines as well as developing a desktop system for the enhanced collection and organization of microstructural data.

  13. Multidisciplinary field surveys as the new norm: Integrating geosciences to characterize the fate of carbon in a geothermal fumarole

    NASA Astrophysics Data System (ADS)

    Sheik, C.; Giovannelli, D.; Cox, A. D.; Hummer, D. R.; Pratt, K.; Thomas, D.; Viveiros, M. F.

    2016-12-01

    Has a reviewer ever asked you, "Why didn't you measure x, y, and z for this manuscript"? After venting your frustration to anyone who'll listen, you start to think maybe they're right and the study would benefit from a few extra measurements. Modern science demands multidisciplinary projects, data integration, and a holistic understanding of complex biogeochemical systems. With this in mind, we integrating field sampling into an early career scientist workshop. We asked, "Can we assemble early career scientists from disparate geoscience fields and effectively characterize carbon reservoirs and fluxes at a geologically active site?" Here, we present the results of an integrated, multidisciplinary, and co-located sampling effort carried out during the Second Deep Carbon Observatory Early Career Science Workshop 2015 in the Azores, Portugal. At the fumarole site, sediments lithology indicate a recent lacustrine deposition. All sediments show a degree of hydrothermal alteration, especially with depth. Carbonates were observed throughout the site as well as sulfur minerals jarosite and alunite. Temperatures of ejected waters quickly cooled from near boiling, to ambient 30 oC within an 35 m flow channel. Sediment surface gases (H2S, CO2 and CH4) were highly elevated at the site indicating a strong degassing influence. Analysis of noble gas isotopes unequivocally confirm the existence of mantle-derived fluids in the fumarole gases. Waters and sediments taken from mid-point within the channel were elevated in concentrations of all elements measured, especially elemental sulfur and copper. The organic matter content of sediments was typically low in the channel. Microbial analyses also show a strong temperature-dependent relationship, with Archaea dominating at higher temperatures and Bacteria at lower temperatures. Evidence of sulfur utilizing archaea were present in both ribosomal and metagenome libraries. Together, our interdisciplinary approach demonstrates, unsurprisingly, that collesing a diverse group of geoscientists to characterize a natural system is highly advantageous and productive. However, this approach also highlights the ever present problem of how to fund such highly interdisciplinary, field oriented, research.

  14. Understanding hydrothermal circulation patterns at a low-enthalpy thermal spring using audio-magnetotelluric data: A case study from Ireland

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozar, Jan; Walsh, John; Rath, Volker

    2016-09-01

    Kilbrook spring is a thermal spring in east-central Ireland. The temperatures in the spring are the highest recorded for any thermal spring in Ireland (maximum of 25 °C). The temperature is elevated with respect to average Irish groundwater temperatures (9.5-10.5 °C), and represents a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon an audio-magnetotelluric (AMT) survey, and hydrochemical analysis including time-lapse temperature and chemistry measurements, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The three-dimensional (3-D) electrical resistivity model of the subsurface at Kilbrook spring was obtained by the inversion of AMT impedances and vertical magnetic transfer functions. The model is interpreted alongside high resolution temperature and electrical conductivity measurements, and a previous hydrochemical analysis. The hydrochemical analysis and time-lapse measurements suggest that the thermal waters have a relatively stable temperature and major ion hydrochemistry, and flow within the limestones of the Carboniferous Dublin Basin at all times. The 3-D resistivity model of the subsurface reveals a prominent NNW aligned structure within a highly resistive limestone lithology that is interpreted as a dissolutionally enhanced strike-slip fault, of Cenozoic age. The karstification of this structure, which extends to depths of at least 500 m directly beneath the spring, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 560 and 1000 m) within the limestone succession of the Dublin Basin. The results of this study support the hypothesis that the winter thermal maximum and simultaneous increased discharge at Kilbrook spring is the result of rapid infiltration, heating and re-circulation of meteoric waters within this structurally controlled hydrothermal circulation system. This paper illustrates how AMT may be useful in a multi-disciplinary investigation of an intermediate-depth (100-1000 m), low-enthalpy, geothermal target, and shows how the different strands of inquiry from a multi-disciplinary investigation may be woven together to gain a deeper understanding of a complex hydrothermal system.

  15. Student Participation in a Dementia-Outreach Research Project as Community-Based Experiential Learning

    ERIC Educational Resources Information Center

    Choi, Sora; Park, Myonghwa

    2017-01-01

    People with dementia (PWD) and their family caregivers need an increasing number of diverse health and social services. A multidisciplinary person-centered approach to dementia services is required to meet the complex needs of PWD and their family caregivers. However, educational programs struggle to prepare health and social work students to meet…

  16. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  17. Conceptualizing and Treating Social Anxiety in Autism Spectrum Disorder: A Focus Group Study with Multidisciplinary Professionals

    ERIC Educational Resources Information Center

    Spain, Debbie; Rumball, Freya; O'Neill, Lucy; Sin, Jacqueline; Prunty, Jonathan; Happé, Francesca

    2017-01-01

    Background: Individuals who have autism spectrum disorders (ASD) commonly experience social anxiety (SA). Disentangling SA symptoms from core ASD characteristics is complex, partly due to diagnostic overshadowing and co-occurring alexithymia. Causal and maintaining mechanisms for SA in ASD are underexplored, but it is feasible that there is an ASD…

  18. Experimental Physical Sciences Vitae 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth; Del Mauro, Diana; Patterson, Eileen Frances

    Frequently our most basic research experiments stimulate solutions for some of the most intractable national security problems, such as nuclear weapons stewardship, homeland security, intelligence and information analysis, and nuclear and alternative energy. This publication highlights our talented and creative staff who deliver solutions to these complex scientific and technological challenges by conducting cutting-edge multidisciplinary physical science research.

  19. Investigating the Intertwinement of Knowledge, Value, and Experience of Upper Secondary Students' Argumentation Concerning Socioscientific Issues

    ERIC Educational Resources Information Center

    Rundgren, Carl-Johan; Eriksson, Martin; Rundgren, Shu-Nu Chang

    2016-01-01

    This study aims to explore students' argumentation and decision-making relating to an authentic socioscientific issue (SSI)--the problem of environmental toxins in fish from the Baltic Sea. A multi-disciplinary instructional module, designed in order to develop students' skills to argue about complex SSI, was successfully tested. Seven science…

  20. Authorship in Multi-Disciplinary, Multi-National North-South Research Projects: Issues of Equity, Capacity and Accountability

    ERIC Educational Resources Information Center

    Jeffery, Roger

    2014-01-01

    The challenges of ensuring equity among partners of very different academic power and status, across continents, within complex research projects involving differing disciplines with their own norms, and balancing needs for capacity development of individuals and for institutions can be major sources of conflicts. While each of these concerns has…

  1. Corporate Structure Events Involving Regulated Utilities: The Need for a Multidisciplinary, Multijurisdictional Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hempling, Scott

    2006-08-15

    The repeal of PUHCA has occasioned important questions on the appropriate role for regulation in the area of utility corporate structure, including complex process and jurisdictional issues. There is a disproportionality between the importance of these questions and the lack of attention that has been given them by our regulatory and political communities. (author)

  2. The Unit of Analysis in Mathematics Education: Bridging the Political-Technical Divide?

    ERIC Educational Resources Information Center

    Ernest, Paul

    2016-01-01

    Mathematics education is a complex, multi-disciplinary field of study which treats a wide range of diverse but interrelated areas. These include the nature of mathematics, the learning of mathematics, its teaching, and the social context surrounding both the discipline and applications of mathematics itself, as well as its teaching and learning.…

  3. Complex lower genitourinary reconstruction following combat-related injury.

    PubMed

    Uppal, L; Anderson, P; Evriviades, Demetrius

    2013-03-01

    There is little data in the literature on the reconstruction of combat related lower genitourinary trauma. Published reports document patterns of injury, which is useful for epidemiological analysis of military trauma, but very few describe the reconstructive management. We aim to describe a systematic multidisciplinary approach to planning the challenging reconstruction of the severely injured male perineum.

  4. Climate Change Communication by a Research Institute: Experiences, Successes, and Challenges from a North European Perspective

    ERIC Educational Resources Information Center

    Lyytimäki, Jari; Nygrén, Nina A.; Ala-Ketola, Ulla; Pellinen, Sirpa; Ruohomäki, Virpi; Inkinen, Aino

    2013-01-01

    Communicating about climate change is challenging not only because of the multidisciplinary and complex nature of the issue itself and multiple policy options related to mitigation and adaptation, but also because of the plenitude of potential communication methods coupled with limited resources for communication. This article explores climate…

  5. Do We Really Need Another Meeting? Lessons from the Los Angeles County Elder Abuse Forensic Center

    ERIC Educational Resources Information Center

    Navarro, Adria E.; Wilber, Kathleen H.; Yonashiro, Jeanine; Homeier, Diana C.

    2010-01-01

    Purpose: Elder abuse cases are often time consuming and complex, requiring interagency cooperation from a diverse array of professionals. Although multidisciplinary teams (MDTs) offer a potentially powerful approach to synergizing the efforts of different providers, there has been little research on elder abuse MDTs in general or elder abuse…

  6. Principles of hospital disaster management: an integrated and multidisciplinary approach.

    PubMed

    Hendrickx, C; Hoker, S D; Michiels, G; Sabbe, M B

    Principles of hospital disaster management: an integrated and multidisciplinary approach. Hospitals play an important role during a disaster response, and are also at risk for internal incidents. We propose an integrated and multidisciplinary approach towards hospital disaster management and preparedness. In addition to response strategies, much attention is given to risk assessment and preparedness in the pre-incident phase and to business continuity planning (BCP) in the post-incident phase. It is essential to train key players and all personnel to understand the Hospital Incident Management System (HIMS) and to perform specific emergency procedures. All emergency procedures should be grounded in evidence-based practice resulting from essential disaster response research.

  7. Lumbo-Pelvic-Hip Complex Pain in a Competitive Basketball Player

    PubMed Central

    Reiman, Michael P.; Cox, Kara D.; Jones, Kay S.; Byrd, J. W.

    2011-01-01

    Establishing the cause of lumbo-pelvic-hip complex pain is a challenge for many clinicians. This case report describes the mechanism of injury, diagnostic process, surgical management, and rehabilitation of a female high school basketball athlete who sustained an injury when falling on her right side. Diagnostics included clinical examination, radiography of the spine and hip joint, magnetic resonance imaging arthrogram, 3-dimensional computed tomography scan, and computed tomography of the hip joint. A systematic multidisciplinary clinical approach resulted in the patient’s return to previous functional levels. PMID:23015993

  8. A multidisciplinary-based conceptual model of a fractured sedimentary bedrock aquitard: improved prediction of aquitard integrity

    NASA Astrophysics Data System (ADS)

    Runkel, Anthony C.; Tipping, Robert G.; Meyer, Jessica R.; Steenberg, Julia R.; Retzler, Andrew J.; Parker, Beth L.; Green, Jeff A.; Barry, John D.; Jones, Perry M.

