Sample records for complex natural environments

  1. Flight Control in Complex Environments

    DTIC Science & Technology

    2016-10-24

    that allow insects, with their miniature brains and limited sensory systems to fly safely through cluttered natural environments . The most significant...specialisations that allow insects, with their miniature brains and limited sensory systems to fly safely through cluttered natural environments . The most...bees have developed more accurate or effective methods for flying safely through gaps than species from less complex environments . Fig. 4: The

  2. The Influence of Free Space Environment in the Mission Life Cycle: Material Selection

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Burns, Howard D.; de Groh, Kim K.

    2014-01-01

    The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.

  3. Evolution of biological complexity

    PubMed Central

    Adami, Christoph; Ofria, Charles; Collier, Travis C.

    2000-01-01

    To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045

  4. Higher rates of sex evolve during adaptation to more complex environments

    PubMed Central

    Luijckx, Pepijn; Ho, Eddie Ka Ho; Gasim, Majid; Chen, Suyang; Stanic, Andrijana; Yanchus, Connor; Kim, Yun Seong; Agrawal, Aneil F.

    2017-01-01

    A leading hypothesis for the evolutionary maintenance of sexual reproduction proposes that sex is advantageous because it facilitates adaptation. Changes in the environment stimulate adaptation but not all changes are equivalent; a change may occur along one or multiple environmental dimensions. In two evolution experiments with the facultatively sexual rotifer Brachionus calyciflorus, we test how environmental complexity affects the evolution of sex by adapting replicate populations to various environments that differ from the original along one, two, or three environmental dimensions. Three different estimates of fitness (growth, lifetime reproduction, and population density) confirmed that populations adapted to their new environment. Growth measures revealed an intriguing cost of complex adaptations: populations that adapted to more complex environments lost greater amounts of fitness in the original environment. Furthermore, both experiments showed that B. calyciflorus became more sexual when adapting to a greater number of environmental dimensions. Common garden experiments confirmed that observed changes in sex were heritable. As environments in nature are inherently complex these findings help explain why sex is maintained in natural populations. PMID:28053226

  5. Higher rates of sex evolve during adaptation to more complex environments.

    PubMed

    Luijckx, Pepijn; Ho, Eddie Ka Ho; Gasim, Majid; Chen, Suyang; Stanic, Andrijana; Yanchus, Connor; Kim, Yun Seong; Agrawal, Aneil F

    2017-01-17

    A leading hypothesis for the evolutionary maintenance of sexual reproduction proposes that sex is advantageous because it facilitates adaptation. Changes in the environment stimulate adaptation but not all changes are equivalent; a change may occur along one or multiple environmental dimensions. In two evolution experiments with the facultatively sexual rotifer Brachionus calyciflorus, we test how environmental complexity affects the evolution of sex by adapting replicate populations to various environments that differ from the original along one, two, or three environmental dimensions. Three different estimates of fitness (growth, lifetime reproduction, and population density) confirmed that populations adapted to their new environment. Growth measures revealed an intriguing cost of complex adaptations: populations that adapted to more complex environments lost greater amounts of fitness in the original environment. Furthermore, both experiments showed that B. calyciflorus became more sexual when adapting to a greater number of environmental dimensions. Common garden experiments confirmed that observed changes in sex were heritable. As environments in nature are inherently complex these findings help explain why sex is maintained in natural populations.

  6. An evaluation of the accuracy and performance of lightweight GPS collars in a suburban environment.

    PubMed

    Adams, Amy L; Dickinson, Katharine J M; Robertson, Bruce C; van Heezik, Yolanda

    2013-01-01

    The recent development of lightweight GPS collars has enabled medium-to-small sized animals to be tracked via GPS telemetry. Evaluation of the performance and accuracy of GPS collars is largely confined to devices designed for large animals for deployment in natural environments. This study aimed to assess the performance of lightweight GPS collars within a suburban environment, which may be different from natural environments in a way that is relevant to satellite signal acquisition. We assessed the effects of vegetation complexity, sky availability (percentage of clear sky not obstructed by natural or artificial features of the environment), proximity to buildings, and satellite geometry on fix success rate (FSR) and location error (LE) for lightweight GPS collars within a suburban environment. Sky availability had the largest affect on FSR, while LE was influenced by sky availability, vegetation complexity, and HDOP (Horizontal Dilution of Precision). Despite the complexity and modified nature of suburban areas, values for FSR (mean= 90.6%) and LE (mean = 30.1 m) obtained within the suburban environment are comparable to those from previous evaluations of GPS collars designed for larger animals and within less built-up environments. Due to fine-scale patchiness of habitat within urban environments, it is recommended that resource selection methods that are not reliant on buffer sizes be utilised for selection studies.

  7. Uranium extraction by complexation with siderophores

    NASA Astrophysics Data System (ADS)

    Bahamonde Castro, Cristina

    One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.

  8. Effect of Environment-Based Coursework on the Nature of Attitudes toward the Endangered Species Act.

    ERIC Educational Resources Information Center

    Bright, Alan D.; Tarrant, Michael A.

    2002-01-01

    Examines college students' attitudes and complexity of thinking about the Endangered Species Act (ESA) and the effects of environment-based coursework on their attitudes and thinking. Investigates attitudes in terms of their direction, extremity, ambivalence, and importance and measures complexity of thinking as integrative complexity. (Contains…

  9. An Ecohydrologic Model for a Shallow Groundwater Urban Environment

    EPA Science Inventory

    The urban environment is a patchwork of natural and artificial surfaces that results in complex interactions with and impacts to natural hydrologic cycles. Evapotranspiration (ET) is a major hydrologic flow that is often altered from urbanization, though the mechanisms of change ...

  10. Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment

    NASA Technical Reports Server (NTRS)

    Bedingfield, Keith, L.; Leach, Richard D.; Alexander, Margaret B. (Editor)

    1996-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. This primer provides a brief overview of the natural space environment - definition, related programmatic issues, and effects on various spacecraft subsystems. The primary focus, however, is to catalog, through representative case histories, spacecraft failures and anomalies attributed to the natural space environment. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).

  11. The Complex Experience of Learning to Do Research

    ERIC Educational Resources Information Center

    Emo, Kenneth; Emo, Wendy; Kimn, Jung-Han; Gent, Stephen

    2015-01-01

    This article examines how student learning is a product of the experiential interaction between person and environment. We draw from the theoretical perspective of complexity to shed light on the emergent, adaptive, and unpredictable nature of students' learning experiences. To understand the relationship between the environment and the student…

  12. Learning Ecosystem Complexity: A Study on Small-Scale Fishers' Ecological Knowledge Generation

    ERIC Educational Resources Information Center

    Garavito-Bermúdez, Diana

    2018-01-01

    Small-scale fisheries are learning contexts of importance for generating, transferring and updating ecological knowledge of natural environments through everyday work practices. The rich knowledge fishers have of local ecosystems is the result of the intimate relationship fishing communities have had with their natural environments across…

  13. Natural environment support guidelines for Space Shuttle tests and operations

    NASA Technical Reports Server (NTRS)

    Carter, E. A.; Brown, S. C.

    1974-01-01

    The present work outlines the general concept as to how natural environment guidelines will be developed for Space Shuttle activities. The following six categories that might need natural environment support are single out: development tests; preliminary operations and prelaunch; launch to orbit; orbital mission and operations; deorbit, entry, and landing; ferry flights. An example of detailed event requirements for decisions to launch is given. Some artist's conceptions of proposed launch complexes at Kennedy Space Center and Vandenberg AFB are shown.

  14. Enriching early adult environment affects the copulation behaviour of a tephritid fly.

    PubMed

    Díaz-Fleischer, Francisco; Arredondo, José; Aluja, Martín

    2009-07-01

    Early adult experiences in enriched environments favours animal brain and behavioural development ultimately resulting in an increased fitness. However, measuring the effect of environmental enrichment in animal behaviour in nature is often a complicated task, considering the complexity of the natural environment. We expanded previous studies to evaluate how early experience in an enriched environment affects copulation behaviour when animals are confronted with a complex semi-natural environment. Anastrepha ludens flies are an ideal model system for studying these effects because their natural habitats differ significantly from the cage environments in which these flies are reared for biological control purposes. For example, in the field, males form leks of up to six individuals. Each male defends a territory represented by a tree leaf whereas in rearing cages, territories are completely reduced because of the high population density. In a series of three experiments, we observed that male density represented the most influential stimulus for A. ludens male copulation success. Males that experienced lower densities in early adulthood obtained the highest proportion of copulations. By contrast, female copulation behaviour was not altered by female density. However, exposure to natural or artificial leaves in cages in which flies were kept until tested influenced female copulation behaviour. Females that were exposed to enriched environments exhibited a shorter latency to mate and shorter copulation durations with males than females reared in poor environments. We discuss the influence of early experience on male copulation success and female-mating choosiness.

  15. Darwinian demons, evolutionary complexity, and information maximization.

    PubMed

    Krakauer, David C

    2011-09-01

    Natural selection is shown to be an extended instance of a Maxwell's demon device. A demonic selection principle is introduced that states that organisms cannot exceed the complexity of their selective environment. Thermodynamic constraints on error repair impose a fundamental limit to the rate that information can be transferred from the environment (via the selective demon) to the genome. Evolved mechanisms of learning and inference can overcome this limitation, but remain subject to the same fundamental constraint, such that plastic behaviors cannot exceed the complexity of reward signals. A natural measure of evolutionary complexity is provided by mutual information, and niche construction activity--the organismal contribution to the construction of selection pressures--might in principle lead to its increase, bounded by thermodynamic free energy required for error correction.

  16. Mercury reduction and complexation by natural organic matter in anoxic environments.

    PubMed

    Gu, Baohua; Bian, Yongrong; Miller, Carrie L; Dong, Wenming; Jiang, Xin; Liang, Liyuan

    2011-01-25

    Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiolate ligand-induced oxidative complexation with an estimated binding capacity of ~3.5 μmol Hg/g HA and a partitioning coefficient >10(6) mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.

  17. Dribble Files: Methodologies to Evaluate Learning and Performance in Complex Environments

    ERIC Educational Resources Information Center

    Schrader, P. G.; Lawless, Kimberly A.

    2007-01-01

    Research in the area of technology learning environments is tremendously complex. Tasks performed in these contexts are highly cognitive and mostly invisible to the observer. The nature of performance in these contexts is explained not only by the outcome but also by the process. However, evaluating the learning process with respect to tasks…

  18. Micro-navigation in complex periodic environments

    NASA Astrophysics Data System (ADS)

    Chamolly, Alexander; Ishikawa, Takuji; Lauga, Eric

    2017-11-01

    Natural and artificial small-scale swimmers may often self-propel in environments subject to complex geometrical constraints. While most past theoretical work on low-Reynolds number locomotion addressed idealised geometrical situations, not much is known on the motion of swimmers in heterogeneous environments. We investigate theoretically and numerically the behaviour of a single spherical micro-swimmer located in an infinite, periodic body-centred cubic lattice consisting of rigid inert spheres of the same size as the swimmer. We uncover a surprising and complex phase diagram of qualitatively different trajectories depending on the lattice packing density and swimming actuation strength. These results are then rationalised using hydrodynamic theory. In particular we show that the far-field nature of the swimmer (pusher vs. puller) governs the behaviour even at high volume fractions. ERC Grant PhyMeBa (682754, EL); JSPS Grant-in-Aid for Scientific Research (A) (17H00853, TI).

  19. Extraction and characterization of ternary complexes between natural organic matter, cations, and oxyanions from a natural soil.

    PubMed

    Peel, Hannah R; Martin, David P; Bednar, Anthony J

    2017-06-01

    Natural organic matter (NOM) can have a significant influence on the mobility and fate of inorganic oxyanions, such as arsenic and selenium, in the environment. There is evidence to suggest that interactions between NOM and these oxyanions are facilitated by bridging cations (primarily Fe 3+ ) through the formation of ternary complexes. Building on previous work characterizing ternary complexes formed in the laboratory using purified NOM, this study describes the extraction and characterization of intact ternary complexes directly from a soil matrix. The complexes are stable to the basic extraction conditions (pH 12) and do not appear to change when the pH of the extract is adjusted back to neutral. The results suggest that ternary complexes between NOM, cations, and inorganic oxyanions exist in natural soils and could play a role in the speciation of inorganic oxyanions in environmental matrices. Published by Elsevier Ltd.

  20. Meteoroids and Orbital Debris: Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.

    1997-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.

  1. Hypercompetitive Environments: An Agent-based model approach

    NASA Astrophysics Data System (ADS)

    Dias, Manuel; Araújo, Tanya

    Information technology (IT) environments are characterized by complex changes and rapid evolution. Globalization and the spread of technological innovation have increased the need for new strategic information resources, both from individual firms and management environments. Improvements in multidisciplinary methods and, particularly, the availability of powerful computational tools, are giving researchers an increasing opportunity to investigate management environments in their true complex nature. The adoption of a complex systems approach allows for modeling business strategies from a bottom-up perspective — understood as resulting from repeated and local interaction of economic agents — without disregarding the consequences of the business strategies themselves to individual behavior of enterprises, emergence of interaction patterns between firms and management environments. Agent-based models are at the leading approach of this attempt.

  2. Towards Engineering Biological Systems in a Broader Context.

    PubMed

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mercury reduction and complexation by natural organic matter in anoxic environments

    PubMed Central

    Gu, Baohua; Bian, Yongrong; Miller, Carrie L.; Dong, Wenming; Jiang, Xin; Liang, Liyuan

    2011-01-01

    Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiolate ligand-induced oxidative complexation with an estimated binding capacity of ~3.5 μmol Hg/g HA and a partitioning coefficient >106 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury. PMID:21220311

  4. Emergent categorical representation of natural, complex sounds resulting from the early post-natal sound environment

    PubMed Central

    Bao, Shaowen; Chang, Edward F.; Teng, Ching-Ling; Heiser, Marc A.; Merzenich, Michael M.

    2013-01-01

    Cortical sensory representations can be reorganized by sensory exposure in an epoch of early development. The adaptive role of this type of plasticity for natural sounds in sensory development is, however, unclear. We have reared rats in a naturalistic, complex acoustic environment and examined their auditory representations. We found that cortical neurons became more selective to spectrotemporal features in the experienced sounds. At the neuronal population level, more neurons were involved in representing the whole set of complex sounds, but fewer neurons actually responded to each individual sound, but with greater magnitudes. A comparison of population-temporal responses to the experienced complex sounds revealed that cortical responses to different renderings of the same song motif were more similar, indicating that the cortical neurons became less sensitive to natural acoustic variations associated with stimulus context and sound renderings. By contrast, cortical responses to sounds of different motifs became more distinctive, suggesting that cortical neurons were tuned to the defining features of the experienced sounds. These effects lead to emergent “categorical” representations of the experienced sounds, which presumably facilitate their recognition. PMID:23747304

  5. Controlling Your Environment and Yourself: Implications for Career Success

    ERIC Educational Resources Information Center

    Converse, Patrick D.; Pathak, Jaya; DePaul-Haddock, Anne Marie; Gotlib, Tomer; Merbedone, Matthew

    2012-01-01

    Given the complex and rapidly changing nature of the current work environment, individuals' capabilities to effectively influence their environment and regulate their behavior may be critical to career success. Drawing from the model of emergent interactive agency (Bandura, 1989), the current research examines this perspective, focusing on…

  6. Detection and characterization of gene-gene and gene-environment interactions in common human diseases and complex clinical endpoints

    EPA Science Inventory

    Biological organisms are complex systems that dynamically integrate inputs from a multitude of physiological and environmental factors. Therefore, in addressing questions concerning the etiology of complex health outcomes, it is essential that the systemic nature of biology be ta...

  7. Protected Natural Areas of Puerto Rico

    Treesearch

    William A. Gould; Maya Quinones; Mariano Solorzano; Waldemar Alcobas; Caryl Alarcon

    2011-01-01

    Protection of natural areas is essential to conserving biodiversity and maintaining ecosystem services. Benefits and services provided by natural areas are complex, interwoven, life-sustaining, and necessary for a healthy environment and a sustainable future (Daily et al. 1997). They include clean water and air, sustainable wildlife populations and habitats, stable...

  8. An ecohydrologic model for a shallow groundwater urban environment.

    PubMed

    Arden, Sam; Ma, Xin Cissy; Brown, Mark

    2014-01-01

    The urban environment is a patchwork of natural and artificial surfaces that results in complex interactions with and impacts to natural hydrologic cycles. Evapotranspiration is a major hydrologic flow that is often altered through urbanization, although the mechanisms of change are sometimes difficult to tease out due to difficulty in effectively simulating soil-plant-atmosphere interactions. This paper introduces a simplified yet realistic model that is a combination of existing surface runoff and ecohydrology models designed to increase the quantitative understanding of complex urban hydrologic processes. Results demonstrate that the model is capable of simulating the long-term variability of major hydrologic fluxes as a function of impervious surface, temperature, water table elevation, canopy interception, soil characteristics, precipitation and complex mechanisms of plant water uptake. These understandings have potential implications for holistic urban water system management.

  9. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    PubMed

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  10. Conceptual framework describing a child's total (built, natural ...

    EPA Pesticide Factsheets

    The complexity of the components and their interactions that characterize children’s health and well-being are not adequately captured by current public health paradigms. Children are exposed to combinations of chemical and non-chemical stressors from their built, natural, and social environments at each lifestage and throughout their lifecourse. Children’s inherent characteristics (e.g., sex, genetics, pre-existing disease) and their activities and behaviors also influence their exposures to chemical and non-chemical stressors from these environments. We describe a conceptual framework that considers the interrelationships between inherent characteristics, activities and behaviors, and stressors (both chemical and non-chemical) from the built, natural, and social environments in influencing children’s health and well-being throughout their lifecourse. This framework is comprised of several intersecting circles that represent how stressors from the total environment interact with children’s inherent characteristics and their activities and behaviors to influence their health and well-being at each lifestage and throughout their lifecourse. We used this framework to examine the complex interrelationships between chemical and non-chemical stressors for two public health challenges specific to children: childhood obesity and general cognitive ability. One systematic scoping review showed that children’s general cognitive ability was influenced not only by

  11. Psychrotrophic Strain of Janthinobacterium lividum from a Cold Alaskan Soil Produces Prodigiosin

    USDA-ARS?s Scientific Manuscript database

    In the search for useful natural products such as enzymes and antibiotics, soil continues to be a fruitful environment. Combining culture-dependent and -independent approaches will accelerate discovery from environments as microbially complex as soil. Here we complement previous culture-independen...

  12. Characterization of the Androgen-sensitive MDA-kb2 Cell Line for Assessing Complex Environmental Mixtures

    EPA Science Inventory

    Complex mixtures of synthetic and natural androgens and estrogens, and many other non-steroidal components are commonly released to the aquatic environment from anthropogenic sources. It is important to understand the potential interactive (i.e., additive, synergistic, antagonist...

  13. Why nature prevails over nurture in the making of the elite athlete.

    PubMed

    Georgiades, Evelina; Klissouras, Vassilis; Baulch, Jamie; Wang, Guan; Pitsiladis, Yannis

    2017-11-14

    While the influence of nature (genes) and nurture (environment) on elite sporting performance remains difficult to precisely determine, the dismissal of either as a contributing factor to performance is unwarranted. It is accepted that a complex interaction of a combination of innumerable factors may mold a talented athlete into a champion. The prevailing view today is that understanding elite human performance will require the deciphering of two major sources of individual differences, genes and the environment. It is widely accepted that superior performers are endowed with a high genetic potential actualised through hard and prodigious effort. Heritability studies using the twin model have provided the basis to disentangle genetic and environmental factors that contribute to complex human traits and have paved the way to the detection of specific genes for elite sport performance. Yet, the heritability for most phenotypes essential to elite human performance is above 50% but below 100%, meaning that the environment is also important. Furthermore, individual differences can potentially also be explained not only by the impact of DNA sequence variation on biology and behaviour, but also by the effects of epigenetic changes which affect phenotype by modifying gene expression. Despite this complexity, the overwhelming and accumulating evidence, amounted through experimental research spanning almost two centuries, tips the balance in favour of nature in the "nature" and "nurture" debate. In other words, truly elite-level athletes are built - but only from those born with innate ability.

  14. Systematic approaches to comprehensive analyses of natural organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.

    2009-01-01

    The more that is learned of the chemistry of aquatic natural organic matter (NOM) the greater is the scientific appreciation of the vast complexity of this subject. This complexity is due not only to a multiplicity of precursor molecules in any environment but to their associations with each other and with other components of local environments such as clays, mineral acids and dissolved metals. In addition, this complex system is subject to constant change owing to environmental variables and microbial action. Thus, there is a good argument that no two NOM samples are exactly the same even from the same source at nearly the same time. When ubiquity of occurrence, reaction with water treatment chemicals, and subsequent human exposure are added to the list of NOM issues, one can understand the appeal that this subject holds for a wide variety of environmental scientists.

  15. Methodology for predicting maximum velocity and shear stress in a sinuous channel with bendway weirs using 1-D HEC-RAS modeling results

    Treesearch

    Paul Sclafani; Christopher I. Thornton; Amanda L. Cox; Steven R. Abt

    2012-01-01

    As with every natural process, river morphology incorporates a complex and nuanced set of processes that combine to produce an infinite set of possible outcomes. Natural laws that govern natural systems cause rivers to react to changes in the environment in order to maintain equilibrium. Changes in hydraulics, sediment transport, and habitat help keep natural systems...

  16. Dynamic Modeling as a Cognitive Regulation Scaffold for Developing Complex Problem-Solving Skills in an Educational Massively Multiplayer Online Game Environment

    ERIC Educational Resources Information Center

    Eseryel, Deniz; Ge, Xun; Ifenthaler, Dirk; Law, Victor

    2011-01-01

    Following a design-based research framework, this article reports two empirical studies with an educational MMOG, called "McLarin's Adventures," on facilitating 9th-grade students' complex problem-solving skill acquisition in interdisciplinary STEM education. The article discusses the nature of complex and ill-structured problem solving…

  17. Complex adaptive behavior and dexterous action

    PubMed Central

    Harrison, Steven J.; Stergiou, Nicholas

    2016-01-01

    Dexterous action, as conceptualized by Bernstein in his influential ecological analysis of human behavior, is revealed in the ability to flexibly generate behaviors that are adaptively tailored to the demands of the context in which they are embedded. Conceived as complex adaptive behavior, dexterity depends upon the qualities of robustness and degeneracy, and is supported by the functional complexity of the agent-environment system. Using Bernstein’s and Gibson’s ecological analyses of behavior situated in natural environments as conceptual touchstones, we consider the hypothesis that complex adaptive behavior capitalizes upon general principles of self-organization. Here, we outline a perspective in which the complex interactivity of nervous-system, body, and environment is revealed as an essential resource for adaptive behavior. From this perspective, we consider the implications for interpreting the functionality and dysfunctionality of human behavior. This paper demonstrates that, optimal variability, the topic of this special issue, is a logical consequence of interpreting the functionality of human behavior as complex adaptive behavior. PMID:26375932

  18. Characterization of the Androgen-sensitive MDA-kb2 Cell Line for Assessing Complex Environmental Mixtures, Presentation

    EPA Science Inventory

    Synthetic and natural steroidal androgens and estrogens and many other non-steroidal endocrine-active compounds commonly occur as complex mixtures in aquatic environments. It is important to understand the potential interactive effects of these mixtures to properly assess their r...

  19. Rhythms of Mental Performance

    ERIC Educational Resources Information Center

    Valdez, Pablo; Reilly, Thomas; Waterhouse, Jim

    2008-01-01

    Cognitive performance is affected by an individual's characteristics and the environment, as well as by the nature of the task and the amount of practice at it. Mental performance tests range in complexity and include subjective estimates of mood, simple objective tests (reaction time), and measures of complex performance that require decisions to…

  20. Integrating human and natural systems in community psychology: an ecological model of stewardship behavior.

    PubMed

    Moskell, Christine; Allred, Shorna Broussard

    2013-03-01

    Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model.

  1. Conceptual framework describing a child's total (built, natural, social) environment in order to optimize health and well-being

    EPA Science Inventory

    The complexity of the components and their interactions that characterize children’s health and well-being are not adequately captured by current public health paradigms. Children are exposed to combinations of chemical and non-chemical stressors from their built, natural, ...

  2. The Community, the Social Studies, and Student Environmental Awareness.

    ERIC Educational Resources Information Center

    Peters, Richard O.

    An environmental education program that combines the social studies curriculum, community interaction, and the study of environment is described. Since man and nature live in a complex, continuous, and inseparable partnership, every environmental program should stress the interrelationships that exist between man and nature. Several ways by which…

  3. Idiosyncratic characteristics of saccadic eye movements when viewing different visual environments.

    PubMed

    Andrews, T J; Coppola, D M

    1999-08-01

    Eye position was recorded in different viewing conditions to assess whether the temporal and spatial characteristics of saccadic eye movements in different individuals are idiosyncratic. Our aim was to determine the degree to which oculomotor control is based on endogenous factors. A total of 15 naive subjects viewed five visual environments: (1) The absence of visual stimulation (i.e. a dark room); (2) a repetitive visual environment (i.e. simple textured patterns); (3) a complex natural scene; (4) a visual search task; and (5) reading text. Although differences in visual environment had significant effects on eye movements, idiosyncrasies were also apparent. For example, the mean fixation duration and size of an individual's saccadic eye movements when passively viewing a complex natural scene covaried significantly with those same parameters in the absence of visual stimulation and in a repetitive visual environment. In contrast, an individual's spatio-temporal characteristics of eye movements during active tasks such as reading text or visual search covaried together, but did not correlate with the pattern of eye movements detected when viewing a natural scene, simple patterns or in the dark. These idiosyncratic patterns of eye movements in normal viewing reveal an endogenous influence on oculomotor control. The independent covariance of eye movements during different visual tasks shows that saccadic eye movements during active tasks like reading or visual search differ from those engaged during the passive inspection of visual scenes.

  4. The Organic Complexation of Iron in the Marine Environment: A Review

    PubMed Central

    Gledhill, Martha; Buck, Kristen N.

    2012-01-01

    Iron (Fe) is an essential micronutrient for marine organisms, and it is now well established that low Fe availability controls phytoplankton productivity, community structure, and ecosystem functioning in vast regions of the global ocean. The biogeochemical cycle of Fe involves complex interactions between lithogenic inputs (atmospheric, continental, or hydrothermal), dissolution, precipitation, scavenging, biological uptake, remineralization, and sedimentation processes. Each of these aspects of Fe biogeochemical cycling is likely influenced by organic Fe-binding ligands, which complex more than 99% of dissolved Fe. In this review we consider recent advances in our knowledge of Fe complexation in the marine environment and their implications for the biogeochemistry of Fe in the ocean. We also highlight the importance of constraining the dissolved Fe concentration value used in interpreting voltammetric titration data for the determination of Fe speciation. Within the published Fe speciation data, there appear to be important temporal and spatial variations in Fe-binding ligand concentrations and their conditional stability constants in the marine environment. Excess ligand concentrations, particularly in the truly soluble size fraction, seem to be consistently higher in the upper water column, and especially in Fe-limited, but productive, waters. Evidence is accumulating for an association of Fe with both small, well-defined ligands, such as siderophores, as well as with larger, macromolecular complexes like humic substances, exopolymeric substances, and transparent exopolymers. The diverse size spectrum and chemical nature of Fe ligand complexes corresponds to a change in kinetic inertness which will have a consequent impact on biological availability. However, much work is still to be done in coupling voltammetry, mass spectrometry techniques, and process studies to better characterize the nature and cycling of Fe-binding ligands in the marine environment. PMID:22403574

  5. The Natural Biotic Environment of Caenorhabditis elegans.

    PubMed

    Schulenburg, Hinrich; Félix, Marie-Anne

    2017-05-01

    Organisms evolve in response to their natural environment. Consideration of natural ecological parameters are thus of key importance for our understanding of an organism's biology. Curiously, the natural ecology of the model species Caenorhabditis elegans has long been neglected, even though this nematode has become one of the most intensively studied models in biological research. This lack of interest changed ∼10 yr ago. Since then, an increasing number of studies have focused on the nematode's natural ecology. Yet many unknowns still remain. Here, we provide an overview of the currently available information on the natural environment of C. elegans We focus on the biotic environment, which is usually less predictable and thus can create high selective constraints that are likely to have had a strong impact on C. elegans evolution. This nematode is particularly abundant in microbe-rich environments, especially rotting plant matter such as decomposing fruits and stems. In this environment, it is part of a complex interaction network, which is particularly shaped by a species-rich microbial community. These microbes can be food, part of a beneficial gut microbiome, parasites and pathogens, and possibly competitors. C. elegans is additionally confronted with predators; it interacts with vector organisms that facilitate dispersal to new habitats, and also with competitors for similar food environments, including competitors from congeneric and also the same species. Full appreciation of this nematode's biology warrants further exploration of its natural environment and subsequent integration of this information into the well-established laboratory-based research approaches. Copyright © 2017 by the Genetics Society of America.

  6. Robustness of self-organised systems to changes in behaviour: an example from real and simulated self-organised snail aggregations.

    PubMed

    Stafford, Richard; Williams, Gray A; Davies, Mark S

    2011-01-01

    Group or population level self-organised systems comprise many individuals displaying group-level emergent properties. Current theory indicates that individual-level behaviours have an effect on the final group-level behaviour; that is, self-organised systems are sensitive to small changes in individual behaviour. Here we examine a self-organised behaviour in relation to environmentally-driven individual-level changes in behaviour, using both natural systems and computer simulations. We demonstrate that aggregations of intertidal snails slightly decrease in size when, owing to hotter and more desiccating conditions, individuals forage for shorter periods--a seemingly non-adaptive behaviour for the snails since aggregation reduces desiccation stress. This decrease, however, only occurs in simple experimental systems (and simulations of these systems). When studied in their natural and more complex environment, and simulations of such an environment, using the same reduced foraging time, no difference in aggregation behaviour was found between hot and cool days. These results give an indication of how robust self-organised systems are to changes in individual-level behaviour. The complexity of the natural environment and the interactions of individuals with this environment, therefore, can result in self-organised systems being more resilient to individual-level changes than previously assumed.

  7. Social complexity beliefs predict posttraumatic growth in survivors of a natural disaster.

    PubMed

    Nalipay, Ma Jenina N; Bernardo, Allan B I; Mordeno, Imelu G

    2016-09-01

    Most studies on posttraumatic growth (PTG) have focused on personal characteristics, interpersonal resources, and the immediate environment. There has been less attention on dynamic internal processes related to the development of PTG and on how these processes are affected by the broader culture. Calhoun and Tedeschi's (2006) model suggests a role of distal culture in PTG development, but empirical investigations on that point are limited. The present study investigated the role of social complexity-the generalized belief about changing social environments and inconsistency of human behavior-as a predictor of PTG. Social complexity was hypothesized to be associated with problem-solving approaches that are likely to give rise to cognitive processes that promote PTG. A sample of 446 survivors of Typhoon Haiyan, 1 of the strongest typhoons ever recorded at the time, answered self-report measures of social complexity, cognitive processing of trauma, and PTG. Structural equation modeling indicated a good fit between the data and the hypothesized model; belief in social complexity predicted stronger PTG, mediated by cognitive processing. The results provide evidence for how disaster survivors' beliefs about the changing nature of social environments and their corresponding behavior changes are predictors of PTG and suggest a psychological mechanism for how distal culture can influence PTG. Thus, assessing social complexity beliefs during early the phases of a postdisaster psychosocial intervention may provide useful information on who is likely to experience PTG. Trauma workers might consider culture-specific social themes related to social complexity in disaster-affected communities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    NASA Astrophysics Data System (ADS)

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron donor under Fe(III)-reducing conditions. In summary, this study shows that increasing concentrations of OM in OM-mineral complexes determines microbial Fe(III) reduction rates and shapes the microbial community structure involved in the reductive dissolution of ferrihydrite. Similarities observed between the complex Fe(III)-reducing microbial consortia and the model Fe(III)-reducer S. oneidensis MR-1 suggest electron-shuttling mechanisms dominate in OM-rich environments, including soils, sediments, and fens, where natural OM interacts with Fe(III) oxides during mineral formation.

  9. Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks)

    NASA Astrophysics Data System (ADS)

    Chen, J.; Yang, S. T.; Li, H. W.; Zhang, B.; Lv, J. R.

    2013-11-01

    Zoning which is to divide the study area into different zones according to their geographical differences at the global, national or regional level, includes natural division, economic division, geographical zoning of departments, comprehensive zoning and so on. Zoning is of important practical significance, for example, knowing regional differences and characteristics, regional research and regional development planning, understanding the favorable and unfavorable conditions of the regional development etc. Geographical environment is arising from the geographical position linkages. Geographical environment unit division is also a type of zoning. The geographical environment indicators are deeply studied and summed up in the article, including the background, the associated and the potential. The background indicators are divided into four categories, such as the socio-economic, the political and military, the strategic resources and the ecological environment, which can be divided into more sub-indexes. While the sub-indexes can be integrated to comprehensive index system by weighted stacking method. The Jenks natural breaks classification method, also called the Jenks optimization method, is a data classification method designed to determine the best arrangement of values into different classes. This is done by seeking to minimize each class's average deviation from the class mean, while maximizing each class's deviation from the means of the other groups. In this paper, the experiment of Chinese surrounding geographical environment unit division has been done based on the natural breaks (jenks) method, the geographical environment index system and the weighted stacking method, taking South Asia as an example. The result indicates that natural breaks (jenks) method is of good adaptability and high accuracy on the geographical environment unit division. The geographical environment research was originated in the geopolitics and flourished in the geo-economics. The main representatives of the geopolitics are German geographer Friedrich Ratzel, British geographer Mackinder and American geographical politician Nicholas John Spykman etc. The main representative of the geo-economics is American geographical economist Edward Luttwak. China has the most neighboring countries in the world, and its geographical environment is extremely complex. With the continuous development of globalization, China's relations with neighboring countries have become more complex and more closely. So it is very meaningful to have depth research on geographical environment unit division of China.

  10. Book Review: Fungi in the Environment. British Mycological Society Symposia No. 25

    Treesearch

    Jim Trappe

    2008-01-01

    I volunteered to review this book with a preconceived notion of the term "environment" as forests, streams, oceans, glaciers, deserts, houses, etc. The first four chapters thus took me somewhat aback: "Imaging complex nutrient dynamics in mycelial networks," "Natural history of the fungal hypha: how Woronin bodies suppolil: a multicellular...

  11. Contributions of a Child’s Built, Natural, and Social Environments to Their General Cognitive Ability: A Systematic Scoping Review

    EPA Science Inventory

    The etiology of a child’s cognitive ability is complex, with research suggesting that it is not attributed to a single determinant or even a defined period of exposure. Rather, cognitive development is the product of cumulative interactions with the environment, both negati...

  12. Navigating the Turbulent Waters of Academia: The Leadership Role of Programme Managers

    ERIC Educational Resources Information Center

    Vilkinas, Tricia; Cartan, Greg

    2015-01-01

    The focus of our paper is the leadership role of programme managers in the higher education sector. In particular, we highlight the complex and paradoxical nature of the programme leader's role, and provide an insight into leadership in this challenging and dynamic environment. We identify cognitive and behavioural complexity as necessary…

  13. Development of a Conceptual Framework Depicting a Childs Total (Built, Natural, Social) Environment in Order to Optimize Health and Well-Being

    EPA Science Inventory

    The complexity of the components and their interactions that characterize children’s health and well-being are not adequately captured by current public health paradigms. Children are exposed to combinations of chemical and non-chemical stressors from their built, natural,...

  14. Evolution of complex adaptations in molecular systems

    PubMed Central

    Pál, Csaba; Papp, Balázs

    2017-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular ’springboards’, such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths. PMID:28782044

  15. Historical evidence for nature disconnection in a 70-year time series of Disney animated films.

    PubMed

    Prévot-Julliard, Anne-Caroline; Julliard, Romain; Clayton, Susan

    2015-08-01

    The assumed ongoing disconnection between humans and nature in Western societies represents a profoundly challenging conservation issue. Here, we demonstrate one manifestation of this nature disconnection, via an examination of the representation of natural settings in a 70-year time series of Disney animated films. We found that natural settings are increasingly less present as a representation of outdoor environments in these films. Moreover, these drawn natural settings tend to be more and more human controlled and are less and less complex in terms of the biodiversity they depict. These results demonstrate the increasing nature disconnection of the filmmaking teams, which we consider as a proxy of the Western relation to nature. Additionally, because nature experience of children is partly based on movies, the depleted representation of biodiversity in outdoor environments of Disney films may amplify the current disconnection from nature for children. This reduction in exposure to nature may hinder the implementation of biodiversity conservation measures. © The Author(s) 2014.

  16. Atomistic Modeling of Corrosion Events at the Interface between a Metal and Its Environment

    DOE PAGES

    Taylor, Christopher D.

    2012-01-01

    Atomistic simulation is a powerful tool for probing the structure and properties of materials and the nature of chemical reactions. Corrosion is a complex process that involves chemical reactions occurring at the interface between a material and its environment and is, therefore, highly suited to study by atomistic modeling techniques. In this paper, the complex nature of corrosion processes and mechanisms is briefly reviewed. Various atomistic methods for exploring corrosion mechanisms are then described, and recent applications in the literature surveyed. Several instances of the application of atomistic modeling to corrosion science are then reviewed in detail, including studies ofmore » the metal-water interface, the reaction of water on electrified metallic interfaces, the dissolution of metal atoms from metallic surfaces, and the role of competitive adsorption in controlling the chemical nature and structure of a metallic surface. Some perspectives are then given concerning the future of atomistic modeling in the field of corrosion science.« less

  17. Chronic obstructive pulmonary disease: nature-nurture interactions.

    PubMed

    Clancy, John; Nobes, Maggie

    A person's health status is rarely constant, it is usually subject to continual change as a person moves from health to illness and usually back to health again; the health-illness continuum illustrates this dynamism. This highlights the person's various states of health and illness (ranging from extremely good health to clinically defined mild, moderate and severe illness) and their fluctuations throughout the life span, until ultimately leading to the pathology associated with the person's death. Maintenance of a stable homeostatic environment within the body to support the stability of this continuum depends on a complex series of ultimately intracellular chemical reactions. These reactions are activated by environmental factors that cause the expression of genes associated with healthy phenotypes as well as illness susceptibility genes associated with homeostatic imbalances. Obviously, the body aims to support intracellular and extracellular environments allied with health; however, the complexity of these nature-nurture interactions results in illness throughout an individual's life span. This paper will discuss the nature-nurture interactions of chronic obstructive pulmonary disease.

  18. Ecosystem services and preventive medicine a natural connection

    Treesearch

    Viniece L. Jennings; Claire K. Larson; Lincoln R. Larson

    2016-01-01

    Modern public health challenges require inter- disciplinary solutions that integrate knowl- edge of  human behavior and its complex relationship with the physical environment. Historically, this discourse was dominated by studies  of hazards and other negative health consequences associated with human–environment interactions.  However, growing evidence1 suggests that...

  19. Expression of allelopathy in the soil environment: Soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue

    USDA-ARS?s Scientific Manuscript database

    The activity of allelopathic compounds is often reduced in the soil environment where processes involving release from donor plant material, soil adsorption and degradation, and uptake by receptor plants naturally result in complex interactions. Rye (Secale cereale L.) cover crops are known to supp...

  20. Ecology and Human Values: A Course of Study. (Working Draft).

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison.

    This interdisciplinary course is designed for senior year high school students in social studies and/or science. Its main thrust is the investigation of human values as they relate to the environment, although rooted in the natural sciences as a means of understanding the complexities inherent in the environment. Use is made of the case study…

  1. Complexity and the Beginning Principal in the United States: Perspectives on Socialization

    ERIC Educational Resources Information Center

    Crow, Gary M.

    2006-01-01

    Purpose: This paper aims to contribute to the literature and practice on beginning principal socialization by identifying the features of post-industrial work that create a more complex work environment for the practice and learning of the principalship in the USA. Design/methodology/approach: Based on recent literature on the changing nature of…

  2. VOLTTRON - An Intelligent Agent Platform for the Smart Grid

    ScienceCinema

    None

    2018-05-16

    The distributed nature of the Smart Grid, such as responsive loads, solar and wind generation, and automation in the distribution system present a complex environment not easily controlled in a centralized manner.

  3. Fibrous minerals from Somma-Vesuvius volcanic complex

    NASA Astrophysics Data System (ADS)

    Rossi, Manuela; Nestola, Fabrizio; Ghiara, Maria R.; Capitelli, Francesco

    2016-08-01

    A survey on fibrous minerals coming from the densely populated area of Campania around the Somma-Vesuvius volcanic complex (Italy) was performed by means of a multi-methodological approach, based on morphological analyses, EMPA/WDS and SEM/EDS applications, and unit-cell determination through X-ray diffraction data. Such mineralogical investigation aims to provide suitable tools to the identification of fibrous natural phases, to improve the knowledge of both geochemical, petrogenetic and regional mineralogy of Somma-Vesuvius area, and to emphasize the presence of minerals with fibrous habit in all volcanic environments. The survey also fits well in the calls of health and environment of Horizon 2020 program of the European Commission (Climate Action, Environment, Resource Efficiency and Raw Materials).

  4. Multicellular microorganisms: laboratory versus nature.

    PubMed

    Palková, Zdena

    2004-05-01

    Our present in-depth knowledge of the physiology and regulatory mechanisms of microorganisms has arisen from our ability to remove them from their natural, complex ecosystems into pure liquid cultures. These cultures are grown under optimized laboratory conditions and allow us to study microorganisms as individuals. However, microorganisms naturally grow in conditions that are far from optimal, which causes them to become organized into multicellular communities that are better protected against the harmful environment. Moreover, this multicellular existence allows individual cells to differentiate and acquire specific properties, such as forming resistant spores, which benefit the whole population. The relocation of natural microorganisms to the laboratory can result in their adaptation to these favourable conditions, which is accompanied by complex changes that include the repression of some protective mechanisms that are essential in nature. Laboratory microorganisms that have been cultured for long periods under optimized conditions might therefore differ markedly from those that exist in natural ecosystems.

  5. Representing and Enacting Movement: The Body as an Instructional Resource in a Simulator-Based Environment

    ERIC Educational Resources Information Center

    Sellberg, Charlott

    2017-01-01

    Simulators are used to practice in a safe setting before training in a safety-critical environment. Since the nature of situations encountered in high-risk domains is complex and dynamic, it is considered important for the simulation to resemble conditions of real world tasks. For this reason, simulation-based training is often discussed in terms…

  6. The Computer-Based Assessment of Complex Problem Solving and How It Is Influenced by Students' Information and Communication Technology Literacy

    ERIC Educational Resources Information Center

    Greiff, Samuel; Kretzschmar, André; Müller, Jonas C.; Spinath, Birgit; Martin, Romain

    2014-01-01

    The 21st-century work environment places strong emphasis on nonroutine transversal skills. In an educational context, complex problem solving (CPS) is generally considered an important transversal skill that includes knowledge acquisition and its application in new and interactive situations. The dynamic and interactive nature of CPS requires a…

  7. Environmental Systems Microbiology of Contaminated Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, Gary; Hazen, Terry C.

    Environmental Systems Microbiology is well positioned to move forward in dynamic complex system analysis probing new questions and developing new insight into the function, robustness and resilience in response to anthropogenic perturbations. Recent studies have demonstrated that natural bacterial communities can be used as quantitative biosensors in both groundwater and deep ocean water, predicting oil concentration from the Gulf of Mexico Deep Water Horizon spill and from groundwater at nuclear production waste sites (16, 17, 25). Since the first demonstration of catabolic gene expression in soil remediation (34) it has been clear that extension beyond organismal abundance to process andmore » function of microbial communities as a whole using the whole suite of omic tools available to the post genomic era. Metatranscriptomics have been highlighted as a prime vehicle for understanding responses to environmental drivers (35) in complex systems and with rapidly developing metabolomics, full functional understanding of complex community biogeochemical cycling is an achievable goal. Perhaps more exciting is the dynamic nature of these systems and their complex adaptive strategies that may lead to new control paradigms and emergence of new states and function in the course of a changing environment.« less

  8. Evolution of Integrated Causal Structures in Animats Exposed to Environments of Increasing Complexity

    PubMed Central

    Albantakis, Larissa; Hintze, Arend; Koch, Christof; Adami, Christoph; Tononi, Giulio

    2014-01-01

    Natural selection favors the evolution of brains that can capture fitness-relevant features of the environment's causal structure. We investigated the evolution of small, adaptive logic-gate networks (“animats”) in task environments where falling blocks of different sizes have to be caught or avoided in a ‘Tetris-like’ game. Solving these tasks requires the integration of sensor inputs and memory. Evolved networks were evaluated using measures of information integration, including the number of evolved concepts and the total amount of integrated conceptual information. The results show that, over the course of the animats' adaptation, i) the number of concepts grows; ii) integrated conceptual information increases; iii) this increase depends on the complexity of the environment, especially on the requirement for sequential memory. These results suggest that the need to capture the causal structure of a rich environment, given limited sensors and internal mechanisms, is an important driving force for organisms to develop highly integrated networks (“brains”) with many concepts, leading to an increase in their internal complexity. PMID:25521484

  9. Is Each Light-Harvesting Complex Protein Important for Plant Fitness?1[w

    PubMed Central

    Ganeteg, Ulrika; Külheim, Carsten; Andersson, Jenny; Jansson, Stefan

    2004-01-01

    Many of the photosynthetic genes are conserved among all higher plants, indicating that there is strong selective pressure to maintain the genes of each protein. However, mutants of these genes often lack visible growth phenotypes, suggesting that they are important only under certain conditions or have overlapping functions. To assess the importance of specific genes encoding the light-harvesting complex (LHC) proteins for the survival of the plant in the natural environment, we have combined two different scientific traditions by using an ecological fitness assay on a set of genetically modified Arabidopsis plants with differing LHC protein contents. The fitness of all of the LHC-deficient plants was reduced in some of the growth environments, supporting the hypothesis that each of the genes has been conserved because they provide ecological flexibility, which is of great adaptive value given the highly variable conditions encountered in nature. PMID:14730076

  10. The lawful imprecision of human surface tilt estimation in natural scenes

    PubMed Central

    2018-01-01

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. PMID:29384477

  11. The lawful imprecision of human surface tilt estimation in natural scenes.

    PubMed

    Kim, Seha; Burge, Johannes

    2018-01-31

    Estimating local surface orientation (slant and tilt) is fundamental to recovering the three-dimensional structure of the environment. It is unknown how well humans perform this task in natural scenes. Here, with a database of natural stereo-images having groundtruth surface orientation at each pixel, we find dramatic differences in human tilt estimation with natural and artificial stimuli. Estimates are precise and unbiased with artificial stimuli and imprecise and strongly biased with natural stimuli. An image-computable Bayes optimal model grounded in natural scene statistics predicts human bias, precision, and trial-by-trial errors without fitting parameters to the human data. The similarities between human and model performance suggest that the complex human performance patterns with natural stimuli are lawful, and that human visual systems have internalized local image and scene statistics to optimally infer the three-dimensional structure of the environment. These results generalize our understanding of vision from the lab to the real world. © 2018, Kim et al.

  12. Natural Underwater Adhesives

    PubMed Central

    Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir

    2011-01-01

    The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent curing. PMID:21643511

  13. Mitigating Local Natural Disaster through Social Aware Preparedness Using Complexity Approach

    NASA Astrophysics Data System (ADS)

    Supadli, Irwan; Saputri, Andini; Mawengkang, Herman

    2018-01-01

    During and after natural disaster, such as, eruption of vulcano, many people have to abandon their living place to a temporary shelter. Usually, there could be several time for the occurrence of the eruption. This situation, for example, happened at Sinabung vulcano, located in Karo district of North Sumatera Province, Indonesia. The people in the disaster area have become indifferent. In terms of the society, the local natural disaster problem belong to a complex societal problem. This research is to find a way what should be done to these society to raise their social awareness that they had experienced serious natural disaster and they will be able to live normally and sustainable as before. Societal complexity approach is used to solve the problems. Social studies referred to in this activity are to analyze the social impacts arising from the implementation of the relocation itself. Scope of social impact assessments include are The social impact of the development program of relocation, including the impact of construction activities and long-term impact of construction activity, particularly related to the source and use of clean water, sewerage system, drainage and waste management (solid waste), Social impacts arising associated with occupant relocation sites and the availability of infrastructure (public facilities, include: worship facilities, health and education) in the local environment (pre-existing). Social analysis carried out on the findings of the field, the study related documents and observations of the condition of the existing social environment Siosar settlements.

  14. National Nanotechnology Initiative Strategic Plan

    DTIC Science & Technology

    2011-02-01

    Engineering complex, theranostic-based nanoparticles and nanodevices to target therapies and diagnose the progress of treatments. • Adopting new materials...the occurrence, fate, and effects of naturally-occurring and engineered chemical contami- nants in aquatic environments, or research on methods of

  15. Urban Perceptions of the Natural Landscape: Implications for Public Awareness of Wilderness as a Distinct Resource

    Treesearch

    George W. Duffy

    1992-01-01

    As more and more of our population move from rural to suburban to urban to metropolitan settings, the connections between people and the land of which they are a part become less obvious, less immediately important and less clearly understood. The contrast between a complex, highly structured social and cultural urban environment and the natural world seems bipolar....

  16. Guidance of visual search by memory and knowledge.

    PubMed

    Hollingworth, Andrew

    2012-01-01

    To behave intelligently in the world, humans must be able to find objects efficiently within the complex environments they inhabit. A growing proportion of the literature on visual search is devoted to understanding this type of natural search. In the present chapter, I review the literature on visual search through natural scenes, focusing on the role of memory and knowledge in guiding attention to task-relevant objects.

