ERIC Educational Resources Information Center
Puerta Melguizo, Mari Carmen; Vidya, Uti; van Oostendorp, Herre
2012-01-01
We studied the effects of menu type, navigation path complexity and spatial ability on information retrieval performance and web disorientation or lostness. Two innovative aspects were included: (a) navigation path relevance and (b) information gathering tasks. As expected we found that, when measuring aspects directly related to navigation…
Kizony, R; Zeilig, G; Krasovsky, T; Bondi, M; Weiss, P L; Kodesh, E; Kafri, M
2017-01-01
Navigation skills are required for performance of functional complex tasks and may decline due to aging. Investigation of navigation skills should include measurement of cognitive-executive and motor aspects, which are part of complex tasks. to compare young and older healthy adults in navigation within a simulated environment with and without a functional-cognitive task. Ten young adults (25.6±4.3 years) and seven community dwelling older men (69.9±3.8 years) were tested during a single session. After training on a self-paced treadmill to navigate in a non-functional simulation, they performed the Virtual Multiple Errands Test (VMET) in a mall simulation. Outcome measures included cognitive-executive aspects of performance and gait parameters. Younger adults' performance of the VMET was more efficient (1.8±1.0) than older adults (5.3±2.7; p < 0.05) and faster (younger 478.1±141.5 s, older 867.6±393.5 s; p < 0.05). There were no differences between groups in gait parameters. Both groups walked slower in the mall simulation. The shopping simulation provided a paradigm to assess the interplay between motor and cognitive aspects involved in the efficient performance of a complex task. The study emphasized the role of the cognitive-executive aspect of task performance in healthy older adults.
Peter, Jessica; Sandkamp, Richard; Minkova, Lora; Schumacher, Lena V; Kaller, Christoph P; Abdulkadir, Ahmed; Klöppel, Stefan
2018-01-31
Spatial disorientation is a frequent symptom in Alzheimer's disease and in mild cognitive impairment (MCI). In the clinical routine, spatial orientation is less often tested with real-world navigation but rather with 2D visuoconstructive tasks. However, reports about the association between the two types of tasks are sparse. Additionally, spatial disorientation has been linked to volume of the right hippocampus but it remains unclear whether right hippocampal subregions have differential involvement in real-world navigation. Yet, this would help uncover different functional roles of the subregions, which would have important implications for understanding the neuronal underpinnings of navigation skills. We compared patients with amnestic MCI (aMCI; n = 25) and healthy elderly controls (HC; n = 25) in a real-world navigation task that engaged different spatial processes. The association between real-world navigation and different visuoconstructive tasks was tested (i.e., figures from the Consortium to Establish a Registry for Alzheimer's Disease; CERAD, the Rey-Osterrieth Complex Figure task; and clock drawing). Furthermore, the relation between spatial navigation and volume of right hippocampal subregions was examined. Linear regression and relative weight analysis were applied for statistical analyses. Patients with aMCI were significantly less able to correctly navigate through a route compared to HC but had comparable map drawing and landmark recognition skills. The association between visuoconstructive tasks and real-world navigation was only significant when using the visuospatial memory component of the Rey figure. In aMCI, more volume of the right hippocampal tail was significantly associated with better navigation skills, while volume of the right CA2/3 region was a significant predictor in HC. Standard visuoconstructive tasks (e.g., the CERAD figures or clock drawing) are not sufficient to detect real-world spatial disabilities in aMCI. Consequently, more complex visuoconstructive tasks (i.e., the Rey figure) should be routinely included in the assessment of cognitive functions in the context of AD. Moreover, in those elderly individuals with impaired complex visuospatial memory, route finding behaviour should be evaluated in detail. Regarding the contribution of hippocampal subregions to spatial navigation, the right hippocampal tail seems to be particularly important for patients with aMCI, while the CA2/3 region appears to be more relevant in HC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Patterns of task and network actions performed by navigators to facilitate cancer care.
Clark, Jack A; Parker, Victoria A; Battaglia, Tracy A; Freund, Karen M
2014-01-01
Patient navigation is a widely implemented intervention to facilitate access to care and reduce disparities in cancer care, but the activities of navigators are not well characterized. The aim of this study is to describe what patient navigators actually do and explore patterns of activity that clarify the roles they perform in facilitating cancer care. We conducted field observations of nine patient navigation programs operating in diverse health settings of the national patient navigation research program, including 34 patient navigators, each observed an average of four times. Trained observers used a structured observation protocol to code as they recorded navigator actions and write qualitative field notes capturing all activities in 15-minute intervals during observations ranging from 2 to 7 hours; yielding a total of 133 observations. Rates of coded activity were analyzed using numerical cluster analysis of identified patterns, informed by qualitative analysis of field notes. Six distinct patterns of navigator activity were identified, which differed most relative to how much time navigators spent directly interacting with patients and how much time they spent dealing with medical records and documentation tasks. Navigator actions reveal a complex set of roles in which navigators both provide the direct help to patients denoted by their title and also carry out a variety of actions that function to keep the health system operating smoothly. Working to navigate patients through complex health services entails working to repair the persistent challenges of health services that can render them inhospitable to patients. The organizations that deploy navigators might learn from navigators' efforts and explore alternative approaches, structures, or systems of care in addressing both the barriers patients face and the complex solutions navigators create in helping patients.
Choi, Bongjae; Jo, Sungho
2013-01-01
This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system. PMID:24023953
Choi, Bongjae; Jo, Sungho
2013-01-01
This paper describes a hybrid brain-computer interface (BCI) technique that combines the P300 potential, the steady state visually evoked potential (SSVEP), and event related de-synchronization (ERD) to solve a complicated multi-task problem consisting of humanoid robot navigation and control along with object recognition using a low-cost BCI system. Our approach enables subjects to control the navigation and exploration of a humanoid robot and recognize a desired object among candidates. This study aims to demonstrate the possibility of a hybrid BCI based on a low-cost system for a realistic and complex task. It also shows that the use of a simple image processing technique, combined with BCI, can further aid in making these complex tasks simpler. An experimental scenario is proposed in which a subject remotely controls a humanoid robot in a properly sized maze. The subject sees what the surrogate robot sees through visual feedback and can navigate the surrogate robot. While navigating, the robot encounters objects located in the maze. It then recognizes if the encountered object is of interest to the subject. The subject communicates with the robot through SSVEP and ERD-based BCIs to navigate and explore with the robot, and P300-based BCI to allow the surrogate robot recognize their favorites. Using several evaluation metrics, the performances of five subjects navigating the robot were quite comparable to manual keyboard control. During object recognition mode, favorite objects were successfully selected from two to four choices. Subjects conducted humanoid navigation and recognition tasks as if they embodied the robot. Analysis of the data supports the potential usefulness of the proposed hybrid BCI system for extended applications. This work presents an important implication for the future work that a hybridization of simple BCI protocols provide extended controllability to carry out complicated tasks even with a low-cost system.
Ogourtsova, Tatiana; Archambault, Philippe; Sangani, Samir; Lamontagne, Anouk
2018-01-01
Unilateral spatial neglect (USN) is a highly prevalent and disabling poststroke impairment. USN is traditionally assessed with paper-and-pencil tests that lack ecological validity, generalization to real-life situations and are easily compensated for in chronic stages. Virtual reality (VR) can, however, counteract these limitations. We aimed to examine the feasibility of a novel assessment of USN symptoms in a functional shopping activity, the Ecological VR-based Evaluation of Neglect Symptoms (EVENS). EVENS is immersive and consists of simple and complex 3-dimensional scenes depicting grocery shopping shelves, where joystick-based object detection and navigation tasks are performed while seated. Effects of virtual scene complexity on navigational and detection abilities in patients with (USN+, n = 12) and without (USN-, n = 15) USN following a right hemisphere stroke and in age-matched healthy controls (HC, n = 9) were determined. Longer detection times, larger mediolateral deviations from ideal paths and longer navigation times were found in USN+ versus USN- and HC groups, particularly in the complex scene. EVENS detected lateralized and nonlateralized USN-related deficits, performance alterations that were dependent or independent of USN severity, and performance alterations in 3 USN- subjects versus HC. EVENS' environmental changing complexity, along with the functional tasks of far space detection and navigation can potentially be clinically relevant and warrant further empirical investigation. Findings are discussed in terms of attentional models, lateralized versus nonlateralized deficits in USN, and tasks-specific mechanisms.
Domain-Specific Interference Tests on Navigational Working Memory in Military Pilots.
Verde, Paola; Boccia, Maddalena; Colangeli, Stefano; Barbetti, Sonia; Nori, Raffaella; Ferlazzo, Fabio; Piccolo, Francesco; Vitalone, Roberto; Lucertini, Elena; Piccardi, Laura
2016-06-01
Human navigation is a very complex ability that encompasses all four stages of human information processing (sensory input, perception/cognition, selection, and execution of an action), involving both cognitive and physical requirements. During flight, the pilot uses all of these stages and one of the most critical aspect is interference. In fact, spatial tasks competing for the same cognitive resource cause greater distraction from a concurrent task than another task that uses different resource modalities. Here we compared and contrasted the performance of pilots and nonpilots of both genders performing increasingly complex navigational memory tasks while exposed to various forms of interference. We investigated the effects of four different sources of interference: motor, spatial motor, verbal, and spatial environment, focusing on gender differences. We found that flight experts perform better than controls (Pilots: 6.50 ± 1.29; Nonpilots: 5.45 ± 1.41). Furthermore, in the general population, navigational working memory is compromised only by spatial environmental interference (Nonpilots: 4.52 ± 1.50); female nonpilots were less able than male nonpilots. Also, the flight expert group showed the same interference, even if reduced (Pilots: 5.24 ± 0.92); moreover, we highlighted a complete absence of gender-related effects. Spatial environmental interference is the only interference producing a decrease in performance. Nevertheless, pilots are less affected than the general population. This is probably a consequence of the need to commit substantial cognitive resources to process spatial information during flight.
Pilot performance: assessing how scan patterns & navigational assessments vary by flight expertise.
Yang, Ji Hyun; Kennedy, Quinn; Sullivan, Joseph; Fricker, Ronald D
2013-02-01
Helicopter overland navigation is a cognitively complex task that requires continuous monitoring of system and environmental parameters and many hours of training to master. This study investigated the effect of expertise on pilots' gaze measurements, navigation accuracy, and subjective assessment of their navigation accuracy in overland navigation on easy and difficult routes. A simulated overland task was completed by 12 military officers who ranged in flight experience as measured by total flight hours (TFH). They first studied a map of a route that included both easy and difficult route sections, and then had to 'fly' this simulated route in a fixed-base helicopter simulator. They also completed pre-task estimations and post-task assessments of the navigational difficulty of the transit to each waypoint in the route. Their scan pattern was tracked via eye tracking systems, which captured both the subject's out-the-window (OTW) and topographical map scan data. TFH was not associated with navigation accuracy or root mean square (RMS) error for any route section. For the easy routes, experts spent less time scanning out the window (p = 0.61) and had shorter OTW dwell (p = -0.66). For the difficult routes, experts appeared to slow down their scan by spending as much time scanning out the window as the novices while also having fewer Map fixations (p = -0.65) and shorter OTW dwell (p = -0.69). However, TFH was not significantly correlated with more accurate estimates of route difficulty. This study found that TFH did not predict navigation accuracy or subjective assessment, but was correlated with some gaze parameters.
Perrochon, Anaïck; Kemoun, Gilles; Dugué, Benoit; Berthoz, Alain
2014-01-01
Background Subjects with mild cognitive impairment (MCI) have disturbances in their spatial navigation abilities and exhibit early deficits in visuospatial short-term memory. The purpose of the present study was to determine whether a quantitative (span score) and qualitative (evaluating navigation strategies used) analysis of the Corsi test (usual condition and complex navigation task) would be useful to reveal cognitive decline. Methods We evaluated the performance of 15 young adults, 21 healthy elderly subjects and 15 subjects with MCI using the electronic version of the Corsi test (the Modified Corsi Block-Tapping Test, MCBT) and the complex navigation task (the Modified Walking Corsi Test, MWCT). The MWCT, which is an adaptation of the Corsi test, assesses spatial memory when the subject walks in a complex environment. We used Richard et al.'s model [Cogn Sci 1993;17:497-529] to investigate problem-solving strategies during the Corsi tests. Results The span scores obtained on the MCBT and the MWCT were significantly lower in the healthy elderly subjects (MCBT = 5.0 ± 0.7; MWCT = 4.0 ± 0.7) and the subjects with MCI (MCBT = 4.7 ± 0.8; MWCT = 4.1 ± 0.9) than in the younger adults (MCBT = 6.2 ± 0.6; MWCT = 5.3 ± 1.0). The visuospatial working memory was more impaired in the complex navigation task (MWCT = 4.3 ± 0.9) than in the modified Corsi test (MCBT = 5.3 ± 0.8). Finally, the subjects with greater cognitive impairment were more likely to have inadequate or absence of problem-solving strategies. Conclusions Investigating the problem-solving strategies used during the MWCT appears to be a promising way to differentiate between the subjects with MCI and the healthy elderly subjects. PMID:24575112
Learnable Interfaces--Leveraging Navigation by Design
ERIC Educational Resources Information Center
Swanson, Kari Gunvaldson
2012-01-01
Complex productivity applications that integrate tasks in the workplace are becoming more common. Usability typically focuses on short-term, immediate measures of task performance. This study incorporates a long-term goal of more durable learning, focusing on implicit learning (spontaneous, unplanned, usually unconscious learning as a result of…
Situationally driven local navigation for mobile robots. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Slack, Marc Glenn
1990-01-01
For mobile robots to autonomously accommodate dynamically changing navigation tasks in a goal-directed fashion, they must employ navigation plans. Any such plan must provide for the robot's immediate and continuous need for guidance while remaining highly flexible in order to avoid costly computation each time the robot's perception of the world changes. Due to the world's uncertainties, creation and maintenance of navigation plans cannot involve arbitrarily complex processes, as the robot's perception of the world will be in constant flux, requiring modifications to be made quickly if they are to be of any use. This work introduces navigation templates (NaT's) which are building blocks for the construction and maintenance of rough navigation plans which capture the relationship that objects in the world have to the current navigation task. By encoding only the critical relationship between the objects in the world and the navigation task, a NaT-based navigation plan is highly flexible; allowing new constraints to be quickly incorporated into the plan and existing constraints to be updated or deleted from the plan. To satisfy the robot's need for immediate local guidance, the NaT's forming the current navigation plan are passed to a transformation function. The transformation function analyzes the plan with respect to the robot's current location to quickly determine (a few times a second) the locally preferred direction of travel. This dissertation presents NaT's and the transformation function as well as the needed support systems to demonstrate the usefulness of the technique for controlling the actions of a mobile robot operating in an uncertain world.
Parahippocampal and retrosplenial contributions to human spatial navigation
Epstein, Russell A.
2010-01-01
Spatial navigation is a core cognitive ability in humans and animals. Neuroimaging studies have identified two functionally-defined brain regions that activate during navigational tasks and also during passive viewing of navigationally-relevant stimuli such as environmental scenes: the parahippocampal place area (PPA) and the retrosplenial complex (RSC). Recent findings indicate that the PPA and RSC play distinct and complementary roles in spatial navigation, with the PPA more concerned with representation of the local visual scene and RSC more concerned with situating the scene within the broader spatial environment. These findings are a first step towards understanding the separate components of the cortical network that mediates spatial navigation in humans. PMID:18760955
HERMIES-3: A step toward autonomous mobility, manipulation, and perception
NASA Technical Reports Server (NTRS)
Weisbin, C. R.; Burks, B. L.; Einstein, J. R.; Feezell, R. R.; Manges, W. W.; Thompson, D. H.
1989-01-01
HERMIES-III is an autonomous robot comprised of a seven degree-of-freedom (DOF) manipulator designed for human scale tasks, a laser range finder, a sonar array, an omni-directional wheel-driven chassis, multiple cameras, and a dual computer system containing a 16-node hypercube expandable to 128 nodes. The current experimental program involves performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES-III). The environment in which the robots operate has been designed to include multiple valves, pipes, meters, obstacles on the floor, valves occluded from view, and multiple paths of differing navigation complexity. The ongoing research program supports the development of autonomous capability for HERMIES-IIB and III to perform complex navigation and manipulation under time constraints, while dealing with imprecise sensory information.
Shape Perception and Navigation in Blind Adults
Gori, Monica; Cappagli, Giulia; Baud-Bovy, Gabriel; Finocchietti, Sara
2017-01-01
Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development. PMID:28144226
Sensor image prediction techniques
NASA Astrophysics Data System (ADS)
Stenger, A. J.; Stone, W. R.; Berry, L.; Murray, T. J.
1981-02-01
The preparation of prediction imagery is a complex, costly, and time consuming process. Image prediction systems which produce a detailed replica of the image area require the extensive Defense Mapping Agency data base. The purpose of this study was to analyze the use of image predictions in order to determine whether a reduced set of more compact image features contains enough information to produce acceptable navigator performance. A job analysis of the navigator's mission tasks was performed. It showed that the cognitive and perceptual tasks he performs during navigation are identical to those performed for the targeting mission function. In addition, the results of the analysis of his performance when using a particular sensor can be extended to the analysis of this mission tasks using any sensor. An experimental approach was used to determine the relationship between navigator performance and the type of amount of information in the prediction image. A number of subjects were given image predictions containing varying levels of scene detail and different image features, and then asked to identify the predicted targets in corresponding dynamic flight sequences over scenes of cultural, terrain, and mixed (both cultural and terrain) content.
Pilot perception and confidence of location during a simulated helicopter navigation task.
Yang, Ji Hyun; Cowden, Bradley T; Kennedy, Quinn; Schramm, Harrison; Sullivan, Joseph
2013-09-01
This paper aims to provide insights into human perception, navigation performance, and confidence in helicopter overland navigation. Helicopter overland navigation is a challenging mission area because it is a complex cognitive task, and failing to recognize when the aircraft is off-course can lead to operational failures and mishaps. A human-in-the-loop experiment to investigate pilot perception during simulated overland navigation by analyzing actual navigation trajectory, pilots' perceived location, and corresponding confidence levels was designed. There were 15 military officers with prior overland navigation experience who completed 4 simulated low-level navigation routes, 2 of which entailed auto-navigation. This route was paused roughly every 30 s for the subject to mark their perceived location on the map and their confidence level using a customized program. Analysis shows that there is no correlation between perceived and actual location of the aircraft, nor between confidence level and actual location. There is, however, some evidence that there is a correlation (rho = -0.60 to approximately 0.65) between perceived location and intended route of flight, suggesting that there is a bias toward believing one is on the intended flight route. If aviation personnel can proactively identify the circumstances in which usual misperceptions occur in navigation, they may reduce mission failure and accident rate. Fleet squadrons and instructional commands can benefit from this study to improve operations that require low-level flight while also improving crew resource management.
SRA (Short Range Aids to Navigation) Resource Management: Measures of Effectiveness.
1986-09-01
invest ’ ’-" in R&D and technological innovation. uit Measures of effectiveness developed under the first task deal primarily with safety...illustratve example presented in Chapter 5. A project of this nature and complexity could not be carried out without the assistance and support of others. A...helping the project attain its goals. Foremost is Mr. Karl R. Schroeder, Short Range Aids to Navigation Section Chief in the USCG
What Makes Patient Navigation Most Effective: Defining Useful Tasks and Networks.
Gunn, Christine; Battaglia, Tracy A; Parker, Victoria A; Clark, Jack A; Paskett, Electra D; Calhoun, Elizabeth; Snyder, Frederick R; Bergling, Emily; Freund, Karen M
2017-01-01
Given the momentum in adopting patient navigation into cancer care, there is a need to understand the contribution of specific navigator activities to improved clinical outcomes. A mixed-methods study combined direct observations of patient navigators within the Patient Navigation Research Program and outcome data from the trial. We correlated the frequency of navigator tasks with the outcome of rate of diagnostic resolution within 365 days among patients who received the intervention relative to controls. A focused content analysis examined those tasks with the strongest correlations between navigator tasks and patient outcomes. Navigating directly with specific patients (r = 0.679), working with clinical providers to facilitate patient care (r = 0.643), and performing tasks not directly related to their diagnostic evaluation for patients were positively associated with more timely diagnosis (r = 0.714). Using medical records for non-navigation tasks had a negative association (r = -0.643). Content analysis revealed service provision directed at specific patients improved care while systems-focused activities did not.
Clarissa Spoken Dialogue System for Procedure Reading and Navigation
NASA Technical Reports Server (NTRS)
Hieronymus, James; Dowding, John
2004-01-01
Speech is the most natural modality for humans use to communicate with other people, agents and complex systems. A spoken dialogue system must be robust to noise and able to mimic human conversational behavior, like correcting misunderstandings, answering simple questions about the task and understanding most well formed inquiries or commands. The system aims to understand the meaning of the human utterance, and if it does not, then it discards the utterance as being meant for someone else. The first operational system is Clarissa, a conversational procedure reader and navigator, which will be used in a System Development Test Objective (SDTO) on the International Space Station (ISS) during Expedition 10. In the present environment one astronaut reads the procedure on a Manual Procedure Viewer (MPV) or paper, and has to stop to read or turn pages, shifting focus from the task. Clarissa is designed to read and navigate ISS procedures entirely with speech, while the astronaut has his eyes and hands engaged in performing the task. The system also provides an MPV like graphical interface so the procedure can be read visually. A demo of the system will be given.
A smart multisensor approach to assist blind people in specific urban navigation tasks.
Ando, B
2008-12-01
Visually impaired people are often discouraged in using electronic aids due to complexity of operation, large amount of training, nonoptimized degree of information provided to the user, and high cost. In this paper, a new multisensor architecture is discussed, which would help blind people to perform urban mobility tasks. The device is based on a multisensor strategy and adopts smart signal processing.
Daugherty, Ana M.; Bender, Andrew R.; Yuan, Peng; Raz, Naftali
2016-01-01
Impairment of hippocampus-dependent cognitive processes has been proposed to underlie age-related deficits in navigation. Animal studies suggest a differential role of hippocampal subfields in various aspects of navigation, but that hypothesis has not been tested in humans. In this study, we examined the association between volume of hippocampal subfields and age differences in virtual spatial navigation. In a sample of 65 healthy adults (age 19–75 years), advanced age was associated with a slower rate of improvement operationalized as shortening of the search path over 25 learning trials on a virtual Morris water maze task. The deficits were partially explained by greater complexity of older adults' search paths. Larger subiculum and entorhinal cortex volumes were associated with a faster decrease in search path complexity, which in turn explained faster shortening of search distance. Larger Cornu Ammonis (CA)1–2 volume was associated with faster distance shortening, but not in path complexity reduction. Age differences in regional volumes collectively accounted for 23% of the age-related variance in navigation learning. Independent of subfield volumes, advanced age was associated with poorer performance across all trials, even after reaching the asymptote. Thus, subiculum and CA1–2 volumes were associated with speed of acquisition, but not magnitude of gains in virtual maze navigation. PMID:25838036
Multiple paths in complex tasks
NASA Technical Reports Server (NTRS)
Galanter, Eugene; Wiegand, Thomas; Mark, Gloria
1987-01-01
The relationship between utility judgments of subtask paths and the utility of the task as a whole was examined. The convergent validation procedure is based on the assumption that measurements of the same quantity done with different methods should covary. The utility measures of the subtasks were obtained during the performance of an aircraft flight controller navigation task. Analyses helped decide among various models of subtask utility combination, whether the utility ratings of subtask paths predict the whole tasks utility rating, and indirectly, whether judgmental models need to include the equivalent of cognitive noise.
Rendezvous Integration Complexities of NASA Human Flight Vehicles
NASA Technical Reports Server (NTRS)
Brazzel, Jack P.; Goodman, John L.
2009-01-01
Propellant-optimal trajectories, relative sensors and navigation, and docking/capture mechanisms are rendezvous disciplines that receive much attention in the technical literature. However, other areas must be considered. These include absolute navigation, maneuver targeting, attitude control, power generation, software development and verification, redundancy management, thermal control, avionics integration, robotics, communications, lighting, human factors, crew timeline, procedure development, orbital debris risk mitigation, structures, plume impingement, logistics, and in some cases extravehicular activity. While current and future spaceflight programs will introduce new technologies and operations concepts, the complexity of integrating multiple systems on multiple spacecraft will remain. The systems integration task may become more difficult as increasingly complex software is used to meet current and future automation, autonomy, and robotic operation requirements.
Place versus response learning in fish: a comparison between species.
McAroe, Claire L; Craig, Cathy M; Holland, Richard A
2016-01-01
Place learning is thought to be an adaptive and flexible facet of navigation. Due to the flexibility of this learning, it is thought to be more complex than the simpler strategies such as learning a particular route or navigating through the use of cues. Place learning is crucial in a familiar environment as it allows an individual to successfully navigate to the same endpoint, regardless of where in the environment the journey begins. Much of the research to date focusing on different strategies employed for navigation has used human subjects or other mammals such as rodents. In this series of experiments, the spatial memory of four different species of fish (goldfish, killifish, zebrafish and Siamese fighting fish) was analysed using a plus maze set-up. Results suggest that three of the species showed a significant preference for the adoption of a place strategy during this task, whereas zebrafish showed no significant preference. Furthermore, zebrafish took significantly longer to learn the task than the other species. Finally, results suggest that zebrafish took the least amount of time (seconds) to complete trials both during training and probe.
Cancer Patient Navigator Tasks across the Cancer Care Continuum
Braun, Kathryn L.; Kagawa-Singer, Marjorie; Holden, Alan E. C.; Burhansstipanov, Linda; Tran, Jacqueline H.; Seals, Brenda F.; Corbie-Smith, Giselle; Tsark, JoAnn U.; Harjo, Lisa; Foo, Mary Anne; Ramirez, Amelie G.
2011-01-01
Cancer patient navigation (PN) programs have been shown to increase access to and utilization of cancer care for poor and underserved individuals. Despite mounting evidence of its value, cancer patient navigation is not universally understood or provided. We describe five PN programs and the range of tasks their navigators provide across the cancer care continuum (education and outreach, screening, diagnosis and staging, treatment, survivorship, and end-of-life). Tasks are organized by their potential to make cancer services understandable, available, accessible, affordable, appropriate, and accountable. Although navigators perform similar tasks across the five programs, their specific approaches reflect differences in community culture, context, program setting, and funding. Task lists can inform the development of programs, job descriptions, training, and evaluation. They also may be useful in the move to certify navigators and establish mechanisms for reimbursement for navigation services. PMID:22423178
Evaluation of a conceptual framework for predicting navigation performance in virtual reality.
Grübel, Jascha; Thrash, Tyler; Hölscher, Christoph; Schinazi, Victor R
2017-01-01
Previous research in spatial cognition has often relied on simple spatial tasks in static environments in order to draw inferences regarding navigation performance. These tasks are typically divided into categories (e.g., egocentric or allocentric) that reflect different two-systems theories. Unfortunately, this two-systems approach has been insufficient for reliably predicting navigation performance in virtual reality (VR). In the present experiment, participants were asked to learn and navigate towards goal locations in a virtual city and then perform eight simple spatial tasks in a separate environment. These eight tasks were organised along four orthogonal dimensions (static/dynamic, perceived/remembered, egocentric/allocentric, and distance/direction). We employed confirmatory and exploratory analyses in order to assess the relationship between navigation performance and performances on these simple tasks. We provide evidence that a dynamic task (i.e., intercepting a moving object) is capable of predicting navigation performance in a familiar virtual environment better than several categories of static tasks. These results have important implications for studies on navigation in VR that tend to over-emphasise the role of spatial memory. Given that our dynamic tasks required efficient interaction with the human interface device (HID), they were more closely aligned with the perceptuomotor processes associated with locomotion than wayfinding. In the future, researchers should consider training participants on HIDs using a dynamic task prior to conducting a navigation experiment. Performances on dynamic tasks should also be assessed in order to avoid confounding skill with an HID and spatial knowledge acquisition.
Evaluation of a conceptual framework for predicting navigation performance in virtual reality
Thrash, Tyler; Hölscher, Christoph; Schinazi, Victor R.
2017-01-01
Previous research in spatial cognition has often relied on simple spatial tasks in static environments in order to draw inferences regarding navigation performance. These tasks are typically divided into categories (e.g., egocentric or allocentric) that reflect different two-systems theories. Unfortunately, this two-systems approach has been insufficient for reliably predicting navigation performance in virtual reality (VR). In the present experiment, participants were asked to learn and navigate towards goal locations in a virtual city and then perform eight simple spatial tasks in a separate environment. These eight tasks were organised along four orthogonal dimensions (static/dynamic, perceived/remembered, egocentric/allocentric, and distance/direction). We employed confirmatory and exploratory analyses in order to assess the relationship between navigation performance and performances on these simple tasks. We provide evidence that a dynamic task (i.e., intercepting a moving object) is capable of predicting navigation performance in a familiar virtual environment better than several categories of static tasks. These results have important implications for studies on navigation in VR that tend to over-emphasise the role of spatial memory. Given that our dynamic tasks required efficient interaction with the human interface device (HID), they were more closely aligned with the perceptuomotor processes associated with locomotion than wayfinding. In the future, researchers should consider training participants on HIDs using a dynamic task prior to conducting a navigation experiment. Performances on dynamic tasks should also be assessed in order to avoid confounding skill with an HID and spatial knowledge acquisition. PMID:28915266
Evaluation of a novel flexible snake robot for endoluminal surgery.
Patel, Nisha; Seneci, Carlo A; Shang, Jianzhong; Leibrandt, Konrad; Yang, Guang-Zhong; Darzi, Ara; Teare, Julian
2015-11-01
Endoluminal therapeutic procedures such as endoscopic submucosal dissection are increasingly attractive given the shift in surgical paradigm towards minimally invasive surgery. This novel three-channel articulated robot was developed to overcome the limitations of the flexible endoscope which poses a number of challenges to endoluminal surgery. The device enables enhanced movement in a restricted workspace, with improved range of motion and with the accuracy required for endoluminal surgery. To evaluate a novel flexible robot for therapeutic endoluminal surgery. Bench-top studies. Research laboratory. Targeting and navigation tasks of the robot were performed to explore the range of motion and retroflexion capabilities. Complex endoluminal tasks such as endoscopic mucosal resection were also simulated. Successful completion, accuracy and time to perform the bench-top tasks were the main outcome measures. The robot ranges of movement, retroflexion and navigation capabilities were demonstrated. The device showed significantly greater accuracy of targeting in a retroflexed position compared to a conventional endoscope. Bench-top study and small study sample. We were able to demonstrate a number of simulated endoscopy tasks such as navigation, targeting, snaring and retroflexion. The improved accuracy of targeting whilst in a difficult configuration is extremely promising and may facilitate endoluminal surgery which has been notoriously challenging with a conventional endoscope.
Usability Testing of Two Ambulatory EHR Navigators.
Hultman, Gretchen; Marquard, Jenna; Arsoniadis, Elliot; Mink, Pamela; Rizvi, Rubina; Ramer, Tim; Khairat, Saif; Fickau, Keri; Melton, Genevieve B
2016-01-01
Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design. To understand if redesigning an EHR-based navigation tool with clinician input improved user performance and satisfaction. A usability evaluation was conducted to compare two versions of a redesigned ambulatory navigator. Participants completed tasks for five patient cases using the navigators, while employing a think-aloud protocol. The tasks were based on Meaningful Use (MU) requirements. The version of navigator did not affect perceived workload, and time to complete tasks was longer in the redesigned navigator. A relatively small portion of navigator content was used to complete the MU-related tasks, though navigation patterns were highly variable across participants for both navigators. Preferences for EHR navigation structures appeared to be individualized. This study demonstrates the importance of EHR usability assessments to evaluate group and individual performance of different interfaces and preferences for each design.
Baumann, Oliver; Skilleter, Ashley J.; Mattingley, Jason B.
2011-01-01
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability. PMID:21629686
Liau, Ee Shan; Yen, Ya-Ping; Chen, Jun-An
2018-05-11
Spinal motor neurons (MNs) extend their axons to communicate with their innervating targets, thereby controlling movement and complex tasks in vertebrates. Thus, it is critical to uncover the molecular mechanisms of how motor axons navigate to, arborize, and innervate their peripheral muscle targets during development and degeneration. Although transgenic Hb9::GFP mouse lines have long served to visualize motor axon trajectories during embryonic development, detailed descriptions of the full spectrum of axon terminal arborization remain incomplete due to the pattern complexity and limitations of current optical microscopy. Here, we describe an improved protocol that combines light sheet fluorescence microscopy (LSFM) and robust image analysis to qualitatively and quantitatively visualize developing motor axons. This system can be easily adopted to cross genetic mutants or MN disease models with Hb9::GFP lines, revealing novel molecular mechanisms that lead to defects in motor axon navigation and arborization.
Daugherty, Ana M; Bender, Andrew R; Yuan, Peng; Raz, Naftali
2016-06-01
Impairment of hippocampus-dependent cognitive processes has been proposed to underlie age-related deficits in navigation. Animal studies suggest a differential role of hippocampal subfields in various aspects of navigation, but that hypothesis has not been tested in humans. In this study, we examined the association between volume of hippocampal subfields and age differences in virtual spatial navigation. In a sample of 65 healthy adults (age 19-75 years), advanced age was associated with a slower rate of improvement operationalized as shortening of the search path over 25 learning trials on a virtual Morris water maze task. The deficits were partially explained by greater complexity of older adults' search paths. Larger subiculum and entorhinal cortex volumes were associated with a faster decrease in search path complexity, which in turn explained faster shortening of search distance. Larger Cornu Ammonis (CA)1-2 volume was associated with faster distance shortening, but not in path complexity reduction. Age differences in regional volumes collectively accounted for 23% of the age-related variance in navigation learning. Independent of subfield volumes, advanced age was associated with poorer performance across all trials, even after reaching the asymptote. Thus, subiculum and CA1-2 volumes were associated with speed of acquisition, but not magnitude of gains in virtual maze navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Model-based software engineering for an optical navigation system for spacecraft
NASA Astrophysics Data System (ADS)
Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.
2017-09-01
The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.
Model-based software engineering for an optical navigation system for spacecraft
NASA Astrophysics Data System (ADS)
Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.
2018-06-01
The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.
Embodied Interactions in Human-Machine Decision Making for Situation Awareness Enhancement Systems
2016-06-09
characterize differences in spatial navigation strategies in a complex task, the Traveling Salesman Problem (TSP). For the second year, we developed...visual processing, leading to better solutions for spatial optimization problems . I will develop a framework to determine which body expressions best...methods include systematic characterization of gestures during complex problem solving. 15. SUBJECT TERMS Embodied interaction, gestures, one-shot
Collective strategy for obstacle navigation during cooperative transport by ants.
McCreery, Helen F; Dix, Zachary A; Breed, Michael D; Nagpal, Radhika
2016-11-01
Group cohesion and consensus have primarily been studied in the context of discrete decisions, but some group tasks require making serial decisions that build on one another. We examine such collective problem solving by studying obstacle navigation during cooperative transport in ants. In cooperative transport, ants work together to move a large object back to their nest. We blocked cooperative transport groups of Paratrechina longicornis with obstacles of varying complexity, analyzing groups' trajectories to infer what kind of strategy the ants employed. Simple strategies require little information, but more challenging, robust strategies succeed with a wider range of obstacles. We found that transport groups use a stochastic strategy that leads to efficient navigation around simple obstacles, and still succeeds at difficult obstacles. While groups navigating obstacles preferentially move directly toward the nest, they change their behavior over time; the longer the ants are obstructed, the more likely they are to move away from the nest. This increases the chance of finding a path around the obstacle. Groups rapidly changed directions and rarely stalled during navigation, indicating that these ants maintain consensus even when the nest direction is blocked. Although some decisions were aided by the arrival of new ants, at many key points, direction changes were initiated within the group, with no apparent external cause. This ant species is highly effective at navigating complex environments, and implements a flexible strategy that works for both simple and more complex obstacles. © 2016. Published by The Company of Biologists Ltd.
Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People
Martinez-Sala, Alejandro Santos; Losilla, Fernando; Sánchez-Aarnoutse, Juan Carlos; García-Haro, Joan
2015-01-01
Indoor navigation is a challenging task for visually impaired people. Although there are guidance systems available for such purposes, they have some drawbacks that hamper their direct application in real-life situations. These systems are either too complex, inaccurate, or require very special conditions (i.e., rare in everyday life) to operate. In this regard, Ultra-Wideband (UWB) technology has been shown to be effective for indoor positioning, providing a high level of accuracy and low installation complexity. This paper presents SUGAR, an indoor navigation system for visually impaired people which uses UWB for positioning, a spatial database of the environment for pathfinding through the application of the A* algorithm, and a guidance module. The interaction with the user takes place using acoustic signals and voice commands played through headphones. The suitability of the system for indoor navigation has been verified by means of a functional and usable prototype through a field test with a blind person. In addition, other tests have been conducted in order to show the accuracy of different relevant parts of the system. PMID:26703610
Experiments in autonomous robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamel, W.R.
1987-01-01
The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.
An Accumulation-of-Evidence Task Using Visual Pulses for Mice Navigating in Virtual Reality
Pinto, Lucas; Koay, Sue A.; Engelhard, Ben; Yoon, Alice M.; Deverett, Ben; Thiberge, Stephan Y.; Witten, Ilana B.; Tank, David W.; Brody, Carlos D.
2018-01-01
The gradual accumulation of sensory evidence is a crucial component of perceptual decision making, but its neural mechanisms are still poorly understood. Given the wide availability of genetic and optical tools for mice, they can be useful model organisms for the study of these phenomena; however, behavioral tools are largely lacking. Here, we describe a new evidence-accumulation task for head-fixed mice navigating in a virtual reality (VR) environment. As they navigate down the stem of a virtual T-maze, they see brief pulses of visual evidence on either side, and retrieve a reward on the arm with the highest number of pulses. The pulses occur randomly with Poisson statistics, yielding a diverse yet well-controlled stimulus set, making the data conducive to a variety of computational approaches. A large number of mice of different genotypes were able to learn and consistently perform the task, at levels similar to rats in analogous tasks. They are sensitive to side differences of a single pulse, and their memory of the cues is stable over time. Moreover, using non-parametric as well as modeling approaches, we show that the mice indeed accumulate evidence: they use multiple pulses of evidence from throughout the cue region of the maze to make their decision, albeit with a small overweighting of earlier cues, and their performance is affected by the magnitude but not the duration of evidence. Additionally, analysis of the mice's running patterns revealed that trajectories are fairly stereotyped yet modulated by the amount of sensory evidence, suggesting that the navigational component of this task may provide a continuous readout correlated to the underlying cognitive variables. Our task, which can be readily integrated with state-of-the-art techniques, is thus a valuable tool to study the circuit mechanisms and dynamics underlying perceptual decision making, particularly under more complex behavioral contexts. PMID:29559900
HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments.
Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes
2015-12-24
Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization.
HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments
Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes
2015-01-01
Navigating in unknown big indoor environments with static 2D maps is a challenge, especially when time is a critical factor. In order to provide a mobile assistant, capable of supporting people while navigating in indoor locations, an accurate and reliable localization system is required in almost every corner of the building. We present a solution to this problem through a hybrid tracking system specifically designed for complex indoor spaces, which runs on mobile devices like smartphones or tablets. The developed algorithm only uses the available sensors built into standard mobile devices, especially the inertial sensors and the RGB camera. The combination of multiple optical tracking technologies, such as 2D natural features and features of more complex three-dimensional structures guarantees the robustness of the system. All processing is done locally and no network connection is needed. State-of-the-art indoor tracking approaches use mainly radio-frequency signals like Wi-Fi or Bluetooth for localizing a user. In contrast to these approaches, the main advantage of the developed system is the capability of delivering a continuous 3D position and orientation of the mobile device with centimeter accuracy. This makes it usable for localization and 3D augmentation purposes, e.g. navigation tasks or location-based information visualization. PMID:26712755
Honeybees consolidate navigation memory during sleep.
Beyaert, Lisa; Greggers, Uwe; Menzel, Randolf
2012-11-15
Sleep is known to support memory consolidation in animals, including humans. Here we ask whether consolidation of novel navigation memory in honeybees depends on sleep. Foragers were exposed to a forced navigation task in which they learned to home more efficiently from an unexpected release site by acquiring navigational memory during the successful homing flight. This task was quantified using harmonic radar tracking and applied to bees that were equipped with a radio frequency identification device (RFID). The RFID was used to record their outbound and inbound flights and continuously monitor their behavior inside the colony, including their rest during the day and sleep at night. Bees marked with the RFID behaved normally inside and outside the hive. Bees slept longer during the night following forced navigation tasks, but foraging flights of different lengths did not lead to different rest times during the day or total sleep time during the night. Sleep deprivation before the forced navigation task did not alter learning and memory acquired during the task. However, sleep deprivation during the night after forced navigation learning reduced the probability of returning successfully to the hive from the same release site. It is concluded that consolidation of novel navigation memory is facilitated by night sleep in bees.