    2018-06-01

    A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.

  9. Svalbard Integrated Arctic Earth Observing System (sios): Facilitating Easy Access to Multidisciplinary Arctic Data Through the Brokering Approach.

    NASA Astrophysics Data System (ADS)

    Bye, B. L.; Godøy, Ø.

    2014-12-01

    Environmental and climate changes are important elements of our global challenges. They are observed at a global scale and in particular in the Arctic. In order to give better estimates of the future changes, the Arctic has to be monitored and analyzed by a multi-disciplinary observation system that will improve Earth System Models. The best chance to achieve significant results within a relatively short time frame is found in regions with a large natural climate gradient, and where processes sensitive to the expected changes are particularly important. Svalbard and the surrounding ocean areas fulfil all these criteria. The vision for SIOS is to be a regional observational system for long term acquisition and proliferation of fundamental knowledge on global environmental change within an Earth System Science perspective in and around Svalbard. SIOS will systematically develop and implement methods for how observational networks are to be construed. The distributed SIOS data management system (SDMS) will be implemented through a combination of technologies tailored to the multi-disciplinary nature of the Arctic data. One of these technologies is The Brokering approach or "Framework". The Brokering approach provides a series of services such as discovery, access, transformation and semantics support to enable translation from one discipline/culture to another. This is exactly the challenges the SDMS will have to handle and thus the Brokering approach is integrated in the design of the system. A description of the design strategy for the SDMS that includes The Brokering approach will be presented. The design and implementation plans for the SDMS are based on research done in the EU funded ESFRI project SIOS and examples of solutions for interoperable systems producing Arctic datasets and products coordinated through SIOS will be showcased. The reported experience from SIOS brokering approach will feed into the process of developing a sustainable brokering governance in the framework of Research Data Alliance. It will also support the Global Earth Observation System of Systems (GEOSS). This is a contribution to increase our global capacity to create interoperable systems that provide multi-disciplinary dataset and products.

  10. Multidisciplinary approach for developing a new robotic system for domiciliary assistance to elderly people.

    PubMed

    Cavallo, F; Aquilano, M; Bonaccorsi, M; Mannari, I; Carrozza, M C; Dario, P

    2011-01-01

    This paper aims to show the effectiveness of a (inter / multi)disciplinary team, based on the technology developers, elderly care organizations, and designers, in developing the ASTRO robotic system for domiciliary assistance to elderly people. The main issues presented in this work concern the improvement of robot's behavior by means of a smart sensor network able to share information with the robot for localization and navigation, and the design of the robot's appearance and functionalities by means of a substantial analysis of users' requirements and attitude to robotic technology to improve acceptability and usability.

  11. a System Dynamics Approach for Looking at the Human and Environmental Interactions of Community-Based Irrigation Systems in New Mexico

    NASA Astrophysics Data System (ADS)

    Ochoa, C. G.; Tidwell, V. C.

    2012-12-01

    In the arid southwestern United States community water management systems have adapted to cope with climate variability and with socio-cultural and economic changes that have occurred since the establishment of these systems more than 300 years ago. In New Mexico, the community-based irrigation systems were established by Spanish settlers and have endured climate variability in the form of low levels of precipitation and have prevailed over important socio-political changes including the transfer of territory between Spain and Mexico, and between Mexico and the United States. Because of their inherent nature of integrating land and water use with society involvement these community-based systems have multiple and complex economic, ecological, and cultural interactions. Current urban population growth and more variable climate conditions are adding pressure to the survival of these systems. We are conducting a multi-disciplinary research project that focuses on characterizing these intrinsically complex human and natural interactions in three community-based irrigation systems in northern New Mexico. We are using a system dynamics approach to integrate different hydrological, ecological, socio-cultural and economic aspects of these three irrigation systems. Coupled with intensive field data collection, we are building a system dynamics model that will enable us to simulate important linkages and interactions between environmental and human elements occurring in each of these water management systems. We will test different climate variability and population growth scenarios and the expectation is that we will be able to identify critical tipping points of these systems. Results from this model can be used to inform policy recommendations relevant to the environment and to urban and agricultural land use planning in the arid southwestern United States.

  12. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jose, Jordi

    2016-01-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  13. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    José, Jordi

    2015-12-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  14. A Qualitative Study of Multidisciplinary Providers' Experiences With the Transfer Process for Injured Children and Ideas for Improvement.

    PubMed

    Gawel, Marcie; Emerson, Beth; Giuliano, John S; Rosenberg, Alana; Minges, Karl E; Feder, Shelli; Violano, Pina; Morrell, Patricia; Petersen, Judy; Christison-Lagay, Emily; Auerbach, Marc

    2018-02-01

    Most injured children initially present to a community hospital, and many will require transfer to a regional pediatric trauma center. The purpose of this study was 1) to explore multidisciplinary providers' experiences with the process of transferring injured children and 2) to describe proposed ideas for process improvement. This qualitative study involved 26 semistructured interviews. Subjects were recruited from 6 community hospital emergency departments and the trauma and transport teams of a level I pediatric trauma center in New Haven, Conn. Participants (n = 34) included interprofessional providers from sending facilities, transport teams, and receiving facilities. Using the constant comparative method, a multidisciplinary team coded transcripts and collectively refined codes to generate recurrent themes across interviews until theoretical saturation was achieved. Participants reported that the transfer process for injured children is complex, stressful, and necessitates collaboration. The transfer process was perceived to involve numerous interrelated components, including professions, disciplines, and institutions. The 5 themes identified as areas to improve this transfer process included 1) Creation of a unified standard operating procedure that crosses institutions/teams, 2) Enhancing 'shared sense making' of all providers, 3) Improving provider confidence, expertise, and skills in caring for pediatric trauma transfer cases, 4) Addressing organization and environmental factors that may impede/delay transfer, and 5) Fostering institutional and personal relationships. Efforts to improve the transfer process for injured children should be guided by the experiences of and input from multidisciplinary frontline emergency providers.

  15. Object-oriented design tools for supramolecular devices and biomedical nanotechnology.

    PubMed

    Lee, Stephen C; Bhalerao, Khaustaub; Ferrari, Mauro

    2004-05-01

    Nanotechnology provides multifunctional agents for in vivo use that increasingly blur the distinction between pharmaceuticals and medical devices. Realization of such therapeutic nanodevices requires multidisciplinary effort that is difficult for individual device developers to sustain, and identification of appropriate collaborations outside ones own field can itself be challenging. Further, as in vivo nanodevices become increasingly complex, their design will increasingly demand systems level thinking. System engineering tools such as object-oriented analysis, object-oriented design (OOA/D) and unified modeling language (UML) are applicable to nanodevices built from biological components, help logically manage the knowledge needed to design them, and help identify useful collaborative relationships for device designers. We demonstrate the utility of these systems engineering tools by reverse engineering an existing molecular device (the bacmid molecular cloning system) using them, and illustrate how object-oriented approaches identify fungible components (objects) in nanodevices in a way that facilitates design of families of related devices, rather than single inventions. We also explore the utility of object-oriented approaches for design of another class of therapeutic nanodevices, vaccines. While they are useful for design of current nanodevices, the power of systems design tools for biomedical nanotechnology will become increasingly apparent as the complexity and sophistication of in vivo nanosystems increases. The nested, hierarchical nature of object-oriented approaches allows treatment of devices as objects in higher-order structures, and so will facilitate concatenation of multiple devices into higher-order, higher-function nanosystems.

  16. Network Communication as a Service-Oriented Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, William; Johnston, William; Metzger, Joe

    2008-01-08

    In widely distributed systems generally, and in science-oriented Grids in particular, software, CPU time, storage, etc., are treated as"services" -- they can be allocated and used with service guarantees that allows them to be integrated into systems that perform complex tasks. Network communication is currently not a service -- it is provided, in general, as a"best effort" capability with no guarantees and only statistical predictability. In order for Grids (and most types of systems with widely distributed components) to be successful in performing the sustained, complex tasks of large-scale science -- e.g., the multi-disciplinary simulation of next generation climate modelingmore » and management and analysis of the petabytes of data that will come from the next generation of scientific instrument (which is very soon for the LHC at CERN) -- networks must provide communication capability that is service-oriented: That is it must be configurable, schedulable, predictable, and reliable. In order to accomplish this, the research and education network community is undertaking a strategy that involves changes in network architecture to support multiple classes of service; development and deployment of service-oriented communication services, and; monitoring and reporting in a form that is directly useful to the application-oriented system so that it may adapt to communications failures. In this paper we describe ESnet's approach to each of these -- an approach that is part of an international community effort to have intra-distributed system communication be based on a service-oriented capability.« less

  17. National Combustion Code: A Multidisciplinary Combustor Design System

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Liu, Nan-Suey

    1997-01-01

    The Internal Fluid Mechanics Division conducts both basic research and technology, and system technology research for aerospace propulsion systems components. The research within the division, which is both computational and experimental, is aimed at improving fundamental understanding of flow physics in inlets, ducts, nozzles, turbomachinery, and combustors. This article and the following three articles highlight some of the work accomplished in 1996. A multidisciplinary combustor design system is critical for optimizing the combustor design process. Such a system should include sophisticated computer-aided design (CAD) tools for geometry creation, advanced mesh generators for creating solid model representations, a common framework for fluid flow and structural analyses, modern postprocessing tools, and parallel processing. The goal of the present effort is to develop some of the enabling technologies and to demonstrate their overall performance in an integrated system called the National Combustion Code.

  18. A Multidisciplinary, Open Access Platform for Research on Biomolecules.

    PubMed

    Bähler, Jürg

    2011-08-22

    I am pleased to introduce Biomolecules, a new journal to report on all aspects of science that focuses on biologically derived substances, from small molecules to complex polymers. Some examples are lipids, carbohydrates, vitamins, hormones, amino acids, nucleotides, peptides, RNA and polysaccharides, but this list is far from exhaustive. Research on biomolecules encompasses multiple fascinating questions. How are biomolecules synthesized and modified? What are their structures and interactions with other biomolecules? How do biomolecules function in biological processes, at the level of organelles, cells, organs, organisms, or even ecosystems? How do biomolecules affect either the organism that produces them or other organisms of the same or different species? How are biomolecules shaped by evolution, and how in turn do they affect cellular phenotypes? What is the systems-level contribution of biomolecules to biological function? [...].