  17. Challenging the Application of PMESII-PT in a Complex Environment

    DTIC Science & Technology

    2010-05-21

    American Security, June 2009), 7. 2 suggested that the predicative nature of the social sciences “…is a sort of byproduct of its real goal, which is to...provide understanding through interpretation.”3 In the view of natural scientists, the realm of social science “…[has] been free from the greatest...obstacle to advance in the natural science : the need to carve out entirely new ways of looking at the world.” 4 Social scientists retain an advantage

  18. Effect of organic complexing agents on the interactions of Cs(+), Sr(2+) and UO(2)(2+) with silica and natural sand.

    PubMed

    Reinoso-Maset, Estela; Worsfold, Paul J; Keith-Roach, Miranda J

    2013-05-01

    Sorption processes play a key role in controlling radionuclide migration through subsurface environments and can be affected by the presence of anthropogenic organic complexing agents found at contaminated sites. The effect of these complexing agents on radionuclide-solid phase interactions is not well known. Therefore the aim of this study was to examine the processes by which EDTA, NTA and picolinate affect the sorption kinetics and equilibria of Cs(+), Sr(2+) and UO2(2+) onto natural sand. The caesium sorption rate and equilibrium were unaffected by the complexing agents. Strontium however showed greater interaction with EDTA and NTA in the presence of desorbed matrix cations than geochemical modelling predicted, with SrNTA(-) enhancing sorption and SrEDTA(2-) showing lower sorption than Sr(2+). Complexing agents reduced UO2(2+) sorption to silica and enhanced the sorption rate in the natural sand system. Elevated concentrations of picolinate reduced the sorption of Sr(2+) and increased the sorption rate of UO2(2+), demonstrating the potential importance of this complexing agent. These experiments provide a direct comparison of the sorption behaviour of Cs(+), Sr(2+) and UO2(2+)onto natural sand and an assessment of the relative effects of EDTA, NTA and picolinate on the selected elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Synthesis, Characterization, and Antibacterial Studies of Mixed Ligand Dioxouranium Complexes with 8-Hydroxyquinoline and Some Amino Acids

    PubMed Central

    Patil, Sunil S.; Thakur, Ganesh A.; Shaikh, Manzoor M.

    2011-01-01

    Mixed ligand complexes of dioxouranium (VI) of the type [UO2(Q)(L)·2H2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and amino acids (HL) such as L-threonine, L-tryptophan, and L-isoleucine as secondary ligands. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements, and spectral and thermal studies. The electrical conductance studies of the complexes indicate their nonelectrolytic nature. Magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes show intraligand and charge transfer transitions, respectively. Bonding of the metal ion through N- and O-donor atoms of the ligands is revealed by IR studies, and the chemical environment of the protons is confirmed by NMR studies. The thermal analysis data of the complexes indicate the presence of coordinated water molecules. The agar cup and tube dilution methods have been used to study the antibacterial activity of the complexes against the pathogenic bacteria S. aureus, C. diphtheriae, S. typhi, and E. coli. PMID:22389843

  20. The Tangled Tale of Genes and Environment: Moore's The Dependent Gene: The Fallacy of “nature VS. Nurture”

    PubMed Central

    Schneider, Susan M

    2007-01-01

    Nature–nurture views that smack of genetic determinism remain prevalent. Yet, the increasing knowledge base shows ever more clearly that environmental factors and genes form a fully interactional system at all levels. Moore's book covers the major topics of discovery and dispute, including behavior genetics and the twin studies, developmental psychobiology, and developmental systems theory. Knowledge of this larger life-sciences context for behavior principles will become increasingly important as the full complexity of gene–environment relations is revealed. Behavior analysis both contributes to and gains from the larger battle for the recognition of how nature and nurture really work.

  1. Nature and Nurture of Human Pain

    PubMed Central

    2013-01-01

    Humans are very different when it comes to pain. Some get painful piercings and tattoos; others can not stand even a flu shot. Interindividual variability is one of the main characteristics of human pain on every level including the processing of nociceptive impulses at the periphery, modification of pain signal in the central nervous system, perception of pain, and response to analgesic strategies. As for many other complex behaviors, the sources of this variability come from both nurture (environment) and nature (genes). Here, I will discuss how these factors contribute to human pain separately and via interplay and how epigenetic mechanisms add to the complexity of their effects. PMID:24278778

  2. Environmental Determinants of Cardiovascular Disease.

    PubMed

    Bhatnagar, Aruni

    2017-07-07

    Many features of the environment have been found to exert an important influence on cardiovascular disease (CVD) risk, progression, and severity. Changes in the environment because of migration to different geographic locations, modifications in lifestyle choices, and shifts in social policies and cultural practices alter CVD risk, even in the absence of genetic changes. Nevertheless, the cumulative impact of the environment on CVD risk has been difficult to assess and the mechanisms by which some environment factors influence CVD remain obscure. Human environments are complex, and their natural, social, and personal domains are highly variable because of diversity in human ecosystems, evolutionary histories, social structures, and individual choices. Accumulating evidence supports the notion that ecological features such as the diurnal cycles of light and day, sunlight exposure, seasons, and geographic characteristics of the natural environment such as altitude, latitude, and greenspaces are important determinants of cardiovascular health and CVD risk. In highly developed societies, the influence of the natural environment is moderated by the physical characteristics of the social environments such as the built environment and pollution, as well as by socioeconomic status and social networks. These attributes of the social environment shape lifestyle choices that significantly modify CVD risk. An understanding of how different domains of the environment, individually and collectively, affect CVD risk could lead to a better appraisal of CVD and aid in the development of new preventive and therapeutic strategies to limit the increasingly high global burden of heart disease and stroke. © 2017 American Heart Association, Inc.

  3. Seeing the Wood for the Trees: Applying the Dual-Memory System Model to Investigate Expert Teachers' Observational Skills in Natural Ecological Learning Environments

    ERIC Educational Resources Information Center

    Stolpe, Karin; Bjorklund, Lars

    2012-01-01

    This study aims to investigate two expert ecology teachers' ability to attend to essential details in a complex environment during a field excursion, as well as how they teach this ability to their students. In applying a cognitive dual-memory system model for learning, we also suggest a rationale for their behaviour. The model implies two…

  4. A pilot study of Aboriginal health promotion from an ecological perspective

    PubMed Central

    2011-01-01

    Background For health promotion to be effective in Aboriginal and Torres Strait Islander Communities, interventions (and their evaluation) need to work within a complex social environment and respect Indigenous knowledge, culture and social systems. At present, there is a lack of culturally appropriate evaluation methods available to practitioners that are capable of capturing this complexity. As an initial response to this problem, we used two non-invasive methods to evaluate a community-directed health promotion program, which aimed to improve nutrition and physical activity for members of the Aboriginal community of the Goulburn-Murray region of northern Victoria, Australia. The study addressed two main questions. First, for members of an Aboriginal sporting club, what changes were made to the nutrition environment in which they meet and how is this related to national guidelines for minimising the risk of chronic disease? Second, to what degree was the overall health promotion program aligned with an ecological model of health promotion that addresses physical, social and policy environments as well as individual knowledge and behaviour? Methods Rather than monitoring individual outcomes, evaluation methods reported on here assessed change in the nutrition environment (sports club food supply) as a facilitator of dietary change and the 'ecological' nature of the overall program (that is, its complexity with respect to numbers of targets, settings and strategies). Results There were favourable changes towards the provision of a food supply consistent with Australian guidelines at the sports club. The ecological analysis indicated that the design and implementation of the program were consistent with an ecological model of health promotion. Conclusions The evaluation was useful for assessing the impact of the program on the nutrition environment and for understanding the ecological nature of program activities. PMID:21961906

  5. Field Geology for Environment Awareness

    NASA Astrophysics Data System (ADS)

    Andrez, Marilia

    2017-04-01

    The objective of this project is to show the scientific and educational potential of natural environment of Lisbon region through increase of excitement for plate tectonics subjects to high school students. It is expected the students be able to understand the main concepts of the plate tectonics, stratigraphy, paleontology and paleoenvironmental interpretations, explain in the field nearby Lisbon. The richness of Guincho beach geodiversity and "Sintra Syenite Complex" valuate the geological patrimony. Combining these entities and educational purposes will raise awareness to sustainable attitudes favoring the preservation of natural patrimony by the students. The subjects approached in the project are based on the inspection of several outcrops related to the evolution of the Iberian Plate at early Mesozoic period, at several places of geological interest. The landscape of Guincho is dominated by Mesozoic formations that show good conditions paleoenvironmental and geodynamic interpretations associated to the opening of the North Atlantic. Moreover it reveals the environment linked to the magmatic intrusion of the "Sintra Alcaline Complex" at the end of Cretaceous. It is believed the contact with field is crucial to the awareness of young people to subjects that are not daily matters, however important when presented in the light of an urgent society problem such as environment preservation, at all levels by all people.

  6. Use of an uncertainty analysis for genome-scale models as a prediction tool for microbial growth processes in subsurface environments.

    PubMed

    Klier, Christine

    2012-03-06

    The integration of genome-scale, constraint-based models of microbial cell function into simulations of contaminant transport and fate in complex groundwater systems is a promising approach to help characterize the metabolic activities of microorganisms in natural environments. In constraint-based modeling, the specific uptake flux rates of external metabolites are usually determined by Michaelis-Menten kinetic theory. However, extensive data sets based on experimentally measured values are not always available. In this study, a genome-scale model of Pseudomonas putida was used to study the key issue of uncertainty arising from the parametrization of the influx of two growth-limiting substrates: oxygen and toluene. The results showed that simulated growth rates are highly sensitive to substrate affinity constants and that uncertainties in specific substrate uptake rates have a significant influence on the variability of simulated microbial growth. Michaelis-Menten kinetic theory does not, therefore, seem to be appropriate for descriptions of substrate uptake processes in the genome-scale model of P. putida. Microbial growth rates of P. putida in subsurface environments can only be accurately predicted if the processes of complex substrate transport and microbial uptake regulation are sufficiently understood in natural environments and if data-driven uptake flux constraints can be applied.

  7. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms.

    PubMed

    Nadell, Carey D; Ricaurte, Deirdre; Yan, Jing; Drescher, Knut; Bassler, Bonnie L

    2017-01-13

    Bacteria often live in biofilms, which are microbial communities surrounded by a secreted extracellular matrix. Here, we demonstrate that hydrodynamic flow and matrix organization interact to shape competitive dynamics in Pseudomonas aeruginosa biofilms. Irrespective of initial frequency, in competition with matrix mutants, wild-type cells always increase in relative abundance in planar microfluidic devices under simple flow regimes. By contrast, in microenvironments with complex, irregular flow profiles - which are common in natural environments - wild-type matrix-producing and isogenic non-producing strains can coexist. This result stems from local obstruction of flow by wild-type matrix producers, which generates regions of near-zero shear that allow matrix mutants to locally accumulate. Our findings connect the evolutionary stability of matrix production with the hydrodynamics and spatial structure of the surrounding environment, providing a potential explanation for the variation in biofilm matrix secretion observed among bacteria in natural environments.

  8. MFIRE-2: A Multi Agent System for Flow-Based Intrusion Detection Using Stochastic Search

    DTIC Science & Technology

    2012-03-01

    attacks that are distributed in nature , but may not protect individual systems effectively without incurring large bandwidth penalties while collecting...system-level information to help prepare for more significant attacks. The type of information potentially revealed by footprinting includes account...key areas where MAS may be appropriate: • The environment is open, highly dynamic, uncertain, or complex • Agents are a natural metaphor—Many

  9. Physical Complexity and Cognitive Evolution

    NASA Astrophysics Data System (ADS)

    Jedlicka, Peter

    Our intuition tells us that there is a general trend in the evolution of nature, a trend towards greater complexity. However, there are several definitions of complexity and hence it is difficult to argue for or against the validity of this intuition. Christoph Adami has recently introduced a novel measure called physical complexity that assigns low complexity to both ordered and random systems and high complexity to those in between. Physical complexity measures the amount of information that an organism stores in its genome about the environment in which it evolves. The theory of physical complexity predicts that evolution increases the amount of `knowledge' an organism accumulates about its niche. It might be fruitful to generalize Adami's concept of complexity to the entire evolution (including the evolution of man). Physical complexity fits nicely into the philosophical framework of cognitive biology which considers biological evolution as a progressing process of accumulation of knowledge (as a gradual increase of epistemic complexity). According to this paradigm, evolution is a cognitive `ratchet' that pushes the organisms unidirectionally towards higher complexity. Dynamic environment continually creates problems to be solved. To survive in the environment means to solve the problem, and the solution is an embodied knowledge. Cognitive biology (as well as the theory of physical complexity) uses the concepts of information and entropy and views the evolution from both the information-theoretical and thermodynamical perspective. Concerning humans as conscious beings, it seems necessary to postulate an emergence of a new kind of knowledge - a self-aware and self-referential knowledge. Appearence of selfreflection in evolution indicates that the human brain reached a new qualitative level in the epistemic complexity.

  10. Statistics of natural binaural sounds.

    PubMed

    Młynarski, Wiktor; Jost, Jürgen

    2014-01-01

    Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.

  11. Statistics of Natural Binaural Sounds

    PubMed Central

    Młynarski, Wiktor; Jost, Jürgen

    2014-01-01

    Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction. PMID:25285658

  12. Influence of Natural Environments in Spacecraft Design, Development, and Operation

    NASA Technical Reports Server (NTRS)

    Edwards, Dave

    2013-01-01

    Spacecraft are growing in complexity and sensitivity to environmental effects. The spacecraft engineer must understand and take these effects into account in building reliable, survivable, and affordable spacecraft. Too much protections, however, means unnecessary expense while too little will potentially lead to early mission loss. The ability to balance cost and risk necessitates an understanding of how the environment impacts the spacecraft and is a critical factor in its design. This presentation is intended to address both the space environment and its effects with the intent of introducing the influence of the environment on spacecraft performance.

  13. Influence of Natural Environments in Spacecraft Design, Development, and Operation

    NASA Technical Reports Server (NTRS)

    Edwards, Dave

    2012-01-01

    Spacecraft are growing in complexity and sensitivity to environmental effects. The spacecraft engineer must understand and take these effects into account in building reliable, survivable, and affordable spacecraft. Too much protections, however, means unnecessary expense while too little will potentially lead to early mission loss. The ability to balance cost and risk necessitates an understanding of how the environment impacts the spacecraft and is a critical factor in its design. This presentation is intended to address both the space environment and its effects with the intent of introducing the influence of the environment on spacecraft performance.

  14. Development of a novel visuomotor integration paradigm by integrating a virtual environment with mobile eye-tracking and motion-capture systems

    PubMed Central

    Miller, Haylie L.; Bugnariu, Nicoleta; Patterson, Rita M.; Wijayasinghe, Indika; Popa, Dan O.

    2018-01-01

    Visuomotor integration (VMI), the use of visual information to guide motor planning, execution, and modification, is necessary for a wide range of functional tasks. To comprehensively, quantitatively assess VMI, we developed a paradigm integrating virtual environments, motion-capture, and mobile eye-tracking. Virtual environments enable tasks to be repeatable, naturalistic, and varied in complexity. Mobile eye-tracking and minimally-restricted movement enable observation of natural strategies for interacting with the environment. This paradigm yields a rich dataset that may inform our understanding of VMI in typical and atypical development. PMID:29876370

  15. Evaporative moisture loss from heterogeneous stone: Material-environment interactions during drying

    NASA Astrophysics Data System (ADS)

    McAllister, Daniel; Warke, Patricia; McCabe, Stephen; Gomez-Heras, M.

    2016-11-01

    The complexities of evaporation from structurally and mineralogically heterogeneous sandstone (Locharbriggs Sandstone) are investigated through a laboratory-based experiment in which a variety of environmental conditions are simulated. Data reported demonstrate the significance of material-environment interactions on the spatial and temporal variability of evaporative dynamics. Evaporation from porous stone is determined by the interplay between environmental, material and solution properties, which govern the rate and mode by which water is transmitted to, and subsequently removed from, an evaporating surface. Initially, when the stone is saturated, evaporation is characterized by high rates of moisture loss primarily controlled by external atmospheric conditions. However, as drying progresses, eventually the hydraulic continuity between the stone surface and subsurface is disrupted with recession of the drying front and a decrease in evaporation rates which become reliant on the ability of the material to transport water vapour to the block surface. Pore size distribution and connectivity, as well as other material properties, control the timing of each stage of evaporation and the nature of the transition. These experimental data highlight the complexity of evaporation, demonstrating that different regions of the same stone can exhibit varying moisture dynamics during drying and that the rate and nature of evaporative loss differs under different environmental conditions. The results identify the importance of material-environment interactions during drying and that stone micro-environmental conditions cannot be inferred from ambient data alone. These data have significance for understanding the spatial distribution of stone surface weathering-related morphologies in both the natural and built environments where mineralogical and/or structural heterogeneity creates differences in moisture flux and hence variable drying rates. Such differences may provide a clearer explanation for the initiation and subsequent development of complex weathering responses where areas of significant deterioration can be found alongside areas that exhibit little or no evidence of surface breakdown.

  16. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters.

    PubMed

    Ta, Christine; Reith, Frank; Brugger, Joël; Pring, Allan; Lenehan, Claire E

    2014-05-20

    Understanding the form in which gold is transported in surface- and groundwaters underpins our understanding of gold dispersion and (bio)geochemical cycling. Yet, to date, there are no direct techniques capable of identifying the oxidation state and complexation of gold in natural waters. We present a reversed phase ion-pairing HPLC-ICP-MS method for the separation and determination of aqueous gold(III)-chloro-hydroxyl, gold(III)-bromo-hydroxyl, gold(I)-thiosulfate, and gold(I)-cyanide complexes. Detection limits for the gold species range from 0.05 to 0.30 μg L(-1). The [Au(CN)2](-) gold cyanide complex was detected in five of six waters from tailings and adjacent monitoring bores of working gold mines. Contrary to thermodynamic predictions, evidence was obtained for the existence of Au(III)-complexes in circumneutral, hypersaline waters of a natural lake overlying a gold deposit in Western Australia. This first direct evidence for the existence and stability of Au(III)-complexes in natural surface waters suggests that Au(III)-complexes may be important for the transport and biogeochemical cycling of gold in surface environments. Overall, these results show that near-μg L(-1) enrichments of Au in environmental waters result from metastable ligands (e.g., CN(-)) as well as kinetically controlled redox processes leading to the stability of highly soluble Au(III)-complexes.

  17. Reflecting on complexity of biological systems: Kant and beyond?

    PubMed

    Van de Vijver, Gertrudis; Van Speybroeck, Linda; Vandevyvere, Windy

    2003-01-01

    Living organisms are currently most often seen as complex dynamical systems that develop and evolve in relation to complex environments. Reflections on the meaning of the complex dynamical nature of living systems show an overwhelming multiplicity in approaches, descriptions, definitions and methodologies. Instead of sustaining an epistemic pluralism, which often functions as a philosophical armistice in which tolerance and so-called neutrality discharge proponents of the burden to clarify the sources and conditions of agreement and disagreement, this paper aims at analysing: (i) what has been Kant's original conceptualisation of living organisms as natural purposes; (ii) how the current perspectives are to be related to Kant's viewpoint; (iii) what are the main trends in current complexity thinking. One of the basic ideas is that the attention for structure and its epistemological consequences witness to a great extent of Kant's viewpoint, and that the idea of organisational stratification today constitutes a different breeding ground within which complexity issues are raised. The various approaches of complexity in biological systems are captured in terms of two different styles, universalism and (weak and strong) constructivism, between which hybrid forms exist.

  18. Adaptive Value of Phenological Traits in Stressful Environments: Predictions Based on Seed Production and Laboratory Natural Selection

    PubMed Central

    Glorieux, Cédric; Cuguen, Joel; Roux, Fabrice

    2012-01-01

    Phenological traits often show variation within and among natural populations of annual plants. Nevertheless, the adaptive value of post-anthesis traits is seldom tested. In this study, we estimated the adaptive values of pre- and post-anthesis traits in two stressful environments (water stress and interspecific competition), using the selfing annual species Arabidopsis thaliana. By estimating seed production and by performing laboratory natural selection (LNS), we assessed the strength and nature (directional, disruptive and stabilizing) of selection acting on phenological traits in A. thaliana under the two tested stress conditions, each with four intensities. Both the type of stress and its intensity affected the strength and nature of selection, as did genetic constraints among phenological traits. Under water stress, both experimental approaches demonstrated directional selection for a shorter life cycle, although bolting time imposes a genetic constraint on the length of the interval between bolting and anthesis. Under interspecific competition, results from the two experimental approaches showed discrepancies. Estimation of seed production predicted directional selection toward early pre-anthesis traits and long post-anthesis periods. In contrast, the LNS approach suggested neutrality for all phenological traits. This study opens questions on adaptation in complex natural environment where many selective pressures act simultaneously. PMID:22403624

  19. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness.

    PubMed

    Kerwin, Rachel; Feusier, Julie; Corwin, Jason; Rubin, Matthew; Lin, Catherine; Muok, Alise; Larson, Brandon; Li, Baohua; Joseph, Bindu; Francisco, Marta; Copeland, Daniel; Weinig, Cynthia; Kliebenstein, Daniel J

    2015-04-13

    Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana.

  20. Determination of natural organic matter and iron binding capacity in fen samples

    NASA Astrophysics Data System (ADS)

    Kügler, Stefan; Cooper, Rebecca E.; Frieder Mohr, Jan; Wichard, Thomas; Küsel, Kirsten

    2017-04-01

    Natural organic matter (NOM) plays an important role in ecosystem processes such as soil carbon stabilization, nutrient availability and metal complexation. Iron-NOM-complexes, for example, are known to increase the solubility and, as a result, the bioavailability of iron in natural environments leading to several effects on the microbial community. Due to the various functions of NOM in natural environments, there is a high level of interest in the characterization of the molecular composition. The complexity of NOM presents a significant challenge in the elucidation of its composition. However, the development and utilization of high resolution mass spectrometry (HR-MS) as a tool to detect single compounds in complex samples has spearheaded the effort to elucidate the composition of NOM. Over the past years, the accuracy of ion cyclotron- or Orbitrap mass spectrometers has increased dramatically resulting in the possibility to obtain a mass differentiation of the large number of compounds in NOM. Together these tools provide significant and powerful insight into the molecular composition of NOM. In the current study, we aim to understand abiotic and biotic interactions between NOM and metals, such as iron, found in the Schlöppnerbrunnen fen (Fichtelgebirge, Germany) and how these interactions impact the microbial consortia. We characterized the dissolved organic matter (DOM) as well as basic chemical parameters in the iron-rich (up to 20 mg (g wt peat)-1), slightly acidic (pH 4.8) fen to gain more information about DOM-metal interactions. This minerotrophic peatland connected to the groundwater has received Fe(II) released from the surrounding soils in the Lehstenbach catchment. Absorption spectroscopy (AAS), differential pulse polarography (DPP) and high resolution electrospray ionization mass spectrometry (HR-ESI-Orbitrap-MS) was applied to characterize the molecular composition of DOM in the peat water extract (PWE). We identified typical patterns for DOM illustrated by van Krevelen plots, which indicate the presence of different substance classes including condensed aromatics, lignins and tannins known to complex iron. Our results indicate a variety of potential Fe-DOM-complexes present in the PWE samples when iron is incorporated into the elemental composition search. Using DPP we determine the complexation capacity of iron in the natural matrix of the fen along with the identification of ligands in order to estimate the iron bioavailability for bacteria. As the microbial redox system of the fen is impacted by other metals in the environment, we perform comprehensive analysis of the entirety of metal ions and concentrations in the water samples. Dialysis chambers are currently installed in the iron-rich fen from which pore water samples will be collected at 1 cm increments between 0-20 cm depth to determine the depth profiles of Fe(II)- and Fe(III)-concentration and evaluate the influence of the depth profiles on the interplay between microorganism comprising the natural microbial redox system of the fen. We have shown that metal-DOM-pH interactions affect the bioavailable metal concentration in fen water systems. This information will pave the way for a better understanding of the bacterial recruitment of trace elements and microbial redox reactions.

  1. ISS External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  2. External Contamination Environment at ISS Included: Selected Results from Payloads Contamination Mapping Delivery 3 Package

    NASA Technical Reports Server (NTRS)

    Olsen, Randy; Huang, Alvin; Steagall, Courtney; Kohl, Nathaniel; Koontz, Steve; Worthy, Erica

    2017-01-01

    The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  3. Teaching the Combined Gas Law

    ERIC Educational Resources Information Center

    Andersen, Lauren; Nobile, Nicole; Cormas, Peter

    2011-01-01

    For students to develop an understanding of science content and processes, teachers must create classroom environments in which students use inquiry to understand the natural world. However, teachers frequently find it difficult, if not impossible, to demonstrate complex scientific concepts, which textbooks often fail to properly explain. During…

  4. MONITORING OF WATERWAYS FOR EMERGING CONTAMINANTS USING INTEGRATIVE SAMPLING COUPLED WITH LIQUID CHROMATOGRAPHY-ELECTROSPRAY/MASS SPECTROMETRY

    EPA Science Inventory

    Assessing the potential impact to the aquatic environment from emerging contaminants, entails monitoring a complex mixture (pharmaceuticals, polar pesticides, industrial by- products and degradation products) in natural waters. The presence of these chemicals, often at ultra-trac...

  5. Observations in public settings

    Treesearch

    Robert G. Lee

    1977-01-01

    Straightforward observation of children in their everyday environments is a more appropriate method of discovering the meaning of their relationships to nature than complex methodologies or reductionist commonsense thinking. Observational study requires an explicit conceptual framework and adherence to procedures that allow scientific inference. Error may come from...

  6. Learning Analytics for Networked Learning Models

    ERIC Educational Resources Information Center

    Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan

    2014-01-01

    Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…

  7. Colour and luminance contrasts predict the human detection of natural stimuli in complex visual environments.

    PubMed

    White, Thomas E; Rojas, Bibiana; Mappes, Johanna; Rautiala, Petri; Kemp, Darrell J

    2017-09-01

    Much of what we know about human colour perception has come from psychophysical studies conducted in tightly-controlled laboratory settings. An enduring challenge, however, lies in extrapolating this knowledge to the noisy conditions that characterize our actual visual experience. Here we combine statistical models of visual perception with empirical data to explore how chromatic (hue/saturation) and achromatic (luminant) information underpins the detection and classification of stimuli in a complex forest environment. The data best support a simple linear model of stimulus detection as an additive function of both luminance and saturation contrast. The strength of each predictor is modest yet consistent across gross variation in viewing conditions, which accords with expectation based upon general primate psychophysics. Our findings implicate simple visual cues in the guidance of perception amidst natural noise, and highlight the potential for informing human vision via a fusion between psychophysical modelling and real-world behaviour. © 2017 The Author(s).

  8. Field Studies—Essential Cognitive Foundations for Geoscience Expertise

    NASA Astrophysics Data System (ADS)

    Goodwin, C.; Mogk, D. W.

    2010-12-01

    Learning in the field has traditionally been one of the fundamental components of the geoscience curriculum. Field experiences have been attributed to having positive impacts on cognitive, affective, metacognitive, mastery of skills and social components of learning geoscience. The development of geoscience thinking, and of geoscience expertise, encompasses a number of learned behaviors that contribute to the progress of Science and the development of scientists. By getting out into Nature, students necessarily engage active and experiential learning. The open, dynamic, heterogeneous and complex Earth system provides ample opportunities to learn by inquiry and discovery. Learning in this environment requires that students make informed decisions and to think critically about what is important to observe, and what should be excluded in the complex overload of information provided by Nature. Students must learn to employ the full range of cognitive skills that include observation, description, interpretation, analysis and synthesis that lead to “deep learning”. They must be able to integrate and rationalize observations of Nature with modern experimental, analytical, theoretical, and modeling approaches to studying the Earth system, and they must be able to iterate between what is known and what is yet to be discovered. Immersion in the field setting provides students with a sense of spatial and temporal scales of natural phenomena that can not be derived in other learning environments. The field setting provides strong sensory inputs that stimulate cognition and memories that will be available for future application. The field environment also stimulates strong affective responses related to motivation, curiosity, a sense of “ownership” of field projects, and inclusion in shared experiences that carry on throughout professional careers. The nature of field work also contains a strong metacognitive component, as students learn to be aware of what and how they are learning in the field, regulate and modify their activities, and plan for future work.Embodied practice in the field shows students how to explore and interrogate nature, and how to interact and learn from other scientists. Learning geoscience is a social enterprise, requiring a long apprenticeship through which newcomers learn about Nature by working with competent senior practitioners in the settings where relevant nature is systematically studied. Learned social practices include the ability to enhance understanding of natural phenomena by constructing appropriate representations (inscriptions), knowing how to select and use appropriate tools, engaging the accepted community of practice, adopting professional standards and values, and the ability to contribute to geoscience discourse about the complex world. Both tools and the ability to locate perspicuous sites in the environment must be mastered so that representations can be made of structures in the landscape that cannot actually be seen from any single point of view to obtain a holistic and integrated interpretation of Earth history and processes. Sustained development of these cognitive strategies and skills is essential to the professional development of all geoscientists.

  9. Cross-modal links among vision, audition, and touch in complex environments.

    PubMed

    Ferris, Thomas K; Sarter, Nadine B

    2008-02-01

    This study sought to determine whether performance effects of cross-modal spatial links that were observed in earlier laboratory studies scale to more complex environments and need to be considered in multimodal interface design. It also revisits the unresolved issue of cross-modal cuing asymmetries. Previous laboratory studies employing simple cues, tasks, and/or targets have demonstrated that the efficiency of processing visual, auditory, and tactile stimuli is affected by the modality, lateralization, and timing of surrounding cues. Very few studies have investigated these cross-modal constraints in the context of more complex environments to determine whether they scale and how complexity affects the nature of cross-modal cuing asymmetries. Amicroworld simulation of battlefield operations with a complex task set and meaningful visual, auditory, and tactile stimuli was used to investigate cuing effects for all cross-modal pairings. Significant asymmetric performance effects of cross-modal spatial links were observed. Auditory cues shortened response latencies for collocated visual targets but visual cues did not do the same for collocated auditory targets. Responses to contralateral (rather than ipsilateral) targets were faster for tactually cued auditory targets and each visual-tactile cue-target combination, suggesting an inhibition-of-return effect. The spatial relationships between multimodal cues and targets significantly affect target response times in complex environments. The performance effects of cross-modal links and the observed cross-modal cuing asymmetries need to be examined in more detail and considered in future interface design. The findings from this study have implications for the design of multimodal and adaptive interfaces and for supporting attention management in complex, data-rich domains.

  10. Two-dimensional electronic spectra of the photosynthetic apparatus of green sulfur bacteria

    NASA Astrophysics Data System (ADS)

    Kramer, Tobias; Rodriguez, Mirta

    2017-03-01

    Advances in time resolved spectroscopy have provided new insight into the energy transmission in natural photosynthetic complexes. Novel theoretical tools and models are being developed in order to explain the experimental results. We provide a model calculation for the two-dimensional electronic spectra of Cholorobaculum tepidum which correctly describes the main features and transfer time scales found in recent experiments. From our calculation one can infer the coupling of the antenna chlorosome with the environment and the coupling between the chlorosome and the Fenna-Matthews-Olson complex. We show that environment assisted transport between the subunits is the required mechanism to reproduce the experimental two-dimensional electronic spectra.

  11. PLUMED-GUI: An environment for the interactive development of molecular dynamics analysis and biasing scripts

    NASA Astrophysics Data System (ADS)

    Giorgino, Toni

    2014-03-01

    PLUMED-GUI is an interactive environment to develop and test complex PLUMED scripts within the Visual Molecular Dynamics (VMD) environment. Computational biophysicists can take advantage of both PLUMED’s rich syntax to define collective variables (CVs) and VMD’s chemically-aware atom selection language, while working within a natural point-and-click interface. Pre-defined templates and syntax mnemonics facilitate the definition of well-known reaction coordinates. Complex CVs, e.g. involving reference snapshots used for RMSD or native contacts calculations, can be built through dialogs that provide a synoptic view of the available options. Scripts can be either exported for use in simulation programs, or evaluated on the currently loaded molecular trajectories. Script development takes place without leaving VMD, thus enabling an incremental try-see-modify development model for molecular metrics.

  12. Fluctuations in an established transmission in the presence of a complex environment

    NASA Astrophysics Data System (ADS)

    Savin, Dmitry V.; Richter, Martin; Kuhl, Ulrich; Legrand, Olivier; Mortessagne, Fabrice

    2017-09-01

    In various situations where wave transport is preeminent, like in wireless communication, a strong established transmission is present in a complex scattering environment. We develop a nonperturbative approach to describe emerging fluctuations which combines a transmitting channel and a chaotic background in a unified effective Hamiltonian. Modeling such a background by random matrix theory, we derive exact results for both transmission and reflection distributions at arbitrary absorption that is typically present in real systems. Remarkably, in such a complex scattering situation, the transport is governed by only two parameters: an absorption rate and the ratio of the so-called spreading width to the natural width of the transmission line. In particular, we find that the established transmission disappears sharply when this ratio exceeds unity. The approach exemplifies the role of the chaotic background in dephasing the deterministic scattering.

  13. Perception system and functions for autonomous navigation in a natural environment

    NASA Technical Reports Server (NTRS)

    Chatila, Raja; Devy, Michel; Lacroix, Simon; Herrb, Matthieu

    1994-01-01

    This paper presents the approach, algorithms, and processes we developed for the perception system of a cross-country autonomous robot. After a presentation of the tele-programming context we favor for intervention robots, we introduce an adaptive navigation approach, well suited for the characteristics of complex natural environments. This approach lead us to develop a heterogeneous perception system that manages several different terrain representatives. The perception functionalities required during navigation are listed, along with the corresponding representations we consider. The main perception processes we developed are presented. They are integrated within an on-board control architecture we developed. First results of an ambitious experiment currently underway at LAAS are then presented.

  14. Decoding molecular interactions in microbial communities

    PubMed Central

    Abreu, Nicole A.; Taga, Michiko E.

    2016-01-01

    Microbial communities govern numerous fundamental processes on earth. Discovering and tracking molecular interactions among microbes is critical for understanding how single species and complex communities impact their associated host or natural environment. While recent technological developments in DNA sequencing and functional imaging have led to new and deeper levels of understanding, we are limited now by our inability to predict and interpret the intricate relationships and interspecies dependencies within these communities. In this review, we highlight the multifaceted approaches investigators have taken within their areas of research to decode interspecies molecular interactions that occur between microbes. Understanding these principles can give us greater insight into ecological interactions in natural environments and within synthetic consortia. PMID:27417261

  15. Design and analysis issues in gene and environment studies

    PubMed Central

    2012-01-01

    Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology. Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian complex disorders which result as an interaction between genetics and environment. To understand health and disease we must study how nature and nurture interact. Recent advances in human genomics and high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and analytic issues for gene-environment interaction studies in the “-omics” era, with a focus on environmental and genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss several study design issues for gene-environmental interaction studies, including confounding and selection bias, measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power and sample size considerations, especially in genome-wide gene-environment studies. Future research directions are also discussed. PMID:23253229

  16. Design and analysis issues in gene and environment studies.

    PubMed

    Liu, Chen-yu; Maity, Arnab; Lin, Xihong; Wright, Robert O; Christiani, David C

    2012-12-19

    Both nurture (environmental) and nature (genetic factors) play an important role in human disease etiology. Traditionally, these effects have been thought of as independent. This perspective is ill informed for non-mendelian complex disorders which result as an interaction between genetics and environment. To understand health and disease we must study how nature and nurture interact. Recent advances in human genomics and high-throughput biotechnology make it possible to study large numbers of genetic markers and gene products simultaneously to explore their interactions with environment. The purpose of this review is to discuss design and analytic issues for gene-environment interaction studies in the "-omics" era, with a focus on environmental and genetic epidemiological studies. We present an expanded environmental genomic disease paradigm. We discuss several study design issues for gene-environmental interaction studies, including confounding and selection bias, measurement of exposures and genotypes. We discuss statistical issues in studying gene-environment interactions in different study designs, such as choices of statistical models, assumptions regarding biological factors, and power and sample size considerations, especially in genome-wide gene-environment studies. Future research directions are also discussed.

  17. Multispectral index for the remote detection of human skin signatures

    NASA Astrophysics Data System (ADS)

    Baranoski, Gladimir V. G.; Chen, Tenn F.

    2015-07-01

    We propose a multispectral index to assist the detection of human signatures in complex natural environments. Differently from previously proposed indices, it takes into account the spectral responses of human skin not only in the near infrared, but also in the visible region of the light spectrum. As a result, it can contribute to mitigate the chances of false alarms during time-critical search and rescue operations carried out in such environments. Our investigation is supported by the use of reflectance data measured for different skin specimens and natural materials such as sand, ocean water, melting snow, and forest vegetation. We believe that the observations reported in this work can be incorporated into the design of more effective procedures and devices for the differentiation of human targets from background materials commonly found in nature.

  18. Anthropology of fire in the Ozark Highland region

    Treesearch

    David H. Jurney

    2012-01-01

    Native Americans are often considered to have exploited available natural resources rather than modifying their environments to maximize yields. As simpler societies evolved into more complex ones, there is a consensus that intensification of habitat modifications also increased. However, landscape scale archeological inventories now show relatively intensive...

  19. Managing Knowledge to Save the Environment.

    ERIC Educational Resources Information Center

    Bundy, McGeorge

    Discussed are the ways in which modern data analysis can increase understanding of complex interrelationships in natural and manmade systems, thus enhancing the rationality of decision-making. Examples are given of predictions made from economic and ecological models. The need for international cooperation on environmental questions is discussed…

  20. An Analysis of Environmental Sustainability Instruction in California Public High Schools

    ERIC Educational Resources Information Center

    Knapp, Jeanne Louise

    2012-01-01

    Concepts of sustainability around working, living, natural, and built environments are complex and interdisciplinary. Preparation for post-secondary roles and decision making in college, among careers, and as citizens includes a working knowledge of interrelated social, economic, and science-related activities differentially impacting…

  1. Motor learning from virtual reality to natural environments in individuals with Duchenne muscular dystrophy.

    PubMed

    Quadrado, Virgínia Helena; Silva, Talita Dias da; Favero, Francis Meire; Tonks, James; Massetti, Thais; Monteiro, Carlos Bandeira de Mello

    2017-11-10

    To examine whether performance improvements in the virtual environment generalize to the natural environment. we had 64 individuals, 32 of which were individuals with DMD and 32 were typically developing individuals. The groups practiced two coincidence timing tasks. In the more tangible button-press task, the individuals were required to 'intercept' a falling virtual object at the moment it reached the interception point by pressing a key on the computer. In the more abstract task, they were instructed to 'intercept' the virtual object by making a hand movement in a virtual environment using a webcam. For individuals with DMD, conducting a coincidence timing task in a virtual environment facilitated transfer to the real environment. However, we emphasize that a task practiced in a virtual environment should have higher rates of difficulties than a task practiced in a real environment. IMPLICATIONS FOR REHABILITATION Virtual environments can be used to promote improved performance in ?real-world? environments. Virtual environments offer the opportunity to create paradigms similar ?real-life? tasks, however task complexity and difficulty levels can be manipulated, graded and enhanced to increase likelihood of success in transfer of learning and performance. Individuals with DMD, in particular, showed immediate performance benefits after using virtual reality.

  2. Vanadium Chloroperoxidases: The Missing Link in the Formation of Chlorinated Compounds and Chloroform in the Terrestrial Environment?

    PubMed

    Wever, Ron; Barnett, Phil

    2017-08-17

    It is well established that the majority of chlorinated organic substances found in the terrestrial environment are produced naturally. The presence of these compounds in soils is not limited to a single ecosystem. Natural chlorination is also a widespread phenomenon in grasslands and agricultural soils typical for unforested areas. These chlorinated compounds are formed from chlorination of natural organic matter consisting of very complex chemical structures, such as lignin. Chlorination of several lignin model compounds results in the intermediate formation of trichloroacetyl-containing compounds, which are also found in soils. These decay, in general, through a haloform-type reaction mechanism to CHCl 3 . Upon release into the atmosphere, CHCl 3 will produce chlorine radicals through photolysis, which will, in turn, lead to natural depletion of ozone. There is evidence that fungal chloroperoxidases able to produce HOCl are involved in the chlorination of natural organic matter. The objective of this review is to clarify the role and source of the various chloroperoxidases involved in the natural formation of CHCl 3 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Foraging Ecology Predicts Learning Performance in Insectivorous Bats

    PubMed Central

    Clarin, Theresa M. A.; Ruczyński, Ireneusz; Page, Rachel A.

    2013-01-01

    Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals’ cognitive skills reflect the demands of their ecological niche. PMID:23755146

  4. Sediment-water partitioning of inorganic mercury in estuaries.

    PubMed

    Turner, A; Millward, G E; Le Roux, S M

    2001-12-01

    The sediment-water partitioning and speciation of inorganic mercury have been studied under simulated estuarine conditions by monitoring the hydrophobicity and uptake of dissolved 203Hg(II) in samples from a variety of estuarine environments. A persistent increase in the distribution coefficientwith increasing salinity is inconsistent with inorganic speciation calculations, which predict an increase in the concentration of the soluble HgCl4(2-) complex (or reduction in sediment-water distribution coefficient) with increasing salinity. Partition data are, however, defined by an empirical equation relating to the salting out of nonelectrolytes via electrostriction and are characterized by salting constants between about 1.4 and 2.0 L mol(-1). Salting out of the neutral, covalent chloro-complex, HgCl2(0), is predicted but cannot account for the magnitude of salting out observed. Since Hg(II) strongly complexes with dissolved (and particulate) organic matter in natural environments, of more significance appears to be the salting out of Hg(II)-organic complexes. Operational measurements of the speciation of dissolved Hg(II) using Sep-Pak C18 columns indicate a reduction in the proportion of hydrophobic (C18-retained) dissolved Hg(II) complexes with increasing salinity, both in the presence and absence of suspended particles. Ratios of hydrophobic Hg(ll) before and after particle addition suggest a coupled salting out-sorption mechanism, with the precise nature of Hg(II) species salted out being determined bythe characteristics and concentrations of dissolved and sediment organic matter.

  5. Following Carbon Isotopes from Methane to Molecules

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.

    2017-12-01

    Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.

  6. The Natural Hospital Environment: a Socio-Technical-Material perspective.

    PubMed

    Fernando, Juanita; Dawson, Linda

    2014-02-01

    This paper introduces two concepts into analyses of information security and hospital-based information systems-- a Socio-Technical-Material theoretical framework and the Natural Hospital Environment. The research is grounded in a review of pertinent literature with previously published Australian (Victoria) case study data to analyse the way clinicians work with privacy and security in their work. The analysis was sorted into thematic categories, providing the basis for the Natural Hospital Environment and Socio-Technical-Material framework theories discussed here. Natural Hospital Environments feature inadequate yet pervasive computer use, aural privacy shortcomings, shared workspace, meagre budgets, complex regulation that hinders training outcomes and out-dated infrastructure and are highly interruptive. Working collaboratively in many cases, participants found ways to avoid or misuse security tools, such as passwords or screensavers for patient care. Workgroup infrastructure was old, architecturally limited, haphazard in some instances, and was less useful than paper handover sheets to ensure the quality of patient care outcomes. Despite valiant efforts by some participants, they were unable to control factors influencing the privacy of patient health information in public hospital settings. Future improvements to hospital-based organisational frameworks for e-health can only be made when there is an improved understanding of the Socio-Technical-Material theoretical framework and Natural Hospital Environment contexts. Aspects within control of clinicians and administrators can be addressed directly although some others are beyond their control. An understanding and acknowledgement of these issues will benefit the management and planning of improved and secure hospital settings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area

    PubMed Central

    Hao, Guozhu

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream. PMID:27391057

  8. Use of Cusp Catastrophe for Risk Analysis of Navigational Environment: A Case Study of Three Gorges Reservoir Area.

    PubMed

    Jiang, Dan; Hao, Guozhu; Huang, Liwen; Zhang, Dan

    2016-01-01

    A water traffic system is a huge, nonlinear, complex system, and its stability is affected by various factors. Water traffic accidents can be considered to be a kind of mutation of a water traffic system caused by the coupling of multiple navigational environment factors. In this study, the catastrophe theory, principal component analysis (PCA), and multivariate statistics are integrated to establish a situation recognition model for a navigational environment with the aim of performing a quantitative analysis of the situation of this environment via the extraction and classification of its key influencing factors; in this model, the natural environment and traffic environment are considered to be two control variables. The Three Gorges Reservoir area of the Yangtze River is considered as an example, and six critical factors, i.e., the visibility, wind, current velocity, route intersection, channel dimension, and traffic flow, are classified into two principal components: the natural environment and traffic environment. These two components are assumed to have the greatest influence on the navigation risk. Then, the cusp catastrophe model is employed to identify the safety situation of the regional navigational environment in the Three Gorges Reservoir area. The simulation results indicate that the situation of the navigational environment of this area is gradually worsening from downstream to upstream.

  9. Color constancy influenced by unnatural spatial structure.

    PubMed

    Mizokami, Yoko; Yaguchi, Hirohisa

    2014-04-01

    The recognition of spatial structures is important for color constancy because we cannot identify an object's color under different illuminations without knowing which space it is in and how that space is illuminated. To show the importance of the natural structure of environments on color constancy, we investigated the way in which color appearance was affected by unnatural viewing conditions in which a spatial structure was distorted. Observers judged the color of a test patch placed in the center of a small room illuminated by white or reddish lights, as well as two rooms illuminated by white and reddish light, respectively. In the natural viewing condition, an observer saw the room(s) through a viewing window, whereas in an unnatural viewing condition, the scene structure was scrambled by a kaleidoscope-type viewing box. Results of single room condition with one illuminant color showed little difference in color constancy between the two viewing conditions. However, it decreased in the two-rooms condition with a more complex arrangement of space and illumination. The patch's appearance under the unnatural viewing condition was more influenced by simultaneous contrast than its appearance under the natural viewing condition. It also appears that color appearance under white illumination is more stable compared to that under reddish illumination. These findings suggest that natural spatial structure plays an important role for color constancy in a complex environment.

  10. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes

    USDA-ARS?s Scientific Manuscript database

    Bronchial asthma is a chronic inflammatory disease resulting from complex gene-environment interactions. Natural microbial exposure has been identified as an important environmental condition that provides asthma protection in a prenatal window of opportunity. Epigenetic regulation is an important m...

  11. Analyzing Multimodal Interaction within a Classroom Setting

    ERIC Educational Resources Information Center

    Moura, Heloisa

    2006-01-01

    Human interactions are multimodal in nature. From simple to complex forms of transferal of information, human beings draw on a multiplicity of communicative modes, such as intonation and gaze, to make sense of everyday experiences. Likewise, the learning process, either within traditional classrooms or Virtual Learning Environments, is shaped by…

  12. Characterization of clinical and environmental Mycobacterium avium spp. isolates and their interaction with human macrophages

    EPA Science Inventory

    Members of the Mycobacterium avium complex (MAC) are naturally occurring bacteria in the environment. A link has been suggested between M. avium strains in drinking water and clinical isolates from infected individuals. There is a need to develop new screening methodologies tha...

  13. Natural regeneration of eastern hemlock: a review

    Treesearch

    Daniel L. Goerlich; Ralph D. Nyland

    2000-01-01

    Successful regeneration of eastern hemlock involves a complex biophysical process that commonly spans many years. Critical factors include a reliable source of seed, a suitable seedbed, a partially shaded environment, and several years of favorable moisture. Surface scarification appears critical as a means of site preparation. Even then, young hemlocks grow slowly,...

  14. Reducing Bullying: Application of Social Cognitive Theory

    ERIC Educational Resources Information Center

    Swearer, Susan M.; Wang, Cixin; Berry, Brandi; Myers, Zachary R.

    2014-01-01

    Social cognitive theory (SCT) is an important heuristic for understanding the complexity of bullying behaviors and the social nature of involvement in bullying. Bullying has been heralded as a social relationship problem, and the interplay between the individual and his or her social environment supports this conceptualization. SCT has been used…

  15. Complex Mobile Learning That Adapts to Learners' Cognitive Load

    ERIC Educational Resources Information Center

    Deegan, Robin

    2015-01-01

    Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an…

  16. Affordance of English-Medium Instruction Contexts in Taiwan

    ERIC Educational Resources Information Center

    Huang, Yi-Ping; Jhuang, Wun-Ting

    2015-01-01

    The proliferation of English-medium instruction (EMI) in nonnative English-speaking (NNES) contexts has compelled researchers to explore the challenges students face in such environments. Mostly quantitative in nature with foci on language-related difficulties in one type of institution or curriculum, these studies obscure the complexity of NNES…

  17. Characterisation of the heterogeneity of karst using electrical geophysics - applications in SW China

    NASA Astrophysics Data System (ADS)

    Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.

    2017-12-01

    The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We discuss how such surveys can be used alongside other investigative techniques to help improve our understanding of the structure and function of this complex subsurface environment.

  18. Hänsel, Gretel and the slime mould—how an external spatial memory aids navigation in complex environments

    NASA Astrophysics Data System (ADS)

    Smith-Ferguson, Jules; Reid, Chris R.; Latty, Tanya; Beekman, Madeleine

    2017-10-01

    The ability to navigate through an environment is critical to most organisms’ ability to survive and reproduce. The presence of a memory system greatly enhances navigational success. Therefore, natural selection is likely to drive the creation of memory systems, even in non-neuronal organisms, if having such a system is adaptive. Here we examine if the external spatial memory system present in the acellular slime mould, Physarum polycephalum, provides an adaptive advantage for resource acquisition. P. polycephalum lays tracks of extracellular slime as it moves through its environment. Previous work has shown that the presence of extracellular slime allows the organism to escape from a trap in laboratory experiments simply by avoiding areas previously explored. Here we further investigate the benefits of using extracellular slime as an external spatial memory by testing the organism’s ability to navigate through environments of differing complexity with and without the ability to use its external memory. Our results suggest that the external memory has an adaptive advantage in ‘open’ and simple bounded environments. However, in a complex bounded environment, the extracellular slime provides no advantage, and may even negatively affect the organism’s navigational abilities. Our results indicate that the exact experimental set up matters if one wants to fully understand how the presence of extracellular slime affects the slime mould’s search behaviour.

  19. Resonant inelastic X-ray scattering on ferrous and ferric bis-imidazole porphyrin and cytochrome c: Nature and role of the axial methionine-Fe bond

    DOE PAGES

    Kroll, Thomas; Hadt, Ryan G.; Wilson, Samuel A.; ...