Neural correlates of virtual route recognition in congenital blindness.
Kupers, Ron; Chebat, Daniel R; Madsen, Kristoffer H; Paulson, Olaf B; Ptito, Maurice
2010-07-13
Despite the importance of vision for spatial navigation, blind subjects retain the ability to represent spatial information and to move independently in space to localize and reach targets. However, the neural correlates of navigation in subjects lacking vision remain elusive. We therefore used functional MRI (fMRI) to explore the cortical network underlying successful navigation in blind subjects. We first trained congenitally blind and blindfolded sighted control subjects to perform a virtual navigation task with the tongue display unit (TDU), a tactile-to-vision sensory substitution device that translates a visual image into electrotactile stimulation applied to the tongue. After training, participants repeated the navigation task during fMRI. Although both groups successfully learned to use the TDU in the virtual navigation task, the brain activation patterns showed substantial differences. Blind but not blindfolded sighted control subjects activated the parahippocampus and visual cortex during navigation, areas that are recruited during topographical learning and spatial representation in sighted subjects. When the navigation task was performed under full vision in a second group of sighted participants, the activation pattern strongly resembled the one obtained in the blind when using the TDU. This suggests that in the absence of vision, cross-modal plasticity permits the recruitment of the same cortical network used for spatial navigation tasks in sighted subjects.
Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène
2016-01-01
The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates. PMID:26834666
Taillade, Mathieu; N'Kaoua, Bernard; Sauzéon, Hélène
2015-01-01
The present study investigated the effect of aging on direct navigation measures and self-reported ones according to the real-virtual test manipulation. Navigation (wayfinding tasks) and spatial memory (paper-pencil tasks) performances, obtained either in real-world or in virtual-laboratory test conditions, were compared between young (n = 32) and older (n = 32) adults who had self-rated their everyday navigation behavior (SBSOD scale). Real age-related differences were observed in navigation tasks as well as in paper-pencil tasks, which investigated spatial learning relative to the distinction between survey-route knowledge. The manipulation of test conditions (real vs. virtual) did not change these age-related differences, which are mostly explained by age-related decline in both spatial abilities and executive functioning (measured with neuropsychological tests). In contrast, elderly adults did not differ from young adults in their self-reporting relative to everyday navigation, suggesting some underestimation of navigation difficulties by elderly adults. Also, spatial abilities in young participants had a mediating effect on the relations between actual and self-reported navigation performance, but not for older participants. So, it is assumed that the older adults carried out the navigation task with fewer available spatial abilities compared to young adults, resulting in inaccurate self-estimates.
Ahmed, Newaz I; Thompson, Cole; Bolnick, Daniel I; Stuart, Yoel E
2017-05-01
The Clever Foraging Hypothesis asserts that organisms living in a more spatially complex environment will have a greater neurological capacity for cognitive processes related to spatial memory, navigation, and foraging. Because the telencephalon is often associated with spatial memory and navigation tasks, this hypothesis predicts a positive association between telencephalon size and environmental complexity. The association between habitat complexity and brain size has been supported by comparative studies across multiple species but has not been widely studied at the within-species level. We tested for covariation between environmental complexity and neuroanatomy of threespine stickleback ( Gasterosteus aculeatus ) collected from 15 pairs of lakes and their parapatric streams on Vancouver Island. In most pairs, neuroanatomy differed between the adjoining lake and stream populations. However, the magnitude and direction of this difference were inconsistent between watersheds and did not covary strongly with measures of within-site environmental heterogeneity. Overall, we find weak support for the Clever Foraging Hypothesis in our study.
2015-08-01
Navigational and Robot -Monitoring Tasks by Gina Pomranky-Hartnett, Linda R Elliott, Bruce JP Mortimer, Greg R Mort, Rodger A Pettitt, and Gary A...Tactor Display during Simultaneous Navigational and Robot -Monitoring Tasks by Gina Pomranky-Hartnett, Linda R Elliott, and Rodger A Pettitt...2014–31 March 2015 4. TITLE AND SUBTITLE Soldier-Based Assessment of a Dual-Row Tactor Display during Simultaneous Navigational and Robot -Monitoring
Private Graphs - Access Rights on Graphs for Seamless Navigation
NASA Astrophysics Data System (ADS)
Dorner, W.; Hau, F.; Pagany, R.
2016-06-01
After the success of GNSS (Global Navigational Satellite Systems) and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS - Real Time Locating Services (e.g. WIFI) and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites), but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.
Reading Minds: How Infants Come to Understand Others
ERIC Educational Resources Information Center
Gopnik, Alison; Seiver, Elizabeth
2009-01-01
Navigating the social world is an extraordinarily difficult and complex task. How do we think about other people's minds, and how do we come to infer other people's intentions from their actions? Developmental psychologists have shown that even very young infants are attuned to the emotions of those around them, imitate facial expressions and…
Seeing the Forest and the Trees: Mapping Curricula to Enhance Student Success
ERIC Educational Resources Information Center
Parks, Rodney; Parrish, Jesse; Whitesell, Blake
2017-01-01
For today's registrar, disentangling the institutional curriculum can be a daunting task. The complex and interconnected learning that higher education institutions now strive for is highly desirable among millennial students, but even the most articulate curricula sometimes fail to represent it clearly. Whether navigating the registration system,…
Yoshida, Kenji; Yokomizo, Akira; Matsuda, Tadashi; Hamasaki, Tsutomu; Kondo, Yukihiro; Yamaguchi, Kunihisa; Kanayama, Hiro-Omi; Wakumoto, Yoshiaki; Horie, Shigeo; Naito, Seiji
2015-09-01
To assess whether our ureteroscopic real-time navigation system has the possibility to reduce radiation exposure and improve performance of ureteroscopic maneuvers in surgeons of various ages and experience levels. Our novel ureteroscopic navigation system used a magnetic tracking device to detect the position of the ureteroscope and display it on a three-dimensional image. We recruited 31 urologists from five institutions to perform two tasks. Task 1 consisted of finding three internal markings on the phantom calices. Task 2 consisted of identifying all calices by ureteroscopy. In both tasks, participants performed with simulated fluoroscopy first, followed by our navigation system. Accuracy rates (AR) for identification, required time (T) for completing the task, migration length (ML), and time exposed to simulated fluoroscopy were recorded. The AR, T, and ML for both tasks were significantly better with the navigation system than without it (Task 1 with simulated fluoroscopy vs with navigation: AR 87.1 % vs 98.9%, P=0.003; T 355 s vs 191 s, P<0.0001; ML 4627 mm vs 2701 mm, P<0.0001. Task 2: AR 88.2% vs 96.7%, P=0.011; T 394 s vs 333 s, P=0.027; ML 5966 mm vs 5299 mm, P=0.0006). In both tasks, the participants used the simulated fluoroscopy about 20% of the total task time. Our navigation system, while still under development, could help surgeons of all levels to achieve better performances for ureteroscopic maneuvers compared with using fluoroscopic guidance. It also has the potential to reduce radiation exposure during fluoroscopy.
Optimizing Mars Airplane Trajectory with the Application Navigation System
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Riley, Derek
2004-01-01
Planning complex missions requires a number of programs to be executed in concert. The Application Navigation System (ANS), developed in the NAS Division, can execute many interdependent programs in a distributed environment. We show that the ANS simplifies user effort and reduces time in optimization of the trajectory of a martian airplane. We use a software package, Cart3D, to evaluate trajectories and a shortest path algorithm to determine the optimal trajectory. ANS employs the GridScape to represent the dynamic state of the available computer resources. Then, ANS uses a scheduler to dynamically assign ready task to machine resources and the GridScape for tracking available resources and forecasting completion time of running tasks. We demonstrate system capability to schedule and run the trajectory optimization application with efficiency exceeding 60% on 64 processors.
Surgical task analysis of simulated laparoscopic cholecystectomy with a navigation system.
Sugino, T; Kawahira, H; Nakamura, R
2014-09-01
Advanced surgical procedures, which have become complex and difficult, increase the burden of surgeons. Quantitative analysis of surgical procedures can improve training, reduce variability, and enable optimization of surgical procedures. To this end, a surgical task analysis system was developed that uses only surgical navigation information. Division of the surgical procedure, task progress analysis, and task efficiency analysis were done. First, the procedure was divided into five stages. Second, the operating time and progress rate were recorded to document task progress during specific stages, including the dissecting task. Third, the speed of the surgical instrument motion (mean velocity and acceleration), as well as the size and overlap ratio of the approximate ellipse of the location log data distribution, was computed to estimate the task efficiency during each stage. These analysis methods were evaluated based on experimental validation with two groups of surgeons, i.e., skilled and "other" surgeons. The performance metrics and analytical parameters included incidents during the operation, the surgical environment, and the surgeon's skills or habits. Comparison of groups revealed that skilled surgeons tended to perform the procedure in less time and involved smaller regions; they also manipulated the surgical instruments more gently. Surgical task analysis developed for quantitative assessment of surgical procedures and surgical performance may provide practical methods and metrics for objective evaluation of surgical expertise.
Burles, Ford; Slone, Edward; Iaria, Giuseppe
2017-04-01
The retrosplenial complex is a region within the posterior cingulate cortex implicated in spatial navigation. Here, we investigated the functional specialization of this large and anatomically heterogeneous region using fMRI and resting-state functional connectivity combined with a spatial task with distinct phases of spatial 'updating' (i.e., integrating and maintaining object locations in memory during spatial displacement) and 'orienting' (i.e., recalling unseen locations from current position in space). Both spatial 'updating' and 'orienting' produced bilateral activity in the retrosplenial complex, among other areas. However, spatial 'updating' produced slightly greater activity in ventro-lateral portions, of the retrosplenial complex, whereas spatial 'orienting' produced greater activity in a more dorsal and medial portion of it (both regions localized along the parieto-occipital fissure). At rest, both ventro-lateral and dorso-medial subregions of the retrosplenial complex were functionally connected to the hippocampus and parahippocampus, regions both involved in spatial orientation and navigation. However, the ventro-lateral subregion of the retrosplenial complex displayed more positive functional connectivity with ventral occipital and temporal object recognition regions, whereas the dorso-medial subregion activity was more correlated to dorsal activity and frontal activity, as well as negatively correlated with more ventral parietal structures. These findings provide evidence for a dorso-medial to ventro-lateral functional specialization within the human retrosplenial complex that may shed more light on the complex neural mechanisms underlying spatial orientation and navigation in humans.
NASA Astrophysics Data System (ADS)
Ververs, Patricia May
An extensive investigation of the format for head-up display (HUD) instrumentation was conducted in a two-part experiment. First, a pilot's information requirements for the tasks of approach, landing, and taxi were determined through a survey administered to professional commercial pilots via the world wide web. The results of the survey were applied in the development of two symbology sets, one set for flight navigation and the second for ground navigation. Second, twenty pilots from the University of Illinois at Urbana-Champaign were recruited to participate in a 3-day experiment. The study was designed to investigate the format for symbology on HUDs and the performance effects of using conformal and partially conformal symbology to support the pilots' tasks. In addition, two different methods were investigated for supporting the pilots' transition between the task of flying and the task of landing. A seamless transition used visual momentum techniques to smoothly guide the pilots' cognitive transition between the serial displays and the associated tasks. A seamed approach employed an abrupt change between the displays to alert the pilots of the task switch. The results indicate that incorporating a virtually conformal, tunnel-in-the-sky symbology into a complete HUD instrumentation set offers promising pilot performance effects. Pilots easily navigated the complex curved approaches with little to no deviation from the flight path (approximately 10 feet), while performing the secondary tasks of the scanning their instruments and the environment. The seamless transition between the flight and ground symbology offered the pilots a preview of the upcoming landing task, thereby preparing them for the task switch. On the ground, the perspective (scene-linked) symbology set supported landing and taxi navigation tasks with the equal efficiency to the plan view display but with much greater precision. Theories of allocation of attention were used to interpret the experimental findings. Attention was found to be more widely distributed in X-Y space when the pilots were flying with the conformal, tunnel-in-the-sky as compared to the partially conformal ILS (instrument landing system) symbology set. There was little evidence that the air-based navigation displays were supporting divided attention in three-dimensional space. The ground-based scene-linked (truly conformal) display indicated promising effects of dividing attention in depth without negative consequences to processing the near domain symbology. Event expectancy was found to modulate pilot performance in the detection of events both on the symbology and in the environment. The phenomenon known as cognitive tunneling is discussed as a possible cause of the inadequate response times in resolving the anomalous events.
Desktop-VR system for preflight 3D navigation training
NASA Astrophysics Data System (ADS)
Aoki, Hirofumi; Oman, Charles M.; Buckland, Daniel A.; Natapoff, Alan
Crews who inhabit spacecraft with complex 3D architecture frequently report inflight disorientation and navigation problems. Preflight virtual reality (VR) training may reduce those risks. Although immersive VR techniques may better support spatial orientation training in a local environment, a non-immersive desktop (DT) system may be more convenient for navigation training in "building scale" spaces, especially if the two methods achieve comparable results. In this study trainees' orientation and navigation performance during simulated space station emergency egress tasks was compared while using immersive head-mounted display (HMD) and DT-VR systems. Analyses showed no differences in pointing angular-error or egress time among the groups. The HMD group was significantly faster than DT group when pointing from destination to start location and from start toward different destination. However, this may be attributed to differences in the input device used (a head-tracker for HMD group vs. a keyboard touchpad or a gamepad in the DT group). All other 3D navigation performance measures were similar using the immersive and non-immersive VR systems, suggesting that the simpler desktop VR system may be useful for astronaut 3D navigation training.
Navigation ability dependent neural activation in the human brain: an fMRI study.
Ohnishi, Takashi; Matsuda, Hiroshi; Hirakata, Makiko; Ugawa, Yoshikazu
2006-08-01
Visual-spatial navigation in familiar and unfamiliar environments is an essential requirement of daily life. Animal studies indicated the importance of the hippocampus for navigation. Neuroimaging studies demonstrated gender difference or strategies dependent difference of neural substrates for navigation. Using functional magnetic resonance imaging, we measured brain activity related to navigation in four groups of normal volunteers: good navigators (males and females) and poor navigators (males and females). In a whole group analysis, task related activity was noted in the hippocampus, parahippocampal gyrus, posterior cingulate cortex, precuneus, parietal association areas, and the visual association areas. In group comparisons, good navigators showed a stronger activation in the medial temporal area and precuneus than poor navigators. There was neither sex effect nor interaction effect between sex and navigation ability. The activity in the left medial temporal areas was positively correlated with task performance, whereas activity in the right parietal area was negatively correlated with task performance. Furthermore, the activity in the bilateral medial temporal areas was positively correlated with scores reflecting preferred navigation strategies, whereas activity in the bilateral superior parietal lobules was negatively correlated with them. Our data suggest that different brain activities related to navigation should reflect navigation skill and strategies.
Liao, Pin-Chao; Sun, Xinlu; Liu, Mei; Shih, Yu-Nien
2018-01-11
Navigated safety inspection based on task-specific checklists can increase the hazard detection rate, theoretically with interference from scene complexity. Visual clutter, a proxy of scene complexity, can theoretically impair visual search performance, but its impact on the effect of safety inspection performance remains to be explored for the optimization of navigated inspection. This research aims to explore whether the relationship between working memory and hazard detection rate is moderated by visual clutter. Based on a perceptive model of hazard detection, we: (a) developed a mathematical influence model for construction hazard detection; (b) designed an experiment to observe the performance of hazard detection rate with adjusted working memory under different levels of visual clutter, while using an eye-tracking device to observe participants' visual search processes; (c) utilized logistic regression to analyze the developed model under various visual clutter. The effect of a strengthened working memory on the detection rate through increased search efficiency is more apparent in high visual clutter. This study confirms the role of visual clutter in construction-navigated inspections, thus serving as a foundation for the optimization of inspection planning.
Functional brain imaging of a complex navigation task following one night of total sleep deprivation
NASA Technical Reports Server (NTRS)
Strangman, Gary; Thompson, John H.; Strauss, Monica M.; Marshburn, Thomas H.; Sutton, Jeffrey P.
2006-01-01
Study Objectives: To assess the cerebral effects associated with sleep deprivation in a simulation of a complex, real-world, high-risk task. Design and Interventions: A two-week, repeated measures, cross-over experimental protocol, with counterbalanced orders of normal sleep (NS) and total sleep deprivation (TSD). Setting: Each subject underwent functional magnetic resonance imaging (fMRI) while performing a dual-joystick, 3D sensorimotor navigation task (simulated orbital docking). Scanning was performed twice per subject, once following a night of normal sleep (NS), and once following a single night of total sleep deprivation (TSD). Five runs (eight 24s docking trials each) were performed during each scanning session. Participants: Six healthy, young, right-handed volunteers (2 women; mean age 20) participated. Measurements and Results: Behavioral performance on multiple measures was comparable in the two sleep conditions. Neuroimaging results within sleep conditions revealed similar locations of peak activity for NS and TSD, including left sensorimotor cortex, left precuneus (BA 7), and right visual areas (BA 18/19). However, cerebral activation following TSD was substantially larger and exhibited higher amplitude modulations from baseline. When directly comparing NS and TSD, most regions exhibited TSD>NS activity, including multiple prefrontal cortical areas (BA 8/9,44/45,47), lateral parieto-occipital areas (BA 19/39, 40), superior temporal cortex (BA 22), and bilateral thalamus and amygdala. Only left parietal cortex (BA 7) demonstrated NS>TSD activity. Conclusions: The large network of cerebral differences between the two conditions, even with comparable behavioral performance, suggests the possibility of detecting TSD-induced stress via functional brain imaging techniques on complex tasks before stress-induced failures.
Markovian robots: Minimal navigation strategies for active particles
NASA Astrophysics Data System (ADS)
Nava, Luis Gómez; Großmann, Robert; Peruani, Fernando
2018-04-01
We explore minimal navigation strategies for active particles in complex, dynamical, external fields, introducing a class of autonomous, self-propelled particles which we call Markovian robots (MR). These machines are equipped with a navigation control system (NCS) that triggers random changes in the direction of self-propulsion of the robots. The internal state of the NCS is described by a Boolean variable that adopts two values. The temporal dynamics of this Boolean variable is dictated by a closed Markov chain—ensuring the absence of fixed points in the dynamics—with transition rates that may depend exclusively on the instantaneous, local value of the external field. Importantly, the NCS does not store past measurements of this value in continuous, internal variables. We show that despite the strong constraints, it is possible to conceive closed Markov chain motifs that lead to nontrivial motility behaviors of the MR in one, two, and three dimensions. By analytically reducing the complexity of the NCS dynamics, we obtain an effective description of the long-time motility behavior of the MR that allows us to identify the minimum requirements in the design of NCS motifs and transition rates to perform complex navigation tasks such as adaptive gradient following, detection of minima or maxima, or selection of a desired value in a dynamical, external field. We put these ideas in practice by assembling a robot that operates by the proposed minimalistic NCS to evaluate the robustness of MR, providing a proof of concept that is possible to navigate through complex information landscapes with such a simple NCS whose internal state can be stored in one bit. These ideas may prove useful for the engineering of miniaturized robots.
Adaptive Model-Predictive Motion Planning for Navigation in Complex Environments
2009-08-01
AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Carnegie Mellon University,The...Robotics Institute,Pittsburgh,PA,15213 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...6 1.5 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.6 Organization
Hurdles Ahead in "Race to Top"
ERIC Educational Resources Information Center
McNeil, Michele
2009-01-01
As states scramble to spend and report on millions of dollars of education stimulus funds already flowing their way, they face another daunting task if they want a shot at even more money: navigating the complex application process for $4 billion from the Race to the Top Fund. Merely filling out the award application will take each state 642…
Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution.
Maidenbaum, Shachar; Buchs, Galit; Abboud, Sami; Lavi-Rotbain, Ori; Amedi, Amir
2016-01-01
Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks-walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the potential usefulness of such environments for understanding what visual scenes are supposed to look like and their potential for complex training and suggested many future environments they wished to experience.
Practical Methodology of Cognitive Tasks Within a Navigational Assessment.
Robillard, Manon; Mayer-Crittenden, Chantal; Roy-Charland, Annie; Minor-Corriveau, Michèle; Bélanger, Roxanne
2015-06-01
This paper describes an approach for measuring navigation accuracy relative to cognitive skills. The methodology behind the assessment will thus be clearly outlined in a step-by-step manner. Navigational skills are important when trying to find symbols within a speech-generating device (SGD) that has a dynamic screen and taxonomical organization. The following skills have been found to impact children's ability to find symbols when navigating within the levels of an SGD: sustained attention, categorization, cognitive flexibility, and fluid reasoning. According to past studies, working memory was not correlated with navigation. The materials needed for this method include a computerized tablet, an augmentative and alternative communication application, a booklet of symbols, and the Leiter International Performance Scale-Revised (Leiter-R). This method has been used in two previous studies. Robillard, Mayer-Crittenden, Roy-Charland, Minor-Corriveau and Bélanger assessed typically developing children, while Rondeau, Robillard and Roy-Charland assessed children and adolescents with a diagnosis of Autism Spectrum Disorder. The direct observation of this method will facilitate the replication of this study for researchers. It will also help clinicians that work with children who have complex communication needs to determine the children's ability to navigate an SGD with taxonomical categorization.
Korthauer, L E; Nowak, N T; Frahmand, M; Driscoll, I
2017-01-15
Although effective spatial navigation requires memory for objects and locations, navigating a novel environment may also require considerable executive resources. The present study investigated associations between performance on the virtual Morris Water Task (vMWT), an analog version of a nonhuman spatial navigation task, and neuropsychological tests of executive functioning and spatial performance in 75 healthy young adults. More effective vMWT performance (e.g., lower latency and distance to reach hidden platform, greater distance in goal quadrant on a probe trial, fewer path intersections) was associated with better verbal fluency, set switching, response inhibition, and ability to mentally rotate objects. Findings also support a male advantage in spatial navigation, with sex moderating several associations between vMWT performance and executive abilities. Overall, we report a robust relationship between executive functioning and navigational skill, with some evidence that men and women may differentially recruit cognitive abilities when navigating a novel environment. Copyright © 2016 Elsevier B.V. All rights reserved.
Age-related similarities and differences in monitoring spatial cognition.
Ariel, Robert; Moffat, Scott D
2018-05-01
Spatial cognitive performance is impaired in later adulthood but it is unclear whether the metacognitive processes involved in monitoring spatial cognitive performance are also compromised. Inaccurate monitoring could affect whether people choose to engage in tasks that require spatial thinking and also the strategies they use in spatial domains such as navigation. The current experiment examined potential age differences in monitoring spatial cognitive performance in a variety of spatial domains including visual-spatial working memory, spatial orientation, spatial visualization, navigation, and place learning. Younger and older adults completed a 2D mental rotation test, 3D mental rotation test, paper folding test, spatial memory span test, two virtual navigation tasks, and a cognitive mapping test. Participants also made metacognitive judgments of performance (confidence judgments, judgments of learning, or navigation time estimates) on each trial for all spatial tasks. Preference for allocentric or egocentric navigation strategies was also measured. Overall, performance was poorer and confidence in performance was lower for older adults than younger adults. In most spatial domains, the absolute and relative accuracy of metacognitive judgments was equivalent for both age groups. However, age differences in monitoring accuracy (specifically relative accuracy) emerged in spatial tasks involving navigation. Confidence in navigating for a target location also mediated age differences in allocentric navigation strategy use. These findings suggest that with the possible exception of navigation monitoring, spatial cognition may be spared from age-related decline even though spatial cognition itself is impaired in older age.
Enhancing Allocentric Spatial Recall in Pre-schoolers through Navigational Training Programme
Boccia, Maddalena; Rosella, Michela; Vecchione, Francesca; Tanzilli, Antonio; Palermo, Liana; D'Amico, Simonetta; Guariglia, Cecilia; Piccardi, Laura
2017-01-01
Unlike for other abilities, children do not receive systematic spatial orientation training at school, even though navigational training during adulthood improves spatial skills. We investigated whether navigational training programme (NTP) improved spatial orientation skills in pre-schoolers. We administered 12-week NTP to seventeen 4- to 5-year-old children (training group, TG). The TG children and 17 age-matched children (control group, CG) who underwent standard didactics were tested twice before (T0) and after (T1) the NTP using tasks that tap into landmark, route and survey representations. We determined that the TG participants significantly improved their performances in the most demanding navigational task, which is the task that taps into survey representation. This improvement was significantly higher than that observed in the CG, suggesting that NTP fostered the acquisition of survey representation. Such representation is typically achieved by age seven. This finding suggests that NTP improves performance on higher-level navigational tasks in pre-schoolers. PMID:29085278
Tracked robot controllers for climbing obstacles autonomously
NASA Astrophysics Data System (ADS)
Vincent, Isabelle
2009-05-01
Research in mobile robot navigation has demonstrated some success in navigating flat indoor environments while avoiding obstacles. However, the challenge of analyzing complex environments to climb obstacles autonomously has had very little success due to the complexity of the task. Unmanned ground vehicles currently exhibit simple autonomous behaviours compared to the human ability to move in the world. This paper presents the control algorithms designed for a tracked mobile robot to autonomously climb obstacles by varying its tracks configuration. Two control algorithms are proposed to solve the autonomous locomotion problem for climbing obstacles. First, a reactive controller evaluates the appropriate geometric configuration based on terrain and vehicle geometric considerations. Then, a reinforcement learning algorithm finds alternative solutions when the reactive controller gets stuck while climbing an obstacle. The methodology combines reactivity to learning. The controllers have been demonstrated in box and stair climbing simulations. The experiments illustrate the effectiveness of the proposed approach for crossing obstacles.
1991-09-27
complex floating-point functions in a fraction of the time used by the best supercomputers on the market today. These co-processing boards "piggy-back...by the VNIX-based DECLARE program. Ve’ ctLptieu du te, tedi the new verion with main programs that noi, include onlN the variablc required wkith each
Tippett, William J; Lee, Jang-Han; Mraz, Richard; Zakzanis, Konstantine K; Snyder, Peter J; Black, Sandra E; Graham, Simon J
2009-04-01
This study assessed the convergent validity of a virtual environment (VE) navigation learning task, the Groton Maze Learning Test (GMLT), and selected traditional neuropsychological tests performed in a group of healthy elderly adults (n = 24). The cohort was divided equally between males and females to explore performance variability due to sex differences, which were subsequently characterized and reported as part of the analysis. To facilitate performance comparisons, specific "efficiency" scores were created for both the VE navigation task and the GMLT. Men reached peak performance more rapidly than women during VE navigation and on the GMLT and significantly outperformed women on the first learning trial in the VE. Results suggest reasonable convergent validity across the VE task, GMLT, and selected neuropsychological tests for assessment of spatial memory.
Easy rider: monkeys learn to drive a wheelchair to navigate through a complex maze.
Etienne, Stephanie; Guthrie, Martin; Goillandeau, Michel; Nguyen, Tho Hai; Orignac, Hugues; Gross, Christian; Boraud, Thomas
2014-01-01
The neurological bases of spatial navigation are mainly investigated in rodents and seldom in primates. The few studies led on spatial navigation in both human and non-human primates are performed in virtual, not in real environments. This is mostly because of methodological difficulties inherent in conducting research on freely-moving monkeys in real world environments. There is some incertitude, however, regarding the extrapolation of rodent spatial navigation strategies to primates. Here we present an entirely new platform for investigating real spatial navigation in rhesus monkeys. We showed that monkeys can learn a pathway by using different strategies. In these experiments three monkeys learned to drive the wheelchair and to follow a specified route through a real maze. After learning the route, probe tests revealed that animals successively use three distinct navigation strategies based on i) the place of the reward, ii) the direction taken to obtain reward or iii) a cue indicating reward location. The strategy used depended of the options proposed and the duration of learning. This study reveals that monkeys, like rodents and humans, switch between different spatial navigation strategies with extended practice, implying well-conserved brain learning systems across different species. This new task with freely driving monkeys provides a good support for the electrophysiological and pharmacological investigation of spatial navigation in the real world by making possible electrophysiological and pharmacological investigations.
Prisman, Eitan; Daly, Michael J; Chan, Harley; Siewerdsen, Jeffrey H; Vescan, Allan; Irish, Jonathan C
2011-01-01
Custom software was developed to integrate intraoperative cone-beam computed tomography (CBCT) images with endoscopic video for surgical navigation and guidance. A cadaveric head was used to assess the accuracy and potential clinical utility of the following functionality: (1) real-time tracking of the endoscope in intraoperative 3-dimensional (3D) CBCT; (2) projecting an orthogonal reconstructed CBCT image, at or beyond the endoscope, which is parallel to the tip of the endoscope corresponding to the surgical plane; (3) virtual reality fusion of endoscopic video and 3D CBCT surface rendering; and (4) overlay of preoperatively defined contours of anatomical structures of interest. Anatomical landmarks were contoured in CBCT of a cadaveric head. An experienced endoscopic surgeon was oriented to the software and asked to rate the utility of the navigation software in carrying out predefined surgical tasks. Utility was evaluated using a rating scale for: (1) safely completing the task; and (2) potential for surgical training. Surgical tasks included: (1) uncinectomy; (2) ethmoidectomy; (3) sphenoidectomy/pituitary resection; and (4) clival resection. CBCT images were updated following each ablative task. As a teaching tool, the software was evaluated as "very useful" for all surgical tasks. Regarding safety and task completion, the software was evaluated as "no advantage" for task (1), "minimal" for task (2), and "very useful" for tasks (3) and (4). Landmark identification for structures behind bone was "very useful" for both categories. The software increased surgical confidence in safely completing challenging ablative tasks by presenting real-time image guidance for highly complex ablative procedures. In addition, such technology offers a valuable teaching aid to surgeons in training. Copyright © 2011 American Rhinologic Society-American Academy of Otolaryngic Allergy, LLC.
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
Objective To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. Materials and Methods In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. Results The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. Conclusion The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon’s skills and knowledge, not as a substitute. PMID:26757365
Li, Liang; Yang, Jian; Chu, Yakui; Wu, Wenbo; Xue, Jin; Liang, Ping; Chen, Lei
2016-01-01
To verify the reliability and clinical feasibility of a self-developed navigation system based on an augmented reality technique for endoscopic sinus and skull base surgery. In this study we performed a head phantom and cadaver experiment to determine the display effect and accuracy of our navigational system. We compared cadaver head-based simulated operations, the target registration error, operation time, and National Aeronautics and Space Administration Task Load Index scores of our navigation system to conventional navigation systems. The navigation system developed in this study has a novel display mode capable of fusing endoscopic images to three-dimensional (3-D) virtual images. In the cadaver head experiment, the target registration error was 1.28 ± 0.45 mm, which met the accepted standards of a navigation system used for nasal endoscopic surgery. Compared with conventional navigation systems, the new system was more effective in terms of operation time and the mental workload of surgeons, which is especially important for less experienced surgeons. The self-developed augmented reality navigation system for endoscopic sinus and skull base surgery appears to have advantages that outweigh those of conventional navigation systems. We conclude that this navigational system will provide rhinologists with more intuitive and more detailed imaging information, thus reducing the judgment time and mental workload of surgeons when performing complex sinus and skull base surgeries. Ultimately, this new navigational system has potential to increase the quality of surgeries. In addition, the augmented reality navigational system could be of interest to junior doctors being trained in endoscopic techniques because it could speed up their learning. However, it should be noted that the navigation system serves as an adjunct to a surgeon's skills and knowledge, not as a substitute.
Use of a Non-Navigational, Non-Verbal Landmark Task in Children
ERIC Educational Resources Information Center
Overman, William; Pierce, Allison; Watterson, Lucas; Coleman, Jennifer K.
2013-01-01
Two hundred and twenty two children (104 females), 1-8 years of age and young adults, were tested for up to 25 days on five versions of a non-verbal, non-navigational landmark task that had previously been used for monkeys. In monkeys, performance on this task is severely impaired following damage to the parietal cortex. For the basic task, the…
Pu, Yi; Cornwell, Brian R; Cheyne, Douglas; Johnson, Blake W
2018-05-19
In rodents, hippocampal cell assemblies formed during learning of a navigation task are observed to re-emerge during resting (offline) periods, accompanied by high-frequency oscillations (HFOs). This phenomenon is believed to reflect mechanisms for strengthening newly-formed memory traces. Using magnetoencephalography recordings and a beamforming source location algorithm (synthetic aperture magnetometry), we investigated high-gamma (80-140 Hz) oscillations in the hippocampal region in 18 human participants during inter-trial rest periods in a virtual navigation task. We found right hippocampal gamma oscillations mirrored the pattern of theta power in the same region during navigation, varying as a function of environmental novelty. Gamma power during inter-trial rest periods was positively correlated with theta power during navigation in the first task set when the environment was new and predicted greater performance improvement in the subsequent task set two where the environment became familiar. These findings provide evidence for human hippocampal reactivation accompanied by high-gamma activities immediately after learning and establish a link between hippocampal high-gamma activities and subsequent memory performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David
2017-11-01
Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.
Rougier, Patrice R; Bonnet, Cédrick T
2016-06-01
Contrasted postural effects have been reported in dual-task protocols associating balance control and cognitive task that could be explained by the nature and the relative difficulty of the cognitive task and the biomechanical significance of the force platform data. To better assess their respective role, eleven healthy young adults were required to stand upright quietly on a force platform while concomitantly solving mental-calculation or mental-navigation cognitive tasks. Various levels of difficulty were applied by adjusting the velocity rate at which the instructions were provided to the subject according to his/her maximal capacities measured beforehand. A condition without any concomitant cognitive task was added to constitute a baseline behavior. Two basic components, the horizontal center-of-gravity movements and the horizontal difference between center-of-gravity and center-of-pressures were computed from the complex center-of-pressure recorded movements. It was hypothesized that increasing the delay should infer less interaction between postural control and task solution. The results indicate that both mental-calculation and mental-navigation tasks induce reduced amplitudes for the center-of-pressure minus center-of-gravity movements, only along the mediolateral axis, whereas center-of-gravity movements were not affected, suggesting that different circuits are involved in the central nervous system to control these two movements. Moreover, increasing the delays task does not infer any effect for both movements. Since center-of-pressure minus center-of-gravity expresses the horizontal acceleration communicated to the center-of-gravity, one may assume that the control of the latter should be facilitated in dual-tasks conditions, inferring reduced center-of-gravity movements, which is not seen in our results. This lack of effect should be thus interpreted as a modification in the control of these center-of-gravity movements. Taken together, these results emphasized how undisturbed upright stance control can be impacted by mental tasks requiring attention, whatever their nature (calculation or navigation) and their relative difficulty. Depending on the provided instructions, i.e. focusing our attention on body movements or on the opposite diverting this attention toward other objectives, the evaluation of upright stance control capacities might be drastically altered. Copyright © 2016. Published by Elsevier B.V.
Qu, Zhenhong; Ghorbani, Rhonda P; Li, Hongyan; Hunter, Robert L; Hannah, Christina D
2007-03-01
Gross examination, encompassing description, dissection, and sampling, is a complex task and an essential component of surgical pathology. Because of the complexity of the task, standardized protocols to guide the gross examination often become a bulky manual that is difficult to use. This problem is further compounded by the high specimen volume and biohazardous nature of the task. As a result, such a manual is often underused, leading to errors that are potentially harmful and time consuming to correct-a common chronic problem affecting many pathology laboratories. To combat this problem, we have developed a simple method that incorporates complex text and graphic information of a typical procedure manual and yet allows easy access to any intended instructive information in the manual. The method uses the Object-Linking-and-Embedding function of Microsoft Word (Microsoft, Redmond, WA) to establish hyperlinks among different contents, and then it uses the touch screen technology to facilitate navigation through the manual on a computer screen installed at the cutting bench with no need for a physical keyboard or a mouse. It takes less than 4 seconds to reach any intended information in the manual by 3 to 4 touches on the screen. A 3-year follow-up study shows that this method has increased use of the manual and has improved the quality of gross examination. The method is simple and can be easily tailored to different formats of instructive information, allowing flexible organization, easy access, and quick navigation. Increased compliance to instructive information reduces errors at the grossing bench and improves work efficiency.
Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A
2010-08-01
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
Rafii-Tari, Hedyeh; Liu, Jindong; Payne, Christopher J; Bicknell, Colin; Yang, Guang-Zhong
2014-01-01
Despite increased use of remote-controlled steerable catheter navigation systems for endovascular intervention, most current designs are based on master configurations which tend to alter natural operator tool interactions. This introduces problems to both ergonomics and shared human-robot control. This paper proposes a novel cooperative robotic catheterization system based on learning-from-demonstration. By encoding the higher-level structure of a catheterization task as a sequence of primitive motions, we demonstrate how to achieve prospective learning for complex tasks whilst incorporating subject-specific variations. A hierarchical Hidden Markov Model is used to model each movement primitive as well as their sequential relationship. This model is applied to generation of motion sequences, recognition of operator input, and prediction of future movements for the robot. The framework is validated by comparing catheter tip motions against the manual approach, showing significant improvements in the quality of catheterization. The results motivate the design of collaborative robotic systems that are intuitive to use, while reducing the cognitive workload of the operator.
Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI.
Migo, E M; O'Daly, O; Mitterschiffthaler, M; Antonova, E; Dawson, G R; Dourish, C T; Craig, K J; Simmons, A; Wilcock, G K; McCulloch, E; Jackson, S H D; Kopelman, M D; Williams, S C R; Morris, R G
2016-01-01
Spatial navigation requires a well-established network of brain regions, including the hippocampus, caudate nucleus, and retrosplenial cortex. Amnestic Mild Cognitive Impairment (aMCI) is a condition with predominantly memory impairment, conferring a high predictive risk factor for dementia. aMCI is associated with hippocampal atrophy and subtle deficits in spatial navigation. We present the first use of a functional Magnetic Resonance Imaging (fMRI) navigation task in aMCI, using a virtual reality analog of the Radial Arm Maze. Compared with controls, aMCI patients showed reduced activity in the hippocampus bilaterally, retrosplenial cortex, and left dorsolateral prefrontal cortex. Reduced activation in key areas for successful navigation, as well as additional regions, was found alongside relatively normal task performance. Results also revealed increased activity in the right dorsolateral prefrontal cortex in aMCI patients, which may reflect compensation for reduced activations elsewhere. These data support suggestions that fMRI spatial navigation tasks may be useful for staging of progression in MCI.
Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution
Maidenbaum, Shachar; Buchs, Galit; Abboud, Sami; Lavi-Rotbain, Ori; Amedi, Amir
2016-01-01
Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks–walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the potential usefulness of such environments for understanding what visual scenes are supposed to look like and their potential for complex training and suggested many future environments they wished to experience. PMID:26882473
Oudman, Erik; Van der Stigchel, Stefan; Nijboer, Tanja C W; Wijnia, Jan W; Seekles, Maaike L; Postma, Albert
2016-03-01
Korsakoff's syndrome (KS) is characterized by explicit amnesia, but relatively spared implicit memory. The aim of this study was to assess to what extent KS patients can acquire spatial information while performing a spatial navigation task. Furthermore, we examined whether residual spatial acquisition in KS was based on automatic or effortful coding processes. Therefore, 20 KS patients and 20 matched healthy controls performed six tasks on spatial navigation after they navigated through a residential area. Ten participants per group were instructed to pay close attention (intentional condition), while 10 received mock instructions (incidental condition). KS patients showed hampered performance on a majority of tasks, yet their performance was superior to chance level on a route time and distance estimation tasks, a map drawing task and a route walking task. Performance was relatively spared on the route distance estimation task, but there were large variations between participants. Acquisition in KS was automatic rather than effortful, since no significant differences were obtained between the intentional and incidental condition on any task, whereas for the healthy controls, the intention to learn was beneficial for the map drawing task and the route walking task. The results of this study suggest that KS patients are still able to acquire spatial information during navigation on multiple domains despite the presence of the explicit amnesia. Residual acquisition is most likely based on automatic coding processes. © 2014 The British Psychological Society.
The "EyeCane", a new electronic travel aid for the blind: Technology, behavior & swift learning.
Maidenbaum, Shachar; Hanassy, Shlomi; Abboud, Sami; Buchs, Galit; Chebat, Daniel-Robert; Levy-Tzedek, Shelly; Amedi, Amir
2014-01-01
Independent mobility is one of the most pressing problems facing people who are blind. We present the EyeCane, a new mobility aid aimed at increasing perception of environment beyond what is provided by the traditional White Cane for tasks such as distance estimation, navigation and obstacle detection. The "EyeCane" enhances the traditional White Cane by using tactile and auditory output to increase detectable distance and angles. It circumvents the technical pitfalls of other devices, such as weight, short battery life, complex interface schemes, and slow learning curve. It implements multiple beams to enables detection of obstacles at different heights, and narrow beams to provide active sensing that can potentially increase the user's spatial perception of the environment. Participants were tasked with using the EyeCane for several basic tasks with minimal training. Blind and blindfolded-sighted participants were able to use the EyeCane successfully for distance estimation, simple navigation and simple obstacle detection after only several minutes of training. These results demonstrate the EyeCane's potential for mobility rehabilitation. The short training time is especially important since available mobility training resources are limited, not always available, and can be quite expensive and/or entail long waiting periods.