  19. Oral Chronic Graft-versus-Host Disease: Current Pathogenesis, Therapy, and Research

    PubMed Central

    Mays, JW; Fassil, H; Edwards, DA; Pavletic, SZ; Bassim, CW

    2012-01-01

    Optimal management of complex autoimmune diseases requires a multidisciplinary medical team including dentists to care for lesions of the oral cavity. In this review, we discuss the presentation, prevalence, diagnosis and treatment of oral manifestations in chronic Graft-versus-Host Disease (cGVHD) which is a major late complication in patients treated by allogeneic hematopoietic stem cell transplantation. We assess current general knowledge of systemic and oral cGVHD, and present general treatment recommendations based on literature review and our clinical experience. Additionally, we review areas where the understanding of oral cGVHD could be improved by further research, and address tools with which to accomplish the long-term goal of providing better health and quality-of-life to patients with cGVHD. PMID:23107104

  20. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    PubMed

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  1. GEOWOW: a drought scenario for multidisciplinary data access and use

    NASA Astrophysics Data System (ADS)

    Santoro, Mattia; Sorichetta, Alessandro; Roglia, Elena; Craglia, Massimo; Nativi, Stefano

    2013-04-01

    Recent enhancements of the GEOSS Common Infrastructure (GCI; http://www.earthobservations.org/gci_gci.shtml), and in particular the introduction of a middleware in the GCI that brokers across heterogeneous information systems, have increased significantly the number of information resources discoverable worldwide. Now the challenge moves to the next level of ensuring access and use of the resources discovered, which have many different and domain-specific data models, communication protocols, encoding formats, etc. The GEOWOW Project - GEOSS interoperability for Weather, Ocean and Water, http://www.geowow.eu - developed a set of multidisciplinary use scenarios to advance the present GCI. This work describes the "Easy discovery and use of GEOSS resources for addressing multidisciplinary challenges related to drought scenarios" showcase demonstrated at the last GEO Plenary in Foz de Iguazu (Brazil). The scientific objectives of this showcase include: prevention and mitigation of water scarcity and drought situations, assessment of the population and geographical area potentially affected, evaluation of the possible distribution of mortality and economic loss risk, and support in building greater capacity to cope with drought. The need to address these challenges calls for producing scientifically robust and consistent information about the extent of land affected by drought and degradation. Similarly, in this context it is important: (i) to address uncertainties about the way in which various biological, physical, social, and economic factors interact each other and influence the occurrence of drought events, and (ii) to develop and test adequate indices and/or combination of them for monitoring and forecasting drought in different geographic locations and at various spatial scales (Brown et al., 2002). The scientific objectives above can be met with an increased interoperability across the multidisciplinary domains relevant to this drought scenario. In particular, we demonstrate in this instance (i) an improved search capability through semantically related resources, (ii) a harmonized access to the heterogeneous resources discovered, and (iii) a flexible transformation framework to access, download and use the resources discovered, and implement scientifically-sound scenarios that respond to environmental global challenges. This showcase demonstrates how the middleware services provided by the GEO Discovery and Access Broker - DAB (Nativi et al., 2013) - component can be used to address the multidisciplinary interoperability challenges. With respect to discovery, the GEO DAB allows to expand the traditional discovery functionalities using a set of semantically connected concepts delivered through vocabulary services. This makes it possible to obtain an extended result set, where the user can find new unexpected datasets of interest for her/his analysis. Moreover, the use of semantics-enabled queries makes it possible to search and retrieve data resources in multiple languages, which is a crucial issue in global research. With respect to access and use, the GEO DAB makes it possible for users to preview, access, and use the resources discovered according to a common grid environment. Users can define a common grid environment - Coordinate Reference System (CRS), spatial resolution, spatial extent (e.g., a subset of a discovered dataset), and data encoding format - to download all the datasets of interest. This is crucial for advancing an effective integrated exploitation of multidisciplinary data coming from heterogeneous sources. In normal practice, the manipulation of the data discovered (pre-processing) that is necessary ahead of the analysis has to be done by the user. The GEO DAB takes this burden away from the user providing a true added value service. The showcase presented here goes of course beyond the specifics of drought applications, and is of interest because it demonstrates real advancements in the use of complex system of systems, form simple discovery, to more semantically aware multilingual discovery, and above all access and use of the information resources which is the critical goal. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 282915. References Jesslyn F. Brown, Bradley C. Reed, Michael J. Hayes, Donald A. Wilhite, and Kenneth Hubbard. A Prototype Drought Monitoring System Integrating Climate and Satellite Data. Pecora 15/Land Satellite Information IV/ISPRS Commission I/FIEOS 2002 Conference Proceedings S. Nativi, M. Craglia, J. Pearlman, 2013, "Earth Science Infrastructures Interoperability: the Brokering Approach", in press on IEEE JSTARS

  2. Improving Health Care Management in Primary Care for Homeless People: A Literature Review

    PubMed Central

    Abcaya, Julien; Ștefan, Diana-Elena; Calvet-Montredon, Céline; Gentile, Stéphanie

    2018-01-01

    Background: Homeless people have poorer health status than the general population. They need complex care management, because of associated medical troubles (somatic and psychiatric) and social difficulties. We aimed to describe the main characteristics of the primary care programs that take care of homeless people, and to identify which could be most relevant. Methods: We performed a literature review that included articles which described and evaluated primary care programs for homeless people. Results: Most of the programs presented a team-based approach, multidisciplinary and/or integrated care. They often proposed co-located services between somatic health services, mental health services and social support services. They also tried to answer to the specific needs of homeless people. Some characteristics of these programs were associated with significant positive outcomes: tailored primary care organizations, clinic orientation, multidisciplinary team-based models which included primary care physicians and clinic nurses, integration of social support, and engagement in the community’s health. Conclusions: Primary health care programs that aimed at taking care of the homeless people should emphasize a multidisciplinary approach and should consider an integrated (mental, somatic and social) care model. PMID:29439403

  3. Multidisciplinary full-mouth rehabilitation with soft tissue regeneration in the esthetic zone.

    PubMed

    Liebermann, Anja; Frei, Stefan; Pinheiro Dias Engler, Madalena Lucia; Zuhr, Otto; Prandtner, Otto; Edelhoff, Daniel; Saeidi Pour, Reza

    2018-01-01

    Oral rehabilitation often requires a multidisciplinary approach including restorative dentistry, prosthodontics, and periodontology to fulfill high esthetic and functional demands, frequently combined with changes in the vertical dimension. The presence of gingival recessions can be associated with numerous factors, such as brushing or preparation trauma and persistent inflammation of the gingiva due to inadequate marginal fit of restorations. Because gingival recessions can cause major esthetic and functional problems, obtaining stability of the gingival tissue around prosthetic restorations is of essential concern. Modifications of the occlusal vertical dimension require sufficient experience of the whole dental team. Especially in patients with functional problems and craniomandibular dysfunction, a newly defined occlusal position should be adequately tested and possibly adjusted. This case report presents a complete prosthetic rehabilitation combined with a periodontal surgical approach for a patient with gingival recessions and functional/esthetic related problems. The vertical dimension was carefully defined through long-term polymethyl methacrylate provisionals as a communication tool between all parts involved. All-ceramic crowns were inserted after periodontal healing as definitive rehabilitation. Complex rehabilitation in patients with high esthetic demands including soft tissue corrections requires a multidisciplinary team approach that consists of periodontal surgeon, dentist and dental technician. © 2017 Wiley Periodicals, Inc.

  4. Developing a Multidisciplinary Team for Disorders of Sex Development: Planning, Implementation, and Operation Tools for Care Providers

    PubMed Central

    Moran, Mary Elizabeth; Karkazis, Katrina

    2012-01-01

    In the treatment of patients with disorders of sex development (DSD), multidisciplinary teams (MDTs) represent a new standard of care. While DSDs are too complex for care to be delivered effectively without specialized team management, these conditions are often considered to be too rare for their medical management to be a hospital priority. Many specialists involved in DSD care want to create a clinic or team, but there is no available guidance that bridges the gap between a group of like-minded DSD providers who want to improve care and the formation of a functional MDT. This is an important dilemma, and one with serious implications for the future of DSD care. If a network of multidisciplinary DSD teams is to be a reality, those directly involved in DSD care must be given the necessary program planning and team implementation tools. This paper offers a protocol and set of tools to meet this need. We present a 6-step process to team formation, and a sample set of tools that can be used to guide, develop, and evaluate a team throughout the course of its operation. PMID:22792098

  5. Goal setting with mothers in child development services.

    PubMed

    Forsingdal, S; St John, W; Miller, V; Harvey, A; Wearne, P

    2014-07-01

    The aim of this grounded theory study was to explore mothers' perspectives of the processes of collaborative goal setting in multidisciplinary child development services involving follow-up home therapy. Semi-structured interviews were conducted in South East Queensland, Australia with 14 mothers of children aged 3-6 years who were accessing multidisciplinary child development services. Interviews were focussed around the process of goal setting. A grounded theory of Maternal Roles in Goal Setting (The M-RIGS Model) was developed from analysis of data. Mothers assumed Dependent, Active Participator and Collaborator roles when engaging with the therapist in goal-setting processes. These roles were characterized by the mother's level of dependence on the therapist and insight into their child's needs and therapy processes. Goal Factors, Parent Factors and Therapist Factors influenced and added complexity to the goal-setting process. The M-RIGS Model highlights that mothers take on a range of roles in the goal-setting process. Although family-centred practice encourages negotiation and collaborative goal setting, parents may not always be ready to take on highly collaborative roles. Better understanding of parent roles, goal-setting processes and influencing factors will inform better engagement with families accessing multidisciplinary child development services. © 2013 John Wiley & Sons Ltd.

  6. Dynamically Reconfigurable Approach to Multidisciplinary Problems

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natalie M.; Lewis, Robert Michael

    2003-01-01

    The complexity and autonomy of the constituent disciplines and the diversity of the disciplinary data formats make the task of integrating simulations into a multidisciplinary design optimization problem extremely time-consuming and difficult. We propose a dynamically reconfigurable approach to MDO problem formulation wherein an appropriate implementation of the disciplinary information results in basic computational components that can be combined into different MDO problem formulations and solution algorithms, including hybrid strategies, with relative ease. The ability to re-use the computational components is due to the special structure of the MDO problem. We believe that this structure can and should be used to formulate and solve optimization problems in the multidisciplinary context. The present work identifies the basic computational components in several MDO problem formulations and examines the dynamically reconfigurable approach in the context of a popular class of optimization methods. We show that if the disciplinary sensitivity information is implemented in a modular fashion, the transfer of sensitivity information among the formulations under study is straightforward. This enables not only experimentation with a variety of problem formations in a research environment, but also the flexible use of formulations in a production design environment.

  7. Identifying Deteriorating Patients Through Multidisciplinary Team Training.

    PubMed

    Merriel, Abi; van der Nelson, Helen; Merriel, Sam; Bennett, Joanne; Donald, Fiona; Draycott, Timothy; Siassakos, Dimitrios

    2016-11-01

    Multidisciplinary training has improved maternity outcomes when the training has been well attended, regular, in house, used high-fidelity simulators, and integrated teamwork training. If these principles were used in other settings, better clinical care may result. This before-after study sought to establish whether a short multidisciplinary training intervention can improve recognition of the deteriorating patient using an aggregated physiological parameter scoring system (Early Warning Score [EWS]). Nursing, medical, and allied nursing staff participated in an hour-long training session, using real-life scenarios with simple tools and structured debriefing. After training, staff were more likely to calculate EWS scores correctly (68.02% vs 55.12%; risk ratio [RR] = 1.24, 95% confidence interval [CI] = 1.07-1.44), and observations were more likely to be performed at the correct frequency (78.57% vs 68.09%; RR = 1.20, 95% CI = 1.09-1.32). Multidisciplinary training, according to core principles, can lead to more accurate identification of deteriorating patients, with implications for subsequent care and outcome. © The Author(s) 2015.