    2014-12-04

    Axial Cu–S(Met) bonds in electron transfer (ET) active sites are generally found to lower their reduction potentials. An axial S(Met) bond is also present in cytochrome c (cyt c) and is generally thought to increase the reduction potential. The highly covalent nature of the porphyrin environment in heme proteins precludes using many spectroscopic approaches to directly study the Fe site to experimentally quantify this bond. Alternatively, L-edge X-ray absorption spectroscopy (XAS) enables one to directly focus on the 3d-orbitals in a highly covalent environment and has previously been successfully applied to porphyrin model complexes. However, this technique cannot be extendedmore » to metalloproteins in solution. Here, we use metal K-edge XAS to obtain L-edge like data through 1s2p resonance inelastic X-ray scattering (RIXS). It has been applied here to a bis-imidazole porphyrin model complex and cyt c. The RIXS data on the model complex are directly correlated to L-edge XAS data to develop the complementary nature of these two spectroscopic methods. Comparison between the bis-imidazole model complex and cyt c in ferrous and ferric oxidation states show quantitative differences that reflect differences in axial ligand covalency. The data reveal an increased covalency for the S(Met) relative to N(His) axial ligand and a higher degree of covalency for the ferric states relative to the ferrous states. These results are reproduced by DFT calculations, which are used to evaluate the thermodynamics of the Fe–S(Met) bond and its dependence on redox state. Furthermore, these results provide insight into a number of previous chemical and physical results on cyt c.« less

  20. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.

    PubMed

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-23

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  1. Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture

    PubMed Central

    Kumar, Ranjeet; Pradhan, Ajay; Khan, Faisal Ahmad; Lindström, Pia; Ragnvaldsson, Daniel; Ivarsson, Per; Olsson, Per-Erik; Jass, Jana

    2015-01-01

    Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention. PMID:26168046

  2. Studying light-harvesting models with superconducting circuits.

    PubMed

    Potočnik, Anton; Bargerbos, Arno; Schröder, Florian A Y N; Khan, Saeed A; Collodo, Michele C; Gasparinetti, Simone; Salathé, Yves; Creatore, Celestino; Eichler, Christopher; Türeci, Hakan E; Chin, Alex W; Wallraff, Andreas

    2018-03-02

    The process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a technique for studying photosynthetic models based on superconducting quantum circuits, which complements existing experimental, theoretical, and computational approaches. We demonstrate a high degree of freedom in design and experimental control of our approach based on a simplified three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 10 5 . We show that the excitation transport between quantum-coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.

  3. Science, technology and the future of small autonomous drones.

    PubMed

    Floreano, Dario; Wood, Robert J

    2015-05-28

    We are witnessing the advent of a new era of robots - drones - that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.

  4. Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment.

    PubMed

    Hosseini, Ali; Brown, Justin E; Gwynn, Justin P; Dowdall, Mark

    2012-11-01

    Produced water has been described as the largest volume waste stream in the exploration and production process of oil and gas. It is accompanied by discharges of naturally occurring radionuclides raising concerns over the potential radiological impacts of produced water on marine biota. In the Northern European marine environment, radioactivity in produced water has received substantial attention owing to the OSPAR Radioactive Substances Strategy which aims at achieving 'concentrations in the environment near background values for naturally occurring radioactive substances'. This review provides an overview of published research on the impacts to biota from naturally occurring radionuclides discharged in produced water by the offshore oil and gas industry. In addition to summarising studies and data that deal directly with the issue of dose and effect, the review also considers studies related to the impact of added chemicals on the fate of discharged radionuclides. The review clearly illustrates that only a limited number of studies have investigated possible impacts on biota from naturally occurring radionuclides present in produced water. Hence, although these studies indicate that the risk to the environment from naturally occurring radionuclides discharged in produced water is negligible, the substantial uncertainties involved in the assessments of impact make it difficult to be conclusive. With regard to the complexity involved in the problem under consideration there is a pressing need to supplement existing data and acquire new knowledge. Finally, the present work identifies some knowledge gaps to indicate future research requirements. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Reverse Ecology: from systems to environments and back.

    PubMed

    Levy, Roie; Borenstein, Elhanan

    2012-01-01

    The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.

  6. VEVI: A Virtual Reality Tool For Robotic Planetary Explorations

    NASA Technical Reports Server (NTRS)

    Piguet, Laurent; Fong, Terry; Hine, Butler; Hontalas, Phil; Nygren, Erik

    1994-01-01

    The Virtual Environment Vehicle Interface (VEVI), developed by the NASA Ames Research Center's Intelligent Mechanisms Group, is a modular operator interface for direct teleoperation and supervisory control of robotic vehicles. Virtual environments enable the efficient display and visualization of complex data. This characteristic allows operators to perceive and control complex systems in a natural fashion, utilizing the highly-evolved human sensory system. VEVI utilizes real-time, interactive, 3D graphics and position / orientation sensors to produce a range of interface modalities from the flat panel (windowed or stereoscopic) screen displays to head mounted/head-tracking stereo displays. The interface provides generic video control capability and has been used to control wheeled, legged, air bearing, and underwater vehicles in a variety of different environments. VEVI was designed and implemented to be modular, distributed and easily operated through long-distance communication links, using a communication paradigm called SYNERGY.

  7. Moving alcohol prevention research forward-Part I: introducing a complex systems paradigm.

    PubMed

    Apostolopoulos, Yorghos; Lemke, Michael K; Barry, Adam E; Lich, Kristen Hassmiller

    2018-02-01

    The drinking environment is a complex system consisting of a number of heterogeneous, evolving and interacting components, which exhibit circular causality and emergent properties. These characteristics reduce the efficacy of commonly used research approaches, which typically do not account for the underlying dynamic complexity of alcohol consumption and the interdependent nature of diverse factors influencing misuse over time. We use alcohol misuse among college students in the United States as an example for framing our argument for a complex systems paradigm. A complex systems paradigm, grounded in socio-ecological and complex systems theories and computational modeling and simulation, is introduced. Theoretical, conceptual, methodological and analytical underpinnings of this paradigm are described in the context of college drinking prevention research. The proposed complex systems paradigm can transcend limitations of traditional approaches, thereby fostering new directions in alcohol prevention research. By conceptualizing student alcohol misuse as a complex adaptive system, computational modeling and simulation methodologies and analytical techniques can be used. Moreover, use of participatory model-building approaches to generate simulation models can further increase stakeholder buy-in, understanding and policymaking. A complex systems paradigm for research into alcohol misuse can provide a holistic understanding of the underlying drinking environment and its long-term trajectory, which can elucidate high-leverage preventive interventions. © 2017 Society for the Study of Addiction.

  8. Clinical quality needs complex adaptive systems and machine learning.

    PubMed

    Marsland, Stephen; Buchan, Iain

    2004-01-01

    The vast increase in clinical data has the potential to bring about large improvements in clinical quality and other aspects of healthcare delivery. However, such benefits do not come without cost. The analysis of such large datasets, particularly where the data may have to be merged from several sources and may be noisy and incomplete, is a challenging task. Furthermore, the introduction of clinical changes is a cyclical task, meaning that the processes under examination operate in an environment that is not static. We suggest that traditional methods of analysis are unsuitable for the task, and identify complexity theory and machine learning as areas that have the potential to facilitate the examination of clinical quality. By its nature the field of complex adaptive systems deals with environments that change because of the interactions that have occurred in the past. We draw parallels between health informatics and bioinformatics, which has already started to successfully use machine learning methods.

  9. Natural environment analysis

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1985-01-01

    The influence of terrain features on wind loading of the space shuttle while on the launch pad, or during early liftoff, was investigated both qualitatively and quantitatively. The climatology and meteorology producing macroscale wind patterns and characteristics for the Vandenburg Air Force Base launch site are described. Field test data are analyzed, and the nature and characteristic of flow disturbances due to the various terrain features, both natural and man-made, are reviewed. The magnitude of these wind loads are estimated. Finally, effects of turbulence are discussed. It is concluded that the influence of complex terrain can create significant wind loading on the vehicle.

  10. Open-ocean fish reveal an omnidirectional solution to camouflage in polarized environments.

    PubMed

    Brady, Parrish C; Gilerson, Alexander A; Kattawar, George W; Sullivan, James M; Twardowski, Michael S; Dierssen, Heidi M; Gao, Meng; Travis, Kort; Etheredge, Robert Ian; Tonizzo, Alberto; Ibrahim, Amir; Carrizo, Carlos; Gu, Yalong; Russell, Brandon J; Mislinski, Kathryn; Zhao, Shulei; Cummings, Molly E

    2015-11-20

    Despite appearing featureless to our eyes, the open ocean is a highly variable environment for polarization-sensitive viewers. Dynamic visual backgrounds coupled with predator encounters from all possible directions make this habitat one of the most challenging for camouflage. We tested open-ocean crypsis in nature by collecting more than 1500 videopolarimetry measurements from live fish from distinct habitats under a variety of viewing conditions. Open-ocean fish species exhibited camouflage that was superior to that of both nearshore fish and mirrorlike surfaces, with significantly higher crypsis at angles associated with predator detection and pursuit. Histological measurements revealed that specific arrangements of reflective guanine platelets in the fish's skin produce angle-dependent polarization modifications for polarocrypsis in the open ocean, suggesting a mechanism for natural selection to shape reflectance properties in this complex environment. Copyright © 2015, American Association for the Advancement of Science.

  11. Spacecraft Environment Interactions

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Jun, Insoo

    2011-01-01

    As electronic components have grown smaller in size and power and have increased in complexity, their enhanced sensitivity to the space radiation environment and its effects has become a major source of concern for the spacecraft engineer. As a result, the description of the sources of space radiation, the determination of how that radiation propagates through material, and, ultimately, how radiation affects specific circuit components are primary considerations in the design of modern spacecraft. The objective of this paper will be to address the first 2 aspects of the radiation problem. This will be accomplished by first reviewing the natural and man-made space radiation environments. These environments include both the particulate and, where applicable, the electromagnetic (i.e., photon) environment. As the "ambient" environment is typically only relevant to the outer surface of a space vehicle, it will be necessary to treat the propagation of the external environment through the complex surrounding structures to the point inside the spacecraft where knowledge of the internal radiation environment is required. While it will not be possible to treat in detail all aspects of the problem of the radiation environment within a spacecraft, by dividing the problem into these parts-external environment, propagation, and internal environment-a basis for understanding the practical process of protecting a spacecraft from radiation will be established. The consequences of this environment will be discussed by the other presenters at this seminar.

  12. Space Science

    NASA Image and Video Library

    2003-06-01

    NASA’s Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  13. Virtual Glovebox (VGX) Aids Astronauts in Pre-Flight Training

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Virtual Glovebox (VGX) was developed to allow astronauts on Earth to train for complex biology research tasks in space. The astronauts may reach into the virtual environment, naturally manipulating specimens, tools, equipment, and accessories in a simulated microgravity environment as they would do in space. Such virtual reality technology also provides engineers and space operations staff with rapid prototyping, planning, and human performance modeling capabilities. Other Earth based applications being explored for this technology include biomedical procedural training and training for disarming bio-terrorism weapons.

  14. Shuttle near-field environmental impacts - Conclusions and observations for launching at other locations

    NASA Technical Reports Server (NTRS)

    Koller, A. M., Jr.; Knott, W. M.

    1985-01-01

    Near field and far field environmental monitoring activities extending from the first launch of the Space Shuttle at the Kennedy Space Center have provided a database from which conclusions can now be drawn for short term, acute effects of launch and, to a lesser degree, long term cumulative effects on the natural environment. Data for the first 15 launches of the Space Shuttle from Kennedy Space Center Pad 39A are analyzed for statistical significance and reduced to graphical presentations of individual and collective disposition isopleths, summarization of observed environmental impacts (e.g., vegetation damage, fish kills), and supporting data from specialized experiments and laboratory analyses. Conclusions are drawn with regard to the near field environment at Pad A, the effects on the lagoonal complex, and the relationships of these data and conclusions to upcoming operations at Complex 39 Pad B where the environment is significantly different. The paper concludes with a subjective evaluation of the likely impacts at Vandenberg Space Launch Complex 6 for the first Shuttle launch next year.

  15. Molecular recognition in protein modification with rhodium metallopeptides

    PubMed Central

    Ball, Zachary T.

    2015-01-01

    Chemical manipulation of natural, unengineered proteins is a daunting challenge which tests the limits of reaction design. By combining transition-metal or other catalysts with molecular recognition ideas, it is possible to achieve site-selective protein reactivity without the need for engineered recognition sequences or reactive sites. Some recent examples in this area have used ruthenium photocatalysis, pyridine organocatalysis, and rhodium(II) metallocarbene catalysis, indicating that the fundamental ideas provide opportunities for using diverse reactivity on complex protein substrates and in complex cell-like environments. PMID:25588960

  16. Considerations Regardingthe Integration-Intrication Processin the Nature and Technology

    NASA Astrophysics Data System (ADS)

    Tecaru Berekmeri, Camelia Velia; Blebea, Ioan

    2014-11-01

    The big challenges in education and R&D activities in the century just started are related on the complexity and transdisciplinarity understanding and promotion.The approaches are necessary in order to understand the unity of the world we live in through the unity of knowledge.The complexity is the result of the integration process.The paper presents fundamentals of the integration-intrication process in the nature and technology.The concept of integronics and the basic principles of the integration process are outlined too. Also the main features of mechatronics as environment for transdisciplinarity learning and the concept of integral education promotion are presented.The advanced mechatronics and the embedded systems are fundamentals of the cyberphysical systems of the future

  17. Scene analysis in the natural environment

    PubMed Central

    Lewicki, Michael S.; Olshausen, Bruno A.; Surlykke, Annemarie; Moss, Cynthia F.

    2014-01-01

    The problem of scene analysis has been studied in a number of different fields over the past decades. These studies have led to important insights into problems of scene analysis, but not all of these insights are widely appreciated, and there remain critical shortcomings in current approaches that hinder further progress. Here we take the view that scene analysis is a universal problem solved by all animals, and that we can gain new insight by studying the problems that animals face in complex natural environments. In particular, the jumping spider, songbird, echolocating bat, and electric fish, all exhibit behaviors that require robust solutions to scene analysis problems encountered in the natural environment. By examining the behaviors of these seemingly disparate animals, we emerge with a framework for studying scene analysis comprising four essential properties: (1) the ability to solve ill-posed problems, (2) the ability to integrate and store information across time and modality, (3) efficient recovery and representation of 3D scene structure, and (4) the use of optimal motor actions for acquiring information to progress toward behavioral goals. PMID:24744740

  18. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    PubMed Central

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-01-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation. PMID:25501822

  19. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    DOE PAGES

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; ...

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased geneticmore » and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation.« less

  20. Embedding Sustainability and Renewable Energy Concepts into Undergraduate Curriculum

    NASA Astrophysics Data System (ADS)

    Belu, R.; Cioca, L.

    2017-12-01

    Human society is facing an uncertain future due to the present unsustainable use of natural resources and the growing imbalance with our natural environment. Creation of a sustainable society is a complex multi-disciplinary and multi-stage project, believed to dominate our century, requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions. Sustainable development means technological progress meeting the present needs without compromising future generation ability to meet its needs and aspirations. It has four aspects: environment, technology, economy, and societal organizations. Students are often taught to deal with technological developments and economic analysis to assess the process or product viability, but are not fully familiar with sustainability and optimization of technology development benefits and the environment. Schools in many disciplines are working to include sustainability concepts into their curricula. Teaching sustainability and renewable energy has become an essential feature today higher education. Sustainable and green design is about designs recognizing the constraints of the natural resource uses and the environment. It applies to all of engineering and science areas, as all systems interact with the environment in complex and important ways. Our project goals are to provide students with multiple and comprehensive exposures to sustainability and renewable energy concepts, facilitating the development of passion and skills to integrate them into practice. The expected outcomes include an increased social responsibility; development of innovative thinking skills; understanding of sustainability issues, and increasing student interests in the engineering and science programs. The project aims to incorporate sustainability and renewable energy concepts into our undergraduate curricula, employing the existing course resources, and developing new courses and laboratory experiments. Approaches described are: 1) redesigning existing courses through development of new materials that still meet the original course objectives and 2) developing upper division elective courses, addressing specific topics related to sustainability, renewable energy and green design.

  1. Approaches to understanding the impact of life-history features on plant-pathogen co-evolutionary dynamics

    Treesearch

    Jeremy J. Burdon; Peter H. Thrall; Adnane Nemri

    2012-01-01

    Natural plant-pathogen associations are complex interactions in which the interplay of environment, host, and pathogen factors results in spatially heterogeneous ecological and epidemiological dynamics. The evolutionary patterns that result from the interaction of these factors are still relatively poorly understood. Recently, integration of the appropriate spatial and...

  2. An Innovative Supply Chain Management Programme Structure: Broadening the SCM Skill Set

    ERIC Educational Resources Information Center

    Okongwu, Uche

    2007-01-01

    This paper proposes a matrix structure for training Supply Chain Management (SCM) professionals. It is an innovative programme structure that combines two approaches: cross-border and inter-organisational. It enables the students to comprehend complex and specific business environments and to understand the diverse nature of SCM systems in both…

  3. 76 FR 13267 - Agency Information Collection Activities: Request for Comments for a New Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ..., 202-366-2601, Office of Human Environment, Federal Highway Administration, Department of...). The general objective of the STEP is to improve understanding of the complex relationship between... Average Burden per Response: 30 minutes each year. Due to the specialized nature of the 18 emphasis areas...

  4. Annual Research Review: Developmental Considerations of Gene by Environment Interactions

    ERIC Educational Resources Information Center

    Lenroot, Rhoshel K.; Giedd, Jay N.

    2011-01-01

    Biological development is driven by a complex dance between nurture and nature, determined not only by the specific features of the interacting genetic and environmental influences but also by the timing of their rendezvous. The initiation of large-scale longitudinal studies, ever-expanding knowledge of genetics, and increasing availability of…

  5. Will concern for biodiversity spell doom to tropical forest management?

    Treesearch

    A.E. Lugo

    1999-01-01

    Arguments against active tropical management are analyzed in light of available data and new research that shows tropical forests to be more resilient after disturbances than previously thought. Tropical forest management involves a diverse array of human activity embedded in a complex social and natural environment. Within this milieu, forest structure and composition...

  6. 76 FR 5196 - Aransas National Wildlife Refuge Complex, Aransas, Calhoun, and Refugio Counties, TX; Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... recreational development, the protection of natural resources, and the conservation of endangered or threatened.... We completed a thorough analysis of impacts on the human environment, which we included in the EA.../STRC/laguna/Index_Laguna.html . At the following libraries: Library Address Phone number Victoria...

  7. Towards a Geography of Emotional Analysis

    ERIC Educational Resources Information Center

    Otrel-Cass, Kathrin

    2016-01-01

    This article is a forum response to a research article on self-reporting methods when studying discrete emotions in science education environments. Studying emotions in natural settings is a difficult task because of the complexity of deciphering verbal and non-verbal communication. In my response I present three main points that build on insights…

  8. Visual NNet: An Educational ANN's Simulation Environment Reusing Matlab Neural Networks Toolbox

    ERIC Educational Resources Information Center

    Garcia-Roselló, Emilio; González-Dacosta, Jacinto; Lado, Maria J.; Méndez, Arturo J.; Garcia Pérez-Schofield, Baltasar; Ferrer, Fátima

    2011-01-01

    Artificial Neural Networks (ANN's) are nowadays a common subject in different curricula of graduate and postgraduate studies. Due to the complex algorithms involved and the dynamic nature of ANN's, simulation software has been commonly used to teach this subject. This software has usually been developed specifically for learning purposes, because…

  9. Translocation of botulinum neurotoxin serotype a and associated proteins across the intestinal epithelia

    USDA-ARS?s Scientific Manuscript database

    Botulinum neurotoxins (BoNTs) are some of the most poisonous natural toxins and considered to be a major venue of bioterrorist threat. BoNTs associate with neurotoxin associated proteins (NAPs), forming large complexes. NAPs have been shown to shield the BoNT holotoxin from the harsh environment of ...

  10. Rational and Challenges of Competency-Based Education and Training: The "Wickedness" of the Problem

    ERIC Educational Resources Information Center

    Oyugi, Jacob L.

    2015-01-01

    Our students will continue to be confronted with many environment and sustainability issues during their lifetimes because they are unpredictable, serious and complex by nature. These issues challenge not just our technologies but our universities and educational institutions, values and way of living and interaction. Competency-based education…

  11. Evaluation of soil quality in areas of cocoa cabruca, forest and multicropping in southern Bahia, Brazil

    USDA-ARS?s Scientific Manuscript database

    The Atlantic Rain Forest is one of the most complex natural environments of the earth and, linked with this ecosystem, the cacao-cabruca system is agroforestry cultivation with an arrangement including a range of environmental, social and economical benefits and can protect many features of the biod...

  12. Learning Styles and Vocational Education Practice. Practice Application Brief.

    ERIC Educational Resources Information Center

    Brown, Bettina Lankard

    Learning styles and the creation of effective learning environments are of emerging significance in education as the changing nature of work requires higher-order thinking skills. Although learning style may be simply defined as the way people come to understand and remember information, the literature is filled with more complex definitions of…

  13. Effects of feral horse herds on plant communities across a precipitation gradient

    Treesearch

    Laura Baur

    2016-01-01

    Feral horse herds in the western United States are managed with the goal of maintaining "a thriving natural ecological balance" with their environment. Because rangeland ecology is complex and grazers such as horses can have different effects under different environmental conditions, more data are needed to better inform Appropriate Management Levels...

  14. Governing the Governors: A Case Study of College Governance in English Further Education

    ERIC Educational Resources Information Center

    Gleeson, Denis; Abbott, Ian; Hill, Ron

    2011-01-01

    This paper addresses the nature of governors in the governance of further education colleges in an English context. It explores the complex relationship between governors (people/agency), government (policy/structure) and governance (practice), in a college environment. While recent research has focused on the governance of schooling and higher…

  15. Learning to Cook: Production Learning Environment in Kitchens

    ERIC Educational Resources Information Center

    James, Susan

    2006-01-01

    Learning in workplaces is neither ad hoc nor informal. Such labels are a misnomer and do not do justice to the highly-structured nature and complexity of many workplaces where learning takes place. This article discusses the organisational and structural framework developed from a three-year doctoral study into how apprentice chefs construct their…

  16. Optimists' Creed: Brave New Cyberlearning, Evolving Utopias (Circa 2041)

    ERIC Educational Resources Information Center

    Burleson, Winslow; Lewis, Armanda

    2016-01-01

    This essay imagines the role that artificial intelligence innovations play in the integrated living, learning and research environments of 2041. Here, in 2041, in the context of increasingly complex wicked challenges, whose solutions by their very nature continue to evade even the most capable experts, society and technology have co-evolved to…

  17. From data to decisions: Processing information, biases, and beliefs for improved management of natural resources and environments

    NASA Astrophysics Data System (ADS)

    Glynn, Pierre D.; Voinov, Alexey A.; Shapiro, Carl D.; White, Paul A.

    2017-04-01

    Our different kinds of minds and types of thinking affect the ways we decide, take action, and cooperate (or not). Derived from these types of minds, innate biases, beliefs, heuristics, and values (BBHV) influence behaviors, often beneficially, when individuals or small groups face immediate, local, acute situations that they and their ancestors faced repeatedly in the past. BBHV, though, need to be recognized and possibly countered or used when facing new, complex issues or situations especially if they need to be managed for the benefit of a wider community, for the longer-term and the larger-scale. Taking BBHV into account, we explain and provide a cyclic science-infused adaptive framework for (1) gaining knowledge of complex systems and (2) improving their management. We explore how this process and framework could improve the governance of science and policy for different types of systems and issues, providing examples in the area of natural resources, hazards, and the environment. Lastly, we suggest that an "Open Traceable Accountable Policy" initiative that followed our suggested adaptive framework could beneficially complement recent Open Data/Model science initiatives.

  18. Metabolic gene regulation in a dynamically changing environment.

    PubMed

    Bennett, Matthew R; Pang, Wyming Lee; Ostroff, Natalie A; Baumgartner, Bridget L; Nayak, Sujata; Tsimring, Lev S; Hasty, Jeff

    2008-08-28

    Natural selection dictates that cells constantly adapt to dynamically changing environments in a context-dependent manner. Gene-regulatory networks often mediate the cellular response to perturbation, and an understanding of cellular adaptation will require experimental approaches aimed at subjecting cells to a dynamic environment that mimics their natural habitat. Here we monitor the response of Saccharomyces cerevisiae metabolic gene regulation to periodic changes in the external carbon source by using a microfluidic platform that allows precise, dynamic control over environmental conditions. We show that the metabolic system acts as a low-pass filter that reliably responds to a slowly changing environment, while effectively ignoring fast fluctuations. The sensitive low-frequency response was significantly faster than in predictions arising from our computational modelling, and this discrepancy was resolved by the discovery that two key galactose transcripts possess half-lives that depend on the carbon source. Finally, to explore how induction characteristics affect frequency response, we compare two S. cerevisiae strains and show that they have the same frequency response despite having markedly different induction properties. This suggests that although certain characteristics of the complex networks may differ when probed in a static environment, the system has been optimized for a robust response to a dynamically changing environment.

  19. Feasibility analysis of EDXRF method to detect heavy metal pollution in ecological environment

    NASA Astrophysics Data System (ADS)

    Hao, Zhixu; Qin, Xulei

    2018-02-01

    The change of heavy metal content in water environment, soil and plant can reflect the change of heavy metal pollution in ecological environment, and it is important to monitor the trend of heavy metal pollution in eco-environment by using water environment, soil and heavy metal content in plant. However, the content of heavy metals in nature is very low, the background elements of water environment, soil and plant samples are complex, and there are many interfering factors in the EDXRF system that will affect the spectral analysis results and reduce the detection accuracy. Through the contrastive analysis of several heavy metal elements detection methods, it is concluded that the EDXRF method is superior to other chemical methods in testing accuracy and method feasibility when the heavy metal pollution in soil is tested in ecological environment.

  20. Assessing the complex architecture of polygenic traits in diverged yeast populations.

    PubMed

    Cubillos, Francisco A; Billi, Eleonora; Zörgö, Enikö; Parts, Leopold; Fargier, Patrick; Omholt, Stig; Blomberg, Anders; Warringer, Jonas; Louis, Edward J; Liti, Gianni

    2011-04-01

    Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits. © 2011 Blackwell Publishing Ltd.

  1. Epistasis × environment interactions among Arabidopsis thaliana glucosinolate genes impact complex traits and fitness in the field.

    PubMed

    Kerwin, Rachel E; Feusier, Julie; Muok, Alise; Lin, Catherine; Larson, Brandon; Copeland, Daniel; Corwin, Jason A; Rubin, Matthew J; Francisco, Marta; Li, Baohua; Joseph, Bindu; Weinig, Cynthia; Kliebenstein, Daniel J

    2017-08-01

    Despite the growing number of studies showing that genotype × environment and epistatic interactions control fitness, the influences of epistasis × environment interactions on adaptive trait evolution remain largely uncharacterized. Across three field trials, we quantified aliphatic glucosinolate (GSL) defense chemistry, leaf damage, and relative fitness using mutant lines of Arabidopsis thaliana varying at pairs of causal aliphatic GSL defense genes to test the impact of epistatic and epistasis × environment interactions on adaptive trait variation. We found that aliphatic GSL accumulation was primarily influenced by additive and epistatic genetic variation, leaf damage was primarily influenced by environmental variation and relative fitness was primarily influenced by epistasis and epistasis × environment interactions. Epistasis × environment interactions accounted for up to 48% of the relative fitness variation in the field. At a single field site, the impact of epistasis on relative fitness varied significantly over 2 yr, showing that epistasis × environment interactions within a location can be temporally dynamic. These results suggest that the environmental dependency of epistasis can profoundly influence the response to selection, shaping the adaptive trajectories of natural populations in complex ways, and deserves further consideration in future evolutionary studies. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Crew collaboration in space: a naturalistic decision-making perspective

    NASA Technical Reports Server (NTRS)

    Orasanu, Judith

    2005-01-01

    Successful long-duration space missions will depend on the ability of crewmembers to respond promptly and effectively to unanticipated problems that arise under highly stressful conditions. Naturalistic decision making (NDM) exploits the knowledge and experience of decision makers in meaningful work domains, especially complex sociotechnical systems, including aviation and space. Decision making in these ambiguous, dynamic, high-risk environments is a complex task that involves defining the nature of the problem and crafting a response to achieve one's goals. Goal conflicts, time pressures, and uncertain outcomes may further complicate the process. This paper reviews theory and research pertaining to the NDM model and traces some of the implications for space crews and other groups that perform meaningful work in extreme environments. It concludes with specific recommendations for preparing exploration crews to use NDM effectively.

  3. Jesuit scientific activity in the overseas missions, 1540-1773.

    PubMed

    Harris, Steven J

    2005-03-01

    Within the context of national traditions in colonial science, the scientific activities of Jesuit missionaries present us with a unique combination of challenges. The multinational membership of the Society of Jesus gave its missionaries access to virtually every Portuguese, Spanish, and French colony. The Society was thus compelled to engage an astonishingly diverse array of cultural and natural environments, and that diversity of contexts is reflected in the range and the complexity of Jesuit scientific practices. Underlying that complexity, however, was what I see as a unique combination of institutional structures; namely, European colleges, overseas mission stations, and the regular circulation of personnel and information. With this institutional framework as a backdrop, I briefly trace what I see as the most salient themes emerging from recent studies of Jesuit overseas science: (1) the Societys ability to use scientific expertise to its advantage amid the complex web of dependencies upon which it missionary activities rested; (2) the ability of its missionaries to become intimate with a wide range of cultures and to appropriate natural knowledge held by indigenous peoples, especially in the fields of material medica and geography; and (3) the different ways Jesuits used published accounts of "remote nature" (i.e., natural histories of overseas colonies) to advance their corporate and religious causes.

  4. Challenges in researching violence affecting health service delivery in complex security environments.

    PubMed

    Foghammar, Ludvig; Jang, Suyoun; Kyzy, Gulzhan Asylbek; Weiss, Nerina; Sullivan, Katherine A; Gibson-Fall, Fawzia; Irwin, Rachel

    2016-08-01

    Complex security environments are characterized by violence (including, but not limited to "armed conflict" in the legal sense), poverty, environmental disasters and poor governance. Violence directly affecting health service delivery in complex security environments includes attacks on individuals (e.g. doctors, nurses, administrators, security guards, ambulance drivers and translators), obstructions (e.g. ambulances being stopped at checkpoints), discrimination (e.g. staff being pressured to treat one patient instead of another), attacks on and misappropriation of health facilities and property (e.g. vandalism, theft and ambulance theft by armed groups), and the criminalization of health workers. This paper examines the challenges associated with researching the context, scope and nature of violence directly affecting health service delivery in these environments. With a focus on data collection, it considers how these challenges affect researchers' ability to analyze the drivers of violence and impact of violence. This paper presents key findings from two research workshops organized in 2014 and 2015 which convened researchers and practitioners in the fields of health and humanitarian aid delivery and policy, and draws upon an analysis of organizational efforts to address violence affecting healthcare delivery and eleven in-depth interviews with representatives of organizations working in complex security environments. Despite the urgency and impact of violence affecting healthcare delivery, there is an overall lack of research that is of health-specific, publically accessible and comparable, as well as a lack of gender-disaggregated data, data on perpetrator motives and an assessment of the 'knock-on' effects of violence. These gaps limit analysis and, by extension, the ability of organizations operating in complex security environments to effectively manage the security of their staff and facilities and to deliver health services. Increased research collaboration among aid organizations, researchers and multilateral organizations, such as the WHO, is needed to address these challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satish C. B. Myneni

    2005-12-13

    Siderophores are biological macromolecules (400-2000 Da) released by bacteria in iron limiting situations to sequester Fe from iron oxyhydroxides and silicates in the natural environment. These molecules contain hydroxamate and phenolate functional groups, and exhibit very high affinity for Fe{sup 3+}. While several studies were conducted to understand the behavior of siderophores and their application to the metal sequestration and mineral dissolution, only a few of them have examined the molecular structure of siderophores and their interactions with metals and mineral surfaces in aqueous solutions. Improved understanding of the chemical state of different functional moieties in siderophores can assist inmore » the application of these biological molecules in actinide separation, sequestration and decontamination processes. The focus of our research group is to evaluate the (a) functional group chemistry of selected siderophores and their metal complexes in aqueous solutions, and (b) the nature of siderophore interactions at the mineral-water interfaces. We selected desferrioxamine B (desB), a hydroxamate siderophore, and its small structural analogue, acetohydroxamic acid (aHa), for this investigation. We examined the functional group chemistry of these molecules as a function of pH, and their complexation with aqueous and solid phase Fe(III). For solid phase Fe, we synthesized all naturally occurring Fe(III)-oxyhydroxides (goethite, lepidocrocite, akaganeite, feroxyhite) and hematite. We also synthesized Fe-oxides (goethite and hematite) of different sizes to evaluate the influence of particle size on mineral dissolution kinetics. We used a series of molecular techniques to explore the functional group chemistry of these molecules and their complexes. Infrared spectroscopy is used to specifically identify the variations in oxime group as a function of pH and Fe(III) complexation. Resonance Raman spectroscopy was used to evaluate the nature of hydroxamate binding in the case of Fe(III)-siderophore complexes and model ligands. Soft and hard X-ray spectroscopy techniques were used to examine the electronic structure of binding groups, and their local structural environment. The synchrotron X-ray studies were conducted at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (Lawrence Berkeley National Laboratory). These experimental vibrational and X-ray spectroscopy studies were complemented with density functional theory calculations. The highlight of this study is the evaluation of the fundamental electronic state information of the hydroxamate moiety in siderophores during deprotonation and Fe(III) complexation. The applications of soft X-ray studies are also new, and were applied, for the first time, to examine the chemistry of organic macromolecules in aqueous solutions.« less

  6. Learning Predictive Statistics: Strategies and Brain Mechanisms.

    PubMed

    Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe

    2017-08-30

    When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment's statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics. Copyright © 2017 Wang et al.

  7. Spacecraft Environments Interactive: Space Radiation and Its Effects on Electronic System

    NASA Technical Reports Server (NTRS)

    Howard, J. W., Jr.; Hardage, D. M.

    1999-01-01

    The natural space environment is characterized by complex and subtle phenomena hostile to spacecraft. Effects of these phenomena impact spacecraft design, development, and operation. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of space radiation and its effects on electronic systems essential to accomplish overall mission objectives, especially in the current climate of smaller/better/cheaper faster. This primer outlines the radiation environments encountered in space, discusses regions and types of radiation, applies the information to effects that these environments have on electronic systems, addresses design guidelines and system reliability, and stresses the importance of early involvement of radiation specialists in mission planning, system design, and design review (part-by-part verification).

  8. ARK: Autonomous mobile robot in an industrial environment

    NASA Technical Reports Server (NTRS)

    Nickerson, S. B.; Jasiobedzki, P.; Jenkin, M.; Jepson, A.; Milios, E.; Down, B.; Service, J. R. R.; Terzopoulos, D.; Tsotsos, J.; Wilkes, D.

    1994-01-01

    This paper describes research on the ARK (Autonomous Mobile Robot in a Known Environment) project. The technical objective of the project is to build a robot that can navigate in a complex industrial environment using maps with permanent structures. The environment is not altered in any way by adding easily identifiable beacons and the robot relies on naturally occurring objects to use as visual landmarks for navigation. The robot is equipped with various sensors that can detect unmapped obstacles, landmarks and objects. In this paper we describe the robot's industrial environment, it's architecture, a novel combined range and vision sensor and our recent results in controlling the robot in the real-time detection of objects using their color and in the processing of the robot's range and vision sensor data for navigation.

  9. Plant Genome Complexity May Be a Factor Limiting In Situ the Transfer of Transgenic Plant Genes to the Phytopathogen Ralstonia solanacearum

    PubMed Central

    Bertolla, Franck; Pepin, Regis; Passelegue-Robe, Eugenie; Paget, Eric; Simkin, Andrew; Nesme, Xavier; Simonet, Pascal

    2000-01-01

    The development of natural competence by bacteria in situ is considered one of the main factors limiting transformation-mediated gene exchanges in the environment. Ralstonia solanacearum is a plant pathogen that is also a naturally transformable bacterium that can develop the competence state during infection of its host. We have attempted to determine whether this bacterium could become the recipient of plant genes. We initially demonstrated that plant DNA was released close to the infecting bacteria. We constructed and tested various combinations of transgenic plants and recipient bacteria to show that the effectiveness of such transfers was directly related to the ratio of the complexity of the plant genome to the number of copies of the transgene. PMID:10966449

  10. Photosynthesis: ancient, essential, complex, diverse ... and in need of improvement in a changing world

    USDA-ARS?s Scientific Manuscript database

    A challenge to crop improvement is the fact that the photosynthetic process has been fine tuned by billions of years of natural selection, and is subject to deeply rooted genetic controls shaped in the native environments of the crop ancestors. These may be difficult to change and may not be optima...

  11. Fostering Third-Grade Students' Use of Scientific Models with the Water Cycle: Elementary Teachers' Conceptions and Practices

    ERIC Educational Resources Information Center

    Vo, Tina; Forbes, Cory T.; Zangori, Laura; Schwarz, Christina V.

    2015-01-01

    Elementary teachers play a crucial role in supporting and scaffolding students' model-based reasoning about natural phenomena, particularly complex systems such as the water cycle. However, little research exists to inform efforts in supporting elementary teachers' learning to foster model-centered, science learning environments. To address this…

  12. The Professional Development Requirements of Workplace English Language and Literacy Programme Practitioners. An Adult Literacy National Project Report

    ERIC Educational Resources Information Center

    Berghella, Tina; Molenaar, John; Wyse, Linda

    2006-01-01

    This report examines the extent and nature of professional development required to meet the current and future needs of Workplace English Language and Literacy Programme practitioners. While the working environment for such practitioners is becoming more complex, with greater demands on them to have industry knowledge and project management…

  13. An Investigation on Value Orientations, Attitudes and Concern towards the Environment: The Case of Turkish Elementary School Students

    ERIC Educational Resources Information Center

    Onur, Arzu; Sahin, Elvan; Tekkaya, Ceren

    2012-01-01

    Environmental attitudes depend on the relative importance that individuals attach to themselves, other people, or all living things. These distinct bases have been found to predict environmental concern, and may act as statistically significant determinants of pro-environmental behaviours. We claim that examining the complex nature of value…

  14. DEVELOPMENT AND TEST APPLICATION A SCREENING-LEVEL MERCURY FATE MODEL AND TOOL FOR EVALUATING WILDLIFE EXPOSURE RISK FOR SURFACE WATERS WITH MERCURY-CONTAMINATED SEDIMENTS (SERAFM)

    EPA Science Inventory

    Complex chemical cycling of mercury in aquatic ecosystems means that tracing the linkage between anthropogenic and natural loadings of mercury to watersheds and water bodies and associated concentrations in the environment are difficult to establish without the assistance of nume...

  15. Building resilience through interlocal relations: case studies of polar bear and walrus management in the Bering Strait

    Treesearch

    Chanda L. Meek; Amy Lauren Lovecraft; Martin D. Robards; Gary P. Kofinas

    2008-01-01

    Arctic coastal communities in the Bering Strait region of Alaska (USA) and Chukotka (Russia) share a close relationship with their natural environments that can be characterized as a social-ecological system. This system is complex, featuring changing ecosystem conditions, multiple jurisdictions, migratory animal populations, and several cultures. We argue that...

  16. Race and Belonging in School: How Anticipated and Experienced Belonging Affect Choice, Persistence, and Performance

    ERIC Educational Resources Information Center

    Murphy, Mary; Zirkel, Sabrina

    2015-01-01

    Background/Context: A sense of belonging in school is a complex construct that relies heavily on students' perceptions of the educational environment, especially their relationships with other students. Some research suggests that a sense of belonging in school is important to all students. However, we argue that the nature and meaning of…

  17. Path Analysis on the Factors Influencing Learning Outcome for Hospitality Interns--From the Flow Theory Perspective

    ERIC Educational Resources Information Center

    Wang, Shu-Tai; Chen, Cheng-Chung

    2015-01-01

    Learning outcome is an important indicator for educators in evaluating curriculum design. The focus of this study has been to examine the factors within internship programs, recognizing the complex nature of knowledge application in a practical industry environment. Flow theory was adopted to explain the psychological state of hospitality students…

  18. Strand IV Environmental and Community Health, Ecology and Epidemiology of Health, Grades 10, 11, and 12.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    A frame of reference concerning health implications, based on the interaction of numerous factors in the physical, social, and biological environments, is provided in this prototype curriculum for grades 10-12. Development of sound techniques in problem solving is encouraged, resulting from the need to understand the nature and complexities of…

  19. The American Indian Mind in a Linear World: American Indian Studies & Traditional Knowledge.

    ERIC Educational Resources Information Center

    Fixico, Donald L.

    This book presents an ethnohistorical examination of American Indian thinking and philosophy and strives to explain the complexity of the American Indian mind in its traditional cultural and natural environment and in contrast to the American mainstream linear world. It is argued that Indian thinking is visual; circular; concerned with the…

  20. A Green Soundscape Index (GSI): The potential of assessing the perceived balance between natural sound and traffic noise.

    PubMed

    Kogan, Pablo; Arenas, Jorge P; Bermejo, Fernando; Hinalaf, María; Turra, Bruno

    2018-06-13

    Urban soundscapes are dynamic and complex multivariable environmental systems. Soundscapes can be organized into three main entities containing the multiple variables: Experienced Environment (EE), Acoustic Environment (AE), and Extra-Acoustic Environment (XE). This work applies a multidimensional and synchronic data-collecting methodology at eight urban environments in the city of Córdoba, Argentina. The EE was assessed by means of surveys, the AE by acoustic measurements and audio recordings, and the XE by photos, video, and complementary sources. In total, 39 measurement locations were considered, where data corresponding to 61 AE and 203 EE were collected. Multivariate analysis and GIS techniques were used for data processing. The types of sound sources perceived, and their extents make up part of the collected variables that belong to the EE, i.e. traffic, people, natural sounds, and others. Sources explaining most of the variance were traffic noise and natural sounds. Thus, a Green Soundscape Index (GSI) is defined here as the ratio of the perceived extents of natural sounds to traffic noise. Collected data were divided into three ranges according to GSI value: 1) perceptual predominance of traffic noise, 2) balanced perception, and 3) perceptual predominance of natural sounds. For each group, three additional variables from the EE and three from the AE were applied, which reported significant differences, especially between ranges 1 and 2 with 3. These results confirm the key role of perceiving natural sounds in a town environment and also support the proposal of a GSI as a valuable indicator to classify urban soundscapes. In addition, the collected GSI-related data significantly helps to assess the overall soundscape. It is noted that this proposed simple perceptual index not only allows one to assess and classify urban soundscapes but also contributes greatly toward a technique for separating environmental sound sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. An Investigation of Methods to Measure and Predict Biological and Physical Effects of Commercial Navigation Traffic: Workshop II Held in St. Louis, Missouri on 17-18 April 1990

    DTIC Science & Technology

    1991-04-01

    task of measurinig these forces in the natural environment and the increasing need to predict how these forces will ultimately affect the environment...near and beneath a towboat are complex and three-dimensional. These flow conditions are affected by physical conditions such as the shape and size of...a highly quantitative and fruitful line of pure and applied stud- ies of aquatic animal life histories (e.g., Russell Hunter (1953), Fremling (1960

  2. Blood coagulation reactions on nanoscale membrane surfaces

    NASA Astrophysics Data System (ADS)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  3. "Structure and dynamics in complex chemical systems: Gaining new insights through recent advances in time-resolved spectroscopies.” ACS Division of Physical Chemistry Symposium presented at the Fall National ACS Meeting in Boston, MA, August 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Daniel

    8-Session Symposium on STRUCTURE AND DYNAMICS IN COMPLEX CHEMICAL SYSTEMS: GAINING NEW INSIGHTS THROUGH RECENT ADVANCES IN TIME-RESOLVED SPECTROSCOPIES. The intricacy of most chemical, biochemical, and material processes and their applications are underscored by the complex nature of the environments in which they occur. Substantial challenges for building a global understanding of a heterogeneous system include (1) identifying unique signatures associated with specific structural motifs within the heterogeneous distribution, and (2) resolving the significance of each of multiple time scales involved in both small- and large-scale nuclear reorganization. This symposium focuses on the progress in our understanding of dynamics inmore » complex systems driven by recent innovations in time-resolved spectroscopies and theoretical developments. Such advancement is critical for driving discovery at the molecular level facilitating new applications. Broad areas of interest include: Structural relaxation and the impact of structure on dynamics in liquids, interfaces, biochemical systems, materials, and other heterogeneous environments.« less

  4. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  5. Environmental and biomedical applications of natural metal stable isotope variations

    USGS Publications Warehouse

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  6. X-Ray Spectral Diagnostics of Gamma-Ray Burst Environments.

    PubMed

    Paerels; Kuulkers; Heise; Liedahl

    2000-05-20

    Recently, detection of discrete features in the X-ray afterglow spectra of GRB 970508 and GRB 970828 was reported. The most natural interpretation of these features is that they are redshifted Fe K emission complexes. The identification of the line emission mechanism has drastic implications for the inferred mass of radiating material and hence the nature of the burst site. X-ray spectroscopy provides a direct observational constraint on these properties of gamma-ray bursters. We briefly discuss how these constraints arise in the context of an application to the spectrum of GRB 970508.

  7. Review: the Contribution of both Nature and Nurture to Carcinogenesis and Progression in Solid Tumours.

    PubMed

    Hyndman, Iain Joseph

    2016-04-01

    Cancer is a leading cause of mortality worldwide. Cancer arises due to a series of somatic mutations that accumulate within the nucleus of a cell which enable the cell to proliferate in an unregulated manner. These mutations arise as a result of both endogenous and exogenous factors. Genes that are commonly mutated in cancer cells are involved in cell cycle regulation, growth and proliferation. It is known that both nature and nurture play important roles in cancer development through complex gene-environment interactions; however, the exact mechanism of these interactions in carcinogenesis is presently unclear. Key environmental factors that play a role in carcinogenesis include smoking, UV light and oncoviruses. Angiogenesis, inflammation and altered cell metabolism are important factors in carcinogenesis and are influenced by both genetic and environmental factors. Although the exact mechanism of nature-nurture interactions in solid tumour formation are not yet fully understood, it is evident that neither nature nor nurture can be considered in isolation. By understanding more about gene-environment interactions, it is possible that cancer mortality could be reduced.

  8. Animal clocks: when science meets nature.

    PubMed

    Kronfeld-Schor, Noga; Bloch, Guy; Schwartz, William J

    2013-08-22

    Daily rhythms of physiology and behaviour are governed by an endogenous timekeeping mechanism (a circadian 'clock'), with the alternation of environmental light and darkness synchronizing (entraining) these rhythms to the natural day-night cycle. Our knowledge of the circadian system of animals at the molecular, cellular, tissue and organismal levels is remarkable, and we are beginning to understand how each of these levels contributes to the emergent properties and increased complexity of the system as a whole. For the most part, these analyses have been carried out using model organisms in standard laboratory housing, but to begin to understand the adaptive significance of the clock, we must expand our scope to study diverse animal species from different taxonomic groups, showing diverse activity patterns, in their natural environments. The seven papers in this Special Feature of Proceedings of the Royal Society B take on this challenge, reviewing the influences of moonlight, latitudinal clines, evolutionary history, social interactions, specialized temporal niches, annual variation and recently appreciated post-transcriptional molecular mechanisms. The papers emphasize that the complexity and diversity of the natural world represent a powerful experimental resource.

  9. Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes

    PubMed Central

    Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela

    2013-01-01

    Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID:24137105

  10. Remediation of lead-contaminated soil with non-toxic biodegradable natural ligands extracted from soybean.

    PubMed

    Lee, Yong-Woo; Kim, Chulsung

    2012-01-01

    Bench-scale soil washing studies were performed to evaluate the potential application of non-toxic, biodegradable extracted soybean-complexing ligands for the remediation of lead-contaminated soils. Results showed that, with extracted soybean-complexing ligands, lead solubility extensively increased when pH of the solution was higher than 6, and approximately 10% (500 mg/kg) of lead was removed from a rifle range soil. Two potential primary factors controlling the effectiveness of lead extraction from lead-contaminated soils with natural ligands are adsorption of extracted aqueous lead ions onto the ground soybean and the pH of the extraction solution. More complexing ligands were extracted from the ground soybean as the reaction pH increased. As a result, significantly higher lead extraction efficiency was observed under basic environments. In addition, less adsorption onto soybean was observed when the pH of the solution was higher than 7. Among two available Lewis base functional groups in the extracted soybean-complexing ligands such as carboxylate and the alpha-amino functional groups, the non-protonated alpha-amino functional groups may play an important role for the dissolution of lead from lead-contaminated soil through the formation of soluble lead--ligand complexes.

  11. Synthetic humic substances and their use for remediation of contaminated environments

    NASA Astrophysics Data System (ADS)

    Dudare, Diana; Klavins, Maris

    2014-05-01

    Soils are increasingly subjected to different chemical stresses, because of increasing industrialization process and other factors. Different anthropogenic compounds (organic or inorganic in nature) upon entering the soil, may not only influence its productivity potential, but may also affect the quality of groundwater and food chain. Consequently, soils of different environments contain a complex mixture of contaminants, such as oil products, metals, organic solvents, acids, bases and radionuclides. Thereby greater focus should be paid to risk assessment and evaluation of remedial techniques in order to restore the quality of the soil and groundwater. The treatment technologies presently used to remove contaminants are physical, chemical and biological technologies. Many functional groups in the structure of humic substances determine their ability to interact with metal ions forming stable complexes and influencing speciation of metal ions in the environment, as well mobility, behaviour and speciation forms in the environment. Humic substances are suggested for use in the remediation of environments contaminated with metals, owing to complex forming properties. Several efforts have been undertaken with respect to synthesize humic substances for their structural studies. At the same time the real number of methods suggested for synthesis of humic substances is highly limited and their synthesis in general has been used mostly for their structural analysis. The present study deals with development of approaches for synthesis of humic substances with increased complex forming ability in respect to metal ions. Industrially produced humic substances (TEHUM) were used for comparison and after their modification their properties were analyzed for their elemental composition; functional group content changes in spectral characteristics. Synthetic humic substances showed significant differences in the number of functional groups and in ability to interact with the metal ions, which were reflected in their complexation properties towards metal ions. FTIR spectra gave evidence of the presence of metal ions, strongly bound and protected in inner sphere complexes. Considering a large scale of production of humic substances, the obtained synthetic humic substances with modified properties are perspective and sustainable areas of use. The obtained results of this study showed that synthetic humic substances can be used for remediation of environments contaminated with heavy metal ions.