Structured Kernel Subspace Learning for Autonomous Robot Navigation.
Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai
2018-02-14
This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.
ERIC Educational Resources Information Center
Garrett, Robin Eileen
2014-01-01
Community colleges serve a diverse population of learners including many older students counting on the community college for enhanced skills or personal enrichment. Many of these colleges target this population with programs designed specifically to meet the needs and goals of the older adult but may not consider this population when designing a…
Are Pilots Graduating SUPT Today Meeting AMC’s Current and Future Needs
2012-02-05
expect. The future operating environment is expected to be characterized by uncertainty , complexity, rapid change and persistent conflict. As...Procedures Navigation: Visual, VFR, and IFR Situational Awareness Task Management Three-Dimensional Maneuvering Two methods are used...operations under Instrument or VFR to include day / night IFR operations in the terminal and enroute environment. c. The conduct of mission in a
Tao, Gordon; Archambault, Philippe S
2016-01-19
Powered wheelchair (PW) training involving combined navigation and reaching is often limited or unfeasible. Virtual reality (VR) simulators offer a feasible alternative for rehabilitation training either at home or in a clinical setting. This study evaluated a low-cost magnetic-based hand motion controller as an interface for reaching tasks within the McGill Immersive Wheelchair (miWe) simulator. Twelve experienced PW users performed three navigation-reaching tasks in the real world (RW) and in VR: working at a desk, using an elevator, and opening a door. The sense of presence in VR was assessed using the iGroup Presence Questionnaire (IPQ). We determined concordance of task performance in VR with that in the RW. A video task analysis was performed to analyse task behaviours. Compared to previous miWe data, IPQ scores were greater in the involvement domain (p < 0.05). Task analysis showed most of navigation and reaching behaviours as having moderate to excellent (K > 0.4, Cohen's Kappa) agreement between the two environments, but greater (p < 0.05) risk of collisions and reaching errors in VR. VR performance demonstrated longer (p < 0.05) task times and more discreet movements for the elevator and desk tasks but not the door task. Task performance showed poorer kinematic performance in VR than RW but similar strategies. Therefore, the reaching component represents a promising addition to the miWe training simulator, though some limitations must be addressed in future development.
A Low-Cost, Passive Navigation Training System for Image-Guided Spinal Intervention.
Lorias-Espinoza, Daniel; Carranza, Vicente González; de León, Fernando Chico-Ponce; Escamirosa, Fernando Pérez; Martinez, Arturo Minor
2016-11-01
Navigation technology is used for training in various medical specialties, not least image-guided spinal interventions. Navigation practice is an important educational component that allows residents to understand how surgical instruments interact with complex anatomy and to learn basic surgical skills such as the tridimensional mental interpretation of bidimensional data. Inexpensive surgical simulators for spinal surgery, however, are lacking. We therefore designed a low-cost spinal surgery simulator (Spine MovDigSys 01) to allow 3-dimensional navigation via 2-dimensional images without altering or limiting the surgeon's natural movement. A training system was developed with an anatomical lumbar model and 2 webcams to passively digitize surgical instruments under MATLAB software control. A proof-of-concept recognition task (vertebral body cannulation) and a pilot test of the system with 12 neuro- and orthopedic surgeons were performed to obtain feedback on the system. Position, orientation, and kinematic variables were determined and the lateral, posteroanterior, and anteroposterior views obtained. The system was tested with a proof-of-concept experimental task. Operator metrics including time of execution (t), intracorporeal length (d), insertion angle (α), average speed (v¯), and acceleration (a) were obtained accurately. These metrics were converted into assessment metrics such as smoothness of operation and linearity of insertion. Results from initial testing are shown and the system advantages and disadvantages described. This low-cost spinal surgery training system digitized the position and orientation of the instruments and allowed image-guided navigation, the generation of metrics, and graphic recording of the instrumental route. Spine MovDigSys 01 is useful for development of basic, noninnate skills and allows the novice apprentice to quickly and economically move beyond the basics. Copyright © 2016 Elsevier Inc. All rights reserved.
Banner, Harrison; Bhat, Venkataramana; Etchamendy, Nicole; Joober, Ridha; Bohbot, Véronique D
2011-01-01
Multiple memory systems are involved in parallel processing of spatial information during navigation. A series of studies have distinguished between hippocampus-dependent ‘spatial’ navigation, which relies on knowledge of the relationship between landmarks in one’s environment to build a cognitive map, and habit-based ‘response’ learning, which requires the memorization of a series of actions and is mediated by the caudate nucleus. Studies have demonstrated that people spontaneously use one of these two alternative navigational strategies with almost equal frequency to solve a given navigation task, and that strategy correlates with functional magnetic resonance imaging (fMRI) activity and grey matter density. Although there is evidence for experience modulating grey matter in the hippocampus, genetic contributions may also play an important role in the hippocampus and caudate nucleus. Recently, the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene has emerged as a possible inhibitor of hippocampal function. We have investigated the role of the BDNF Val66Met polymorphism on virtual navigation behaviour and brain activation during an fMRI navigation task. Our results demonstrate a genetic contribution to spontaneous strategies, where ‘Met’ carriers use a response strategy more frequently than individuals homozygous for the ‘Val’ allele. Additionally, we found increased hippocampal activation in the Val group relative to the Met group during performance of a virtual navigation task. Our results support the idea that the BDNF gene with the Val66Met polymorphism is a novel candidate gene involved in determining spontaneous strategies during navigation behaviour. PMID:21255124
Baldwin, Carryl L; Struckman-Johnson, David
2002-01-15
Speech displays and verbal response technologies are increasingly being used in complex, high workload environments that require the simultaneous performance of visual and manual tasks. Examples of such environments include the flight decks of modern aircraft, advanced transport telematics systems providing invehicle route guidance and navigational information and mobile communication equipment in emergency and public safety vehicles. Previous research has established an optimum range for speech intelligibility. However, the potential for variations in presentation levels within this range to affect attentional resources and cognitive processing of speech material has not been examined previously. Results of the current experimental investigation demonstrate that as presentation level increases within this 'optimum' range, participants in high workload situations make fewer sentence-processing errors and generally respond faster. Processing errors were more sensitive to changes in presentation level than were measures of reaction time. Implications of these findings are discussed in terms of their application for the design of speech communications displays in complex multi-task environments.
Wallet, Grégory; Sauzéon, Hélène; Pala, Prashant Arvind; Larrue, Florian; Zheng, Xia; N'Kaoua, Bernard
2011-01-01
The purpose of this study was to evaluate the effect the visual fidelity of a virtual environment (VE) (undetailed vs. detailed) has on the transfer of spatial knowledge based on the navigation mode (passive vs. active) for three different spatial recall tasks (wayfinding, sketch mapping, and picture sorting). Sixty-four subjects (32 men and 32 women) participated in the experiment. Spatial learning was evaluated by these three tasks in the context of the Bordeaux district. In the wayfinding task, the results indicated that the detailed VE helped subjects to transfer their spatial knowledge from the VE to the real world, irrespective of the navigation mode. In the sketch-mapping task, the detailed VE increased performances compared to the undetailed VE condition, and allowed subjects to benefit from the active navigation. In the sorting task, performances were better in the detailed VE; however, in the undetailed version of the VE, active learning either did not help the subjects or it even deteriorated their performances. These results are discussed in terms of appropriate perceptive-motor and/or spatial representations for each spatial recall task.
BatSLAM: Simultaneous localization and mapping using biomimetic sonar.
Steckel, Jan; Peremans, Herbert
2013-01-01
We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.
BatSLAM: Simultaneous Localization and Mapping Using Biomimetic Sonar
Steckel, Jan; Peremans, Herbert
2013-01-01
We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building. PMID:23365647
Learning Probabilistic Features for Robotic Navigation Using Laser Sensors
Aznar, Fidel; Pujol, Francisco A.; Pujol, Mar; Rizo, Ramón; Pujol, María-José
2014-01-01
SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N)) to O(N 2), where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N) by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used. PMID:25415377
Learning probabilistic features for robotic navigation using laser sensors.
Aznar, Fidel; Pujol, Francisco A; Pujol, Mar; Rizo, Ramón; Pujol, María-José
2014-01-01
SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N)) to O(N(2)), where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N) by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.
The UAV take-off and landing system used for small areas of mobile vehicles
NASA Astrophysics Data System (ADS)
Ren, Tian-Yu; Duanmu, Qing-Duo; Wu, Bo-Qi
2018-03-01
In order to realize an UAV formation cluster system based on the current GPS and the fault and insufficiency of Beidou integrated navigation system in strong jamming environment. Due to the impact of the compass on the plane crash, navigation system error caused by the mobile area to help reduce the need for large landing sites and not in the small fast moving area to achieve the reality of the landing. By using Strapdown inertial and all-optical system to form Composite UAV flight control system, the photoelectric composite strapdown inertial coupling is realized, and through the laser and microwave telemetry link compound communication mechanism, using all-optical strapdown inertial and visual navigation system to solve the deviation of take-off and landing caused by electromagnetic interference, all-optical bidirectional data link realizes two-way position correction of landing site and aircraft, thus achieves the accurate recovery of UAV formation cluster in the mobile narrow area which the traditional navigation system can't realize. This system is a set of efficient unmanned aerial vehicle Group Take-off/descending system, which is suitable for many tasks, and not only realizes the reliable continuous navigation under the complex electromagnetic interference environment, moreover, the intelligent flight and Take-off and landing of unmanned aerial vehicles relative to the fast moving and small recovery sites in complex electromagnetic interference environment can not only improve the safe operation rate of unmanned aerial vehicle, but also guarantee the operation safety of the aircraft, and the more has important social value for the application foreground of the aircraft.
Lind, Sophie E.; Bowler, Dermot M.; Raber, Jacob
2014-01-01
This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the “memory island” task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the “animations” task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed. PMID:25538661
Lind, Sophie E; Bowler, Dermot M; Raber, Jacob
2014-01-01
This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation), and which we hypothesized may be impaired in autism spectrum disorder (ASD). Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years) were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection), theory of mind (ToM), relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the "memory island" task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. ToM was assessed using the "animations" task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings), patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not ToM or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to the number of repetitive behaviors. In other words, children who showed more repetitive behaviors showed poorer spatial navigation. The theoretical and practical implications of the results are discussed.
Hypertext-based design of a user interface for scheduling
NASA Technical Reports Server (NTRS)
Woerner, Irene W.; Biefeld, Eric
1993-01-01
Operations Mission Planner (OMP) is an ongoing research project at JPL that utilizes AI techniques to create an intelligent, automated planning and scheduling system. The information space reflects the complexity and diversity of tasks necessary in most real-world scheduling problems. Thus the problem of the user interface is to present as much information as possible at a given moment and allow the user to quickly navigate through the various types of displays. This paper describes a design which applies the hypertext model to solve these user interface problems. The general paradigm is to provide maps and search queries to allow the user to quickly find an interesting conflict or problem, and then allow the user to navigate through the displays in a hypertext fashion.
Parental health literacy and its impact on patient care.
Scotten, Mitzi
2015-03-01
The process of navigating through the modern American health care system is becoming progressively challenging. The range of tasks being asked of patients in the digital age is vast and complex and includes completing intricate insurance applications, signing complex consent forms, and translating medical data and prescription medication directions. Nearly 9 out of 10 adults have difficulty using the everyday health information that is routinely offered by medical providers. Mounting evidence now supports a growing awareness that general health literacy is the greatest individual factor affecting a person's health status. Copyright © 2015 Elsevier Inc. All rights reserved.
Kerbler, Georg M.; Nedelska, Zuzana; Fripp, Jurgen; Laczó, Jan; Vyhnalek, Martin; Lisý, Jiří; Hamlin, Adam S.; Rose, Stephen; Hort, Jakub; Coulson, Elizabeth J.
2015-01-01
The basal forebrain degenerates in Alzheimer’s disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants’ ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy. PMID:26441643
Bajaj, Jasmohan S; Hafeezullah, Muhammad; Hoffmann, Raymond G; Varma, Rajiv R; Franco, Jose; Binion, David G; Hammeke, Thomas A; Saeian, Kia
2008-02-01
Patients with minimal hepatic encephalopathy (MHE) have attention, response inhibition, and working memory difficulties that are associated with driving impairment and high motor vehicle accident risk. Navigation is a complex system needed for safe driving that requires functioning working memory and other domains adversely affected by MHE. The aim of this study was to determine the effect of MHE on navigation skills and correlate them with psychometric impairment. Forty-nine nonalcoholic patients with cirrhosis (34 MHE+, 15 MHE-; divided on the basis of a battery of block design, digit symbol, and number connection test A) and 48 age/education-matched controls were included. All patients underwent the psychometric battery and inhibitory control test (ICT) (a test of response inhibition) and driving simulation. Driving simulation consisted of 4 parts: (1) training; (2) driving (outcome being accidents); (3) divided attention (outcome being missed tasks); and (4) navigation, driving along a marked path on a map in a "virtual city" (outcome being illegal turns). Illegal turns were significantly higher in MHE+ (median 1; P = 0.007) compared with MHE-/controls (median 0). Patients who were MHE+ missed more divided attention tasks compared with others (median MHE+ 1, MHE-/controls 0; P = 0.001). Similarly, accidents were higher in patients who were MHE+ (median 2.5; P = 0.004) compared with MHE- (median 1) or controls (median 2). Accidents and illegal turns were significantly correlated (P = 0.001, r = 0.51). ICT impairment was the test most correlated with illegal turns (r = 0.6) and accidents (r = 0.44), although impairment on the other tests were also correlated with illegal turns. Patients positive for MHE have impaired navigation skills on a driving simulator, which is correlated with impairment in response inhibition (ICT) and attention. This navigation difficulty may pose additional driving problems, compounding the pre-existing deleterious effect of attention deficits.
Connors, Erin C; Yazzolino, Lindsay A; Sánchez, Jaime; Merabet, Lotfi B
2013-03-27
Audio-based Environment Simulator (AbES) is virtual environment software designed to improve real world navigation skills in the blind. Using only audio based cues and set within the context of a video game metaphor, users gather relevant spatial information regarding a building's layout. This allows the user to develop an accurate spatial cognitive map of a large-scale three-dimensional space that can be manipulated for the purposes of a real indoor navigation task. After game play, participants are then assessed on their ability to navigate within the target physical building represented in the game. Preliminary results suggest that early blind users were able to acquire relevant information regarding the spatial layout of a previously unfamiliar building as indexed by their performance on a series of navigation tasks. These tasks included path finding through the virtual and physical building, as well as a series of drop off tasks. We find that the immersive and highly interactive nature of the AbES software appears to greatly engage the blind user to actively explore the virtual environment. Applications of this approach may extend to larger populations of visually impaired individuals.
Cook, Sarah E.; Sisco, Shannon M.; Marsiske, Michael
2013-01-01
While driving is a complex task, it becomes relatively automatic over time although unfamiliar situations require increased cognitive effort. Much research has examined driving risk in cognitively impaired elders and found little effect. This study assessed whether mildly memory impaired elders made disproportionate errors in driving or story recall, under simultaneous simulated driving and story recall. Forty-six healthy (61% women; mean age = 76.4) and 15 memory impaired (66% women, mean age = 79.4) elders participated. Cognitive status was determined by neuropsychological performance. Results showed that during dual-task conditions, participants stayed in lane more, and recalled stories more poorly, than when they did the tasks separately. Follow-up analysis revealed that verbatim recall, in particular, was reduced while driving for healthy participants. While memory impaired participants performed more poorly than healthy controls on both tasks, cognitive status was not associated with greater dual-task costs when driving and story recall were combined. PMID:23043546
Cook, Sarah E; Sisco, Shannon M; Marsiske, Michael
2013-01-01
While driving is a complex task, it becomes relatively automatic over time although unfamiliar situations require increased cognitive effort. Much research has examined driving risk in cognitively impaired elders and found little effect. This study assessed whether mildly memory impaired elders made disproportionate errors in driving or story recall, under simultaneous simulated driving and story recall. Forty-six healthy (61% women; mean age = 76.4) and 15 memory impaired (66% women, mean age = 79.4) elders participated. Cognitive status was determined by neuropsychological performance. Results showed that during dual-task conditions, participants stayed in lane more, and recalled stories more poorly, than when they did the tasks separately. Follow-up analysis revealed that verbatim recall, in particular, was reduced while driving for healthy participants. While memory impaired participants performed more poorly than healthy controls on both tasks, cognitive status was not associated with greater dual-task costs when driving and story recall were combined.
Exploring the neural bases of goal-directed motor behavior using fully resolved simulations
NASA Astrophysics Data System (ADS)
Patel, Namu; Patankar, Neelesh A.
2016-11-01
Undulatory swimming is an ideal problem for understanding the neural architecture for motor control and movement; a vertebrate's robust morphology and adaptive locomotive gait allows the swimmer to navigate complex environments. Simple mathematical models for neurally activated muscle contractions have been incorporated into a swimmer immersed in fluid. Muscle contractions produce bending moments which determine the swimming kinematics. The neurobiology of goal-directed locomotion is explored using fast, efficient, and fully resolved constraint-based immersed boundary simulations. Hierarchical control systems tune the strength, frequency, and duty cycle for neural activation waves to produce multifarious swimming gaits or synergies. Simulation results are used to investigate why the basal ganglia and other control systems may command a particular neural pattern to accomplish a task. Using simple neural models, the effect of proprioceptive feedback on refining the body motion is demonstrated. Lastly, the ability for a learned swimmer to successfully navigate a complex environment is tested. This work is supported by NSF CBET 1066575 and NSF CMMI 0941674.
Kilohoku Ho`okele Wa`a : Astronomy of the Hawaiian Navigators
NASA Astrophysics Data System (ADS)
Slater, Stephanie; Slater, Timothy F.; Baybayan, Kalepa C.
2016-01-01
This poster provides an introduction to the astronomy of the Hawaiian wayfinders, Kilohoku Ho`okele Wa`a. Rooted in a legacy of navigation across the Polynesian triangle, wayfinding astronomy has been part of a suite of skills that allows navigators to deliberately hop between the small islands of the Pacific, for thousands of years. Forty years ago, in one manifestation of the Hawaiian Renaissance, our teachers demonstrated that ancient Hawaiians were capable of traversing the wide Pacific to settle and trade on islands separated by thousands of miles. Today those same mentors train a new generation of navigators, making Hawaiian voyaging a living, evolving, sustainable endeavor. This poster presents two components of astronomical knowledge that all crewmen, but particularly those in training to become navigators, learn early in their training. Na Ohana Hoku, the Hawaiian Star Families constitute the basic units of the Hawaiian sky. In contrast to the Western system of 88 constellations, Na Ohana Hoku divides the sky into four sections that each run from the northern to the southern poles. This configuration reduces cognitive load, allowing the navigator to preserve working memory for other complex tasks. In addition, these configurations of stars support the navigator in finding and generatively using hundreds of individual, and navigationally important pairs of stars. The Hawaiian Star Compass divides the celestial sphere into a directional system that uses 32 rather than 8 cardinal points. Within the tropics, the rising and setting of celestial objects are consistent within the Hawaiian Star Compass, providing for extremely reliable direction finding. Together, Na Ohana Hoku and the Hawaiian Star Compass provide the tropical navigator with astronomical assistance that is not available to, and would have been unknown to Western navigators trained at higher latitudes.
Wilkins, Leanne K; Girard, Todd A; Konishi, Kyoko; King, Matthew; Herdman, Katherine A; King, Jelena; Christensen, Bruce; Bohbot, Veronique D
2013-11-01
Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD. Copyright © 2013 Wiley Periodicals, Inc.
OsiriX: an open-source software for navigating in multidimensional DICOM images.
Rosset, Antoine; Spadola, Luca; Ratib, Osman
2004-09-01
A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking advantage of any hardware graphic accelerator boards available. In the design of the software special attention was given to adapt the user interface to the specific and complex tasks of navigating through large sets of image data. An interactive jog-wheel device widely used in the video and movie industry was implemented to allow users to navigate in the different dimensions of an image set much faster than with a traditional mouse or on-screen cursors and sliders. The program can easily be adapted for very specific tasks that require a limited number of functions, by adding and removing tools from the program's toolbar and avoiding an overwhelming number of unnecessary tools and functions. The processing and image rendering tools of the software are based on the open-source libraries ITK and VTK. This ensures that all new developments in image processing that could emerge from other academic institutions using these libraries can be directly ported to the OsiriX program. OsiriX is provided free of charge under the GNU open-source licensing agreement at http://homepage.mac.com/rossetantoine/osirix.
The Impact of Accelerated Promotion Rates on Drill Sergeant Performance
2011-01-01
land navigation, communication (voice/visual), NBC protection). I have good knowledge of most Warrior tasks; I have sufficient skills to handle...but seldom reach out on my own initiative. I communicate and work well with others regardless of background; I encourage attitudes of tolerance and...most of the Warrior tasks (e.g., land navigation, communication (voice/visual), NBC protection). I have good knowledge of most Warrior tasks; I
Christie, Lorna S.; Goossens, Richard H. M.; de Ridder, Huib; Jakimowicz, Jack J.
2010-01-01
Background The aim of this study is to investigate the influence of the presence of anatomic landmarks on the performance of angled laparoscope navigation on the SimSurgery SEP simulator. Methods Twenty-eight experienced laparoscopic surgeons (familiar with 30° angled laparoscope, >100 basic laparoscopic procedures, >5 advanced laparoscopic procedures) and 23 novices (no laparoscopy experience) performed the Camera Navigation task in an abstract virtual environment (CN-box) and in a virtual representation of the lower abdomen (CN-abdomen). They also rated the realism and added value of the virtual environments on seven-point scales. Results Within both groups, the CN-box task was accomplished in less time and with shorter tip trajectory than the CN-abdomen task (Wilcoxon test, p < 0.05). No significant differences were found between the performances of the experienced participants and the novices on the CN tasks (Mann–Whitney U test, p > 0.05). In both groups, the CN tasks were perceived as hard work and more challenging than anticipated. Conclusions Performance of the angled laparoscope navigation task is influenced by the virtual environment surrounding the exercise. The task was performed better in an abstract environment than in a virtual environment with anatomic landmarks. More insight is required into the influence and function of different types of intrinsic and extrinsic feedback on the effectiveness of preclinical simulator training. PMID:20419318
Gardner, Robert S.; Suarez, Daniel F.; Robinson-Burton, Nadira K.; Rudnicky, Christopher J.; Gulati, Asish; Ascoli, Giorgio A.; Dumas, Theodore C.
2016-01-01
The strategies utilized to effectively perform a given task change with practice and experience. During a spatial navigation task, with relatively little training, performance is typically attentive enabling an individual to locate the position of a goal by relying on spatial landmarks. These (place) strategies require an intact hippocampus. With task repetition, performance becomes automatic; the same goal is reached using a fixed response or sequence of actions. These (response) strategies require an intact striatum. The current work aims to understand the activation patterns across these neural structures during this experience-dependent strategy transition. This was accomplished by region-specific measurement of activity-dependent immediate early gene expression among rats trained to different degrees on a dual-solution task (i.e., a task that can be solved using either place or response navigation). As expected, rats increased their reliance on response navigation with extended task experience. In addition, dorsal hippocampal expression of the immediate early gene Arc was considerably reduced in rats that used a response strategy late in training (as compared with hippocampal expression in rats that used a place strategy early in training). In line with these data, vicarious trial and error, a behavior linked to hippocampal function, also decreased with task repetition. Although Arc mRNA expression in dorsal medial or lateral striatum alone did not correlate with training stage, the ratio of expression in the medial striatum to that in the lateral striatum was relatively high among rats that used a place strategy early in training as compared with the ratio among over-trained response rats. Altogether, these results identify specific changes in the activation of dissociated neural systems that may underlie the experience-dependent emergence of response-based automatic navigation. PMID:26976088
Local Learning Strategies for Wake Identification
NASA Astrophysics Data System (ADS)
Colvert, Brendan; Alsalman, Mohamad; Kanso, Eva
2017-11-01
Swimming agents, biological and engineered alike, must navigate the underwater environment to survive. Tasks such as autonomous navigation, foraging, mating, and predation require the ability to extract critical cues from the hydrodynamic environment. A substantial body of evidence supports the hypothesis that biological systems leverage local sensing modalities, including flow sensing, to gain knowledge of their global surroundings. The nonlinear nature and high degree of complexity of fluid dynamics makes the development of algorithms for implementing localized sensing in bioinspired engineering systems essentially intractable for many systems of practical interest. In this work, we use techniques from machine learning for training a bioinspired swimmer to learn from its environment. We demonstrate the efficacy of this strategy by learning how to sense global characteristics of the wakes of other swimmers measured only from local sensory information. We conclude by commenting on the advantages and limitations of this data-driven, machine learning approach and its potential impact on broader applications in underwater sensing and navigation.
Flow Navigation by Smart Microswimmers via Reinforcement Learning
NASA Astrophysics Data System (ADS)
Colabrese, Simona; Gustavsson, Kristian; Celani, Antonio; Biferale, Luca
2017-04-01
Smart active particles can acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. Their goal is to learn the best way to navigate by exploiting the underlying flow whenever possible. As an example, we focus our attention on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, given the constraints enforced by fluid mechanics. By means of numerical experiments, we show that swimmers indeed learn nearly optimal strategies just by experience. A reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This Letter illustrates the potential of reinforcement learning algorithms to model adaptive behavior in complex flows and paves the way towards the engineering of smart microswimmers that solve difficult navigation problems.
Navigating a Maze with Balance Board and Wiimote
NASA Astrophysics Data System (ADS)
Fikkert, Wim; Hoeijmakers, Niek; van der Vet, Paul; Nijholt, Anton
Input from the lower body in human-computer interfaces can be beneficial, enjoyable and even entertaining when users are expected to perform tasks simultaneously. Users can navigate a virtual (game) world or even an (empirical) dataset while having their hands free to issue commands. We compared the Wii Balance Board to a hand-held Wiimote for navigating a maze and found that users completed this task slower with the Balance Board. However, the Balance Board was considered more intuitive, easy to learn and ‘much fun’.
Spatial and temporal aspects of navigation in two neurological patients.
van der Ham, Ineke J M; van Zandvoort, Martine J E; Meilinger, Tobias; Bosch, Sander E; Kant, Neeltje; Postma, Albert
2010-07-14
We present two cases (A.C. and W.J.) with navigation problems resulting from parieto-occipital right hemisphere damage. For both the cases, performance on the neuropsychological tests did not indicate specific impairments in spatial processing, despite severe subjective complaints of spatial disorientation. Various aspects of navigation were tested in a new virtual reality task, the Virtual Tübingen task. A double dissociation between spatial and temporal deficits was found; A.C. was impaired in route ordering, a temporal test, whereas W.J. was impaired in scene recognition and route continuation, which are spatial in nature. These findings offer important insights in the functional and neural architecture of navigation.
Natural Language Processing in aid of FlyBase curators
Karamanis, Nikiforos; Seal, Ruth; Lewin, Ian; McQuilton, Peter; Vlachos, Andreas; Gasperin, Caroline; Drysdale, Rachel; Briscoe, Ted
2008-01-01
Background Despite increasing interest in applying Natural Language Processing (NLP) to biomedical text, whether this technology can facilitate tasks such as database curation remains unclear. Results PaperBrowser is the first NLP-powered interface that was developed under a user-centered approach to improve the way in which FlyBase curators navigate an article. In this paper, we first discuss how observing curators at work informed the design and evaluation of PaperBrowser. Then, we present how we appraise PaperBrowser's navigational functionalities in a user-based study using a text highlighting task and evaluation criteria of Human-Computer Interaction. Our results show that PaperBrowser reduces the amount of interactions between two highlighting events and therefore improves navigational efficiency by about 58% compared to the navigational mechanism that was previously available to the curators. Moreover, PaperBrowser is shown to provide curators with enhanced navigational utility by over 74% irrespective of the different ways in which they highlight text in the article. Conclusion We show that state-of-the-art performance in certain NLP tasks such as Named Entity Recognition and Anaphora Resolution can be combined with the navigational functionalities of PaperBrowser to support curation quite successfully. PMID:18410678
Kilohoku Ho`okele Wa`a : Astronomy of the Modern Hawaiian Wayfinders
NASA Astrophysics Data System (ADS)
Ha`o, Celeste; Dye, Ahia G.; Slater, Stephanie J.; Slater, Timothy F.; Baybayan, Kalepa
2015-08-01
This paper provides an introduction to Kilohoku Ho`okele Wa`a, the astronomy of the Hawaiian wayfinders. Rooted in a legacy of navigation across the Polynesian triangle, wayfinding astronomy has been part of a suite of skills that allows navigators to deliberately hop between the small islands of the Pacific, for thousands of years. Forty years ago, in one manifestation of the Hawaiian Renaissance, our teachers demonstrated that ancient Hawaiians were capable of traversing the wide Pacific to settle and trade on islands separated by thousands of miles. Today those same mentors train a new generation of navigators, making Hawaiian voyaging a living, evolving, sustainable endeavor. This paper presents two components of astronomical knowledge that all crewmen, but particularly those in training to become navigators, learn early in their training. Na Ohana Hoku, the Hawaiian Star Families constitute the basic units of the Hawaiian sky. In contrast to the Western system of 88 constellations, Na Ohana Hoku divides the sky into four sections that each run from the northern to the southern poles. This configuration reduces cognitive load, allowing the navigator to preserve working memory for other complex tasks. In addition, these configurations of stars support the navigator in finding and generatively using hundreds of individual, and navigationally important pairs of stars. The Hawaiian Star Compass divides the celestial sphere into a directional system that uses 32 rather than 8 cardinal points. Within the tropics, the rising and setting of celestial objects are consistent within the Hawaiian Star Compass, providing for extremely reliable direction finding. Together, Na Ohana Hoku and the Hawaiian Star Compass provide the tropical navigator with astronomical assistance that is not available to, and would have been unknown to Western navigators trained at higher latitudes.
Taux: A System for Evaluating Sound Feedback in Navigational Tasks
ERIC Educational Resources Information Center
Lutz, Robert J.
2008-01-01
This thesis presents the design and development of an evaluation system for generating audio displays that provide feedback to persons performing navigation tasks. It first develops the need for such a system by describing existing wayfinding solutions, investigating new electronic location-based methods that have the potential of changing these…
Design of a 3D Navigation Technique Supporting VR Interaction
NASA Astrophysics Data System (ADS)
Boudoin, Pierre; Otmane, Samir; Mallem, Malik
2008-06-01
Multimodality is a powerful paradigm to increase the realness and the easiness of the interaction in Virtual Environments (VEs). In particular, the search for new metaphors and techniques for 3D interaction adapted to the navigation task is an important stage for the realization of future 3D interaction systems that support multimodality, in order to increase efficiency and usability. In this paper we propose a new multimodal 3D interaction model called Fly Over. This model is especially devoted to the navigation task. We present a qualitative comparison between Fly Over and a classical navigation technique called gaze-directed steering. The results from preliminary evaluation on the IBISC semi-immersive Virtual Reality/Augmented Realty EVR@ platform show that Fly Over is a user friendly and efficient navigation technique.
Lövdén, Martin; Schaefer, Sabine; Noack, Hannes; Kanowski, Martin; Kaufmann, Jörn; Tempelmann, Claus; Bodammer, Nils Christian; Kühn, Simone; Heinze, Hans-Jochen; Lindenberger, Ulman; Düzel, Emrah; Bäckman, Lars
2011-06-01
Recent evidence indicates experience-dependent brain volume changes in humans, but the functional and histological nature of such changes is unknown. Here, we report that adult men performing a cognitively demanding spatial navigation task every other day over 4 months display increases in hippocampal N-acetylaspartate (NAA) as measured with magnetic resonance spectroscopy. Unlike measures of brain volume, changes in NAA are sensitive to metabolic and functional aspects of neural and glia tissue and unlikely to reflect changes in microvasculature. Training-induced changes in NAA were, however, absent in carriers of the Met substitution in the brain-derived neurotrophic factor (BDNF) gene, which is known to reduce activity-dependent secretion of BDNF. Among BDNF Val homozygotes, increases in NAA were strongly related to the degree of practice-related improvement in navigation performance and normalized to pretraining levels 4 months after the last training session. We conclude that changes in demands on spatial navigation can alter hippocampal NAA concentrations, confirming epidemiological studies suggesting that mental experience may have direct effects on neural integrity and cognitive performance. BDNF genotype moderates these plastic changes, in line with the contention that gene-context interactions shape the ontogeny of complex phenotypes.
An evaluation of unisensory and multisensory adaptive flight-path navigation displays
NASA Astrophysics Data System (ADS)
Moroney, Brian W.
1999-11-01
The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added benefit of the adaptive interfaces. In the return-to-course scenario, the relative advantages of the three adaptive interfaces were dependent upon the nature of the CT in a complex way. In the absence of a CT, recovery heading performance was superior with the adaptive visual and adaptive composite interfaces compared to the adaptive auditory interface. In the context of a visual CT, recovery when using the adaptive composite interface was superior to that when using the adaptive visual interface. Post-experimental inquiry indicated that when faced with a visual CT, the pilots used the auditory component of the multimodal guidance display to detect gross heading errors and the visual component to make more fine-grained heading adjustments. In the context of the auditory CT, navigation performance using the adaptive visual interface tended to be superior to that when using the adaptive auditory interface. Neither CT performance nor NASA-TLX workload level was influenced differentially by the interface configurations. Thus, the potential benefits associated with the proposed interfaces appear to be unaccompanied by negative side effects involving CT interference and workload. The adaptive interface configurations were altered without any direct input from the pilot. Thus, it was feared that pilots might reject the activation of interfaces independent of their control. However, pilots' debriefing comments about the efficacy of the adaptive interface approach were very positive. (Abstract shortened by UMI.)
Ciaramelli, Elisa; Rosenbaum, R Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris
2010-05-01
The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Mobile robot exploration and navigation of indoor spaces using sonar and vision
NASA Technical Reports Server (NTRS)
Kortenkamp, David; Huber, Marcus; Koss, Frank; Belding, William; Lee, Jaeho; Wu, Annie; Bidlack, Clint; Rodgers, Seth
1994-01-01
Integration of skills into an autonomous robot that performs a complex task is described. Time constraints prevented complete integration of all the described skills. The biggest problem was tuning the sensor-based region-finding algorithm to the environment involved. Since localization depended on matching regions found with the a priori map, the robot became lost very quickly. If the low level sensing of the world is not working, then high level reasoning or map making will be unsuccessful.
Intelligent single switch wheelchair navigation.
Ka, Hyun W; Simpson, Richard; Chung, Younghyun
2012-11-01
We have developed an intelligent single switch scanning interface and wheelchair navigation assistance system, called intelligent single switch wheelchair navigation (ISSWN), to improve driving safety, comfort and efficiency for individuals who rely on single switch scanning as a control method. ISSWN combines a standard powered wheelchair with a laser rangefinder, a single switch scanning interface and a computer. It provides the user with context sensitive and task specific scanning options that reduce driving effort based on an interpretation of sensor data together with user input. Trials performed by 9 able-bodied participants showed that the system significantly improved driving safety and efficiency in a navigation task by significantly reducing the number of switch presses to 43.5% of traditional single switch wheelchair navigation (p < 0.001). All participants made a significant improvement (39.1%; p < 0.001) in completion time after only two trials.
Navigation for the new millennium: Autonomous navigation for Deep Space 1
NASA Technical Reports Server (NTRS)
Reidel, J. E.; Bhaskaran, S.; Synnott, S. P.; Desai, S. D.; Bollman, W. E.; Dumont, P. J.; Halsell, C. A.; Han, D.; Kennedy, B. M.; Null, G. W.;
1997-01-01
The autonomous optical navigation system technology for the Deep Space 1 (DS1) mission is reported on. The DS1 navigation system will be the first to use autonomous navigation in deep space. The systems tasks are to: perform interplanetary cruise orbit determination using images of distant asteroids; control and maintain the orbit of the spacecraft with an ion propulsion system and conventional thrusters, and perform late knowledge updates of target position during close flybys in order to facilitate high quality data return from asteroid MaAuliffe and comet West-Kohoutek-Ikemura. To accomplish these tasks, the following functions are required: picture planning; image processing; dynamical modeling and integration; planetary ephemeris and star catalog handling; orbit determination; data filtering and estimation; maneuver estimation, and spacecraft ephemeris updating. These systems and functions are described and preliminary performance data are presented.
Foti, Francesca; Sdoia, Stefano; Menghini, Deny; Mandolesi, Laura; Vicari, Stefano; Ferlazzo, Fabio; Petrosini, Laura
2015-01-01
Williams syndrome (WS) is associated with a distinct profile of relatively proficient skills within the verbal domain compared to the severe impairment of visuo-spatial processing. Abnormalities in executive functions and deficits in planning ability and spatial working memory have been described. However, to date little is known about the influence of executive function deficits on navigational abilities in WS. This study aimed at analyzing in WS individuals a specific executive function, the backward inhibition (BI) that allows individuals to flexibly adapt to continuously changing environments. A group of WS individuals and a mental age- and gender-matched group of typically developing children were subjected to three task-switching experiments requiring visuospatial or verbal material to be processed. Results showed that WS individuals exhibited clear BI deficits during visuospatial task-switching paradigms and normal BI effect during verbal task-switching paradigm. Overall, the present results suggest that the BI involvement in updating environment representations during navigation may influence WS navigational abilities. PMID:25852605
Local Use-Dependent Sleep in Wakefulness Links Performance Errors to Learning
Quercia, Angelica; Zappasodi, Filippo; Committeri, Giorgia; Ferrara, Michele
2018-01-01
Sleep and wakefulness are no longer to be considered as discrete states. During wakefulness brain regions can enter a sleep-like state (off-periods) in response to a prolonged period of activity (local use-dependent sleep). Similarly, during nonREM sleep the slow-wave activity, the hallmark of sleep plasticity, increases locally in brain regions previously involved in a learning task. Recent studies have demonstrated that behavioral performance may be impaired by off-periods in wake in task-related regions. However, the relation between off-periods in wake, related performance errors and learning is still untested in humans. Here, by employing high density electroencephalographic (hd-EEG) recordings, we investigated local use-dependent sleep in wake, asking participants to repeat continuously two intensive spatial navigation tasks. Critically, one task relied on previous map learning (Wayfinding) while the other did not (Control). Behaviorally awake participants, who were not sleep deprived, showed progressive increments of delta activity only during the learning-based spatial navigation task. As shown by source localization, delta activity was mainly localized in the left parietal and bilateral frontal cortices, all regions known to be engaged in spatial navigation tasks. Moreover, during the Wayfinding task, these increments of delta power were specifically associated with errors, whose probability of occurrence was significantly higher compared to the Control task. Unlike the Wayfinding task, during the Control task neither delta activity nor the number of errors increased progressively. Furthermore, during the Wayfinding task, both the number and the amplitude of individual delta waves, as indexes of neuronal silence in wake (off-periods), were significantly higher during errors than hits. Finally, a path analysis linked the use of the spatial navigation circuits undergone to learning plasticity to off periods in wake. In conclusion, local sleep regulation in wakefulness, associated with performance failures, could be functionally linked to learning-related cortical plasticity. PMID:29666574
Assessment of Spatial Navigation and Docking Performance During Simulated Rover Tasks
NASA Technical Reports Server (NTRS)
Wood, S. J.; Dean, S. L.; De Dios, Y. E.; Moore, S. T.
2010-01-01
INTRODUCTION: Following long-duration exploration transits, pressurized rovers will enhance surface mobility to explore multiple sites across Mars and other planetary bodies. Multiple rovers with docking capabilities are envisioned to expand the range of exploration. However, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely navigate and perform docking tasks shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify post-flight decrements in spatial navigation and docking performance during a rover simulation. METHODS: Eight crewmembers returning from the International Space Station will be tested on a motion simulator during four pre-flight and three post-flight sessions over the first 8 days following landing. The rover simulation consists of a serial presentation of discrete tasks to be completed within a scheduled 10 min block. The tasks are based on navigating around a Martian outpost spread over a 970 sq m terrain. Each task is subdivided into three components to be performed as quickly and accurately as possible: (1) Perspective taking: Subjects use a joystick to indicate direction of target after presentation of a map detailing current orientation and location of the rover with the task to be performed. (2) Navigation: Subjects drive the rover to the desired location while avoiding obstacles. (3) Docking: Fine positioning of the rover is required to dock with another object or align a camera view. Overall operator proficiency will be based on how many tasks the crewmember can complete during the 10 min time block. EXPECTED RESULTS: Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to a wide variety of simulated vehicle designs to provide sensorimotor assessments for other operational and civilian populations.
In Search of the Optimal Path: How Learners at Task Use an Online Dictionary
ERIC Educational Resources Information Center
Hamel, Marie-Josee
2012-01-01
We have analyzed circa 180 navigation paths followed by six learners while they performed three language encoding tasks at the computer using an online dictionary prototype. Our hypothesis was that learners who follow an "optimal path" while navigating within the dictionary, using its search and look-up functions, would have a high chance of…
Aging and Sensory Substitution in a Virtual Navigation Task.