  8. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: Controls on submarine groundwater discharge and chemical inputs to the ocean

    NASA Astrophysics Data System (ADS)

    Robinson, Clare E.; Xin, Pei; Santos, Isaac R.; Charette, Matthew A.; Li, Ling; Barry, D. A.

    2018-05-01

    Sustainable coastal resource management requires sound understanding of interactions between coastal unconfined aquifers and the ocean as these interactions influence the flux of chemicals to the coastal ocean and the availability of fresh groundwater resources. The importance of submarine groundwater discharge in delivering chemical fluxes to the coastal ocean and the critical role of the subterranean estuary (STE) in regulating these fluxes is well recognized. STEs are complex and dynamic systems exposed to various physical, hydrological, geological, and chemical conditions that act on disparate spatial and temporal scales. This paper provides a review of the effect of factors that influence flow and salt transport in STEs, evaluates current understanding on the interactions between these influences, and synthesizes understanding of drivers of nutrient, carbon, greenhouse gas, metal and organic contaminant fluxes to the ocean. Based on this review, key research needs are identified. While the effects of density and tides are well understood, episodic and longer-period forces as well as the interactions between multiple influences remain poorly understood. Many studies continue to focus on idealized nearshore aquifer systems and future work needs to consider real world complexities such as geological heterogeneities, and non-uniform and evolving alongshore and cross-shore morphology. There is also a significant need for multidisciplinary research to unravel the interactions between physical and biogeochemical processes in STEs, as most existing studies treat these processes in isolation. Better understanding of this complex and dynamic system can improve sustainable management of coastal water resources under the influence of anthropogenic pressures and climate change.

  9. Diagnostic procedures for non-small-cell lung cancer (NSCLC): recommendations of the European Expert Group

    PubMed Central

    Dietel, Manfred; Bubendorf, Lukas; Dingemans, Anne-Marie C; Dooms, Christophe; Elmberger, Göran; García, Rosa Calero; Kerr, Keith M; Lim, Eric; López-Ríos, Fernando; Thunnissen, Erik; Van Schil, Paul E; von Laffert, Maximilian

    2016-01-01

    Background There is currently no Europe-wide consensus on the appropriate preanalytical measures and workflow to optimise procedures for tissue-based molecular testing of non-small-cell lung cancer (NSCLC). To address this, a group of lung cancer experts (see list of authors) convened to discuss and propose standard operating procedures (SOPs) for NSCLC. Methods Based on earlier meetings and scientific expertise on lung cancer, a multidisciplinary group meeting was aligned. The aim was to include all relevant aspects concerning NSCLC diagnosis. After careful consideration, the following topics were selected and each was reviewed by the experts: surgical resection and sampling; biopsy procedures for analysis; preanalytical and other variables affecting quality of tissue; tissue conservation; testing procedures for epidermal growth factor receptor, anaplastic lymphoma kinase and ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) in lung tissue and cytological specimens; as well as standardised reporting and quality control (QC). Finally, an optimal workflow was described. Results Suggested optimal procedures and workflows are discussed in detail. The broad consensus was that the complex workflow presented can only be executed effectively by an interdisciplinary approach using a well-trained team. Conclusions To optimise diagnosis and treatment of patients with NSCLC, it is essential to establish SOPs that are adaptable to the local situation. In addition, a continuous QC system and a local multidisciplinary tumour-type-oriented board are essential. PMID:26530085

  10. Teaching the bioinformatics of signaling networks: an integrated approach to facilitate multi-disciplinary learning.

    PubMed

    Korcsmaros, Tamas; Dunai, Zsuzsanna A; Vellai, Tibor; Csermely, Peter

    2013-09-01

    The number of bioinformatics tools and resources that support molecular and cell biology approaches is continuously expanding. Moreover, systems and network biology analyses are accompanied more and more by integrated bioinformatics methods. Traditional information-centered university teaching methods often fail, as (1) it is impossible to cover all existing approaches in the frame of a single course, and (2) a large segment of the current bioinformation can become obsolete in a few years. Signaling network offers an excellent example for teaching bioinformatics resources and tools, as it is both focused and complex at the same time. Here, we present an outline of a university bioinformatics course with four sample practices to demonstrate how signaling network studies can integrate biochemistry, genetics, cell biology and network sciences. We show that several bioinformatics resources and tools, as well as important concepts and current trends, can also be integrated to signaling network studies. The research-type hands-on experiences we show enable the students to improve key competences such as teamworking, creative and critical thinking and problem solving. Our classroom course curriculum can be re-formulated as an e-learning material or applied as a part of a specific training course. The multi-disciplinary approach and the mosaic setup of the course have the additional benefit to support the advanced teaching of talented students.

  11. Extended use of cardiopulmonary bypass in a multidisciplinary hospital

    PubMed Central

    Shahabuddin, Syed; Habib, Nabeel

    2015-01-01

    Objective To share our experience highlighting the additional use of cardiopulmonary bypass (CPB) in cases other than the conventional ischemic, congenital and valvular heart diseases. Methodology All patients undergoing non-traditional cardiac surgery utilizing the cardiopulmonary bypass during a period from 1999 to 2009 reviewed. Their preoperative presentation, operative strategy and immediate postoperative status were assessed. Results A total of six such cases were identified including three female and three male patients. Two patients presented with road traffic accident having aortic transection along with other injuries. They underwent repair utilizing partial cardiopulmonary bypass. One patient presented with large PDA aneurysm and symptoms related to its pressure effect on respiratory system. He underwent repair under hypothermic circulatory arrest. These three patients were done via left thoracotomy. Three patients underwent deep hypothermic circulatory arrest, one for removal of thrombus from right atrium after complicated liver abscess, one patient required vascular graft interposition in left internal carotid artery for aneurysm extending into cranium and the third one underwent resection of vascular tumor of posterior cranial fossa. One patient required exploration for bleeding. One patient died after prolonged hospitalization. Rest of the patient had unremarkable postoperative course and were discharged home. Conclusion Our short experience highlights the extended use of cardiopulmonary bypass in a multidisciplinary hospital, facilitating to perform complex, technically challenging non cardiac procedures which otherwise may not be possible. PMID:26309443

  12. Rogue waves: a unique approach to multidisciplinary physics

    NASA Astrophysics Data System (ADS)

    Residori, S.; Onorato, M.; Bortolozzo, U.; Arecchi, F. T.

    2017-01-01

    Rogue waves are giant waves appearing erratically and unexpectedly on the ocean surfaces. Their existence, considered as mythical in the ancient times, has recently been recognised by the scientific community and, since then, rogue waves have become the object of numerous theoretical and experimental studies. Their relevance is not restricted to oceanography, but it extends in a wide spectrum of physical contexts. General models and mathematical tools have been developed on a interdisciplinary ground and many experiments have been specifically conceived for the observation of rogue waves in a variety of different physical systems. Rogue wave phenomena are, nowadays, studied, for instance, in hydrodynamics, optics, plasmas, complex media, Bose-Einstein condensation and acoustics. We can, therefore, consider rogue waves as a paradigmatic description, able to account for the manifestation of extreme events in multidisciplinary physics. In this review, we present the main physical concepts and mathematical tools for the description of rogue waves. We will refer mostly to examples from water waves and optics, the two domains having in common the non-linear Schrödinger equation from which prototype rogue wave solutions can be derived. We will highlight the most common features of the rogue wave phenomena, as the large deviations from the Gaussian statistics of the amplitude, the existence of many uncorrelated 'grains' of activity and their clustering in inhomogeneous spatial domains via large-scale symmetry breaking.

  13. Siberia Integrated Regional Study megaproject: approaches, first results and challenges

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Vaganov, E. A.

    2010-12-01

    Siberia Integrated Regional Study (SIRS, http://sirs.scert.ru/en/) is a NEESPI megaproject coordinating national and international activity in the region in line with Earth System Science Program approach whose overall objectives are to understand impact of Global change on on-going regional climate and ecosystems dynamics; to study future potential changes in both, and to estimate possible influence of those processes on the whole Earth System dynamics. Needs for SIRS are caused by accelerated warming occurring in Siberia, complexity of on-going and potential land-surface processes sharpened by inherent hydrology pattern and permafrost presence, and lack of reliable high-resolution meteorological and climatic modeling data. The SIRS approaches include coordination of different scale national and international projects, capacity building targeted to early career researchers thematic education and training, and development of distributed information-computational infrastructure required in support of multidisciplinary teams of specialists performing cooperative work with tools for sharing of data, models and knowledge. Coordination within SIRS projects is devoted to major regional and global risks rising with regional environment changes and currently is concentrated on three interrelated problems, whose solution has strong regional environmental and socio-economical impacts and is very important for understanding potential change of the whole Earth System dynamics: Permafrost border shift, which seriously threatens the oil and gas transporting infrastructure and leads to additional carbon release; Desert - steppe- forest-tundra ecosystems changes, which might vary region input into global carbon cycle as well as provoke serious socio-economical consequences for local population; and Temperature/precipitation/hydrology regime changes, which might increase risks of forest and peat fires, thus causing significant carbon release from the region under study. Some findings of those projects will be presented in the report. The information-computational infrastructure is aimed to manage multidisciplinary environmental data and to generate high resolution data sets on demand. One of its key elements, optimizing the usage of information-computational resources, services and applications is the climatic web portal under development. The prototype (http://climate.risks.scert.ru/) is now providing an access to an interactive web- GIS system for climate change assessment on the base of available meteorological data archives in the selected region. SIRS education and training program is run via annual organization in the region either international multidisciplinary conference with elements of young scientists school ENVIROMIS or young scientists school and collocated international conference CITES (http://www.scert.ru/en/conferences/). All the listed above activities have an international dimension whose enlargement might significantly assist in profound understanding of regional and global consequences in on-going Siberia processes.

  14. Recent Advances in Multidisciplinary Analysis and Optimization, part 3

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: aircraft design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  15. Recent Advances in Multidisciplinary Analysis and Optimization, part 2

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  16. Recent Advances in Multidisciplinary Analysis and Optimization, part 1

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: helicopter design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  17. Selection of a turbine cooling system applying multi-disciplinary design considerations.

    PubMed

    Glezer, B

    2001-05-01

    The presented paper describes a multi-disciplinary cooling selection approach applied to major gas turbine engine hot section components, including turbine nozzles, blades, discs, combustors and support structures, which maintain blade tip clearances. The paper demonstrates benefits of close interaction between participating disciplines starting from early phases of the hot section development. The approach targets advancements in engine performance and cost by optimizing the design process, often requiring compromises within individual disciplines.