  12. State of the Data Union, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is the first report on the State of the Data Union (SDU) for the NASA Office of Space Science and Applications (OSSA). OSSA responsibilities include the collection, analysis, and permanent archival of data critical to space science research. The nature of how this is done by OSSA is evolving to keep pace with changes in space research. Current and planned missions have evolved to be more complex and multidisciplinary, and are generating much more data and lasting longer than earlier missions. New technologies enable global access to data, transfer of huge volumes of data, and increasingly complex analysis. The SDU provides a snapshot of this dynamic environment, identifying trends in capabilities and requirements. The current space science data environment is described and parameters which capture the pulse of key functions within that environment are presented. Continuous efforts of OSSA to improve the availability and quality of data provided to the scientific community are reported, highlighting efforts such as the Data Management Initiative.

  13. Using voice input and audio feedback to enhance the reality of a virtual experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miner, N.E.

    1994-04-01

    Virtual Reality (VR) is a rapidly emerging technology which allows participants to experience a virtual environment through stimulation of the participant`s senses. Intuitive and natural interactions with the virtual world help to create a realistic experience. Typically, a participant is immersed in a virtual environment through the use of a 3-D viewer. Realistic, computer-generated environment models and accurate tracking of a participant`s view are important factors for adding realism to a virtual experience. Stimulating a participant`s sense of sound and providing a natural form of communication for interacting with the virtual world are equally important. This paper discusses the advantagesmore » and importance of incorporating voice recognition and audio feedback capabilities into a virtual world experience. Various approaches and levels of complexity are discussed. Examples of the use of voice and sound are presented through the description of a research application developed in the VR laboratory at Sandia National Laboratories.« less

  14. Influence of ethnicity on recreation and natural environment use patterns: Managing recreation sites for ethnic and racial diversity

    NASA Astrophysics Data System (ADS)

    Baas, John M.; Ewert, Alan; Chavez, Deborah J.

    1993-07-01

    Management of natural environment sites is becoming increasingly complex because of the influx of urbanized society into wildland areas. This worldwide phenomenon impacts a wide range of countries. In southern California ethnicity is often a major factor influencing recreation site use and behavior at sites in the wildland-urban interface. This study investigated the role of ethnicity and race on the use patterns, perception of environment, and recreation behaviors at an outdoor recreation site visited by an ethnically diverse population. Two research questions were asked: (1) What ethnic groups engage in outdoor recreation at this site, and (2) what differences can be assigned to these various groups? Data were collected from 250 recreationists during 1991. Three major ethnic groups were identified, and statistically significant differences were found in the importance of site attributes, activity participation, and in preferred and actual communication channels. Management implications and strategies based on group differences are discussed.

  15. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    PubMed

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by the steel corrosion products or (b) in areas where the dissolved uranium/iron species, the products generated by the dissolution power of citric acid, was not properly rinsed away.

  17. Gene-Lifestyle Interactions in Complex Diseases: Design and Description of the GLACIER and VIKING Studies

    PubMed Central

    Kurbasic, Azra; Poveda, Alaitz; Chen, Yan; Ågren, Åsa; Engberg, Elisabeth; Hu, Frank B.; Johansson, Ingegerd; Barroso, Ines; Brändström, Anders; Hallmans, Göran; Renström, Frida; Franks, Paul W.

    2014-01-01

    Most complex diseases have well-established genetic and non-genetic risk factors. In some instances, these risk factors are likely to interact, whereby their joint effects convey a level of risk that is either significantly more or less than the sum of these risks. Characterizing these gene-environment interactions may help elucidate the biology of complex diseases, as well as to guide strategies for their targeted prevention. In most cases, the detection of gene-environment interactions will require sample sizes in excess of those needed to detect the marginal effects of the genetic and environmental risk factors. Although many consortia have been formed, comprising multiple diverse cohorts to detect gene-environment interactions, few robust examples of such interactions have been discovered. This may be because combining data across studies, usually through meta-analysis of summary data from the contributing cohorts, is often a statistically inefficient approach for the detection of gene-environment interactions. Ideally, single, very large and well-genotyped prospective cohorts, with validated measures of environmental risk factor and disease outcomes should be used to study interactions. The presence of strong founder effects within those cohorts might further strengthen the capacity to detect novel genetic effects and gene-environment interactions. Access to accurate genealogical data would also aid in studying the diploid nature of the human genome, such as genomic imprinting (parent-of-origin effects). Here we describe two studies from northern Sweden (the GLACIER and VIKING studies) that fulfill these characteristics. PMID:25396097

  18. Gene-Lifestyle Interactions in Complex Diseases: Design and Description of the GLACIER and VIKING Studies.

    PubMed

    Kurbasic, Azra; Poveda, Alaitz; Chen, Yan; Agren, Asa; Engberg, Elisabeth; Hu, Frank B; Johansson, Ingegerd; Barroso, Ines; Brändström, Anders; Hallmans, Göran; Renström, Frida; Franks, Paul W

    2014-12-01

    Most complex diseases have well-established genetic and non-genetic risk factors. In some instances, these risk factors are likely to interact, whereby their joint effects convey a level of risk that is either significantly more or less than the sum of these risks. Characterizing these gene-environment interactions may help elucidate the biology of complex diseases, as well as to guide strategies for their targeted prevention. In most cases, the detection of gene-environment interactions will require sample sizes in excess of those needed to detect the marginal effects of the genetic and environmental risk factors. Although many consortia have been formed, comprising multiple diverse cohorts to detect gene-environment interactions, few robust examples of such interactions have been discovered. This may be because combining data across studies, usually through meta-analysis of summary data from the contributing cohorts, is often a statistically inefficient approach for the detection of gene-environment interactions. Ideally, single, very large and well-genotyped prospective cohorts, with validated measures of environmental risk factor and disease outcomes should be used to study interactions. The presence of strong founder effects within those cohorts might further strengthen the capacity to detect novel genetic effects and gene-environment interactions. Access to accurate genealogical data would also aid in studying the diploid nature of the human genome, such as genomic imprinting (parent-of-origin effects). Here we describe two studies from northern Sweden (the GLACIER and VIKING studies) that fulfill these characteristics.

  19. Genotype-environment interaction and sociology: contributions and complexities.

    PubMed

    Seabrook, Jamie A; Avison, William R

    2010-05-01

    Genotype-environment interaction (G x E) refers to situations in which genetic effects connected to a phenotype are dependent upon variability in the environment, or when genes modify an organism's sensitivity to particular environmental features. Using a typology suggested in the G x E literature, we provide an overview of recent papers that show how social context can trigger a genetic vulnerability, compensate for a genetic vulnerability, control behaviors for which a genetic vulnerability exists, and improve adaptation via proximal causes. We argue that to improve their understanding of social structure, sociologists can take advantage of research in behavior genetics by assessing the impact of within-group variance of various health outcomes and complex human behaviors that are explainable by genotype, environment and their interaction. Insights from life course sociology can aid in ensuring that the dynamic nature of the environment in G x E has been accounted for. Identification of an appropriate entry point for sociologists interested in G x E research could begin with the choice of an environmental feature of interest, a genetic factor of interest, and/or behavior of interest. Optimizing measurement in order to capture the complexity of G x E is critical. Examining the interaction between poorly measured environmental factors and well measured genetic variables will overestimate the effects of genetic variables while underestimating the effect of environmental influences, thereby distorting the interaction between genotype and environment. Although the expense of collecting environmental data is very high, reliable and precise measurement of an environmental pathogen enhances a study's statistical power. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Comparison of Commercial Structure-From Photogrammety Software Used for Underwater Three-Dimensional Modeling of Coral Reef Environments

    NASA Astrophysics Data System (ADS)

    Burns, J. H. R.; Delparte, D.

    2017-02-01

    Structural complexity in ecosystems creates an assortment of microhabitat types and has been shown to support greater diversity and abundance of associated organisms. The 3D structure of an environment also directly affects important ecological parameters such as habitat provisioning and light availability and can therefore strongly influence ecosystem function. Coral reefs are architecturally complex 3D habitats, whose structure is intrinsically linked to the ecosystem biodiversity, productivity, and function. The field of coral ecology has, however, been primarily limited to using 2-dimensional (2D) planar survey techniques for studying the physical structure of reefs. This conventional approach fails to capture or quantify the intricate structural complexity of corals that influences habitat facilitation and biodiversity. A 3-dimensional (3D) approach can obtain accurate measurements of architectural complexity, topography, rugosity, volume, and other structural characteristics that affect biodiversity and abundance of reef organisms. Structurefrom- Motion (SfM) photogrammetry is an emerging computer vision technology that provides a simple and cost-effective method for 3D reconstruction of natural environments. SfM has been used in several studies to investigate the relationship between habitat complexity and ecological processes in coral reef ecosystems. This study compared two commercial SfM software packages, Agisoft Photoscan Pro and Pix4Dmapper Pro 3.1, in order to assess the cpaability and spatial accuracy of these programs for conducting 3D modeling of coral reef habitats at three spatial scales.

  1. Contributions of ignitions, fuels, and weather to the spatial patterns of burn probability of a boreal landscape

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Carol Miller; Meg A. Krawchuck; Mark Heathcott; Max A. Moritz

    2011-01-01

    The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fireprone boreal landscape of western Canada, Wood Buffalo National...

  2. What Adventures Can You Have in Wetlands, Lakes, Ponds, and Puddles? A Marine Education Infusion Unit on Wet Environments. Revised Edition.

    ERIC Educational Resources Information Center

    Butzow, John W.; And Others

    Intended for use in middle and junior high schools, these nine classroom and field activities help students better understand the great diversity of natural communities and the complex interactions of aquatic organisms. A background information section presents teachers with an overview of wetlands, streams, lakes and ponds, and puddles. Classroom…

  3. Initiating the Use of GIS Technology in Wyoming Public Schools through In-Service Workshops.

    ERIC Educational Resources Information Center

    Buss, Alan R.; McClurg, Patricia A.

    This paper reports the results of a 2-year study investigating the types of experiences and support necessary for in-service teachers to effectively integrate Geographic Information Systems (GIS) in their teaching/learning environments. The complex nature of GIS software prompted the authors to ask whether GIS can be a useful tool in the…

  4. A Colorful Mixing Experiment in a Stirred Tank Using Non-Newtonian Blue Maize Flour Suspensions

    ERIC Educational Resources Information Center

    Trujilo-de Santiago, Grissel; Rojas-de Gante, Cecillia; García-Lara, Silverio; Ballesca´-Estrada, Adriana; Alvarez, Marion Moise´s

    2014-01-01

    A simple experiment designed to study mixing of a material of complex rheology in a stirred tank is described. Non-Newtonian suspensions of blue maize flour that naturally contain anthocyanins have been chosen as a model fluid. These anthocyanins act as a native, wide spectrum pH indicator exhibiting greenish colors in alkaline environments, blue…

  5. Reconceptualising Understandings of Texts, Readers and Contexts: One English Teacher's Response to Using Multimodal Texts and Interactive Whiteboards

    ERIC Educational Resources Information Center

    Kitson, Lisbeth

    2011-01-01

    The comprehension of multimodal texts is now a key concern with the release of the Australian National Curriculum for English (ACARA, 2010). However, the nature of multimodal texts, the diversity of readers in classrooms, and the complex technological environments through which multimodal texts are mediated, requires English teachers to reconsider…

  6. From data to decisions: Processing information, biases, and beliefs for improved management of natural resources and environments

    USGS Publications Warehouse

    Glynn, Pierre D.; Voinov, Alexey A.; Shapiro, Carl D.; White, Paul A.

    2017-01-01

    Our different kinds of minds and types of thinking affect the ways we decide, take action, and cooperate (or not). Derived from these types of minds, innate biases, beliefs, heuristics, and values (BBHV) influence behaviors, often beneficially, when individuals or small groups face immediate, local, acute situations that they and their ancestors faced repeatedly in the past. BBHV, though, need to be recognized and possibly countered or used when facing new, complex issues or situations especially if they need to be managed for the benefit of a wider community, for the longer-term and the larger-scale. Taking BBHV into account, we explain and provide a cyclic science-infused adaptive framework for (1) gaining knowledge of complex systems and (2) improving their management. We explore how this process and framework could improve the governance of science and policy for different types of systems and issues, providing examples in the area of natural resources, hazards, and the environment. Lastly, we suggest that an “Open Traceable Accountable Policy” initiative that followed our suggested adaptive framework could beneficially complement recent Open Data/Model science initiatives.

  7. Decision making in a human population living sustainably.

    PubMed

    Hicks, John S; Burgman, Mark A; Marewski, Julian N; Fidler, Fiona; Gigerenzer, Gerd

    2012-10-01

    The Tiwi people of northern Australia have managed natural resources continuously for 6000-8000 years. Tiwi management objectives and outcomes may reflect how they gather information about the environment. We qualitatively analyzed Tiwi documents and management techniques to examine the relation between the social and physical environment of decision makers and their decision-making strategies. We hypothesized that principles of bounded rationality, namely, the use of efficient rules to navigate complex decision problems, explain how Tiwi managers use simple decision strategies (i.e., heuristics) to make robust decisions. Tiwi natural resource managers reduced complexity in decision making through a process that gathers incomplete and uncertain information to quickly guide decisions toward effective outcomes. They used management feedback to validate decisions through an information loop that resulted in long-term sustainability of environmental use. We examined the Tiwi decision-making processes relative to management of barramundi (Lates calcarifer) fisheries and contrasted their management with the state government's management of barramundi. Decisions that enhanced the status of individual people and their attainment of aspiration levels resulted in reliable resource availability for Tiwi consumers. Different decision processes adopted by the state for management of barramundi may not secure similarly sustainable outcomes. ©2012 Society for Conservation Biology.

  8. Weathering and weathering rates of natural stone

    NASA Astrophysics Data System (ADS)

    Winkler, Erhard M.

    1987-06-01

    Physical and chemical weathering were studied as separate processes in the past. Recent research, however, shows that most processes are physicochemical in nature. The rates at which calcite and silica weather by dissolution are dependent on the regional and local climatic environment. The weathering of silicate rocks leaves discolored margins and rinds, a function of the rocks' permeability and of the climatic parameters. Salt action, the greatest disruptive factor, is complex and not yet fully understood in all its phases, but some of the causes of disruption are crystallization pressure, hydration pressure, and hygroscopic attraction of excess moisture. The decay of marble is complex, an interaction between disolution, crack-corrosion, and expansion-contraction cycies triggered by the release of residual stresses. Thin spalls of granites commonly found near the street level of buildings are generally caused by a combination of stress relief and salt action. To study and determine weathering rates of a variety of commercial stones, the National Bureau of Standards erected a Stone Exposure Test Wall in 1948. Of the many types of stone represented, only a few fossiliferous limestones permit a valid measurement of surface reduction in a polluted urban environment.

  9. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters

    PubMed Central

    Wu, Hanyu; Li, Ping; Pan, Duoqiang; Yin, Zhuoxin; Fan, Qiaohui; Wu, Wangsuo

    2016-01-01

    The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment. PMID:26930197

  10. Sorption of Eu(III) on humic acid or fulvic acid bound to hydrous alumina studied by SEM-EDS, XPS, TRLFS, and batch techniques.

    PubMed

    Tan, X L; Wang, X K; Geckeis, H; Rabung, Th

    2008-09-01

    To identify the effect of humic acid (HA) and fulvic acid (FA) on the sorption mechanism of Eu(III) on organic--inorganic colloids in the environment at a molecular level, surface adsorbed/ complexed Eu(III) on hydrous alumina, HA-, and FA-hydrous alumina hybrids were characterized by using X-ray photoelectron spectroscopy (XPS) and time-resolved laser fluorescence spectroscopy (TRLFS). The experiments were performed in 0.1 mol/L KNO3 or 0.1 mol/L NaClO4 under ambient conditions. The pH values were varied between 2 and 11 at a fixed Eu(III) concentration of 6.0 x 10(-7) mol/L and 4.3 x 10(-5) mol/L. The different Eu(III)/FA(HA)/hydrous alumina complexes were characterized by their fluorescence emission spectra ((5D0-F1)/ (5D0 --> 7F2)) and binding energy of Eu(III). Inner-sphere surface complexation may contribute mainly to Eu(III) sorption on hydrous alumina, and a ternary surface complex is formed at the HA/ FA-hydrous alumina hybrid surfaces. The sorption and species of Eu(III) in ternary Eu-HA/FA-hydrous alumina systems are not dominated by either HA/FA or hydrous alumina, but are dominated by both HA/FA and hydrous alumina. The results are important for understanding the sorption mechanisms and the nature of surface adsorbed Eu(III) species and trivalent chemical homologues of Eu(III) in the natural environment.

  11. Colloquium paper: bioenergetics, the origins of complexity, and the ascent of man.

    PubMed

    Wallace, Douglas C

    2010-05-11

    Complex structures are generated and maintained through energy flux. Structures embody information, and biological information is stored in nucleic acids. The progressive increase in biological complexity over geologic time is thus the consequence of the information-generating power of energy flow plus the information-accumulating capacity of DNA, winnowed by natural selection. Consequently, the most important component of the biological environment is energy flow: the availability of calories and their use for growth, survival, and reproduction. Animals can exploit and adapt to available energy resources at three levels. They can evolve different anatomical forms through nuclear DNA (nDNA) mutations permitting exploitation of alternative energy reservoirs, resulting in new species. They can evolve modified bioenergetic physiologies within a species, primarily through the high mutation rate of mitochondrial DNA (mtDNA)-encoded bioenergetic genes, permitting adjustment to regional energetic environments. They can alter the epigenomic regulation of the thousands of dispersed bioenergetic genes via mitochondrially generated high-energy intermediates permitting individual accommodation to short-term environmental energetic fluctuations. Because medicine pertains to a single species, Homo sapiens, functional human variation often involves sequence changes in bioenergetic genes, most commonly mtDNA mutations, plus changes in the expression of bioenergetic genes mediated by the epigenome. Consequently, common nDNA polymorphisms in anatomical genes may represent only a fraction of the genetic variation associated with the common "complex" diseases, and the ascent of man has been the product of 3.5 billion years of information generation by energy flow, accumulated and preserved in DNA and edited by natural selection.

  12. Conceptualising population health: from mechanistic thinking to complexity science.

    PubMed

    Jayasinghe, Saroj

    2011-01-20

    The mechanistic interpretation of reality can be traced to the influential work by René Descartes and Sir Isaac Newton. Their theories were able to accurately predict most physical phenomena relating to motion, optics and gravity. This paradigm had at least three principles and approaches: reductionism, linearity and hierarchy. These ideas appear to have influenced social scientists and the discourse on population health. In contrast, Complexity Science takes a more holistic view of systems. It views natural systems as being 'open', with fuzzy borders, constantly adapting to cope with pressures from the environment. These are called Complex Adaptive Systems (CAS). The sub-systems within it lack stable hierarchies, and the roles of agency keep changing. The interactions with the environment and among sub-systems are non-linear interactions and lead to self-organisation and emergent properties. Theoretical frameworks such as epi+demos+cracy and the ecosocial approach to health have implicitly used some of these concepts of interacting dynamic sub-systems. Using Complexity Science we can view population health outcomes as an emergent property of CAS, which has numerous dynamic non-linear interactions among its interconnected sub-systems or agents. In order to appreciate these sub-systems and determinants, one should acquire a basic knowledge of diverse disciplines and interact with experts from different disciplines. Strategies to improve health should be multi-pronged, and take into account the diversity of actors, determinants and contexts. The dynamic nature of the system requires that the interventions are constantly monitored to provide early feedback to a flexible system that takes quick corrections.

  13. Tutorial: Radiation Effects in Electronic Systems

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2017-01-01

    This tutorial presentation will give an overview of radiation effects in electrical, electronic, and electromechanical (EEE) components as it applies to civilian space systems of varying size and complexity. The natural space environment presents many unique threats to electronic systems regardless of where the systems operate from low-Earth orbit to interplanetary space. The presentation will cover several topics, including: an overview and introduction to the applicable space radiation environments common to a broad range of mission designs; definitions and impacts of effects due to impinging particles in the space environment e.g., total ionizing dose (TID), total non-ionizing dose (TNID), and single-event effects (SEE); and, testing for and evaluation of TID, TNID, and SEE in EEE components.

  14. Evaluating teams in extreme environments: from issues to answers.

    PubMed

    Bishop, Sheryl L

    2004-07-01

    The challenge to effectively evaluating teams in extreme environments necessarily involves a wide range of physiological, psychological, and psychosocial factors. The high reliance on technology, the growing frequency of multinational and multicultural teams, and the demand for longer duration missions all further compound the complexity of the problem. The primary goal is the insurance of human health and well-being with expectations that such priorities will naturally lead to improved chances for performance and mission success. This paper provides an overview of some of the most salient immediate challenges for selecting, training, and supporting teams in extreme environments, gives exemplars of research findings concerning these challenges, and discusses the need for future research.

  15. Soft micromachines with programmable motility and morphology

    PubMed Central

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J.; Pané, Salvador; Nelson, Bradley J.

    2016-01-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers. PMID:27447088

  16. Soft micromachines with programmable motility and morphology.

    PubMed

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J; Pané, Salvador; Nelson, Bradley J

    2016-07-22

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.

  17. First Principle Estimation of Geochemically Important Transition Metal Oxide Properties: Structure and Dynamics of the Bulk, Surface and Mineral/Aqueous Fluid Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Bylaska, Eric J.; Weare, John H.

    Reactions in the mineral surface/reservoir fluid interface control many geochemical processes such as the dissolution and growth of minerals (Yanina and Rosso 2008), heterogeneous oxidation/reduction (Hochella 1990, Brown 2001, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008), and inorganic respiration (Newman 2010). Key minerals involved in these processes are the transition metal oxides and oxyhydroxides (e.g., hematite, Fe2O3, and goethite, FeOOH)(Brown, Henrich et al. 1999, Brown 2001, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008). To interpret and predict these processes, it is necessary to have a high level of understanding of the interactions between themore » formations containing these minerals and their reservoir fluids. However, these are complicated chemical events occurring under a wide range of T, P, and X conditions and the interpretation is complicated by the highly heterogeneous nature of natural environments (Hochella 1990, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008) and the electronic and structural complexity of the oxide materials involved(Cox 1992, Kotliar and Vollhardt 2004, Navrotsky, Mazeina et al. 2008). In addition, also because of the complexity of the minerals involved and the heterogeneous nature of natural systems, the direct observation of these reactions at the atomic level is experimentally extremely difficult. Theoretical simulations will provide important support for analysis of the geochemistry of the mineral surface/fluid region as well as provide essential tools to extrapolate laboratory measurements to the field environment.« less

  18. The characteristics of gas hydrates occurring in natural environment

    NASA Astrophysics Data System (ADS)

    Lu, H.; Moudrakovski, I.; Udachin, K.; Enright, G.; Ratcliffe, C.; Ripmeester, J.

    2009-12-01

    In the past few years, extensive analyses have been carried out for characterizing the natural gas hydrate samples from Cascadia, offshore Vancouver Island; Mallik, Mackenzie Delta; Mount Elbert, Alaska North Slope; Nankai Trough, offshore Japan; Japan Sea and offshore India. With the results obtained, it is possible to give a general picture of the characteristics of gas hydrates occurring in natural environment. Gas hydrate can occur in sediments of various types, from sands to clay, although it is preferentially enriched in sediments of certain types, for example coarse sands and fine volcanic ash. Most of the gas hydrates in sediments are invisible, occurring in the pores of the sediments, while some hydrates are visible, appearing as massive, nodular, planar, vein-like forms and occurring around the seafloor, in the fractures related to fault systems, or any other large spaces available in sediments. Although methane is the main component of most of the natural gas hydrates, C2 to C7 hydrocarbons have been recognized in hydrates, sometimes even in significant amounts. Shallow marine gas hydrates have been found generally to contain minor amounts of hydrogen sulfide. Gas hydrate samples with complex gas compositions have been found to have heterogeneous distributions in composition, which might reflect changes in the composition of the available gas in the surrounding environment. Depending on the gas compositions, the structure type of a natural gas hydrate can be structure I, II or H. For structure I methane hydrate, the large cages are almost fully occupied by methane molecules, while the small cages are only partly occupied. Methane hydrates occurring in different environments have been identified with almost the same crystallographic parameters.

  19. Design of multi-phase dynamic chemical networks

    NASA Astrophysics Data System (ADS)

    Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.

    2017-08-01

    Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.

  20. Outer-sphere Pb(II) adsorbed at specific surface sites on single crystal α-alumina

    USGS Publications Warehouse

    Bargar, John R.; Towle, Steven N.; Brown, Gordon E.; Parks, George A.

    1996-01-01

    Solvated Pb(II) ions were found to adsorb as structurally well-defined outer-sphere complexes at specific sites on the α-Al2O3 (0001) single crystal surface, as determined by grazing-incidence X-ray absorption fine structure (GI-XAFS) measurements. The XAFS results suggest that the distance between Pb(II) adions and the alumina surface is approximately 4.2 Å. In contrast, Pb(II) adsorbs as more strongly bound inner-sphere complexes on α-Al2O3 (102). The difference in reactivities of the two alumina surfaces has implications for modeling surface complexation reactions of contaminants in natural environments, catalysis, and compositional sector zoning of oxide crystals.

  1. An innovative multimodal virtual platform for communication with devices in a natural way

    NASA Astrophysics Data System (ADS)

    Kinkar, Chhayarani R.; Golash, Richa; Upadhyay, Akhilesh R.

    2012-03-01

    As technology grows people are diverted and are more interested in communicating with machine or computer naturally. This will make machine more compact and portable by avoiding remote, keyboard etc. also it will help them to live in an environment free from electromagnetic waves. This thought has made 'recognition of natural modality in human computer interaction' a most appealing and promising research field. Simultaneously it has been observed that using single mode of interaction limit the complete utilization of commands as well as data flow. In this paper a multimodal platform, where out of many natural modalities like eye gaze, speech, voice, face etc. human gestures are combined with human voice is proposed which will minimize the mean square error. This will loosen the strict environment needed for accurate and robust interaction while using single mode. Gesture complement Speech, gestures are ideal for direct object manipulation and natural language is used for descriptive tasks. Human computer interaction basically requires two broad sections recognition and interpretation. Recognition and interpretation of natural modality in complex binary instruction is a tough task as it integrate real world to virtual environment. The main idea of the paper is to develop a efficient model for data fusion coming from heterogeneous sensors, camera and microphone. Through this paper we have analyzed that the efficiency is increased if heterogeneous data (image & voice) is combined at feature level using artificial intelligence. The long term goal of this paper is to design a robust system for physically not able or having less technical knowledge.

  2. Pyrazole bridged dinuclear Cu(II) and Zn(II) complexes as phosphatase models: Synthesis and activity

    NASA Astrophysics Data System (ADS)

    Naik, Krishna; Nevrekar, Anupama; Kokare, Dhoolesh Gangaram; Kotian, Avinash; Kamat, Vinayak; Revankar, Vidyanand K.

    2016-12-01

    Present work describes synthesis of dibridged dinuclear [Cu2L2(μ2-NN pyr)(NO3)2(H2O)2] and [Zn2L(μ-OH)(μ-NNpyr)(H2O)2] complexes derived from a pyrazole based ligand bis(2-hydroxy-3-methoxybenzylidene)-1H-pyrazole-3,5-dicarbohydrazide. The ligand shows dimeric chelate behaviour towards copper against monomeric for zinc counterpart. Spectroscopic evidences affirm octahedral environment around the metal ions in solution state and non-electrolytic nature of the complexes. Both the complexes are active catalysts towards phosphomonoester hydrolysis with first order kcat values in the range of 2 × 10-3s-1. Zinc complex exhibited promising catalytic efficiency for the hydrolysis. The dinuclear complexes hydrolyse via Lewis acid activation, whereby the phosphate esters are preferentially bound in a bidentate bridging fashion and subsequent nucleophilic attack to release phosphate group.

  3. [Health: an adaptive complex system].

    PubMed

    Toro-Palacio, Luis Fernando; Ochoa-Jaramillo, Francisco Luis

    2012-02-01

    This article points out the enormous gap that exists between complex thinking of an intellectual nature currently present in our environment, and complex experimental thinking that has facilitated the scientific and technological advances that have radically changed the world. The article suggests that life, human beings, global society, and all that constitutes health be considered as adaptive complex systems. This idea, in turn, prioritizes the adoption of a different approach that seeks to expand understanding. When this rationale is recognized, the principal characteristics and emerging properties of health as an adaptive complex system are sustained, following a care and services delivery model. Finally, some pertinent questions from this perspective are put forward in terms of research, and a series of appraisals are expressed that will hopefully serve to help us understand all that we have become as individuals and as a species. The article proposes that the delivery of health care services be regarded as an adaptive complex system.

  4. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest

    NASA Astrophysics Data System (ADS)

    Fotis, A. T.; Curtis, P.

    2016-12-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in four co-dominant species (Acer rubrum, Fagus grandifolia, Pinus strobus and Quercus rubra) at different heights in plots with similar leaf area index (LAI) but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaves of F. grandifolia, Q. rubra, and P. strobus shifted towards sun-acclimation phenotypes with increasing canopy complexity while leaves of A. rubrum became more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further acclimation by increasing Narea and reducing Chlmass as LMA increased, while P. strobus showed no change in Narea and Chlmass with increasing LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy.

  5. Transmissible cancers in an evolutionary context.

    PubMed

    Ujvari, Beata; Papenfuss, Anthony T; Belov, Katherine

    2016-07-01

    Cancer is an evolutionary and ecological process in which complex interactions between tumour cells and their environment share many similarities with organismal evolution. Tumour cells with highest adaptive potential have a selective advantage over less fit cells. Naturally occurring transmissible cancers provide an ideal model system for investigating the evolutionary arms race between cancer cells and their surrounding micro-environment and macro-environment. However, the evolutionary landscapes in which contagious cancers reside have not been subjected to comprehensive investigation. Here, we provide a multifocal analysis of transmissible tumour progression and discuss the selection forces that shape it. We demonstrate that transmissible cancers adapt to both their micro-environment and macro-environment, and evolutionary theories applied to organisms are also relevant to these unique diseases. The three naturally occurring transmissible cancers, canine transmissible venereal tumour (CTVT) and Tasmanian devil facial tumour disease (DFTD) and the recently discovered clam leukaemia, exhibit different evolutionary phases: (i) CTVT, the oldest naturally occurring cell line is remarkably stable; (ii) DFTD exhibits the signs of stepwise cancer evolution; and (iii) clam leukaemia shows genetic instability. While all three contagious cancers carry the signature of ongoing and fairly recent adaptations to selective forces, CTVT appears to have reached an evolutionary stalemate with its host, while DFTD and the clam leukaemia appear to be still at a more dynamic phase of their evolution. Parallel investigation of contagious cancer genomes and transcriptomes and of their micro-environment and macro-environment could shed light on the selective forces shaping tumour development at different time points: during the progressive phase and at the endpoint. A greater understanding of transmissible cancers from an evolutionary ecology perspective will provide novel avenues for the prevention and treatment of both contagious and non-communicable cancers. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  6. Environmental Escherichia coli: Ecology and public health implications - A review

    USGS Publications Warehouse

    Jang, Jeonghwan; Hur, Hor-Gil; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Yan, Tao; Ishii, Satoshi

    2017-01-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through feces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent fecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extra-intestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a fecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics provide the diversity and complexity of E. coli strains in various environments, affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments in regards to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.

  7. Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.

    The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here in this paper, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg–DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10 –4. Heteroatomic molecules, especially those containing multiple S and N atoms, weremore » found to be among the most important in forming strong complexes with Hg. Major Hg–DOM complexes of C 10H 21N 2S 4Hg + and C 8H 17N 2S 4Hg + were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. Finally, these findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg–DOM complexes that affect biological uptake and transformation of Hg in the environment.« less

  8. Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.

    The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg-DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10 -4. Heteroatomic molecules, especially those containing multiple S and N atoms, were found to bemore » among the most important in forming strong complexes with Hg. Major Hg-DOM complexes of C10H21N2S4Hg+ and C8H17N2S4Hg+ were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. These findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg-DOM complexes that affect biological uptake and transformation of Hg in the environment.« less

  9. Identification of Mercury and Dissolved Organic Matter Complexes Using Ultrahigh Resolution Mass Spectrometry

    DOE PAGES

    Chen, Hongmei; Johnston, Ryne C.; Mann, Benjamin F.; ...

    2016-12-22

    The chemical speciation and bioavailability of mercury (Hg) is markedly influenced by its complexation with naturally dissolved organic matter (DOM) in aquatic environments. To date, however, analytical methodologies capable of identifying such complexes are scarce. Here in this paper, we utilize ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) coupled with electrospray ionization to identify individual Hg–DOM complexes. The measurements were performed by direct infusion of DOM in a 1:1 methanol:water solution at a Hg to dissolved organic carbon (DOC) molar ratio of 3 × 10 –4. Heteroatomic molecules, especially those containing multiple S and N atoms, weremore » found to be among the most important in forming strong complexes with Hg. Major Hg–DOM complexes of C 10H 21N 2S 4Hg + and C 8H 17N 2S 4Hg + were identified based on both the exact molecular mass and patterns of Hg stable isotope distributions detected by FTICR-MS. Density functional theory was used to predict the solution-phase structures of candidate molecules. Finally, these findings represent the first step to unambiguously identify specific DOM molecules in Hg binding, although future studies are warranted to further optimize and validate the methodology so as to explore detailed molecular compositions and structures of Hg–DOM complexes that affect biological uptake and transformation of Hg in the environment.« less

  10. Integrating natural and social sciences to manage sustainably vectors of change in the marine environment: Dogger Bank transnational case study

    NASA Astrophysics Data System (ADS)

    Burdon, Daryl; Boyes, Suzanne J.; Elliott, Michael; Smyth, Katie; Atkins, Jonathan P.; Barnes, Richard A.; Wurzel, Rüdiger K.

    2018-02-01

    The management of marine resources is a complex process driven by the dynamics of the natural system and the influence of stakeholders including policy-makers. An integration of natural and social sciences research is required by policy-makers to better understand, and manage sustainably, natural changes and anthropogenic activities within particular marine systems. Given the uncertain development of activities in the marine environment, future scenarios assessments can be used to investigate whether marine policy measures are robust and sustainable. This paper develops an interdisciplinary framework, which incorporates future scenarios assessments, and identifies four main types of evaluation needed to integrate natural and social sciences research to support the integrated management of the marine environment: environmental policy and governance assessments; ecosystem services, indicators and valuation; modelling tools for management evaluations, and risk assessment and risk management. The importance of stakeholder engagement within each evaluation method is highlighted. The paper focuses on the transnational spatial marine management of the Dogger Bank, in the central North Sea, a site which is very important ecologically, economically and politically. Current management practices are reviewed, and research tools to support future management decisions are applied and discussed in relation to two main vectors of change affecting the Dogger Bank, namely commercial fisheries and offshore wind farm developments, and in relation to the need for nature conservation. The input of local knowledge through stakeholder engagement is highlighted as a necessary requirement to produce site-specific policy recommendations for the future management of the Dogger Bank. We present wider policy recommendations to integrate natural and social sciences in a global marine context.

  11. International Space Station External Contamination Environment for Space Science Utilization

    NASA Technical Reports Server (NTRS)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  12. Ribbon networks for modeling navigable paths of autonomous agents in virtual environments.

    PubMed

    Willemsen, Peter; Kearney, Joseph K; Wang, Hongling

    2006-01-01

    This paper presents the Environment Description Framework (EDF) for modeling complex networks of intersecting roads and pathways in virtual environments. EDF represents information about the layout of streets and sidewalks, the rules that govern behavior on roads and walkways, and the locations of agents with respect to navigable structures. The framework serves as the substrate on which behavior programs for autonomous vehicles and pedestrians are built. Pathways are modeled as ribbons in space. The ribbon structure provides a natural coordinate frame for defining the local geometry of navigable surfaces. EDF includes a powerful runtime interface supported by robust and efficient code for locating objects on the ribbon network, for mapping between Cartesian and ribbon coordinates, and for determining behavioral constraints imposed by the environment.

  13. The evolutionary time machine: forecasting how populations can adapt to changing environments using dormant propagules

    PubMed Central

    Orsini, Luisa; Schwenk, Klaus; De Meester, Luc; Colbourne, John K.; Pfrender, Michael E.; Weider, Lawrence J.

    2013-01-01

    Evolutionary changes are determined by a complex assortment of ecological, demographic and adaptive histories. Predicting how evolution will shape the genetic structures of populations coping with current (and future) environmental challenges has principally relied on investigations through space, in lieu of time, because long-term phenotypic and molecular data are scarce. Yet, dormant propagules in sediments, soils and permafrost are convenient natural archives of population-histories from which to trace adaptive trajectories along extended time periods. DNA sequence data obtained from these natural archives, combined with pioneering methods for analyzing both ecological and population genomic time-series data, are likely to provide predictive models to forecast evolutionary responses of natural populations to environmental changes resulting from natural and anthropogenic stressors, including climate change. PMID:23395434

  14. Synthesis, characterization, thermal and biological evaluation of Cu (II), Co (II) and Ni (II) complexes of azo dye ligand containing sulfamethaxazole moiety

    NASA Astrophysics Data System (ADS)

    Mallikarjuna, N. M.; Keshavayya, J.; Maliyappa, M. R.; Shoukat Ali, R. A.; Venkatesh, Talavara

    2018-08-01

    A novel bioactive Cu (II), Co (II) and Ni (II) complexes of the azo dye ligand (L) derived from sulfamethoxazole were synthesized. The structures of the newly synthesized compounds were characterized by elemental analysis, molar conductance, magnetic susceptibility, FTIR, UV-visible, 1H NMR, mass, thermal and powder XRD spectral techniques. Molar conductivity measurements in DMSO solution confirmed the non-electrolytic nature of the complexes. All the synthesized metal complexes were found to be monomeric and showed square planar geometry except the Co (II) complex which has six coordinate, octahedral environment. The metal complexes have exhibited potential growth inhibitory effect against tested bacterial strains as compared to the free ligand. The ligand and complexes have also shown significant antioxidant and Calf Thymus DNA cleavage activities. Further, the in silico molecular docking studies were performed to predict the possible binding sites of the ligand (L) and its metal complexes with target receptor Glu-6P.

  15. Size doesn't matter, sex does: a test for boldness in sister species of Brachyrhaphis fishes.

    PubMed

    Ingley, Spencer J; Rehm, Jeremy; Johnson, Jerald B

    2014-11-01

    The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and "risky" (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low-risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post-speciation. The Central American live-bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete.

  16. Size doesn't matter, sex does: a test for boldness in sister species of Brachyrhaphis fishes

    PubMed Central

    Ingley, Spencer J; Rehm, Jeremy; Johnson, Jerald B

    2014-01-01

    The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and “risky” (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low-risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post-speciation. The Central American live-bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete. PMID:25540696

  17. The Dynamics of the Atmospheric Radiation Environment at Aviation Altitudes

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, Epaminondas G.

    2004-01-01

    Single Event Effects vulnerability of on-board computers that regulate the: navigational, flight control, communication, and life support systems has become an issue in advanced modern aircraft, especially those that may be equipped with new technology devices in terabit memory banks (low voltage, nanometer feature size, gigabit integration). To address this concern, radiation spectrometers need to fly continually on a multitude of carriers over long periods of time so as to accumulate sufficient information that will broaden our understanding of the very dynamic and complex nature of the atmospheric radiation environment regarding: composition, spectral distribution, intensity, temporal variation, and spatial variation.

  18. Phytotoxins: environmental micropollutants of concern?

    PubMed

    Bucheli, Thomas D

    2014-11-18

    Natural toxins such as mycotoxins or phytotoxins (bioactive compounds from fungi and plants, respectively) have been widely studied in food and feed, where they are stated to out-compete synthetic chemicals in their overall human and animal toxicological risk. A similar perception and awareness is yet largely missing for environmental safety. This article attempts to raise concern in this regard, by providing (circumstantial) evidence that phytotoxins in particular can be emitted into the environment, where they may contribute to the complex mixture of organic micropollutants. Exposures can be orders-of-magnitude higher in anthropogenically managed/affected (agro-)ecosystems than in the pristine environment.

  19. A tool for modeling concurrent real-time computation

    NASA Technical Reports Server (NTRS)

    Sharma, D. D.; Huang, Shie-Rei; Bhatt, Rahul; Sridharan, N. S.

    1990-01-01

    Real-time computation is a significant area of research in general, and in AI in particular. The complexity of practical real-time problems demands use of knowledge-based problem solving techniques while satisfying real-time performance constraints. Since the demands of a complex real-time problem cannot be predicted (owing to the dynamic nature of the environment) powerful dynamic resource control techniques are needed to monitor and control the performance. A real-time computation model for a real-time tool, an implementation of the QP-Net simulator on a Symbolics machine, and an implementation on a Butterfly multiprocessor machine are briefly described.

  20. A survey of intelligent tutoring systems: Implications for complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Chu, Rose W.

    1989-01-01

    An overview of the research in the field of intelligent tutorial systems (ITS) is provided. The various approaches in the design and implementation of ITS are examined and discussed in the context of problem solving in an environment of a complex dynamic system (CDS). Issues pertaining to a CDS and the nature of human problem solving especially in light of a CDS are considered. An overview of the architecture of an ITS is provided as the basis for the in-depth examination of various systems. Finally, the implications for the design and evaluation of an ITS are discussed.

  1. Biological water-oxidizing complex: a nano-sized manganese-calcium oxide in a protein environment.

    PubMed

    Najafpour, Mohammad Mahdi; Moghaddam, Atefeh Nemati; Yang, Young Nam; Aro, Eva-Mari; Carpentier, Robert; Eaton-Rye, Julian J; Lee, Choon-Hwan; Allakhverdiev, Suleyman I

    2012-10-01

    The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55-61, 2011). The atomic level structure of the manganese-calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.

  2. Future Arctic Research: Integrative Approaches to Scientific and Methodological Challenges

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Lisowska, Maja; Smieszek, Malgorzata

    2013-08-01

    Climate change has significant consequences for both the natural environment and the socioeconomics in the Arctic. The complex interplay between the changing atmosphere, cryosphere, and ocean is responsible for a multitude of feedbacks and cascading effects leading to changes in the marine and terrestrial ecosystems, the sea ice cycle, and atmospheric circulation patterns. The warming Arctic has also become a region of economic interest as shipping, natural resource exploitation, and tourism are becoming achievable and lucrative with declining sea ice. Such climatic and anthropogenic developments are leading to profound changes in the Arctic, its people, and their cultural heritage.

  3. Disordered models of acquired dyslexia

    NASA Astrophysics Data System (ADS)

    Virasoro, M. A.

    We show that certain specific correlations in the probability of errors observed in dyslexic patients that are normally explained by introducing additional complexity in the model for the reading process are typical of any Neural Network system that has learned to deal with a quasiregular environment. On the other hand we show that in Neural Networks the more regular behavior does not become naturally the default behavior.

  4. Helminths and the microbiota: parts of the hygiene hypothesis

    PubMed Central

    Loke, P’ng; Lim, Yvonne A.L.

    2015-01-01

    In modern societies, diseases that are driven by dysregulated immune responses are increasing at an alarming pace, such as inflammatory bowel diseases and diabetes. There is an urgent need to understand these epidemiological trends, which are likely to be driven by the changing environment of the last few decades. There are complex interactions between human genetic factors and this changing environment that is leading to the increasing prevalence of metabolic and inflammatory diseases. Alterations to human gut bacterial communities (the microbiota) and lowered prevalence of helminth infections are potential environmental factors contributing to immune dysregulation. Helminths have co-evolved with the gut microbiota and their mammalian hosts. This three-way interaction is beginning to be characterized and the knowledge gained may enable the design of new therapeutic strategies to treat metabolic and inflammatory diseases. However, these complex interactions need to be carefully investigated in the context of host genetic backgrounds in order to identify optimal treatment strategies. The complex nature of these interactions raises the possibility that only with highly personalized treatment, with knowledge of individual genetic and microbiota communities, will therapeutic interventions be successful for a majority of the individuals suffering from these complex diseases of immune dysregulation. PMID:25869420

  5. Helminths and the microbiota: parts of the hygiene hypothesis.

    PubMed

    Loke, P; Lim, Y A L

    2015-06-01

    In modern societies, diseases that are driven by dysregulated immune responses are increasing at an alarming pace, such as inflammatory bowel diseases and diabetes. There is an urgent need to understand these epidemiological trends, which are likely to be driven by the changing environment of the last few decades. There are complex interactions between human genetic factors and this changing environment that is leading to the increasing prevalence of metabolic and inflammatory diseases. Alterations to human gut bacterial communities (the microbiota) and lowered prevalence of helminth infections are potential environmental factors contributing to immune dysregulation. Helminths have co-evolved with the gut microbiota and their mammalian hosts. This three-way interaction is beginning to be characterized, and the knowledge gained may enable the design of new therapeutic strategies to treat metabolic and inflammatory diseases. However, these complex interactions need to be carefully investigated in the context of host genetic backgrounds to identify optimal treatment strategies. The complex nature of these interactions raises the possibility that only with highly personalized treatment, with knowledge of individual genetic and microbiota communities, will therapeutic interventions be successful for a majority of the individuals suffering from these complex diseases of immune dysregulation. © 2015 John Wiley & Sons Ltd.

  6. Gene-Environment Interactions in Cardiovascular Disease

    PubMed Central

    Flowers, Elena; Froelicher, Erika Sivarajan; Aouizerat, Bradley E.

    2011-01-01

    Background Historically, models to describe disease were exclusively nature-based or nurture-based. Current theoretical models for complex conditions such as cardiovascular disease acknowledge the importance of both biologic and non-biologic contributors to disease. A critical feature is the occurrence of interactions between numerous risk factors for disease. The interaction between genetic (i.e. biologic, nature) and environmental (i.e. non-biologic, nurture) causes of disease is an important mechanism for understanding both the etiology and public health impact of cardiovascular disease. Objectives The purpose of this paper is to describe theoretical underpinnings of gene-environment interactions, models of interaction, methods for studying gene-environment interactions, and the related concept of interactions between epigenetic mechanisms and the environment. Discussion Advances in methods for measurement of genetic predictors of disease have enabled an increasingly comprehensive understanding of the causes of disease. In order to fully describe the effects of genetic predictors of disease, it is necessary to place genetic predictors within the context of known environmental risk factors. The additive or multiplicative effect of the interaction between genetic and environmental risk factors is often greater than the contribution of either risk factor alone. PMID:21684212

  7. Screening of the state of urban ecosystem with the use of bioindication method (on the example of Kazan city)

    NASA Astrophysics Data System (ADS)

    Minakova, E. A.; Shlychkov, A. P.; Arinina, A. V.

    2018-01-01

    The urban environment is a complex of natural, natural-anthropogenic and socioeconomic factors that exert a large and diverse impact on urban residents. In addition to traditional environmental monitoring, we propose to use a new bioindication method based on the evaluation of morphological changes in the leaves of Betula pendula Roth by fluctuating asymmetry (FA) to assess the quality of recreational areas. Such screening for the purpose of assessing of the environment state is very informative, since the bioindication assessment is an integral characteristic of the quality of the environment which is under the influence of all the abundance of chemical, physical and other factors. The two-sided symmetry of a leaf was calculated on the sites in the middle of the park zone, on the border of the park and on a roadside strip. The results of the study showed a connection between the FA values and the distance to the highway, and also revealed the absence of significant differences in FA indicators at the surveyed sites, which may indicate insufficient sizes of recreational areas and their insufficient potential to contribute to improving the quality of the environment.

  8. Land management decisions in a carbonatic geo-environment

    NASA Astrophysics Data System (ADS)

    Siska, P.; Hung, I.-K.

    2017-10-01

    Land is the uppermost territorial unit of the earth’s surface that is quasi-homogeneous in its physical, natural, and also anthropogenic properties. The fundamental component of land is lithosphere. The focus of this work is on a carbonatic geo-environment that is dominantly characterized by Mesozoic rock complexes, significant chemical weathering, and a set of landforms that are unique to this type of a geological structures. In general, optimal land management is a composite of land sharing and land sparing practices; however, in order to answer the question: ‘What is a parcel of land best suited for?’ often requires well-organized spatial data. In this work, we have focused on developing a model that would evaluate the suitability of a carbonatic geo-environment for land management practices. Due to the potential hazards of some sinkhole infested areas, the risk of natural hazards must be first evaluated. In addition, the level of hazards depends on population pressure and the intensity of human impact on this particular environment. In this research, we have applied the principles of geostatistics to evaluate the probabilities for sinkhole hazards as well as fuzzy logic to evaluate the suitability of land sharing and land sparing management.

  9. Absorption spectral analysis of 4f-4f transitions for the complexation of Pr(III) and Nd(III) with thiosemicarbazide in absence and presence of Zn(II) in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Anita, K.; Rajmuhon Singh, N.

    2011-10-01

    The complexation of thiosemicarbazide with Pr(III) and Nd(III) in absence and presence of Zn(II), a soft metal ion in aqueous and organic solvents like CH 3OH,CH 3CN, dioxane (C 4H 8O 2) and DMF (C 3H 7NO) and their equimolar mixtures are discussed by employing absorption difference and comparative absorption spectrophotometry. Complexation of thiosemicarbazide with Pr(III) and Nd(III) is indicated by the changes in the absorption intensity following the subsequent changes in the oscillator strength of different 4f-4f bands and Judd-Ofelt intensity ( Tλ) parameters. The other spectral parameters like energy interaction parameters namely Slater-Condon ( Fk), Racah ( Ek), Lande ( ξ4f), Nephelauxetic ratio ( β) and bonding parameters ( b1/2) are further computed to explain the nature of complexation. The difference in the energy parameters with respect to donor atoms and solvents reveal that the chemical environment around the lanthanide ions has great impact on f-f transition and any change in the environment result in modification of the spectra. Various solvents and their equimolar mixtures are also used to discuss the participation of solvents in the complexation.