Levy-Tzedek, S; Maidenbaum, S; Amedi, A; Lackner, J
2016-01-01
Virtual environments are becoming ubiquitous, and used in a variety of contexts-from entertainment to training and rehabilitation. Recently, technology for making them more accessible to blind or visually impaired users has been developed, by using sound to represent visual information. The ability of older individuals to interpret these cues has not yet been studied. In this experiment, we studied the effects of age and sensory modality (visual or auditory) on navigation through a virtual maze. We added a layer of complexity by conducting the experiment in a rotating room, in order to test the effect of the spatial bias induced by the rotation on performance. Results from 29 participants showed that with the auditory cues, it took participants a longer time to complete the mazes, they took a longer path length through the maze, they paused more, and had more collisions with the walls, compared to navigation with the visual cues. The older group took a longer time to complete the mazes, they paused more, and had more collisions with the walls, compared to the younger group. There was no effect of room rotation on the performance, nor were there any significant interactions among age, feedback modality and room rotation. We conclude that there is a decline in performance with age, and that while navigation with auditory cues is possible even at an old age, it presents more challenges than visual navigation.
Chiang, Kai-Wei; Liao, Jhen-Kai; Tsai, Guang-Je; Chang, Hsiu-Wen
2015-01-01
Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions. PMID:26729114
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate
2015-01-01
Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments. We firstly tested our approach on a physical simulation environment and then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively avoid obstacles and navigate in the real world.
Grinke, Eduard; Tetzlaff, Christian; Wörgötter, Florentin; Manoonpong, Poramate
2015-01-01
Walking animals, like insects, with little neural computing can effectively perform complex behaviors. For example, they can walk around their environment, escape from corners/deadlocks, and avoid or climb over obstacles. While performing all these behaviors, they can also adapt their movements to deal with an unknown situation. As a consequence, they successfully navigate through their complex environment. The versatile and adaptive abilities are the result of an integration of several ingredients embedded in their sensorimotor loop. Biological studies reveal that the ingredients include neural dynamics, plasticity, sensory feedback, and biomechanics. Generating such versatile and adaptive behaviors for a many degrees-of-freedom (DOFs) walking robot is a challenging task. Thus, in this study, we present a bio-inspired approach to solve this task. Specifically, the approach combines neural mechanisms with plasticity, exteroceptive sensory feedback, and biomechanics. The neural mechanisms consist of adaptive neural sensory processing and modular neural locomotion control. The sensory processing is based on a small recurrent neural network consisting of two fully connected neurons. Online correlation-based learning with synaptic scaling is applied to adequately change the connections of the network. By doing so, we can effectively exploit neural dynamics (i.e., hysteresis effects and single attractors) in the network to generate different turning angles with short-term memory for a walking robot. The turning information is transmitted as descending steering signals to the neural locomotion control which translates the signals into motor actions. As a result, the robot can walk around and adapt its turning angle for avoiding obstacles in different situations. The adaptation also enables the robot to effectively escape from sharp corners or deadlocks. Using backbone joint control embedded in the the locomotion control allows the robot to climb over small obstacles. Consequently, it can successfully explore and navigate in complex environments. We firstly tested our approach on a physical simulation environment and then applied it to our real biomechanical walking robot AMOSII with 19 DOFs to adaptively avoid obstacles and navigate in the real world. PMID:26528176
Examining the effects of an eco-driving message on driver distraction.
Rouzikhah, Hossein; King, Mark; Rakotonirainy, Andry
2013-01-01
This paper examines the effects of an eco-driving message on driver distraction. Two in-vehicle distracter tasks were compared with an eco-driving task and a baseline task in an advanced driving simulator. N=22 subjects were asked to perform an eco-driving, CD changing, and a navigation task while engaged in critical manoeuvres during which they were expected to respond to a peripheral detection task (PDT) with total duration of 3.5h. The study involved two sessions over two consecutive days. The results show that drivers' mental workloads are significantly higher during navigation and CD changing tasks in comparison to the two other scenarios. However, eco-driving mental workload is still marginally significant (p∼.05) across different manoeuvres. Similarly, event detection tasks show that drivers miss significantly more events in the navigation and CD changing scenarios in comparison to both the baseline and eco-driving scenario. Analysis of the practice effect shows that drivers' baseline scenario and navigation scenario exhibit significantly less demand on the second day. Drivers also can detect significantly more events on the second day for all scenarios. The authors conclude that even reading a simple message while driving could potentially lead to missing an important event, especially when executing critical manoeuvres. However, there is some evidence of a practice effect which suggests that future research should focus on performance with habitual rather than novel tasks. It is recommended that sending text as an eco-driving message analogous to the study circumstances should not be delivered to drivers on-line when vehicle is in motion. Copyright © 2012 Elsevier Ltd. All rights reserved.
Navigation through unknown and dynamic open spaces using topological notions
NASA Astrophysics Data System (ADS)
Miguel-Tomé, Sergio
2018-04-01
Until now, most algorithms used for navigation have had the purpose of directing system towards one point in space. However, humans communicate tasks by specifying spatial relations among elements or places. In addition, the environments in which humans develop their activities are extremely dynamic. The only option that allows for successful navigation in dynamic and unknown environments is making real-time decisions. Therefore, robots capable of collaborating closely with human beings must be able to make decisions based on the local information registered by the sensors and interpret and express spatial relations. Furthermore, when one person is asked to perform a task in an environment, this task is communicated given a category of goals so the person does not need to be supervised. Thus, two problems appear when one wants to create multifunctional robots: how to navigate in dynamic and unknown environments using spatial relations and how to accomplish this without supervision. In this article, a new architecture to address the two cited problems is presented, called the topological qualitative navigation architecture. In previous works, a qualitative heuristic called the heuristic of topological qualitative semantics (HTQS) has been developed to establish and identify spatial relations. However, that heuristic only allows for establishing one spatial relation with a specific object. In contrast, navigation requires a temporal sequence of goals with different objects. The new architecture attains continuous generation of goals and resolves them using HTQS. Thus, the new architecture achieves autonomous navigation in dynamic or unknown open environments.
Eye tracking, strategies, and sex differences in virtual navigation.
Andersen, Nicolas E; Dahmani, Louisa; Konishi, Kyoko; Bohbot, Véronique D
2012-01-01
Reports of sex differences in wayfinding have typically used paradigms sensitive to the female advantage (navigation by landmarks) or sensitive to the male advantage (navigation by cardinal directions, Euclidian coordinates, environmental geometry, and absolute distances). The current virtual navigation paradigm allowed both men and women an equal advantage. We studied sex differences by systematically varying the number of landmarks. Eye tracking was used to quantify sex differences in landmark utilisation as participants solved an eight-arm radial maze task within different virtual environments. To solve the task, participants were required to remember the locations of target objects within environments containing 0, 2, 4, 6, or 8 landmarks. We found that, as the number of landmarks available in the environment increases, the proportion of time men and women spend looking at landmarks and the number of landmarks they use to find their way increases. Eye tracking confirmed that women rely more on landmarks to navigate, although landmark fixations were also associated with an increase in task completion time. Sex differences in navigational behaviour occurred only in environments devoid of landmarks and disappeared in environments containing multiple landmarks. Moreover, women showed sustained landmark-oriented gaze, while men's decreased over time. Finally, we found that men and women use spatial and response strategies to the same extent. Together, these results shed new light on the discrepancy in landmark utilisation between men and women and help explain the differences in navigational behaviour previously reported. Copyright © 2011 Elsevier Inc. All rights reserved.
Constrained surface controllers for three-dimensional image data reformatting.
Graves, Martin J; Black, Richard T; Lomas, David J
2009-07-01
This study did not require ethical approval in the United Kingdom. The aim of this work was to create two controllers for navigating a two-dimensional image plane through a volumetric data set, providing two important features of the ultrasonographic paradigm: orientation matching of the navigation device and the desired image plane in the three-dimensional (3D) data and a constraining surface to provide a nonvisual reference for the image plane location in the 3D data. The first constrained surface controller (CSC) uses a planar constraining surface, while the second CSC uses a hemispheric constraining surface. Ten radiologists were asked to obtain specific image reformations by using both controllers and a commercially available medical imaging workstation. The time taken to perform each reformatting task was recorded. The users were also asked structured questions comparing the utility of both methods. There was a significant reduction in the time taken to perform the specified reformatting tasks by using the simpler planar controller as compared with a standard workstation, whereas there was no significant difference for the more complex hemispheric controller. The majority of users reported that both controllers allowed them to concentrate entirely on the reformatting task and the related image rather than being distracted by the need for interaction with the workstation interface. In conclusion, the CSCs provide an intuitive paradigm for interactive reformatting of volumetric data. (c) RSNA, 2009.
Crew performance and communication: Performing a terrain navigation task
NASA Technical Reports Server (NTRS)
Battiste, Vernol; Delzell, Susanne
1993-01-01
A study was conducted to examine the map and route cues pilots use while navigating under controlled, but realistic, nap-of-the-earth (NOE) flight conditions. US Army helicopter flight crews were presented a map and route overlay and asked to perform normal mission planning. They then viewed a video-recording of the out-the-window scene during low-level flights, without the route overlay, and were asked periodically to locate their current position on the map. The pilots and navigators were asked to communicate normally during the planning and flight phases. During each flight the navigator's response time, accuracy, and subjective workload were assessed. Post-flight NASA-TLX workload ratings were collected. No main effect of map orientation (north-up vs. track-up) was found for errors or response times on any of the tasks evaluated. Navigators in the north-up group rated their workload lower than those in the track-up group.
Blaser, R E; Wilber, Julie
2013-11-01
Performance on a typical pen-and-paper (figural) version of the Traveling Salesman Problem was compared to performance on a room-sized navigational version of the same task. Nine configurations were designed to examine the use of the nearest-neighbor (NN), cluster approach, and convex-hull strategies. Performance decreased with an increasing number of nodes internal to the hull, and improved when the NN strategy produced the optimal path. There was no overall difference in performance between figural and navigational task modalities. However, there was an interaction between modality and configuration, with evidence that participants relied more heavily on the NN strategy in the figural condition. Our results suggest that participants employed similar, but not identical, strategies when solving figural and navigational versions of the problem. Surprisingly, there was no evidence that participants favored global strategies in the figural version and local strategies in the navigational version.
Pedersen, Kaspar Jessen; Boisen, Kirsten Arntz; Midtgaard, Julie; Elsbernd, Abbey; Larsen, Hanne Baekgaard
2018-03-13
An insufficient transition to normal life after cancer treatment in adolescent and young adults (AYAs) may lead to decreased occupational and educational opportunities throughout a survivor's lifespan. Key informant interviews were used to access unique knowledge of the healthcare, educational, and social systems. We used key informant interviews with professionals representing disciplines from healthcare, educational, and social systems (n = 15). Informants were recruited through purposive sampling and snowball sampling. Interviews were analyzed thematically using Malterud's Systematic Text Condensation and verified by member checking. We found four major themes: the impact of late effects, navigating the system, social reintegration, and the drive of youth. Although legal frameworks are often in place to assist AYA cancer survivors, navigating the public, educational, and social systems is a complex task and many AYAs do not have the required skill set or energy. Furthermore, AYA survivors often feel different from their peers and misunderstood by their surroundings, which may hinder reintegration into normal social life. In Scandinavia, healthcare and education are free of charge with equal access for all, primarily funded by government taxes. Therefore, insurance status and tuition fees should not constitute barriers for returning to education and work. However, this study finds that the public and educational systems are complex to navigate, and that AYAs face trouble mobilizing the energy to receive needed support.
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.
Sato, Masaaki; Kawano, Masako; Mizuta, Kotaro; Islam, Tanvir; Lee, Min Goo; Hayashi, Yasunori
2017-01-01
The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR.
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality
Kawano, Masako; Mizuta, Kotaro; Islam, Tanvir; Lee, Min Goo; Hayashi, Yasunori
2017-01-01
Abstract The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR. PMID:28484738
Heid, Allison R; Zarit, Steven H; Van Haitsma, Kimberly
2016-01-01
This study seeks to address how older adults influence their daily care when their preferences conflict with those of their adult daughter caregivers. Using a sample of 10 dyads (N = 20) of an older adult and adult daughter, we utilize content analysis strategies to analyze in-depth, semi-structured interview data with QSR NVIVO to investigate how older adults influence their care, how daughters respond to such efforts of influence, and how dyads navigate differences in care goals. When there is agreement in goals, dyads report tasks going well and both individuals' requests are honored. When there are differences in care goals, daughters most frequently reason with their older parents, while parents walk away or 'let go' of their requests. Daughters report making decisions for their parents for health or safety-related needs. However, all dyads discuss differences in care goals, whereby parents are perceived as insisting, resisting, or persisting in care. Findings illustrate complex patterns of responses by families when navigating differences in daily care goals that carry important implications for research and the development of dyadic-based family interventions.
Information access in a dual-task context: testing a model of optimal strategy selection.
Wickens, C D; Seidler, K S
1997-09-01
Pilots were required to access information from a hierarchical aviation database by navigating under single-task conditions (Experiment 1) and when this task was time-shared with an altitude-monitoring task of varying bandwidth and priority (Experiment 2). In dual-task conditions, pilots had 2 viewports available, 1 always used for the information task and the other to be allocated to either task. Dual-task strategy, inferred from the decision of which task to allocate to the 2nd viewport, revealed that allocation was generally biased in favor of the monitoring task and was only partly sensitive to the difficulty of the 2 tasks and their relative priorities. Some dominant sources of navigational difficulties failed to adaptively influence selection strategy. The implications of the results are to provide tools for jumping to the top of the database, to provide 2 viewports into the common database, and to provide training as to the optimum viewport management strategy in a multitask environment.
Information access in a dual-task context: testing a model of optimal strategy selection
NASA Technical Reports Server (NTRS)
Wickens, C. D.; Seidler, K. S.
1997-01-01
Pilots were required to access information from a hierarchical aviation database by navigating under single-task conditions (Experiment 1) and when this task was time-shared with an altitude-monitoring task of varying bandwidth and priority (Experiment 2). In dual-task conditions, pilots had 2 viewports available, 1 always used for the information task and the other to be allocated to either task. Dual-task strategy, inferred from the decision of which task to allocate to the 2nd viewport, revealed that allocation was generally biased in favor of the monitoring task and was only partly sensitive to the difficulty of the 2 tasks and their relative priorities. Some dominant sources of navigational difficulties failed to adaptively influence selection strategy. The implications of the results are to provide tools for jumping to the top of the database, to provide 2 viewports into the common database, and to provide training as to the optimum viewport management strategy in a multitask environment.
Laczó, Jan; Markova, Hana; Lobellova, Veronika; Gazova, Ivana; Parizkova, Martina; Cerman, Jiri; Nekovarova, Tereza; Vales, Karel; Klovrzova, Sylva; Harrison, John; Windisch, Manfred; Vlcek, Kamil; Svoboda, Jan; Hort, Jakub; Stuchlik, Ales
2017-02-01
Development of new drugs for treatment of Alzheimer's disease (AD) requires valid paradigms for testing their efficacy and sensitive tests validated in translational research. We present validation of a place-navigation task, a Hidden Goal Task (HGT) based on the Morris water maze (MWM), in comparable animal and human protocols. We used scopolamine to model cognitive dysfunction similar to that seen in AD and donepezil, a symptomatic medication for AD, to assess its potential reversible effect on this scopolamine-induced cognitive dysfunction. We tested the effects of scopolamine and the combination of scopolamine and donepezil on place navigation and compared their effects in human and rat versions of the HGT. Place navigation testing consisted of 4 sessions of HGT performed at baseline, 2, 4, and 8 h after dosing in humans or 1, 2.5, and 5 h in rats. Scopolamine worsened performance in both animals and humans. In the animal experiment, co-administration of donepezil alleviated the negative effect of scopolamine. In the human experiment, subjects co-administered with scopolamine and donepezil performed similarly to subjects on placebo and scopolamine, indicating a partial ameliorative effect of donepezil. In the task based on the MWM, scopolamine impaired place navigation, while co-administration of donepezil alleviated this effect in comparable animal and human protocols. Using scopolamine and donepezil to challenge place navigation testing can be studied concurrently in animals and humans and may be a valid and reliable model for translational research, as well as for preclinical and clinical phases of drug trials.
Inattentional blindness increased with augmented reality surgical navigation.
Dixon, Benjamin J; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C
2014-01-01
Augmented reality (AR) surgical navigation systems, designed to increase accuracy and efficiency, have been shown to negatively impact on attention. We wished to assess the effect "head-up" AR displays have on attention, efficiency, and accuracy, while performing a surgical task, compared with the same information being presented on a submonitor (SM). Fifty experienced otolaryngology surgeons (n = 42) and senior otolaryngology trainees (n = 8) performed an endoscopic surgical navigation exercise on a predissected cadaveric model. Computed tomography-generated anatomic contours were fused with the endoscopic image to provide an AR view. Subjects were randomized to perform the task with a standard endoscopic monitor with the AR navigation displayed on an SM or with AR as a single display. Accuracy, task completion time, and the recognition of unexpected findings (a foreign body and a critical complication) were recorded. Recognition of the foreign body was significantly better in the SM group (15/25 [60%]) compared with the AR alone group (8/25 [32%]; p = 0.02). There was no significant difference in task completion time (p = 0.83) or accuracy (p = 0.78) between the two groups. Providing identical surgical navigation on a SM, rather than on a single head-up display, reduced the level of inattentional blindness as measured by detection of unexpected findings. These gains were achieved without any measurable impact on efficiency or accuracy. AR displays may distract the user and we caution injudicious adoption of this technology for medical procedures.
Deep imitation learning for 3D navigation tasks.
Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina
2018-01-01
Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.
Ganji, Yusof; Janabi-Sharifi, Farrokh; Cheema, Asim N
2011-12-01
Despite the recent advances in catheter design and technology, intra-cardiac navigation during electrophysiology procedures remains challenging. Incorporation of imaging along with magnetic or robotic guidance may improve navigation accuracy and procedural safety. In the present study, the in vivo performance of a novel remote controlled Robot Assisted Cardiac Navigation System (RACN) was evaluated in a porcine model. The navigation catheter and target sensor were advanced to the right atrium using fluoroscopic and intra-cardiac echo guidance. The target sensor was positioned at three target locations in the right atrium (RA) and the navigation task was completed by an experienced physician using both manual and RACN guidance. The navigation time, final distance between the catheter tip and target sensor, and variability in final catheter tip position were determined and compared for manual and RACN guided navigation. The experiments were completed in three animals and five measurements recorded for each target location. The mean distance (mm) between catheter tip and target sensor at the end of the navigation task was significantly less using RACN guidance compared with manual navigation (5.02 ± 0.31 vs. 9.66 ± 2.88, p = 0.050 for high RA, 9.19 ± 1.13 vs. 13.0 ± 1.00, p = 0.011 for low RA and 6.77 ± 0.59 vs. 15.66 ± 2.51, p = 0.003 for tricuspid valve annulus). The average time (s) needed to complete the navigation task was significantly longer by RACN guided navigation compared with manual navigation (43.31 ± 18.19 vs. 13.54 ± 1.36, p = 0.047 for high RA, 43.71 ± 11.93 vs. 22.71 ± 3.79, p = 0.043 for low RA and 37.84 ± 3.71 vs. 16.13 ± 4.92, p = 0.003 for tricuspid valve annulus. RACN guided navigation resulted in greater consistency in performance compared with manual navigation as evidenced by lower variability in final distance measurements (0.41 vs. 0.99 mm, p = 0.04). This study demonstrated the safety and feasibility of the RACN system for cardiac navigation. The results demonstrated that RACN performed comparably with manual navigation, with improved precision and consistency for targets located in and near the right atrial chamber. Copyright © 2011 John Wiley & Sons, Ltd.
Integrated Information Increases with Fitness in the Evolution of Animats
Edlund, Jeffrey A.; Chaumont, Nicolas; Hintze, Arend; Koch, Christof; Tononi, Giulio; Adami, Christoph
2011-01-01
One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent (“animat”) evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its “fit” to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data. PMID:22028639
Concurrent planning and execution for a walking robot
NASA Astrophysics Data System (ADS)
Simmons, Reid
1990-07-01
The Planetary Rover project is developing the Ambler, a novel legged robot, and an autonomous software system for walking the Ambler over rough terrain. As part of the project, we have developed a system that integrates perception, planning, and real-time control to navigate a single leg of the robot through complex obstacle courses. The system is integrated using the Task Control Architecture (TCA), a general-purpose set of utilities for building and controlling distributed mobile robot systems. The walking system, as originally implemented, utilized a sequential sense-plan-act control cycle. This report describes efforts to improve the performance of the system by concurrently planning and executing steps. Concurrency was achieved by modifying the existing sequential system to utilize TCA features such as resource management, monitors, temporal constraints, and hierarchical task trees. Performance was increased in excess of 30 percent with only a relatively modest effort to convert and test the system. The results lend support to the utility of using TCA to develop complex mobile robot systems.
Closed-Loop Targeted Memory Reactivation during Sleep Improves Spatial Navigation.
Shimizu, Renee E; Connolly, Patrick M; Cellini, Nicola; Armstrong, Diana M; Hernandez, Lexus T; Estrada, Rolando; Aguilar, Mario; Weisend, Michael P; Mednick, Sara C; Simons, Stephen B
2018-01-01
Sounds associated with newly learned information that are replayed during non-rapid eye movement (NREM) sleep can improve recall in simple tasks. The mechanism for this improvement is presumed to be reactivation of the newly learned memory during sleep when consolidation takes place. We have developed an EEG-based closed-loop system to precisely deliver sensory stimulation at the time of down-state to up-state transitions during NREM sleep. Here, we demonstrate that applying this technology to participants performing a realistic navigation task in virtual reality results in a significant improvement in navigation efficiency after sleep that is accompanied by increases in the spectral power especially in the fast (12-15 Hz) sleep spindle band. Our results show promise for the application of sleep-based interventions to drive improvement in real-world tasks.
Using Grid Benchmarks for Dynamic Scheduling of Grid Applications
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert
2003-01-01
Navigation or dynamic scheduling of applications on computational grids can be improved through the use of an application-specific characterization of grid resources. Current grid information systems provide a description of the resources, but do not contain any application-specific information. We define a GridScape as dynamic state of the grid resources. We measure the dynamic performance of these resources using the grid benchmarks. Then we use the GridScape for automatic assignment of the tasks of a grid application to grid resources. The scalability of the system is achieved by limiting the navigation overhead to a few percent of the application resource requirements. Our task submission and assignment protocol guarantees that the navigation system does not cause grid congestion. On a synthetic data mining application we demonstrate that Gridscape-based task assignment reduces the application tunaround time.
Rand, Kristina M.; Creem-Regehr, Sarah H.; Thompson, William B.
2015-01-01
The ability to navigate without getting lost is an important aspect of quality of life. In five studies, we evaluated how spatial learning is affected by the increased demands of keeping oneself safe while walking with degraded vision (mobility monitoring). We proposed that safe low-vision mobility requires attentional resources, providing competition for those needed to learn a new environment. In Experiments 1 and 2 participants navigated along paths in a real-world indoor environment with simulated degraded vision or normal vision. Memory for object locations seen along the paths was better with normal compared to degraded vision. With degraded vision, memory was better when participants were guided by an experimenter (low monitoring demands) versus unguided (high monitoring demands). In Experiments 3 and 4, participants walked while performing an auditory task. Auditory task performance was superior with normal compared to degraded vision. With degraded vision, auditory task performance was better when guided compared to unguided. In Experiment 5, participants performed both the spatial learning and auditory tasks under degraded vision. Results showed that attention mediates the relationship between mobility-monitoring demands and spatial learning. These studies suggest that more attention is required and spatial learning is impaired when navigating with degraded viewing. PMID:25706766
NASA Astrophysics Data System (ADS)
Iakovleva, E. V.; Momot, B. A.
2017-10-01
The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.
1991-04-01
task of measurinig these forces in the natural environment and the increasing need to predict how these forces will ultimately affect the environment...near and beneath a towboat are complex and three-dimensional. These flow conditions are affected by physical conditions such as the shape and size of...a highly quantitative and fruitful line of pure and applied stud- ies of aquatic animal life histories (e.g., Russell Hunter (1953), Fremling (1960
Comparing two types of navigational interfaces for Virtual Reality.
Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira
2012-01-01
Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.
The Relation between Navigation Strategy and Associative Memory: An Individual Differences Approach
ERIC Educational Resources Information Center
Ngo, Chi T.; Weisberg, Steven M.; Newcombe, Nora S.; Olson, Ingrid R.
2016-01-01
Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent…
The relation between navigation strategy and associative memory: An individual differences approach.
Ngo, Chi T; Weisberg, Steven M; Newcombe, Nora S; Olson, Ingrid R
2016-04-01
Although the hippocampus is implicated in both spatial navigation and associative memory, very little is known about whether individual differences in the 2 domains covary. People who prefer to navigate using a hippocampal-dependent place strategy may show better performance on associative memory tasks than those who prefer a caudate-dependent response strategy (Bohbot, Gupta, Banner, & Dahmani, 2011), but not all studies suggest such an effect (Woollett & Maguire, 2009, 2012). Here we tested nonexpert young adults and found that preference for a place strategy positively correlated with spatial (object-location) associative memory performance but did not correlate with nonspatial (face-name) associative memory performance. Importantly, these correlations differed from each other, indicating that the relation between navigation strategy and associative memory is specific to the spatial domain. In addition, the 2 associative memory tasks significantly correlated, suggesting that object-location memory taps into processes relevant to both hippocampal-dependent navigation and nonspatial associative memory. Our findings also suggest that individual differences in spatial associative memory may account for some of the variance in navigation strategies. (c) 2016 APA, all rights reserved).
The effects of mental representation on performance in a navigation task
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Healy, Alice F.
2002-01-01
In three experiments, we investigated the mental representations employed when instructions were followed that involved navigation in a space displayed as a grid on a computer screen. Performance was affected much more by the number of instructional units than by the number of words per unit. Performance in a three-dimensional space was independent of the number of dimensions along which participants navigated. However, memory for and accuracy in following the instructions were reduced when the task required mentally representing a three-dimensional space, as compared with representing a two-dimensional space, although the words used in the instructions were identical in the two cases. These results demonstrate the interdependence of verbal and spatial memory representations, because individuals' immediate memory for verbal navigation instructions is affected by their mental representation of the space referred to by the instructions.
Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A
2013-01-01
This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces. PMID:23250787
Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A
2013-06-01
This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces.
van der Kuil, Milan N. A.; Visser-Meily, Johanna M. A.; Evers, Andrea W. M.; van der Ham, Ineke J. M.
2018-01-01
Acquired brain injury patients often report navigation impairments. A cognitive rehabilitation therapy has been designed in the form of a serious game. The aim of the serious game is to aid patients in the development of compensatory navigation strategies by providing exercises in 3D virtual environments on their home computers. The objective of this study was to assess the usability of three critical gaming attributes: movement control in 3D virtual environments, instruction modality and feedback timing. Thirty acquired brain injury patients performed three tasks in which objective measures of usability were obtained. Mouse controlled movement was compared to keyboard controlled movement in a navigation task. Text-based instructions were compared to video-based instructions in a knowledge acquisition task. The effect of feedback timing on performance and motivation was examined in a navigation training game. Subjective usability ratings of all design options were assessed using questionnaires. Results showed that mouse controlled interaction in 3D environments is more effective than keyboard controlled interaction. Patients clearly preferred video-based instructions over text-based instructions, even though video-based instructions were not more effective in context of knowledge acquisition and comprehension. No effect of feedback timing was found on performance and motivation in games designed to train navigation abilities. Overall appreciation of the serious game was positive. The results provide valuable insights in the design choices that facilitate the transfer of skills from serious games to real-life situations. PMID:29922196
van der Kuil, Milan N A; Visser-Meily, Johanna M A; Evers, Andrea W M; van der Ham, Ineke J M
2018-01-01
Acquired brain injury patients often report navigation impairments. A cognitive rehabilitation therapy has been designed in the form of a serious game. The aim of the serious game is to aid patients in the development of compensatory navigation strategies by providing exercises in 3D virtual environments on their home computers. The objective of this study was to assess the usability of three critical gaming attributes: movement control in 3D virtual environments, instruction modality and feedback timing. Thirty acquired brain injury patients performed three tasks in which objective measures of usability were obtained. Mouse controlled movement was compared to keyboard controlled movement in a navigation task. Text-based instructions were compared to video-based instructions in a knowledge acquisition task. The effect of feedback timing on performance and motivation was examined in a navigation training game. Subjective usability ratings of all design options were assessed using questionnaires. Results showed that mouse controlled interaction in 3D environments is more effective than keyboard controlled interaction. Patients clearly preferred video-based instructions over text-based instructions, even though video-based instructions were not more effective in context of knowledge acquisition and comprehension. No effect of feedback timing was found on performance and motivation in games designed to train navigation abilities. Overall appreciation of the serious game was positive. The results provide valuable insights in the design choices that facilitate the transfer of skills from serious games to real-life situations.
Object Persistence Enhances Spatial Navigation: A Case Study in Smartphone Vision Science.
Liverence, Brandon M; Scholl, Brian J
2015-07-01
Violations of spatiotemporal continuity disrupt performance in many tasks involving attention and working memory, but experiments on this topic have been limited to the study of moment-by-moment on-line perception, typically assessed by passive monitoring tasks. We tested whether persisting object representations also serve as underlying units of longer-term memory and active spatial navigation, using a novel paradigm inspired by the visual interfaces common to many smartphones. Participants used key presses to navigate through simple visual environments consisting of grids of icons (depicting real-world objects), only one of which was visible at a time through a static virtual window. Participants found target icons faster when navigation involved persistence cues (via sliding animations) than when persistence was disrupted (e.g., via temporally matched fading animations), with all transitions inspired by smartphone interfaces. Moreover, this difference occurred even after explicit memorization of the relevant information, which demonstrates that object persistence enhances spatial navigation in an automatic and irresistible fashion. © The Author(s) 2015.
Do absorption and realistic distraction influence performance of component task surgical procedure?
Pluyter, Jon R; Buzink, Sonja N; Rutkowski, Anne-F; Jakimowicz, Jack J
2010-04-01
Surgeons perform complex tasks while exposed to multiple distracting sources that may increase stress in the operating room (e.g., music, conversation, and unadapted use of sophisticated technologies). This study aimed to examine whether such realistic social and technological distracting conditions may influence surgical performance. Twelve medical interns performed a laparoscopic cholecystectomy task with the Xitact LC 3.0 virtual reality simulator under distracting conditions (exposure to music, conversation, and nonoptimal handling of the laparoscope) versus nondistracting conditions (control condition) as part of a 2 x 2 within-subject experimental design. Under distracting conditions, the medical interns showed a significant decline in task performance (overall task score, task errors, and operating time) and significantly increased levels of irritation toward both the assistant handling the laparoscope in a nonoptimal way and the sources of social distraction. Furthermore, individual differences in cognitive style (i.e., cognitive absorption and need for cognition) significantly influenced the levels of irritation experienced by the medical interns. The results suggest careful evaluation of the social and technological sources of distraction in the operation room to reduce irritation for the surgeon and provision of proper preclinical laparoscope navigation training to increase security for the patient.
Navigation performance in virtual environments varies with fractal dimension of landscape.
Juliani, Arthur W; Bies, Alexander J; Boydston, Cooper R; Taylor, Richard P; Sereno, Margaret E
2016-09-01
Fractal geometry has been used to describe natural and built environments, but has yet to be studied in navigational research. In order to establish a relationship between the fractal dimension (D) of a natural environment and humans' ability to navigate such spaces, we conducted two experiments using virtual environments that simulate the fractal properties of nature. In Experiment 1, participants completed a goal-driven search task either with or without a map in landscapes that varied in D. In Experiment 2, participants completed a map-reading and location-judgment task in separate sets of fractal landscapes. In both experiments, task performance was highest at the low-to-mid range of D, which was previously reported as most preferred and discriminable in studies of fractal aesthetics and discrimination, respectively, supporting a theory of visual fluency. The applicability of these findings to architecture, urban planning, and the general design of constructed spaces is discussed.
Pharmacological evidence is consistent with a prominent role of spatial memory in complex navigation
2016-01-01
The ability to learn about the spatial environment plays an important role in navigation, migration, dispersal, and foraging. However, our understanding of both the role of cognition in the development of navigation strategies and the mechanisms underlying these strategies is limited. We tested the hypothesis that complex navigation is facilitated by spatial memory in a population of Chrysemys picta that navigate with extreme precision (±3.5 m) using specific routes that must be learned prior to age three. We used scopolamine, a muscarinic acetylcholine receptor antagonist, to manipulate the cognitive spatial abilities of free-living turtles during naturally occurring overland movements. Experienced adults treated with scopolamine diverted markedly from their precise navigation routes. Naive juveniles lacking experience (and memory) were not affected by scopolamine, and thereby served as controls for perceptual or non-spatial cognitive processes associated with navigation. Further, neither adult nor juvenile movement was affected by methylscopolamine, a form of scopolamine that does not cross the blood–brain barrier, a control for the peripheral effects of scopolamine. Together, these results are consistent with a role of spatial cognition in complex navigation and highlight a cellular mechanism that might underlie spatial cognition. Overall, our findings expand our understanding of the development of complex cognitive abilities of vertebrates and the neurological mechanisms of navigation. PMID:26865305
Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths
de Vries, Liv; Pfeiffer, Keram; Trebels, Björn; Adden, Andrea K.; Green, Ken; Warrant, Eric; Heinze, Stanley
2017-01-01
Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation—differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth. PMID:28928641
NASA Astrophysics Data System (ADS)
Griesbach, J.; Westphal, J. J.; Roscoe, C.; Hawes, D. R.; Carrico, J. P.
2013-09-01
The Proximity Operations Nano-Satellite Flight Demonstration (PONSFD) program is to demonstrate rendezvous proximity operations (RPO), formation flying, and docking with a pair of 3U CubeSats. The program is sponsored by NASA Ames via the Office of the Chief Technologist (OCT) in support of its Small Spacecraft Technology Program (SSTP). The goal of the mission is to demonstrate complex RPO and docking operations with a pair of low-cost 3U CubeSat satellites using passive navigation sensors. The program encompasses the entire system evolution including system design, acquisition, satellite construction, launch, mission operations, and final disposal. The satellite is scheduled for launch in Fall 2015 with a 1-year mission lifetime. This paper provides a brief mission overview but will then focus on the current design and driving trade study results for the RPO mission specific processor and relevant ground software. The current design involves multiple on-board processors, each specifically tasked with providing mission critical capabilities. These capabilities range from attitude determination and control to image processing. The RPO system processor is responsible for absolute and relative navigation, maneuver planning, attitude commanding, and abort monitoring for mission safety. A low power processor running a Linux operating system has been selected for implementation. Navigation is one of the RPO processor's key tasks. This entails processing data obtained from the on-board GPS unit as well as the on-board imaging sensors. To do this, Kalman filters will be hosted on the processor to ingest and process measurements for maintenance of position and velocity estimates with associated uncertainties. While each satellite carries a GPS unit, it will be used sparsely to conserve power. As such, absolute navigation will mainly consist of propagating past known states, and relative navigation will be considered to be of greater importance. For relative observations, each spacecraft hosts 3 electro-optical sensors dedicated to imaging the companion satellite. The image processor will analyze the images to obtain estimates for range, bearing, and pose, with associated rates and uncertainties. These observations will be fed to the RPO processor's relative Kalman filter to perform relative navigation updates. This paper includes estimates for expected navigation accuracies for both absolute and relative position and velocity. Another key task for the RPO processor is maneuver planning. This includes automation to plan maneuvers to achieve a desired formation configuration or trajectory (including docking), as well as automation to safely react to potentially dangerous situations. This will allow each spacecraft to autonomously plan fuel-efficient maneuvers to achieve a desired trajectory as well as compute adjustment maneuvers to correct for thrusting errors. This paper discusses results from a trade study that has been conducted to examine maneuver targeting algorithms required on-board the spacecraft. Ground software will also work in conjunction with the on-board software to validate and approve maneuvers as necessary.
Chalmers, Eric; Luczak, Artur; Gruber, Aaron J.
2016-01-01
The mammalian brain is thought to use a version of Model-based Reinforcement Learning (MBRL) to guide “goal-directed” behavior, wherein animals consider goals and make plans to acquire desired outcomes. However, conventional MBRL algorithms do not fully explain animals' ability to rapidly adapt to environmental changes, or learn multiple complex tasks. They also require extensive computation, suggesting that goal-directed behavior is cognitively expensive. We propose here that key features of processing in the hippocampus support a flexible MBRL mechanism for spatial navigation that is computationally efficient and can adapt quickly to change. We investigate this idea by implementing a computational MBRL framework that incorporates features inspired by computational properties of the hippocampus: a hierarchical representation of space, “forward sweeps” through future spatial trajectories, and context-driven remapping of place cells. We find that a hierarchical abstraction of space greatly reduces the computational load (mental effort) required for adaptation to changing environmental conditions, and allows efficient scaling to large problems. It also allows abstract knowledge gained at high levels to guide adaptation to new obstacles. Moreover, a context-driven remapping mechanism allows learning and memory of multiple tasks. Simulating dorsal or ventral hippocampal lesions in our computational framework qualitatively reproduces behavioral deficits observed in rodents with analogous lesions. The framework may thus embody key features of how the brain organizes model-based RL to efficiently solve navigation and other difficult tasks. PMID:28018203
The Impact of Interactivity on Comprehending 2D and 3D Visualizations of Movement Data.
Amini, Fereshteh; Rufiange, Sebastien; Hossain, Zahid; Ventura, Quentin; Irani, Pourang; McGuffin, Michael J
2015-01-01
GPS, RFID, and other technologies have made it increasingly common to track the positions of people and objects over time as they move through two-dimensional spaces. Visualizing such spatio-temporal movement data is challenging because each person or object involves three variables (two spatial variables as a function of the time variable), and simply plotting the data on a 2D geographic map can result in overplotting and occlusion that hides details. This also makes it difficult to understand correlations between space and time. Software such as GeoTime can display such data with a three-dimensional visualization, where the 3rd dimension is used for time. This allows for the disambiguation of spatially overlapping trajectories, and in theory, should make the data clearer. However, previous experimental comparisons of 2D and 3D visualizations have so far found little advantage in 3D visualizations, possibly due to the increased complexity of navigating and understanding a 3D view. We present a new controlled experimental comparison of 2D and 3D visualizations, involving commonly performed tasks that have not been tested before, and find advantages in 3D visualizations for more complex tasks. In particular, we tease out the effects of various basic interactions and find that the 2D view relies significantly on "scrubbing" the timeline, whereas the 3D view relies mainly on 3D camera navigation. Our work helps to improve understanding of 2D and 3D visualizations of spatio-temporal data, particularly with respect to interactivity.
Rosenbaum, R Shayna; Ziegler, Marilyne; Winocur, Gordon; Grady, Cheryl L; Moscovitch, Morris
2004-01-01
The role of the hippocampus in recent spatial memory has been well documented in patients with damage to this structure, but there is now evidence that the hippocampus may not be needed for the storage and recovery of a spatial layout that was experienced long before injury. Such preservation may rely, instead, on a network of dissociable, extra-hippocampal regions implicated in topographical orientation. Using functional magnetic resonance imaging (fMRI), we investigated this hypothesis in healthy individuals with extensive experience navigating in a large-scale urban environment (downtown Toronto). Participants were scanned as they performed mental navigation tasks that emphasized different types of spatial representations. Tasks included proximity judgments, distance judgments, landmark sequencing, and blocked-route problem-solving. The following regions were engaged to varying degrees depending on the processing demands of each task: retrosplenial cortex, believed to be involved in assigning directional significance to locales within a relatively allocentric framework; medial and posterior parietal cortex, concerned with processing space within egocentric coordinates during imagined movement; and regions of prefrontal cortex, present in tasks heavily dependent on working memory. In a second, event-related experiment, a distinct area of inferotemporal cortex was revealed during identification of familiar landmarks relative to unknown buildings in addition to activation of many of those regions identified in the navigation tasks. This result suggests that familiar landmarks are strongly integrated with the spatial context in which they were experienced. Importantly, right medial temporal lobe activity was observed, its magnitude equivalent across all tasks, though the core of the activated region was in the parahippocampal gyrus, barely touching the hippocampus proper. Copyright 2004 Wiley-Liss, Inc.
Laboratory complex for simulation of navigation signals of pseudosatellites
NASA Astrophysics Data System (ADS)
Ratushniak, V. N.; Gladyshev, A. B.; Sokolovskiy, A. V.; Mikhov, E. D.