  18. Necrotizing Pneumonia Caused by Chromobacterium violaceum Soil Bacterium: Report of a Rare Human Pathogen Causing Disease in a Previously Undiagnosed Immunodeficient Child.

    PubMed

    Frawley, Alean; Powell, Lauren; McQuiston, John R; Gulvik, Christopher A; Bégué, Rodolfo E

    2018-04-23

    Chromobacterium violaceum is a rare, potentially serious pathogen. Most clinicians have no experience with its clinical appearance or treatment. We describe a case of a child presenting with necrotizing pneumonia caused by C. violaceum . We describe case complexities, including the need for a multidisciplinary approach to diagnosis and treatment.

  19. Analysis of high speed flow, thermal and structural interactions

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1994-01-01

    Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.

  20. Physics-Based Design of Micro Air Vehicles

    DTIC Science & Technology

    2012-04-01

    7   Figure 5. Comparison of an insect wing and a manufactured wing for a flapping MAV. .............. 8...topologies for a flapping-wing compliant actuation mechanism. Hatched areas are clamped. Cases 1-3 have fixed supports; cases 4 and 5 have variable...world by flying insects , birds, and mammals. However, an inadequate understanding of the complex, nonlinear, and multidisciplinary physics that

  1. Multiprofessional education to stimulate collaboration: a circular argument and its consequences.

    PubMed

    Roodbol, Petrie F

    2010-01-01

    The current developments in healthcare are unprecedented. The organization of health care is complex. Collaboration is essential to meet all the healthcare needs of patients and to achieve coordinated and unambiguous information. Multiprofessional education (MPE) or multidisciplinary training (MDT) seems a logical step to stimulate teamwork. However, collaboration and MPE are wrestling with the same problems: social identity and acceptance.

  2. A Survey of Shape Parameterization Techniques

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper provides a survey of shape parameterization techniques for multidisciplinary optimization and highlights some emerging ideas. The survey focuses on the suitability of available techniques for complex configurations, with suitability criteria based on the efficiency, effectiveness, ease of implementation, and availability of analytical sensitivities for geometry and grids. The paper also contains a section on field grid regeneration, grid deformation, and sensitivity analysis techniques.

  3. Promoting Health and Wellness in Underserved Communities: Multidisciplinary Perspectives through Service Learning. Service Learning for Civic Engagement Series

    ERIC Educational Resources Information Center

    Pelham, Anabel, Ed.; Sills, Elizabeth, Ed.; Eisman, Gerald S., Ed.

    2010-01-01

    Starting from the premise that the health status, vulnerability to accidents and disease, and life spans are determined by the organization, delivery, and financing (or lack thereof) of health care, this book explores how educators and community caretakers teach the complex web of inter-connection between the micro level of individual health and…

  4. 9. international mouse genome conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This conference was held November 12--16, 1995 in Ann Arbor, Michigan. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on genetic mapping in mice. This report contains abstracts of presentations, focusing on the following areas: mutation identification; comparative mapping; informatics and complex traits; mutagenesis; gene identification and new technology; and genetic and physical mapping.

  5. How big is too big or how many partners are needed to build a large project which still can be managed successfully?

    NASA Astrophysics Data System (ADS)

    Henkel, Daniela; Eisenhauer, Anton

    2017-04-01

    During the last decades, the number of large research projects has increased and therewith the requirement for multidisciplinary, multisectoral collaboration. Such complex and large-scale projects pose new competencies to form, manage, and use large, diverse teams as a competitive advantage. For complex projects the effort is magnified because multiple large international research consortia involving academic and non-academic partners, including big industries, NGOs, private and public bodies, all with cultural differences, individually discrepant expectations on teamwork and differences in the collaboration between national and multi-national administrations and research organisations, challenge the organisation and management of such multi-partner research consortia. How many partners are needed to establish and conduct collaboration with a multidisciplinary and multisectoral approach? How much personnel effort and what kinds of management techniques are required for such projects. This presentation identifies advantages and challenges of large research projects based on the experiences made in the context of an Innovative Training Network (ITN) project within Marie Skłodowska-Curie Actions of the European HORIZON 2020 program. Possible strategies are discussed to circumvent and avoid conflicts already at the beginning of the project.

  6. Development and initial outcomes of an upper gastrointestinal multidisciplinary clinic.

    PubMed

    Brown, Anna; Wylie, Neil; Rodgers, Michael; Casement, Jonathan; McIlree, Neil; Gray, Lindsay; Mulholland, Glen; Volkova, Vicki; van der Watt, Erna; Booth, Michael; Koea, Jonathan

    2016-07-01

    Patients with upper gastrointestinal cancer are often comorbid and require complex surgical treatments for their cancers, meaning that their preoperative assessment can be based around numerous outpatient assessments with multiple services. A multidisciplinary clinic (MDC) was developed for the assessment of patients with confirmed or suspected upper gastrointestinal cancers. Face-to-face meetings were held between stakeholder services at Waitemata District Health Board, and clinic resource allocated. Significant IT modification of existing clinic booking software was required. Between September 2014, and September 2015, there were a total of 165 new patient, and 710 follow-up appointments. All new patients were seen by a surgeon and then other specialties. Of the 165 new patient appointments, 146 (88%) patients had a definitive treatment plan in place and were cleared by anaesthesia and intensive care at the end of the clinic. Staff and patients report high levels of satisfaction for the clinic. A dedicated MDC has provided a single forum where complex patients can be reviewed, and a definitive treatment plan formulated in nearly 90% of patients, even when this involves multiple medical and paramedical specialties with high levels of patient and clinician satisfaction.

  7. Multidisciplinary analysis of actively controlled large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Cooper, Paul A.; Young, John W.; Sutter, Thomas R.

    1986-01-01

    The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.

  8. NASA's MERBoard: An Interactive Collaborative Workspace Platform. Chapter 4

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Wales, Roxana; Gossweiler, Rich

    2003-01-01

    This chapter describes the ongoing process by which a multidisciplinary group at NASA's Ames Research Center is designing and implementing a large interactive work surface called the MERBoard Collaborative Workspace. A MERBoard system involves several distributed, large, touch-enabled, plasma display systems with custom MERBoard software. A centralized server and database back the system. We are continually tuning MERBoard to support over two hundred scientists and engineers during the surface operations of the Mars Exploration Rover Missions. These scientists and engineers come from various disciplines and are working both in small and large groups over a span of space and time. We describe the multidisciplinary, human-centered process by which this h4ERBoard system is being designed, the usage patterns and social interactions that we have observed, and issues we are currently facing.

  9. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology.

    PubMed

    Barah, Pankaj; Bones, Atle M

    2015-02-01

    The biggest challenge for modern biology is to integrate multidisciplinary approaches towards understanding the organizational and functional complexity of biological systems at different hierarchies, starting from the subcellular molecular mechanisms (microscopic) to the functional interactions of ecological communities (macroscopic). The plant-insect interaction is a good model for this purpose with the availability of an enormous amount of information at the molecular and the ecosystem levels. Changing global climatic conditions are abruptly resetting plant-insect interactions. Integration of discretely located heterogeneous information from the ecosystem to genes and pathways will be an advantage to understand the complexity of plant-insect interactions. This review will present the recent developments in omics-based high-throughput experimental approaches, with particular emphasis on studying plant defence responses against insect attack. The review highlights the importance of using integrative systems approaches to study plant-insect interactions from the macroscopic to the microscopic level. We analyse the current efforts in generating, integrating and modelling multiomics data to understand plant-insect interaction at a systems level. As a future prospect, we highlight the growing interest in utilizing the synthetic biology platform for engineering insect-resistant plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. A multidisciplinary approach for the treatment of GIST liver metastasis

    PubMed Central

    Radkani, Pejman; Ghersi, Marcelo M; Paramo, Juan C; Mesko, Thomas W

    2008-01-01

    Background Advanced gastrointestinal stromal tumors (GISTs) can metastasize and recur after a long remission period, resulting in serious morbidity, mortality, and complex management issues. Case presentation A 67-year-old woman presented with epigastric fullness, mild jaundice and weight loss with a history of a bowel resection 7 years prior for a primary GIST of the small bowel. The finding of a heterogeneous mass 15.5 cm in diameter replacing most of the left lobe of the liver by ultrasonography and CT, followed by positive cytological studies revealed a metastatic GIST. Perioperative optimization of the patient's nutritional status along with biliary drainage, and portal vein embolization were performed. Imatinib was successful in reducing the tumor size and facilitating surgical resection. Conclusion A well-planned multidisciplinary approach should be part of the standard management of advanced or metastatic GIST. PMID:18471285

  11. A multidisciplinary prostate cancer clinic for newly diagnosed patients: developing the role of the advanced practice nurse.

    PubMed

    Madsen, Lydia T; Craig, Catherine; Kuban, Deborah

    2009-06-01

    Newly diagnosed patients with prostate cancer have various treatment options, and a multidisciplinary prostate cancer clinic (MPCC) can present all options in a single setting. An MPCC was started in 2004 at the University of Texas M.D. Anderson Cancer Center, and 258 patients with prostate cancer were evaluated in its first year. The clinic expanded in 2006 and an oncology advanced practice nurse (APN) was recruited to address specific objectives. The APN role was used to implement a quality-of-life protocol, provide detailed patient education (including a treatment summary and care plan), and serve as a single point of contact as patients move toward a treatment decision. Formal evaluation of the MPCC showed that patients were satisfied with this approach to the complex decision-making process in prostate cancer.

  12. A multi-disciplinary approach to study coastal complex landslides: the case of Torino di Sangro (Central Italy)

    NASA Astrophysics Data System (ADS)

    Sciarra, Marco; Carabba, Luigi; Urbano, Tullio; Calista, Monia

    2016-04-01

    This work illustrates the studies carried out on a complex landslide phenomenon between the Sangro and Osento River's mouths, near Torino di Sangro village in Southern Abruzzo Region (Italy). Historical activity of this landslide is well-documented since 1916; the activation/reactivation of the movements caused several interruptions of a national railway and the damage of few houses. The Torino di Sangro case study can be regarded as representative of many large landslides distributed along the central Adriatic coast (e.g., Ancona, Ortona, Vasto and Petacciato Landslides) that affect densely populated urban areas with a large amount of man-made infrastructure. The main controlling factors of these large and deep-seated landslides are still debated. From the geological and geomorphological viewpoint, the central Adriatic coast is characterized by a low-relief landscape (mesa) carved on clay-sandstone-conglomerate bedrock belonging to the Upper Pliocene - Lower Pleistocene marine deposits and locally to the Middle Pleistocene marine to continental transitional deposits. This high coast is widely affected by slope instability (rock falls, rotational, complex and shallow landslides) on both active and inactive sea cliffs, the first being mainly affected by wave-cut erosion and the latter influenced by heavy rainfall and changes of pore pressure. The main landslide has the typical characteristics of a deep-seated gravitation deformation. The landslide study was based on a multidisciplinary approach including: 1) definition and GIS mapping of geology and geomorphology factors (slope, aspect, topographic curvature, bedrock lithology, near-surface deposits, deposit thickness and land use), by means of DTM processing, multi-temporal analysis, and large-scale geomorphological field survey; 2) monitoring system in the landslide; 3) application of empiric models for the analysis of unstable sandstone-conglomerate escarpments; 4) slope stability analysis performed using a stress-strain numerical modeling solved by a Finite Difference Method (FLAC 2D). This study suggests that rock falls and shallow landslide are hazardous phenomenal that involve the near-surface cover of a bigger and more complex landslide. The distinction between secondary processes, which appear to be the most hazardous in the short-term, and deep-seated one, demonstrated that accurate multi-approach analysis provide important information that can be supportive for local administration and decision makers, and for the comprehension of the factors controlling large and deep-seated landslide affecting the Adriatic coastal slopes.