  10. Selective hydrolysis of phosphate monoester by a supramolecular phosphatase formed by the self-assembly of a bis(Zn(2+)-cyclen) complex, cyanuric acid, and copper in an aqueous solution (cyclen = 1,4,7,10-tetraazacyclododecane).

    PubMed

    Zulkefeli, Mohd; Suzuki, Asami; Shiro, Motoo; Hisamatsu, Yosuke; Kimura, Eiichi; Aoki, Shin

    2011-10-17

    In Nature, organized nanoscale structures such as proteins and enzymes are formed in aqueous media via intermolecular interactions between multicomponents. Supramolecular and self-assembling strategies provide versatile methods for the construction of artificial chemical architectures for controlling reaction rates and the specificities of chemical reactions, but most are designed in hydrophobic environments. The preparation of artificial catalysts that have potential in aqueous media mimicking natural enzymes such as hydrolases remains a great challenge in the fields of supramolecular chemistry. Herein, we describe that a dimeric Zn(2+) complex having a 2,2'-bipyridyl linker, cyanuric acid, and a Cu(2+) ion automatically assembles in an aqueous solution to form a 4:4:4 complex, which is stabilized by metal-ligand coordination bonds, π-π-stacking interactions, and hydrogen bonding and contains μ-Cu(2)(OH)(2) cores analogous to the catalytic centers of phosphatase, a dinuclear metalloenzyme. The 4:4:4 complex selectively accelerates the hydrolysis of a phosphate monoester, mono(4-nitrophenyl)phosphate, at neutral pH.

  11. Affective evaluation of food images according to stimulus and subject characteristics.

    PubMed

    Padulo, C; Carlucci, L; Marzoli, D; Manippa, V; Tommasi, L; Saggino, A; Puglisi-Allegra, S; Brancucci, A

    2018-04-17

    The food-rich environment in which we live makes the regulation of food choices a very complex phenomenon determined by many factors, as well as their interactions. Much evidence suggests that the sensory perception of food can be considered as a central factor affecting individual food choices. Despite this, the approaches used to study the various food aspects usually do not distinguish between different types of food. In the present study, a large and heterogeneous sample of 1149 participants aged 7-90 years was asked to judge food images that were labelled differently (i.e. Raw versus Cooked, Natural versus Transformed and Simple versus Complex) with respect to arousal, valence, typicality and familiarity. We observed that, across food dimensions (i.e., Raw versus Cooked, Natural versus Transformed and Simple versus Complex), arousal, valence and typicality judgments were principally affected by a subjective hunger level and gender (and their interaction) and, to a lesser extent, by age. As a whole, our findings suggest that the level of transformation (which includes cooking) and the complexity of a foodstuff could at least partially affect food processing, entailing that future research should also address these features. © 2018 The British Dietetic Association Ltd.

  12. Past evolutionary tradeoffs represent opportunities for crop genetic improvement and increased human lifespan.

    PubMed

    Denison, R Ford

    2011-03-01

    The repeated evolution of complex adaptations - crop mimicry by weeds, for example, or CO2-concentrating C4 photosynthesis - shows the power of natural selection to solve difficult problems that limited fitness in past environments. The sophistication of natural selection's innovations contrasts with the relatively simple changes (e.g., increasing the expression of existing genes) readily achievable by today's biotechnology. Mutants with greater expression of these genes arose repeatedly over the course of evolution, so their present rarity indicates rejection by natural selection. Similarly, medical interventions that simply up- or down-regulate existing physiological mechanisms presumably recreate phenotypes also rejected by past natural selection. Some tradeoffs that constrained past natural selection still apply, such as those resulting from conservation of matter. But tradeoffs between present human goals and individual fitness in past environments may represent fairly easy opportunities to achieve our goals by reversing some effects of past selection. This point is illustrated with three examples, based on tradeoffs between (i) individual-plant fitness versus whole-crop performance, (ii) the fitness of symbionts (rhizobia) versus that of their legume hosts, and (iii) human fertility versus longevity in the context of environmental cues, such as consumption of 'famine foods', that predict trends in population size.

  13. Complexation of copper by aquatic humic substances from different environments

    USGS Publications Warehouse

    McKnight, Diane M.; Feder, Gerald L.; Thurman, E. Michael; Wershaw, Robert L.

    1983-01-01

    The copper-complexing properties of aquatic humic substances isolated from eighteen different environments were characterized by potentiometric titration, using a cupric ion selective electrode. Potentiometric data were analyzed using FITEQL, a computer program for the determination of chemical equilibrium constants from experimental data. All the aquatic humic substances could be modelled as having two types of Cu(II)-binding sites: one with K equal to about 106 and a concentration of 1.0 ± 0.4 × 10−6 M(mg C)−1 and another with K equal to about 108 and a concentration of 2.6 ± 1.6 × 10−7 M(mg C)−1.A method is described for estimating the Cu(II)-binding sites associated with dissolved humic substances in natural water based on a measurement of dissolved organic carbon, which may be helpful in evaluating chemical processes controlling speciation of Cu and bioavailability of Cu to aquatic organisms.

  14. Biomechanics of Tetrahymena escaping from dead ends

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Kikuchi, Kenji

    2017-11-01

    Behaviors of swimming microorganisms in complex environments are important in understanding cells' distribution in nature and in industries. Although cell's swimming and spreading in an infinite fluid has been intensively investigated, that in a narrow region bounded by walls is still unclear. Thus, in this study, we used Tetrahymena thermophila as a model microorganism, and experimentally investigated its behavior between flat plates with an angle. The results showed that the cells tended to escape from the narrow region, and the swimming velocity and the radius of curvature of the trajectories decreased as they swam narrower region. We then developed a computational model of swimming Tetrahymena. The results showed that the escaping behavior could be well explained by fluid mechanics. The obtained knowledge is useful in understanding cells' behaviors in complex environments, such as in porous media and in a granular matter. This research was supported by JSPS KAKENHI Grants, numbers 25000008 and 17H00853.

  15. A novel underwater dam crack detection and classification approach based on sonar images

    PubMed Central

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments. PMID:28640925

  16. A novel underwater dam crack detection and classification approach based on sonar images.

    PubMed

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  17. Trade policy and public health.

    PubMed

    Friel, Sharon; Hattersley, Libby; Townsend, Ruth

    2015-03-18

    Twenty-first-century trade policy is complex and affects society and population health in direct and indirect ways. Without doubt, trade policy influences the distribution of power, money, and resources between and within countries, which in turn affects the natural environment; people's daily living conditions; and the local availability, quality, affordability, and desirability of products (e.g., food, tobacco, alcohol, and health care); it also affects individuals' enjoyment of the highest attainable standard of health. In this article, we provide an overview of the modern global trade environment, illustrate the pathways between trade and health, and explore the emerging twenty-first-century trade policy landscape and its implications for health and health equity. We conclude with a call for more interdisciplinary research that embraces complexity theory and systems science as well as the political economy of health and that includes monitoring and evaluation of the impact of trade agreements on health.

  18. Learning predictive statistics from temporal sequences: Dynamics and strategies

    PubMed Central

    Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E.; Kourtzi, Zoe

    2017-01-01

    Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics—that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments. PMID:28973111

  19. Learning predictive statistics from temporal sequences: Dynamics and strategies.

    PubMed

    Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe

    2017-10-01

    Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics-that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments.

  20. Ultrastable cellulosome-adhesion complex tightens under load.

    PubMed

    Schoeler, Constantin; Malinowska, Klara H; Bernardi, Rafael C; Milles, Lukas F; Jobst, Markus A; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B; Bayer, Edward A; Schulten, Klaus; Gaub, Hermann E; Nash, Michael A

    2014-12-08

    Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.

  1. Seasonal changes in mRNA encoding for cell stress markers in the oyster Crassostrea gigas exposed to radioactive discharges in their natural environment.

    PubMed

    Farcy, Emilie; Voiseux, Claire; Lebel, Jean-Marc; Fievet, Bruno

    2007-03-15

    The North Cotentin area (Normandy, France) hosts several nuclear facilities among which the AREVA reprocessing plant of La Hague is responsible for controlled discharges of liquid radioactive wastes into the marine environment. The resulting increase in radioactivity is very small compared to natural radioactivity. However, concerns about environment protection prompted the scientific community to focus on the effects of the chronic exposure to low concentrations of radionuclides in non-human biota. This study contributes to the evaluation of the possible impact of radioactive discharges on the oyster Crassostrea gigas in the field. Real-time polymerase chain reaction was used to quantify the expression levels of genes involved in cell stress in the oyster. They included members of the heat shock protein family (Hsp70, Hsc72, Hsp90), superoxide dismutase (SOD) and metallothionein (MT). Times series measurements were built from periodic samplings in the natural environment in order to characterize the natural variability as well as possible seasonal fluctuations. The genes studied exhibited a general seasonal expression pattern with a peak value in winter. The data inversely correlated with seawater temperature and the nature of the relationship between gene expression and temperature is discussed. In parallel, oysters were collected in four locations on the French shores, exposed or not to radioactive liquid wastes from the nuclear facilities hosted in the North Cotentin. The comparison of data obtained in the reference location on the Atlantic coast (not exposed) and data from oysters of the English Channel (exposed) gave no evidence for any statistical difference. However, because of the complexity of the natural environment, we cannot rule out the possibility that other parameters may have masked the impact of radioactive discharges. This dense set of data is a basis for the use of the expression levels of those genes as biomarkers to address the question of the possible effects of chronic exposure of the oyster to low concentrations of radionuclides in controlled laboratory experimental conditions.

  2. Underwater microscopy for in situ studies of benthic ecosystems

    NASA Astrophysics Data System (ADS)

    Mullen, Andrew D.; Treibitz, Tali; Roberts, Paul L. D.; Kelly, Emily L. A.; Horwitz, Rael; Smith, Jennifer E.; Jaffe, Jules S.

    2016-07-01

    Microscopic-scale processes significantly influence benthic marine ecosystems such as coral reefs and kelp forests. Due to the ocean's complex and dynamic nature, it is most informative to study these processes in the natural environment yet it is inherently difficult. Here we present a system capable of non-invasively imaging seafloor environments and organisms in situ at nearly micrometre resolution. We overcome the challenges of underwater microscopy through the use of a long working distance microscopic objective, an electrically tunable lens and focused reflectance illumination. The diver-deployed instrument permits studies of both spatial and temporal processes such as the algal colonization and overgrowth of bleaching corals, as well as coral polyp behaviour and interspecific competition. By enabling in situ observations at previously unattainable scales, this instrument can provide important new insights into micro-scale processes in benthic ecosystems that shape observed patterns at much larger scales.

  3. Climate change enhances the mobilisation of naturally occurring metals in high altitude environments.

    PubMed

    Zaharescu, Dragos G; Hooda, Peter S; Burghelea, Carmen I; Polyakov, Viktor; Palanca-Soler, Antonio

    2016-08-01

    Manmade climate change has expressed a plethora of complex effects on Earth's biogeochemical compartments. Climate change may also affect the mobilisation of natural metal sources, with potential ecological consequences beyond mountains' geographical limits; however, this question has remained largely unexplored. We investigated this by analysing a number of key climatic factors in relationship with trace metal accumulation in the sediment core of a Pyrenean lake. The sediment metal contents showed increasing accumulation trend over time, and their levels varied in step with recent climate change. The findings further revealed that a rise in the elevation of freezing level, a general increase in the frequency of drier periods, changes in the frequency of winter freezing days and a reducing snow cover since the early 1980s, together are responsible for the observed variability and augmented accumulation of trace metals. Our results provide clear evidence of increased mobilisation of natural metal sources - an overlooked effect of climate change on the environment. With further alterations in climate equilibrium predicted over the ensuing decades, it is likely that mountain catchments in metamorphic areas may become significant sources of trace metals, with potentially harmful consequences for the wider environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development of a comprehensive software engineering environment

    NASA Technical Reports Server (NTRS)

    Hartrum, Thomas C.; Lamont, Gary B.

    1987-01-01

    The generation of a set of tools for software lifecycle is a recurring theme in the software engineering literature. The development of such tools and their integration into a software development environment is a difficult task because of the magnitude (number of variables) and the complexity (combinatorics) of the software lifecycle process. An initial development of a global approach was initiated in 1982 as the Software Development Workbench (SDW). Continuing efforts focus on tool development, tool integration, human interfacing, data dictionaries, and testing algorithms. Current efforts are emphasizing natural language interfaces, expert system software development associates and distributed environments with Ada as the target language. The current implementation of the SDW is on a VAX-11/780. Other software development tools are being networked through engineering workstations.

  5. The Correlation of Geo-Ecological Environment and Mountain Urban planning

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Zeng, Wei

    2018-01-01

    As a special area with the complex geological structure, mountain city is more prone to geological disasters. Due to air pollution, ground subsidence, serious water pollution, earthquakes and floods geo-ecological environment problems have become increasingly serious, mountain urban planning is facing more severe challenges. Therefore, this article bases on the correlation research of geo-ecological environment and mountain urban planning, and re-examins mountain urban planning from the perspective of geo-ecological, coordinates the relationship between the human and nature by geo-ecological thinking, raises the questions which urban planning need to pay attention. And advocates creating an integrated system of geo-ecological and mountain urban planning, analysis the status and dynamics of present mountain urban planning.

  6. Environmental impacts of the emerging digital economy: the e-for-environment e-commerce?

    PubMed

    Sui, Daniel Z; Rejeski, David W

    2002-02-01

    The Internet-led digital economy is changing both the production and consumption patterns at the global scale. Although great potential exists to harness information technology in general and the Internet in particular and improve the environment, possible negative impacts of e-commerce on the environment should also be considered and dealt with. In this forum, we discuss both the potential positive and negative impacts of e-commerce. Drawing from insights gained from the complexity theory, we also delineate some broad contours for environmental policies in the information age. Given the paradoxical nature of technological innovations, we want to caution the scientific community and policymakers not to treat the Internet as the Holy Grail for environmental salvation.

  7. Observation of crystalline changes of titanium dioxide during lithium insertion by visible spectrum analysis.

    PubMed

    Nam, Inho; Park, Jongseok; Park, Soomin; Bae, Seongjun; Yoo, Young Geun; Han, Jeong Woo; Yi, Jongheop

    2017-05-24

    Real-time analysis of changes in the atomic environment of materials is a cutting edge technology that is being used to explain reaction dynamics in many fields of science. Previously, this kind of analysis was only possible using heavy nucleonic equipment such as XANES and EXAFS, or Raman spectroscopy on a moderate scale. Here, a new methodology is described that can be used to track changes in crystalline developments during complex Li insertion reactions via the observation of structural color. To be specific, the changes in atomic crystalline and nanostructure are shown during Li insertion in a complex TiO 2 polymorph. Structural color corresponds to the refractive indices of materials originating from their atomic bonding nature and precise wave interferences in accordance with their nanostructure. Therefore, this new analysis simultaneously reveals changes in the nanostructure as well as changes in the atomic bonding nature of materials.

  8. Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion

    NASA Astrophysics Data System (ADS)

    Levard, Clément; Doelsch, Emmanuel; Rose, Jérôme; Masion, Armand; Basile-Doelsch, Isabelle; Proux, Olivier; Hazemann, Jean-Louis; Borschneck, Daniel; Bottero, Jean-Yves

    2009-08-01

    Andosols on the island of Réunion have high nickel (Ni) concentrations due to the natural pedo-geochemical background. Enhanced knowledge of Ni speciation is necessary to predict the bioavailability and potential toxicity of this element. Ni speciation in these andosols, marked by the presence of high amounts of natural aluminosilicate nanoparticles, was investigated in two complementary systems: (i) In a soil sample—densimetric fractionation was first performed in order to separate the potential bearing phases, prior to Ni speciation characterization. (ii) In a synthetic sample—Ni reactivity with synthetic aluminosilicate nanoparticle analogs were studied. In both cases, Ni speciation was determined using X-ray absorption spectroscopy (XAS). The results revealed that Ni had the same local environment in both systems (natural and synthetic systems), and Ni was chemically linked to natural short-range ordered aluminosilicates or analogs. This complex represented about 75% of the total Ni in the studied soil.

  9. Acoustic surface perception from naturally occurring step sounds of a dexterous hexapod robot

    NASA Astrophysics Data System (ADS)

    Cuneyitoglu Ozkul, Mine; Saranli, Afsar; Yazicioglu, Yigit

    2013-10-01

    Legged robots that exhibit dynamic dexterity naturally interact with the surface to generate complex acoustic signals carrying rich information on the surface as well as the robot platform itself. However, the nature of a legged robot, which is a complex, hybrid dynamic system, renders the more common approach of model-based system identification impractical. The present paper focuses on acoustic surface identification and proposes a non-model-based analysis and classification approach adopted from the speech processing literature. A novel feature set composed of spectral band energies augmented by their vector time derivatives and time-domain averaged zero crossing rate is proposed. Using a multi-dimensional vector classifier, these features carry enough information to accurately classify a range of commonly occurring indoor and outdoor surfaces without using of any mechanical system model. A comparative experimental study is carried out and classification performance and computational complexity are characterized. Different feature combinations, classifiers and changes in critical design parameters are investigated. A realistic and representative acoustic data set is collected with the robot moving at different speeds on a number of surfaces. The study demonstrates promising performance of this non-model-based approach, even in an acoustically uncontrolled environment. The approach also has good chance of performing in real-time.

  10. The origin of aliphatic hydrocarbons in olive oil.

    PubMed

    Pineda, Manuel; Rojas, María; Gálvez-Valdivieso, Gregorio; Aguilar, Miguel

    2017-11-01

    There are many substances that can interfere with olive oil quality. Some of them are well characterized, but many others have an unknown origin. Saturated hydrocarbons make an extraordinary complex family of numerous molecules, some of them present naturally in vegetable oils. When major natural saturated hydrocarbons are analyzed by standard chromatographic methods, this complex mixture of saturated hydrocarbons appears as a hump in the chromatogram and is commonly named as unresolved complex mixture (UCM), whose origin remains unknown. In this work we studied the occurrence and the origin of aliphatic saturated hydrocarbons in olive oil. Hydrocarbons were analyzed in olive oil and along the industrial process of oil extraction. We also analyzed n-alkanes and the UCM fraction of hydrocarbons in leaf, fruit and oil from different varieties and different locations, and we also analyzed the soils at these locations. We conclude that the hydrocarbons present in olive oil do not necessarily have their origin in a contamination during olive oil elaboration; they seem to have a natural origin, as a result of olive tree metabolism and/or as the result of an intake and accumulation by the olive tree directly from the environment during its entire life cycle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases.

    PubMed

    Wallace, Douglas C

    2013-07-19

    Two major inconsistencies exist in the current neo-Darwinian evolutionary theory that random chromosomal mutations acted on by natural selection generate new species. First, natural selection does not require the evolution of ever increasing complexity, yet this is the hallmark of biology. Second, human chromosomal DNA sequence variation is predominantly either neutral or deleterious and is insufficient to provide the variation required for speciation or for predilection to common diseases. Complexity is explained by the continuous flow of energy through the biosphere that drives the accumulation of nucleic acids and information. Information then encodes complex forms. In animals, energy flow is primarily mediated by mitochondria whose maternally inherited mitochondrial DNA (mtDNA) codes for key genes for energy metabolism. In mammals, the mtDNA has a very high mutation rate, but the deleterious mutations are removed by an ovarian selection system. Hence, new mutations that subtly alter energy metabolism are continuously introduced into the species, permitting adaptation to regional differences in energy environments. Therefore, the most phenotypically significant gene variants arise in the mtDNA, are regional, and permit animals to occupy peripheral energy environments where rarer nuclear DNA (nDNA) variants can accumulate, leading to speciation. The neutralist-selectionist debate is then a consequence of mammals having two different evolutionary strategies: a fast mtDNA strategy for intra-specific radiation and a slow nDNA strategy for speciation. Furthermore, the missing genetic variation for common human diseases is primarily mtDNA variation plus regional nDNA variants, both of which have been missed by large, inter-population association studies.

  12. The Evolution of Biological Complexity in Digital Organisms

    NASA Astrophysics Data System (ADS)

    Ofria, Charles

    2013-03-01

    When Darwin first proposed his theory of evolution by natural selection, he realized that it had a problem explaining the origins of traits of ``extreme perfection and complication'' such as the vertebrate eye. Critics of Darwin's theory have latched onto this perceived flaw as a proof that Darwinian evolution is impossible. In anticipation of this issue, Darwin described the perfect data needed to understand this process, but lamented that such data are ``scarcely ever possible'' to obtain. In this talk, I will discuss research where we use populations of digital organisms (self-replicating and evolving computer programs) to elucidate the genetic and evolutionary processes by which new, highly-complex traits arise, drawing inspiration directly from Darwin's wistful thinking and hypotheses. During the process of evolution in these fully-transparent computational environments we can measure the incorporation of new information into the genome, a process akin to a natural Maxwell's Demon, and identify the original source of any such information. We show that, as Darwin predicted, much of the information used to encode a complex trait was already in the genome as part of simpler evolved traits, and that many routes must be possible for a new complex trait to have a high probability of successfully evolving. In even more extreme examples of the evolution of complexity, we are now using these same principles to examine the evolutionary dynamics the drive major transitions in evolution; that is transitions to higher-levels of organization, which are some of the most complex evolutionary events to occur in nature. Finally, I will explore some of the implications of this research to other aspects of evolutionary biology and as well as ways that these evolutionary principles can be applied toward solving computational and engineering problems.

  13. Connected Worlds: Connecting the public with complex environmental systems

    NASA Astrophysics Data System (ADS)

    Uzzo, S. M.; Chen, R. S.; Downs, R. R.

    2016-12-01

    Among the most important concepts in environmental science learning is the structure and dynamics of coupled human and natural systems (CHANS). But the fundamental epistemology for understanding CHANS requires systems thinking, interdisciplinarity, and complexity. Although the Next Generation Science Standards mandate connecting ideas across disciplines and systems, traditional approaches to education do not provide more than superficial understanding of this concept. Informal science learning institutions have a key role in bridging gaps between the reductive nature of classroom learning and contemporary data-driven science. The New York Hall of Science, in partnership with Design I/O and Columbia University's Center for International Earth Science Information Network, has developed an approach to immerse visitors in complex human nature interactions and provide opportunities for those of all ages to elicit and notice environmental consequences of their actions. Connected Worlds is a nearly 1,000 m2 immersive, playful environment in which students learn about complexity and interconnectedness in ecosystems and how ecosystems might respond to human intervention. It engages students through direct interactions with fanciful flora and fauna within and among six biomes: desert, rainforest, grassland, mountain valley, reservoir, and wetlands, which are interconnected through stocks and flows of water. Through gestures and the manipulation of a dynamic water system, Connected Worlds enables students, teachers, and parents to experience how the ecosystems of planet Earth are connected and to observe relationships between the behavior of Earth's inhabitants and our shared world. It is also a cyberlearning platform to study how visitors notice and scaffold their understanding of complex environmental processes and the responses of these processes to human intervention, to help inform the improvement of education practices in complex environmental science.

  14. A New Insight of Graphene oxide-Fe(III) Complex Photochemical Behaviors under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Renlan; Zhu, Xiaoying; Chen, Baoliang

    2017-01-01

    Graphene oxide (GO) contains not only aromatic carbon lattice but also carboxyl groups which enhanced the aqueous solubility of GO. To study the transformation of GO nanosheets in natural environments, GO aqueous dispersion was mixed with Fe3+ ions to form photoactive complex. Under visible light irradiation, Fe(III) of the complex would be reduced to Fe(II) which could subsequently reduce highly toxic Cr(VI) to Cr3+. The electron of the reduction was contributed by the decarboxylation of carboxyl groups on GO and iron was acting as a catalyst during the photoreduction. On the other hand, the consumption of carboxyl groups may convert GO to rGO which are tend to aggregate since the decreased electrostatic repulsion and the increased π-π attraction. The formed Cr3+ may be electrostatically adsorbed by the rGO sheets and simultaneously precipitated with the aggregated rGO sheets, resulting the effective removal of chromium and GO nanosheets from the aqueous environment. This study may shed a light on understanding the environmental transformation of GO and guide the treatment of Cr(VI).

  15. Identifying future directions for subsurface hydrocarbon migration research

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Clark, J. F.; Luyendyk, B.; Valentine, D.

    Subsurface hydrocarbon migration is important for understanding the input and impacts of natural hydrocarbon seepage on the environment. Great uncertainties remain in most aspects of hydrocarbon migration, including some basic mechanisms of this four-phase flow of tar, oil, water, and gas through the complex fracture-network geometry particularly since the phases span a wide range of properties. Academic, government, and industry representatives recently attended a workshop to identify the areas of greatest need for future research in shallow hydrocarbon migration.Novel approaches such as studying temporal and spatial seepage variations and analogous geofluid systems (e.g., geysers and trickle beds) allow deductions of subsurface processes and structures that remain largely unclear. Unique complexities exist in hydrocarbon migration due to its multiphase flow and complex geometry, including in-situ biological weathering. Furthermore, many aspects of the role of hydrocarbons (positive and negative) in the environment are poorly understood, including how they enter the food chain (respiration, consumption, etc.) and “percolate” to higher trophic levels. But understanding these ecological impacts requires knowledge of the emissions' temporal and spatial variability and trajectories.

  16. Detecting changes in dynamic and complex acoustic environments

    PubMed Central

    Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard

    2017-01-01

    Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments. DOI: http://dx.doi.org/10.7554/eLife.24910.001 PMID:28262095

  17. From precision polymers to complex materials and systems

    NASA Astrophysics Data System (ADS)

    Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof

    2016-05-01

    Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.

  18. Adaptive Correction from Virtually Complex Dynamic Libraries: The Role of Noncovalent Interactions in Structural Selection and Folding.

    PubMed

    Lafuente, Maria; Atcher, Joan; Solà, Jordi; Alfonso, Ignacio

    2015-11-16

    The hierarchical self-assembling of complex molecular systems is dictated by the chemical and structural information stored in their components. This information can be expressed through an adaptive process that determines the structurally fittest assembly under given environmental conditions. We have set up complex disulfide-based dynamic covalent libraries of chemically and topologically diverse pseudopeptidic compounds. We show how the reaction evolves from very complex mixtures at short reaction times to the almost exclusive formation of a major compound, through the establishment of intramolecular noncovalent interactions. Our experiments demonstrate that the systems evolve through error-check and error-correction processes. The nature of these interactions, the importance of the folding and the effects of the environment are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke.

    PubMed

    Johnson, Michelle J

    2006-12-18

    Upper and lower limb robotic tools for neuro-rehabilitation are effective in reducing motor impairment but they are limited in their ability to improve real world function. There is a need to improve functional outcomes after robot-assisted therapy. Improvements in the effectiveness of these environments may be achieved by incorporating into their design and control strategies important elements key to inducing motor learning and cerebral plasticity such as mass-practice, feedback, task-engagement, and complex problem solving. This special issue presents nine articles. Novel strategies covered in this issue encourage more natural movements through the use of virtual reality and real objects and faster motor learning through the use of error feedback to guide acquisition of natural movements that are salient to real activities. In addition, several articles describe novel systems and techniques that use of custom and commercial games combined with new low-cost robot systems and a humanoid robot to embody the " supervisory presence" of the therapy as possible solutions to exercise compliance in under-supervised environments such as the home.

  20. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke

    PubMed Central

    Johnson, Michelle J

    2006-01-01

    Upper and lower limb robotic tools for neuro-rehabilitation are effective in reducing motor impairment but they are limited in their ability to improve real world function. There is a need to improve functional outcomes after robot-assisted therapy. Improvements in the effectiveness of these environments may be achieved by incorporating into their design and control strategies important elements key to inducing motor learning and cerebral plasticity such as mass-practice, feedback, task-engagement, and complex problem solving. This special issue presents nine articles. Novel strategies covered in this issue encourage more natural movements through the use of virtual reality and real objects and faster motor learning through the use of error feedback to guide acquisition of natural movements that are salient to real activities. In addition, several articles describe novel systems and techniques that use of custom and commercial games combined with new low-cost robot systems and a humanoid robot to embody the " supervisory presence" of the therapy as possible solutions to exercise compliance in under-supervised environments such as the home. PMID:17176474

  1. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, R; Denef, Vincent; Kalnejals, Linda

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems.We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism smore » metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ« less

  2. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    USGS Publications Warehouse

    Mueller, Ryan S.; Denef, Vincent J.; Kalnejais, Linda H.; Suttle, K. Blake; Thomas, Brian C.; Wilmes, Paul; Smith, Richard L.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Shah, Menesh B.; VerBekmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong

    Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel andmore » other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)« less

  4. The threshold hypothesis: solving the equation of nurture vs nature in type 1 diabetes.

    PubMed

    Wasserfall, C; Nead, K; Mathews, C; Atkinson, M A

    2011-09-01

    For more than 40 years, the contributions of nurture (i.e. the environment) and nature (i.e. genetics) have been touted for their aetiological importance in type 1 diabetes. Disappointingly, knowledge gains in these areas, while individually successful, have to a large extent occurred in isolation from each other. One reason underlying this divide is the lack of a testable model that simultaneously considers the contributions of genetic and environmental determinants in the formation of this and potentially other disorders that are subject to these variables. To address this void, we have designed a model based on the hypothesis that the aetiological influences of genetics and environment, when evaluated as intersecting and reciprocal trend lines based on odds ratios, result in a method of concurrently evaluating both facets and defining the attributable risk of clinical onset of type 1 diabetes. The model, which we have elected to term the 'threshold hypothesis', also provides a novel means of conceptualising the complex interactions of nurture with nature in type 1 diabetes across various geographical populations.

  5. Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(II) complexes for hydrophobic environments.

    PubMed

    Rangel, Maria; Leite, Andreia; Silva, André M N; Moniz, Tânia; Nunes, Ana; Amorim, M João; Queirós, Carla; Cunha-Silva, Luís; Gameiro, Paula; Burgess, John

    2014-07-07

    In this work we report the synthesis and characterization of a set of 3-hydroxy-4-pyridinone copper(ii) complexes with variable lipophilicity. EPR spectroscopy was used to characterize the structure of copper(ii) complexes in solution, and as a tool to gain insight into solvent interactions. EPR spectra of solutions of the [CuL2] complexes recorded in different solvents reveal the presence of two copper species whose ratio depends on the nature of the solvent. Investigation of EPR spectra in the pure solvents methanol, dimethylsulfoxide, dichloromethane and their 50% (v/v) mixtures with toluene allowed the characterization of two types of copper signals (gzz = 2.30 and gzz = 2.26) whose spin-Hamiltonian parameters are consistent with solvated and non-solvated square-planar copper(ii) complexes. Regarding the potential biological application of ligands and complexes and to get insight into the partition properties in water-membrane interfaces, EPR spectra were also obtained in water-saturated octanol, an aqueous solution buffered at pH = 7.4 and liposome suspensions, for three compounds representative of different hydro-lipophilic balances. Analysis of the EPR spectra obtained in liposomes allowed establishment of the location of the complexes in the water and lipid phases. In view of the results of this work we put forward the use of EPR spectroscopy to assess the affinity of copper(ii) complexes for a hydrophobic environment and also to obtain indirect information about the lipophilicity of the ligands and similar EPR silent complexes.

  6. Finding Common Ground: Environmental Ethics, Social Justice, and a Sustainable Path for Nature-Based Health Promotion.

    PubMed

    Jennings, Viniece; Yun, Jessica; Larson, Lincoln

    2016-08-25

    Decades of research have documented continuous tension between anthropocentric needs and the environment's capacity to accommodate those needs and support basic human welfare. The way in which society perceives, manages, and ultimately utilizes natural resources can be influenced by underlying environmental ethics, or the moral relationship that humans share with the natural world. This discourse often centers on the complex interplay between the tangible and intangible benefits associated with nonhuman nature (e.g., green space), both of which are relevant to public health. When ecosystem degradation is coupled with socio-demographic transitions, additional concerns related to distributional equity and justice can arise. In this commentary, we explore how environmental ethics can inform the connection between the ecosystem services from green space and socially just strategies of health promotion.

  7. Morphological Features of Diamond Crystals Dissolved in Fe0.7S0.3 Melt at 4 GPa and 1400°C

    NASA Astrophysics Data System (ADS)

    Sonin, V. M.; Zhimulev, E. I.; Pomazanskiy, B. S.; Zemnuhov, A. L.; Chepurov, A. A.; Afanasiev, V. P.; Chepurov, A. I.

    2018-01-01

    An experimental study of the dissolution of natural and synthetic diamonds in a sulfur-bearing iron melt (Fe0.7S0.3) with high P-T parameters (4 GPa, 1400°C) was performed. The results demonstrated that under these conditions, octahedral crystals with flat faces and rounded tetrahexahedral diamond crystals are transformed into rounded octahedroids, which have morphological characteristics similar to those of natural diamonds from kimberlite. It was suggested that, taking into account the complex history of individual natural diamond crystals, including the dissolution stages, sulfur-bearing metal melts up to sulfide melts were not only diamond-forming media during the early evolution of the Earth, but also natural solvents of diamond in the mantle environment before the formation of kimberlitic melts.

  8. Novel methodology to examine cognitive and experiential factors in language development: combining eye-tracking and LENA technology

    PubMed Central

    Odean, Rosalie; Nazareth, Alina; Pruden, Shannon M.

    2015-01-01

    Developmental systems theory posits that development cannot be segmented by influences acting in isolation, but should be studied through a scientific lens that highlights the complex interactions between these forces over time (Overton, 2013a). This poses a unique challenge for developmental psychologists studying complex processes like language development. In this paper, we advocate for the combining of highly sophisticated data collection technologies in an effort to move toward a more systemic approach to studying language development. We investigate the efficiency and appropriateness of combining eye-tracking technology and the LENA (Language Environment Analysis) system, an automated language analysis tool, in an effort to explore the relation between language processing in early development, and external dynamic influences like parent and educator language input in the home and school environments. Eye-tracking allows us to study language processing via eye movement analysis; these eye movements have been linked to both conscious and unconscious cognitive processing, and thus provide one means of evaluating cognitive processes underlying language development that does not require the use of subjective parent reports or checklists. The LENA system, on the other hand, provides automated language output that describes a child’s language-rich environment. In combination, these technologies provide critical information not only about a child’s language processing abilities but also about the complexity of the child’s language environment. Thus, when used in conjunction these technologies allow researchers to explore the nature of interacting systems involved in language development. PMID:26379591

  9. Spotlight on Fluorescent Biosensors—Tools for Diagnostics and Drug Discovery

    PubMed Central

    2013-01-01

    Fluorescent biosensors constitute potent tools for probing biomolecules in their natural environment and for visualizing dynamic processes in complex biological samples, living cells, and organisms. They are well suited for highlighting molecular alterations associated with pathological disorders, thereby offering means of implementing sensitive and alternative technologies for diagnostic purposes. They constitute attractive tools for drug discovery programs, from high throughput screening assays to preclinical studies. PMID:24900780

  10. The Experience of Acquisition Program Managers Thinking Strategically in a Volatile, Uncertain, Complex, and Ambiguous (VUCA) Environment

    DTIC Science & Technology

    2015-04-30

    questions were categorized into five broad categories: self- questioning to ensure against bias , questions of a fundamental nature that challenged...need for well-developed mental models. Such models helped them understand themselves in terms of recognizing their personal bias and filters while...pieces of information were made and new insights formed through subconscious processing during exercise or low cognitive tasking activities. This

  11. Anxiety and disturbed behavior in the elderly.

    PubMed

    Salzberger, G J

    1981-04-01

    The struggle between the elderly patient and his social environment leads to a loss of self-esteem accompanied by fear and anger. These feelings, together with a rational and irrational search for aid, produce a symptom complex which is a depressive or anxiety syndrome. The physician must reinforce and hasten natural recovery processes. Drug therapy may pave the way. Phenothiazines should be avoided. Among the benzodiazepines, shorter-acting agents are preferable.

  12. A Survey of Object Oriented Languages in Programming Environments.

    DTIC Science & Technology

    1987-06-01

    subset of natural languages might be more effective , and make the human-computer interface more friendly. 19 .. .. . . -.. -, " ,. o...and complexty of Ada. He meant that the language contained too many features that made it complicated to use effectively . Much of the complexity comes...by sending messages to a class instance. A small subset of the methods in Smalltalk-80 are not expressed in the !-’ Smalhalk-80 programming language

  13. Open-source software: not quite endsville.

    PubMed

    Stahl, Matthew T

    2005-02-01

    Open-source software will never achieve ubiquity. There are environments in which it simply does not flourish. By its nature, open-source development requires free exchange of ideas, community involvement, and the efforts of talented and dedicated individuals. However, pressures can come from several sources that prevent this from happening. In addition, openness and complex licensing issues invite misuse and abuse. Care must be taken to avoid the pitfalls of open-source software.

  14. Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation

    PubMed Central

    Schmitt, Clemens N. Z.; Winter, Alette; Bertinetti, Luca; Masic, Admir; Strauch, Peter; Harrington, Matthew J.

    2015-01-01

    Protein–metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA–metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat. PMID:26311314

  15. Air pollution engineering

    NASA Astrophysics Data System (ADS)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  16. Bumblebees minimize control challenges by combining active and passive modes in unsteady winds

    NASA Astrophysics Data System (ADS)

    Ravi, Sridhar; Kolomenskiy, Dmitry; Engels, Thomas; Schneider, Kai; Wang, Chun; Sesterhenn, Jörn; Liu, Hao

    2016-10-01

    The natural wind environment that volant insects encounter is unsteady and highly complex, posing significant flight-control and stability challenges. It is critical to understand the strategies insects employ to safely navigate in natural environments. We combined experiments on free flying bumblebees with high-fidelity numerical simulations and lower-order modeling to identify the mechanics that mediate insect flight in unsteady winds. We trained bumblebees to fly upwind towards an artificial flower in a wind tunnel under steady wind and in a von Kármán street formed in the wake of a cylinder. Analysis revealed that at lower frequencies in both steady and unsteady winds the bees mediated lateral movement with body roll - typical casting motion. Numerical simulations of a bumblebee in similar conditions permitted the separation of the passive and active components of the flight trajectories. Consequently, we derived simple mathematical models that describe these two motion components. Comparison between the free-flying live and modeled bees revealed a novel mechanism that enables bees to passively ride out high-frequency perturbations while performing active maneuvers at lower frequencies. The capacity of maintaining stability by combining passive and active modes at different timescales provides a viable means for animals and machines to tackle the challenges posed by complex airflows.

  17. Direct Manipulation in Virtual Reality

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  18. Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter

    USGS Publications Warehouse

    Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,

    2015-01-01

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.

  19. Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1994-01-01

    Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.

  20. Sense of place as a determinant of people's attitudes towards the environment: implications for natural resources management and planning in the Great Barrier Reef, Australia.

    PubMed

    Larson, Silva; De Freitas, Debora M; Hicks, Christina C

    2013-03-15

    Integrating people's values and perceptions into planning is essential for the successful management of natural resources. However, successful implementation of natural resources management decisions on the ground is a complex task, which requires a comprehensive understanding of a system's social and ecological linkages. This paper investigates the relationship between sense of place and people's attitudes towards their natural environment. Sense of place contributes towards shaping peoples' beliefs, values and commitments. Here, we set out to explore how these theoretical contributions can be operationalized for natural resources management planning in the Great Barrier Reef region of Australia. We hypothesise that the region's diverse range of natural resources, conservation values and management pressures might be reflected in people's attachment to place. To tests this proposition, variables capturing socio-demographics, personal wellbeing and a potential for sense of place were collected via mail-out survey of 372 residents of the region, and tested for relationships using multivariate regression and redundancy orientation analyses. Results indicate that place of residence within the region, involvement in community activities, country of birth and the length of time respondents lived in the region are important determinants of the values assigned to factors related to the natural environment. This type of information is readily available from National Census and thus could be incorporated into the planning of community engagement strategies early in the natural resources management planning process. A better understanding of the characteristics that allow sense of place meanings to develop can facilitate a better understanding of people's perceptions towards environmental and biodiversity issues. We suggest that the insights gained from this study can benefit environmental decision making and planning in the Great Barrier Reef region; and that sense of place is a concept worthy of further investigation elsewhere. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Making unhealthy places: The built environment and non-communicable diseases in Khayelitsha, Cape Town.

    PubMed

    Smit, Warren; de Lannoy, Ariane; Dover, Robert V H; Lambert, Estelle V; Levitt, Naomi; Watson, Vanessa

    2016-05-01

    In this paper, we examine how economic, social and political forces impact on NCDs in Khayelitsha (a predominantly low income area in Cape Town, South Africa) through their shaping of the built environment. The paper draws on literature reviews and ethnographic fieldwork undertaken in Khayelitsha. The three main pathways through which the built environment of the area impacts on NCDs are through a complex food environment in which it is difficult to achieve food security, an environment that is not conducive to safe physical activity, and high levels of depression and stress (linked to, amongst other factors, poverty, crime and fear of crime). All of these factors are at least partially linked to the isolated, segregated and monofunctional nature of Khayelitsha. The paper highlights that in order to effectively address urban health challenges, we need to understand how economic, social and political forces impact on NCDs through the way they shape built environments. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Protection against hostile algorithms in UNIX software

    NASA Astrophysics Data System (ADS)

    Radatti, Peter V.

    1996-03-01

    Protection against hostile algorithms contained in Unix software is a growing concern without easy answers. Traditional methods used against similar attacks in other operating system environments such as MS-DOS or Macintosh are insufficient in the more complex environment provided by Unix. Additionally, Unix provides a special and significant problem in this regard due to its open and heterogeneous nature. These problems are expected to become both more common and pronounced as 32 bit multiprocess network operating systems become popular. Therefore, the problems experienced today are a good indicator of the problems and the solutions that will be experienced in the future, no matter which operating system becomes predominate.

  3. Reductive dechlorination of trichloroethene mediated by humic-metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Loughlin, E.J.; Burris, D.R.; Delcomyn, C.A.

    1999-04-01

    Experiments were conducted to determine if transition metal-humic acid complexes can act as e{sup {minus}} transfer mediators in the reductive dechlorination of trichloroethene (TCE) using Ti(III) citrate as the bulk reductant. In the presence of Ni-Aldrich humic acid (AHA) complexes, TCE reduction was rapid, with complete removal of TCE in less than 23 h. Cu-AHA complexes were less effective as e{sup {minus}} mediators than Ni-AHA complexes; only 60% of TCE was reduced after 150 h. Partially dechlorinated intermediates were observed during TCE reduction; however, they were transitory, and at no time accounted for more than 2% of the initial TCEmore » mass on a mole C basis. Ethane and ethene were the primary end products of TCE reduction; however, a suite of other non-chlorinated hydrocarbons consisting of methane and C{sub 3} to C{sub 6} alkanes and alkenes were also observed. The results suggest that humic-metal complexes may represent a previously unrecognized class of electron mediators in natural environments.« less

  4. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    NASA Astrophysics Data System (ADS)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  5. Application of artificial neural networks to composite ply micromechanics

    NASA Technical Reports Server (NTRS)

    Brown, D. A.; Murthy, P. L. N.; Berke, L.

    1991-01-01

    Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.

  6. Utilizing media arts principles for developing effective interactive neurorehabilitation systems.

    PubMed

    Rikakis, Thanassis

    2011-01-01

    This paper discusses how interactive neurorehabilitation systems can increase their effectiveness through systematic integration of media arts principles and practice. Media arts expertise can foster the development of complex yet intuitive extrinsic feedback displays that match the inherent complexity and intuitive nature of motor learning. Abstract, arts-based feedback displays can be powerful metaphors that provide re-contextualization, engagement and appropriate reward mechanisms for mature adults. Such virtual feedback displays must be seamlessly integrated with physical components to produce mixed reality training environments that promote active, generalizable learning. The proposed approaches are illustrated through examples from mixed reality rehabilitation systems developed by our team.

  7. Following Human Footsteps: Proposal of a Decision Theory Based on Human Behavior

    NASA Technical Reports Server (NTRS)

    Mahmud, Faisal

    2011-01-01

    Human behavior is a complex nature which depends on circumstances and decisions varying from time to time as well as place to place. The way a decision is made either directly or indirectly related to the availability of the options. These options though appear at random nature, have a solid directional way for decision making. In this paper, a decision theory is proposed which is based on human behavior. The theory is structured with model sets that will show the all possible combinations for making a decision, A virtual and simulated environment is considered to show the results of the proposed decision theory

  8. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less

  9. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE PAGES

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli; ...

    2017-10-31

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less

  10. Impact of low-dose chronic exposure to Bisphenol A (BPA) on adult male zebrafish adaption to the environmental complexity: Disturbing the color preference patterns and reliving the anxiety behavior.

    PubMed

    Li, Xiang; Sun, Ming-Zhu; Li, Xu; Zhang, Shu-Hui; Dai, Liang-Ti; Liu, Xing-Yu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng

    2017-11-01

    The extensive usage of xenobiotic endocrine disrupting chemicals (XEDCs), such as Bisphenol A (BPA), has created obvious threat to aquatic ecosystems worldwide. Although a comprehensive understanding of the adverse effect of BPA on behaviors and physiology have been proven, the potential impact of low-dose BPA on altering the basic ability of aquatic organism in adapting to the surrounded complex environment still remains elusive. In this research, we report that treatment of adult male zebrafish with chronic (7 weeks) low-dose (0.22 nM-2.2 nM) BPA, altered the ability in adapting the complex environment by disturbing the natural color preference patterns. In addition, chronic 50 ng/L (0.22 nM) BPA exposure alleviated the anxiety behavior of male zebrafish confronted with the novel environment by enhancing the preference towards light in the light/dark preference test. This phenotype was associated with less expression of serotonin (5-TH) in the hypothalamus and the down-regulation of tyrosine hydroxylase (TH) in brain tissues. As such, our results show that low-dose BPA remnant in surface waters altered zebrafish behavior that are known to have ecological and evolutionary consequences. Here we reported that the impact of chronic low-dose BPA exposure on the basic capability of zebrafish to adapt to the environmental complexity. Specifically, BPA at low concentration, under the environmental safety level and 3000-fold lower than the accepted human daily exposure, interfered with the ability to discriminate color and alleviate anxiety induced by the novel environment, which finally altered the capability of male zebrafish to adapt to the environmental complexity. These findings revealed the ecological effect of low-dose BPA and regular BPA concentration standard are not necessarily safe. The result also provided the consideration of retuning the hazard concentration level of BPA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Halochromism, ionochromism, solvatochromism and density functional study of a synthesized copper(II) complex containing hemilabile amide derivative ligand.

    PubMed

    Golchoubian, Hamid; Moayyedi, Golasa; Reisi, Neda

    2015-03-05

    This study investigates chromotropism of newly synthesized 3,3'-(ethane-1,2-diylbis(benzylazanediyl))dipropanamide copper(II) perchlorate complex. The compound was structurally characterized by physico-chemical and spectroscopic methods. X-ray crystallography of the complex showed that the copper atom achieved a distorted square pyramidal environment through coordination of two amine N atoms and two O atoms of the amide moieties. The pH effect on the visible absorption spectrum of the complex was studied which functions as pH-induced "off-on-off" switches through protonation and deprotonation of amide moieties along with the CuO to CuN bond rearrangement at room temperature. The complex was also observed to show solvatochromism and ionochromism. The distinct solution color changes mainly associated with hemilability of the amide groups. The solvatochromism of the complex was investigated with different solvent parameter models using stepwise multiple linear regression method. The results suggested that the basicity power of the solvent has a dominant contribution to the shift of the d-d absorption band of the complex. Density functional theory, DFT calculations were performed in order to study the electronic structure of the complex, the relative stabilities of the CuN/CuO isomers, and to understand the nature of the halochromism processes taking place. DFT computational results buttressed the experimental observations indicating that in the natural pH (5.8) the CuO isomer is more stable than its linkage isomer and conversely in alkaline aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Report: complexation of β-sitosterol with tris (dibenzylideneacetone) dipalladium and its anti-microbial activity.

    PubMed

    Mahmood, Talat; Bibi, Yasmeen; Zafar, Raana; Wahab, Aneela; Mahmood, Iffat; Arshad, Nuzhat; Sherwani, Sikandar Khan

    2015-03-01

    β-sitosterol is a naturally occurring plant sterol (phytosterol) present in many fruits and vegetables. Scientific research has proven that β-sitosterol is helpful in maintaining the proper functioning of our body. Previously we described the complexation of β-sitosterol with trace metals (Mahmood et al., 2013). Trace metals after the formation of complex unable to absorb in the body and hence eliminated out from the body thus reducing metal toxicity (Marsha, 1996). The present article describes the complexation of μ-sitosterol with Palladium (Pd) metal. Palladium is a toxic metal and due to polluted and hazardous environment traces of this metal can be transferred into the body, which is harmful for human health. Our aim is to make Pd-sterol complex so that this toxic metal (Pd) does not absorb in the body and hence excreted out from the body in the complex form. In order to form this complex μ-sitosterol (Ib) is reacted with Tris (dibenzylideneacetone) dipalladium or [Pd(2) (DBA)(3)] (Ia) in 2:1 ratio in an inert atmosphere and dimethylformamid (DMF) added as a solvent. The resulting complex [Pd(2) (DBA)(3).(β-sitosterol) (Ic) was identified by various spectroscopic techniques such as IR, Mass and (1)H-NMR. This new organo metallic complex (Ic) also showed significant antibacterial and antifungal activity. The present work revealed that Pd-sterol complex does not only reduce metal toxicity but also helpful in minimizing bacterial and fungal infections present in the body. Our research also concluded that we must take plenty of fruits and vegetables in our diet so that natural plant sterol such as β-sitosterol can enhance our defense mechanism and maintain other functions of our body.

  13. Challenges and Early Results: Interactive benthic experiments in hydrate environments of Barkley Canyon, NEPTUNE Canada.

    NASA Astrophysics Data System (ADS)

    Best, M.; Thomsen, L.; de Beer, D.