2018-05-01
In the article, features of the organization, structure and questions of formation of navigation signals of pseudosatellites of the short - range navigation system based on the hardware-software complex National Instruments are considered. A software model that performs the formation and management of a pseudo-random sequence of a navigation signal and the formation and management of the format transmitted pseudosatellite navigation information is presented. The variant of constructing the transmitting equipment of the pseudosatellite base stations is provided.
Computer-assisted navigation in orthopedic surgery.
Mavrogenis, Andreas F; Savvidou, Olga D; Mimidis, George; Papanastasiou, John; Koulalis, Dimitrios; Demertzis, Nikolaos; Papagelopoulos, Panayiotis J
2013-08-01
Computer-assisted navigation has a role in some orthopedic procedures. It allows the surgeons to obtain real-time feedback and offers the potential to decrease intra-operative errors and optimize the surgical result. Computer-assisted navigation systems can be active or passive. Active navigation systems can either perform surgical tasks or prohibit the surgeon from moving past a predefined zone. Passive navigation systems provide intraoperative information, which is displayed on a monitor, but the surgeon is free to make any decisions he or she deems necessary. This article reviews the available types of computer-assisted navigation, summarizes the clinical applications and reviews the results of related series using navigation, and informs surgeons of the disadvantages and pitfalls of computer-assisted navigation in orthopedic surgery. Copyright 2013, SLACK Incorporated.
Reasoning and planning in dynamic domains: An experiment with a mobile robot
NASA Technical Reports Server (NTRS)
Georgeff, M. P.; Lansky, A. L.; Schoppers, M. J.
1987-01-01
Progress made toward having an autonomous mobile robot reason and plan complex tasks in real-world environments is described. To cope with the dynamic and uncertain nature of the world, researchers use a highly reactive system to which is attributed attitudes of belief, desire, and intention. Because these attitudes are explicitly represented, they can be manipulated and reasoned about, resulting in complex goal-directed and reflective behaviors. Unlike most planning systems, the plans or intentions formed by the system need only be partly elaborated before it decides to act. This allows the system to avoid overly strong expectations about the environment, overly constrained plans of action, and other forms of over-commitment common to previous planners. In addition, the system is continuously reactive and has the ability to change its goals and intentions as situations warrant. Thus, while the system architecture allows for reasoning about means and ends in much the same way as traditional planners, it also posseses the reactivity required for survival in complex real-world domains. The system was tested using SRI's autonomous robot (Flakey) in a scenario involving navigation and the performance of an emergency task in a space station scenario.
Navigation/Prop Software Suite
NASA Technical Reports Server (NTRS)
Bruchmiller, Tomas; Tran, Sanh; Lee, Mathew; Bucker, Scott; Bupane, Catherine; Bennett, Charles; Cantu, Sergio; Kwong, Ping; Propst, Carolyn
2012-01-01
Navigation (Nav)/Prop software is used to support shuttle mission analysis, production, and some operations tasks. The Nav/Prop suite containing configuration items (CIs) resides on IPS/Linux workstations. It features lifecycle documents, and data files used for shuttle navigation and propellant analysis for all flight segments. This suite also includes trajectory server, archive server, and RAT software residing on MCC/Linux workstations. Navigation/Prop represents tool versions established during or after IPS Equipment Rehost-3 or after the MCC Rehost.
Spring, Michael R; Hanusa, Barbara H; Eack, Shaun M; Haas, Gretchen L
2017-01-01
Background eHealth technologies offer great potential for improving the use and effectiveness of treatments for those with severe mental illness (SMI), including schizophrenia and schizoaffective disorder. This potential can be muted by poor design. There is limited research on designing eHealth technologies for those with SMI, others with cognitive impairments, and those who are not technology savvy. We previously tested a design model, the Flat Explicit Design Model (FEDM), to create eHealth interventions for individuals with SMI. Subsequently, we developed the design concept page complexity, defined via the design variables we created of distinct topic areas, distinct navigation areas, and number of columns used to organize contents and the variables of text reading level, text reading ease (a newly added variable to the FEDM), and the number of hyperlinks and number of words on a page. Objective The objective of our study was to report the influence that the 19 variables of the FEDM have on the ability of individuals with SMI to use a website, ratings of a website’s ease of use, and performance on a novel usability task we created termed as content disclosure (a measure of the influence of a homepage’s design on the understanding user’s gain of a website). Finally, we assessed the performance of 3 groups or dimensions we developed that organize the 19 variables of the FEDM, termed as page complexity, navigational simplicity, and comprehensibility. Methods We measured 4 website usability outcomes: ability to find information, time to find information, ease of use, and a user’s ability to accurately judge a website’s contents. A total of 38 persons with SMI (chart diagnosis of schizophrenia or schizoaffective disorder) and 5 mental health websites were used to evaluate the importance of the new design concepts, as well as the other variables in the FEDM. Results We found that 11 of the FEDM’s 19 variables were significantly associated with all 4 usability outcomes. Most other variables were significantly related to 2 or 3 of these usability outcomes. With the 5 tested websites, 7 of the 19 variables of the FEDM overlapped with other variables, resulting in 12 distinct variable groups. The 3 design dimensions had acceptable coefficient alphas. Both navigational simplicity and comprehensibility were significantly related to correctly identifying whether information was available on a website. Page complexity and navigational simplicity were significantly associated with the ability and time to find information and ease-of-use ratings. Conclusions The 19 variables and 3 dimensions (page complexity, navigational simplicity, and comprehensibility) of the FEDM offer evidence-based design guidance intended to reduce the cognitive effort required to effectively use eHealth applications, particularly for persons with SMI, and potentially others, including those with cognitive impairments and limited skills or experience with technology. The new variables we examined (topic areas, navigational areas, columns) offer additional and very simple ways to improve simplicity. PMID:28057610
Miller, Jonathan; Watrous, Andrew J; Tsitsiklis, Melina; Lee, Sang Ah; Sheth, Sameer A; Schevon, Catherine A; Smith, Elliot H; Sperling, Michael R; Sharan, Ashwini; Asadi-Pooya, Ali Akbar; Worrell, Gregory A; Meisenhelter, Stephen; Inman, Cory S; Davis, Kathryn A; Lega, Bradley; Wanda, Paul A; Das, Sandhitsu R; Stein, Joel M; Gorniak, Richard; Jacobs, Joshua
2018-06-21
The hippocampus plays a vital role in various aspects of cognition including both memory and spatial navigation. To understand electrophysiologically how the hippocampus supports these processes, we recorded intracranial electroencephalographic activity from 46 neurosurgical patients as they performed a spatial memory task. We measure signals from multiple brain regions, including both left and right hippocampi, and we use spectral analysis to identify oscillatory patterns related to memory encoding and navigation. We show that in the left but not right hippocampus, the amplitude of oscillations in the 1-3-Hz "low theta" band increases when viewing subsequently remembered object-location pairs. In contrast, in the right but not left hippocampus, low-theta activity increases during periods of navigation. The frequencies of these hippocampal signals are slower than task-related signals in the neocortex. These results suggest that the human brain includes multiple lateralized oscillatory networks that support different aspects of cognition.
Robitaille, Nicolas; Jackson, Philip L; Hébert, Luc J; Mercier, Catherine; Bouyer, Laurent J; Fecteau, Shirley; Richards, Carol L; McFadyen, Bradford J
2017-10-01
This proof of concept study tested the ability of a dual task walking protocol using a recently developed avatar-based virtual reality (VR) platform to detect differences between military personnel post mild traumatic brain injury (mTBI) and healthy controls. The VR platform coordinated motion capture, an interaction and rendering system, and a projection system to present first (participant-controlled) and third person avatars within the context of a specific military patrol scene. A divided attention task was also added. A healthy control group was compared to a group with previous mTBI (both groups comprised of six military personnel) and a repeated measures ANOVA tested for differences between conditions and groups based on recognition errors, walking speed and fluidity and obstacle clearance. The VR platform was well tolerated by both groups. Walking fluidity was degraded for the control group within the more complex navigational dual tasking involving avatars, and appeared greatest in the dual tasking with the interacting avatar. This navigational behaviour was not seen in the mTBI group. The present findings show proof of concept for using avatars, particularly more interactive avatars, to expose differences in executive functioning when applying context-specific protocols (here for the military). Implications for rehabilitation Virtual reality provides a means to control context-specific factors for assessment and intervention. Adding human interaction and agency through avatars increases the ecologic nature of the virtual environment. Avatars in the present application of the Virtual Reality avatar interaction platform appear to provide a better ability to reveal differences between trained, military personal with and without mTBI.
Aldaba, Cassandra N; White, Paul J; Byagowi, Ahmad; Moussavi, Zahra
2017-07-01
Virtual reality (VR) navigation is usually constrained by plausible simulator sickness (SS) and intuitive user interaction. The paper reports on the use of four different degrees of body motion induced navigational VR controllers, a TiltChair, omni-directional treadmill, a manual wheelchair joystick (VRNChair), and a joystick in relation to a participant's SS occurrence and a controller's intuitive utilization. Twenty young adult participants utilized all controllers to navigate through the same VR task environment in separate sessions. Throughout the sessions, SS occurrence was measured from a severity score by a standard SS questionnaire and from body sway by a center of pressure path length with eyes opened and closed. SS occurrence did not significantly differ among the controllers. However, time spent in VR significantly contributed to SS occurrence; hence, a few breaks to minimize SS should be interjected throughout a VR task. For all task trials, we recorded the participant's travel trajectories to investigate each controller's intuitive utilization from a computed traversed distance. Shorter traversed distances indicated that participants intuitively utilized the TiltChair with a slower speed; while longer traversed distances indicated participants struggled to utilize the omni-directional treadmill with a unnaturalistic stimulation of gait. Therefore, VR navigation should use technologies best suited for the intended age group that minimizes SS, and produces intuitive interactions for the participants.
Mohammadi, Alireza; Hesami, Ehsan; Kargar, Mahmoud; Shams, Jamal
2018-04-01
Present evidence suggests that the use of virtual reality has great advantages in evaluating visuospatial navigation and memory for the diagnosis of psychiatric or other neurological disorders. There are a few virtual reality studies on allocentric and egocentric memories in schizophrenia, but studies on both memories in bipolar disorder are lacking. The objective of this study was to compare the performance of allocentric and egocentric memories in patients with schizophrenia and bipolar disorder. For this resolve, an advanced virtual reality navigation task (VRNT) was presented to distinguish the navigational performances of these patients. Twenty subjects with schizophrenia and 20 bipolar disorder patients were compared with 20 healthy-matched controls on the newly developed VRNT consisting of a virtual neighbourhood (allocentric memory) and a virtual maze (egocentric memory). The results demonstrated that schizophrenia patients were significantly impaired on all allocentric, egocentric, visual, and verbal memory tasks compared with patients with bipolar disorder and normal subjects. Dissimilarly, the performance of patients with bipolar disorder was slightly lower than that of control subjects in all these abilities, but no significant differences were observed. It was concluded that allocentric and egocentric navigation deficits are detectable in patients with schizophrenia and bipolar disorder using VRNT, and this task along with RAVLT and ROCFT can be used as a valid clinical tool for distinguishing these patients from normal subjects.
Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid
NASA Technical Reports Server (NTRS)
VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)
1997-01-01
The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).
ERIC Educational Resources Information Center
Lee, Sang Ah; Sovrano, Valeria A.; Spelke, Elizabeth S.
2012-01-01
Geometry is one of the highest achievements of our species, but its foundations are obscure. Consistent with longstanding suggestions that geometrical knowledge is rooted in processes guiding navigation, the present study examines potential sources of geometrical knowledge in the navigation processes by which young children establish their sense…
a Schema for Extraction of Indoor Pedestrian Navigation Grid Network from Floor Plans
NASA Astrophysics Data System (ADS)
Niu, Lei; Song, Yiquan
2016-06-01
The requirement of the indoor navigation related tasks such emergency evacuation calls for efficient solutions for handling data sources. Therefore, the navigation grid extraction from existing floor plans draws attentions. To this, we have to thoroughly analyse the source data, such as Autocad dxf files. Then, we could establish a sounding navigation solution, which firstly complements the basic navigation rectangle boundaries, secondly subdivides these rectangles and finally generates accessible networks with these refined rectangles. Test files are introduced to validate the whole workflow and evaluate the solution performance. In conclusion, we have achieved the preliminary step of forming up accessible network from the navigation grids.
Development of a breast navigation program.
Shockney, Lillie D; Haylock, Pamela J; Cantril, Cynthia
2013-05-01
To review the development of a navigation program in a major US academic health care institution, and provide guidance for navigation programmatic development in other settings. The Johns Hopkins Breast Center Steering Committee minutes, Hospital Cancer Registry; administrative data, and literature. Incorporating navigation services throughout the cancer continuum, from diagnosis to survivorship, provides guidance for patients with cancer. Navigation processes and programs must remain dynamic, reflecting patient and community needs. Oncology nurses have traditionally performed many tasks associated with navigation, including patient education, psychosocial support, and addressing barriers to care. This article provides an exemplar for nurses developing or enhancing comprehensive breast programs. Copyright © 2013 Elsevier Inc. All rights reserved.
IPS - a vision aided navigation system
NASA Astrophysics Data System (ADS)
Börner, Anko; Baumbach, Dirk; Buder, Maximilian; Choinowski, Andre; Ernst, Ines; Funk, Eugen; Grießbach, Denis; Schischmanow, Adrian; Wohlfeil, Jürgen; Zuev, Sergey
2017-04-01
Ego localization is an important prerequisite for several scientific, commercial, and statutory tasks. Only by knowing one's own position, can guidance be provided, inspections be executed, and autonomous vehicles be operated. Localization becomes challenging if satellite-based navigation systems are not available, or data quality is not sufficient. To overcome this problem, a team of the German Aerospace Center (DLR) developed a multi-sensor system based on the human head and its navigation sensors - the eyes and the vestibular system. This system is called integrated positioning system (IPS) and contains a stereo camera and an inertial measurement unit for determining an ego pose in six degrees of freedom in a local coordinate system. IPS is able to operate in real time and can be applied for indoor and outdoor scenarios without any external reference or prior knowledge. In this paper, the system and its key hardware and software components are introduced. The main issues during the development of such complex multi-sensor measurement systems are identified and discussed, and the performance of this technology is demonstrated. The developer team started from scratch and transfers this technology into a commercial product right now. The paper finishes with an outlook.
Simulation-based camera navigation training in laparoscopy-a randomized trial.
Nilsson, Cecilia; Sorensen, Jette Led; Konge, Lars; Westen, Mikkel; Stadeager, Morten; Ottesen, Bent; Bjerrum, Flemming
2017-05-01
Inexperienced operating assistants are often tasked with the important role of handling camera navigation during laparoscopic surgery. Incorrect handling can lead to poor visualization, increased operating time, and frustration for the operating surgeon-all of which can compromise patient safety. The objectives of this trial were to examine how to train laparoscopic camera navigation and to explore the transfer of skills to the operating room. A randomized, single-center superiority trial with three groups: The first group practiced simulation-based camera navigation tasks (camera group), the second group practiced performing a simulation-based cholecystectomy (procedure group), and the third group received no training (control group). Participants were surgical novices without prior laparoscopic experience. The primary outcome was assessment of camera navigation skills during a laparoscopic cholecystectomy. The secondary outcome was technical skills after training, using a previously developed model for testing camera navigational skills. The exploratory outcome measured participants' motivation toward the task as an operating assistant. Thirty-six participants were randomized. No significant difference was found in the primary outcome between the three groups (p = 0.279). The secondary outcome showed no significant difference between the interventions groups, total time 167 s (95% CI, 118-217) and 194 s (95% CI, 152-236) for the camera group and the procedure group, respectively (p = 0.369). Both interventions groups were significantly faster than the control group, 307 s (95% CI, 202-412), p = 0.018 and p = 0.045, respectively. On the exploratory outcome, the control group for two dimensions, interest/enjoyment (p = 0.030) and perceived choice (p = 0.033), had a higher score. Simulation-based training improves the technical skills required for camera navigation, regardless of practicing camera navigation or the procedure itself. Transfer to the clinical setting could, however, not be demonstrated. The control group demonstrated higher interest/enjoyment and perceived choice than the camera group.
Bats Use Path Integration Rather Than Acoustic Flow to Assess Flight Distance along Flyways.
Aharon, Gal; Sadot, Meshi; Yovel, Yossi
2017-12-04
Navigation can be achieved using different strategies from simple beaconing to complex map-based movement [1-4]. Bats display remarkable navigation capabilities, ranging from nightly commutes of several kilometers and up to seasonal migrations over thousands of kilometers [5]. Many bats have been suggested to fly along fixed routes termed "flyways," when flying from their roost to their foraging sites [6]. Flyways commonly stretch along linear landscape elements such as tree lines, hedges, or rivers [7]. When flying along a flyway, bats must estimate the distance they have traveled in order to determine when to turn. This can be especially challenging when moving along a repetitive landscape. Some bats, like Kuhl's pipistrelles, which we studied here, have limited vision [8] and were suggested to rely on bio-sonar for navigation. These bats could therefore estimate distance using three main sensory-navigation strategies, all of which we have examined: acoustic flow, acoustic landmarks, or path integration. We trained bats to fly along a linear flyway and land on a platform. We then tested their behavior when the platform was removed under different manipulations, including changing the acoustic flow, moving the start point, and adding wind. We found that bats do not require acoustic flow, which was hypothesized to be important for their navigation [9-15], and that they can perform the task without landmarks. Our results suggest that Kuhl's pipistrelles use internal self-motion cues-also known as path integration-rather than external information to estimate flight distance for at least dozens of meters when navigating along linear flyways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Virtual navigation performance: the relationship to field of view and prior video gaming experience.
Richardson, Anthony E; Collaer, Marcia L
2011-04-01
Two experiments examined whether learning a virtual environment was influenced by field of view and how it related to prior video gaming experience. In the first experiment, participants (42 men, 39 women; M age = 19.5 yr., SD = 1.8) performed worse on a spatial orientation task displayed with a narrow field of view in comparison to medium and wide field-of-view displays. Counter to initial hypotheses, wide field-of-view displays did not improve performance over medium displays, and this was replicated in a second experiment (30 men, 30 women; M age = 20.4 yr., SD = 1.9) presenting a more complex learning environment. Self-reported video gaming experience correlated with several spatial tasks: virtual environment pointing and tests of Judgment of Line Angle and Position, mental rotation, and Useful Field of View (with correlations between .31 and .45). When prior video gaming experience was included as a covariate, sex differences in spatial tasks disappeared.
Cognitive Navigation: Toward a Biological Basis for Instructional Design.
ERIC Educational Resources Information Center
Tripp, Steven
2001-01-01
Discusses cognitive navigation, cognitive maps and online learning, and the role of the hippocampus in navigation. Topics include brain research in animal and human studies; types of memory; human navigation, including land navigation and information navigation; instructional strategies; tree maps of curriculum structure; cognitive complexity; and…
Rodriguez-Andres, David; Mendez-Lopez, Magdalena; Juan, M-Carmen; Perez-Hernandez, Elena
2018-01-01
The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5-12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120″ stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children's videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables.
ERIC Educational Resources Information Center
Johnson, Heather Lynn; Coles, Alf; Clarke, David
2017-01-01
We articulate a student perspective on task design in mathematics education, foregrounding a dynamic relationship between intentions of task designers, teachers, and students. First, we characterize a student perspective on task design. Second, we provide theoretical perspectives that we use as tools to account for different facets of task design…
NASA Technical Reports Server (NTRS)
Smith, Harrison Brodsky; Hu, Steven Hung Kee; Cockrell, James J.
2013-01-01
Operators of a constellation of CubeSats have to confront a number of daunting challenges that can be cost prohibitive, or operationally prohibitive, to missions that could otherwise be enabled by a satellite constellation. Challenges including operations complexity, intersatellite communication, intersatellite navigation, and time sharing tasks between satellites are all complicated by operating with the usual CubeSat size, power, and budget constraints. EDSN pioneers innovative solutions to these problems as they are presented on the nano-scale satellite platform.
Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank
2017-01-01
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.
Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank
2017-01-01
The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation. PMID:28824390
Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B
2014-01-01
For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments.
Connors, Erin C.; Chrastil, Elizabeth R.; Sánchez, Jaime; Merabet, Lotfi B.
2014-01-01
For individuals who are blind, navigating independently in an unfamiliar environment represents a considerable challenge. Inspired by the rising popularity of video games, we have developed a novel approach to train navigation and spatial cognition skills in adolescents who are blind. Audio-based Environment Simulator (AbES) is a software application that allows for the virtual exploration of an existing building set in an action video game metaphor. Using this ludic-based approach to learning, we investigated the ability and efficacy of adolescents with early onset blindness to acquire spatial information gained from the exploration of a target virtual indoor environment. Following game play, participants were assessed on their ability to transfer and mentally manipulate acquired spatial information on a set of navigation tasks carried out in the real environment. Success in transfer of navigation skill performance was markedly high suggesting that interacting with AbES leads to the generation of an accurate spatial mental representation. Furthermore, there was a positive correlation between success in game play and navigation task performance. The role of virtual environments and gaming in the development of mental spatial representations is also discussed. We conclude that this game based learning approach can facilitate the transfer of spatial knowledge and further, can be used by individuals who are blind for the purposes of navigation in real-world environments. PMID:24653690
Specificity and Transfer in Learning How to Follow Navigation Instructions
NASA Technical Reports Server (NTRS)
Healy, Alice F.; Schneider, Vivian L.; Barshi, Immanuel
2012-01-01
We report a series of experiments that use a navigation task in which instructions for navigating in a space displayed as grids on a computer screen are given to subjects who then attempt to follow them by mouse clicking on the grids. The navigation task was broken down into component dimensions (e.g., presentation mode of the instructions, length of the instructions, characteristics of the display, size of the grids, response type). For each task dimension, one condition was used at training and the same or another condition was used at test. Each task dimension was examined in terms of two measures. One measure provided an index of transfer (i.e., better performance at test than at training when test and training involved different conditions), and the other provided an index of specificity (i.e., better performance at test when training and test conditions were the same than when training and test conditions were different). By and large, these two indices were complementary, so there was evidence of either transfer or specificity but not both. For one dimension transfer but no specificity was evident, and for another dimension specificity but no transfer was evident. For the remaining dimensions, however, there was asymmetrical transfer, with transfer evident for some conditions and specificity evident for others. The findings are interpreted within the procedural reinstatement framework. They have practical implications concerning how to optimize training and how much fidelity to the testing situation is necessary when training.
Interaction techniques for radiology workstations: impact on users' productivity
NASA Astrophysics Data System (ADS)
Moise, Adrian; Atkins, M. Stella
2004-04-01
As radiologists progress from reading images presented on film to modern computer systems with images presented on high-resolution displays, many new problems arise. Although the digital medium has many advantages, the radiologist"s job becomes cluttered with many new tasks related to image manipulation. This paper presents our solution for supporting radiologists" interpretation of digital images by automating image presentation during sequential interpretation steps. Our method supports scenario based interpretation, which group data temporally, according to the mental paradigm of the physician. We extended current hanging protocols with support for "stages". A stage reflects the presentation of digital information required to complete a single step within a complex task. We demonstrated the benefits of staging in a user study with 20 lay subjects involved in a visual conjunctive search for targets, similar to a radiology task of identifying anatomical abnormalities. We designed a task and a set of stimuli which allowed us to simulate the interpretation workflow from a typical radiology scenario - reading a chest computed radiography exam when a prior study is also available. The simulation was possible by abstracting the radiologist"s task and the basic workstation navigation functionality. We introduced "Stages," an interaction technique attuned to the radiologist"s interpretation task. Compared to the traditional user interface, Stages generated a 14% reduction in the average interpretation.
The role of the hippocampus in navigation is memory
2017-01-01
There is considerable research on the neurobiological mechanisms within the hippocampal system that support spatial navigation. In this article I review the literature on navigational strategies in humans and animals, observations on hippocampal function in navigation, and studies of hippocampal neural activity in animals and humans performing different navigational tasks and tests of memory. Whereas the hippocampus is essential to spatial navigation via a cognitive map, its role derives from the relational organization and flexibility of cognitive maps and not from a selective role in the spatial domain. Correspondingly, hippocampal networks map multiple navigational strategies, as well as other spatial and nonspatial memories and knowledge domains that share an emphasis on relational organization. These observations suggest that the hippocampal system is not dedicated to spatial cognition and navigation, but organizes experiences in memory, for which spatial mapping and navigation are both a metaphor for and a prominent application of relational memory organization. PMID:28148640
Learning Long-Range Vision for an Offroad Robot
2008-09-01
robot to perceive and navigate in an unstructured natural world is a difficult task. Without learning, navigation systems are short-range and extremely...unsupervised or weakly supervised learning methods are necessary for training general feature representations for natural scenes. The process was...the world looked dark, and Legos when I was weary. iii ABSTRACT Teaching a robot to perceive and navigate in an unstructured natural world is a
Enhancing Navigation Skills through Audio Gaming.
Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi
2010-01-01
We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.
Enhancing Navigation Skills through Audio Gaming
Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi
2014-01-01
We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks. PMID:25505796
Navigating the auditory scene: an expert role for the hippocampus.
Teki, Sundeep; Kumar, Sukhbinder; von Kriegstein, Katharina; Stewart, Lauren; Lyness, C Rebecca; Moore, Brian C J; Capleton, Brian; Griffiths, Timothy D
2012-08-29
Over a typical career piano tuners spend tens of thousands of hours exploring a specialized acoustic environment. Tuning requires accurate perception and adjustment of beats in two-note chords that serve as a navigational device to move between points in previously learned acoustic scenes. It is a two-stage process that depends on the following: first, selective listening to beats within frequency windows, and, second, the subsequent use of those beats to navigate through a complex soundscape. The neuroanatomical substrates underlying brain specialization for such fundamental organization of sound scenes are unknown. Here, we demonstrate that professional piano tuners are significantly better than controls matched for age and musical ability on a psychophysical task simulating active listening to beats within frequency windows that is based on amplitude modulation rate discrimination. Tuners show a categorical increase in gray matter volume in the right frontal operculum and right superior temporal lobe. Tuners also show a striking enhancement of gray matter volume in the anterior hippocampus, parahippocampal gyrus, and superior temporal gyrus, and an increase in white matter volume in the posterior hippocampus as a function of years of tuning experience. The relationship with gray matter volume is sensitive to years of tuning experience and starting age but not actual age or level of musicality. Our findings support a role for a core set of regions in the hippocampus and superior temporal cortex in skilled exploration of complex sound scenes in which precise sound "templates" are encoded and consolidated into memory over time in an experience-dependent manner.
Navigation in Grid Space with the NAS Grid Benchmarks
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present a navigational tool for computational grids. The navigational process is based on measuring the grid characteristics with the NAS Grid Benchmarks (NGB) and using the measurements to assign tasks of a grid application to the grid machines. The tool allows the user to explore the grid space and to navigate the execution at a grid application to minimize its turnaround time. We introduce the notion of gridscape as a user view of the grid and show how it can be me assured by NGB, Then we demonstrate how the gridscape can be used with two different schedulers to navigate a grid application through a rudimentary grid.
LED display for solo aircraft instrument navigation
NASA Technical Reports Server (NTRS)
Crouch, R. K.; Kelly, W. L., VI; Lina, L. J.; Meredith, B. D.
1979-01-01
Solo pilot's task is made easier through convenient display of landing and navigation data. Use of display shows promise as more efficient means of presenting sequential instructions and data, such as course heading, altitude, and radio frequency, to minimize pilot's workload during solo instrument flight.
Indoor Navigation by People with Visual Impairment Using a Digital Sign System
Legge, Gordon E.; Beckmann, Paul J.; Tjan, Bosco S.; Havey, Gary; Kramer, Kevin; Rolkosky, David; Gage, Rachel; Chen, Muzi; Puchakayala, Sravan; Rangarajan, Aravindhan
2013-01-01
There is a need for adaptive technology to enhance indoor wayfinding by visually-impaired people. To address this need, we have developed and tested a Digital Sign System. The hardware and software consist of digitally-encoded signs widely distributed throughout a building, a handheld sign-reader based on an infrared camera, image-processing software, and a talking digital map running on a mobile device. Four groups of subjects—blind, low vision, blindfolded sighted, and normally sighted controls—were evaluated on three navigation tasks. The results demonstrate that the technology can be used reliably in retrieving information from the signs during active mobility, in finding nearby points of interest, and following routes in a building from a starting location to a destination. The visually impaired subjects accurately and independently completed the navigation tasks, but took substantially longer than normally sighted controls. This fully functional prototype system demonstrates the feasibility of technology enabling independent indoor navigation by people with visual impairment. PMID:24116156
Assistive obstacle detection and navigation devices for vision-impaired users.
Ong, S K; Zhang, J; Nee, A Y C
2013-09-01
Quality of life for the visually impaired is an urgent worldwide issue that needs to be addressed. Obstacle detection is one of the most important navigation tasks for the visually impaired. In this research, a novel range sensor placement scheme is proposed in this paper for the development of obstacle detection devices. Based on this scheme, two prototypes have been developed targeting at different user groups. This paper discusses the design issues, functional modules and the evaluation tests carried out for both prototypes. Implications for Rehabilitation Visual impairment problem is becoming more severe due to the worldwide ageing population. Individuals with visual impairment require assistance from assistive devices in daily navigation tasks. Traditional assistive devices that assist navigation may have certain drawbacks, such as the limited sensing range of a white cane. Obstacle detection devices applying the range sensor technology can identify road conditions with a higher sensing range to notify the users of potential dangers in advance.
Stereotaxy, navigation and the temporal concatenation.
Apuzzo, M L; Chen, J C
1999-01-01
Nautical and cerebral navigation share similar elements of functional need and similar developmental pathways. The need for orientation necessitates the development of appropriate concepts, and such concepts are dependent on technology for practical realization. Occasionally, a concept precedes technology in time and requires periods of delay for appropriate development. A temporal concatenation exists where time allows the additive as need, concept and technology ultimately provide an endpoint of elegant solution. Nautical navigation has proceeded through periods of dead reckoning and celestial navigation to satellite orientation with associated refinements of instrumentation and charts for guidance. Cerebral navigation has progressed from craniometric orientation and burr hole mounted guidance systems to simple rectolinear and arc-centered devices based on radiographs to guidance by complex anatomical and functional maps provided as an amalgam of modern imaging modes. These maps are now augmented by complex frame and frameless systems which allow not only precise orientation, but also point and volumetric action. These complex technical modalities required and developed in part from elements of maritime navigation that have been translated to cerebral navigation in a temporal concatenation. Copyright 2000 S. Karger AG, Basel
Rodriguez-Andres, David; Mendez-Lopez, Magdalena; Juan, M.-Carmen; Perez-Hernandez, Elena
2018-01-01
The use of virtual reality-based tasks for studying memory has increased considerably. Most of the studies that have looked at child population factors that influence performance on such tasks have been focused on cognitive variables. However, little attention has been paid to the impact of non-cognitive skills. In the present paper, we tested 52 typically-developing children aged 5–12 years in a virtual object-location task. The task assessed their spatial short-term memory for the location of three objects in a virtual city. The virtual task environment was presented using a 3D application consisting of a 120″ stereoscopic screen and a gamepad interface. Measures of learning and displacement indicators in the virtual environment, 3D perception, satisfaction, and usability were obtained. We assessed the children’s videogame experience, their visuospatial span, their ability to build blocks, and emotional and behavioral outcomes. The results indicate that learning improved with age. Significant effects on the speed of navigation were found favoring boys and those more experienced with videogames. Visuospatial skills correlated mainly with ability to recall object positions, but the correlation was weak. Longer paths were related with higher scores of withdrawal behavior, attention problems, and a lower visuospatial span. Aggressiveness and experience with the device used for interaction were related with faster navigation. However, the correlations indicated only weak associations among these variables. PMID:29674988
Texting during stair negotiation and implications for fall risk.
Hashish, Rami; Toney-Bolger, Megan E; Sharpe, Sarah S; Lester, Benjamin D; Mulliken, Adam
2017-10-01
Walking requires the integration of the sensory and motor systems. Cognitive distractions have been shown to interfere with negotiation of complex walking environments, especially in populations at greater risk for falls (e.g. the elderly). With the pervasiveness of mobile messaging and the recent introduction of augmented reality mobile gaming, it is increasingly important to understand how distraction associated with the simultaneous use of a mobile device impacts navigation of the complex walking environments experienced in daily life. In this study, we investigated how gait kinematics were altered when participants performed a texting task during step negotiation. Twenty participants (13 female, 7 males) performed a series of walking trials involving a step-deck obstacle, consisting of at least 3 texting trials and 3 non-texting trials. When texting, participants ascended more slowly and demonstrated reduced dual-step foot toe clearance. Participants similarly descended more slowly when texting and demonstrated reduced single-step foot heel clearance as well as reduced dual-step foot fore-aft heel clearance. These data support the conclusion that texting during stair negotiation results in changes to gait kinematics that may increase the potential for gait disruptions, falls, and injury. Further research should examine the effect texting has on performing other common complex locomotor tasks, actual fall risk, and the patterns of resulting injury rate and severity when negotiating complex environments. Copyright © 2017 Elsevier B.V. All rights reserved.
Navigation by environmental geometry: the use of zebrafish as a model.
Lee, Sang Ah; Vallortigara, Giorgio; Flore, Michele; Spelke, Elizabeth S; Sovrano, Valeria A
2013-10-01
Sensitivity to environmental shape in spatial navigation has been found, at both behavioural and neural levels, in virtually every species tested, starting early in development. Moreover, evidence that genetic deletions can cause selective deficits in such navigation behaviours suggests a genetic basis to navigation by environmental geometry. Nevertheless, the geometric computations underlying navigation have not been specified in any species. The present study teases apart the geometric components within the traditionally used rectangular enclosure and finds that zebrafish selectively represent distance and directional relationships between extended boundary surfaces. Similar behavioural results in geometric navigation tasks with human children provide prima facie evidence for similar underlying cognitive computations and open new doors for probing the genetic foundations that give rise to these computations.
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images †
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-01-01
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the “navigation via classification” task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications. PMID:28604624
Convolutional Neural Network-Based Robot Navigation Using Uncalibrated Spherical Images.
Ran, Lingyan; Zhang, Yanning; Zhang, Qilin; Yang, Tao
2017-06-12
Vision-based mobile robot navigation is a vibrant area of research with numerous algorithms having been developed, the vast majority of which either belong to the scene-oriented simultaneous localization and mapping (SLAM) or fall into the category of robot-oriented lane-detection/trajectory tracking. These methods suffer from high computational cost and require stringent labelling and calibration efforts. To address these challenges, this paper proposes a lightweight robot navigation framework based purely on uncalibrated spherical images. To simplify the orientation estimation, path prediction and improve computational efficiency, the navigation problem is decomposed into a series of classification tasks. To mitigate the adverse effects of insufficient negative samples in the "navigation via classification" task, we introduce the spherical camera for scene capturing, which enables 360° fisheye panorama as training samples and generation of sufficient positive and negative heading directions. The classification is implemented as an end-to-end Convolutional Neural Network (CNN), trained on our proposed Spherical-Navi image dataset, whose category labels can be efficiently collected. This CNN is capable of predicting potential path directions with high confidence levels based on a single, uncalibrated spherical image. Experimental results demonstrate that the proposed framework outperforms competing ones in realistic applications.
Finding the Fortunate Islands and Other Astrolabe Tricks of Early Astronomical Navigation
NASA Astrophysics Data System (ADS)
Lattis, James
2007-12-01
Explorers of the late 16th and early 17th centuries had at their disposal a very limited set of tools and techniques useful for astronomical navigation. At least one author, Christoph Clavius, saw the traditional planispheric astrolabe as an important adjunct for mapping, navigation, and other tasks useful in an age of exploration. This paper will explain some of the applications Clavius recommends and evaluate some of their important limitations.
Design of a laser navigation system for the inspection robot used in substation
NASA Astrophysics Data System (ADS)
Zhu, Jing; Sun, Yanhe; Sun, Deli
2017-01-01
Aimed at the deficiency of the magnetic guide and RFID parking system used by substation inspection robot now, a laser navigation system is designed, and the system structure, the method of map building and positioning are all introduced. The system performance is tested in a 500kV substation, and the result show that the repetitive precision of navigation system is precise enough to help the robot fulfill inspection tasks.
From self-assessment to frustration, a small step toward autonomy in robotic navigation
Jauffret, Adrien; Cuperlier, Nicolas; Tarroux, Philippe; Gaussier, Philippe
2013-01-01
Autonomy and self-improvement capabilities are still challenging in the fields of robotics and machine learning. Allowing a robot to autonomously navigate in wide and unknown environments not only requires a repertoire of robust strategies to cope with miscellaneous situations, but also needs mechanisms of self-assessment for guiding learning and for monitoring strategies. Monitoring strategies requires feedbacks on the behavior's quality, from a given fitness system in order to take correct decisions. In this work, we focus on how a second-order controller can be used to (1) manage behaviors according to the situation and (2) seek for human interactions to improve skills. Following an incremental and constructivist approach, we present a generic neural architecture, based on an on-line novelty detection algorithm that may be able to self-evaluate any sensory-motor strategies. This architecture learns contingencies between sensations and actions, giving the expected sensation from the previous perception. Prediction error, coming from surprising events, provides a measure of the quality of the underlying sensory-motor contingencies. We show how a simple second-order controller (emotional system) based on the prediction progress allows the system to regulate its behavior to solve complex navigation tasks and also succeeds in asking for help if it detects dead-lock situations. We propose that this model could be a key structure toward self-assessment and autonomy. We made several experiments that can account for such properties for two different strategies (road following and place cells based navigation) in different situations. PMID:24115931
Wiegmann, Daniel D.; Hebets, Eileen A.; Gronenberg, Wulfila; Graving, Jacob M.; Bingman, Verner P.
2016-01-01
Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal displacement experiments under the cover of a tropical rainforest reveal that these animals possess navigational abilities that are reminiscent, albeit on a smaller spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform legs, which possess hundreds of olfactory and tactile sensory hairs, and vision appear to be involved. These animals also have enormous mushroom bodies, higher-order brain regions that, in insects, integrate contextual cues and may be involved in spatial memory. In amblypygids, the complexity of a nocturnal rainforest may impose navigational challenges that favor the integration of information derived from multimodal cues. Moreover, the movement of these animals is easily studied in the laboratory and putative neural integration sites of sensory information can be manipulated. Thus, amblypygids could serve as model organisms for the discovery of neural substrates associated with a unique and potentially sophisticated navigational capability. The diversity of habitats in which amblypygids are found also offers an opportunity for comparative studies of sensory integration and ecological selection pressures on navigation mechanisms. PMID:27014008
DOT National Transportation Integrated Search
1995-12-01
Development Center in evaluating current Coast Guard policies and development plans for : Waterways Management, a "Waterways Management Research and Planning" task plan was : established as Task Area A in FY '94. The purpose of this task area is to d...
Radar-based collision avoidance for unmanned surface vehicles
NASA Astrophysics Data System (ADS)
Zhuang, Jia-yuan; Zhang, Lei; Zhao, Shi-qi; Cao, Jian; Wang, Bo; Sun, Han-bing
2016-12-01
Unmanned surface vehicles (USVs) have become a focus of research because of their extensive applications. To ensure safety and reliability and to perform complex tasks autonomously, USVs are required to possess accurate perception of the environment and effective collision avoidance capabilities. To achieve these, investigation into realtime marine radar target detection and autonomous collision avoidance technologies is required, aiming at solving the problems of noise jamming, uneven brightness, target loss, and blind areas in marine radar images. These technologies should also satisfy the requirements of real-time and reliability related to high navigation speeds of USVs. Therefore, this study developed an embedded collision avoidance system based on the marine radar, investigated a highly real-time target detection method which contains adaptive smoothing algorithm and robust segmentation algorithm, developed a stable and reliable dynamic local environment model to ensure the safety of USV navigation, and constructed a collision avoidance algorithm based on velocity obstacle (V-obstacle) which adjusts the USV's heading and speed in real-time. Sea trials results in multi-obstacle avoidance firstly demonstrate the effectiveness and efficiency of the proposed avoidance system, and then verify its great adaptability and relative stability when a USV sailing in a real and complex marine environment. The obtained results will improve the intelligent level of USV and guarantee the safety of USV independent sailing.
HH-65A Dolphin digital integrated avionics
NASA Technical Reports Server (NTRS)
Huntoon, R. B.
1984-01-01
Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.