  13. Multi-Disciplinary Design Optimization Using WAVE

    NASA Technical Reports Server (NTRS)

    Irwin, Keith

    2000-01-01

    The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.

  14. The Coalition for Sustainable Egg Supply: A unique public-private partnership for conducting research on the sustainability of animal housing systems using a multistakeholder approach.

    PubMed

    Mench, J A; Swanson, J C; Arnot, C

    2016-03-01

    The growing emphasis on ensuring the sustainability of animal agriculture is providing an impetus for the adoption of new approaches to structuring and conducting research. Sustainability is a complex topic involving many considerations related to the economic, social, and environmental impacts of production systems. Successfully addressing this topic requires multidisciplinary research as well as a high degree of communication with food system stakeholders to ensure that the research results contribute to informed decision making. In this paper, we provide an overview of a public-private partnership, the Coalition for Sustainable Egg Supply (CSES), which was formed to support research evaluating the sustainability of laying hen housing systems. Because of increasing public concerns about the behavioral restriction imposed on laying hens housed in conventional cages, the U.S. egg industry is faced with a need to transition to alternative systems. However, before the CSES project, there was limited information available about how this transition might affect trade-offs related to the sustainability of egg production. The goal of the CSES project was to provide this information by conducting holistic research on a commercial farm that had 3 different hen housing systems. The CSES members represented a variety of stakeholders, including food retailers and distributors, egg producers, universities, and governmental (USDA ARS) and nongovernmental organizations. The CSES was facilitated by a not-for-profit intermediary, the Center for Food Integrity, which was also responsible for communicating the research results to food system stakeholders, including via quantitative and qualitative consumer research. In this paper, we describe the structural aspects of the CSES that were responsible for the successful completion and dissemination of the research as well as the insights that were gained regarding multidisciplinary and multi-institutional collaboration, conducting commercial-scale research, fostering and maintaining stakeholder interaction, and communicating research results. Although not without limitations, this project demonstrates that public-private partnerships can be effective strategies for addressing sustainability questions related to animal agriculture and, thus, serves as a useful model for the other animal industries.

  15. The complex patient: A concept clarification.

    PubMed

    Manning, Eli; Gagnon, Marilou

    2017-03-01

    Over the last decade, the concept of the "complex patient" has not only been more widely used in multidisciplinary healthcare teams and across various healthcare disciplines, but it has also become more vacuous in meaning. The uptake of the concept of the "complex patient" spans across disciplines, such as medicine, nursing, and social work, with no consistent definition. We review the chronological evolution of this concept and its surrogate terms, namely "comorbidity," "multimorbidity," "polypathology," "dual diagnosis," and "multiple chronic conditions." Drawing on key principles of concept clarification, we highlight disciplinary usage in the literature published between 2005 and 2015 in health sciences, attending to overlaps and revealing nuances of the complex patient concept. Finally, we discuss the implications of this concept for practice, research, and theory. © 2017 John Wiley & Sons Australia, Ltd.

  16. Unstructured Finite Volume Computational Thermo-Fluid Dynamic Method for Multi-Disciplinary Analysis and Design Optimization

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Schallhorn, Paul

    1998-01-01

    This paper describes a finite volume computational thermo-fluid dynamics method to solve for Navier-Stokes equations in conjunction with energy equation and thermodynamic equation of state in an unstructured coordinate system. The system of equations have been solved by a simultaneous Newton-Raphson method and compared with several benchmark solutions. Excellent agreements have been obtained in each case and the method has been found to be significantly faster than conventional Computational Fluid Dynamic(CFD) methods and therefore has the potential for implementation in Multi-Disciplinary analysis and design optimization in fluid and thermal systems. The paper also describes an algorithm of design optimization based on Newton-Raphson method which has been recently tested in a turbomachinery application.

  17. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  18. Interactions Among Plants, Insects, and Microbes: Elucidation of Inter-Organismal Chemical Communications in Agricultural Ecology.

    PubMed

    Beck, John J; Alborn, Hans; Block, Anna; Christensen, Shawn A; Hunter, Charles T; Rering, Caitlin C; Seidl-Adams, Irmgard; Stuhl, Charles; Torto, Baldwyn; Tumlinson, James H

    2018-06-12

    The last two decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e., plant-insect-microbe), and the study of a ternary system requires non-trivial planning. This planning can include: an experimental design that factors in potential overarching ecological interactions regarding the binary or ternary system; correctly identifying and understanding unexpected observations that may occur during the experiment; and, thorough interpretation of the resultant data. This challenge of planning, performing and interpreting a plant's defensive response to multiple biotic stressors will be even greater when abiotic stressors (i.e., temperature or water) are factored into the system. To fully understand the system, we need to not only continue to investigate and understand the volatile profiles, but also include and understand the biochemistry of the plant's response to these stressors. In this paper, we provide examples and discuss interaction considerations with respect to how readers and future authors of the Journal of Agricultural and Food Chemistry can contribute their expertise toward the extraction and interpretation of chemical information exchanged between agricultural commodities and their associated pests. This holistic, multidisciplinary and thoughtful approach to interactions of plants, insects, and microbes, and the resultant response of the plants, can lead to a better understanding of agricultural ecology, in turn leading to practical and viable solutions to agricultural problems.

  19. A Second-Generation Device for Automated Training and Quantitative Behavior Analyses of Molecularly-Tractable Model Organisms

    PubMed Central

    Blackiston, Douglas; Shomrat, Tal; Nicolas, Cindy L.; Granata, Christopher; Levin, Michael

    2010-01-01

    A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science. PMID:21179424

  20. Geomorphic analysis of large alluvial rivers

    NASA Astrophysics Data System (ADS)

    Thorne, Colin R.

    2002-05-01

    Geomorphic analysis of a large river presents particular challenges and requires a systematic and organised approach because of the spatial scale and system complexity involved. This paper presents a framework and blueprint for geomorphic studies of large rivers developed in the course of basic, strategic and project-related investigations of a number of large rivers. The framework demonstrates the need to begin geomorphic studies early in the pre-feasibility stage of a river project and carry them through to implementation and post-project appraisal. The blueprint breaks down the multi-layered and multi-scaled complexity of a comprehensive geomorphic study into a number of well-defined and semi-independent topics, each of which can be performed separately to produce a clearly defined, deliverable product. Geomorphology increasingly plays a central role in multi-disciplinary river research and the importance of effective quality assurance makes it essential that audit trails and quality checks are hard-wired into study design. The structured approach presented here provides output products and production trails that can be rigorously audited, ensuring that the results of a geomorphic study can stand up to the closest scrutiny.

  1. From development to implementation-A smartphone and email-based discharge follow-up program for pediatric patients after hospital discharge.

    PubMed

    Hopkins, Israel Green; Dunn, Kelly; Bourgeois, Fabienne; Rogers, Jayne; Chiang, Vincent W

    2016-06-01

    The purpose of this case study was to investigate opportunities to electronically enhance the transitions of care for both patients and providers and to describe the process of development and implementation of such tools. We describe the current challenges and fragmentation of care for pediatric patients and families being discharged from inpatient stays, and review barriers to change in practice. Care transitions vary in the complexity of the clinical and social scenarios and no one-size-fits-all approach works for every patient, provider or hospital system. A substantial challenge that providers who are designing and implementing digital tools for patients surrounds the complexity in building such tools to apply to such broad populations. Our case study provides a framework using a multidisciplinary approach, brainstorming and rapid digital prototyping to build an in-house electronic discharge follow-up platform. In describing this process, we review design and implementation measures that may further support digital tool development in other areas. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.

    2015-01-01

    Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.

  3. Implementing Multidisciplinary and Multi-Zonal Applications Using MPI

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.

    1995-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.

  4. Community-oriented integrated care and health promotion – views from the street

    PubMed Central

    Thomas, Paul; Burch, Tony; Ferlie, Ewan; Jenkins, Rachel; Wright, Fiona; Sachar, Amrit; Ruprah-Shah, Baljeet

    2015-01-01

    Abstract On the 1st and 2nd May 2015, participants at the RCGP London City Health Conference debated practical ways to achieve integrated care at community level. In five connected workshops, participants reviewed current work and identified ways to overcome some of the problems that had become apparent. In this paper, we summarise the conclusions of each workshop, and provide an overall comment. There are layers of complexity in community-oriented integrated care that are not apparent at first sight. The difficult thing is not persuading people that it matters, but finding ways to do it that are practical and sustainable. The dynamic and complex nature of the territory is bewildering. The expectation of silo-operating and linear thinking, and the language and models that encourage it, pervade health and social care. Comprehensive integration is possible, but the theory and practice are unfamiliar to many. Images, theories and models are needed to help people from all parts of the system to see big pictures and focused detail at the same time and oscillate between them to envision-integrated whole systems. Infrastructure needs to enable this, with coordination hubs, locality-based multidisciplinary meetings and cycles of inter-organisational improvement to nurture relationships across organisational boundaries. PMID:26550036

  5. Improving medication safety and diabetes management in Hong Kong: a multidisciplinary approach.

    PubMed

    Chung, A Ys; Anand, S; Wong, I Ck; Tan, K Cb; Wong, C Ff; Chui, W Cm; Chan, E W

    2017-04-01

    Patients with diabetes often require complex medication regimens. The positive impact of pharmacists on improving diabetes management or its co-morbidities has been recognised worldwide. This study aimed to characterise drug-related problems among diabetic patients in Hong Kong and their clinical significance, and to explore the role of pharmacists in the multidisciplinary diabetes management team by evaluating the outcome of their clinical interventions. An observational study was conducted at the Diabetes Clinic of a public hospital in Hong Kong from October 2012 to March 2014. Following weekly screening, and prior to the doctor's consultation, selected high-risk patients were interviewed by a pharmacist for medication reconciliation and review. Drug-related problems were identified and documented by the pharmacist who presented clinical recommendations to doctors to optimise a patient's drug regimen and resolve or prevent potential drug-related problems. A total of 522 patients were analysed and 417 drug-related problems were identified. The incidence of patients with drug-related problems was 62.8% with a mean of 0.9 (standard deviation, 0.6) drug-related problems per patient. The most common categories of drug-related problems were associated with dosing (43.9%), drug choice (17.3%), and non-allergic adverse reactions (15.6%). Drugs most frequently involved targeted the endocrine or cardiovascular system. The majority (71.9%) of drug-related problems were of moderate clinical significance and 28.1% were considered minor problems. Drug-related problems were totally solved (50.1%) and partially solved (11.0%) by doctors' acceptance of pharmacist recommendations, or received acknowledgement from doctors (5.5%). Pharmacists, in collaboration with the multidisciplinary team, demonstrated a positive impact by identifying, resolving, and preventing drug-related problems in patients with diabetes. Further plans for sustaining pharmacy service in the Diabetes Clinic would enable further studies to explore the long-term impact of pharmacists in improving patients' clinical outcomes in diabetes management.