    2012-04-01

    NEPTUNE Canada, operating and online since 2009, is an 800km, 5-node, regional cabled ocean network across the northern Juan de Fuca Plate, northeastern Pacific, part of the Ocean Networks Canada Observatory. One of 15 study areas is an environment of exposed hydrate mounds along the wall of Barkley Canyon, at ~865m water depth. This is the home of a benthic crawler developed by Jacobs University of Germany, who is affectionately known as Wally. Wally is equipped with a range of sensors including a camera, methane sensor, current meter, fluorometer, turbidity meter, CTD, and a sediment microprofiler developed at the Max Planck Institute with probes for oxygen, methane, sulphide, pH, temperature, and conductivity. In conjunction with this sensor suite, a series of experiments have been designed to assess the cycling of biogenic carbon and carbonate in this complex environment. The biota range from microbes, to molluscs, to large fish, and therefore the carbon inputs include both a range of organic carbon compounds as well as the complex materials that are "biogenic carbonate". Controlled experimental specimens were deployed of biogenic carbonate (Mytilus edulis fresh shells) and cellulose (pieces of untreated pine lumber) that had been previously well characterized (photographed, weighed, and numbered, matching valves and lumber kept as controls). Deployment at the sediment/water interface was in such a way to maximize natural burial exhumation cycles but to minimize specimen interaction. 10 replicate specimens of each material were deployed in two treatments: 1) adjacent to a natural life and death assemblage of chemosynthetic bivalves and exposed hydrate on a hydrate mound and 2) on the muddy seafloor at a distance from the mound. In order to quantify and track the rates and processes of modification of the natural materials, and their possible environmental/ecological correlates, observations of the experimental specimens are being made on a regular basis using the crawler camera and sensors. On retrieval, the specimens will be further studied for net material loss, surface alteration, microbial recruitment, endo- and epibionts, and microstructural and chemical modification. The complex coordination of hardware, software, and people is challenging such that the ideal of frequent and timely observations of these poorly known processes is realized. Understanding the production and cycling of carbon across the sediment/water interface in this environment will help elucidate the formation and evolution of these hydrate deposits, their distribution through time, and the ecological and taphonomic feedbacks they generate.

  14. Understanding the Radioactive Ingrowth and Decay of Naturally Occurring Radioactive Materials in the Environment: An Analysis of Produced Fluids from the Marcellus Shale

    PubMed Central

    Nelson, Andrew W.; Eitrheim, Eric S.; Knight, Andrew W.; May, Dustin; Mehrhoff, Marinea A.; Shannon, Robert; Litman, Robert; Burnett, William C.; Forbes, Tori Z.

    2015-01-01

    Background The economic value of unconventional natural gas resources has stimulated rapid globalization of horizontal drilling and hydraulic fracturing. However, natural radioactivity found in the large volumes of “produced fluids” generated by these technologies is emerging as an international environmental health concern. Current assessments of the radioactivity concentration in liquid wastes focus on a single element—radium. However, the use of radium alone to predict radioactivity concentrations can greatly underestimate total levels. Objective We investigated the contribution to radioactivity concentrations from naturally occurring radioactive materials (NORM), including uranium, thorium, actinium, radium, lead, bismuth, and polonium isotopes, to the total radioactivity of hydraulic fracturing wastes. Methods For this study we used established methods and developed new methods designed to quantitate NORM of public health concern that may be enriched in complex brines from hydraulic fracturing wastes. Specifically, we examined the use of high-purity germanium gamma spectrometry and isotope dilution alpha spectrometry to quantitate NORM. Results We observed that radium decay products were initially absent from produced fluids due to differences in solubility. However, in systems closed to the release of gaseous radon, our model predicted that decay products will begin to ingrow immediately and (under these closed-system conditions) can contribute to an increase in the total radioactivity for more than 100 years. Conclusions Accurate predictions of radioactivity concentrations are critical for estimating doses to potentially exposed individuals and the surrounding environment. These predictions must include an understanding of the geochemistry, decay properties, and ingrowth kinetics of radium and its decay product radionuclides. Citation Nelson AW, Eitrheim ES, Knight AW, May D, Mehrhoff MA, Shannon R, Litman R, Burnett WC, Forbes TZ, Schultz MK. 2015. Understanding the radioactive ingrowth and decay of naturally occurring radioactive materials in the environment: an analysis of produced fluids from the Marcellus Shale. Environ Health Perspect 123:689–696; http://dx.doi.org/10.1289/ehp.1408855 PMID:25831257

  15. A user-system interface agent

    NASA Technical Reports Server (NTRS)

    Wakim, Nagi T.; Srivastava, Sadanand; Bousaidi, Mehdi; Goh, Gin-Hua

    1995-01-01

    Agent-based technologies answer to several challenges posed by additional information processing requirements in today's computing environments. In particular, (1) users desire interaction with computing devices in a mode which is similar to that used between people, (2) the efficiency and successful completion of information processing tasks often require a high-level of expertise in complex and multiple domains, (3) information processing tasks often require handling of large volumes of data and, therefore, continuous and endless processing activities. The concept of an agent is an attempt to address these new challenges by introducing information processing environments in which (1) users can communicate with a system in a natural way, (2) an agent is a specialist and a self-learner and, therefore, it qualifies to be trusted to perform tasks independent of the human user, and (3) an agent is an entity that is continuously active performing tasks that are either delegated to it or self-imposed. The work described in this paper focuses on the development of an interface agent for users of a complex information processing environment (IPE). This activity is part of an on-going effort to build a model for developing agent-based information systems. Such systems will be highly applicable to environments which require a high degree of automation, such as, flight control operations and/or processing of large volumes of data in complex domains, such as the EOSDIS environment and other multidisciplinary, scientific data systems. The concept of an agent as an information processing entity is fully described with emphasis on characteristics of special interest to the User-System Interface Agent (USIA). Issues such as agent 'existence' and 'qualification' are discussed in this paper. Based on a definition of an agent and its main characteristics, we propose an architecture for the development of interface agents for users of an IPE that is agent-oriented and whose resources are likely to be distributed and heterogeneous in nature. The architecture of USIA is outlined in two main components: (1) the user interface which is concerned with issues as user dialog and interaction, user modeling, and adaptation to user profile, and (2) the system interface part which deals with identification of IPE capabilities, task understanding and feasibility assessment, and task delegation and coordination of assistant agents.

  16. Discussion of the enabling environments for decentralised water systems.

    PubMed

    Moglia, M; Alexander, K S; Sharma, A

    2011-01-01

    Decentralised water supply systems are becoming increasingly affordable and commonplace in Australia and have the potential to alleviate urban water shortages and reduce pollution into natural receiving marine and freshwater streams. Learning processes are necessary to support the efficient implementation of decentralised systems. These processes reveal the complex socio-technical and institutional factors to be considered when developing an enabling environment supporting decentralised water and wastewater servicing solutions. Critical to the technological transition towards established decentralised systems is the ability to create strategic and adaptive capacity to promote learning and dialogue. Learning processes require institutional mechanisms to ensure the lessons are incorporated into the formulation of policy and regulation, through constructive involvement of key government institutions. Engagement of stakeholders is essential to the enabling environment. Collaborative learning environments using systems analysis with communities (social learning) and adaptive management techniques are useful in refining and applying scientists' and managers' knowledge (knowledge management).

  17. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa.

    PubMed

    La Rosa, Ruggero; Johansen, Helle Krogh; Molin, Søren

    2018-04-10

    Evolution by natural selection under complex and dynamic environmental conditions occurs through intricate and often counterintuitive trajectories affecting many genes and metabolic solutions. To study short- and long-term evolution of bacteria in vivo , we used the natural model system of cystic fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen requirements. Interestingly, although convergence was evidenced at the phenotypic level of metabolic specialization, comparative genomics disclosed diverse mutational patterns underlying the different evolutionary trajectories. Therefore, distinct combinations of genetic and regulatory changes converge to common metabolic adaptive trajectories leading to within-host metabolic specialization. This study gives new insight into bacterial metabolic evolution during long-term colonization of a new environmental niche. IMPORTANCE Only a few examples of real-time evolutionary investigations in environments outside the laboratory are described in the scientific literature. Remembering that biological evolution, as it has progressed in nature, has not taken place in test tubes, it is not surprising that conclusions from our investigations of bacterial evolution in the CF model system are different from what has been concluded from laboratory experiments. The analysis presented here of the metabolic and regulatory driving forces leading to successful adaptation to a new environment provides an important insight into the role of metabolism and its regulatory mechanisms for successful adaptation of microorganisms in dynamic and complex environments. Understanding the trajectories of adaptation, as well as the mechanisms behind slow growth and rewiring of regulatory and metabolic networks, is a key element to understand the adaptive robustness and evolvability of bacteria in the process of increasing their in vivo fitness when conquering new territories. Copyright © 2018 La Rosa et al.

  18. The Scientific Committee on Antarctic Research (SCAR) in the IPY 2007-2009

    NASA Astrophysics Data System (ADS)

    Kennicutt, M. C.; Wilson, T. J.; Summerhayes, C.

    2005-05-01

    The Scientific Committee on Antarctic Research (SCAR) initiates, develops, and coordinates international scientific research in the Antarctic region. SCAR is assuming a leadership position in the IPY primarily through its five major Scientific Research Programs; ACE, SALE, EBA, AGCS, and ICESTAR; which will be briefly described.Antarctic Climate Evolution (ACE) promotes the exchange of data and ideas between research groups focusing on the evolution of Antarctica's climate system and ice sheet. The program will: (1) quantitatively assess the climate and glacial history of Antarctica; (2) identify the processes which govern Antarctic change and feed back around the globe; (3) improve our ability to model past changes in Antarctica; and (4)document past change to predict future change in Antarctica. Subglacial Antarctic Lake Environments (SALE) promotes, facilitates, and champions cooperation and collaboration in the exploration and study of subglacial environments in Antarctica. SALE intends to understand the complex interplay of biological, geological, chemical, glaciological, and physical processes within subglacial lake environments through coordinated international research teams. Evolution and Biodiversity in the Antarctic (EBA) will use a suite of modern techniques and interdisciplinary approaches, to explore the evolutionary history of selected modern Antarctic biota, examine how modern biological diversity in the Antarctic influences the way present-day ecosystems function, and thereby predict how the biota may respond to future environmental change. Antarctica and the Global Climate System (AGCS) will investigate the nature of the atmospheric and oceanic linkages between the climate of the Antarctic and the rest of the Earth system, and the mechanisms involved therein. A combination of modern instrumented records of atmospheric and oceanic conditions, and the climate signals held within ice cores will be used to understand past and future climate variability and change in the Antarctic as a result of natural and anthropogenic forcings over the last 100,000 years. Interhemispheric Conjugacy Effects in Solar-Terrestrial and Aeronomy Research (ICESTAR) will study the interactions between and collective behavior of the many component parts of the Earth system, including the interaction between the natural environment and human society. Objectives include specification and prediction of the state of the system and assimilation and integration of data from disparate sources to understand the complex geospace environment.

  19. Effects of structural complexity on within-canopy light environments and leaf traits in a northern mixed deciduous forest.

    PubMed

    Fotis, Alexander T; Curtis, Peter S

    2017-10-01

    Canopy structure influences forest productivity through its effects on the distribution of radiation and the light-induced changes in leaf physiological traits. Due to the difficulty of accessing and measuring forest canopies, few field-based studies have quantitatively linked these divergent scales of canopy functioning. The objective of our study was to investigate how canopy structure affects light profiles within a forest canopy and whether leaves of mature trees adjust morphologically and biochemically to the light environments characteristic of canopies with different structural complexity. We used a combination of light detection and ranging (LiDAR) data and hemispherical photographs to quantify canopy structure and light environments, respectively, and a telescoping pole to sample leaves. Leaf mass per area (LMA), nitrogen on an area basis (Narea) and chlorophyll on a mass basis (Chlmass) were measured in red maple (Acer rubrum), american beech (Fagus grandifolia), white pine (Pinus strobus), and northern red oak (Quercus rubra) at different heights in plots with similar leaf area index but contrasting canopy complexity (rugosity). We found that more complex canopies had greater porosity and reduced light variability in the midcanopy while total light interception was unchanged relative to less complex canopies. Leaf phenotypes of F. grandifolia, Q. rubra and P. strobus were more sun-acclimated in the midstory of structurally complex canopies while leaf phenotypes of A. rubrum were more shade-acclimated (lower LMA) in the upper canopy of more complex stands, despite no differences in total light interception. Broadleaf species showed further differences in acclimation with increased Narea and reduced Chlmass in leaves with higher LMA, while P. strobus showed no change in Narea and Chlmass with higher LMA. Our results provide new insight on how light distribution and leaf acclimation in mature trees might be altered when natural and anthropogenic disturbances cause structural changes in the canopy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Engineering microbial consortia to enhance biomining and bioremediation.

    PubMed

    Brune, Karl D; Bayer, Travis S

    2012-01-01

    In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.

  1. Detection of silver nanoparticles in seawater at ppb levels using UV-visible spectrophotometry with long path cells.

    PubMed

    Lodeiro, Pablo; Achterberg, Eric P; El-Shahawi, Mohammad S

    2017-03-01

    Silver nanoparticles (AgNPs) are emerging contaminants that are difficult to detect in natural waters. UV-visible spectrophotometry is a simple technique that allows detection of AgNPs through analysis of their characteristic surface plasmon resonance band. The detection limit for nanoparticles using up to 10cm path length cuvettes with UV-visible spectrophotometry is in the 0.1-10ppm range. This detection limit is insufficiently low to observe AgNPs in natural environments. Here we show how the use of capillary cells with an optical path length up to 200cm, forms an excellent technique for rapid detection and quantification of non-aggregated AgNPs at ppb concentrations in complex natural matrices such as seawater. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Engineering microbial consortia to enhance biomining and bioremediation

    PubMed Central

    Brune, Karl D.; Bayer, Travis S.

    2012-01-01

    In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage. PMID:22679443

  3. Pediatric rehabilitation psychology: Rehabilitating a moving target.

    PubMed

    Kaufman, Jacqueline N; Lahey, Sarah; Slomine, Beth S

    2017-08-01

    The current special section includes manuscripts focusing on four aspects of pediatric rehabilitation psychology that are unique to this practice area. The first domain addressed is natural developmental progression in the context of a disability (i.e., habilitation). The next domain addressed in this special section is pediatric rehabilitation; pediatric rehabilitation psychology addresses the reacquisition of previously attained skills and abilities within the context of the natural developmental milieu. This special section also highlights the inherently interdisciplinary and transdisciplinary nature of pediatric rehabilitation psychology given the complex environment in which children exist. Finally, the special section includes illustrations of the crucial role pediatric rehabilitation psychologists play in facilitating transitions through major milestones, particularly from pediatrics to adulthood when living with a disability. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Natural environment analysis

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Qualitative analyses (and quantitatively to the extend possible) of the influence of terrain features on wind loading of the space shuttle while on the launch pad, or during early liftoff, are presented. Initially, the climatology and meteorology producing macroscale wind patterns and characteristics fot he Vandenburg Air Force Base (VAFB) launch site are described. Also, limited field test data are analyzed, and then the nature and characteristic of flow disturbances due to the various terrain features, both natural and man-made, are then reviewed. Following this, the magnitude of these wind loads are estimated. Finally, effects of turbulence are discussed. The study concludes that the influence of complex terrain can create significant wind loading on the vehicle. Because of the limited information, it is not possible to quantify the magnitude of these loads.

  5. Transfer of Complex Skill Learning from Virtual to Real Rowing

    PubMed Central

    Rauter, Georg; Sigrist, Roland; Koch, Claudio; Crivelli, Francesco; van Raai, Mark; Riener, Robert; Wolf, Peter

    2013-01-01

    Simulators are commonly used to train complex tasks. In particular, simulators are applied to train dangerous tasks, to save costs, and to investigate the impact of different factors on task performance. However, in most cases, the transfer of simulator training to the real task has not been investigated. Without a proof for successful skill transfer, simulators might not be helpful at all or even counter-productive for learning the real task. In this paper, the skill transfer of complex technical aspects trained on a scull rowing simulator to sculling on water was investigated. We assume if a simulator provides high fidelity rendering of the interactions with the environment even without augmented feedback, training on such a realistic simulator would allow similar skill gains as training in the real environment. These learned skills were expected to transfer to the real environment. Two groups of four recreational rowers participated. One group trained on water, the other group trained on a simulator. Within two weeks, both groups performed four training sessions with the same licensed rowing trainer. The development in performance was assessed by quantitative biomechanical performance measures and by a qualitative video evaluation of an independent, blinded trainer. In general, both groups could improve their performance on water. The used biomechanical measures seem to allow only a limited insight into the rowers' development, while the independent trainer could also rate the rowers' overall impression. The simulator quality and naturalism was confirmed by the participants in a questionnaire. In conclusion, realistic simulator training fostered skill gains to a similar extent as training in the real environment and enabled skill transfer to the real environment. In combination with augmented feedback, simulator training can be further exploited to foster motor learning even to a higher extent, which is subject to future work. PMID:24376518

  6. Assignment of Pre-edge Features in the Ru K-edge X-ray Absorption Spectra of Organometallic Ruthenium Complexes

    PubMed Central

    Getty, Kendra; Delgado-Jaime, Mario Ulises

    2010-01-01

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030

  7. [A complexity analysis of Chinese herbal property theory: the multiple expressions of herbal property].

    PubMed

    Jin, Rui; Zhang, Bing

    2012-12-01

    Chinese herbal property is the highly summarized concept of herbal nature and pharmaceutical effect, which reflect the characteristics of herbal actions on human body. These herbal actions, also interpreted as presenting the information about pharmaceutical effect contained in herbal property on the biological carrier, are defined as herbal property expressions. However, the biological expression of herbal property is believed to possess complex features for the involved complexity of Chinese medicine and organism. Firstly, there are multiple factors which could influence the expression results of herbal property such as the growth environment, harvest season and preparing methods of medicinal herbs, and physique and syndrome of body. Secondly, there are multiple biological approaches and biochemical indicators for the expression of the same property. This paper elaborated these complexities for further understanding of herbal property. The individuality of herbs and expression factors should be well analyzed in the related studies.

  8. Fractal Hypothesis of the Pelagic Microbial Ecosystem-Can Simple Ecological Principles Lead to Self-Similar Complexity in the Pelagic Microbial Food Web?

    PubMed

    Våge, Selina; Thingstad, T Frede

    2015-01-01

    Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales.

  9. Fractal Hypothesis of the Pelagic Microbial Ecosystem—Can Simple Ecological Principles Lead to Self-Similar Complexity in the Pelagic Microbial Food Web?

    PubMed Central

    Våge, Selina; Thingstad, T. Frede

    2015-01-01

    Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales. PMID:26648929

  10. Multiple attractors and dynamics in an OLG model with productive environment

    NASA Astrophysics Data System (ADS)

    Caravaggio, Andrea; Sodini, Mauro

    2018-05-01

    This work analyses an overlapping generations model in which economic activity depends on the exploitation of a free-access natural resource. In addition, public expenditures for environmental maintenance are assumed. By characterising some properties of the map and performing numerical simulations, we investigate consequences of the interplay between environmental public expenditure and private sector. In particular, we identify different scenarios in which multiple equilibria as well as complex dynamics may arise.

  11. Our health language and data collections.

    PubMed

    Hovenga, Evelyn J S; Grain, Heather

    2013-01-01

    All communication within the health industry is dependent upon the use of our health language consisting of a very extensive and complex vocabulary. Converting this language into computable formats is necessary in a digital environment with a strong reliance on data, information and knowledge sharing. This chapter describes our health language, what terminologies and ontologies are, their use and relationships with natural language, indexing, data standards, data collections and the need for data governance.

  12. SNP by SNP by environment interaction network of alcoholism.

    PubMed

    Zollanvari, Amin; Alterovitz, Gil

    2017-03-14

    Alcoholism has a strong genetic component. Twin studies have demonstrated the heritability of a large proportion of phenotypic variance of alcoholism ranging from 50-80%. The search for genetic variants associated with this complex behavior has epitomized sequence-based studies for nearly a decade. The limited success of genome-wide association studies (GWAS), possibly precipitated by the polygenic nature of complex traits and behaviors, however, has demonstrated the need for novel, multivariate models capable of quantitatively capturing interactions between a host of genetic variants and their association with non-genetic factors. In this regard, capturing the network of SNP by SNP or SNP by environment interactions has recently gained much interest. Here, we assessed 3,776 individuals to construct a network capable of detecting and quantifying the interactions within and between plausible genetic and environmental factors of alcoholism. In this regard, we propose the use of first-order dependence tree of maximum weight as a potential statistical learning technique to delineate the pattern of dependencies underpinning such a complex trait. Using a predictive based analysis, we further rank the genes, demographic factors, biological pathways, and the interactions represented by our SNP [Formula: see text]SNP[Formula: see text]E network. The proposed framework is quite general and can be potentially applied to the study of other complex traits.

  13. Flies and humans share a motion estimation strategy that exploits natural scene statistics

    PubMed Central

    Clark, Damon A.; Fitzgerald, James E.; Ales, Justin M.; Gohl, Daryl M.; Silies, Marion A.; Norcia, Anthony M.; Clandinin, Thomas R.

    2014-01-01

    Sighted animals extract motion information from visual scenes by processing spatiotemporal patterns of light falling on the retina. The dominant models for motion estimation exploit intensity correlations only between pairs of points in space and time. Moving natural scenes, however, contain more complex correlations. Here we show that fly and human visual systems encode the combined direction and contrast polarity of moving edges using triple correlations that enhance motion estimation in natural environments. Both species extract triple correlations with neural substrates tuned for light or dark edges, and sensitivity to specific triple correlations is retained even as light and dark edge motion signals are combined. Thus, both species separately process light and dark image contrasts to capture motion signatures that can improve estimation accuracy. This striking convergence argues that statistical structures in natural scenes have profoundly affected visual processing, driving a common computational strategy over 500 million years of evolution. PMID:24390225

  14. Carbon nanotubes and other fullerene-related nanocrystals in the environment: A TEM study

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Soto, K. F.; Esquivel, E. V.; Bang, J. J.; Guerrero, P. A.; Lopez, D. A.; Ramirez, D. A.

    2004-06-01

    Carbon nanotubes and other fullerene-related nanocrystals are ubiquitous in the atmospheric environment—both indoor and outdoor. In fact, these nanostructures have been observed even in a 10,000 year-old ice core sample, indicating their natural existence in antiquity, probably as natural gas/methane combustion products. Similar carbon nanotubes and complex carbon nanocrystal aggregates are observed to be emitted from contemporary combustion sources such as kitchen stoves (natural gas and propane), water heater and furnace exhaust vents, natural gas-burning (electric) power plants, and industrial furnace operations, among others. These observations have been made by collecting nanoparticulates and nanocrystal aggregates on carbon/formvar and silicon monoxide/formvarcoated 3 mm grids that were examined with a transmission-electron microscope. This study begins to establish an environmental context for considering the potential impact of future nanostructured particles on human health.

  15. The Right "Fit": Exploring Science Teacher Candidates' Approaches to Natural Selection Within a Clinical Simulation

    NASA Astrophysics Data System (ADS)

    Dotger, Benjamin; Dotger, Sharon; Masingila, Joanna; Rozelle, Jeffrey; Bearkland, Mary; Binnert, Ashley

    2018-06-01

    Teachers and students struggle with the complexities surrounding the evolution of species and the process of natural selection. This article examines how science teacher candidates (STCs) engage in a clinical simulation that foregrounds two common challenges associated with natural selection—students' understanding of "survival of the fittest" and the variation of species over time. We outline the medical education pedagogy of clinical simulations and its recent diffusion to teacher education. Then, we outline the study that situates each STC in a one-to-one interaction with a standardized student who is struggling to accurately interpret natural selection concepts. In simulation with the standardized student, each STC is challenged to recognize content misconceptions and respond with appropriate instructional strategies and accurate explanations. Findings and implications center on the STCs' instructional practices in the simulation and the use of clinical learning environments to foster science teacher learning.

  16. The Right "Fit": Exploring Science Teacher Candidates' Approaches to Natural Selection Within a Clinical Simulation

    NASA Astrophysics Data System (ADS)

    Dotger, Benjamin; Dotger, Sharon; Masingila, Joanna; Rozelle, Jeffrey; Bearkland, Mary; Binnert, Ashley

    2017-04-01

    Teachers and students struggle with the complexities surrounding the evolution of species and the process of natural selection. This article examines how science teacher candidates (STCs) engage in a clinical simulation that foregrounds two common challenges associated with natural selection—students' understanding of "survival of the fittest" and the variation of species over time. We outline the medical education pedagogy of clinical simulations and its recent diffusion to teacher education. Then, we outline the study that situates each STC in a one-to-one interaction with a standardized student who is struggling to accurately interpret natural selection concepts. In simulation with the standardized student, each STC is challenged to recognize content misconceptions and respond with appropriate instructional strategies and accurate explanations. Findings and implications center on the STCs' instructional practices in the simulation and the use of clinical learning environments to foster science teacher learning.

  17. Redox Transformations of As and Se at the Surfaces of Natural and Synthetic Ferric Nontronites: Role of Structural and Adsorbed Fe(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilgen, Anastasia G.; Kruichak, Jessica N.; Artyushkova, Kateryna

    Adsorption and redox transformations on clay mineral surfaces are prevalent in surface environments. We examined the redox reactivity of iron Fe(II)/Fe(III) associated with natural and synthetic ferric nontronites. Specifically, we assessed how Fe(II) residing in the octahedral sheets, or Fe(II) adsorbed at the edge sites alters redox activity of nontronites. To probe the redox activity we used arsenic (As) and selenium (Se). Activation of both synthetic and natural ferric nontronites was. observed following the introduction of Fe(II) into predominantly-Fe(III) octahedral sheets or through the adsorption of Fe(II) onto the mineral surface. The oxidation of As(III) to As(V) was observed viamore » catalytic (oxic conditions) and, to a lesser degree, via direct (anoxic conditions) pathways. We provide experimental evidence for electron transfer from As(III) to Fe(111) at the natural and synthetic nontronite surfaces, and illustrate that only a fraction of structural Fe(III) is accessible for redox transformations. We show that As adsorbed onto natural and synthetic nontronites forms identical adsorption complexes, namely inner-sphere binuclear bidentate. In conclusion, we show that the formation of an inner-sphere adsorption complex may be a necessary step for the redox transformation via catalytic or direct oxidation pathways.« less

  18. Redox Transformations of As and Se at the Surfaces of Natural and Synthetic Ferric Nontronites: Role of Structural and Adsorbed Fe(II)

    DOE PAGES

    Ilgen, Anastasia G.; Kruichak, Jessica N.; Artyushkova, Kateryna; ...

    2017-08-29

    Adsorption and redox transformations on clay mineral surfaces are prevalent in surface environments. We examined the redox reactivity of iron Fe(II)/Fe(III) associated with natural and synthetic ferric nontronites. Specifically, we assessed how Fe(II) residing in the octahedral sheets, or Fe(II) adsorbed at the edge sites alters redox activity of nontronites. To probe the redox activity we used arsenic (As) and selenium (Se). Activation of both synthetic and natural ferric nontronites was. observed following the introduction of Fe(II) into predominantly-Fe(III) octahedral sheets or through the adsorption of Fe(II) onto the mineral surface. The oxidation of As(III) to As(V) was observed viamore » catalytic (oxic conditions) and, to a lesser degree, via direct (anoxic conditions) pathways. We provide experimental evidence for electron transfer from As(III) to Fe(111) at the natural and synthetic nontronite surfaces, and illustrate that only a fraction of structural Fe(III) is accessible for redox transformations. We show that As adsorbed onto natural and synthetic nontronites forms identical adsorption complexes, namely inner-sphere binuclear bidentate. In conclusion, we show that the formation of an inner-sphere adsorption complex may be a necessary step for the redox transformation via catalytic or direct oxidation pathways.« less

  19. Computational modeling and statistical analyses on individual contact rate and exposure to disease in complex and confined transportation hubs

    NASA Astrophysics Data System (ADS)

    Wang, W. L.; Tsui, K. L.; Lo, S. M.; Liu, S. B.

    2018-01-01

    Crowded transportation hubs such as metro stations are thought as ideal places for the development and spread of epidemics. However, for the special features of complex spatial layout, confined environment with a large number of highly mobile individuals, it is difficult to quantify human contacts in such environments, wherein disease spreading dynamics were less explored in the previous studies. Due to the heterogeneity and dynamic nature of human interactions, increasing studies proved the importance of contact distance and length of contact in transmission probabilities. In this study, we show how detailed information on contact and exposure patterns can be obtained by statistical analyses on microscopic crowd simulation data. To be specific, a pedestrian simulation model-CityFlow was employed to reproduce individuals' movements in a metro station based on site survey data, values and distributions of individual contact rate and exposure in different simulation cases were obtained and analyzed. It is interesting that Weibull distribution fitted the histogram values of individual-based exposure in each case very well. Moreover, we found both individual contact rate and exposure had linear relationship with the average crowd densities of the environments. The results obtained in this paper can provide reference to epidemic study in complex and confined transportation hubs and refine the existing disease spreading models.

  20. Design and testing of a mesocosm-scale habitat for culturing the endangered Devils Hole Pupfish

    USGS Publications Warehouse

    Feuerbacher, Olin; Bonar, Scott A.; Barrett, Paul J.

    2016-01-01

    aptive propagation of desert spring fishes, whether for conservation or research, is often difficult, given the unique and often challenging environments these fish utilize in nature. High temperatures, low dissolved oxygen, minimal water flow, and highly variable lighting are some conditions a researcher might need to recreate to simulate their natural environments. Here we describe a mesocosm-scale habitat created to maintain hybrid Devils Hole × Ash Meadows Amargosa Pupfish (Cyprinodon diabolis × C. nevadensis mionectes) under conditions similar to those found in Devils Hole, Nevada. This 13,000-L system utilized flow control and natural processes to maintain these conditions rather than utilizing complex and expensive automation. We designed a rotating solar collector to control natural sunlight, a biological reactor to consume oxygen while buffering water quality, and a reverse-daylight photosynthesis sump system to stabilize nighttime pH and swings in dissolved oxygen levels. This system successfully controlled many desired parameters and helped inform development of a larger, more permanent desert fish conservation facility at the U.S. Fish and Wildlife Service’s Ash Meadows National Wildlife Refuge, Nevada. For others who need to raise fish from unique habitats, many components of the scalable and modular design of this system can be adapted at reasonable cost.

  1. Insights into the nature of cometary organic matter from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Court, Richard W.; Sephton, Mark A.

    2012-04-01

    The nature of cometary organic matter is of great interest to investigations involving the formation and distribution of organic matter relevant to the origin of life. We have used pyrolysis-Fourier transform infrared (FTIR) spectroscopy to investigate the chemical effects of the irradiation of naturally occurring bitumens, and to relate their products of pyrolysis to their parent assemblages. The information acquired has then been applied to the complex organic matter present in cometary nuclei and comae. Amalgamating the FTIR data presented here with data from published studies enables the inference of other comprehensive trends within hydrocarbon mixtures as they are progressively irradiated in a cometary environment, namely the polymerization of lower molecular weight compounds; an increased abundance of polycyclic aromatic hydrocarbon structures; enrichment in 13C; reduction in atomic H/C ratio; elevation of atomic O/C ratio and increase in the temperature required for thermal degradation. The dark carbonaceous surface of a cometary nucleus will display extreme levels of these features, relative to the nucleus interior, while material in the coma will reflect the degree of irradiation experienced by its source location in the nucleus. Cometary comae with high methane/water ratios indicate a nucleus enriched in methane, favouring the formation of complex organic matter via radiation-induced polymerization of simple precursors. In contrast, production of complex organic matter is hindered in a nucleus possessing a low methane/water ration, with the complex organic matter that does form possessing more oxygen-containing species, such as alcohol, carbonyl and carboxylic acid functional groups, resulting from reactions with hydroxyl radicals formed by the radiolysis of the more abundant water. These insights into the properties of complex cometary organic matter should be of particular interest to both remote observation and space missions involving in situ analyses and sample return of cometary materials.

  2. Structure and mechanics of aegagropilae fiber network.

    PubMed

    Verhille, Gautier; Moulinet, Sébastien; Vandenberghe, Nicolas; Adda-Bedia, Mokhtar; Le Gal, Patrice

    2017-05-02

    Fiber networks encompass a wide range of natural and manmade materials. The threads or filaments from which they are formed span a wide range of length scales: from nanometers, as in biological tissues and bundles of carbon nanotubes, to millimeters, as in paper and insulation materials. The mechanical and thermal behavior of these complex structures depends on both the individual response of the constituent fibers and the density and degree of entanglement of the network. A question of paramount importance is how to control the formation of a given fiber network to optimize a desired function. The study of fiber clustering of natural flocs could be useful for improving fabrication processes, such as in the paper and textile industries. Here, we use the example of aegagropilae that are the remains of a seagrass ( Posidonia oceanica ) found on Mediterranean beaches. First, we characterize different aspects of their structure and mechanical response, and second, we draw conclusions on their formation process. We show that these natural aggregates are formed in open sea by random aggregation and compaction of fibers held together by friction forces. Although formed in a natural environment, thus under relatively unconstrained conditions, the geometrical and mechanical properties of the resulting fiber aggregates are quite robust. This study opens perspectives for manufacturing complex fiber network materials.

  3. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate.

    PubMed

    Hiemstra, Tjisse; Mia, Shamim; Duhaut, Pierre-Benoît; Molleman, Bastiaan

    2013-08-20

    Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application of biochar, potentially creating Darks Earths or Terra Preta soils. A surface complexation approach has been developed that aims to describe the competitive behavior of natural organic matter (NOM) in soil as well as model systems. Modeling points unexpectedly to a strong change of the molecular conformation of humic acid (HA) with a predominant adsorption in the Stern layer domain at low NOM loading. In soil, mineral oxide surfaces remain efficiently loaded by mineral-protected organic carbon (OC), equivalent with a layer thickness of ≥ ~0.5 nm that represents at least 0.1-1.0% OC, while surface-associated OC may be even three times higher. In natural systems, surface complexation modeling should account for this pervasive NOM coverage. With our charge distribution model for NOM (NOM-CD), the pH-dependent oxyanion competition of the organo-mineral oxide fraction can be described. For pyrogenic HA, a more than 10-fold increase in dissolved phosphate is predicted at long-term applications of biochar or black carbon.

  4. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    PubMed

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  6. Selection, adaptation, and predictive information in changing environments

    NASA Astrophysics Data System (ADS)

    Feltgen, Quentin; Nemenman, Ilya

    2014-03-01

    Adaptation by means of natural selection is a key concept in evolutionary biology. Individuals better matched to the surrounding environment outcompete the others. This increases the fraction of the better adapted individuals in the population, and hence increases its collective fitness. Adaptation is also prominent on the physiological scale in neuroscience and cell biology. There each individual infers properties of the environment and changes to become individually better, improving the overall population as well. Traditionally, these two notions of adaption have been considered distinct. Here we argue that both types of adaptation result in the same population growth in a broad class of analytically tractable population dynamics models in temporally changing environments. In particular, both types of adaptation lead to subextensive corrections to the population growth rates. These corrections are nearly universal and are equal to the predictive information in the environment time series, which is also the characterization of the time series complexity. This work has been supported by the James S. McDonnell Foundation.

  7. Environmental Escherichia coli: ecology and public health implications-a review.

    PubMed

    Jang, J; Hur, H-G; Sadowsky, M J; Byappanahalli, M N; Yan, T; Ishii, S

    2017-09-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through faeces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent faecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extraintestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a faecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics revealed the diversity and complexity of E. coli strains in various environments, which are affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments with regard to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed. © 2017 The Society for Applied Microbiology.

  8. Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado.

    PubMed

    Silveira, F A O; Oliveira, E G

    2013-05-01

    Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna) area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences) of Miconia albicans (SW.) Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS), shrublands (cerrado sensu strico, CE) and woodlands (cerradão, CD). As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.

  9. 34 CFR 303.18 - Natural environments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Natural environments. 303.18 Section 303.18 Education... DISABILITIES General Purpose, Eligibility, and Other General Provisions § 303.18 Natural environments. As used in this part, natural environments means settings that are natural or normal for the child's age...

  10. 34 CFR 303.18 - Natural environments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Natural environments. 303.18 Section 303.18 Education... DISABILITIES General Purpose, Eligibility, and Other General Provisions § 303.18 Natural environments. As used in this part, natural environments means settings that are natural or normal for the child's age...

  11. Ultrastable cellulosome-adhesion complex tightens under load

    PubMed Central

    Schoeler, Constantin; Malinowska, Klara H.; Bernardi, Rafael C.; Milles, Lukas F.; Jobst, Markus A.; Durner, Ellis; Ott, Wolfgang; Fried, Daniel B.; Bayer, Edward A.; Schulten, Klaus; Gaub, Hermann E.; Nash, Michael A.

    2014-01-01

    Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand–receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand–receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600–750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass. PMID:25482395

  12. Anandamide-ceramide interactions in a membrane environment: Molecular dynamic simulations data.

    PubMed

    Di Scala, Coralie; Mazzarino, Morgane; Yahi, Nouara; Varini, Karine; Garmy, Nicolas; Fantini, Jacques; Chahinian, Henri

    2017-10-01

    Anandamide is a lipid neurotransmitter that interacts with various plasma membrane lipids. The data here consists of molecular dynamics simulations of anandamide, C18-ceramide and cholesterol performed in vacuo and within a hydrated palmitoyl-oleoyl-phosphatidylcholine (POPC)/cholesterol membrane. Several models of anandamide/cholesterol and anandamide/ceramide complexes are presented. The energy of interaction and the nature of the intermolecular forces involved in each of these complexes are detailed. The impact of water molecules hydrating the POPC/cholesterol membrane for the stability of the anandamide/cholesterol and anandamide/ceramide complexes is also analyzed. From a total number of 1920 water molecules stochatiscally merged with the lipid matrix, 48 were eventually redistributed around the polar head groups of the anandamide/ceramide complex, whereas only 15 reached with the anandamide/cholesterol complex. The interpretation of this dataset is presented in the accompanying article "Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells" [1].

  13. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    NASA Astrophysics Data System (ADS)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  14. Mobile EEG on the bike: disentangling attentional and physical contributions to auditory attention tasks

    NASA Astrophysics Data System (ADS)

    Zink, Rob; Hunyadi, Borbála; Van Huffel, Sabine; De Vos, Maarten

    2016-08-01

    Objective. In the past few years there has been a growing interest in studying brain functioning in natural, real-life situations. Mobile EEG allows to study the brain in real unconstrained environments but it faces the intrinsic challenge that it is impossible to disentangle observed changes in brain activity due to increase in cognitive demands by the complex natural environment or due to the physical involvement. In this work we aim to disentangle the influence of cognitive demands and distractions that arise from such outdoor unconstrained recordings. Approach. We evaluate the ERP and single trial characteristics of a three-class auditory oddball paradigm recorded in outdoor scenario’s while peddling on a fixed bike or biking freely around. In addition we also carefully evaluate the trial specific motion artifacts through independent gyro measurements and control for muscle artifacts. Main results. A decrease in P300 amplitude was observed in the free biking condition as compared to the fixed bike conditions. Above chance P300 single-trial classification in highly dynamic real life environments while biking outdoors was achieved. Certain significant artifact patterns were identified in the free biking condition, but neither these nor the increase in movement (as derived from continuous gyrometer measurements) can explain the differences in classification accuracy and P300 waveform differences with full clarity. The increased cognitive load in real-life scenarios is shown to play a major role in the observed differences. Significance. Our findings suggest that auditory oddball results measured in natural real-life scenarios are influenced mainly by increased cognitive load due to being in an unconstrained environment.

  15. Mobile EEG on the bike: disentangling attentional and physical contributions to auditory attention tasks.

    PubMed

    Zink, Rob; Hunyadi, Borbála; Huffel, Sabine Van; Vos, Maarten De

    2016-08-01

    In the past few years there has been a growing interest in studying brain functioning in natural, real-life situations. Mobile EEG allows to study the brain in real unconstrained environments but it faces the intrinsic challenge that it is impossible to disentangle observed changes in brain activity due to increase in cognitive demands by the complex natural environment or due to the physical involvement. In this work we aim to disentangle the influence of cognitive demands and distractions that arise from such outdoor unconstrained recordings. We evaluate the ERP and single trial characteristics of a three-class auditory oddball paradigm recorded in outdoor scenario's while peddling on a fixed bike or biking freely around. In addition we also carefully evaluate the trial specific motion artifacts through independent gyro measurements and control for muscle artifacts. A decrease in P300 amplitude was observed in the free biking condition as compared to the fixed bike conditions. Above chance P300 single-trial classification in highly dynamic real life environments while biking outdoors was achieved. Certain significant artifact patterns were identified in the free biking condition, but neither these nor the increase in movement (as derived from continuous gyrometer measurements) can explain the differences in classification accuracy and P300 waveform differences with full clarity. The increased cognitive load in real-life scenarios is shown to play a major role in the observed differences. Our findings suggest that auditory oddball results measured in natural real-life scenarios are influenced mainly by increased cognitive load due to being in an unconstrained environment.

  16. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks

    NASA Astrophysics Data System (ADS)

    Ivanov, Valeriy Y.; Bras, Rafael L.; Vivoni, Enrique R.

    2008-03-01

    Vegetation, particularly its dynamics, is the often-ignored linchpin of the land-surface hydrology. This work emphasizes the coupled nature of vegetation-water-energy dynamics by considering linkages at timescales that vary from hourly to interannual. A series of two papers is presented. A dynamic ecohydrological model [tRIBS + VEGGIE] is described in this paper. It reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. The framework focuses on ecohydrology of semiarid environments exhibiting abundant input of solar energy but limiting soil water that correspondingly affects vegetation structure and organization. The mechanisms through which water limitation influences plant dynamics are related to carbon assimilation via the control of photosynthesis and stomatal behavior, carbon allocation, stress-induced foliage loss, as well as recruitment and phenology patterns. This first introductory paper demonstrates model performance using observations for a site located in a semiarid environment of central New Mexico.

  17. Corundum-Hibonite Inclusions and the Environments of High Temperature Processing in the Early Solar System

    NASA Technical Reports Server (NTRS)

    Needham, A. W.; Messenger, S.

    2013-01-01

    Calcium, Aluminum-rich inclusions (CAIs) are composed of the suite of minerals predicted to be the first to condense from a cooling gas of solar composition [1]. Yet, the first phase to condense, corundum, is rare in CAIs, having mostly reacted to form hibonite followed by other phases at lower temperatures. Many CAIs show evidence of complex post-formational histories, including condensation, evaporation, and melting [e.g. 2, 3]. However, the nature of these thermal events and the nebular environments in which they took place are poorly constrained. Some corundum and corundum-hibonite grains appear to have survived or avoided these complex CAI reprocessing events. Such ultra-refractory CAIs may provide a clearer record of the O isotopic composition of the Sun and the evolution of the O isotopic composition of the planet-forming region [4-6]. Here we present in situ O and Mg isotopic analyses of two corundum/hibonite inclusions that record differing formation histories.

  18. Networks of plants: how to measure similarity in vegetable species.

    PubMed

    Vivaldo, Gianna; Masi, Elisa; Pandolfi, Camilla; Mancuso, Stefano; Caldarelli, Guido

    2016-06-07

    Despite the common misconception of nearly static organisms, plants do interact continuously with the environment and with each other. It is fair to assume that during their evolution they developed particular features to overcome similar problems and to exploit possibilities from environment. In this paper we introduce various quantitative measures based on recent advancements in complex network theory that allow to measure the effective similarities of various species. By using this approach on the similarity in fruit-typology ecological traits we obtain a clear plant classification in a way similar to traditional taxonomic classification. This result is not trivial, since a similar analysis done on the basis of diaspore morphological properties do not provide any clear parameter to classify plants species. Complex network theory can then be used in order to determine which feature amongst many can be used to distinguish scope and possibly evolution of plants. Future uses of this approach range from functional classification to quantitative determination of plant communities in nature.

  19. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks

    PubMed Central

    Krüger, Antje; Csibra, Eszter; Gianni, Edoardo

    2016-01-01

    Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs. PMID:27903826

  20. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks.

    PubMed

    Torres, Leticia; Krüger, Antje; Csibra, Eszter; Gianni, Edoardo; Pinheiro, Vitor B

    2016-11-30

    Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs. © 2016 The Author(s).

  1. Development and use of behavior and social interaction software installed on Palm handheld for observation of a child's social interactions with the environment.

    PubMed

    Sarkar, Archana; Dutta, Arup; Dhingra, Usha; Dhingra, Pratibha; Verma, Priti; Juyal, Rakesh; Black, Robert E; Menon, Venugopal P; Kumar, Jitendra; Sazawal, Sunil

    2006-08-01

    In settings in developing countries, children often socialize with multiple socializing agents (peers, siblings, neighbors) apart from their parents, and thus, a measurement of a child's social interactions should be expanded beyond parental interactions. Since the environment plays a role in shaping a child's development, the measurement of child-socializing agents' interactions is important. We developed and used a computerized observational software Behavior and Social Interaction Software (BASIS) with a preloaded coding scheme installed on a handheld Palm device to record complex observations of interactions between children and socializing agents. Using BASIS, social interaction assessments were conducted on 573 preschool children for 1 h in their natural settings. Multiple screens with a set of choices in each screen were designed that included the child's location, broad activity, state, and interactions with child-socializing agents. Data were downloaded onto a computer and systematically analyzed. BASIS, installed on Palm OS (M-125), enabled the recording of the complex interactions of child-socializing agents that could not be recorded with manual forms. Thus, this tool provides an innovative and relatively accurate method for the systematic recording of social interactions in an unrestricted environment.

  2. APFiLoc: An Infrastructure-Free Indoor Localization Method Fusing Smartphone Inertial Sensors, Landmarks and Map Information

    PubMed Central

    Shang, Jianga; Gu, Fuqiang; Hu, Xuke; Kealy, Allison

    2015-01-01

    The utility and adoption of indoor localization applications have been limited due to the complex nature of the physical environment combined with an increasing requirement for more robust localization performance. Existing solutions to this problem are either too expensive or too dependent on infrastructure such as Wi-Fi access points. To address this problem, we propose APFiLoc—a low cost, smartphone-based framework for indoor localization. The key idea behind this framework is to obtain landmarks within the environment and to use the augmented particle filter to fuse them with measurements from smartphone sensors and map information. A clustering method based on distance constraints is developed to detect organic landmarks in an unsupervised way, and the least square support vector machine is used to classify seed landmarks. A series of real-world experiments were conducted in complex environments including multiple floors and the results show APFiLoc can achieve 80% accuracy (phone in the hand) and around 70% accuracy (phone in the pocket) of the error less than 2 m error without the assistance of infrastructure like Wi-Fi access points. PMID:26516858

  3. Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome.

    PubMed

    Rubino, Francesco; Carberry, Ciara; M Waters, Sinéad; Kenny, David; McCabe, Matthew S; Creevey, Christopher J

    2017-04-01

    Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation.

  4. Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Antelo, Juan; van Rotterdam, A. M. D.(Debby); van Riemsdijk, Willem H.

    2010-01-01

    Information on the particle size and reactive surface area of natural samples and its interaction with natural organic matter (NOM) is essential for the understanding bioavailability, toxicity, and transport of elements in the natural environment. In part I of this series ( Hiemstra et al., 2010), a method is presented that allows the determination of the effective reactive surface area ( A, m 2/g soil) of the oxide particles of natural samples which uses a native probe ion (phosphate) and a model oxide (goethite) as proxy. In soils, the natural oxide particles are generally embedded in a matrix of natural organic matter (NOM) and this will affect the ion binding properties of the oxide fraction. A remarkably high variation in the natural phosphate loading of the oxide surfaces ( Γ, μmol/m 2) is observed in our soils and the present paper shows that it is due to surface complexation of NOM, acting as a competitor via site competition and electrostatic interaction. The competitive interaction of NOM can be described with the charge distribution (CD) model by defining a ≡NOM surface species. The interfacial charge distribution of this ≡NOM surface species can be rationalized based on calculations done with an evolved surface complexation model, known as the ligand and charge distribution (LCD) model. An adequate choice is the presence of a charge of -1 v.u. at the 1-plane and -0.5 v.u. at the 2-plane of the electrical double layer used (Extended Stern layer model). The effective interfacial NOM adsorption can be quantified by comparing the experimental phosphate concentration, measured under standardized field conditions (e.g. 0.01 M CaCl 2), with a prediction that uses the experimentally derived surface area ( A) and the reversibly bound phosphate loading ( Γ, μmol/m 2) of the sample (part I) as input in the CD model. Ignoring the competitive action of adsorbed NOM leads to a severe under-prediction of the phosphate concentration by a factor ˜10 to 1000. The calculated effective loading of NOM is low at a high phosphate loading ( Γ) and vice versa, showing the mutual competition of both constituents. Both constituents in combination usually dominate the surface loading of natural oxide fraction of samples and form the backbone in modeling the fate of other (minor) ions in the natural environment. Empirically, the effective NOM adsorption is found to correlate well to the organic carbon content (OC) of the samples. The effective NOM adsorption can also be linked to DOC. For this, a Non-Ideal Competitive adsorption (NICA) model is used. DOC is found to be a major explaining factor for the interfacial loading of NOM as well as phosphate. The empirical NOM-OC relation or the parameterized NICA model can be used as an alternative for estimating the effective NOM adsorption to be implemented in the CD model for calculation of the surface complexation of field samples. The biogeochemical impact of the NOM-PO 4 interaction is discussed.

  5. Interactive exploration of coastal restoration modeling in virtual environments

    NASA Astrophysics Data System (ADS)

    Gerndt, Andreas; Miller, Robert; Su, Simon; Meselhe, Ehab; Cruz-Neira, Carolina

    2009-02-01

    Over the last decades, Louisiana has lost a substantial part of its coastal region to the Gulf of Mexico. The goal of the project depicted in this paper is to investigate the complex ecological and geophysical system not only to find solutions to reverse this development but also to protect the southern landscape of Louisiana for disastrous impacts of natural hazards like hurricanes. This paper sets a focus on the interactive data handling of the Chenier Plain which is only one scenario of the overall project. The challenge addressed is the interactive exploration of large-scale time-depending 2D simulation results and of terrain data with a high resolution that is available for this region. Besides data preparation, efficient visualization approaches optimized for the usage in virtual environments are presented. These are embedded in a complex framework for scientific visualization of time-dependent large-scale datasets. To provide a straightforward interface for rapid application development, a software layer called VRFlowVis has been developed. Several architectural aspects to encapsulate complex virtual reality aspects like multi-pipe vs. cluster-based rendering are discussed. Moreover, the distributed post-processing architecture is investigated to prove its efficiency for the geophysical domain. Runtime measurements conclude this paper.