The Mathematics of Navigating the Solar System
NASA Technical Reports Server (NTRS)
Hintz, Gerald
2000-01-01
In navigating spacecraft throughout the solar system, the space navigator relies on three academic disciplines - optimization, estimation, and control - that work on mathematical models of the real world. Thus, the navigator determines the flight path that will consume propellant and other resources in an efficient manner, determines where the craft is and predicts where it will go, and transfers it onto the optimal trajectory that meets operational and mission constraints. Mission requirements, for example, demand that observational measurements be made with sufficient precision that relativity must be modeled in collecting and fitting (the estimation process) the data, and propagating the trajectory. Thousands of parameters are now determined in near real-time to model the gravitational forces acting on a spacecraft in the vicinity of an irregularly shaped body. Completing these tasks requires mathematical models, analyses, and processing techniques. Newton, Gauss, Lambert, Legendre, and others are justly famous for their contributions to the mathematics of these tasks. More recently, graduate students participated in research to update the gravity model of the Saturnian system, including higher order gravity harmonics, tidal effects, and the influence of the rings. This investigation was conducted for the Cassini project to incorporate new trajectory modeling features in the navigation software. The resulting trajectory model will be used in navigating the 4-year tour of the Saturnian satellites. Also, undergraduate students are determining the ephemerides (locations versus time) of asteroids that will be used as reference objects in navigating the New Millennium's Deep Space 1 spacecraft autonomously.
Woolley, Daniel G; Mantini, Dante; Coxon, James P; D'Hooge, Rudi; Swinnen, Stephan P; Wenderoth, Nicole
2015-04-01
Recent work has demonstrated that functional connectivity between remote brain regions can be modulated by task learning or the performance of an already well-learned task. Here, we investigated the extent to which initial learning and stable performance of a spatial navigation task modulates functional connectivity between subregions of hippocampus and striatum. Subjects actively navigated through a virtual water maze environment and used visual cues to learn the position of a fixed spatial location. Resting-state functional magnetic resonance imaging scans were collected before and after virtual water maze navigation in two scan sessions conducted 1 week apart, with a behavior-only training session in between. There was a large significant reduction in the time taken to intercept the target location during scan session 1 and a small significant reduction during the behavior-only training session. No further reduction was observed during scan session 2. This indicates that scan session 1 represented initial learning and scan session 2 represented stable performance. We observed an increase in functional connectivity between left posterior hippocampus and left dorsal caudate that was specific to scan session 1. Importantly, the magnitude of the increase in functional connectivity was correlated with offline gains in task performance. Our findings suggest cooperative interaction occurs between posterior hippocampus and dorsal caudate during awake rest following the initial phase of spatial navigation learning. Furthermore, we speculate that the increase in functional connectivity observed during awake rest after initial learning might reflect consolidation-related processing. © 2014 Wiley Periodicals, Inc.
Dixon, Benjamin J; Chan, Harley; Daly, Michael J; Qiu, Jimmy; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C
2016-07-01
Providing image guidance in a 3-dimensional (3D) format, visually more in keeping with the operative field, could potentially reduce workload and lead to faster and more accurate navigation. We wished to assess a 3D virtual-view surgical navigation prototype in comparison to a traditional 2D system. Thirty-seven otolaryngology surgeons and trainees completed a randomized crossover navigation exercise on a cadaver model. Each subject identified three sinonasal landmarks with 3D virtual (3DV) image guidance and three landmarks with conventional cross-sectional computed tomography (CT) image guidance. Subjects were randomized with regard to which side and display type was tested initially. Accuracy, task completion time, and task workload were recorded. Display type did not influence accuracy (P > 0.2) or efficiency (P > 0.3) for any of the six landmarks investigated. Pooled landmark data revealed a trend of improved accuracy in the 3DV group by 0.44 millimeters (95% confidence interval [0.00-0.88]). High-volume surgeons were significantly faster (P < 0.01) and had reduced workload scores in all domains (P < 0.01), but they were no more accurate (P > 0.28). Real-time 3D image guidance did not influence accuracy, efficiency, or task workload when compared to conventional triplanar image guidance. The subtle pooled accuracy advantage for the 3DV view is unlikely to be of clinical significance. Experience level was strongly correlated to task completion time and workload but did not influence accuracy. N/A. Laryngoscope, 126:1510-1515, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Is there a geometric module for spatial orientation? Insights from a rodent navigation model.
Sheynikhovich, Denis; Chavarriaga, Ricardo; Strösslin, Thomas; Arleo, Angelo; Gerstner, Wulfram
2009-07-01
Modern psychological theories of spatial cognition postulate the existence of a geometric module for reorientation. This concept is derived from experimental data showing that in rectangular arenas with distinct landmarks in the corners, disoriented rats often make diagonal errors, suggesting their preference for the geometric (arena shape) over the nongeometric (landmarks) cues. Moreover, sensitivity of hippocampal cell firing to changes in the environment layout was taken in support of the geometric module hypothesis. Using a computational model of rat navigation, the authors proposed and tested the alternative hypothesis that the influence of spatial geometry on both behavioral and neuronal levels can be explained by the properties of visual features that constitute local views of the environment. Their modeling results suggest that the pattern of diagonal errors observed in reorientation tasks can be understood by the analysis of sensory information processing that underlies the navigation strategy employed to solve the task. In particular, 2 navigation strategies were considered: (a) a place-based locale strategy that relies on a model of grid and place cells and (b) a stimulus-response taxon strategy that involves direct association of local views with action choices. The authors showed that the application of the 2 strategies in the reorientation tasks results in different patterns of diagonal errors, consistent with behavioral data. These results argue against the geometric module hypothesis by providing a simpler and biologically more plausible explanation for the related experimental data. Moreover, the same model also describes behavioral results in different types of water-maze tasks. Copyright (c) 2009 APA, all rights reserved.
Navigating Cultural Worlds and Negotiating Identities: A Conceptual Model
ERIC Educational Resources Information Center
Mistry, Jayanthi; Wu, Jean
2010-01-01
For children from culturally and linguistically diverse backgrounds the ability to maintain flexible identities and integrate multiple facets of self is a crucial developmental task. We present a conceptual model for the development of expertise in navigating across cultures, delineating how community characteristics interact with family and…
Brain Activity on Navigation in Virtual Environments.
ERIC Educational Resources Information Center
Mikropoulos, Tassos A.
2001-01-01
Assessed the cognitive processing that takes place in virtual environments by measuring electrical brain activity using Fast Fourier Transform analysis. University students performed the same task in a real and a virtual environment, and eye movement measurements showed that all subjects were more attentive when navigating in the virtual world.…
Navigating through translational research: a social marketing compass.
Wharf Higgins, Joan
2011-01-01
When prominent health issues are chronic, rooted in complex behaviors, and influenced by cognitive, behavioral, social, cultural, economical, and environmental variables, layered and coordinated interventions are needed. Finding solutions that are valid, reliable, and transferable represents a daunting task for researchers. We know that converting science into action is critical for advancing health, but we have failed to appropriately disseminate evidenced-informed research to practitioners. The purpose of this article is to suggest that a social marketing framework can be the compass down this road less traveled in academic research. An experience developing an evaluation toolkit is described as an example of applying social marketing strategies to knowledge translation.
Rice, James P.; Wallace, Douglas G.; Hamilton, Derek A.
2015-01-01
The hippocampus and dorsolateral striatum are critically involved in spatial navigation based on extra-maze and intra-maze cues, respectively. Previous reports from our laboratory suggest that behavior in the Morris water task may be guided by both cue types, and rats appear to switch from extra-pool to intra-pool cues to guide navigation in a sequential manner within a given trial. In two experiments, rats with hippocampal or dorsolateral striatal lesions were trained and tested in water task paradigms that involved translation and removal of a cued platform within the pool and translations of the pool itself with respect to the extra-pool cue reference frame. In the first experiment, moment-to-moment analyses of swim behavior indicate that hippocampal lesions disrupt initial trajectories based on extra-pool cues at the beginning of the trial, while dorsolateral striatal lesions disrupt subsequent swim trajectories based on the location of the cued platform at the end of the trial. In the second experiment lesions of the hippocampus, but not the dorsolateral striatum, impaired directional responding in situations where the pool was shifted within the extra-pool cue array. These results are important for understanding the cooperative interactions between the hippocampus and dorsolateral striatum in spatial learning and memory, and establish that these brain areas are continuously involved in goal-directed spatial navigation. These results also highlight the importance of the hippocampus in directional responding in addition to place navigation. PMID:25907746
Understanding the visual skills and strategies of train drivers in the urban rail environment.
Naweed, Anjum; Balakrishnan, Ganesh
2014-01-01
Due to the growth of information in the urban rail environment, there is a need to better understand the ergonomics profile underpinning the visual behaviours in train drivers. The aim of this study was to examine the tasks and activities of urban/metropolitan passenger train drivers in order to better understand the nature of the visual demands in their task activities. Data were collected from 34 passenger train drivers in four different Australian states. The research approach used a novel participative ergonomics methodology that fused interviews and observations with generative tools. Data analysis was conducted thematically. Results suggested participants did not so much drive their trains, as manage the intensity of visually demanding work held in their environment. The density of this information and the opacity of the task, invoked an ergonomics profile more closely aligned with diagnostic and error detection than actual train regulation. The paper discusses the relative proportion of strategies corresponding with specific tasks, the visual-perceptual load in substantive activities, and the requisite visual skills behoving navigation in the urban rail environment. These findings provide the basis for developing measures of complexity to further specify the visual demands in passenger train driving.
Diaz-Estrella, Antonio; Reyes-Lecuona, Arcadio; Langley, Alyson; Brown, Michael; Sharples, Sarah
2018-01-01
Inertial sensors offer the potential for integration into wireless virtual reality systems that allow the users to walk freely through virtual environments. However, owing to drift errors, inertial sensors cannot accurately estimate head and body orientations in the long run, and when walking indoors, this error cannot be corrected by magnetometers, due to the magnetic field distortion created by ferromagnetic materials present in buildings. This paper proposes a technique, called EHBD (Equalization of Head and Body Directions), to address this problem using two head- and shoulder-located magnetometers. Due to their proximity, their distortions are assumed to be similar and the magnetometer measurements are used to detect when the user is looking straight forward. Then, the system corrects the discrepancies between the estimated directions of the head and the shoulder, which are provided by gyroscopes and consequently are affected by drift errors. An experiment is conducted to evaluate the performance of this technique in two tasks (navigation and navigation plus exploration) and using two different locomotion techniques: (1) gaze-directed mode (GD) in which the walking direction is forced to be the same as the head direction, and (2) decoupled direction mode (DD) in which the walking direction can be different from the viewing direction. The obtained results show that both locomotion modes show similar matching of the target path during the navigation task, while DD’s path matches the target path more closely than GD in the navigation plus exploration task. These results validate the EHBD technique especially when allowing different walking and viewing directions in the navigation plus exploration tasks, as expected. While the proposed method does not reach the accuracy of optical tracking (ideal case), it is an acceptable and satisfactory solution for users and is much more compact, portable and economical. PMID:29621298
Choice-specific sequences in parietal cortex during a virtual-navigation decision task
Harvey, Christopher D.; Coen, Philip; Tank, David W.
2012-01-01
The posterior parietal cortex (PPC) plays an important role in many cognitive behaviors; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioral choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (< 100 micrometers). During working memory decision tasks the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits. PMID:22419153
Wirth, Sylvia; Baraduc, Pierre; Planté, Aurélie; Pinède, Serge; Duhamel, Jean-René
2017-01-01
To elucidate how gaze informs the construction of mental space during wayfinding in visual species like primates, we jointly examined navigation behavior, visual exploration, and hippocampal activity as macaque monkeys searched a virtual reality maze for a reward. Cells sensitive to place also responded to one or more variables like head direction, point of gaze, or task context. Many cells fired at the sight (and in anticipation) of a single landmark in a viewpoint- or task-dependent manner, simultaneously encoding the animal’s logical situation within a set of actions leading to the goal. Overall, hippocampal activity was best fit by a fine-grained state space comprising current position, view, and action contexts. Our findings indicate that counterparts of rodent place cells in primates embody multidimensional, task-situated knowledge pertaining to the target of gaze, therein supporting self-awareness in the construction of space. PMID:28241007
Event detection and localization for small mobile robots using reservoir computing.
Antonelo, E A; Schrauwen, B; Stroobandt, D
2008-08-01
Reservoir Computing (RC) techniques use a fixed (usually randomly created) recurrent neural network, or more generally any dynamic system, which operates at the edge of stability, where only a linear static readout output layer is trained by standard linear regression methods. In this work, RC is used for detecting complex events in autonomous robot navigation. This can be extended to robot localization tasks which are solely based on a few low-range, high-noise sensory data. The robot thus builds an implicit map of the environment (after learning) that is used for efficient localization by simply processing the input stream of distance sensors. These techniques are demonstrated in both a simple simulation environment and in the physically realistic Webots simulation of the commercially available e-puck robot, using several complex and even dynamic environments.
Wilkins, Leanne K; Girard, Todd A; Herdman, Katherine A; Christensen, Bruce K; King, Jelena; Kiang, Michael; Bohbot, Veronique D
2017-10-30
Different strategies may be spontaneously adopted to solve most navigation tasks. These strategies are associated with dissociable brain systems. Here, we use brain-imaging and cognitive tasks to test the hypothesis that individuals living with Schizophrenia Spectrum Disorders (SSD) have selective impairment using a hippocampal-dependent spatial navigation strategy. Brain activation and memory performance were examined using functional magnetic resonance imaging (fMRI) during the 4-on-8 virtual maze (4/8VM) task, a human analog of the rodent radial-arm maze that is amenable to both response-based (egocentric or landmark-based) and spatial (allocentric, cognitive mapping) strategies to remember and navigate to target objects. SSD (schizophrenia and schizoaffective disorder) participants who adopted a spatial strategy performed more poorly on the 4/8VM task and had less hippocampal activation than healthy comparison participants using either strategy as well as SSD participants using a response strategy. This study highlights the importance of strategy use in relation to spatial cognitive functioning in SSD. Consistent with a selective-hippocampal dependent deficit in SSD, these results support the further development of protocols to train impaired hippocampal-dependent abilities or harness non-hippocampal dependent intact abilities. Copyright © 2017 Elsevier B.V. All rights reserved.
McWhinney, S R; Tremblay, A; Boe, S G; Bardouille, T
2018-02-01
Neurofeedback training teaches individuals to modulate brain activity by providing real-time feedback and can be used for brain-computer interface control. The present study aimed to optimize training by maximizing engagement through goal-oriented task design. Participants were shown either a visual display or a robot, where each was manipulated using motor imagery (MI)-related electroencephalography signals. Those with the robot were instructed to quickly navigate grid spaces, as the potential for goal-oriented design to strengthen learning was central to our investigation. Both groups were hypothesized to show increased magnitude of these signals across 10 sessions, with the greatest gains being seen in those navigating the robot due to increased engagement. Participants demonstrated the predicted increase in magnitude, with no differentiation between hemispheres. Participants navigating the robot showed stronger left-hand MI increases than those with the computer display. This is likely due to success being reliant on maintaining strong MI-related signals. While older participants showed stronger signals in early sessions, this trend later reversed, suggesting greater natural proficiency but reduced flexibility. These results demonstrate capacity for modulating neurofeedback using MI over a series of training sessions, using tasks of varied design. Importantly, the more goal-oriented robot control task resulted in greater improvements.
Navigation by environmental geometry: the use of zebrafish as a model
Lee, Sang Ah; Vallortigara, Giorgio; Flore, Michele; Spelke, Elizabeth S.; Sovrano, Valeria A.
2013-01-01
SUMMARY Sensitivity to environmental shape in spatial navigation has been found, at both behavioural and neural levels, in virtually every species tested, starting early in development. Moreover, evidence that genetic deletions can cause selective deficits in such navigation behaviours suggests a genetic basis to navigation by environmental geometry. Nevertheless, the geometric computations underlying navigation have not been specified in any species. The present study teases apart the geometric components within the traditionally used rectangular enclosure and finds that zebrafish selectively represent distance and directional relationships between extended boundary surfaces. Similar behavioural results in geometric navigation tasks with human children provide prima facie evidence for similar underlying cognitive computations and open new doors for probing the genetic foundations that give rise to these computations. PMID:23788708
Quantum imaging for underwater arctic navigation
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco
2017-05-01
The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.
2013-01-01
Research suggests that spatial navigation relies on the same neural network as episodic memory, episodic future thinking, and theory of mind (ToM). Such findings have stimulated theories (e.g., the scene construction and self-projection hypotheses) concerning possible common underlying cognitive capacities. Consistent with such theories, autism spectrum disorder (ASD) is characterized by concurrent impairments in episodic memory, episodic future thinking, and ToM. However, it is currently unclear whether spatial navigation is also impaired. Hence, ASD provides a test case for the scene construction and self-projection theories. The study of spatial navigation in ASD also provides a test of the extreme male brain theory of ASD, which predicts intact or superior navigation (purportedly a systemizing skill) performance among individuals with ASD. Thus, the aim of the current study was to establish whether spatial navigation in ASD is impaired, intact, or superior. Twenty-seven intellectually high-functioning adults with ASD and 28 sex-, age-, and IQ-matched neurotypical comparison adults completed the memory island virtual navigation task. Tests of episodic memory, episodic future thinking, and ToM were also completed. Participants with ASD showed significantly diminished performance on the memory island task, and performance was positively related to ToM and episodic memory, but not episodic future thinking. These results suggest that (contra the extreme male brain theory) individuals with ASD have impaired survey-based navigation skills—that is, difficulties generating cognitive maps of the environment—and adds weight to the idea that scene construction/self-projection are impaired in ASD. The theoretical and clinical implications of these results are discussed. PMID:24364620
76 FR 64859 - Pilot Loading of Navigation and Terrain Awareness Database Updates
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-19
... category the task of updating databases used in self-contained, front-panel or pedestal-mounted navigation... Rule This rulemaking would allow pilots of all certificated aircraft equipped with self-contained... verification, or by errors in ATC assignments which may occur during redirection of the flight. Both types of...
Kim, Hyung-Sik; Choi, Mi-Hyun; Choi, Jin-Seung; Kim, Hyun-Joo; Hong, Sang-Pyo; Jun, Jae-Hoon; Tack, Gye-Rae; Kim, Boseong; Min, Ung-Chan; Lim, Dae-Woon; Chung, Soon-Cheol
2013-10-01
This study investigated the effects of distraction taskssuch as sending a text message with a cellphone and searching navigation with car navigation system-on the driving performance of 29 highly experienced taxi drivers in their 50s. All participants were instructed to drive using a driving simulator for 2 min. while maintaining a constant distance from the vehicle in front and a constant speed. Participants drove without any distractions for the first minute. For an additional minute, they performed Driving Only or performed a task while driving (Driving + Sending Text Message or Driving + Searching Navigation). An unexpected situation, in which the participant had to stop abruptly due to a sudden stop of the preceding vehicle, occurred during this period. Driving performance during the unexpected situation was evaluated by car control variables, medial-lateral coefficient of variation and brake time, and by motion variables such as the jerk-cost function. Compared to Driving Only, jerk-cost function, medial-lateral coefficient of variation, and brake time increased during Driving + Sending Text Message or Driving + Searching Navigation.
Valerio, Stephane; Clark, Benjamin J.; Chan, Jeremy H. M.; Frost, Carlton P.; Harris, Mark J.; Taube, Jeffrey S.
2010-01-01
Previous studies have identified neurons throughout the rat limbic system that fire as a function of the animal's head direction (HD). This HD signal is particularly robust when rats locomote in the horizontal and vertical planes, but is severely attenuated when locomoting upside-down (Calton & Taube, 2005). Given the hypothesis that the HD signal represents an animal's sense of its directional heading, we evaluated whether rats could accurately navigate in an inverted (upside-down) orientation. The task required the animals to find an escape hole while locomoting inverted on a circular platform suspended from the ceiling. In experiment 1, Long-Evans rats were trained to navigate to the escape hole by locomoting from either one or four start points. Interestingly, no animals from the 4-start point group reached criterion, even after 30 days of training. Animals in the 1-start point group reached criterion after about 6 training sessions. In Experiment 2, probe tests revealed that animals navigating from either 1- or 2-start points utilized distal visual landmarks for accurate orientation. However, subsequent probe tests revealed that their performance was markedly attenuated when required to navigate to the escape hole from a novel starting point. This absence of flexibility while navigating upside-down was confirmed in experiment 3 where we show that the rats do not learn to reach a place, but instead learn separate trajectories to the target hole(s). Based on these results we argue that inverted navigation primarily involves a simple directional strategy based on visual landmarks. PMID:20109566
Towers, John; Burgess-Limerick, Robin; Riek, Stephan
2014-12-01
The aim of this study was to enable the head-up monitoring of two interrelated aircraft navigation instruments by developing a 3-D auditory display that encodes this navigation information within two spatially discrete sonifications. Head-up monitoring of aircraft navigation information utilizing 3-D audio displays, particularly involving concurrently presented sonifications, requires additional research. A flight simulator's head-down waypoint bearing and course deviation instrument readouts were conveyed to participants via a 3-D auditory display. Both readouts were separately represented by a colocated pair of continuous sounds, one fixed and the other varying in pitch, which together encoded the instrument value's deviation from the norm. Each sound pair's position in the listening space indicated the left/right parameter of its instrument's readout. Participants' accuracy in navigating a predetermined flight plan was evaluated while performing a head-up task involving the detection of visual flares in the out-of-cockpit scene. The auditory display significantly improved aircraft heading and course deviation accuracy, head-up time, and flare detections. Head tracking did not improve performance by providing participants with the ability to orient potentially conflicting sounds, suggesting that the use of integrated localizing cues was successful. Conclusion: A supplementary 3-D auditory display enabled effective head-up monitoring of interrelated navigation information normally attended to through a head-down display. Pilots operating aircraft, such as helicopters and unmanned aerial vehicles, may benefit from a supplementary auditory display because they navigate in two dimensions while performing head-up, out-of-aircraft, visual tasks.
Using multiple IMUs in a stacked filter configuration for calibration and fine alignment
NASA Astrophysics Data System (ADS)
El-Osery, Aly; Bruder, Stephen; Wedeward, Kevin
2018-05-01
Determination of a vehicle or person's position and/or orientation is a critical task for a multitude of applications ranging from automated cars and first responders to missiles and fighter jets. Most of these applications rely primarily on global navigation satellite systems, e.g., GPS, which are highly vulnerable to degradation whether by environmental factors or malicious actions. The use of inertial navigation techniques has been shown to provide increased reliability of navigation systems in these situations. Due to advances in MEMS technology and processing capabilities, the use of small and low-cost inertial measurement units (IMUs) are becoming increasingly feasible, which results in small size, weight and power (SWaP) solutions. A known limitation of MEMS IMUs are errors that causes the navigation solution to drift; furthermore, calibration and initialization are challenging tasks. In this paper, we investigate the use of multiple IMUs to aid in calibrating the navigation system and obtaining accurate initialization by performing fine alignment. By using a centralized filter, physical constraints between the multiple IMUs on a rigid body are leveraged to provide relative updates, which in turn aids in the estimation of the individual biases and scale-factors. Developed algorithms will be validated through simulation and actual measurements using low-cost IMUs.
Flight assessment of a data-link-based navigation-guidance concept
NASA Technical Reports Server (NTRS)
Abbott, T. S.
1983-01-01
With the proposed introduction of a data-link provision into the Air-Traffic-control (ATC) system, the capability will exist to supplement the ground-air, voice (radio) link with digital, data-link information. Additionally, ATC computers could provide, via the data link guidance and navigation information to the pilot which could then be presented in much the same manner as conventional navigation information. The primary objective of this study was to assess the feasibility and acceptability of using 4-sec and 12-sec information updating to drive conventional cockpit-navigation-instrument formats for path-tracking guidance. A flight test, consisting of 19 tracking tasks, was conducted and, through the use of pilot questionnaires and performance data, the following results were obtained. From a performance standpoint, the 4-sec and 12-sec updating led to a slight degradation in path-tracking performance, relative to continuous updating. From the pilot's viewpoint, the 12-sec data interval was suitable for long path segments (greater than 2 min of flight time), but it was difficult to use on shorter segments because of higher work load and insufficient stabilization time. Overall, it was determined that the utilization of noncontinuous data for navigation was both feasible and acceptable for the prescribed task.
Fajnerová, Iveta; Rodriguez, Mabel; Levčík, David; Konrádová, Lucie; Mikoláš, Pavol; Brom, Cyril; Stuchlík, Aleš; Vlček, Kamil; Horáček, Jiří
2014-01-01
Objectives: Cognitive deficit is considered to be a characteristic feature of schizophrenia disorder. A similar cognitive dysfunction was demonstrated in animal models of schizophrenia. However, the poor comparability of methods used to assess cognition in animals and humans could be responsible for low predictive validity of current animal models. In order to assess spatial abilities in schizophrenia and compare our results with the data obtained in animal models, we designed a virtual analog of the Morris water maze (MWM), the virtual Four Goals Navigation (vFGN) task. Methods: Twenty-nine patients after the first psychotic episode with schizophrenia symptoms and a matched group of healthy volunteers performed the vFGN task. They were required to find and remember four hidden goal positions in an enclosed virtual arena. The task consisted of two parts. The Reference memory (RM) session with a stable goal position was designed to test spatial learning. The Delayed-matching-to-place (DMP) session presented a modified working memory protocol designed to test the ability to remember a sequence of three hidden goal positions. Results: Data obtained in the RM session show impaired spatial learning in schizophrenia patients compared to the healthy controls in pointing and navigation accuracy. The DMP session showed impaired spatial memory in schizophrenia during the recall of spatial sequence and a similar deficit in spatial bias in the probe trials. The pointing accuracy and the quadrant preference showed higher sensitivity toward the cognitive deficit than the navigation accuracy. Direct navigation to the goal was affected by sex and age of the tested subjects. The age affected spatial performance only in healthy controls. Conclusions: Despite some limitations of the study, our results correspond well with the previous studies in animal models of schizophrenia and support the decline of spatial cognition in schizophrenia, indicating the usefulness of the vFGN task in comparative research. PMID:24904329
Sex differences in a landmark environmental re-orientation task only during the learning phase.
Piccardi, Laura; Bianchini, Filippo; Iasevoli, Luigi; Giannone, Gianluca; Guariglia, Cecilia
2011-10-10
Sex differences are consistently reported in human navigation. Indeed, to orient themselves during navigation women are more likely to use landmark-based strategies and men Euclidean-based strategies. The difference could be due to selective social pressure, which fosters greater spatial ability in men, or biological factors. And the great variability of the results reported in the literature could be due to the experimental setting more than real differences in ability. In this study, navigational behaviour was assessed by means of a place-learning task in which a modified version of the Morris water maze for humans was used to evaluate sex differences. In using landmarks, sex differences emerged only during the learning phase. Although the men were faster than the women in locating the target position, the differences between the sexes disappeared in delayed recall. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Goal-oriented robot navigation learning using a multi-scale space representation.
Llofriu, M; Tejera, G; Contreras, M; Pelc, T; Fellous, J M; Weitzenfeld, A
2015-12-01
There has been extensive research in recent years on the multi-scale nature of hippocampal place cells and entorhinal grid cells encoding which led to many speculations on their role in spatial cognition. In this paper we focus on the multi-scale nature of place cells and how they contribute to faster learning during goal-oriented navigation when compared to a spatial cognition system composed of single scale place cells. The task consists of a circular arena with a fixed goal location, in which a robot is trained to find the shortest path to the goal after a number of learning trials. Synaptic connections are modified using a reinforcement learning paradigm adapted to the place cells multi-scale architecture. The model is evaluated in both simulation and physical robots. We find that larger scale and combined multi-scale representations favor goal-oriented navigation task learning. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
Research on anti - interference based on GNSS
NASA Astrophysics Data System (ADS)
Yu, Huanran; Liu, Yijun
2017-05-01
Satellite Navigation System has been widely used in military and civil fields. It has all-functional, all-weather, continuity and real-time characteristics, can provide the precise position, velocity and timing information's for the users. The environments where the receiver of satellite navigation system works become more and more complex, and the satellite signals are susceptible to intentional or unintentional interferences, anti-jamming capability has become a key problem of satellite navigation receiver's ability to work normal. In this paper, we study a DOA estimation algorithm based on linear symmetric matrix to improve the anti-jamming capability of the satellite navigation receiver, has great significance to improve the performance of satellite navigation system in complex electromagnetic environment and enhance its applicability in various environments.
User-Centered Iterative Design of a Collaborative Virtual Environment
2001-03-01
cognitive task analysis methods to study land navigators. This study was intended to validate the use of user-centered design methodologies for the design of...have explored the cognitive aspects of collaborative human way finding and design for collaborative virtual environments. Further investigation of design paradigms should include cognitive task analysis and behavioral task analysis.
Solar-based navigation for robotic explorers
NASA Astrophysics Data System (ADS)
Shillcutt, Kimberly Jo
2000-12-01
This thesis introduces the application of solar position and shadowing information to robotic exploration. Power is a critical resource for robots with remote, long-term missions, so this research focuses on the power generation capabilities of robotic explorers during navigational tasks, in addition to power consumption. Solar power is primarily considered, with the possibility of wind power also contemplated. Information about the environment, including the solar ephemeris, terrain features, time of day, and surface location, is incorporated into a planning structure, allowing robots to accurately predict shadowing and thus potential costs and gains during navigational tasks. By evaluating its potential to generate and expend power, a robot can extend its lifetime and accomplishments. The primary tasks studied are coverage patterns, with a variety of plans developed for this research. The use of sun, terrain and temporal information also enables new capabilities of identifying and following sun-synchronous and sun-seeking paths. Digital elevation maps are combined with an ephemeris algorithm to calculate the altitude and azimuth of the sun from surface locations, and to identify and map shadows. Solar navigation path simulators use this information to perform searches through two-dimensional space, while considering temporal changes. Step by step simulations of coverage patterns also incorporate time in addition to location. Evaluations of solar and wind power generation, power consumption, area coverage, area overlap, and time are generated for sets of coverage patterns, with on-board environmental information linked to the simulations. This research is implemented on the Nomad robot for the Robotic Antarctic Meteorite Search. Simulators have been developed for coverage pattern tests, as well as for sun-synchronous and sun-seeking path searches. Results of field work and simulations are reported and analyzed, with demonstrated improvements in efficiency, productivity and lifetime of robotic explorers, along with new solar navigation abilities.
NASA Astrophysics Data System (ADS)
Belyaev, E. N.
2017-10-01
The paper investigates the method of applying mobile scanning systems (MSSs) with inertial navigators in the underground conditions for carrying out the surveying tasks. The available mobile laser scanning systems cannot be used in the underground environment since Global Positioning System (GPS) signals cannot be received in mines. This signal not only is necessary for space positioning, but also operates as the main corrective signal for the primary navigation system - the inertial navigation system. The idea of the method described in this paper consists in using MSSs with a different correction of the inertial system than GPS is.
A simplified satellite navigation system for an autonomous Mars roving vehicle.
NASA Technical Reports Server (NTRS)
Janosko, R. E.; Shen, C. N.
1972-01-01
The use of a retroflecting satellite and a laser rangefinder to navigate a Martian roving vehicle is considered in this paper. It is shown that a simple system can be employed to perform this task. An error analysis is performed on the navigation equations and it is shown that the error inherent in the scheme proposed can be minimized by the proper choice of measurement geometry. A nonlinear programming approach is used to minimize the navigation error subject to constraints that are due to geometric and laser requirements. The problem is solved for a particular set of laser parameters and the optimal solution is presented.
Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.
Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas
2016-10-17
Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Paediatric patient navigation models of care in Canada: An environmental scan.
Luke, Alison; Doucet, Shelley; Azar, Rima
2018-05-01
(1) To provide other organizations with useful information when implementing paediatric navigation programs and (2) to inform the implementation of a navigation care centre in New Brunswick for children with complex health conditions. This environmental scan consisted of a literature review of published and grey literature for paediatric patient navigation programs across Canada. Additional programs were found following discussions with program coordinators and navigators. Interviews were conducted with key staff from each program and included questions related to patient condition; target population and location; method delivery; navigator background; and navigator roles. Data analysis included analysis of interviews and identification of common themes across the different programs. We interviewed staff from 19 paediatric navigation programs across Canada. Programs varied across a number of different themes, including: condition and disease type, program location (e.g., hospital or clinic), navigator background (e.g., registered nurse or peer/lay navigator) and method of delivery (e.g., phone or face-to-face). Overall, navigator roles are similar across all programs, including advocacy, education, support and assistance in accessing resources from both within and outside the health care system. This scan offers a road map of Canadian paediatric navigation programs. Knowledge learned from this scan will inform stakeholders who are either involved in the delivery of paediatric patient navigation programs or planning to implement such a program. Specifically, our scan informed the development of a navigation centre for children with complex health conditions in New Brunswick.
NFC Internal: An Indoor Navigation System
Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem
2015-01-01
Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976
A risk analysis of winter navigation in Finnish sea areas.
Valdez Banda, Osiris A; Goerlandt, Floris; Montewka, Jakub; Kujala, Pentti
2015-06-01
Winter navigation is a complex but common operation in north-European sea areas. In Finnish waters, the smooth flow of maritime traffic and safety of vessel navigation during the winter period are managed through the Finnish-Swedish winter navigation system (FSWNS). This article focuses on accident risks in winter navigation operations, beginning with a brief outline of the FSWNS. The study analyses a hazard identification model of winter navigation and reviews accident data extracted from four winter periods. These are adopted as a basis for visualizing the risks in winter navigation operations. The results reveal that experts consider ship independent navigation in ice conditions the most complex navigational operation, which is confirmed by accident data analysis showing that the operation constitutes the type of navigation with the highest number of accidents reported. The severity of the accidents during winter navigation is mainly categorized as less serious. Collision is the most typical accident in ice navigation and general cargo the type of vessel most frequently involved in these accidents. Consolidated ice, ice ridges and ice thickness between 15 and 40cm represent the most common ice conditions in which accidents occur. Thus, the analysis presented in this article establishes the key elements for identifying the operation types which would benefit most from further safety engineering and safety or risk management development. Copyright © 2015 Elsevier Ltd. All rights reserved.
33 CFR 150.720 - What are the requirements for sound signals?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the requirements for sound signals? 150.720 Section 150.720 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... are the requirements for sound signals? The sound signal on each pumping platform complex must be...
33 CFR 150.720 - What are the requirements for sound signals?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false What are the requirements for sound signals? 150.720 Section 150.720 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... are the requirements for sound signals? The sound signal on each pumping platform complex must be...
33 CFR 150.720 - What are the requirements for sound signals?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false What are the requirements for sound signals? 150.720 Section 150.720 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... are the requirements for sound signals? The sound signal on each pumping platform complex must be...
33 CFR 150.720 - What are the requirements for sound signals?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false What are the requirements for sound signals? 150.720 Section 150.720 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... are the requirements for sound signals? The sound signal on each pumping platform complex must be...
33 CFR 150.720 - What are the requirements for sound signals?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false What are the requirements for sound signals? 150.720 Section 150.720 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... are the requirements for sound signals? The sound signal on each pumping platform complex must be...
Task-Based Navigation of a Taxonomy Interface to a Digital Repository
ERIC Educational Resources Information Center
Khoo, Christopher S. G.; Wang, Zhonghong; Chaudhry, Abdus Sattar
2012-01-01
Introduction: This is a study of hierarchical navigation; how users browse a taxonomy-based interface to an organizational repository to locate information resources. The study is part of a project to develop a taxonomy for an library and information science department to organize resources and support user browsing in a digital repository.…
2014-06-01
Speed xiii TEK Total Energy Compensated TSP traveling salesman problem UAV unmanned aerial vehicle UDP user datagram protocol UKF unscented...discretized map, and use the map to optimally solve the navigation task. The optimal navigation solution utilizes the well-known “ travelling salesman problem ...2 C. FORMULATION OF THE PROBLEM .................................................. 3 D
Daugherty, Ana M; Yuan, Peng; Dahle, Cheryl L; Bender, Andrew R; Yang, Yiqin; Raz, Naftali
2015-09-01
Studies of human navigation in virtual maze environments have consistently linked advanced age with greater distance traveled between the start and the goal and longer duration of the search. Observations of search path geometry suggest that routes taken by older adults may be unnecessarily complex and that excessive path complexity may be an indicator of cognitive difficulties experienced by older navigators. In a sample of healthy adults, we quantify search path complexity in a virtual Morris water maze with a novel method based on fractal dimensionality. In a two-level hierarchical linear model, we estimated improvement in navigation performance across trials by a decline in route length, shortening of search time, and reduction in fractal dimensionality of the path. While replicating commonly reported age and sex differences in time and distance indices, a reduction in fractal dimension of the path accounted for improvement across trials, independent of age or sex. The volumes of brain regions associated with the establishment of cognitive maps (parahippocampal gyrus and hippocampus) were related to path dimensionality, but not to the total distance and time. Thus, fractal dimensionality of a navigational path may present a useful complementary method of quantifying performance in navigation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Common Neural Representations for Visually Guided Reorientation and Spatial Imagery
Vass, Lindsay K.; Epstein, Russell A.
2017-01-01
Abstract Spatial knowledge about an environment can be cued from memory by perception of a visual scene during active navigation or by imagination of the relationships between nonvisible landmarks, such as when providing directions. It is not known whether these different ways of accessing spatial knowledge elicit the same representations in the brain. To address this issue, we scanned participants with fMRI, while they performed a judgment of relative direction (JRD) task that required them to retrieve real-world spatial relationships in response to either pictorial or verbal cues. Multivoxel pattern analyses revealed several brain regions that exhibited representations that were independent of the cues to access spatial memory. Specifically, entorhinal cortex in the medial temporal lobe and the retrosplenial complex (RSC) in the medial parietal lobe coded for the heading assumed on a particular trial, whereas the parahippocampal place area (PPA) contained information about the starting location of the JRD. These results demonstrate the existence of spatial representations in RSC, ERC, and PPA that are common to visually guided navigation and spatial imagery. PMID:26759482
Transmission of linearly polarized light in seawater: implications for polarization signaling.
Shashar, Nadav; Sabbah, Shai; Cronin, Thomas W
2004-09-01
Partially linearly polarized light is abundant in the oceans. The natural light field is partially polarized throughout the photic range, and some objects and animals produce a polarization pattern of their own. Many polarization-sensitive marine animals take advantage of the polarization information, using it for tasks ranging from navigation and finding food to communication. In such tasks, the distance to which the polarization information propagates is of great importance. Using newly designed polarization sensors, we measured the changes in linear polarization underwater as a function of distance from a standard target. In the relatively clear waters surrounding coral reefs, partial (%) polarization decreased exponentially as a function of distance from the target, resulting in a 50% reduction of partial polarization at a distance of 1.25-3 m, depending on water quality. Based on these measurements, we predict that polarization sensitivity will be most useful for short-range (in the order of meters) visual tasks in water and less so for detecting objects, signals, or structures from far away. Navigation and body orientation based on the celestial polarization pattern are predicted to be limited to shallow waters as well, while navigation based on the solar position is possible through a deeper range.
Software Would Largely Automate Design of Kalman Filter
NASA Technical Reports Server (NTRS)
Chuang, Jason C. H.; Negast, William J.
2005-01-01
Embedded Navigation Filter Automatic Designer (ENFAD) is a computer program being developed to automate the most difficult tasks in designing embedded software to implement a Kalman filter in a navigation system. The most difficult tasks are selection of error states of the filter and tuning of filter parameters, which are timeconsuming trial-and-error tasks that require expertise and rarely yield optimum results. An optimum selection of error states and filter parameters depends on navigation-sensor and vehicle characteristics, and on filter processing time. ENFAD would include a simulation module that would incorporate all possible error states with respect to a given set of vehicle and sensor characteristics. The first of two iterative optimization loops would vary the selection of error states until the best filter performance was achieved in Monte Carlo simulations. For a fixed selection of error states, the second loop would vary the filter parameter values until an optimal performance value was obtained. Design constraints would be satisfied in the optimization loops. Users would supply vehicle and sensor test data that would be used to refine digital models in ENFAD. Filter processing time and filter accuracy would be computed by ENFAD.
Robust position estimation of a mobile vehicle
NASA Astrophysics Data System (ADS)
Conan, Vania; Boulanger, Pierre; Elgazzar, Shadia
1994-11-01
The ability to estimate the position of a mobile vehicle is a key task for navigation over large distances in complex indoor environments such as nuclear power plants. Schematics of the plants are available, but they are incomplete, as real settings contain many objects, such as pipes, cables or furniture, that mask part of the model. The position estimation method described in this paper matches 3-D data with a simple schematic of a plant. It is basically independent of odometry information and viewpoint, robust to noisy data and spurious points and largely insensitive to occlusions. The method is based on a hypothesis/verification paradigm and its complexity is polynomial; it runs in (Omicron) (m4n4), where m represents the number of model patches and n the number of scene patches. Heuristics are presented to speed up the algorithm. Results on real 3-D data show good behavior even when the scene is very occluded.
Principles of Genetic Circuit Design
Brophy, Jennifer A.N.; Voigt, Christopher A.
2014-01-01
Cells are able to navigate environments, communicate, and build complex patterns by initiating gene expression in response to specific signals. Engineers need to harness this capability to program cells to perform tasks or build chemicals and materials that match the complexity seen in nature. This review describes new tools that aid the construction of genetic circuits. We show how circuit dynamics can be influenced by the choice of regulators and changed with expression “tuning knobs.” We collate the failure modes encountered when assembling circuits, quantify their impact on performance, and review mitigation efforts. Finally, we discuss the constraints that arise from operating within a living cell. Collectively, better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications, from living therapeutics to the atomic manufacturing of functional materials. PMID:24781324
A dyadic protocol for training complex skills: a replication using female participants.