  6. Integrative, Interdisciplinary Learning in Bermuda Through Video Projects

    NASA Astrophysics Data System (ADS)

    Fox, R. J.; Connaughton, M.

    2017-12-01

    Understanding an ecosystem and how humans impact it requires a multidisciplinary perspective and immersive, experiential learning is an exceptional way to achieve understanding. In summer 2017 we took 18 students to the Bermuda Institute of Ocean Sciences (BIOS) as part of a Washington College two-week, four-credit summer field course. We took a multi-disciplinary approach in choosing the curriculum. We focused on the ecology of the islands and surrounding coral reefs as well as the environmental impacts humans are having on the islands. Additionally, we included geology and both local and natural history. Our teaching was supplemented by the BIOS staff and local tour guides. The student learning was integrated and reinforced through student-led video projects. Groups of three students were tasked with creating a 5-7 minute video appropriate for a public audience. We selected video topics based upon locations we would visit in the first week and topics were randomly assigned. The project intention was for the students to critically analyze and evaluate an area of Bermuda that is a worthwhile tourist destination. Students presented why a tourist should visit a locale, the area's ecological distinctiveness and complexity, the impact humans are having, and ways tourists can foster stewardship of that locale. These projects required students to learn how to make and edit videos, collaborate with peers, communicate a narrative to the public, integrate multi-disciplinary topics for a clear, whole-system perspective, observe the environment from a critical viewpoint, and interview local experts. The students produced the videos within the two-week period, and we viewed the videos as a group on the last day. The students worked hard, were proud of their final products, and produced excellent videos. They enjoyed the process, which provided them opportunities to collaborate, show individual strengths, be creative, and work independently of the instructors.

  7. Development of a competency based training programme to support multidisciplinary working in a combined biochemistry/haematology laboratory

    PubMed Central

    Woods, R; Longmire, W; Galloway, M; Smellie, W

    2000-01-01

    The aim of this study was to develop a competency based training programme to support multidisciplinary working in a combined biochemistry and haematology laboratory. The training programme was developed to document that staff were trained in the full range of laboratory tests that they were expected to perform. This programme subsequently formed the basis for the annual performance review of all staff. All staff successfully completed the first phase of the programme. This allowed laboratory staff to work unsupervised at night as part of a partial shift system. All staff are now working towards achieving a level of competence equivalent to the training level required for state registration by the Council for Professions Supplementary to Medicine. External evaluation of the training programme has included accreditation by the Council for Professions Supplementary to Medicine and reinspection by Clinical Pathology Accreditation (UK) Ltd. The development of a competency based training system has facilitated the introduction of multidisciplinary working in the laboratory. In addition, it enables the documentation of all staff to ensure that they are fully trained and are keeping up to date, because the continuing professional development programme in use in our laboratory has been linked to this training scheme. This approach to documentation of training facilitated a recent reinspection by Clinical Pathology Accreditation (UK) Ltd. Key Words: Keyword: multidisciplinary working • competency based training PMID:10889827

  8. The effect of a regional hepatopancreaticobiliary surgical program on clinical volume, quality of cancer care, and outcomes in the Veterans Affairs system.

    PubMed

    Lau, Kelsey; Salami, Aitua; Barden, Gala; Khawja, Shumaila; Castillo, Diana L; Poppelaars, Victoria; Artinyan, Avo; Awad, Samir S; Berger, David H; Albo, Daniel; Anaya, Daniel A

    2014-11-01

    Malignant neoplasms of the hepatopancreaticobiliary (HPB) system constitute a significant public health problem worldwide. Treatment coordination for these tumors is challenging and can result in substandard care. Referral centers for HPB disease have been used as a strategy to improve postoperative outcomes, but their effect on accomplishing regionalization of care and improving quality of cancer care is not well known. To evaluate the effect of implementing a multidisciplinary HPB surgical program (HPB-SP) on regionalization of care, the quality of cancer care, and surgical outcomes within an integrated health care system. We designed a retrospective cohort study in a tertiary referral Veterans Affairs (VA) medical center within an 8-state designated VA health care region from November 23, 2005, through December 31, 2013. We compared patients with HPB tumors undergoing evaluation by the surgical oncology service before and after implementation of the HPB-SP on November 1, 2008. Implementation of the HPB-SP to improve access to specialized, multidisciplinary cancer care for veterans across the region. Clinical and surgical volume, proportion of patients undergoing a comprehensive multidisciplinary evaluation, and postoperative adverse events included as a composite outcome defined by occurrence of postoperative mortality, severe complications, and/or reoperation. We identified 516 patients referred to the surgical oncology service. Establishment of the HPB-SP resulted in significant increases in regional referrals (17.3% vs 44.4%; P < .001), median monthly clinic visits (5 vs 20; P < .001), and median number of HPB surgical procedures (3 vs 9; P = .003) per quarter. Multidisciplinary assessment increased from 52.6% to 70.0% (P < .001). When we compared patients with hepatocellular carcinoma before (n = 55) and after (n = 131) implementation, more patients received any treatment (35 [63.6%] vs 109 [83.2%]; P = .004) with increased use of liver resection (0 vs 20 [15.3%]; P = .002), percutaneous ablation (0 vs 15 [11.5%]; P = .009), and oncosurgical strategies (0 vs 16 [12.2%]; P = .007) after implementation. Among patients with colorectal liver metastases (29 before vs 76 after implementation), a significant shift occurred from use of ablations (5 [17.2%] vs 3 [3.9]%; P = .02) to resections (6 [20.7%] vs 40 [52.6%]; P = .003), and use of perioperative chemotherapy increased (5 of 11 [45.5%] vs 33 of 43 [76.7%]; P = .01). The HPB-SP was associated with lower odds of postoperative adverse events, even after adjusting for important covariates (odds ratio, 0.29 [95% CI, 0.12-0.68]; P = .005), and a high rate of margin-negative liver (94.6%) and pancreatic (90.0%) resections. The development of an HPB-SP led to regionalization of care and improved quality of cancer care and surgical outcomes. Establishment of regional programs within the VA system can help improve the quality of care for patients presenting with complex cancers requiring subspecialized care.

  9. Dismounted Complex Blast Injury.

    PubMed

    Andersen, Romney C; Fleming, Mark; Forsberg, Jonathan A; Gordon, Wade T; Nanos, George P; Charlton, Michael T; Ficke, James R

    2012-01-01

    The severe Dismounted Complex Blast Injury (DCBI) is characterized by high-energy injuries to the bilateral lower extremities (usually proximal transfemoral amputations) and/or upper extremity (usually involving the non-dominant side), in addition to open pelvic injuries, genitourinary, and abdominal trauma. Initial resuscitation and multidisciplinary surgical management appear to be the keys to survival. Definitive treatment follows general principals of open wound management and includes decontamination through aggressive and frequent debridement, hemorrhage control, viable tissue preservation, and appropriate timing of wound closure. These devastating injuries are associated with paradoxically favorable survival rates, but associated injuries and higher amputation levels lead to more difficult reconstructive challenges.

  10. Can we make sense of multidisciplinary co-operation in primary care by considering routines and rules?

    PubMed

    Elissen, Arianne M J; van Raak, Arno J A; Paulus, Aggie T G

    2011-01-01

    Although it is widely acknowledged that the complex health problems of chronically ill and elderly persons require care provision across organisational and professional boundaries, achieving widespread multidisciplinary co-operation in primary care has proven problematic. We developed an explanation for this on the basis of the concepts of routines (patterns of behaviour) and rules, which form a relatively new yet promising perspective for studying co-operation in health-care. We used data about primary care providers situated in the Dutch region of Limburg, a region that, despite high numbers of chronically and elderly persons, has traditionally few healthcare centres and where multidisciplinary co-operation is limited. A qualitative study design was used, in which interviews and documents were the main data sources. Semi-structured interviews were conducted with providers from six primary care professions in the Dutch region of Limburg; relevant documents included co-operation agreements, annual reports and internal memos. To analyse the evidence, several data matrices were developed and all data were structured according to the main concepts under study, i.e. routines and rules. Although more research is needed, our study suggests that the emergence of more extensive multidisciplinary co-operation in primary care is hampered by the organisational rules and regulations prevailing in the sector. By emphasising individual care delivery rather than co-operation, these rules stimulate the perseverance of diversity between the routines by which providers perform their solo care delivery activities, rather than the creation of the amount of compatibility between those routines that is necessary for the current, rather limited shape of multidisciplinary co-operation to expand. Further research should attempt to validate this explanation by utilising a larger research population and systematically operationalising the rules existing in the legal and--more importantly--organisational environment of primary care. © 2010 Blackwell Publishing Ltd.

  11. Clinical tube weaning supported by hunger provocation in fully-tube-fed children.

    PubMed

    Hartdorff, Caroline M; Kneepkens, C M Frank; Stok-Akerboom, Anita M; van Dijk-Lokkart, Elisabeth M; Engels, Michelle A H; Kindermann, Angelika

    2015-04-01

    Children with congenital malformations, mental retardation, and complex early medical history frequently have feeding problems. Although tube feeding is effective in providing the necessary energy and nutrients, it decreases the child's motivation to eat and may lead to oral aversion. In this study, we sought to confirm our previous results, showing that a multidisciplinary clinical hunger provocation program may lead to quick resumption of oral feeding. In a crossover study, 22 children of 9 to 24 months of age who were fully dependent on tube feeding were randomly assigned to one of two groups: group A, intervention group (2-week multidisciplinary clinical hunger provocation program); and group B, control group (4-week outpatient treatment by the same multidisciplinary team). Patients failing one treatment were reassigned to the other treatment group. Primary outcome measures were at least 75% orally fed at the conclusion of the intervention and fully orally fed and gaining weight 6 months after the intervention. In group A, 9/11 patients were successfully weaned from tube feeding (2 failures: 1 developed ulcerative colitis, 1 drop-out). In group B, only 1 patient was weaned successfully; 10/11 were reassigned to the clinical hunger provocation program, all being weaned successfully. Six months after the intervention, 1 patient had to resume tube feeding. In total, in the control group, 1/11 (9%) was weaned successfully as compared with 18/21 (86%) in the hunger provocation group (P < 0.001). Multidisciplinary clinical hunger provocation is an effective short-term intervention for weaning young children from tube feeding.