  6. Reasoning and planning in dynamic domains: An experiment with a mobile robot

    NASA Technical Reports Server (NTRS)

    Georgeff, M. P.; Lansky, A. L.; Schoppers, M. J.

    1987-01-01

    Progress made toward having an autonomous mobile robot reason and plan complex tasks in real-world environments is described. To cope with the dynamic and uncertain nature of the world, researchers use a highly reactive system to which is attributed attitudes of belief, desire, and intention. Because these attitudes are explicitly represented, they can be manipulated and reasoned about, resulting in complex goal-directed and reflective behaviors. Unlike most planning systems, the plans or intentions formed by the system need only be partly elaborated before it decides to act. This allows the system to avoid overly strong expectations about the environment, overly constrained plans of action, and other forms of over-commitment common to previous planners. In addition, the system is continuously reactive and has the ability to change its goals and intentions as situations warrant. Thus, while the system architecture allows for reasoning about means and ends in much the same way as traditional planners, it also posseses the reactivity required for survival in complex real-world domains. The system was tested using SRI's autonomous robot (Flakey) in a scenario involving navigation and the performance of an emergency task in a space station scenario.

  7. Static and Dynamic Disorder in Bacterial Light-Harvesting Complex LH2: A 2DES Simulation Study.

    PubMed

    Rancova, Olga; Abramavicius, Darius

    2014-07-10

    Two-dimensional coherent electronic spectroscopy (2DES) is a powerful technique in distinguishing homogeneous and inhomogeneous broadening contributions to the spectral line shapes of molecular transitions induced by environment fluctuations. Using an excitonic model of a double-ring LH2 aggregate, we perform simulations of its 2DES spectra and find that the model of a harmonic environment cannot provide a consistent set of parameters for two temperatures: 77 K and room temperature. This indicates the highly anharmonic nature of protein fluctuations for the pigments of the B850 ring. However, the fluctuations of B800 ring pigments can be assumed as harmonic in this temperature range.

  8. Charged dust phenomena in the near-Earth space environment.

    PubMed

    Scales, W A; Mahmoudian, A

    2016-10-01

    Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.

  9. Nonlinear circuits for naturalistic visual motion estimation

    PubMed Central

    Fitzgerald, James E; Clark, Damon A

    2015-01-01

    Many animals use visual signals to estimate motion. Canonical models suppose that animals estimate motion by cross-correlating pairs of spatiotemporally separated visual signals, but recent experiments indicate that humans and flies perceive motion from higher-order correlations that signify motion in natural environments. Here we show how biologically plausible processing motifs in neural circuits could be tuned to extract this information. We emphasize how known aspects of Drosophila's visual circuitry could embody this tuning and predict fly behavior. We find that segregating motion signals into ON/OFF channels can enhance estimation accuracy by accounting for natural light/dark asymmetries. Furthermore, a diversity of inputs to motion detecting neurons can provide access to more complex higher-order correlations. Collectively, these results illustrate how non-canonical computations improve motion estimation with naturalistic inputs. This argues that the complexity of the fly's motion computations, implemented in its elaborate circuits, represents a valuable feature of its visual motion estimator. DOI: http://dx.doi.org/10.7554/eLife.09123.001 PMID:26499494

  10. Etiology, Treatment and Prevention of Obesity in Childhood and Adolescence: A Decade in Review

    PubMed Central

    Spruijt-Metz, Donna

    2010-01-01

    Childhood obesity has become an epidemic on a worldwide scale. This article gives an overview of the progress made in childhood and adolescent obesity research in the last decade, with a particular emphasis on the transdisciplinary and complex nature of the problem. The following topics are addressed: 1) current definitions of childhood and adolescent overweight and obesity; 2) demography of childhood and adolescent obesity both in the US and globally; 3) current topics in the physiology of fat and obesity; 4) psychosocial correlates of childhood and adolescent overweight and obesity; 5) the three major obesity-related behaviors, i.e. dietary intake, physical activity and sleep; 6) genes components of childhood and adolescent obesity; 7) environment and childhood and adolescent obesity; and 8) progress in interventions to prevent and treat childhood obesity. The article concludes with recommendations for future research, including the need for large-scale, high dose and long-term interventions that take into account the complex nature of the problem. PMID:21625328

  11. An update on the Application of Nanotechnology in Bone Tissue Engineering.

    PubMed

    Griffin, M F; Kalaskar, D M; Seifalian, A; Butler, P E

    2016-01-01

    Natural bone is a complex and hierarchical structure. Bone possesses an extracellular matrix that has a precise nano-sized environment to encourage osteoblasts to lay down bone by directing them through physical and chemical cues. For bone tissue regeneration, it is crucial for the scaffolds to mimic the native bone structure. Nanomaterials, with features on the nanoscale have shown the ability to provide the appropriate matrix environment to guide cell adhesion, migration and differentiation. This review summarises the new developments in bone tissue engineering using nanobiomaterials. The design and selection of fabrication methods and biomaterial types for bone tissue engineering will be reviewed. The interactions of cells with different nanostructured scaffolds will be discussed including nanocomposites, nanofibres and nanoparticles. Several composite nanomaterials have been able to mimic the architecture of natural bone. Bioceramics biomaterials have shown to be very useful biomaterials for bone tissue engineering as they have osteoconductive and osteoinductive properties. Nanofibrous scaffolds have the ability to provide the appropriate matrix environment as they can mimic the extracellular matrix structure of bone. Nanoparticles have been used to deliver bioactive molecules and label and track stem cells. Future studies to improve the application of nanomaterials for bone tissue engineering are needed.

  12. An Energy-Based Approach for Detection and Characterization of Subtle Entities Within Laser Scanning Point-Clouds

    NASA Astrophysics Data System (ADS)

    Arav, Reuma; Filin, Sagi

    2016-06-01

    Airborne laser scans present an optimal tool to describe geomorphological features in natural environments. However, a challenge arises in the detection of such phenomena, as they are embedded in the topography, tend to blend into their surroundings and leave only a subtle signature within the data. Most object-recognition studies address mainly urban environments and follow a general pipeline where the data are partitioned into segments with uniform properties. These approaches are restricted to man-made domain and are capable to handle limited features that answer a well-defined geometric form. As natural environments present a more complex set of features, the common interpretation of the data is still manual at large. In this paper, we propose a data-aware detection scheme, unbound to specific domains or shapes. We define the recognition question as an energy optimization problem, solved by variational means. Our approach, based on the level-set method, characterizes geometrically local surfaces within the data, and uses these characteristics as potential field for minimization. The main advantage here is that it allows topological changes of the evolving curves, such as merging and breaking. We demonstrate the proposed methodology on the detection of collapse sinkholes.

  13. Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador.

    PubMed

    Walsh, Stephen J; Mena, Carlos F

    2016-12-20

    Galapagos is often cited as an example of the conflicts that are emerging between resource conservation and economic development in island ecosystems, as the pressures associated with tourism threaten nature, including the iconic and emblematic species, unique terrestrial landscapes, and special marine environments. In this paper, two projects are described that rely upon dynamic systems models and agent-based models to examine human-environment interactions. We use a theoretical context rooted in complexity theory to guide the development of our models that are linked to social-ecological dynamics. The goal of this paper is to describe key elements, relationships, and processes to inform and enhance our understanding of human-environment interactions in the Galapagos Islands of Ecuador. By formalizing our knowledge of how systems operate and the manner in which key elements are linked in coupled human-natural systems, we specify rules, relationships, and rates of exchange between social and ecological features derived through statistical functions and/or functions specified in theory or practice. The processes described in our models also have practical applications in that they emphasize how political policies generate different human responses and model outcomes, many detrimental to the social-ecological sustainability of the Galapagos Islands.

  14. Integrative molecular and microanalytical studies of syntrophic partnerships linking C, S, and N cycles in anoxic environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orphan, Victoria

    2016-07-15

    Syntrophy and other forms of symbiotic associations between microorganisms are central to carbon and nutrient cycling in the environment. However, the inherent interdependence of these interactions, dynamic behavior, and frequent existence at thermodynamic limits has hindered our ability to both recognize syntrophic partnerships in nature and effectively study their behavior in the laboratory. To characterize and understand the underlying factors influencing syntrophic associations within complex communities requires a suite of tools that extend beyond basic molecular identification and cultivation. This specifically includes methods that preserve the natural spatial relationships between metabolically interdependent microorganisms while allowing downstream geochemical and/or molecular analysis.more » With support from this award, we have developed and applied new combinations of molecular, microscopy, and stable isotope-based methodologies that enable the characterization of fundamental links between phylogenetically-identified microorganisms and their specific metabolic activities and interactions in the environment. Through the coupling of fluorescence in situ hybridization (FISH) with cell capture and targeted metagenomics (Magneto-FISH), and FISH + secondary ion mass spectrometry (i.e. FISH-SIMS or FISH-nanoSIMS), we have defined new microbial interactions and the ecophysiology of anaerobic microorganisms involved in environmental methane cycling.« less

  15. Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador

    PubMed Central

    Walsh, Stephen J.; Mena, Carlos F.

    2016-01-01

    Galapagos is often cited as an example of the conflicts that are emerging between resource conservation and economic development in island ecosystems, as the pressures associated with tourism threaten nature, including the iconic and emblematic species, unique terrestrial landscapes, and special marine environments. In this paper, two projects are described that rely upon dynamic systems models and agent-based models to examine human–environment interactions. We use a theoretical context rooted in complexity theory to guide the development of our models that are linked to social–ecological dynamics. The goal of this paper is to describe key elements, relationships, and processes to inform and enhance our understanding of human–environment interactions in the Galapagos Islands of Ecuador. By formalizing our knowledge of how systems operate and the manner in which key elements are linked in coupled human–natural systems, we specify rules, relationships, and rates of exchange between social and ecological features derived through statistical functions and/or functions specified in theory or practice. The processes described in our models also have practical applications in that they emphasize how political policies generate different human responses and model outcomes, many detrimental to the social–ecological sustainability of the Galapagos Islands. PMID:27791072

  16. Daily travel distances of zoo-housed chimpanzees and gorillas: implications for welfare assessments and space requirements.

    PubMed

    Ross, Stephen R; Shender, Marisa A

    2016-07-01

    The degree to which the relatively smaller area of artificial environments (compared with natural habitats) has measureable effects on the behavior and welfare of captive animals has been debated for many years. While there is little question that these spaces provide far less opportunity for natural ranging behavior and travel, less is known about the degree to which captive animals travel within their environments and what factors influence these travel patterns. We intensively studied the movement of zoo-housed chimpanzees and gorillas using a computer map interface and determined their mean daily travel and found they travelled similar distances each day when restricted to their indoor areas, but when provided additional outdoor space, chimpanzees tended to increase their travel to a greater extent than did gorillas. Both species travelled shorter distances than has been recorded for their wild counterparts, however, when given access to their full indoor-outdoor exhibit; those differences were not as substantive. These findings suggest that while large, complex naturalistic environments might not stimulate comparable species-typical travel patterns in captive apes, larger spaces that include outdoor areas may be better at replicating this behavioral pattern than smaller, indoor areas.

  17. Epidemiología genética sobre las teorías causales y la patogénesis de la diabetes mellitus tipo 2.

    PubMed

    Castro-Juárez, Carlos Jonnathan; Ramírez-García, Sergio Alberto; Villa-Ruano, Nemesio; García-Cruz, Diana

    2017-01-01

    Diabetes mellitus type 2 (DM2) is a worldwide public health problem. The etiology of the disease is multifactorial and is characterized by great heterogeneity of metabolic disorders. The most common are the insufficient production of insulin, insulin resistance and impaired incretin system. The specialist must understand the multi-causal nature of DM2 in the post-genomic era. This nature is determined by the additive effect of genes and environment, so there is no simple genetic epidemiological model to explain the inheritance pattern. Hence the need to establish the proportion of disease that is determined by genes and the contribution of environmental factors, the combination of which regulates the threshold or tolerance level for diabetes development. Given this complexity in DM2 in this work are discussed the various existing theories of causality of this disease, which will permit us to understand the interaction between the environment and the human genome, and also to know how risk factors or predisposition to this disease influence, laying the grounds that delimit environment interaction with the genome. Copyright: © 2017 SecretarÍa de Salud.

  18. Micro- and nanotechnology in cardiovascular tissue engineering.

    PubMed

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  19. What is microbial community ecology?

    PubMed

    Konopka, Allan

    2009-11-01

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbes possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered as a community property.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopka, Allan

    The activities of complex communities of microbes affect biogeochemical transformations in natural, managed and engineered ecosystems. Meaningfully defining what constitutes a community of interacting microbial populations is not trivial, but is important for rigorous progress in the field. Important elements of research in microbial community ecology include the analysis of functional pathways for nutrient resource and energy flows, mechanistic understanding of interactions between microbial populations and their environment, and the emergent properties of the complex community. Some emergent properties mirror those analyzed by community ecologists who study plants and animals: biological diversity, functional redundancy and system stability. However, because microbesmore » possess mechanisms for the horizontal transfer of genetic information, the metagenome may also be considered a community property.« less

  1. Non-anthropocentric Reasoning in Children: Its incidence when they are confronted with ecological dilemmas

    NASA Astrophysics Data System (ADS)

    Almeida, António; Vasconcelos, Clara Maria; Strecht-Ribeiro, Orlando; Torres, Joana

    2013-01-01

    This study used an individual structured interview to (1) verify the incidence of non-anthropocentric reasoning in 123 children attending the 3rd and 4th years in three primary schools in the Lisbon area (Portugal), when they are confronted with ecological dilemmas and (2) establish those places they frequented which permit animal contact. The results show a greater incidence of non-anthropocentric reasoning than that obtained in other international studies. This may be related to the focus of the questions asked, which invited children to imagine themselves as another animal or to present situations where human interaction is unfair. This incidence was found independently of gender, school origin and whether or not pets were owned, even with the more biologically complex animals. School year was the only variable proven to make a difference in conceptually more demanding questions. We also verified that the children's general past experience of nature is essentially aligned to 'controlled environments depending on ongoing human management', confirming a decline in direct contact with 'natural and semi-natural environments'. However, this type of experience does not seem to exert a negative influence on their non-anthropocentric reasoning.

  2. Quantum networks in divergence-free circuit QED

    NASA Astrophysics Data System (ADS)

    Parra-Rodriguez, A.; Rico, E.; Solano, E.; Egusquiza, I. L.

    2018-04-01

    Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the behaviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analogue quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.

  3. Engineering Ecosystems and Synthetic Ecologies#

    PubMed Central

    Mee, Michael T; Wang, Harris H

    2012-01-01

    Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here, we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology. PMID:22722235

  4. Tactual interfaces: The human perceiver

    NASA Technical Reports Server (NTRS)

    Srinivasan, M. A.

    1991-01-01

    Increasingly complex human-machine interactions, such as in teleoperation or in virtual environments, have necessitated the optimal use of the human tactual channel for information transfer. This need leads to a demand for a basic understanding of how the human tactual system works, so that the tactual interface between the human and the machine can receive the command signals from the human, as well as display the information to the human, in a manner that appears natural to the human. The tactual information consists of two components: (1) contact information which specifies the nature of direct contact with the object; and (2) kinesthetic information which refers to the position and motion of the limbs. This paper is mostly concerned with contact information.

  5. Environmental Perceptions of Rural South African Residents: The Complex Nature of Environmental Concern

    PubMed Central

    Hunter, Lori M.; Strife, Susie; Twine, Wayne

    2009-01-01

    The state of the local environment shapes the well-being of millions of rural residents in developing nations. Still, we know little of these individuals’ environmental perceptions. This study analyzes survey data collected in an impoverished, rural region in northeast South Africa, to understand the factors that shape concern with local environmental issues. We use the “post-materialist thesis” to explore the different explanations for environmental concern in less developed regions of the world, with results revealing the importance of both cultural and physical context. In particular, gendered interaction with natural resources shapes perceptions, as does the local setting. Both theoretical and policy implications are discussed. PMID:20514147

  6. Chemical Posttranslational Modification with Designed Rhodium(II) Catalysts.

    PubMed

    Martin, S C; Minus, M B; Ball, Z T

    2016-01-01

    Natural enzymes use molecular recognition to perform exquisitely selective transformations on nucleic acids, proteins, and natural products. Rhodium(II) catalysts mimic this selectivity, using molecular recognition to allow selective modification of proteins with a variety of functionalized diazo reagents. The rhodium catalysts and the diazo reactivity have been successfully applied to a variety of protein folds, the chemistry succeeds in complex environments such as cell lysate, and a simple protein blot method accurately assesses modification efficiency. The studies with rhodium catalysts provide a new tool to study and probe protein-binding events, as well as a new synthetic approach to protein conjugates for medical, biochemical, or materials applications. © 2016 Elsevier Inc. All rights reserved.

  7. Monitored Natural Recovery at Contaminated Sediment Sites

    DTIC Science & Technology

    2009-05-01

    Cr(VI)  hexavalent  chromium   Cr(III)  trivalent   chromium   CSM  conceptual site model  DBT  dibutyltin  DELT  deformities, eroded fins, lesions, and...nickel sulfide complexes in Foundry Cove, NY (USEPA 2005c).  Hexavalent chromium (Cr(VI)) reduction, subsequent precipitation as trivalent chromium (Cr...established scientific findings—such as the reduction of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in reduced environments (Martello et

  8. Similarities between N-acetylcysteine and Glutathione in Binding to Lead(II) Ions

    PubMed Central

    Sisombath, Natalie S.; Jalilehvand, Farideh

    2015-01-01

    N -acetylcysteine is a natural thiol-containing antioxidant, a precursor for cysteine and glutathione, and a potential detoxifying agent for heavy metal ions. However, previous accounts of the efficiency of N-acetylcysteine (H2NAC) in excretion of lead are few and contradicting. Here we report results on the nature of lead(II) complexes formed with N-acetylcysteine in aqueous solution, which were obtained by combining information from several spectroscopic methods, including 207Pb, 13C and 1H NMR, Pb LIII-edge X-ray absorption, Ultraviolet-visible (UV-vis.) spectroscopy and electro-spray ionization mass spectrometry (ESI-MS). Two series of solutions were used containing CPb(II) = 10 and 100 mM, respectively, varying the H2NAC / Pb(II) mole ratios from 2.1 to 10.0 at pH = 9.1 – 9.4. The coordination environments obtained resemble those previously found for the Pb(II) glutathione system: at a ligand-to-lead mole ratio of 2.1 dimeric or oligomeric Pb(II) N-acetylcysteine complexes are formed, while a tri-thiolate [Pb(NAC)3]4− complex dominates in solutions with H2NAC/Pb(II) mole ratios > 3.0. PMID:26624959

  9. Shaping complex microwave fields in reverberating media with binary tunable metasurfaces

    PubMed Central

    Kaina, Nadège; Dupré, Matthieu; Lerosey, Geoffroy; Fink, Mathias

    2014-01-01

    In this article we propose to use electronically tunable metasurfaces as spatial microwave modulators. We demonstrate that like spatial light modulators, which have been recently proved to be ideal tools for controlling light propagation through multiple scattering media, spatial microwave modulators can efficiently shape in a passive way complex existing microwave fields in reverberating environments with a non-coherent energy feedback. Unlike in free space, we establish that a binary-only phase state tunable metasurface allows a very good control over the waves, owing to the random nature of the electromagnetic fields in these complex media. We prove in an everyday reverberating medium, that is, a typical office room, that a small spatial microwave modulator placed on the walls can passively increase the wireless transmission between two antennas by an order of magnitude, or on the contrary completely cancel it. Interestingly and contrary to free space, we show that this results in an isotropic shaped microwave field around the receiving antenna, which we attribute again to the reverberant nature of the propagation medium. We expect that spatial microwave modulators will be interesting tools for fundamental physics and will have applications in the field of wireless communications. PMID:25331498

  10. On a Possible Unified Scaling Law for Volcanic Eruption Durations

    PubMed Central

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-01-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour. PMID:26926425

  11. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    PubMed

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  12. Stochastic Coloured Petrinet Based Healthcare Infrastructure Interdependency Model

    NASA Astrophysics Data System (ADS)

    Nukavarapu, Nivedita; Durbha, Surya

    2016-06-01

    The Healthcare Critical Infrastructure (HCI) protects all sectors of the society from hazards such as terrorism, infectious disease outbreaks, and natural disasters. HCI plays a significant role in response and recovery across all other sectors in the event of a natural or manmade disaster. However, for its continuity of operations and service delivery HCI is dependent on other interdependent Critical Infrastructures (CI) such as Communications, Electric Supply, Emergency Services, Transportation Systems, and Water Supply System. During a mass casualty due to disasters such as floods, a major challenge that arises for the HCI is to respond to the crisis in a timely manner in an uncertain and variable environment. To address this issue the HCI should be disaster prepared, by fully understanding the complexities and interdependencies that exist in a hospital, emergency department or emergency response event. Modelling and simulation of a disaster scenario with these complexities would help in training and providing an opportunity for all the stakeholders to work together in a coordinated response to a disaster. The paper would present interdependencies related to HCI based on Stochastic Coloured Petri Nets (SCPN) modelling and simulation approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The entire model would be integrated with Geographic information based decision support system to visualize the dynamic behaviour of the interdependency of the Healthcare and related CI network in a geographically based environment.

  13. METHODS FOR THE DETERMINATION OF TOTAL ORGANIC ...

    EPA Pesticide Factsheets

    Organic matter in soils and sediments is widely distributed over the earth's surface occurring in almost all terrestrial and aquatic environments (Schnitzer, 1978). Soils and sediments contain a large variety of organic materials ranging from simple sugars and carbohydrates to the more complex proteins, fats, waxes, and organic acids. Important characteristics of the organic matter include their ability to: form water-soluble and water- insoluble complexes with metal ions and hydrous oxides; interact with clay minerals and bind particles together; sorb and desorb both naturally-occurring and anthropogenically-introduced organic compounds; absorb and release plant nutrients; and hold water in the soil environment. As a result of these characteristics, the determination of total organic carbon (a measure of one of the chemical components of organic matter that is often used as an indicator of its presence in a soil or sediment) is an essential part of any site characterization since its presence or absence can markedly influence how chemicals will react in the soil or sediment. Soil and sediment total organic carbon (TOC) determinations are typically requested with contaminant analyses as part of an ecological risk assessment data package. TOC contents may be used qualitatively to assess the nature of the sampling location (e.g., was it a depositional area) or may be used to normalize portions of the analytical chemistry data set (e.g., equilibrium partitioning).

  14. Ocean acidification alters fish populations indirectly through habitat modification

    NASA Astrophysics Data System (ADS)

    Nagelkerken, Ivan; Russell, Bayden D.; Gillanders, Bronwyn M.; Connell, Sean D.

    2016-01-01

    Ocean ecosystems are predicted to lose biodiversity and productivity from increasing ocean acidification. Although laboratory experiments reveal negative effects of acidification on the behaviour and performance of species, more comprehensive predictions have been hampered by a lack of in situ studies that incorporate the complexity of interactions between species and their environment. We studied CO2 vents from both Northern and Southern hemispheres, using such natural laboratories to investigate the effect of ocean acidification on plant-animal associations embedded within all their natural complexity. Although we substantiate simple direct effects of reduced predator-avoidance behaviour by fishes, as observed in laboratory experiments, we here show that this negative effect is naturally dampened when fish reside in shelter-rich habitats. Importantly, elevated CO2 drove strong increases in the abundance of some fish species through major habitat shifts, associated increases in resources such as habitat and prey availability, and reduced predator abundances. The indirect effects of acidification via resource and predator alterations may have far-reaching consequences for population abundances, and its study provides a framework for a more comprehensive understanding of increasing CO2 emissions as a driver of ecological change.

  15. High effectiveness of tailored flower strips in reducing pests and crop plant damage.

    PubMed

    Tschumi, Matthias; Albrecht, Matthias; Entling, Martin H; Jacot, Katja

    2015-09-07

    Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle(CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity(8-75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes.

  16. Modeling the Dynamics of Task Allocation and Specialization in Honeybee Societies

    NASA Astrophysics Data System (ADS)

    Hoogendoorn, Mark; Schut, Martijn C.; Treur, Jan

    The concept of organization has been studied in sciences such as social science and economics, but recently also in artificial intelligence [Furtado 2005, Giorgini 2004, and McCallum 2005]. With the desire to analyze and design more complex systems consisting of larger numbers of agents (e.g., in nature, society, or software), the need arises for a concept of higher abstraction than the concept agent. To this end, organizational modeling is becoming a practiced stage in the analysis and design of multi-agent systems, hereby taking into consideration the environment of the organization. An environment can have a high degree of variability which might require organizations to adapt to the environment's dynamics, to ensure a continuous proper functioning of the organization. Hence, such change processes are a crucial function of the organization and should be part of the organizational model.

  17. Environment as a basis for the design of advertising structures by forming

    NASA Astrophysics Data System (ADS)

    Khmelevsky, Y. P.; Seryakov, V. A.; Mamontov, G. Y.; Tsarenko, D. T.

    2017-01-01

    A few different neighbouring styles of architectural forms are quite frequent in the cities of great historical past. As a result, a designer or architect has to solve the complex problem while designing the objects within such environment, i.e. one has to fit them naturally into the existing site development. Often, form making is found to be hard, due to the fact that the existing architectural forms of totally different stylistic execution coexist in the visual proximity. Presently, placement of the advertising bills in urban environment is both an urgent and debatable issue. On the one hand, advertising providers are keen to present their product bigger and brighter, on the other hand, the overall and eye-catching exhibition stands can be disharmonious with the surrounding architectural ensemble of the city. This situation is relevant for every cultural city.

  18. Motion Planning and Synthesis of Human-Like Characters in Constrained Environments

    NASA Astrophysics Data System (ADS)

    Zhang, Liangjun; Pan, Jia; Manocha, Dinesh

    We give an overview of our recent work on generating naturally-looking human motion in constrained environments with multiple obstacles. This includes a whole-body motion planning algorithm for high DOF human-like characters. The planning problem is decomposed into a sequence of low dimensional sub-problems. We use a constrained coordination scheme to solve the sub-problems in an incremental manner and a local path refinement algorithm to compute collision-free paths in tight spaces and satisfy the statically stable constraint on CoM. We also present a hybrid algorithm to generate plausible motion by combing the motion computed by our planner with mocap data. We demonstrate the performance of our algorithm on a 40 DOF human-like character and generate efficient motion strategies for object placement, bending, walking, and lifting in complex environments.

  19. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations

    PubMed Central

    Kitchen, James L.; Allaby, Robin G.

    2013-01-01

    Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364

  20. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm

    NASA Astrophysics Data System (ADS)

    Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G.; Woodbury, Neal W.; Yan, Hao

    2014-07-01

    Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

  1. Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm.

    PubMed

    Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G; Woodbury, Neal W; Yan, Hao

    2014-07-01

    Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

  2. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that contains the system and other systems evolves with the CAS as well. The effects of the emerging adaptation and co-evolution are difficult to capture with only combined mathematical and computational experimentation. Therefore, an ab initio flight simulation environment must accommodate individual vehicles, groups of self-organizing vehicles, and large-scale infrastructure behavior. Inspired by Massively Multiplayer Online Role Playing Games (MMORPG) and Serious Gaming, the proposed ab initio simulation environment is similar to online gaming environments in which player participants interact with each other, affect their environment, and expect the simulation to persist and change regardless of any individual player's active participation.

  3. Exposure to natural environments, and photographs of natural environments, promotes more positive body image.

    PubMed

    Swami, Viren; Barron, David; Furnham, Adrian

    2018-03-01

    Five studies were conducted to understand the impact of nature exposure on body image. In three studies using different designs and outcome measures, British university students were exposed to photographs of natural or built environments. Results indicated that exposure to images of natural, but not built, environments resulted in improved state body image. In Study 4, British community participants went on a walk in a natural or built environment, with results indicating that the walk in a natural environment resulted in significantly higher state body appreciation, whereas the walk in a built environment resulted in significantly lower scores. In Study 5, British participants were recruited as they were entering a designed green space on their own volition. Results indicated that spending time in the green space led to improved state body appreciation. These results indicate that exposure to isomorphic or in-situ natural environments has positive effects on state body image. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Trace Metal-Humic Complexes in Natural Waters: Insights From Speciation Experiments

    NASA Astrophysics Data System (ADS)

    Stern, J. C.; Salters, V.; Sonke, J.

    2006-12-01

    The DOM cycle is intimately linked to the cycling and bioavailability of trace metals in aqueous environments. The presence or absence of DOM in the water column can determined whether trace elements will be present in limited quantities as a nutrient, or in surplus quantities as a toxicant. Humic substances (HS), which represent the refractory products of DOM degradation, strongly affect the speciation of trace metals in natural waters. To simulate metal-HS interactions in nature, experiments must be carried out using trace metal concentrations. Sensitive detection systems such as ICP-MS make working with small (nanomolar) concentrations possible. Capillary electrophoresis coupled with ICP-MS (CE-ICP-MS) has recently been identified as a rapid and accurate method to separate metal species and calculate conditional binding constants (log K_c) of metal-humic complexes. CE-ICP-MS was used to measure partitioning of metals between humic substances and a competing ligand (EDTA) and calculate binding constants of rare earth element (REE) and Th, Hf, and Zr-humic complexes at pH 3.5-8 and ionic strength of 0.1. Equilibrium dialysis ligand exchange (EDLE) experiments to validate the CE-ICP-MS method were performed to separate the metal-HS and metal-EDTA species by partitioning due to size exclusion via diffusion through a 1000 Da membrane. CE-ICP-MS experiments were also conducted to compare binding constants of REE with humic substances of various origin, including soil, peat, and aquatic DOM. Results of our experiments show an increase in log K_c with decrease in ionic radius for REE-humic complexes (the lanthanide contraction effect). Conditional binding constants of tetravalent metal-humic complexes were found to be several orders of magnitude higher than REE-humic complexes, indicating that tetravalent metals have a very strong affinity for humic substances. Because thorium is often used as a proxy for the tetravalent actinides, Th-HS binding constants can allow us to assess the importance of tetravalent actinide-humic complexes in groundwater transport from nuclear repositories. Our results suggest that tetravalent actinide-humic complexes couild be more important to account for in predictive speciation models than previously thought.

  5. Characterisation of the natural environment: quantitative indicators across Europe.

    PubMed

    Smith, Graham; Cirach, Marta; Swart, Wim; Dėdelė, Audrius; Gidlow, Christopher; van Kempen, Elise; Kruize, Hanneke; Gražulevičienė, Regina; Nieuwenhuijsen, Mark J

    2017-04-26

    The World Health Organization recognises the importance of natural environments for human health. Evidence for natural environment-health associations comes largely from single countries or regions, with varied approaches to measuring natural environment exposure. We present a standardised approach to measuring neighbourhood natural environment exposure in cities in different regions of Europe. The Positive Health Effects of the Natural Outdoor environment in TYPical populations of different regions in Europe (PHENOTYPE) study aimed to explore the mechanisms linking natural environment exposure and health in four European cities (Barcelona, Spain; Doetinchem, the Netherlands; Kaunas, Lithuania; and Stoke-on-Trent, UK). Common GIS protocols were used to develop a hierarchy of natural environment measures, from simple measures (e.g., NDVI, Urban Atlas) using Europe-wide data sources, to detailed measures derived from local data that were specific to mechanisms thought to underpin natural environment-health associations (physical activity, social interaction, stress reduction/restoration). Indicators were created around residential addresses for a range of straight line and network buffers (100 m-1 km). For simple indicators derived from Europe-wide data, we observed differences between cities, which varied with different indicators (e.g., Kaunas and Doetinchem had equal highest mean NDVI within 100 m buffer, but mean distance to nearest natural environment in Kaunas was more twice that in Doetinchem). Mean distance to nearest natural environment for all cities suggested that most participants lived close to some kind of natural environments (64 ± 58-363 ± 281 m; mean 180 ± 204 m). The detailed classification highlighted marked between-city differences in terms of prominent types of natural environment. Indicators specific to mechanisms derived from this classification also captured more variation than the simple indicators. Distance to nearest and count indicators showed clear differences between cities, and those specific to the mechanisms showed within-city differences for Barcelona and Doetinchem. This paper demonstrates the feasibility and challenges of creating comparable GIS-derived natural environment exposure indicators across diverse European cities. Mechanism-specific indicators showed within- and between-city variability that supports their utility for ecological studies, which could inform more specific policy recommendations than the traditional proxies for natural environment access.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased geneticmore » and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation.« less

  7. 34 CFR 303.26 - Natural environments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Natural environments. 303.26 Section 303.26 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... DISABILITIES General Definitions Used in This Part § 303.26 Natural environments. Natural environments means...

  8. 34 CFR 303.26 - Natural environments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Natural environments. 303.26 Section 303.26 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... DISABILITIES General Definitions Used in This Part § 303.26 Natural environments. Natural environments means...

  9. 34 CFR 303.26 - Natural environments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Natural environments. 303.26 Section 303.26 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... DISABILITIES General Definitions Used in This Part § 303.26 Natural environments. Natural environments means...

  10. The Role of Care Coordinator for Children with Complex Care Needs: A Systematic Review

    PubMed Central

    Hillis, Rowan; Larkin, Philip J; Cawley, Des; Connolly, Michael

    2016-01-01

    Introduction: This systematic review seeks to identify the intended components of the role of care coordinator for children with complex care needs and the factors that determine its composition in practice. Theory and methods: The initial search identified 1,157 articles, of which 37 met the inclusion criteria. They were quality assessed using the SIGN hierarchy of evidence structure. Results: Core components of the role include: coordination of care needs, planning and assessment, specialist support, emotional support, administration and logistics and continuing professional development. Influencing factors on the role include the external environment (political and socio-economic), the internal environment (organisational structure and funding protocols), the skills, qualifications and experience of the coordinator, the family circumstances and the nature of the interaction between the care coordinator and the family. Discussion: The lack of consistent terminology creates challenges and there is a need for greater consensus on this issue. Organisations and healthcare professionals need to recognise the extent to which contextual factors influence the role of a care coordinator in practice and plan accordingly. Despite evidence that suggests that the role is pivotal in ensuring that care needs are sustained, there remains great variability in the understanding of the role of a care coordinator for this population. Conclusions: As the provision of care increasingly moves closer to home there is a need for greater understanding of the nature and composition of the interaction between care coordinators and families to determine the extent to which appropriate services are being provided. Further work in this area should take into consideration any potential variance in service provision, for example any potential inequity arising due to geographic location. It is also imperative, where appropriate, to seek the views of children with complex care needs and their siblings about their experiences. PMID:27616967

  11. DNA-labeled clay: A sensitive new method for tracing particle transport

    USGS Publications Warehouse

    Mahler, B.J.; Winkler, M.; Bennett, P.; Hillis, D.M.

    1998-01-01

    The behavior of mobile colloids and sediment in most natural environments remains poorly understood, in part because characteristics of existing sediment tracers limit their wide-spread use. Here we describe the development of a new approach that uses a DNA-labeled montmorillonite clay as a highly sensitive and selective sediment tracer that can potentially characterize sediment and colloid transport in a wide variety of environments, including marine, wetland, ground-water, and atmospheric systems. Characteristics of DNA in natural systems render it unsuitable as an aqueous tracer but admirably suited as a label for tracing particulates. The DNA-labeled-clay approach, using techniques developed from molecular biology, has extremely low detection limits, very specific detection, and a virtually infinite number of tracer signatures. Furthermore, DNA-labeled clay has the same physical characteristics as the particles it is designed to trace, it is environmentally benign, and it can be relatively inexpensively produced and detected. Our initial results show that short (500 base pair) strands of synthetically produced DNA reversibly adsorb to both Na-montmorillonite and powdered silica surfaces via a magnesium bridge. The DNA-montmorillonite surface complexes are stable in calcium-bicarbonate spring waters for periods of up to 18 days and only slowly desorb to the aqueous phase, whereas the silica surface complex is stable only in distilled water. Both materials readily release the adsorbed DNA in dilute EDTA solutions for amplification by the polymerase chain reaction (PCR) and quantification. The stability of the DNA-labeled clay complex suggests that this material would be appropriate for use as an extremely sensitive sediment tracer for flow periods of as long as 2 weeks, and possibly longer.

  12. Field Trips to Natural Environments: How Outdoor Educators Use the Physical Environment

    ERIC Educational Resources Information Center

    Lavie Alon, Nirit; Tal, Tali

    2017-01-01

    The main assumption of this study is that the natural environment is an important part of learning in out-of-school settings. We therefore aimed at understanding how outdoor educators (OEs) refer to, and use, the natural environment while guiding field trips, and how their use of the natural environment affects student learning outcomes. Using a…

  13. 3D Electrical resistivity tomography monitoring of an artificial tracer injected within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Houzé, Clémence; Pessel, Marc; Durand, Veronique

    2016-04-01

    Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .

  14. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    PubMed

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure, quite some of them remain apparently intact. The pigmented photosynthetic antenna complexes thus constitute a suitable model system for studying in detail the stability of integral membrane proteins.

  15. Cryptic Role of Zero-Valent Sulfur in Metal and Metalloid Geochemistry in Euxinic Waters

    NASA Astrophysics Data System (ADS)

    Helz, G. R.

    2014-12-01

    Natural waters that are isolated from the atmosphere in confined aquifers, euxinic basins and sediment pore waters often become sulfidic. These waters are conventionally described simply as reducing environments. But because nature does not constrain their exposure to reducing equivalents (e.g. from organic matter) and oxidizing equivalents (e.g. from Fe,Mn oxides), these reducing environments in fact vary cryptically in their redox characteristics. The implications for trace metal and metalloid cycles are only beginning to be explored. The activity of zero-valent sulfur (aS0), a virtual thermodynamic property, is a potentially useful index for describing this variation. At a particular temperature and ionic strength, aS0 can be quantified from knowledge of pH and the total S(0) to total S(-II) ratio. Although data are incomplete, the deep waters of the Black Sea (aS0 ca. 0.3) appear to be more reducing than the deep waters of the Cariaco Basin (aS0 ca. 0.5) even though both are perennially sulfidic. An apparent manifestation is a greater preponderance of greigite relative to mackinawite in the Cariaco Basin. Interestingly, greigite is stable relative to mackinawite in both basins but predominates only at the higher aS0. Values of aS0 in sulfidic natural waters span the range over which Hg-polysulfide complexes gain predominance over Hg sulfide complexes. Competition between these ligands is thought to influence biological methylation, mercury's route into aquatic and human food chains. In sulfidic deep ground waters, the redox state and consequent mobility of As, a global human hazard, will depend on aS0. At intermediate sulfide concentrations, higher aS0 favors more highly charged and thus less mobile As(V) species relative to As(III) species despite the overall reducing characteristics of such waters. Helz, G.R. (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem. Trans. In press.

  16. Environmental mineralogy - Understanding element behavior in ecosystems

    NASA Astrophysics Data System (ADS)

    Brown, Gordon E., Jr.; Calas, Georges

    2011-02-01

    Environmental Mineralogy has developed over the past decade in response to the recognition that minerals are linked in many important ways with the global ecosystem. Minerals are the main repositories of the chemical elements in Earth's crust and thus are the main sources of elements needed for the development of civilization, contaminant and pollutant elements that impact global and local ecosystems, and elements that are essential plant nutrients. These elements are released from minerals through natural processes, such as chemical weathering, and anthropogenic activities, such as mining and energy production, agriculture and industrial activities, and careless waste disposal. Minerals also play key roles in the biogeochemical cycling of the elements, sequestering elements and releasing them as the primary minerals in crustal rocks undergo various structural and compositional transformations in response to physical, chemical, and biological processes that produce secondary minerals and soils. These processes have resulted in the release of toxic elements such as arsenic in groundwater aquifers, which is having a major impact on the health of millions of people in South and Southeast Asia. The interfaces between mineral surfaces and aqueous solutions are the locations of most chemical reactions that control the composition of the natural environment, including the composition of natural waters. The nuclear fuel cycle, from uranium mining to the disposition of high-level nuclear waste, is also intimately related to minerals. A fundamental understanding of these processes requires molecular-scale information about minerals, their bulk structures and properties such as solubility, their surfaces, and their interactions with aqueous solutions, atmospheric and soil gases, natural organic matter, and biological organisms. Gaining this understanding is further complicated by the presence of natural, incidental, and manufactured nanoparticles in the environment, which are becoming increasingly important due to the rapidly developing field of nanotechnology. As a result of this complexity, Environmental Mineralogy requires the use of the most modern molecular-scale analytical and theoretical methods and overlaps substantially with closely related fields such as Environmental Sciences, low-temperature Geochemistry, and Geomicrobiology. This paper provides brief overviews of the above topics and discusses the complexity of minerals, natural vs. anthropogenic inputs of elements and pollutants into the biosphere, the role of minerals in the biogeochemical cycling of elements, natural nanoparticles, and the Environmental Mineralogy of three major potential pollutant elements (Hg, As and U).

  17. An Enriched Environment Promotes Shelter-Seeking Behaviour and Survival of Hatchery-Produced Juvenile European Lobster (Homarus gammarus)

    PubMed Central

    Aspaas, Stian; Grefsrud, Ellen Sofie; Fernö, Anders; Jensen, Knut Helge; Trengereid, Henrik; Agnalt, Ann-Lisbeth

    2016-01-01

    The high loss of newly released hatchery-reared European lobster (Homarus gammarus) juveniles for stock enhancement is believed to be the result of maladaptive anti-predator behaviour connected to deprived stimuli in the hatchery environment. Our objective was to learn if an enriched hatchery environment enhances shelter-seeking behaviour and survival. In the “naïve” treatment, the juveniles were raised in single compartments without substrate and shelter whereas juveniles in the “exposed” treatment experienced substrate, shelter and interactions with conspecifics. Three experiments with increasing complexity were conducted. Few differences in shelter-seeking behaviour were found between treatments when one naïve or one exposed juvenile were observed alone. When observing interactions between one naïve and one exposed juvenile competing for shelter, naïve juveniles more often initiated the first aggressive encounter. The third experiment was set up to simulate a release for stock enhancement. Naïve and exposed juveniles were introduced to a semi-natural environment including substrate, a limited number of shelters and interactions with conspecifics. Shelter occupancy was recorded three times during a period of 35 days. Exposed juveniles occupied more shelters, grew larger and had higher survival compared with naïve juveniles. Our results demonstrate that experience of environmental complexity and social interactions increase shelter-seeking ability and survival in hatchery reared lobster juveniles. PMID:27560932

  18. An Enriched Environment Promotes Shelter-Seeking Behaviour and Survival of Hatchery-Produced Juvenile European Lobster (Homarus gammarus).

    PubMed

    Aspaas, Stian; Grefsrud, Ellen Sofie; Fernö, Anders; Jensen, Knut Helge; Trengereid, Henrik; Agnalt, Ann-Lisbeth

    2016-01-01

    The high loss of newly released hatchery-reared European lobster (Homarus gammarus) juveniles for stock enhancement is believed to be the result of maladaptive anti-predator behaviour connected to deprived stimuli in the hatchery environment. Our objective was to learn if an enriched hatchery environment enhances shelter-seeking behaviour and survival. In the "naïve" treatment, the juveniles were raised in single compartments without substrate and shelter whereas juveniles in the "exposed" treatment experienced substrate, shelter and interactions with conspecifics. Three experiments with increasing complexity were conducted. Few differences in shelter-seeking behaviour were found between treatments when one naïve or one exposed juvenile were observed alone. When observing interactions between one naïve and one exposed juvenile competing for shelter, naïve juveniles more often initiated the first aggressive encounter. The third experiment was set up to simulate a release for stock enhancement. Naïve and exposed juveniles were introduced to a semi-natural environment including substrate, a limited number of shelters and interactions with conspecifics. Shelter occupancy was recorded three times during a period of 35 days. Exposed juveniles occupied more shelters, grew larger and had higher survival compared with naïve juveniles. Our results demonstrate that experience of environmental complexity and social interactions increase shelter-seeking ability and survival in hatchery reared lobster juveniles.

  19. Multiagent Systems Based Modeling and Implementation of Dynamic Energy Management of Smart Microgrid Using MACSimJX.

    PubMed

    Raju, Leo; Milton, R S; Mahadevan, Senthilkumaran

    The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations.

  20. Multiagent Systems Based Modeling and Implementation of Dynamic Energy Management of Smart Microgrid Using MACSimJX

    PubMed Central

    Raju, Leo; Milton, R. S.; Mahadevan, Senthilkumaran

    2016-01-01

    The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations. PMID:27127802

  1. Nuclear-physical analysis methods in medical geology: Assessment of the impact of environmental factors on human health

    NASA Astrophysics Data System (ADS)

    Gorbunov, A. V.; Lyapunov, S. M.; Okina, O. I.; Frontas'eva, M. V.; Pavlov, S. S.; Il'chenko, I. N.

    2015-05-01

    The procedure for geomedical studies is outlined, and the niche occupied by the nuclear-physical analysis methods in these studies is pointed out. The necessity of construction of an efficient complex of the most modern analytical methods is demonstrated. The metrological parameters of methods applied in the analysis of natural environments and biological materials are evaluated. The current state of pollution of natural environments with heavy and toxic metals is characterized in two specific industrial hubs: the towns of Gus-Khrustalny and Podolsk. The levels of pollution of diagnostic biological materials (hair and blood) from children living in various urban districts are studied in the light of specific features of the manufacturing industry in these towns and the life environment of child population. The results of studies focused on evaluating the effect of environment on the health of child population are detailed. The actual damage to child health, their neuropsychic development and behavior, and the effect of socioeconomic factors are determined. Preventive problems among the child population exposed to lead and other toxic metals are evaluated, and ways to solve them are proposed. A system of early diagnosis and preventive measures for the mitigation of adverse effect of toxic metals (Pb, Cu, Mn, Zn, Cr, Ni, As, etc.) on the neuropsychic development of children is developed based on an actual ecogeochemical estimation of the state of the region under study.

  2. Introduction to Special Section on Results of the Lunar Reconnaissance Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.

    2012-01-01

    Since 2009 the Lunar Reconnaissance Orbiter (LRO) has made comprehensive measurements of the Moon and its environment. The seven LRO instruments use a variety of primarily remote sensing techniques to obtain a unique set of observations. The analyses of the LRO data sets have overturned previous beliefs and deepened our appreciation of the complex nature of our nearest neighbor. This introduction to the special section describes the LRO mission and summarizes some of the science results in the papers that follow.

  3. Genomic Insights into the Saccharomyces sensu stricto Complex

    PubMed Central

    Borneman, Anthony R.; Pretorius, Isak S.

    2015-01-01

    The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical “domestication” of these yeasts for baking, brewing, and winemaking. PMID:25657346

  4. Genomic insights into the Saccharomyces sensu stricto complex.

    PubMed

    Borneman, Anthony R; Pretorius, Isak S

    2015-02-01

    The Saccharomyces sensu stricto group encompasses species ranging from the industrially ubiquitous yeast Saccharomyces cerevisiae to those that are confined to geographically limited environmental niches. The wealth of genomic data that are now available for the Saccharomyces genus is providing unprecedented insights into the genomic processes that can drive speciation and evolution, both in the natural environment and in response to human-driven selective forces during the historical "domestication" of these yeasts for baking, brewing, and winemaking. Copyright © 2015 by the Genetics Society of America.

  5. Using light gradients to investigate symmetry breaking in fish schools

    NASA Astrophysics Data System (ADS)

    Puckett, James; Giannini, Julia

    Theoretical models of social animals successfully reproduce many structures found in nature (e.g. swarms, flocks, mills) using simple interaction rules. However, the interactions between individuals is complex and undoubtedly depends on the environment. Using schools of fish, we use visual perturbations to investigate how individuals negotiate both social and environmental information to reach a consensus. Starting with an unpolarized school of fish, we examine how the symmetry is broken and find that not all fish contribute equally to this decision.

  6. Isotopic tracing of perchlorate in the environment

    USGS Publications Warehouse

    Sturchio, Neil C.; Böhlke, John Karl; Gu, Baohua; Hatzinger, Paul B.; Jackson, W. Andrew; Baskaran, Mark

    2012-01-01

    Isotopic measurements can be used for tracing the sources and behavior of environmental contaminants. Perchlorate (ClO 4 − ) has been detected widely in groundwater, soils, fertilizers, plants, milk, and human urine since 1997, when improved analytical methods for analyzing ClO 4 −concentration became available for routine use. Perchlorate ingestion poses a risk to human health because of its interference with thyroidal hormone production. Consequently, methods for isotopic analysis of ClO 4 − have been developed and applied to assist evaluation of the origin and migration of this common contaminant. Isotopic data are now available for stable isotopes of oxygen and chlorine, as well as 36Cl isotopic abundances, in ClO 4 − samples from a variety of natural and synthetic sources. These isotopic data provide a basis for distinguishing sources of ClO 4 − found in the environment, and for understanding the origin of natural ClO 4 − . In addition, the isotope effects of microbial ClO 4 − reduction have been measured in laboratory and field experiments, providing a tool for assessing ClO 4 − attenuation in the environment. Isotopic data have been used successfully in some areas for identifying major sources of ClO 4 − contamination in drinking water supplies. Questions about the origin and global biogeochemical cycle of natural ClO 4 − remain to be addressed; such work would benefit from the development of methods for preparation and isotopic analysis of ClO 4 − in samples with low concentrations and complex matrices.

  7. Controls on radium transport by adsorption to iron minerals

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wang, T.; Kocar, B. D.