Sanchez-Ku, M L; Arthur, W
2000-01-01
The effectiveness and efficiency of the active interlocked modeling (AIM) dyadic protocol in training complex skills has been extensively demonstrated. However, past evaluation studies have all used male participants exclusively. Consequently, the present study investigated the generalizability of the effectiveness and efficiency gains to women. We randomly assigned 108 female participants to either the AIM-dyad condition or a standard individual control training condition. The results supported the robustness and viability of the AIM protocol. Although their overall performance was lower than that obtained for men in previous studies, women trained in the AIM-dyad condition performed as well as those trained in the individual condition. Thus, the efficiency gains associated with the AIM-dyad protocol, which result from the ability to train two people simultaneously to reach the same performance level as a single person with no increase in training time or machine cost, are generalizable to female participants. The applied and basic research implications of the present study are discussed within the context of well-documented male/female differences in the performance of complex psychomotor tasks. For instance, given the number of women entering the workforce and the significant proportion of women in professions previously deemed to be male-dominated (e.g., air navigation), it is reassuring to know that sex differences in task performance do not necessarily imply sex differences in the effectiveness of training protocols.
NASA Technical Reports Server (NTRS)
Rochlis-Zumbado, Jennifer; Sandor, Aniko; Ezer, Neta
2012-01-01
Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is a new Human Research Program (HRP) risk. HRI is a research area that seeks to understand the complex relationship among variables that affect the way humans and robots work together to accomplish goals. The DRP addresses three major HRI study areas that will provide appropriate information for navigation guidance to a teleoperator of a robot system, and contribute to the closure of currently identified HRP gaps: (1) Overlays -- Use of overlays for teleoperation to augment the information available on the video feed (2) Camera views -- Type and arrangement of camera views for better task performance and awareness of surroundings (3) Command modalities -- Development of gesture and voice command vocabularies
Goodlett, C R; Hamre, K M; West, J R
1992-04-10
Spatial learning in rodents requires normal functioning of hippocampal and cortical structures. Recent data suggest that the cerebellum may also be essential. Neurological mutant mice with dysgenesis of the cerebellum provide useful models to examine the effects of abnormal cerebellar function. Mice with one such mutation, Purkinje cell degeneration (pcd), in which Purkinje cells degenerate between the third and fourth postnatal weeks, were evaluated for performance of spatial navigation learning and visual guidance learning in the Morris maze swim-escape task. Unaffected littermates and C57BL/6J mice served as controls. Separate groups of pcd and control mice were tested at 30, 50 and 110 days of age. At all ages, pcd mice had severe deficits in distal-cue (spatial) navigation, failing to decrease path lengths over training and failing to express appropriate spatial biases on probe trials. On the proximal-cue (visual guidance) task, whenever performance differences between groups did occur, they were limited to the initial trials. The ability of the pcd mice to perform the proximal-cue but not the distal-cue task indicates that the massive spatial navigation deficit was not due simply to motor dysfunction. Histological evaluations confirmed that the pcd mutation resulted in Purkinje cell loss without significant depletion of cells in the hippocampal formation. These data provide further evidence that the cerebellum is vital for the expression of behavior directed by spatial cognitive processes.
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Aretz, Anthony; Harwood, Kelly
1989-01-01
Three experiments are reported that examine the difference between north-up and track-up maps for airborne navigation. The results of the first two experiments, conducted in a basic laboratory setting, identified the cost associated with mental rotation, when a north-up map is used. However, the data suggest that these costs are neither large nor consistent. The third experiment examined a range of tasks in a higher fidelity helicopter flight simulation, and associated the costs of north-up maps with a cognitive component related to orientation, and the costs of track-up maps with a cognitive component related to inconsistent landmark location. Different tasks are associated with different dependence on these components. The results are discussed in terms of their implications for map design, and for cognitive models of navigational processes.
Sensor Architecture and Task Classification for Agricultural Vehicles and Environments
Rovira-Más, Francisco
2010-01-01
The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way. PMID:22163522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.
Outdoor sensor-based operation of autonomous robots has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. Two basic principles, or philosophies, and their associated methodologies are proposed in an attempt to remedy some of these difficulties. The first principle is based on the concept of ``minimal model`` for accomplishing given tasks and proposes to utilize only themore » minimum level of information and precision necessary to accomplish elemental functions of complex tasks. This approach diverges completely from the direction taken by most artificial vision studies which conventionally call for crisp and detailed analysis of every available component in the perception data. The paper will first review the basic concepts of this approach and will discuss its pragmatic feasibility when embodied in a behaviorist framework. The second principle which is proposed deals with implicit representation of uncertainties using Fuzzy Set Theory-based approximations and approximate reasoning, rather than explicit (crisp) representation through calculation and conventional propagation techniques. A framework which merges these principles and approaches is presented, and its application to the problem of sensor-based outdoor navigation of a mobile robot is discussed. Results of navigation experiments with a real car in actual outdoor environments are also discussed to illustrate the feasibility of the overall concept.« less
Sensor architecture and task classification for agricultural vehicles and environments.
Rovira-Más, Francisco
2010-01-01
The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way.
A relative navigation sensor for CubeSats based on LED fiducial markers
NASA Astrophysics Data System (ADS)
Sansone, Francesco; Branz, Francesco; Francesconi, Alessandro
2018-05-01
Small satellite platforms are becoming very appealing both for scientific and commercial applications, thanks to their low cost, short development times and availability of standard components and subsystems. The main disadvantage with such vehicles is the limitation of available resources to perform mission tasks. To overcome this drawback, mission concepts are under study that foresee cooperation between autonomous small satellites to accomplish complex tasks; among these, on-orbit servicing and on-orbit assembly of large structures are of particular interest and the global scientific community is putting a significant effort in the miniaturization of critical technologies that are required for such innovative mission scenarios. In this work, the development and the laboratory testing of an accurate relative navigation package for nanosatellites compliant to the CubeSat standard is presented. The system features a small camera and two sets of LED fiducial markers, and is conceived as a standard package that allows small spacecraft to perform mutual tracking during rendezvous and docking maneuvers. The hardware is based on off-the-shelf components assembled in a compact configuration that is compatible with the CubeSat standard. The image processing and pose estimation software was custom developed. The experimental evaluation of the system allowed to determine both the static and dynamic performances. The system is capable to determine the close range relative position and attitude faster than 10 S/s, with errors always below 10 mm and 2 deg.
Wiener, J M; Ehbauer, N N; Mallot, H A
2009-09-01
For large numbers of targets, path planning is a complex and computationally expensive task. Humans, however, usually solve such tasks quickly and efficiently. We present experiments studying human path planning performance and the cognitive processes and heuristics involved. Twenty-five places were arranged on a regular grid in a large room. Participants were repeatedly asked to solve traveling salesman problems (TSP), i.e., to find the shortest closed loop connecting a start location with multiple target locations. In Experiment 1, we tested whether humans employed the nearest neighbor (NN) strategy when solving the TSP. Results showed that subjects outperform the NN-strategy, suggesting that it is not sufficient to explain human route planning behavior. As a second possible strategy we tested a hierarchical planning heuristic in Experiment 2, demonstrating that participants first plan a coarse route on the region level that is refined during navigation. To test for the relevance of spatial working memory (SWM) and spatial long-term memory (LTM) for planning performance and the planning heuristics applied, we varied the memory demands between conditions in Experiment 2. In one condition the target locations were directly marked, such that no memory was required; a second condition required participants to memorize the target locations during path planning (SWM); in a third condition, additionally, the locations of targets had to retrieved from LTM (SWM and LTM). Results showed that navigation performance decreased with increasing memory demands while the dependence on the hierarchical planning heuristic increased.
Evaluation of a technique to simplify area navigation and required navigation performance charts
DOT National Transportation Integrated Search
2013-06-30
Performance based navigation (PBN), an enabler for the Federal Aviation Administration's Next Generation Air Transportation System (NextGEN), supports the design of more precise flight procedures. However, these new procedures can be visually complex...
Pletzer, Belinda; Scheuringer, Andrea; Scherndl, Thomas
2017-09-05
Sex differences have been reported for a variety of cognitive tasks and related to the use of different cognitive processing styles in men and women. It was recently argued that these processing styles share some characteristics across tasks, i.e. male approaches are oriented towards holistic stimulus aspects and female approaches are oriented towards stimulus details. In that respect, sex-dependent cognitive processing styles share similarities with attentional global-local processing. A direct relationship between cognitive processing and global-local processing has however not been previously established. In the present study, 49 men and 44 women completed a Navon paradigm and a Kimchi Palmer task as well as a navigation task and a verbal fluency task with the goal to relate the global advantage (GA) effect as a measure of global processing to holistic processing styles in both tasks. Indeed participants with larger GA effects displayed more holistic processing during spatial navigation and phonemic fluency. However, the relationship to cognitive processing styles was modulated by the specific condition of the Navon paradigm, as well as the sex of participants. Thus, different types of global-local processing play different roles for cognitive processing in men and women.
Intelligent navigation and accurate positioning of an assist robot in indoor environments
NASA Astrophysics Data System (ADS)
Hua, Bin; Rama, Endri; Capi, Genci; Jindai, Mitsuru; Tsuri, Yosuke
2017-12-01
Intact robot's navigation and accurate positioning in indoor environments are still challenging tasks. Especially in robot applications, assisting disabled and/or elderly people in museums/art gallery environments. In this paper, we present a human-like navigation method, where the neural networks control the wheelchair robot to reach the goal location safely, by imitating the supervisor's motions, and positioning in the intended location. In a museum similar environment, the mobile robot starts navigation from various positions, and uses a low-cost camera to track the target picture, and a laser range finder to make a safe navigation. Results show that the neural controller with the Conjugate Gradient Backpropagation training algorithm gives a robust response to guide the mobile robot accurately to the goal position.
Gao, Liqiang; Sun, Chao; Zhang, Chen; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang
2013-01-01
Traditional automatic navigation methods for bio-robots are constrained to configured environments and thus can't be applied to tasks in unknown environments. With no consideration of bio-robot's own innate living ability and treating bio-robots in the same way as mechanical robots, those methods neglect the intelligence behavior of animals. This paper proposes a novel ratbot automatic navigation method in unknown environments using only reward stimulation and distance measurement. By utilizing rat's habit of thigmotaxis and its reward-seeking behavior, this method is able to incorporate rat's intrinsic intelligence of obstacle avoidance and path searching into navigation. Experiment results show that this method works robustly and can successfully navigate the ratbot to a target in the unknown environment. This work might put a solid base for application of ratbots and also has significant implication of automatic navigation for other bio-robots as well.
A study of navigation in virtual space
NASA Technical Reports Server (NTRS)
Darken, Rudy; Sibert, John L.; Shumaker, Randy
1994-01-01
In the physical world, man has developed efficient methods for navigation and orientation. These methods are dependent on the high-fidelity stimuli presented by the environment. When placed in a virtual world which cannot offer stimuli of the same quality due to computing constraints and immature technology, tasks requiring the maintenance of position and orientation knowledge become laborious. In this paper, we present a representative set of techniques based on principles of navigation derived from real world analogs including human and avian navigation behavior and cartography. A preliminary classification of virtual worlds is presented based on the size of the world, the density of objects in the world, and the level of activity taking place in the world. We also summarize an informal study we performed to determine how the tools influenced the subjects' navigation strategies and behavior. We conclude that principles extracted from real world navigation aids such as maps can be seen to apply in virtual environments.
Carrieri, Marika; Lancia, Stefania; Bocchi, Alessia; Ferrari, Marco; Piccardi, Laura; Quaresima, Valentina
2018-06-01
The Key Search Task (KST) is a neuropsychological test that requires strategies for searching a lost key in an imaginary field. This request may involve different cognitive processes as mental imagery and navigation planning. This study was aimed at investigating, by a twenty-channel functional near-infrared spectroscopy (fNIRS) system, the hemodynamic response (i.e., oxygenated-hemoglobin (O 2 Hb) and deoxygenated-hemoglobin (HHb) changes) of the prefrontal cortex in navigation planning. A right ventrolateral prefrontal cortex (rVLPFC) activation during the KST was hypothesized. Thirty-eight volunteers performed the KST and a Control Task (CT), the latter requiring the volunteers to mark the X letter. An activation (i.e., increase/decrease in O 2 Hb/HHb) of: 1) rVLPFC during the KST execution, and 2) bilateral dorsolateral prefrontal cortex (DLPFC) during the CT execution was found. The present study provides a contribution in localizing the rVLPFC as the critically active region, within the frontal lobes, that was found maximally activated during mental navigation in the mind's eye of healthy participants while performing the KST. Considering the contribution of rVLPFC in spatial navigation, its activation suggests that the KST could be adopted in the clinical routine for investigating navigation planning. Compared to other neuroimaging techniques, fNIRS (with its relatively low physical constraints) contributes to better clarifying the role of rVLPFC in some aspects of human navigation. Therefore, the combined use of the fNIRS and the KST could be considered as an innovative and valid tool to evaluate fundamental functions for everyday life, such as spatial navigation planning.
Neural Codes for One's Own Position and Direction in a Real-World "Vista" Environment.
Sulpizio, Valentina; Boccia, Maddalena; Guariglia, Cecilia; Galati, Gaspare
2018-01-01
Humans, like animals, rely on an accurate knowledge of one's spatial position and facing direction to keep orientated in the surrounding space. Although previous neuroimaging studies demonstrated that scene-selective regions (the parahippocampal place area or PPA, the occipital place area or OPA and the retrosplenial complex or RSC), and the hippocampus (HC) are implicated in coding position and facing direction within small-(room-sized) and large-scale navigational environments, little is known about how these regions represent these spatial quantities in a large open-field environment. Here, we used functional magnetic resonance imaging (fMRI) in humans to explore the neural codes of these navigationally-relevant information while participants viewed images which varied for position and facing direction within a familiar, real-world circular square. We observed neural adaptation for repeated directions in the HC, even if no navigational task was required. Further, we found that the amount of knowledge of the environment interacts with the PPA selectivity in encoding positions: individuals who needed more time to memorize positions in the square during a preliminary training task showed less neural attenuation in this scene-selective region. We also observed adaptation effects, which reflect the real distances between consecutive positions, in scene-selective regions but not in the HC. When examining the multi-voxel patterns of activity we observed that scene-responsive regions and the HC encoded both spatial information and that the RSC classification accuracy for positions was higher in individuals scoring higher to a self-reported questionnaire of spatial abilities. Our findings provide new insight into how the human brain represents a real, large-scale "vista" space, demonstrating the presence of neural codes for position and direction in both scene-selective and hippocampal regions, and revealing the existence, in the former regions, of a map-like spatial representation reflecting real-world distance between consecutive positions.
Three-dimensional curvilinear device reconstruction from two fluoroscopic views
NASA Astrophysics Data System (ADS)
Delmas, Charlotte; Berger, Marie-Odile; Kerrien, Erwan; Riddell, Cyril; Trousset, Yves; Anxionnat, René; Bracard, Serge
2015-03-01
In interventional radiology, navigating devices under the sole guidance of fluoroscopic images inside a complex architecture of tortuous and narrow vessels like the cerebral vascular tree is a difficult task. Visualizing the device in 3D could facilitate this navigation. For curvilinear devices such as guide-wires and catheters, a 3D reconstruction may be achieved using two simultaneous fluoroscopic views, as available on a biplane acquisition system. The purpose of this paper is to present a new automatic three-dimensional curve reconstruction method that has the potential to reconstruct complex 3D curves and does not require a perfect segmentation of the endovascular device. Using epipolar geometry, our algorithm translates the point correspondence problem into a segment correspondence problem. Candidate 3D curves can be formed and evaluated independently after identifying all possible combinations of compatible 3D segments. Correspondence is then inherently solved by looking in 3D space for the most coherent curve in terms of continuity and curvature. This problem can be cast into a graph problem where the most coherent curve corresponds to the shortest path of a weighted graph. We present quantitative results of curve reconstructions performed from numerically simulated projections of tortuous 3D curves extracted from cerebral vascular trees affected with brain arteriovenous malformations as well as fluoroscopic image pairs of a guide-wire from both phantom and clinical sets. Our method was able to select the correct 3D segments in 97.5% of simulated cases thus demonstrating its ability to handle complex 3D curves and can deal with imperfect 2D segmentation.
ERIC Educational Resources Information Center
Farran, E. K.; Formby, S.; Daniyal, F.; Holmes, T.; Van Herwegen, J.
2016-01-01
Background: Successful navigation is crucial to everyday life. Individuals with Williams syndrome (WS) have impaired spatial abilities. This includes a deficit in spatial navigation abilities such as learning the route from A to B. To-date, to determine whether participants attend to landmarks when learning a route, landmark recall tasks have been…
A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs
Wang, Lingling; Liu, Guozhu; Sun, Lijun
2017-01-01
Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme. PMID:28338620
A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs.
Wang, Lingling; Liu, Guozhu; Sun, Lijun
2017-03-24
Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme.
Systematic methods for knowledge acquisition and expert system development
NASA Technical Reports Server (NTRS)
Belkin, Brenda L.; Stengel, Robert F.
1991-01-01
Nine cooperating rule-based systems, collectively called AUTOCREW, were designed to automate functions and decisions associated with a combat aircraft's subsystem. The organization of tasks within each system is described; performance metrics were developed to evaluate the workload of each rule base, and to assess the cooperation between the rule-bases. Each AUTOCREW subsystem is composed of several expert systems that perform specific tasks. AUTOCREW's NAVIGATOR was analyzed in detail to understand the difficulties involved in designing the system and to identify tools and methodologies that ease development. The NAVIGATOR determines optimal navigation strategies from a set of available sensors. A Navigation Sensor Management (NSM) expert system was systematically designed from Kalman filter covariance data; four ground-based, a satellite-based, and two on-board INS-aiding sensors were modeled and simulated to aid an INS. The NSM Expert was developed using the Analysis of Variance (ANOVA) and the ID3 algorithm. Navigation strategy selection is based on an RSS position error decision metric, which is computed from the covariance data. Results show that the NSM Expert predicts position error correctly between 45 and 100 percent of the time for a specified navaid configuration and aircraft trajectory. The NSM Expert adapts to new situations, and provides reasonable estimates of hybrid performance. The systematic nature of the ANOVA/ID3 method makes it broadly applicable to expert system design when experimental or simulation data is available.
Cognitive Support for Learning Computer-Based Tasks Using Animated Demonstration
ERIC Educational Resources Information Center
Chen, Chun-Ying
2016-01-01
This study investigated the influence of cognitive support for learning computer-based tasks using animated demonstration (AD) on instructional efficiency. Cognitive support included (1) segmentation and learner control introducing interactive devices that allow content sequencing through a navigational menu, and content pacing through stop and…
Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience
2016-01-01
The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue–response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel “other” task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue–response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. SIGNIFICANCE STATEMENT Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex. PMID:27307234
Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience.
Ferbinteanu, Janina
2016-06-15
The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue-response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel "other" task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue-response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex. Copyright © 2016 the authors 0270-6474/16/366459-12$15.00/0.
Drawing from Memory: Hand-Eye Coordination at Multiple Scales
Spivey, Michael J.
2013-01-01
Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894
NASA Technical Reports Server (NTRS)
Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville
2005-01-01
Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.
NASA Technical Reports Server (NTRS)
Lebacqz, J. V.; Forrest, R. D.; Gerdes, R. M.
1982-01-01
A ground-simulation experiment was conducted to investigate the influence and interaction of flight-control system, fight-director display, and crew-loading situation on helicopter flying qualities during terminal area operations in instrument conditions. The experiment was conducted on the Flight Simulator for Advanced Aircraft at Ames Research Center. Six levels of control complexity, ranging from angular rate damping to velocity augmented longitudinal and vertical axes, were implemented on a representative helicopter model. The six levels of augmentation were examined with display variations consisting of raw elevation and azimuth data only, and of raw data plus one-, two-, and three-cue flight directors. Crew-loading situations simulated for the control-display combinations were dual-pilot operation (representative auxiliary tasks of navigation, communications, and decision-making). Four pilots performed a total of 150 evaluations of combinations of these parameters for a representative microwave landing system (MLS) approach task.
Gunn, Christine M; Clark, Jack A; Battaglia, Tracy A; Freund, Karen M; Parker, Victoria A
2014-10-01
To determine how closely a published model of navigation reflects the practice of navigation in breast cancer patient navigation programs. Observational field notes describing patient navigator activities collected from 10 purposefully sampled, foundation-funded breast cancer navigation programs in 2008-2009. An exploratory study evaluated a model framework for patient navigation published by Harold Freeman by using an a priori coding scheme based on model domains. Field notes were compiled and coded. Inductive codes were added during analysis to characterize activities not included in the original model. Programs were consistent with individual-level principles representing tasks focused on individual patients. There was variation with respect to program-level principles that related to program organization and structure. Program characteristics such as the use of volunteer or clinical navigators were identified as contributors to patterns of model concordance. This research provides a framework for defining the navigator role as focused on eliminating barriers through the provision of individual-level interventions. The diversity observed at the program level in these programs was a reflection of implementation according to target population. Further guidance may be required to assist patient navigation programs to define and tailor goals and measurement to community needs. © Health Research and Educational Trust.
Gunn, Christine M; Clark, Jack A; Battaglia, Tracy A; Freund, Karen M; Parker, Victoria A
2014-01-01
Objective To determine how closely a published model of navigation reflects the practice of navigation in breast cancer patient navigation programs. Data Source Observational field notes describing patient navigator activities collected from 10 purposefully sampled, foundation-funded breast cancer navigation programs in 2008–2009. Study Design An exploratory study evaluated a model framework for patient navigation published by Harold Freeman by using an a priori coding scheme based on model domains. Data Collection Field notes were compiled and coded. Inductive codes were added during analysis to characterize activities not included in the original model. Principal Findings Programs were consistent with individual-level principles representing tasks focused on individual patients. There was variation with respect to program-level principles that related to program organization and structure. Program characteristics such as the use of volunteer or clinical navigators were identified as contributors to patterns of model concordance. Conclusions This research provides a framework for defining the navigator role as focused on eliminating barriers through the provision of individual-level interventions. The diversity observed at the program level in these programs was a reflection of implementation according to target population. Further guidance may be required to assist patient navigation programs to define and tailor goals and measurement to community needs. PMID:24820445
An Agent-Based Model for Navigation Simulation in a Heterogeneous Environment
ERIC Educational Resources Information Center
Shanklin, Teresa A.
2012-01-01
Complex navigation (e.g. indoor and outdoor environments) can be studied as a system-of-systems problem. The model is made up of disparate systems that can aid a user in navigating from one location to another, utilizing whatever sensor system or information is available. By using intelligent navigation sensors and techniques (e.g. RFID, Wifi,…
Flexible Multi agent Algorithm for Distributed Decision Making
2015-01-01
How, J. P. Consensus - Based Auction Approaches for Decentralized task Assignment. Proceedings of the AIAA Guidance, Navigation, and Control...G. ; Kim, Y. Market- based Decentralized Task Assignment for Cooperative UA V Mission Including Rendezvous. Proceedings of the AIAA Guidance...scalable and adaptable to a variety of specific mission tasks . Additionally, the algorithm could easily be adapted for use on land or sea- based systems
Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven R; Conrad, Jens; Nimer Amr, Amr; Gawehn, Joachim; Giese, Alf
2017-08-01
A feasibility study. To develop a method based on the DICOM standard which transfers complex 3-dimensional (3D) trajectories and objects from external planning software to any navigation system for planning and intraoperative guidance of complex spinal procedures. There have been many reports about navigation systems with embedded planning solutions but only few on how to transfer planning data generated in external software. Patients computerized tomography and/or magnetic resonance volume data sets of the affected spinal segments were imported to Amira software, reconstructed to 3D images and fused with magnetic resonance data for soft-tissue visualization, resulting in a virtual patient model. Objects needed for surgical plans or surgical procedures such as trajectories, implants or surgical instruments were either digitally constructed or computerized tomography scanned and virtually positioned within the 3D model as required. As crucial step of this method these objects were fused with the patient's original diagnostic image data, resulting in a single DICOM sequence, containing all preplanned information necessary for the operation. By this step it was possible to import complex surgical plans into any navigation system. We applied this method not only to intraoperatively adjustable implants and objects under experimental settings, but also planned and successfully performed surgical procedures, such as the percutaneous lateral approach to the lumbar spine following preplanned trajectories and a thoracic tumor resection including intervertebral body replacement using an optical navigation system. To demonstrate the versatility and compatibility of the method with an entirely different navigation system, virtually preplanned lumbar transpedicular screw placement was performed with a robotic guidance system. The presented method not only allows virtual planning of complex surgical procedures, but to export objects and surgical plans to any navigation or guidance system able to read DICOM data sets, expanding the possibilities of embedded planning software.
Isolated core vs. superficial cooling effects on virtual maze navigation.
Payne, Jennifer; Cheung, Stephen S
2007-07-01
Cold impairs cognitive performance and is a common occurrence in many survival situations. Altered behavior patterns due to impaired navigation abilities in cold environments are potential problems in lost-person situations. We investigated the separate effects of low core temperature and superficial cooling on a spatially demanding virtual navigation task. There were 12 healthy men who were passively cooled via 15 degrees C water immersion to a core temperature of 36.0 degrees C, then transferred to a warm (40 degrees C) water bath to eliminate superficial shivering while completing a series of 20 virtual computer mazes. In a control condition, subjects rested in a thermoneutral (approximately 35 degrees C) bath for a time-matched period before being transferred to a warm bath for testing. Superficial cooling and distraction were achieved by whole-body immersion in 35 degree water for a time-matched period, followed by lower leg immersion in 10 degree C water for the duration of the navigational tests. Mean completion time and mean error scores for the mazes were not significantly different (p > 0.05) across the core cooling (16.59 +/- 11.54 s, 0.91 +/- 1.86 errors), control (15.40 +/- 8.85 s, 0.82 +/- 1.76 errors), and superficial cooling (15.19 +/- 7.80 s, 0.77 +/- 1.40 errors) conditions. Separately reducing core temperature or increasing cold sensation in the lower extremities did not influence performance on virtual computer mazes, suggesting that navigation is more resistive to cooling than other, simpler cognitive tasks. Further research is warranted to explore navigational ability at progressively lower core and skin temperatures, and in different populations.
The Effects of Restricted Peripheral Field-of-View on Spatial Learning while Navigating.
Barhorst-Cates, Erica M; Rand, Kristina M; Creem-Regehr, Sarah H
2016-01-01
Recent work with simulated reductions in visual acuity and contrast sensitivity has found decrements in survey spatial learning as well as increased attentional demands when navigating, compared to performance with normal vision. Given these findings, and previous work showing that peripheral field loss has been associated with impaired mobility and spatial memory for room-sized spaces, we investigated the role of peripheral vision during navigation using a large-scale spatial learning paradigm. First, we aimed to establish the magnitude of spatial memory errors at different levels of field restriction. Second, we tested the hypothesis that navigation under these different levels of restriction would use additional attentional resources. Normally sighted participants walked on novel real-world paths wearing goggles that restricted the field-of-view (FOV) to severe (15°, 10°, 4°, or 0°) or mild angles (60°) and then pointed to remembered target locations using a verbal reporting measure. They completed a concurrent auditory reaction time task throughout each path to measure cognitive load. Only the most severe restrictions (4° and blindfolded) showed impairment in pointing error compared to the mild restriction (within-subjects). The 10° and 4° conditions also showed an increase in reaction time on the secondary attention task, suggesting that navigating with these extreme peripheral field restrictions demands the use of limited cognitive resources. This comparison of different levels of field restriction suggests that although peripheral field loss requires the actor to use more attentional resources while navigating starting at a less extreme level (10°), spatial memory is not negatively affected until the restriction is very severe (4°). These results have implications for understanding of the mechanisms underlying spatial learning during navigation and the approaches that may be taken to develop assistance for navigation with visual impairment.
Spinning in the Scanner: Neural Correlates of Virtual Reorientation
ERIC Educational Resources Information Center
Sutton, Jennifer E.; Joanisse, Marc F.; Newcombe, Nora S.
2010-01-01
Recent studies have used spatial reorientation task paradigms to identify underlying cognitive mechanisms of navigation in children, adults, and a range of animal species. Despite broad interest in this task across disciplines, little is known about the brain bases of reorientation. We used functional magnetic resonance imaging to examine neural…
Suboptimal Tradeoffs in Information Seeking
ERIC Educational Resources Information Center
Fu, Wai-Tat; Gray, Wayne D.
2006-01-01
Explicit information-seeking actions are needed to evaluate alternative actions in problem-solving tasks. Information-seeking costs are often traded off against the utility of information. We present three experiments that show how subjects adapt to the cost and information structures of environments in a map-navigation task. We found that…
A Visual-Cue-Dependent Memory Circuit for Place Navigation.
Qin, Han; Fu, Ling; Hu, Bo; Liao, Xiang; Lu, Jian; He, Wenjing; Liang, Shanshan; Zhang, Kuan; Li, Ruijie; Yao, Jiwei; Yan, Junan; Chen, Hao; Jia, Hongbo; Zott, Benedikt; Konnerth, Arthur; Chen, Xiaowei
2018-06-05
The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Multi-Spacecraft Autonomous Positioning System
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2015-01-01
As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.
ERIC Educational Resources Information Center
Goodrich, Kristopher M.; Luke, Melissa
2016-01-01
The authors describe ethnographic research exploring the experiences of school stakeholders at a lesbian, gay, bisexual, transgender, queer, questioning, and intersex (LGBTQQI)-identified charter school. Participants evidenced use of an overt and covert narrative that appeared to reflect how they navigated the complexities at the…
Global models: Robot sensing, control, and sensory-motor skills
NASA Technical Reports Server (NTRS)
Schenker, Paul S.
1989-01-01
Robotics research has begun to address the modeling and implementation of a wide variety of unstructured tasks. Examples include automated navigation, platform servicing, custom fabrication and repair, deployment and recovery, and science exploration. Such tasks are poorly described at onset; the workspace layout is partially unfamiliar, and the task control sequence is only qualitatively characterized. The robot must model the workspace, plan detailed physical actions from qualitative goals, and adapt its instantaneous control regimes to unpredicted events. Developing robust representations and computational approaches for these sensing, planning, and control functions is a major challenge. The underlying domain constraints are very general, and seem to offer little guidance for well-bounded approximation of object shape and motion, manipulation postures and trajectories, and the like. This generalized modeling problem is discussed, with an emphasis on the role of sensing. It is also discussed that unstructured tasks often have, in fact, a high degree of underlying physical symmetry, and such implicit knowledge should be drawn on to model task performance strategies in a methodological fashion. A group-theoretic decomposition of the workspace organization, task goals, and their admissible interactions are proposed. This group-mechanical approach to task representation helps to clarify the functional interplay of perception and control, in essence, describing what perception is specifically for, versus how it is generically modeled. One also gains insight how perception might logically evolve in response to needs of more complex motor skills. It is discussed why, of the many solutions that are often mathematically admissible to a given sensory motor-coordination problem, one may be preferred over others.
Wayfinding and Glaucoma: A Virtual Reality Experiment.
Daga, Fábio B; Macagno, Eduardo; Stevenson, Cory; Elhosseiny, Ahmed; Diniz-Filho, Alberto; Boer, Erwin R; Schulze, Jürgen; Medeiros, Felipe A
2017-07-01
Wayfinding, the process of determining and following a route between an origin and a destination, is an integral part of everyday tasks. The purpose of this study was to investigate the impact of glaucomatous visual field loss on wayfinding behavior using an immersive virtual reality (VR) environment. This cross-sectional study included 31 glaucomatous patients and 20 healthy subjects without evidence of overall cognitive impairment. Wayfinding experiments were modeled after the Morris water maze navigation task and conducted in an immersive VR environment. Two rooms were built varying only in the complexity of the visual scene in order to promote allocentric-based (room A, with multiple visual cues) versus egocentric-based (room B, with single visual cue) spatial representations of the environment. Wayfinding tasks in each room consisted of revisiting previously visible targets that subsequently became invisible. For room A, glaucoma patients spent on average 35.0 seconds to perform the wayfinding task, whereas healthy subjects spent an average of 24.4 seconds (P = 0.001). For room B, no statistically significant difference was seen on average time to complete the task (26.2 seconds versus 23.4 seconds, respectively; P = 0.514). For room A, each 1-dB worse binocular mean sensitivity was associated with 3.4% (P = 0.001) increase in time to complete the task. Glaucoma patients performed significantly worse on allocentric-based wayfinding tasks conducted in a VR environment, suggesting visual field loss may affect the construction of spatial cognitive maps relevant to successful wayfinding. VR environments may represent a useful approach for assessing functional vision endpoints for clinical trials of emerging therapies in ophthalmology.
ERIC Educational Resources Information Center
Wamsley, Erin J.; Tucker, Matthew A.; Payne, Jessica D.; Stickgold, Robert
2010-01-01
Here, we examined the effect of a daytime nap on changes in virtual maze performance across a single day. Participants either took a short nap or remained awake following training on a virtual maze task. Post-training sleep provided a clear performance benefit at later retest, but only for those participants with prior experience navigating in a…
Defense Science Board Task Force on The Future of the Global Positioning System
2005-10-01
interference. Incorporate a fully reprogrammable Navigation Payload aboard GPS satellites as soon as practicable to enable future flexibility in signal...its use increases in automobiles , it is becoming a significant factor in E-911-type situations, where emergency vehicles are dispatched to accident...mitigation for GPS against both intentional and unintentional interference. Incorporate a fully reprogrammable Navigation Payload aboard GPS
Remote Navigation for Complex Arrhythmia
Suman-Horduna, Irina; Babu-Narayan, Sonya V; Ernst, Sabine
2013-01-01
Magnetic navigation has been established as an alternative to conventional, manual catheter navigation for invasive electrophysiology interventions about a decade ago. Besides the obvious advantage of radiation protection for the operator who is positioned remotely from the patient, there are additional benefits of steering the tip of a very floppy catheter. This manuscript reviews the published evidence from simple arrhythmias in patients with normal cardiac anatomy to the most complex congenital heart disease. This progress was made possible by the introduction of improved catheters and most importantly irrigated-tip electrodes. PMID:26835041
The effect of exercise on carbohydrate preference in female rats.
Keeley, R J; Zelinski, E L; Fehr, L; McDonald, R J
2014-02-01
Exercise has a myriad of health benefits, including positive effects against heart disease, diabetes, and dementia. Cognitive performance improves following chronic exercise, both in animal models and humans. Studies have examined the effect of exercise on feeding, demonstrating a preference towards increased food consumption. Further, sex differences exist such that females tend to prefer carbohydrates over other macronutrients following exercise. However, no clear effect of exercise on macronutrient or carbohydrate selection has been described in animal or human studies. This research project sought to determine the effect of voluntary exercise on carbohydrate selection in female rats. Preference for a complex (starch) versus a simple (dextrose) carbohydrate was assessed using a discriminative preference to context paradigm in non-exercising and voluntarily exercising female rats. In addition, fasting blood glucose and performance in the Morris water task was examined in order to verify the effects of exercise on performance in this task. Female rats given access to running wheels preferred a context previously associated with starch, whereas females with no running wheel access preferred a context previously associated with dextrose. No changes in blood glucose were observed. However, cognitive differences in the Morris water task were observed such that voluntary exercise allowed rats to find a new location of a hidden platform following 4 days of training to an old platform location. These results suggest that voluntary exercise may decrease preservative behaviors in a spatial navigation task through the facilitation of plasticity mechanisms. This study is the first of its kind to demonstrate the influence of exercise on taste preference for complex and simple carbohydrates with this context conditioning paradigm. Copyright © 2014 Elsevier Inc. All rights reserved.
Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control
Varga, Adrienn G.; Kathman, Nicholas D.; Martin, Joshua P.; Guo, Peiyuan; Ritzmann, Roy E.
2017-01-01
Cockroaches are scavengers that forage through dark, maze-like environments. Like other foraging animals, for instance rats, they must continually asses their situation to keep track of targets and negotiate barriers. While navigating a complex environment, all animals need to integrate sensory information in order to produce appropriate motor commands. The integrated sensory cues can be used to provide the animal with an environmental and contextual reference frame for the behavior. To successfully reach a goal location, navigational cues continuously derived from sensory inputs have to be utilized in the spatial guidance of motor commands. The sensory processes, contextual and spatial mechanisms, and motor outputs contributing to navigation have been heavily studied in rats. In contrast, many insect studies focused on the sensory and/or motor components of navigation, and our knowledge of the abstract representation of environmental context and spatial information in the insect brain is relatively limited. Recent reports from several laboratories have explored the role of the central complex (CX), a sensorimotor region of the insect brain, in navigational processes by recording the activity of CX neurons in freely-moving insects and in more constrained, experimenter-controlled situations. The results of these studies indicate that the CX participates in processing the temporal and spatial components of sensory cues, and utilizes these cues in creating an internal representation of orientation and context, while also directing motor control. Although these studies led to a better understanding of the CX's role in insect navigation, there are still major voids in the literature regarding the underlying mechanisms and brain regions involved in spatial navigation. The main goal of this review is to place the above listed findings in the wider context of animal navigation by providing an overview of the neural mechanisms of navigation in rats and summarizing and comparing our current knowledge on the CX's role in insect navigation to these processes. By doing so, we aimed to highlight some of the missing puzzle pieces in insect navigation and provide a different perspective for future directions. PMID:28174527
Diller, Kyle I; Bayden, Alexander S; Audie, Joseph; Diller, David J
2018-01-01
There is growing interest in peptide-based drug design and discovery. Due to their relatively large size, polymeric nature, and chemical complexity, the design of peptide-based drugs presents an interesting "big data" challenge. Here, we describe an interactive computational environment, PeptideNavigator, for naturally exploring the tremendous amount of information generated during a peptide drug design project. The purpose of PeptideNavigator is the presentation of large and complex experimental and computational data sets, particularly 3D data, so as to enable multidisciplinary scientists to make optimal decisions during a peptide drug discovery project. PeptideNavigator provides users with numerous viewing options, such as scatter plots, sequence views, and sequence frequency diagrams. These views allow for the collective visualization and exploration of many peptides and their properties, ultimately enabling the user to focus on a small number of peptides of interest. To drill down into the details of individual peptides, PeptideNavigator provides users with a Ramachandran plot viewer and a fully featured 3D visualization tool. Each view is linked, allowing the user to seamlessly navigate from collective views of large peptide data sets to the details of individual peptides with promising property profiles. Two case studies, based on MHC-1A activating peptides and MDM2 scaffold design, are presented to demonstrate the utility of PeptideNavigator in the context of disparate peptide-design projects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impaired behavior on real-world tasks following damage to the ventromedial prefrontal cortex.
Tranel, Daniel; Hathaway-Nepple, Julie; Anderson, Steven W
2007-04-01
Patients with damage to the ventromedial prefrontal cortices (VMPC) commonly manifest blatant behavioral navigation defects in the real world, but it has been difficult to measure these impairments in the clinic or laboratory. Using a set of "strategy application" tasks, which were designed by Shallice and Burgess (1991) to be ecologically valid for detecting executive dysfunction, we investigated the hypothesis that VMPC damage would be associated with defective performance on such tasks, whereas damage outside the VMPC region would not. A group of 9 patients with bilateral VMPC damage was contrasted with comparison groups of participants with (a) prefrontal brain damage outside the VMPC region (n = 8); (b) nonprefrontal brain damage (n = 17); and (c) no brain damage (n = 20). We found support for the hypothesis: VMPC patients had more impaired performances on the strategy application tasks, especially on a Multiple Errands Test that required patients to execute a series of unstructured tasks in a real-world setting (shopping mall). The results are consistent with the notion that efficacious behavioral navigation is dependent on the VMPC region. However, the strategy application tasks were relatively time consuming and effortful, and their diagnostic yield over and above conventional executive functioning tests may not be sufficient to warrant their inclusion in standard clinical assessment.
Impaired behavior on real-world tasks following damage to the ventromedial prefrontal cortex
Tranel, Daniel; Hathaway-Nepple, Julie; Anderson, Steven W.
2008-01-01
Patients with damage to the ventromedial prefrontal cortices (VMPC) commonly manifest blatant behavioral navigation defects in the real world, but it has been difficult to measure these impairments in the clinic or laboratory. Using a set of “strategy application” tasks, which were designed by Shallice and Burgess (1991) to be ecologically valid for detecting executive dysfunction, we investigated the hypothesis that VMPC damage would be associated with defective performance on such tasks, whereas damage outside the VMPC region would not. A group of 9 patients with bilateral VMPC damage was contrasted with comparison groups of participants with (a) prefrontal brain damage outside the VMPC region (n=8); (b) nonprefrontal brain damage (n=17); and (c) no brain damage (n=20). We found support for the hypothesis: VMPC patients had more impaired performances on the strategy application tasks, especially on a Multiple Errands Test that required patients to execute a series of unstructured tasks in a real-world setting (shopping mall). The results are consistent with the notion that efficacious behavioral navigation is dependent on the VMPC region. However, the strategy application tasks were relatively time consuming and effortful, and their diagnostic yield over and above conventional executive functioning tests may not be sufficient to warrant their inclusion in standard clinical assessment. PMID:17454352
Connors, Erin C; Chrastil, Elizabeth R; Sánchez, Jaime; Merabet, Lotfi B
2014-01-01
For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES) that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the highly interactive and immersive exploration of the virtual environment greatly engages a blind user to develop skills akin to positive near transfer of learning. Learning through a game play strategy appears to confer certain behavioral advantages with respect to how spatial information is acquired and ultimately manipulated for navigation.