  12. A national survey of pain clinics within the United Kingdom and Ireland focusing on the multidisciplinary team and the incorporation of the extended nursing role.

    PubMed

    Kailainathan, Pungavi; Humble, Stephen; Dawson, Helen; Cameron, Fiona; Gokani, Shyam; Lidder, Gursimren

    2018-02-01

    Inconsistencies in the availability and quality of pain service provision have been noted nationally, as have lengthy waiting times for appointments and lack of awareness of the Pain Clinic role. The 2013 NHS England report stated that specialist pain services must offer multispecialty and multidisciplinary pain clinics. This national survey of multidisciplinary pain service provision in the United Kingdom and Ireland provides a snapshot of pain service provision in order to review and highlight what variations exist in multidisciplinary team (MDT) provision and working patterns. A common perception among clinicians is that financial pressures have led to alternate ways of staff utilisation with variable degrees of success. The survey included 143 pain clinics, focusing principally on MDT working patterns, MDT composition and adoption of the extended role. The results identified that the majority of Pain Clinics utilise the MDT approach. However, provision of critical components such as regular MDT meetings is highly variable as is the composition of the MDT itself and also working patterns of the individual clinicians. The survey reports the successful use of the extended roles for specialist nurses in follow up clinics. In contrast, the survey highlights that a large proportion of clinicians surveyed have reservations about both the effectiveness and the safety of utilising specialist nurses in the extended role to see new referrals of complex pain patients to pain clinics. This survey underlines the essential requirement for incorporation of greater MDT working locally and nationally and allocation of appropriate resources to facilitate this.

  13. The use of microtechnology and nanotechnology in fabricating vascularized tissues.

    PubMed

    Obregón, Raquel; Ramón-Azcón, Javier; Ahadian, Samad; Shiku, Hitoshi; Bae, Hojae; Ramalingam, Murugan; Matsue, Tomokazu

    2014-01-01

    Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.

  14. Automated identification of insect vectors of Chagas disease in Brazil and Mexico: the Virtual Vector Lab

    PubMed Central

    Gurgel-Gonçalves, Rodrigo; Komp, Ed; Campbell, Lindsay P.; Khalighifar, Ali; Mellenbruch, Jarrett; Mendonça, Vagner José; Owens, Hannah L.; de la Cruz Felix, Keynes; Ramsey, Janine M.

    2017-01-01

    Identification of arthropods important in disease transmission is a crucial, yet difficult, task that can demand considerable training and experience. An important case in point is that of the 150+ species of Triatominae, vectors of Trypanosoma cruzi, causative agent of Chagas disease across the Americas. We present a fully automated system that is able to identify triatomine bugs from Mexico and Brazil with an accuracy consistently above 80%, and with considerable potential for further improvement. The system processes digital photographs from a photo apparatus into landmarks, and uses ratios of measurements among those landmarks, as well as (in a preliminary exploration) two measurements that approximate aspects of coloration, as the basis for classification. This project has thus produced a working prototype that achieves reasonably robust correct identification rates, although many more developments can and will be added, and—more broadly—the project illustrates the value of multidisciplinary collaborations in resolving difficult and complex challenges. PMID:28439451

  15. STARSITE Program: Search To Assess Re- sources, Social, Institutional, Technical, and Environmental, toward a decision-making mechanism

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The systems approach was used in the seminar on the complex multidisciplinary problem of housing and related environment conditions. The main areas of study are the following; historical overview of housing; diagrammatic presentation of the problem; technological innovations and contributions; management, economic, legal, and political considerations; environment and natural resources; human needs and behavior; model of the housing industry; and potential for implementation. It is felt that a greater attempt should be made to transfer aerospace technology to the housing industry; however, the emphasis of the conference was directed to the modern management techniques developed by NASA. Among the conclusions are the following: The extent and character of the housing problem should be defined. Increased coordination of housing programs within and between Federal agencies is essential. Development of physically sophisticated building systems requires Federal support. New towns of differing life styles need to be created. Physiological and psychological reactions to environmental enclosure need to be defined.

  16. Understanding the holobiont: the interdependence of plants and their microbiome.

    PubMed

    Sánchez-Cañizares, Carmen; Jorrín, Beatriz; Poole, Philip S; Tkacz, Andrzej

    2017-08-01

    The holobiont is composed by the plant and its microbiome. In a similar way to ecological systems of higher organisms, the holobiont shows interdependent and complex dynamics [1,2]. While plants originate from seeds, the microbiome has a multitude of sources. The assemblage of these communities depends on the interaction between the emerging seedling and its surrounding environment, with soil being the main source. These microbial communities are controlled by the plant through different strategies, such as the specific profile of root exudates and its immune system. Despite this control, the microbiome is still able to adapt and thrive. The molecular knowledge behind these interactions and microbial '-omic' technologies are developing to the point of enabling holobiont engineering. For a long time microorganisms were in the background of plant biology but new multidisciplinary approaches have led to an appreciation of the importance of the holobiont, where plants and microbes are interdependent. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Using multi-disciplinary optimization and numerical simulation on the transiting exoplanet survey satellite

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) is an instrument consisting of four, wide fieldof- view CCD cameras dedicated to the discovery of exoplanets around the brightest stars, and understanding the diversity of planets and planetary systems in our galaxy. Each camera utilizes a seven-element lens assembly with low-power and low-noise CCD electronics. Advanced multivariable optimization and numerical simulation capabilities accommodating arbitrarily complex objective functions have been added to the internally developed Lincoln Laboratory Integrated Modeling and Analysis Software (LLIMAS) and used to assess system performance. Various optical phenomena are accounted for in these analyses including full dn/dT spatial distributions in lenses and charge diffusion in the CCD electronics. These capabilities are utilized to design CCD shims for thermal vacuum chamber testing and flight, and verify comparable performance in both environments across a range of wavelengths, field points and temperature distributions. Additionally, optimizations and simulations are used for model correlation and robustness optimizations.

  18. Strengthening Data Confidentiality and Integrity Protection in the Context of a Multi-Centric Information System Dedicated to Autism Spectrum Disorder.

    PubMed

    Ben Said, Mohamed; Robel, Laurence; Golse, Bernard; Jais, Jean Philippe

    2017-01-01

    Autism spectrum disorders (ASD) are complex neuro-developmental disorders affecting children in early age. Diagnosis relies on multidisciplinary investigations, in psychiatry, neurology, genetics, electrophysiology, neuro-imagery, audiology, and ophthalmology. To support clinicians, researchers, and public health decision makers, we developed an information system dedicated to ASD, called TEDIS. It was designed to manage systematic, exhaustive and continuous multi-centric patient data collection via secured internet connections. TEDIS will be deployed in nine ASD expert assessment centers in Ile-DeFrance district. We present security policy and infrastructure developed in context of TEDIS to protect patient privacy and clinical information. TEDIS security policy was organized around governance, ethical and organisational chart-agreement, patients consents, controlled user access, patients' privacy protection, constrained patients' data access. Security infrastructure was enriched by further technical solutions to reinforce ASD patients' privacy protection. Solutions were tested on local secured intranet environment and showed fluid functionality with consistent, transparent and safe encrypting-decrypting results.

  19. Automated identification of insect vectors of Chagas disease in Brazil and Mexico: the Virtual Vector Lab.

    PubMed

    Gurgel-Gonçalves, Rodrigo; Komp, Ed; Campbell, Lindsay P; Khalighifar, Ali; Mellenbruch, Jarrett; Mendonça, Vagner José; Owens, Hannah L; de la Cruz Felix, Keynes; Peterson, A Townsend; Ramsey, Janine M

    2017-01-01

    Identification of arthropods important in disease transmission is a crucial, yet difficult, task that can demand considerable training and experience. An important case in point is that of the 150+ species of Triatominae, vectors of Trypanosoma cruzi , causative agent of Chagas disease across the Americas. We present a fully automated system that is able to identify triatomine bugs from Mexico and Brazil with an accuracy consistently above 80%, and with considerable potential for further improvement. The system processes digital photographs from a photo apparatus into landmarks, and uses ratios of measurements among those landmarks, as well as (in a preliminary exploration) two measurements that approximate aspects of coloration, as the basis for classification. This project has thus produced a working prototype that achieves reasonably robust correct identification rates, although many more developments can and will be added, and-more broadly-the project illustrates the value of multidisciplinary collaborations in resolving difficult and complex challenges.

  20. Mathematic modeling of complex aquifer: Evian Natural Mineral Water case study considering lumped and distributed models.

    NASA Astrophysics Data System (ADS)

    Henriot, abel; Blavoux, bernard; Travi, yves; Lachassagne, patrick; Beon, olivier; Dewandel, benoit; Ladouche, bernard

    2013-04-01

    The Evian Natural Mineral Water (NMW) aquifer is a highly heterogeneous Quaternary glacial deposits complex composed of three main units, from bottom to top: - The "Inferior Complex" mainly composed of basal and impermeable till lying on the Alpine rocks. It outcrops only at the higher altitudes but is known in depth through drilled holes. - The "Gavot Plateau Complex" is an interstratified complex of mainly basal and lateral till up to 400 m thick. It outcrops at heights above approximately 850 m a.m.s.l. and up to 1200 m a.m.s.l. over a 30 km² area. It is the main recharge area known for the hydromineral system. - The "Terminal Complex" from which the Evian NMW is emerging at 410 m a.m.s.l. It is composed of sand and gravel Kame terraces that allow water to flow from the deep "Gavot Plateau Complex" permeable layers to the "Terminal Complex". A thick and impermeable terminal till caps and seals the system. Aquifer is then confined at its downstream area. Because of heterogeneity and complexity of this hydrosystem, distributed modeling tools are difficult to implement at the whole system scale: important hypothesis would have to be made about geometry, hydraulic properties, boundary conditions for example and extrapolation would lead with no doubt to unacceptable errors. Consequently a modeling strategy is being developed and leads also to improve the conceptual model of the hydrosystem. Lumped models mainly based on tritium time series allow the whole hydrosystem to be modeled combining in series: an exponential model (superficial aquifers of the "Gavot Plateau Complex"), a dispersive model (Gavot Plateau interstratified complex) and a piston flow model (sand and gravel from the Kame terraces) respectively 8, 60 and 2.5 years of mean transit time. These models provide insight on the governing parameters for the whole mineral aquifer. They help improving the current conceptual model and are to be improved with other environmental tracers such as CFC, SF6. A deterministic approach (distributed model; flow and transport) is performed at the scale of the terminal complex. The geometry of the system is quite well known from drill holes and the aquifer properties from data processing of hydraulic heads and pumping tests interpretation. A multidisciplinary approach (hydrodynamic, hydrochemistry, geology, isotopes) for the recharge area (Gavot Plateau Complex) aims to provide better constraint for the upstream boundary of distributed model. More, perfect tracer modeling approach highly constrains fitting of this distributed model. The result is a high resolution conceptual model leading to a future operational management tool of the aquifer.

Top