    2015-12-01

    Radium is a naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are generated by uranium and thorium decay, and are particularly abundant within groundwaters where minimal porewater flux leads to accumulation. These isotopes are used as natural tracers for estimating submarine groundwater discharge (SGD) [1], allowing for large scale estimation of GW fluxes into and out of the ocean [2]. They also represent a substantial hazard in wastewater produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release to surface and near-surface waters, and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a dominant pathway of radium retention in subsurface environments. For SGD studies, adsorption processes impact estimates of GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids mediates wastewater radium activities. Analysis of past sorption studies revealed large variability in partition coefficients [4], while examination of radium adsorption kinetics and surface complexation have only recently started [5]. Accordingly, we present the results of sorption and column experiments of radium with a suite of iron minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through artificial waters. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the transport and retention of radium. These results will provide critical information on the mineralogical controls on radium retention in subsurface environments, and will therefore improve predictions of radium groundwater transport in natural and contaminated systems. [1] Charette, M.A., Buesseler, K.O. & Andrews, J.E., Limnol. Oceanogr. (2001). [2] Moore, W.S., Ann. Rev. Mar. Sci. (2010). [3] Vengosh, A. et al. Environ. Sci. Technol., (2014). [4] Beck, A., Cochran, M., Marine Chem., (2013). [5] Sajih, M. et al. Geochim. Cosmochim. AC. (2014).

  8. Temporal and spatial analysis of vegetation coverage changes in Ordos area based on time series GIMMS-NDVI data

    NASA Astrophysics Data System (ADS)

    Han, Ruimei; Zou, Youfeng; Ma, Chao; Liu, Pei

    2014-11-01

    Ordos area is the desert-wind erosion desertification steppe transition zone and the complex ecological zone. As the research area, Ordos City has the similar natural geographic environment to ShenDong coalfield. To research its ecological patterns and natural evolution law, it has instructive to reveal temporal and spatial changes of ecological environment with artificial disturbance in western mining. In this paper, a time series of AVHRR-NDVI(Normalized Difference Vegetation Index) data was used to monitor the change of vegetation temporal and spatial dynamics from 1981 to 2006 in Ordos City and ShenDong coalfield, where were as the research area. The MVC (Maximum Value Composites) method, average operation, linear regression, and gradation for NDVI change trend were used to obtained some results, as follows: ¬vegetation coverage had obvious characteristics with periodic change in research area for 26 years, and vegetation growth peak appeared on August, while the lowest appeared on January. The extreme values in Ordos City were 0.2351 and 0.1176, while they were 0.2657 and 0.1272 in ShenDong coalfield. The NDVI value fluctuation was a modest rise trend overall in research area. The extreme values were 0.3071 and 0.1861 in Ordos City, while they were 0.3454 and 0.1904 in ShenDong coalfield. In spatial distribution, slight improvement area and slight degradation area were accounting for 42.49% and 8.37% in Ordos City, while slight improvement area moderate improvement area were accounting for 70.59% and 29.41% in ShenDong coalfield. Above of results indicated there was less vegetation coverage in research area, which reflected the characteristics of fragile natural geographical environment. In addition, vegetation coverage was with a modest rise on the whole, which reflected the natural environment change.

  9. Integration of the social environment in a mobility ontology for people with motor disabilities.

    PubMed

    Gharebaghi, Amin; Mostafavi, Mir-Abolfazl; Edwards, Geoffrey; Fougeyrollas, Patrick; Gamache, Stéphanie; Grenier, Yan

    2017-07-07

    Our contemporary understanding of disability is rooted in the idea that disability is the product of human-environment interaction processes. People may be functionally limited, but this becomes a disability only when they engage with their immediate social and physical environments. Any attempt to address issues of mobility in relation to people with disabilities should be grounded in an ontology that encompasses this understanding. The objective of this study is to provide a methodology to integrate the social and physical environments in the development of a mobility ontology for people with motor disabilities (PWMD). We propose to create subclasses of concepts based on a Nature-Development distinction rather than creating separate social and physical subclasses. This allows the relationships between social and physical elements to be modelled in a more compact and efficient way by specifying them locally within each entity, and better accommodates the complexities of the human-environment interaction as well. Based on this approach, an ontology for mobility of PWMD considering four main elements - the social and physical environmental factors, human factors, life habits related to mobility and possible goals of mobility - is presented. We demonstrate that employing the Nature-Development perspective facilitates the process of developing useful ontologies, especially for defining the relationships between the social and physical parts of the environment. This is a fundamental issue for modelling the interaction between humans and their social and physical environments for a broad range of applications, including the development of geospatial assistive technologies for navigation of PWMD. Implications for rehabilitation The proposed perspective may actually have much broader interests beyond the issue of disability - much of the interesting dynamics in city development arises from the interaction between human-developed components - the built environment and its associated entities - and natural or organic components. The proposed approach facilitates the process of developing useful ontologies, especially for defining the relationships between the social and physical parts of the environment. This is a fundamental issue for modeling the interaction between human -specially people with disabilities -and his social and physical environments in a broad range of domains and applications, such as Geographic Information Systems and the development of geospatial assistive technologies for navigation of people with disabilities, respectively.

  10. Copper-complexing ligands produced by an intact estuarine microbial community in response to copper stress.

    NASA Astrophysics Data System (ADS)

    Bingham, J.; Dryden, C.; Gordon, A.

    2002-12-01

    Copper is both an important nutrient and a pollutant in the marine environment. By studying the interactions between microorganisms and copper in the Elizabeth River (VA), home to a major Naval Base, we field tested the hypothesis that picoplankton and/or bacterioplankton produce strong, copper-complexing ligands in response to elevated copper concentrations. A simple light/ dark test was used to distinguish between heterotrophic and phototrophic ligand production. Samples were bottled and moored, submerged one meter, for a week. Direct counts using DAPI stain and epiflourescence were conducted to find concentrations of picoplankton and bacterioplankton. Using cathodic stripping voltammetry, we found the total copper concentrations, and then from a titration of the ligands by copper, the ligand concentrations and conditional stability constants were obtained. The Elizabeth River naturally had between 10-20 nM total dissolved copper concentrations. However when copper complexation was considered we found that the levels of bio-available Cu(II) ions were much lower. In fact in the natural samples the levels were not high enough to affect the relative reproductive rates of several microorganisms. Naturally there was a 50 nM "buffer zone" of ligand to total dissolved copper concentration. Furthermore, when stressed with excess copper, healthy picoplankton produced enough ligand to alleviate toxicity, and rebuild the buffer zone. However bacterioplankton only produced enough ligand so that they were no longer affected. Therefore, intact estuarine communities regulate copper bioavailability and toxicity with ligand production.

  11. Organic Exudates Enhance Iron Bioavailability to Trichodesmium (IMS101) by Modifying Fe Speciation

    NASA Astrophysics Data System (ADS)

    Tohidi Farid, H.; Rose, A.; Schulz, K.

    2016-02-01

    Although ferrous iron (Fe (II)) is believed to be the most readily absorbed form of Fe by cells, under alkaline and oxygenated conditions typical of marine environments, the thermodynamically stable Fe(III) state dominates. In marine environments, this Fe(III) is primarily presents as organic Fe(III)L complexes whose bioavailability is highly variable. However, it has been demonstrated that some eukaryotic marine algae are able to release organic ligands into their surrounding environments that change Fe bioavailability through complexation and/or redox reactions. Nevertheless, it is unclear how Fe(II) oxidation and Fe(III) reduction rates might be modified by these exudates and how this might increase or decrease iron bioavailability to microorganisms. Here, the role of natural organic ligands excreted by the cyanobacterium Trichodesmium erythraeum on the oxidation kinetics of Fe(II) was studied using the luminol chemiluminescence technique. The oxidation kinetics of Fe(II) were examined at nanomolar Fe concentrations in presence of different concentrations of EDTA and dissolved organic carbon exuded by Trichodesmium cells. The results indicated that an increase in the concentration of exuded organic matter, and consequently L:Fe(II) ratio, resulted in decreasing rates of Fe(II) oxidation by oxygen, primarily due to formation of Fe(II) complexes. Moreover, the results demonstrated that the exudates from Trichodesmium may be able to reduce Fe(III) to the more bioavailable Fe(II) state under some circumstances. This study therefore supports the ability of microorganisms to manipulate Fe bioavailability by releasing organic compounds into the extracellular environment that retard Fe(II) oxidation rates or reducing Fe(III) species to Fe(II). It also provides new insight into the potential mechanism(s) by which Trichdesmium may acquire Fe under conditions where Fe bioavailability is otherwise limited.

  12. The meaning of seasonal changes, nature, and animals for adolescent girls' wellbeing in northern Finland: A qualitative descriptive study.

    PubMed

    Wiens, Varpu; Kyngäs, Helvi; Pölkki, Tarja

    2016-01-01

    Wellbeing is complex, holistic, and subjectively perceived. Issues such as gender, age, and environment seem to affect it. Therefore, the aim of this qualitative study was to describe the meaning of seasonal changes, nature, and animals towards 13-16-year-old girls' wellbeing in Northern Finland. In the spring of 2014, through purposive sampling, a total of 19 girls participated in semi-structured interviews from various parts of Northern Finland. The data were analysed using content analysis. Afterwards, the analysis combining the category participatory involvement with environment was found, and this consisted of three main categories: adaptation to seasonal changes, restorative nature, and empowering interactivity with animals. Seasonal changes had an effect on girls' wellbeing; in the summertime, they felt happy and vivacious, active, and outgoing. Instead, during the winter months, girls' mood and activity seemed to be lower and they felt lazier and depressed. Nature brought mainly positive feelings to girls; being in nature was experienced as liberating and relaxing, and it offered opportunities to relax and have sensory perceptions. Interaction with animals was perceived as empowering. They were experienced as altruistic and comforting companions. Animals were important to girls, and they contributed to girls' lives through positive effects towards their mental and physical wellbeing. Based on the results of this study, we can recommend that being in nature and interacting with animals should be supported because they seem to have benefits towards adolescent girls' health and wellbeing. In order to facilitate the negative effects of winter, the school days should be arranged in such a way that it would be possible for girls to have outdoor activities during the daytime. The challenge for the future is perhaps the purposeful utilisation of nature's and the animals' positive effects towards their wellbeing.

  13. 28 CFR 16.92 - Exemption of Environment and Natural Resources Division Systems-limited access.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Exemption of Environment and Natural....92 Exemption of Environment and Natural Resources Division Systems—limited access. (a)(1) The...) Environment and Natural Resources Division Case and Related Files System, JUSTICE/ENRD-003. (ii) [Reserved] (2...

  14. 28 CFR 16.92 - Exemption of Environment and Natural Resources Division Systems-limited access.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Exemption of Environment and Natural....92 Exemption of Environment and Natural Resources Division Systems—limited access. (a)(1) The...) Environment and Natural Resources Division Case and Related Files System, JUSTICE/ENRD-003. (ii) [Reserved] (2...

  15. Stress Response and Cognitive Performance Modulation in Classroom versus Natural Environments: A Quasi-Experimental Pilot Study with Children.

    PubMed

    Mygind, Lærke; Stevenson, Matt P; Liebst, Lasse S; Konvalinka, Ivana; Bentsen, Peter

    2018-05-28

    Stress during childhood can have mental and somatic health influences that track throughout life. Previous research attributes stress-reducing effects to natural environments, but has mainly focused on adults and often following leisurely relaxation in natural environments. This pilot study explores the impact of natural environments on stress response during rest and mental load and cognitive performance in 47 children aged 10⁻12 years in a school context. Heart rate variability measures indexing tonic, event, and phasic vagal tone and attention scores were compared across classroom and natural environments. Tonic vagal tone was higher in the natural environment than the classrooms, but no differences were found in event or phasic vagal tone or cognitive performance measures. These findings suggest a situational aspect of the conditions under which natural environments may give rise to stress-buffering influences. Further research is warranted to understand the potential benefits in a real-life context, in particular with respect to the underpinning mechanisms and effects of accumulated exposure over time in settings where children spend large proportions of time in natural environments.

  16. Thermal and fluid simulation of the environment under the dashboard, compared with measurement data

    NASA Astrophysics Data System (ADS)

    Popescu, C. S.; Sirbu, G. M.; Nita, I. C.

    2017-10-01

    The development of vehicles during the last decade is related to the evolution of electronic systems added in order to increase the safety and the number of services available on board, such as advanced driver-assistance systems (ADAS). Cars already have a complex computer network, with electronic control units (ECUs) connected to each other and receiving information from many sensors. The ECUs transfer an important heat power to the environment, while proper operating conditions need to be provided to ensure their reliability at high and low temperature, vibration and humidity. In a car cabin, electronic devices are usually placed in the compartment under the dashboard, an enclosed space designed for functional purposes. In the early stages of the vehicle design it has become necessary to analyse the environment under dashboard, by the use of Computational Fluid Dynamics (CFD) simulations and measurements. This paper presents the cooling of heat sinks by natural convection, a thermal and fluid simulation of the environment under the dashboard compared with test data.

  17. Simulation of three-phase induction motor drives using indirect field oriented control in PSIM environment

    NASA Astrophysics Data System (ADS)

    Aziri, Hasif; Patakor, Fizatul Aini; Sulaiman, Marizan; Salleh, Zulhisyam

    2017-09-01

    This paper presents the simulation of three-phase induction motor drives using Indirect Field Oriented Control (IFOC) in PSIM environment. The asynchronous machine is well known about natural limitations fact of highly nonlinearity and complexity of motor model. In order to resolve these problems, the IFOC is applied to control the instantaneous electrical quantities such as torque and flux component. As FOC is controlling the stator current that represented by a vector, the torque component is aligned with d coordinate while the flux component is aligned with q coordinate. There are five levels of the incremental system are gradually built up to verify and testing the software module in the system. Indeed, all of system build levels are verified and successfully tested in PSIM environment. Moreover, the corresponding system of five build levels are simulated in PSIM environment which is user-friendly for simulation studies in order to explore the performance of speed responses based on IFOC algorithm for three-phase induction motor drives.

  18. Cleaner production: Minimizing hazardous waste in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bratasida, D.L.

    In the second long-term development plan, industry plays a significant role in economic growth. In Indonesia, industries grow very fast; such fast growth can adversely effect the environment. Exploitation of assets can mean depletion of natural resources and energy, which, if incorrectly managed, can endanger human life and the environment. The inefficient use of natural resources will accelerate their exhaustion and generate pollution, resulting in environmental damage and threats to economic development and human well being. In recent years, changes in the approach used to control pollution have been necessary because of the increasing seriousness of the problems. Initial environmentalmore » management strategies were based on a carrying capacity approach; the natural assimilative capacity accommodated the pollution load that was applied. The environmental management strategies adopted later included technologies applied to the end of the discharge point (so-called {open_quotes}end-of-pipe{close_quotes} treatments). Until now, environmental management strategies focused on end-of-pipe approaches that control pollutants after they are generated. These approaches concentrate on waste treatment and disposal to control pollution and environmental degradation. However, as industry develops, waste volumes continue to increase, thereby creating further environmental problems. In addition, the wastes produced tend to have more complex characteristics and are potentially more difficult to treat for a reasonable cost. There are often technical and financial obstacles to regulatory compliance if waste treatment is relied on as the only means of achieving environmental objectives. Consequently, the reactive end-of-pipe treatment approach has been changed to a proactive cleaner production approach. This approach is based on the concept of sustainable development and is designed to prevent pollution as well as to protect natural resources and the quality of the environment.« less

  19. Hierarchy and Interactions in Environmental Interfaces Regarded as Biophysical Complex Systems

    NASA Astrophysics Data System (ADS)

    Mihailovic, Dragutin T.; Balaz, Igor

    The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. For example, following the definition of environmental interface by Mihailovic and Balaž [23], such interface can be placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere. Complex environmental interface systems are open and hierarchically organised, interactions between their constituent parts are nonlinear, and the interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface systems and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences, particularly in environmental fluid mechanics. In modelling complex biophysical systems one of the main tasks is to successfully create an operative interface with the external environment. It should provide a robust and prompt translation of the vast diversity of external physical and/or chemical changes into a set of signals, which are "understandable" for an organism. Although the establishment of organisation in any system is of crucial importance for its functioning, it should not be forgotten that in biophysical systems we deal with real-life problems where a number of other conditions should be reached in order to put the system to work. One of them is the proper supply of the system by the energy. Therefore, we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy as well as the exchange of biological, chemical and other physical quantities between interacting environmental interfaces can be represented by coupled maps. In this chapter we will address only two illustrative issues important for the modelling of interacting environmental interfaces regarded as complex systems. These are (i) use of algebra for modelling the autonomous establishment of local hierarchies in biophysical systems and (ii) numerical investigation of coupled maps representing exchange of energy, chemical and other relevant biophysical quantities between biophysical entities in their surrounding environment.

  20. Characterization of surface complexes in enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Roy, D.; Furtak, T. E.

    1984-11-01

    An indicator molecule, para-nitrosodimethylanaline (p-NDMA), has been used to study the chemical nature of surface complexes involving the active site for SERS in the electrochemical environment. We present evidence for positively charged Ag atoms stabilized by coadsorbed Cl- ions as the primary sites which are produced during the oxidation reduction cycle treatment of an Ag electrode. Depending on the relative number of Cl- ions which influence the Ag site the active site demonstrates a greater or lesser electron accepting character toward p-NDMA. This character is influenced by the applied voltage and by the presence of Tl+ ions in the bulk of the solution near the surface. As in previously studied systems p-NDMA/Cl-/Ag complexes demonstrate charge transfer excitation which in this case is from the p-NDMA to the Ag site. These results further solidify the importance of complex formation in electrochemical SERS and suggest that caution should be applied when using SERS as a quantitative measure of surface coverage.

  1. Agricultural land management options after the Chernobyl and Fukushima accidents: The articulation of science, technology, and society.

    PubMed

    Vandenhove, Hildegarde; Turcanu, Catrinel

    2016-10-01

    The options adopted for recovery of agricultural land after the Chernobyl and Fukushima accidents are compared by examining their technical and socio-economic aspects. The analysis highlights commonalities such as the implementation of tillage and other types of countermeasures and differences in approach, such as preferences for topsoil removal in Fukushima and the application of K fertilizers in Chernobyl. This analysis shows that the recovery approach needs to be context-specific to best suit the physical, social, and political environment. The complex nature of the decision problem calls for a formal process for engaging stakeholders and the development of adequate decision support tools. Integr Environ Assess Manag 2016;12:662-666. © 2016 SETAC. © 2016 SETAC.

  2. Nature versus nurture: A systematic approach to elucidate gene-environment interactions in the development of myopic refractive errors.

    PubMed

    Miraldi Utz, Virginia

    2017-01-01

    Myopia is the most common eye disorder and major cause of visual impairment worldwide. As the incidence of myopia continues to rise, the need to further understand the complex roles of molecular and environmental factors controlling variation in refractive error is of increasing importance. Tkatchenko and colleagues applied a systematic approach using a combination of gene set enrichment analysis, genome-wide association studies, and functional analysis of a murine model to identify a myopia susceptibility gene, APLP2. Differential expression of refractive error was associated with time spent reading for those with low frequency variants in this gene. This provides support for the longstanding hypothesis of gene-environment interactions in refractive error development.

  3. Bio-chemo-mechanics of thoracic aortic aneurysms.

    PubMed

    Wagenseil, Jessica E

    2018-03-01

    Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.

  4. A survey of automated methods for sensemaking support

    NASA Astrophysics Data System (ADS)

    Llinas, James

    2014-05-01

    Complex, dynamic problems in general present a challenge for the design of analysis support systems and tools largely because there is limited reliable a priori procedural knowledge descriptive of the dynamic processes in the environment. Problem domains that are non-cooperative or adversarial impute added difficulties involving suboptimal observational data and/or data containing the effects of deception or covertness. The fundamental nature of analysis in these environments is based on composite approaches involving mining or foraging over the evidence, discovery and learning processes, and the synthesis of fragmented hypotheses; together, these can be labeled as sensemaking procedures. This paper reviews and analyzes the features, benefits, and limitations of a variety of automated techniques that offer possible support to sensemaking processes in these problem domains.

  5. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures

    PubMed Central

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476

  6. SERENA: a Novel Instrument Package on board BepiColombo-MPO to study Neutral and Ionized Particles in the Hermean Environment

    NASA Astrophysics Data System (ADS)

    Orsini, S.; Livi, S.; Torkar, K.; Barabash, S.; Milillo, A.; Wurz, P.; di Lellis, A. M.; Kallio, E.

    2009-06-01

    SERENA (`Search for Exospheric Refilling and Emitted Natural Abundances') is an instrument package that will fly on board the BepiColombo Mercury Planetary Orbiter (MPO) it will investigate the Mercury's complex particle environment that surrounds the planet. Such an environment is composed by thermal and directional neutral atoms (exosphere) originating via surface release and charge-exchange processes, and by ionized particles originated through photo-ionization and again by surface release processes. In order to accomplish the scientific goals, in-situ analysis of the environmental elements is necessary, and for such a purpose the SERENA instrument shall include four units: two Neutral Particle Analyzers (ELENA and STROFIO) and two Ion Spectrometers (MIPA and PICAM). The scientific merit of SERENA is presented, and the basic characteristics of the four units are described, with a focus on novel technological aspects.

  7. SERENA: a suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for particle detection in the Hermean Environment

    NASA Astrophysics Data System (ADS)

    Milillo, Anna; Livi, Stefano; Orsini, Stefano; Torkar, Klaus; Barabash, Stas; Milillo, Anna; Wurz, Peter; di Lellis, Andrea Maria; Kallio, Esa

    SERENA (‘Search for Exospheric Refilling and Emitted Natural Abundances') is an instrument package that will fly on board the BepiColombo/Mercury Planetary Orbiter (MPO); it will investigate the Mercury's complex particle environment that surrounds the planet. Such an environment is composed by thermal and directional neutral atoms (exosphere) originating via surface release and charge-exchange processes, and by ionized particles originated through photo-ionization and again by surface release processes. In order to accomplish the scientific goals, in-situ analysis of the environmental elements is necessary, and for such a purpose the SERENA instrument shall include four units: two Neutral Particle Analyzers (ELENA and STROFIO) and two Ion Spectrometers (MIPA and PICAM). The scientific merit of SERENA is presented, and the basic characteristics of the four units are described, with a focus on novel technological aspects.

  8. How environment and genes shape the adolescent brain.

    PubMed

    Paus, Tomáš

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". This review provides a conceptual framework for the study of factors--in our genes and environment--that shape the adolescent brain. I start by pointing out that brain phenotypes obtained with magnetic resonance imaging are complex traits reflecting the interplay of genes and the environment. In some cases, variations in the structural phenotypes observed during adolescence have their origin in the pre-natal or early post-natal periods. I then emphasize the bidirectional nature of brain-behavior relationships observed during this period of human development, where function may be more likely to influence structure rather than vice versa. In the main part of this article, I review our ongoing work on the influence of gonadal hormones on the adolescent brain. I also discuss the importance of social context and brain plasticity on shaping the relevant neural circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Shielding Effectiveness in a Two-Dimensional Reverberation Chamber Using Finite-Element Techniques

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.

    2006-01-01

    Reverberation chambers are attaining an increased importance in determination of electromagnetic susceptibility of avionics equipment. Given the nature of the variable boundary condition, the ability of a given source to couple energy into certain modes and the passband characteristic due the chamber Q, the fields are typically characterized by statistical means. The emphasis of this work is to apply finite-element techniques at cutoff to the analysis of a two-dimensional structure to examine the notion of shielding-effectiveness issues in a reverberating environment. Simulated mechanical stirring will be used to obtain the appropriate statistical field distribution. The shielding effectiveness (SE) in a simulated reverberating environment is compared to measurements in a reverberation chamber. A log-normal distribution for the SE is observed with implications for system designers. The work is intended to provide further refinement in the consideration of SE in a complex electromagnetic environment.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Maggie R.; Lundberg, Derek S.; del Rio, Tijana G.

    Bacteria living on and in leaves and roots influence many aspects of plant health, so the extent of a plant's genetic control over its microbiota is of great interest to crop breeders and evolutionary biologists. Laboratory-based studies, because they poorly simulate true environmental heterogeneity, may misestimate or totally miss the influence of certain host genes on the microbiome. Here we report a large-scale field experiment to disentangle the effects of genotype, environment, age and year of harvest on bacterial communities associated with leaves and roots of Boechera stricta (Brassicaceae), a perennial wild mustard. Host genetic control of the microbiome ismore » evident in leaves but not roots, and varies substantially among sites. Microbiome composition also shifts as plants age. Furthermore, a large proportion of leaf bacterial groups are shared with roots, suggesting inoculation from soil. Our results demonstrate how genotype-by-environment interactions contribute to the complexity of microbiome assembly in natural environments.« less

  11. FAME, a microprocessor based front-end analysis and modeling environment

    NASA Technical Reports Server (NTRS)

    Rosenbaum, J. D.; Kutin, E. B.

    1980-01-01

    Higher order software (HOS) is a methodology for the specification and verification of large scale, complex, real time systems. The HOS methodology was implemented as FAME (front end analysis and modeling environment), a microprocessor based system for interactively developing, analyzing, and displaying system models in a low cost user-friendly environment. The nature of the model is such that when completed it can be the basis for projection to a variety of forms such as structured design diagrams, Petri-nets, data flow diagrams, and PSL/PSA source code. The user's interface with the analyzer is easily recognized by any current user of a structured modeling approach; therefore extensive training is unnecessary. Furthermore, when all the system capabilities are used one can check on proper usage of data types, functions, and control structures thereby adding a new dimension to the design process that will lead to better and more easily verified software designs.

  12. The influence of the work environment on cardiovascular health: a historical, conceptual, and methodological perspective.

    PubMed

    Kasl, S V

    1996-01-01

    The framework of psychosocial epidemiology is used to examine research developments that characterize the accumulation of knowledge regarding the role of the work environment in cardiovascular health and disease. The discussion of current programs of research focuses on the work of T. Theorell and R. Karasek (1996) and J. Siegrist (1996) as exemplars of European and American studies that have contributed the most to the understanding of occupational cardiovascular health. It is argued that researchers need to maintain and nurture relatively broad conceptual models of etiology because cardiovascular disease involves multiple biomedical risk factors and because specific aspects of the work environment are embedded in a large, complex matrix of other psychosocial influences. At the same time, investigators need to push ahead with focused research strategies to clarify the precise nature of the work environmental risk factors that emerge in the broad, somewhat imprecise epidemiologic study designs.

  13. Systems architecture: a new model for sustainability and the built environment using nanotechnology, biotechnology, information technology, and cognitive science with living technology.

    PubMed

    Armstrong, Rachel

    2010-01-01

    This report details a workshop held at the Bartlett School of Architecture, University College London, to initiate interdisciplinary collaborations for the practice of systems architecture, which is a new model for the generation of sustainable architecture that combines the discipline of the study of the built environment with the scientific study of complexity, or systems science, and adopts the perspective of systems theory. Systems architecture offers new perspectives on the organization of the built environment that enable architects to consider architecture as a series of interconnected networks with embedded links into natural systems. The public workshop brought together architects and scientists working with the convergence of nanotechnology, biotechnology, information technology, and cognitive science and with living technology to investigate the possibility of a new generation of smart materials that are implied by this approach.

  14. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    NASA Technical Reports Server (NTRS)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  15. 3-D surface reconstruction of patient specific anatomic data using a pre-specified number of polygons.

    PubMed

    Aharon, S; Robb, R A

    1997-01-01

    Virtual reality environments provide highly interactive, natural control of the visualization process, significantly enhancing the scientific value of the data produced by medical imaging systems. Due to the computational and real time display update requirements of virtual reality interfaces, however, the complexity of organ and tissue surfaces which can be displayed is limited. In this paper, we present a new algorithm for the production of a polygonal surface containing a pre-specified number of polygons from patient or subject specific volumetric image data. The advantage of this new algorithm is that it effectively tiles complex structures with a specified number of polygons selected to optimize the trade-off between surface detail and real-time display rates.

  16. Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Ciesla, Fred J.; Sanford, Scott A.

    2012-01-01

    Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments they were exposed to. We found that icy grains originating in the outer disk, where temperatures were less than 30 K, experienced UV irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural byproducts of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.

  17. Intelligent Agent Architectures: Reactive Planning Testbed

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stanley J.; Kahn, Philip

    1993-01-01

    An Integrated Agent Architecture (IAA) is a framework or paradigm for constructing intelligent agents. Intelligent agents are collections of sensors, computers, and effectors that interact with their environments in real time in goal-directed ways. Because of the complexity involved in designing intelligent agents, it has been found useful to approach the construction of agents with some organizing principle, theory, or paradigm that gives shape to the agent's components and structures their relationships. Given the wide variety of approaches being taken in the field, the question naturally arises: Is there a way to compare and evaluate these approaches? The purpose of the present work is to develop common benchmark tasks and evaluation metrics to which intelligent agents, including complex robotic agents, constructed using various architectural approaches can be subjected.

  18. Impacts of engineered nanomaterials on microbial community structure and function in natural and engineered ecosystems.

    PubMed

    Mohanty, Anee; Wu, Yichao; Cao, Bin

    2014-10-01

    In natural and engineered environments, microorganisms often exist as complex communities, which are key to the health of ecosystems and the success of bioprocesses in various engineering applications. With the rapid development of nanotechnology in recent years, engineered nanomaterials (ENMs) have been considered one type of emerging contaminants that pose great potential risks to the proper function of microbial communities in natural and engineered ecosystems. The impacts of ENMs on microorganisms have attracted increasing research attentions; however, most studies focused on the antimicrobial activities of ENMs at single cell and population level. Elucidating the influence of ENMs on microbial communities represents a critical step toward a comprehensive understanding of the ecotoxicity of ENMs. In this mini-review, we summarize and discuss recent research work on the impacts of ENMs on microbial communities in natural and engineered ecosystems, with an emphasis on their influences on the community structure and function. We also highlight several important research topics which may be of great interest to the research community.

  19. Complex Morphological Variability in Complex Evaporitic Systems: Thermal Spring Snails from the Chihuahuan Desert, Mexico

    NASA Astrophysics Data System (ADS)

    Tang, Carol M.; Roopnarine, Peter D.

    2003-11-01

    Thermal springs in evaporitic environments provide a unique biological laboratory in which to study natural selection and evolutionary diversification. These isolated systems may be an analogue for conditions in early Earth or Mars history. One modern example of such a system can be found in the Chihuahuan Desert of north-central Mexico. The Cuatro Cienegas basin hosts a series of thermal springs that form a complex of aquatic ecosystems under a range of environmental conditions. Using landmark-based morphometric techniques, we have quantified an unusually high level of morphological variability in the endemic gastropod Mexipyrgus from Cuatro Cienegas. The differentiation is seen both within and between hydrological systems. Our results suggest that this type of environmental system is capable of producing and maintaining a high level of morphological diversity on small spatial scales, and thus should be a target for future astrobiological research.

  20. A Corticothalamic Circuit Model for Sound Identification in Complex Scenes

    PubMed Central

    Otazu, Gonzalo H.; Leibold, Christian

    2011-01-01

    The identification of the sound sources present in the environment is essential for the survival of many animals. However, these sounds are not presented in isolation, as natural scenes consist of a superposition of sounds originating from multiple sources. The identification of a source under these circumstances is a complex computational problem that is readily solved by most animals. We present a model of the thalamocortical circuit that performs level-invariant recognition of auditory objects in complex auditory scenes. The circuit identifies the objects present from a large dictionary of possible elements and operates reliably for real sound signals with multiple concurrently active sources. The key model assumption is that the activities of some cortical neurons encode the difference between the observed signal and an internal estimate. Reanalysis of awake auditory cortex recordings revealed neurons with patterns of activity corresponding to such an error signal. PMID:21931668

  1. Supramolecular complexation for environmental control.

    PubMed

    Albelda, M Teresa; Frías, Juan C; García-España, Enrique; Schneider, Hans-Jörg

    2012-05-21

    Supramolecular complexes offer a new and efficient way for the monitoring and removal of many substances emanating from technical processes, fertilization, plant and animal protection, or e.g. chemotherapy. Such pollutants range from toxic or radioactive metal ions and anions to chemical side products, herbicides, pesticides to drugs including steroids, and include degradation products from natural sources. The applications involve usually fast and reversible complex formation, due to prevailing non-covalent interactions. This is of importance for sensing as well as for separation techniques, where the often expensive host compounds can then be reused almost indefinitely. Immobilization of host compounds, e.g. on exchange resins or on membranes, and their implementation in smart new materials hold particular promise. The review illustrates how the design of suitable host compounds in combination with modern sensing and separation methods can contribute to solve some of the biggest problems facing chemistry, which arise from the everyday increasing pollution of the environment.

  2. Why the Lack of Academic Literature on Export Controls?

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor

    2001-01-01

    Export controls is currently a relevant and dynamic topic. Given the growth of global operations and the high-tech nature of many products, an increase in awareness and understanding of the impacts of export controls are necessary. A structured approach to export controls has been in existence since 1949. Despite over 50 years of history, surprisingly little academic research and literature exists on the topic. This paper explores the current export control environment and explores possible reasons for the limited academic interest. Five possible reasons are discussed: (1) dynamic nature of the topic; (2) difficulty in ensuring accurate data; (3) Complexity of the problem; (4) relatively small economic impact; and (5) sensitive information. A research approach is recommended that considers these potential obstacles.

  3. Linking brain, mind and behavior.

    PubMed

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  4. Bio-inspired reversible underwater adhesive.

    PubMed

    Zhao, Yanhua; Wu, Yang; Wang, Liang; Zhang, Manman; Chen, Xuan; Liu, Minjie; Fan, Jun; Liu, Junqiu; Zhou, Feng; Wang, Zuankai

    2017-12-20

    The design of smart surfaces with switchable adhesive properties in a wet environment has remained a challenge in adhesion science and materials engineering. Despite intense demands in various industrial applications and exciting progress in mimicking the remarkable wet adhesion through the delicate control of catechol chemistry, polyelectrolyte complex, and supramolecular architectures, the full recapitulation of nature's dynamic function is limited. Here, we show a facile approach to synthesize bioinspired adhesive, which entails the reversible, tunable, and fast regulation of the wet adhesion on diverse surfaces. The smart wet adhesive takes advantage of the host-guest molecular interaction and the adhesive nature of catechol chemistry, as well as the responsive polymer, allowing for screening and activation of the interfacial interaction simply by a local temperature trigger in an on-demand manner. Our work opens up an avenue for the rational design of bioinspired adhesives with performances even beyond nature.

  5. Computational Photophysics in the Presence of an Environment

    NASA Astrophysics Data System (ADS)

    Nogueira, Juan J.; González, Leticia

    2018-04-01

    Most processes triggered by ultraviolet (UV) or visible (vis) light in nature take place in complex biological environments. The first step in these photophysical events is the excitation of the absorbing system or chromophore to an electronically excited state. Such an excitation can be monitored by the UV-vis absorption spectrum. A precise calculation of the UV-vis spectrum of a chromophore embedded in an environment is a challenging task that requires the consideration of several ingredients, besides an accurate electronic-structure method for the excited states. Two of the most important are an appropriate description of the interactions between the chromophore and the environment and accounting for the vibrational motion of the whole system. In this contribution, we review the most common theoretical methodologies to describe the environment (including quantum mechanics/continuum and quantum mechanics/molecular mechanics models) and to account for vibrational sampling (including Wigner sampling and molecular dynamics). Further, we illustrate in a series of examples how the lack of these ingredients can lead to a wrong interpretation of the electronic features behind the UV-vis absorption spectrum.

  6. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS

    PubMed Central

    Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K.; Brand, Andreas; Inglis, R. Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank

    2015-01-01

    Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the door to study the occurrence and relevance of phenotypic heterogeneity in nature. PMID:25932020

  7. Investigation of bio polymer electrolyte based on cellulose acetate-ammonium nitrate for potential use in electrochemical devices.

    PubMed

    Monisha, S; Mathavan, T; Selvasekarapandian, S; Milton Franklin Benial, A; Aristatil, G; Mani, N; Premalatha, M; Vinoth Pandi, D

    2017-02-10

    Proton conducting materials create prime interest in electro chemical device development. Present work has been carried out to design environment friendly new biopolymer electrolytes (BPEs) using cellulose acetate (CA) complex with different concentrations of ammonium nitrate (NH 4 NO 3 ), which have been prepared as film and characterized. The 50mol% CA and 50mol% NH 4 NO 3 complex has highest ionic conductivity (1.02×10 -3 Scm -1 ). Differential scanning calorimetry shows the changes in glass transition temperature depends on salt concentration. Structural analysis indicates that the highest ionic conductivity complex exhibits more amorphous nature. Vibrational analysis confirms the complex formation, which has been validated theoretically by Gaussian 09 software. Conducting element in the BPEs has been predicted. Primary proton battery and proton exchange membrane fuel cell have been developed for highest ionic conductivity complex. Output voltage and power performance has been compared for single fuel cell application, which manifests the present BPE holds promise application in electrochemical devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Managing inherent complexity for sustainable walleye fisheries in Lake Erie

    USGS Publications Warehouse

    Roseman, Edward F.; Drouin, Richard; Gaden, Marc; Knight, Roger; Tyson, Jeff; Zhao, Yingming; Taylor, William W.; Lynch, Abigail J.; Léonard, Nancy J.

    2012-01-01

    In Lake Erie, Walleye (Sander vitreus vitreus) is king. The naturally occurring species is the foundation of commercial fishing operations on the Canadian side of the lake and is a much-prized sport fish on the American side. Management of Lake Erie walleye fisheries is complex and takes place in an inter-jurisdictional setting composed of resource agencies from the states of Michigan (MDNR), Ohio (ODNR), Pennsylvania (PFBC), and New York (NYDEC) and the province of Ontario (OMNR). The complexity of walleye management is exacerbated by interactions among environmental and ecological changes in Lake Erie, complex life-history characteristics of the species, public demand for walleye, and cultural/governance differences among managing groups and their respective constituents. Success of future management strategies will largely hinge upon our ability to understand these inherent complexities and to employ tactics that successfully accommodate stock productivity and human demand in a highly dynamic environment. In this report, we review the history of Lake Erie walleye management, outline the multi-jurisdictional process for international management of walleye, and discuss strategies to address challenges facing managers.

  9. Geocryological hazards and destructive exogenic geological processes on lines of linear constructions of tundra and forest-tundra zones of Western Siberia

    NASA Astrophysics Data System (ADS)

    Ospennikov, E. N.; Hilimonjuk, V. Z.

    2009-04-01

    Economic development of northern oil-and gas-bearing regions, even by application of shift method, is accompanied by a construction of the linear transport systems including automobile- and railways. Construction of such roads is connected with the risks caused by the whole complex of hazards, defined by the environmental features of the region, including flat surface with strong marshiness, development of a peat, fine-grained and easily eroded friable sedimentations, as well as by complicated geocryological conditions. Geocryological conditions of Western Siberia area are characterized by a rather high heterogeneity. This implies the strong variability of permafrost soils distribution, their thickness and continuity, depths of seasonal thawing and frost penetration, and also intact development of geocryological processes and phenomena. Thermokarst, thermo erosion and thermo-abrasion develop in the natural conditions. These processes are caused by partial degradation of permafrost. A frost heave also occurs during their seasonal or long-term freezing. Failure of an environment, which is always peculiar to construction of the roads, causes reorganization of geocryological systems that is accompanied by occurrence of dangerous geocryological processes, such as technogenic thermokarst (with formation of various negative forms of a relief: from fine subsidence up to small and average sized lakes), frost heave ground (with formation frost mound in height up to 0,5 - 1,5 meters and more), thermal erosion (gullies and ravines with volume of the born material up to several thousand cubic meters). Development of these destructive processes in a road stripes leads to emergencies owing to deformations and destructions of an earthen cloth, and to failure of natural tundra and forest-tundra ecosystems. The methodical approaches based on typification and zoning of the area by its environmental complex have been developed for an estimation of geocryological hazards at linear construction. The estimation was carried out on the basis of the analysis, including features of geocryological processes development in natural conditions and certain types of geocryological conditions; character of the failures caused by construction and operation of roads; hazard severity of destructive processes for certain geotechnical systems of roads. Three categories of territories have been specified as a result on base of hazard severity: very complex, complex and simple. Very complex ones are characterized by close to 0 0C by average annual temperatures of soils, presence massive pore and it is repeated- wedge ices, a wide circulation it is high ice bearing ground and active modern development of processes thermokarst, thermo erosion and frost heave. Simple territories differ in low average annual temperatures of soils (below -4 0С), absence massive underground ices and weak development of geocryological processes. All other territories representing potential hazard at adverse change of an environment are classified as complex territories.

  10. Teaching Architecture - Contemporary Challenges and Threats in the Complexity of Built Environment

    NASA Astrophysics Data System (ADS)

    Borucka, Justyna; Macikowski, Bartosz

    2017-10-01

    The complexity of the modern built environment is a problem not only of architectural and urban issues. This issue extends to many other disciplines as well as covering a wide range of social engagements. The idea of writing this paper is generally initiated by the debate which took place in Gdańsk on 22.01.2016, and was prepared in order to meet representatives of the four circles of interest within the architectural sphere: universities, professional architectural organisations and associations, architectural practice (professionals running their own studios, managing projects and leading construction) and local social organisations active in city of Gdańsk. This paper is a comparison of the results of this discussion in relation to the policy and methodology of architecture teaching on the University level. Teaching architecture and urban planning according to the present discussion needs to be improved and advanced to meet the increasing complexity of both disciplines. Contemporary dynamic development of cities creates the necessity of engaging multiple stakeholders, participants and users of architecture and urban space. This is crucial to make them conscious of sharing responsibility for increasing the quality of living in the built environment. This discussion about architectural education is open and has the nature of an ongoing process adapting to a changing environment and is in fact a constant challenge which brings questions rather than simple answers. Transformation of architecture and urban planning, and consequently its education are increasingly entering into the related fields, especially into the professional practice and social environment. The question of how to teach architecture and urban planning and educate users of urban space should take place in the context of a wide discussion. This interdisciplinary debate seems to be a crucial and challenging step towards improving the future education of architecture and urban planning leading to a better life in the city.

  11. An Individual’s Connection to Nature Can Affect Perceived Restorativeness of Natural Environments. Some Observations about Biophilia

    PubMed Central

    Berto, Rita; Barbiero, Giuseppe; Barbiero, Pietro

    2018-01-01

    This study investigates the relationship between the level to which a person feels connected to Nature and that person’s ability to perceive the restorative value of a natural environment. We assume that perceived restorativeness may depend on an individual’s connection to Nature and this relationship may also vary with the biophilic quality of the environment, i.e., the functional and aesthetic value of the natural environment which presumably gave an evolutionary advantage to our species. To this end, the level of connection to Nature and the perceived restorativeness of the environment were assessed in individuals visiting three parks characterized by their high level of “naturalness” and high or low biophilic quality. The results show that the perceived level of restorativeness is associated with the sense of connection to Nature, as well as the biophilic quality of the environment: individuals with different degrees of connection to Nature seek settings with different degrees of restorativeness and biophilic quality. This means that perceived restorativeness can also depend on an individual’s “inclination” towards Nature. PMID:29510581

  12. Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite

    PubMed Central

    Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.

    2016-01-01

    Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters. PMID:26988070

  13. Disentangling life: Darwin, selectionism, and the postgenomic return of the environment.

    PubMed

    Meloni, Maurizio

    2017-04-01

    In this paper, I analyze the disruptive impact of Darwinian selectionism for the century-long tradition in which the environment had a direct causative role in shaping an organism's traits. In the case of humans, the surrounding environment often determined not only the physical, but also the mental and moral features of individuals and whole populations. With its apparatus of indirect effects, random variations, and a much less harmonious view of nature and adaptation, Darwinian selectionism severed the deep imbrication of organism and milieu posited by these traditional environmentalist models. This move had radical implications well beyond strictly biological debates. In my essay, I discuss the problematization of the moral idiom of environmentalism by William James and August Weismann who adopted a selectionist view of the development of mental faculties. These debates show the complex moral discourse associated with the environmentalist-selectionist dilemma. They also well illustrate how the moral reverberations of selectionism went well beyond the stereotyped associations with biological fatalism or passivity of the organism. Rereading them today may be helpful as a genealogical guide to the complex ethical quandaries unfolding in the current postgenomic scenario in which a revival of new environmentalist themes is taking place. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Handley-Sidhu, Stephanie; Mullan, Thomas K.; Grail, Quentin; Albadarneh, Malek; Ohnuki, Toshihiko; Macaskie, Lynne E.

    2016-03-01

    Anthropogenic radionuclides contaminate a range of environments as a result of nuclear activities, for example, leakage from waste storage tanks/ponds (e.g. Hanford, USA or Sellafield sites, UK) or as a result of large scale nuclear accidents (e.g. Chernobyl, Ukraine or Fukushima, Japan). One of the most widely applied remediation techniques for contaminated waters is the use of sorbent materials (e.g. zeolites and apatites). However, a key problem at nuclear contaminated sites is the remediation of radionuclides from complex chemical environments. In this study, biogenic hydroxyapatite (BHAP) produced by Serratia sp. bacteria was investigated for its potential to remediate surrogate radionuclides (Sr2+ and Co2+) from environmentally relevant waters by varying pH, salinity and the type and concentration of cations present. The sorption capacity of the BHAP for both Sr2+ and Co2+ was higher than for a synthetically produced hydroxyapatite (HAP) in the solutions tested. BHAP also compared favorably against a natural zeolite (as used in industrial decontamination) for Sr2+ and Co2+ uptake from saline waters. Results confirm that hydroxyapatite minerals of high surface area and amorphous calcium phosphate content, typical for biogenic sources, are suitable restoration or reactive barrier materials for the remediation of complex contaminated environments or wastewaters.

  15. Safety Critical Mechanisms

    NASA Technical Reports Server (NTRS)

    Robertson, Brandan

    2008-01-01

    Spaceflight mechanisms have a reputation for being difficult to develop and operate successfully. This reputation is well earned. Many circumstances conspire to make this so: the environments in which the mechanisms are used are extremely severe, there is usually limited or no maintenance opportunity available during operation due to this environment, the environments are difficult to replicate accurately on the ground, the expense of the mechanism development makes it impractical to build and test many units for long periods of time before use, mechanisms tend to be highly specialized and not prone to interchangeability or off-the-shelf use, they can generate and store a lot of energy, and the nature of mechanisms themselves, as a combination of structures, electronics, etc. designed to accomplish specific dynamic performance, makes them very complex and subject to many unpredictable interactions of many types. In addition to their complexities, mechanism are often counted upon to provide critical vehicle functions that can result in catastrophic events should the functions not be performed. It is for this reason that mechanisms are frequently subjected to special scrutiny in safety processes. However, a failure tolerant approach, along with good design and development practices and detailed design reviews, can be developed to allow such notoriously troublesome mechanisms to be utilized confidently in safety-critical applications.

  16. Divergent functional isoforms drive niche specialisation for nutrient acquisition and use in rumen microbiome

    PubMed Central

    Rubino, Francesco; Carberry, Ciara; M Waters, Sinéad; Kenny, David; McCabe, Matthew S; Creevey, Christopher J

    2017-01-01

    Many microbes in complex competitive environments share genes for acquiring and utilising nutrients, questioning whether niche specialisation exists and if so, how it is maintained. We investigated the genomic signatures of niche specialisation in the rumen microbiome, a highly competitive, anaerobic environment, with limited nutrient availability determined by the biomass consumed by the host. We generated individual metagenomic libraries from 14 cows fed an ad libitum diet of grass silage and calculated functional isoform diversity for each microbial gene identified. The animal replicates were used to calculate confidence intervals to test for differences in diversity of functional isoforms between microbes that may drive niche specialisation. We identified 153 genes with significant differences in functional isoform diversity between the two most abundant bacterial genera in the rumen (Prevotella and Clostridium). We found Prevotella possesses a more diverse range of isoforms capable of degrading hemicellulose, whereas Clostridium for cellulose. Furthermore, significant differences were observed in key metabolic processes indicating that isoform diversity plays an important role in maintaining their niche specialisation. The methods presented represent a novel approach for untangling complex interactions between microorganisms in natural environments and have resulted in an expanded catalogue of gene targets central to rumen cellulosic biomass degradation. PMID:28085156

  17. Batesian mimicry promotes pre- and postmating isolation in a snake mimicry complex.

    PubMed

    Pfennig, David W; Akcali, Christopher K; Kikuchi, David W

    2015-04-01

    We evaluated whether Batesian mimicry promotes early-stage reproductive isolation. Many Batesian mimics occur not only in sympatry with their model (as expected), but also in allopatry. As a consequence of local adaptation within both sympatry (where mimetic traits are favored) and allopatry (where nonmimetic traits are favored), divergent, predator-mediated natural selection should disfavor immigrants between these selective environments as well as any between-environment hybrids. This selection might form the basis for both pre- and postmating isolation, respectively. We tested for such selection in a snake mimicry complex by placing clay replicas of sympatric, allopatric, or hybrid phenotypes in both sympatry and allopatry and measuring predation attempts. As predicted, replicas with immigrant phenotypes were disfavored in both selective environments. Replicas with hybrid phenotypes were also disfavored, but only in a region of sympatry where previous studies have detected strong selection favoring precise mimicry. By fostering immigrant inviability and ecologically dependent selection against hybrids (at least in some habitats), Batesian mimicry might therefore promote reproductive isolation. Thus, although Batesian mimicry has long been viewed as a mechanism for convergent evolution, it might play an underappreciated role in fueling divergent evolution and possibly even the evolution of reproductive isolation and speciation. © 2015 The Author(s).

  18. 48 CFR 52.246-18 - Warranty of Supplies of a Complex Nature.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Complex Nature. 52.246-18 Section 52.246-18 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-18 Warranty of Supplies of a Complex Nature. As prescribed in 46.710(b)(1), insert a clause substantially as follows: Warranty of Supplies of a Complex Nature (MAY 2001) (a) Definitions. As used in this...

  19. 48 CFR 52.246-18 - Warranty of Supplies of a Complex Nature.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Complex Nature. 52.246-18 Section 52.246-18 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-18 Warranty of Supplies of a Complex Nature. As prescribed in 46.710(b)(1), insert a clause substantially as follows: Warranty of Supplies of a Complex Nature (MAY 2001) (a) Definitions. As used in this...

  20. 48 CFR 52.246-18 - Warranty of Supplies of a Complex Nature.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Complex Nature. 52.246-18 Section 52.246-18 Federal Acquisition Regulations System FEDERAL ACQUISITION... Clauses 52.246-18 Warranty of Supplies of a Complex Nature. As prescribed in 46.710(b)(1), insert a clause substantially as follows: Warranty of Supplies of a Complex Nature (MAY 2001) (a) Definitions. As used in this...

Top