Connors, Erin C.; Chrastil, Elizabeth R.; Sánchez, Jaime; Merabet, Lotfi B.
2014-01-01
For profoundly blind individuals, navigating in an unfamiliar building can represent a significant challenge. We investigated the use of an audio-based, virtual environment called Audio-based Environment Simulator (AbES) that can be explored for the purposes of learning the layout of an unfamiliar, complex indoor environment. Furthermore, we compared two modes of interaction with AbES. In one group, blind participants implicitly learned the layout of a target environment while playing an exploratory, goal-directed video game. By comparison, a second group was explicitly taught the same layout following a standard route and instructions provided by a sighted facilitator. As a control, a third group interacted with AbES while playing an exploratory, goal-directed video game however, the explored environment did not correspond to the target layout. Following interaction with AbES, a series of route navigation tasks were carried out in the virtual and physical building represented in the training environment to assess the transfer of acquired spatial information. We found that participants from both modes of interaction were able to transfer the spatial knowledge gained as indexed by their successful route navigation performance. This transfer was not apparent in the control participants. Most notably, the game-based learning strategy was also associated with enhanced performance when participants were required to find alternate routes and short cuts within the target building suggesting that a ludic-based training approach may provide for a more flexible mental representation of the environment. Furthermore, outcome comparisons between early and late blind individuals suggested that greater prior visual experience did not have a significant effect on overall navigation performance following training. Finally, performance did not appear to be associated with other factors of interest such as age, gender, and verbal memory recall. We conclude that the highly interactive and immersive exploration of the virtual environment greatly engages a blind user to develop skills akin to positive near transfer of learning. Learning through a game play strategy appears to confer certain behavioral advantages with respect to how spatial information is acquired and ultimately manipulated for navigation. PMID:24822044
Ogourtsova, Tatiana; Archambault, Philippe S; Lamontagne, Anouk
2018-04-23
Unilateral spatial neglect (USN), a highly prevalent and disabling post-stroke impairment, has been shown to affect the recovery of locomotor and navigation skills needed for community mobility. We recently found that USN alters goal-directed locomotion in conditions of different cognitive/perceptual demands. However, sensorimotor post-stroke dysfunction (e.g. decreased walking speed) could have influenced the results. Analogous to a previously used goal-directed locomotor paradigm, a seated, joystick-driven navigation experiment, minimizing locomotor demands, was employed in individuals with and without post-stroke USN (USN+ and USN-, respectively) and healthy controls (HC). Participants (n = 15 per group) performed a seated, joystick-driven navigation and detection time task to targets 7 m away at 0°, ±15°/30° in actual (visually-guided), remembered (memory-guided) and shifting (visually-guided with representational updating component) conditions while immersed in a 3D virtual reality environment. Greater end-point mediolateral errors to left-sided targets (remembered and shifting conditions) and overall lengthier onsets in reorientation strategy (shifting condition) were found for USN+ vs. USN- and vs. HC (p < 0.05). USN+ individuals mostly overshot left targets (- 15°/- 30°). Greater delays in detection time for target locations across the visual spectrum (left, middle and right) were found in USN+ vs. USN- and HC groups (p < 0.05). USN-related attentional-perceptual deficits alter navigation abilities in memory-guided and shifting conditions, independently of post-stroke locomotor deficits. Lateralized and non-lateralized deficits in object detection are found. The employed paradigm could be considered in the design and development of sensitive and functional assessment methods for neglect; thereby addressing the drawbacks of currently used traditional paper-and-pencil tools.
Career Development as a Long-distance Hike
2008-01-01
Traditional images of achievement do not capture today’s more complex career development realities. Approaching career development as a long-distance expedition can help professionals in addressing the strenuous challenges they face, in seeing that a career can be built in many ways, and in taking a long-term view of their journeys. Skills are like muscles, self-efficacy is like sturdy boots, advancement “how-to’s” are like maps, and mentors are like trail guides. Among the tasks each hiker faces are selecting destinations, navigating through rough terrain and weather, and balancing their packs. To further their hikers’ resilience, departments should pay more attention to the career development ecology, including improving access to qualified trail guides and to alternate paths. PMID:18953615
Health policy in Asia and the Pacific: Navigating local needs and global challenges
Lee, Kelley
2014-01-01
Asia and the Pacific are undergoing a remarkable economic transformation which is occurring at an exceptional pace. There is clear evidence of an equally rapid epidemiological transition in the region. This paper sets out the policy challenges of building healthy societies in the context of rapid economic change. The region’s location at the crossroads of contemporary globalization, resulting in intensified population mobility, large-scale trade and investment, and pressures to take collective action on shared problems, adds to the complexity of this task. The paper argues that health is integral to building stable and sustainable societies, and that there are opportunities to develop more holistic approaches that bring together hitherto separate policy spheres. PMID:24592312
Older Adult Experience of Online Diagnosis: Results From a Scenario-Based Think-Aloud Protocol
2014-01-01
Background Searching for online information to interpret symptoms is an increasingly prevalent activity among patients, even among older adults. As older adults typically have complex health care needs, their risk of misinterpreting symptoms via online self-diagnosis may be greater. However, limited research has been conducted with older adults in the areas of symptom interpretation and human-computer interaction. Objective The intent of the study was to describe the processes that a sample of older adults may use to diagnose symptoms online as well as the processes that predict accurate diagnosis. Methods We conducted a series of “think-aloud” protocols with 79 adults aged 50 years or older. Participants received one of two vignettes that depicted symptoms of illness. Participants talked out loud about their thoughts and actions while attempting to diagnose the symptoms with and without the help of common Internet tools (Google and WebMD’s Symptom Checker). Think-aloud content was categorized using an adapted Q-sort and general inductive approach. We then compared the think-aloud content of participants who were accurate in their diagnosis with those who were not. Results Nineteen descriptive codes were identified from the think-aloud content. The codes touched upon Web navigation, attempts to organize and evaluate online health information, and strategies to diagnose symptoms. Participants most frequently relied on a strategy where they reviewed and then rejected the online diagnoses if they contained additional symptoms than those that were depicted in the vignette. Finally, participants who were inaccurate in their diagnosis reported being confused by the diagnosis task, lacking confidence in their diagnosis, and using their past experiences with illness to guide diagnosis more frequently than those participants who accurately diagnosed the symptoms. Conclusions Older adult participants tended to rely on matching strategies to interpret symptoms, but many still utilized existing medical knowledge and previous illness experiences as a guide for diagnosis. Many participants also had difficulty navigating the Internet tools, which suggests an increased need for navigation aids in Web design. Furthermore, participants who were inaccurate in their diagnosis had more difficulty with the Internet tools and confusion with the task than those who were accurate. Future work in this area may want to utilize additional study design such as eye-tracking to further understand the coordination between Web navigation, online symptom information processing, and diagnostic strategies. PMID:24434479
Price, Richard; Marsh, Abbie J; Fisher, Marisa H
2018-03-01
Facilitating the use of public transportation enhances opportunities for independent living and competitive, community-based employment for individuals with intellectual and developmental disabilities (IDD). Four young adults with IDD were taught through total-task chaining to use the Google Maps application, a self-prompting, visual navigation system, to take the bus to locations around a college campus and the community. Three of four participants learned to use Google Maps to independently navigate public transportation. Google Maps may be helpful in supporting independent travel, highlighting the importance of future research in teaching navigation skills. Learning to independently use public transportation increases access to autonomous activities, such as opportunities to work and to attend postsecondary education programs on large college campuses.Individuals with IDD can be taught through chaining procedures to use the Google Maps application to navigate public transportation.Mobile map applications are an effective and functional modern tool that can be used to teach community navigation.
Marshall, Gad A; Aghjayan, Sarah L; Dekhtyar, Maria; Locascio, Joseph J; Jethwani, Kamal; Amariglio, Rebecca E; Johnson, Keith A; Sperling, Reisa A; Rentz, Dorene M
2017-01-01
Impairment in activities of daily living is a major burden to both patients and caregivers. Mild impairment in instrumental activities of daily living is often seen at the stage of mild cognitive impairment. The field of Alzheimer's disease is moving toward earlier diagnosis and intervention and more sensitive and ecologically valid assessments of instrumental or complex activities of daily living are needed. The Harvard Automated Phone Task, a novel performance-based activities of daily living instrument, has the potential to fill this gap. To further validate the Harvard Automated Phone Task by assessing its longitudinal relationship to global cognition and specific cognitive domains in clinically normal elderly and individuals with mild cognitive impairment. In a longitudinal study, the Harvard Automated Phone Task was associated with cognitive measures using mixed effects models. The Harvard Automated Phone Task's ability to discriminate across diagnostic groups at baseline was also assessed. Academic clinical research center. Two hundred and seven participants (45 young normal, 141 clinically normal elderly, and 21 mild cognitive impairment) were recruited from the community and the memory disorders clinics at Brigham and Women's Hospital and Massachusetts General Hospital. Participants performed the three tasks of the Harvard Automated Phone Task, which consist of navigating an interactive voice response system to refill a prescription (APT-Script), select a new primary care physician (APT-PCP), and make a bank account transfer and payment (APT-Bank). The 3 tasks were scored based on time, errors, repetitions, and correct completion of the task. The primary outcome measure used for each of the tasks was total time adjusted for correct completion. The Harvard Automated Phone Task discriminated well between young normal, clinically normal elderly, and mild cognitive impairment participants (APT-Script: p<0.001; APT-PCP: p<0.001; APT-Bank: p=0.04). Worse baseline Harvard Automated Phone Task performance or worsening Harvard Automated Phone Task performance over time tracked with overall worse performance or worsening performance over time in global cognition, processing speed, executive function, and episodic memory. Prior cross-sectional and current longitudinal analyses have demonstrated the utility of the Harvard Automated Phone Task, a new performance-based activities of daily living instrument, in the assessment of early changes in complex activities of daily living in non-demented elderly at risk for Alzheimer's disease. Future studies will focus on cross-validation with other sensitive activities of daily living tests and Alzheimer's disease biomarkers.
Daugherty, Ana M.; Raz, Naftali
2016-01-01
Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18–77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits. PMID:27659539
Daugherty, Ana M; Raz, Naftali
2017-02-01
Age-related declines in spatial navigation are associated with deficits in procedural and episodic memory and deterioration of their neural substrates. For the lack of longitudinal evidence, the pace and magnitude of these declines and their neural mediators remain unclear. Here we examined virtual navigation in healthy adults (N=213, age 18-77 years) tested twice, two years apart, with complementary indices of navigation performance (path length and complexity) measured over six learning trials at each occasion. Slopes of skill acquisition curves and longitudinal change therein were estimated in structural equation modeling, together with change in regional brain volumes and iron content (R2* relaxometry). Although performance on the first trial did not differ between occasions separated by two years, the slope of path length improvement over trials was shallower and end-of-session performance worse at follow-up. Advanced age, higher pulse pressure, smaller cerebellar and caudate volumes, and greater caudate iron content were associated with longer search paths, i.e. poorer navigation performance. In contrast, path complexity diminished faster over trials at follow-up, albeit less so in older adults. Improvement in path complexity after two years was predicted by lower baseline hippocampal iron content and larger parahippocampal volume. Thus, navigation path length behaves as an index of perceptual-motor skill that is vulnerable to age-related decline, whereas path complexity may reflect cognitive mapping in episodic memory that improves with repeated testing, although not enough to overcome age-related deficits. Copyright © 2016 Elsevier Inc. All rights reserved.
Should Animals Navigating Over Short Distances Switch to a Magnetic Compass Sense?
Wyeth, Russell C.
2010-01-01
Magnetoreception can play a substantial role in long distance navigation by animals. I hypothesize that locomotion guided by a magnetic compass sense could also play a role in short distance navigation. Animals identify mates, prey, or other short distance navigational goals using different sensory modalities (olfaction, vision, audition, etc.) to detect sensory cues associated with those goals. In conditions where these cues become unreliable for navigation (due to flow changes, obstructions, noise interference, etc.), switching to a magnetic compass sense to guide locomotion toward the navigational goals could be beneficial. Using simulations based on known locomotory and flow parameters, I show this strategy has strong theoretical benefits for the nudibranch mollusk Tritonia diomedea navigating toward odor sources in variable flow. A number of other animals may garner similar benefits, particularly slow-moving species in environments with rapidly changing cues relevant for navigation. Faster animals might also benefit from switching to a magnetic compass sense, provided the initial cues used for navigation (acoustic signals, odors, etc.) are intermittent or change rapidly enough that the entire navigation behavior cannot be guided by a continuously detectable cue. Examination of the relative durations of navigational tasks, the persistence of navigational cues, and the stability of both navigators and navigational targets will identify candidates with the appropriate combination of unreliable initial cues and relatively immobile navigational goals for which this hypothetical behavior could be beneficial. Magnetic manipulations can then test whether a switch to a magnetic compass sense occurs. This hypothesis thus provides an alternative when considering the behavioral significance of a magnetic compass sense in animals. PMID:20740070
Robillard, Manon; Roy-Charland, Annie; Cazabon, Sylvie
2018-06-22
This study examined the role of cognition on the navigational process of a speech-generating device (SGD) among individuals with a diagnosis of autism spectrum disorder (ASD). The objective was to investigate the role of various cognitive factors (i.e., cognitive flexibility, sustained attention, categorization, fluid reasoning, and working memory) on the ability to navigate an SGD with dynamic paging and taxonomic grids in individuals with ASD. Twenty individuals aged 5 to 20 years with ASD were assessed using the Leiter International Performance Scale-Revised (Roid & Miller, 1997) and the Automated Working Memory Assessment (Alloway, 2007). They also completed a navigational task using an iPad 4 (Apple, 2017; taxonomic organization). Significant correlations between all of the cognitive factors and the ability to navigate an SGD were revealed. A stepwise linear regression suggested that cognitive flexibility was the best predictor of navigational ability with this population. The importance of cognition in the navigational process of an SGD with dynamic paging in children and adolescents with ASD has been highlighted by the results of this study.
ERIC Educational Resources Information Center
Jorgensen, Louise B.
2012-01-01
The purpose of this dissertation study was to increase understanding of licensed mental health professionals' experiences as they have encountered and navigated through compassion fatigue (CF). CF is a complex construct with an attendant constellation of secondary stress responses. In order to examine the complex and varying factors…
ERIC Educational Resources Information Center
Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison
2011-01-01
The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed…
Differences and Similarities in Information Seeking: Children and Adults as Web Users.
ERIC Educational Resources Information Center
Bilal, Dania; Kirby, Joe
2002-01-01
Analyzed and compared the success and information seeking behaviors of seventh grade science students and graduate students in using the Yahooligans! Web search engine. Discusses cognitive, affective, and physical behaviors during a fact-finding task, including searching, browsing, and time to complete the task; navigational styles; and focus on…
Co-Thought Gestures: Supporting Students to Successfully Navigate Map Tasks
ERIC Educational Resources Information Center
Logan, Tracy; Lowrie, Tom; Diezmann, Carmel M.
2014-01-01
This study considers the role and nature of co-thought gestures when students process map-based mathematics tasks. These gestures are typically spontaneously produced silent gestures which do not accompany speech and are represented by small movements of the hands or arms often directed toward an artefact. The study analysed 43 students (aged…
Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo
2018-06-18
Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.
Optimal motion planning using navigation measure
NASA Astrophysics Data System (ADS)
Vaidya, Umesh
2018-05-01
We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.
Visuo-spatial ability in colonoscopy simulator training.
Luursema, Jan-Maarten; Buzink, Sonja N; Verwey, Willem B; Jakimowicz, J J
2010-12-01
Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques.
Lisofsky, Nina; Wiener, Jan; de Condappa, Olivier; Gallinat, Jürgen; Lindenberger, Ulman; Kühn, Simone
2016-10-01
Pregnancy is accompanied by prolonged exposure to high estrogen levels. Animal studies have shown that estrogen influences navigation strategies and, hence, affects navigation performance. High estrogen levels are related to increased use of hippocampal-based allocentric strategies and decreased use of striatal-based egocentric strategies. In humans, associations between hormonal shifts and navigation strategies are less well studied. This study compared 30 peripartal women (mean age 28years) to an age-matched control group on allocentric versus egocentric navigation performance (measured in the last month of pregnancy) and gray matter volume (measured within two months after delivery). None of the women had a previous pregnancy before study participation. Relative to controls, pregnant women performed less well in the egocentric condition of the navigation task, but not the allocentric condition. A whole-brain group comparison revealed smaller left striatal volume (putamen) in the peripartal women. Across the two groups, left striatal volume was associated with superior egocentric over allocentric performance. Limited by the cross-sectional study design, the findings are a first indication that human pregnancy might be accompanied by structural brain changes in navigation-related neural systems and concomitant changes in navigation strategy. Copyright © 2016 Elsevier Inc. All rights reserved.
Iglói, Kinga; Doeller, Christian F.; Paradis, Anne-Lise; Benchenane, Karim; Berthoz, Alain; Burgess, Neil; Rondi-Reig, Laure
2015-01-01
To examine the cerebellar contribution to human spatial navigation we used functional magnetic resonance imaging and virtual reality. Our findings show that the sensory-motor requirements of navigation induce activity in cerebellar lobules and cortical areas known to be involved in the motor loop and vestibular processing. By contrast, cognitive aspects of navigation mainly induce activity in a different cerebellar lobule (VIIA Crus I). Our results demonstrate a functional link between cerebellum and hippocampus in humans and identify specific functional circuits linking lobule VIIA Crus I of the cerebellum to medial parietal, medial prefrontal, and hippocampal cortices in nonmotor aspects of navigation. They further suggest that Crus I belongs to 2 nonmotor loops, involved in different strategies: place-based navigation is supported by coherent activity between left cerebellar lobule VIIA Crus I and medial parietal cortex along with right hippocampus activity, while sequence-based navigation is supported by coherent activity between right lobule VIIA Crus I, medial prefrontal cortex, and left hippocampus. These results highlight the prominent role of the human cerebellum in both motor and cognitive aspects of navigation, and specify the cortico-cerebellar circuits by which it acts depending on the requirements of the task. PMID:24947462
On learning navigation behaviors for small mobile robots with reservoir computing architectures.
Antonelo, Eric Aislan; Schrauwen, Benjamin
2015-04-01
This paper proposes a general reservoir computing (RC) learning framework that can be used to learn navigation behaviors for mobile robots in simple and complex unknown partially observable environments. RC provides an efficient way to train recurrent neural networks by letting the recurrent part of the network (called reservoir) be fixed while only a linear readout output layer is trained. The proposed RC framework builds upon the notion of navigation attractor or behavior that can be embedded in the high-dimensional space of the reservoir after learning. The learning of multiple behaviors is possible because the dynamic robot behavior, consisting of a sensory-motor sequence, can be linearly discriminated in the high-dimensional nonlinear space of the dynamic reservoir. Three learning approaches for navigation behaviors are shown in this paper. The first approach learns multiple behaviors based on the examples of navigation behaviors generated by a supervisor, while the second approach learns goal-directed navigation behaviors based only on rewards. The third approach learns complex goal-directed behaviors, in a supervised way, using a hierarchical architecture whose internal predictions of contextual switches guide the sequence of basic navigation behaviors toward the goal.
A Comparison of Sleep and Performance of Sailors on an Operationally Deployed U.S. Navy Warship
2013-09-01
The crew’s mission on a deployed warship is inherently dangerous. The nature of the job means navigating restricted waters, conducting underway...The nature of the job means navigating restricted waters, conducting underway replenishments with less than 200 feet of lateral separation from... concentration equivalent. Error bars ± s.e. (From Dawson & Reid, 1997). .............................9 Figure 4. Mean psychomotor vigilance task speed (and
When Do Objects Become Landmarks? A VR Study of the Effect of Task Relevance on Spatial Memory
Han, Xue; Byrne, Patrick; Kahana, Michael; Becker, Suzanna
2012-01-01
We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants’ attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects’ locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral “object processing stream”, but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory. PMID:22586455
Autonomous detection of indoor and outdoor signs
NASA Astrophysics Data System (ADS)
Holden, Steven; Snorrason, Magnus; Goodsell, Thomas; Stevens, Mark R.
2005-05-01
Most goal-oriented mobile robot tasks involve navigation to one or more known locations. This is generally done using GPS coordinates and landmarks outdoors, or wall-following and fiducial marks indoors. Such approaches ignore the rich source of navigation information that is already in place for human navigation in all man-made environments: signs. A mobile robot capable of detecting and reading arbitrary signs could be tasked using directions that are intuitive to hu-mans, and it could report its location relative to intuitive landmarks (a street corner, a person's office, etc.). Such ability would not require active marking of the environment and would be functional in the absence of GPS. In this paper we present an updated version of a system we call Sign Understanding in Support of Autonomous Navigation (SUSAN). This system relies on cues common to most signs, the presence of text, vivid color, and compact shape. By not relying on templates, SUSAN can detect a wide variety of signs: traffic signs, street signs, store-name signs, building directories, room signs, etc. In this paper we focus on the text detection capability. We present results summarizing probability of detection and false alarm rate across many scenes containing signs of very different designs and in a variety of lighting conditions.
Physician activity during outpatient visits and subjective workload.
Calvitti, Alan; Hochheiser, Harry; Ashfaq, Shazia; Bell, Kristin; Chen, Yunan; El Kareh, Robert; Gabuzda, Mark T; Liu, Lin; Mortensen, Sara; Pandey, Braj; Rick, Steven; Street, Richard L; Weibel, Nadir; Weir, Charlene; Agha, Zia
2017-05-01
We describe methods for capturing and analyzing EHR use and clinical workflow of physicians during outpatient encounters and relating activity to physicians' self-reported workload. We collected temporally-resolved activity data including audio, video, EHR activity, and eye-gaze along with post-visit assessments of workload. These data are then analyzed through a combination of manual content analysis and computational techniques to temporally align streams, providing a range of process measures of EHR usage, clinical workflow, and physician-patient communication. Data was collected from primary care and specialty clinics at the Veterans Administration San Diego Healthcare System and UCSD Health, who use Electronic Health Record (EHR) platforms, CPRS and Epic, respectively. Grouping visit activity by physician, site, specialty, and patient status enables rank-ordering activity factors by their correlation to physicians' subjective work-load as captured by NASA Task Load Index survey. We developed a coding scheme that enabled us to compare timing studies between CPRS and Epic and extract patient and visit complexity profiles. We identified similar patterns of EHR use and navigation at the 2 sites despite differences in functions, user interfaces and consequent coded representations. Both sites displayed similar proportions of EHR function use and navigation, and distribution of visit length, proportion of time physicians attended to EHRs (gaze), and subjective work-load as measured by the task load survey. We found that visit activity was highly variable across individual physicians, and the observed activity metrics ranged widely as correlates to subjective workload. We discuss implications of our study for methodology, clinical workflow and EHR redesign. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mbaya, Timmy
Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.
Kenow, Kevin P.; Gretchen Benjamin,; Tim Schlagenhaft,; Ruth Nissen,; Mary Stefanski,; Gary Wege,; Scott A. Jutila,; Newton, Teresa J.
2016-01-01
The Upper Mississippi River (UMR) has been developed and subsequently managed for commercial navigation by the U.S. Army Corps of Engineers (USACE). The navigation pools created by a series of lock and dams initially provided a complex of aquatic habitats that supported a variety of fish and wildlife. However, biological productivity declined as the pools aged. The River Resources Forum, an advisory body to the St. Paul District of the USACE, established a multiagency Water Level Management Task Force (WLMTF) to evaluate the potential of water level management to improve ecological function and restore the distribution and abundance of fish and wildlife habitat. The WLMTF identified several water level management options and concluded that summer growing season drawdowns at the pool scale offered the greatest potential to provide habitat benefits over a large area. Here we summarize the process followed to plan and implement pool-wide drawdowns on the UMR, including involvement of stakeholders in decision making, addressing requirements to modify reservoir operating plans, development and evaluation of drawdown alternatives, pool selection, establishment of a monitoring plan, interagency coordination, and a public information campaign. Three pool-wide drawdowns were implemented within the St. Paul District and deemed successful in providing ecological benefits without adversely affecting commercial navigation and recreational use of the pools. Insights are provided based on more than 17 years of experience in planning and implementing drawdowns on the UMR.
The impact of crosstalk on three-dimensional laparoscopic performance and workload.
Sakata, Shinichiro; Grove, Philip M; Watson, Marcus O; Stevenson, Andrew R L
2017-10-01
This is the first study to explore the effects of crosstalk from 3D laparoscopic displays on technical performance and workload. We studied crosstalk at magnitudes that may have been tolerated during laparoscopic surgery. Participants were 36 voluntary doctors. To minimize floor effects, participants completed their surgery rotations, and a laparoscopic suturing course for surgical trainees. We used a counterbalanced, within-subjects design in which participants were randomly assigned to complete laparoscopic tasks in one of six unique testing sequences. In a simulation laboratory, participants were randomly assigned to complete laparoscopic 'navigation in space' and suturing tasks in three viewing conditions: 2D, 3D without ghosting and 3D with ghosting. Participants calibrated their exposure to crosstalk as the maximum level of ghosting that they could tolerate without discomfort. The Randot® Stereotest was used to verify stereoacuity. The study performance metric was time to completion. The NASA TLX was used to measure workload. Normal threshold stereoacuity (40-20 second of arc) was verified in all participants. Comparing optimal 3D with 2D viewing conditions, mean performance times were 2.8 and 1.6 times faster in laparoscopic navigation in space and suturing tasks respectively (p< .001). Comparing optimal 3D with suboptimal 3D viewing conditions, mean performance times were 2.9 times faster in both tasks (p< .001). Mean workload in 2D was 1.5 and 1.3 times greater than in optimal 3D viewing, for navigation in space and suturing tasks respectively (p< .001). Mean workload associated with suboptimal 3D was 1.3 times greater than optimal 3D in both laparoscopic tasks (p< .001). There was no significant relationship between the magnitude of ghosting score, laparoscopic performance and workload. Our findings highlight the advantages of 3D displays when used optimally, and their shortcomings when used sub-optimally, on both laparoscopic performance and workload.
Marshall, Gad A.; Aghjayan, Sarah L.; Dekhtyar, Maria; Locascio, Joseph J.; Jethwani, Kamal; Amariglio, Rebecca E.; Johnson, Keith A.; Sperling, Reisa A.; Rentz, Dorene M.
2017-01-01
Background Impairment in activities of daily living is a major burden to both patients and caregivers. Mild impairment in instrumental activities of daily living is often seen at the stage of mild cognitive impairment. The field of Alzheimer’s disease is moving toward earlier diagnosis and intervention and more sensitive and ecologically valid assessments of instrumental or complex activities of daily living are needed. The Harvard Automated Phone Task, a novel performance-based activities of daily living instrument, has the potential to fill this gap. Objective To further validate the Harvard Automated Phone Task by assessing its longitudinal relationship to global cognition and specific cognitive domains in clinically normal elderly and individuals with mild cognitive impairment. Design In a longitudinal study, the Harvard Automated Phone Task was associated with cognitive measures using mixed effects models. The Harvard Automated Phone Task’s ability to discriminate across diagnostic groups at baseline was also assessed. Setting Academic clinical research center. Participants Two hundred and seven participants (45 young normal, 141 clinically normal elderly, and 21 mild cognitive impairment) were recruited from the community and the memory disorders clinics at Brigham and Women’s Hospital and Massachusetts General Hospital. Measurements Participants performed the three tasks of the Harvard Automated Phone Task, which consist of navigating an interactive voice response system to refill a prescription (APT-Script), select a new primary care physician (APT-PCP), and make a bank account transfer and payment (APT-Bank). The 3 tasks were scored based on time, errors, repetitions, and correct completion of the task. The primary outcome measure used for each of the tasks was total time adjusted for correct completion. Results The Harvard Automated Phone Task discriminated well between young normal, clinically normal elderly, and mild cognitive impairment participants (APT-Script: p<0.001; APT-PCP: p<0.001; APT-Bank: p=0.04). Worse baseline Harvard Automated Phone Task performance or worsening Harvard Automated Phone Task performance over time tracked with overall worse performance or worsening performance over time in global cognition, processing speed, executive function, and episodic memory. Conclusions Prior cross-sectional and current longitudinal analyses have demonstrated the utility of the Harvard Automated Phone Task, a new performance-based activities of daily living instrument, in the assessment of early changes in complex activities of daily living in non-demented elderly at risk for Alzheimer’s disease. Future studies will focus on cross-validation with other sensitive activities of daily living tests and Alzheimer’s disease biomarkers. PMID:29124043
Navigational Efficiency of Nocturnal Myrmecia Ants Suffers at Low Light Levels
Narendra, Ajay; Reid, Samuel F.; Raderschall, Chloé A.
2013-01-01
Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available. PMID:23484052
Saleh, G M; Theodoraki, K; Gillan, S; Sullivan, P; O'Sullivan, F; Hussain, B; Bunce, C; Athanasiadis, I
2013-11-01
To evaluate the variability of performance among novice ophthalmic trainees in a range of repeated tasks using the Eyesi virtual reality (VR) simulator. Eighteen subjects undertook three attempts of five cataract specific and generic three-dimensional tasks: continuous curvilinear capsulorhexis, cracking and chopping, cataract navigation, bimanual cataract training, anti-tremor. Scores for each attempt were out of a maximum of 100 points. A non-parametric test was used to analyse the data, where a P-value of <0.05 was considered statistically significant. Highly significant differences were found between the scores achieved in the first attempt and that during the second (P<0.0001) and third (P<0.0001) but not between the second and third attempt (P=0.65). There was no significant variability in the overall score between the users (P=0.1104) or in the difference between their highest and lowest score (P=0.3878). Highly significant differences between tasks were shown both in the overall score (P=0.0001) and in the difference between highest and lowest score (P=0.003). This study, which is the first to quantify reproducibility of performance in entry level trainees using a VR tool, demonstrated significant intra-novice variability. The cohort of subjects performed equally overall in the range of tasks (no inter-novice variability) but each showed that performance varies significantly with the complexity of the task when using this high-fidelity instrument.
A Semantic Navigation Model for Video Games
NASA Astrophysics Data System (ADS)
van Driel, Leonard; Bidarra, Rafael
Navigational performance of artificial intelligence (AI) characters in computer games is gaining an increasingly important role in the perception of their behavior. While recent games successfully solve some complex navigation problems, there is little known or documented on the underlying approaches, often resembling a primitive conglomerate of ad-hoc algorithms for specific situations.
33 CFR 149.585 - What are the requirements for sound signals?
Code of Federal Regulations, 2010 CFR
2010-07-01
... sound signals? 149.585 Section 149.585 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Navigation Miscellaneous § 149.585 What are the requirements for sound signals? (a) Each pumping platform complex must have a sound signal, approved under subpart 67.10 of this chapter, that has a 2-mile (3...
Applications of different design methodologies in navigation systems and development at JPL
NASA Technical Reports Server (NTRS)
Thurman, S. W.
1990-01-01
The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.
BiNA: A Visual Analytics Tool for Biological Network Data
Gerasch, Andreas; Faber, Daniel; Küntzer, Jan; Niermann, Peter; Kohlbacher, Oliver; Lenhof, Hans-Peter; Kaufmann, Michael
2014-01-01
Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/. PMID:24551056
Web party effect: a cocktail party effect in the web environment
Gerbino, Walter
2015-01-01
In goal-directed web navigation, labels compete for selection: this process often involves knowledge integration and requires selective attention to manage the dizziness of web layouts. Here we ask whether the competition for selection depends on all web navigation options or only on those options that are more likely to be useful for information seeking, and provide evidence in favor of the latter alternative. Participants in our experiment navigated a representative set of real websites of variable complexity, in order to reach an information goal located two clicks away from the starting home page. The time needed to reach the goal was accounted for by a novel measure of home page complexity based on a part of (not all) web options: the number of links embedded within web navigation elements weighted by the number and type of embedding elements. Our measure fully mediated the effect of several standard complexity metrics (the overall number of links, words, images, graphical regions, the JPEG file size of home page screenshots) on information seeking time and usability ratings. Furthermore, it predicted the cognitive demand of web navigation, as revealed by the duration judgment ratio (i.e., the ratio of subjective to objective duration of information search). Results demonstrate that focusing on relevant links while ignoring other web objects optimizes the deployment of attentional resources necessary to navigation. This is in line with a web party effect (i.e., a cocktail party effect in the web environment): users tune into web elements that are relevant for the achievement of their navigation goals and tune out all others. PMID:25802803
Web party effect: a cocktail party effect in the web environment.
Rigutti, Sara; Fantoni, Carlo; Gerbino, Walter
2015-01-01
In goal-directed web navigation, labels compete for selection: this process often involves knowledge integration and requires selective attention to manage the dizziness of web layouts. Here we ask whether the competition for selection depends on all web navigation options or only on those options that are more likely to be useful for information seeking, and provide evidence in favor of the latter alternative. Participants in our experiment navigated a representative set of real websites of variable complexity, in order to reach an information goal located two clicks away from the starting home page. The time needed to reach the goal was accounted for by a novel measure of home page complexity based on a part of (not all) web options: the number of links embedded within web navigation elements weighted by the number and type of embedding elements. Our measure fully mediated the effect of several standard complexity metrics (the overall number of links, words, images, graphical regions, the JPEG file size of home page screenshots) on information seeking time and usability ratings. Furthermore, it predicted the cognitive demand of web navigation, as revealed by the duration judgment ratio (i.e., the ratio of subjective to objective duration of information search). Results demonstrate that focusing on relevant links while ignoring other web objects optimizes the deployment of attentional resources necessary to navigation. This is in line with a web party effect (i.e., a cocktail party effect in the web environment): users tune into web elements that are relevant for the achievement of their navigation goals and tune out all others.
Does order matter? Investigating the effect of sequence on glance duration during on-road driving
Roberts, Shannon C.; Reimer, Bryan; Mehler, Bruce
2017-01-01
Previous literature has shown that vehicle crash risks increases as drivers’ off-road glance duration increases. Many factors influence drivers’ glance duration such as individual differences, driving environment, or task characteristics. Theories and past studies suggest that glance duration increases as the task progresses, but the exact relationship between glance sequence and glance durations is not fully understood. The purpose of this study was to examine the effect of glance sequence on glance duration among drivers completing a visual-manual radio tuning task and an auditory-vocal based multi-modal navigation entry task. Eighty participants drove a vehicle on urban highways while completing radio tuning and navigation entry tasks. Forty participants drove under an experimental protocol that required three button presses followed by rotation of a tuning knob to complete the radio tuning task while the other forty participants completed the task with one less button press. Multiple statistical analyses were conducted to measure the effect of glance sequence on glance duration. Results showed that across both tasks and a variety of statistical tests, glance sequence had inconsistent effects on glance duration—the effects varied according to the number of glances, task type, and data set that was being evaluated. Results suggest that other aspects of the task as well as interface design effect glance duration and should be considered in the context of examining driver attention or lack thereof. All in all, interface design and task characteristics have a more influential impact on glance duration than glance sequence, suggesting that classical design considerations impacting driver attention, such as the size and location of buttons, remain fundamental in designing in-vehicle interfaces. PMID:28158301
A Mobile App (BEDSide Mobility) to Support Nurses’ Tasks at the Patient's Bedside: Usability Study
Weinhold, Thomas; Joe, Jonathan; Lovis, Christian; Blondon, Katherine
2018-01-01
Background The introduction of clinical information systems has increased the amount of clinical documentation. Although this documentation generally improves patient safety, it has become a time-consuming task for nurses, which limits their time with the patient. On the basis of a user-centered methodology, we have developed a mobile app named BEDSide Mobility to support nurses in their daily workflow and to facilitate documentation at the bedside. Objective The aim of the study was to assess the usability of the BEDSide Mobility app in terms of the navigation and interaction design through usability testing. Methods Nurses were asked to complete a scenario reflecting their daily work with patients. Their interactions with the app were captured with eye-tracking glasses and by using the think aloud protocol. After completing the tasks, participants filled out the system usability scale questionnaire. Descriptive statistics were used to summarize task completion rates and the users’ performance. Results A total of 10 nurses (aged 21-50) participated in the study. Overall, they were satisfied with the navigation, layout, and interaction design of the app, with the exception of one user who was unfamiliar with smartphones. The problems identified were related to the ambiguity of some icons, the navigation logic, and design inconsistency. Conclusions Besides the usability issues identified in the app, the participants’ results do indicate good usability, high acceptance, and high satisfaction with the developed app. However, the results must be taken with caution because of the poor ecological validity of the experimental setting. PMID:29563074
U.S. Army Medical Department Journal, October-December 2007
2007-12-01
Warrior Task Training requirements (such as weapons assembly/disassembly and functions check; individual chemical, biological , radiological, nuclear...training program focused on hands-on training in the 40 Army Warrior Tasks and 11 Battle Drills, to include advanced land navigation training; weapons ...familiarization and qualification; convoy operations; chemical, biological , radiological, nuclear and high- explosive defense; and squad and platoon
Hippocampus and Retrosplenial Cortex Combine Path Integration Signals for Successful Navigation
Erdem, Uğur M.; Ross, Robert S.; Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.
2013-01-01
The current study used fMRI in humans to examine goal-directed navigation in an open field environment. We designed a task that required participants to encode survey-level spatial information and subsequently navigate to a goal location in either first person, third person, or survey perspectives. Critically, no distinguishing landmarks or goal location markers were present in the environment, thereby requiring participants to rely on path integration mechanisms for successful navigation. We focused our analysis on mechanisms related to navigation and mechanisms tracking linear distance to the goal location. Successful navigation required translation of encoded survey-level map information for orientation and implementation of a planned route to the goal. Our results demonstrate that successful first and third person navigation trials recruited the anterior hippocampus more than trials when the goal location was not successfully reached. When examining only successful trials, the retrosplenial and posterior parietal cortices were recruited for goal-directed navigation in both first person and third person perspectives. Unique to first person perspective navigation, the hippocampus was recruited to path integrate self-motion cues with location computations toward the goal location. Last, our results demonstrate that the hippocampus supports goal-directed navigation by actively tracking proximity to the goal throughout navigation. When using path integration mechanisms in first person and third person perspective navigation, the posterior hippocampus was more strongly recruited as participants approach the goal. These findings provide critical insight into the neural mechanisms by which we are able to use map-level representations of our environment to reach our navigational goals. PMID:24305826
A multi-service data management platform for scientific oceanographic products
NASA Astrophysics Data System (ADS)
D'Anca, Alessandro; Conte, Laura; Nassisi, Paola; Palazzo, Cosimo; Lecci, Rita; Cretì, Sergio; Mancini, Marco; Nuzzo, Alessandra; Mirto, Maria; Mannarini, Gianandrea; Coppini, Giovanni; Fiore, Sandro; Aloisio, Giovanni
2017-02-01
An efficient, secure and interoperable data platform solution has been developed in the TESSA project to provide fast navigation and access to the data stored in the data archive, as well as a standard-based metadata management support. The platform mainly targets scientific users and the situational sea awareness high-level services such as the decision support systems (DSS). These datasets are accessible through the following three main components: the Data Access Service (DAS), the Metadata Service and the Complex Data Analysis Module (CDAM). The DAS allows access to data stored in the archive by providing interfaces for different protocols and services for downloading, variables selection, data subsetting or map generation. Metadata Service is the heart of the information system of the TESSA products and completes the overall infrastructure for data and metadata management. This component enables data search and discovery and addresses interoperability by exploiting widely adopted standards for geospatial data. Finally, the CDAM represents the back-end of the TESSA DSS by performing on-demand complex data analysis tasks.
Oncology Nurse Navigation: Results of the 2016 Role Delineation Study.
Lubejko, Barbara G; Bellfield, Sonia; Kahn, Elisa; Lee, Carrie; Peterson, Nicole; Rose, Traudi; Murphy, Cynthia Miller; McCorkle, Michele
2017-02-01
In 2011, an oncology nurse navigator (ONN) role delineation survey (RDS) was conducted by the Oncology Nursing Society (ONS) when the role was relatively new to oncology. Results did not demonstrate a unique skill set for the ONN; however, since then, the role has expanded. ONS and the Oncology Nursing Certification Corporation partnered in 2016 to complete an RDS of ONNs to redefine the role and determine the need for an ONN certification examination. A structured RDS was conducted using a formal consensus-building process. A survey was developed and released to examine the specific tasks, knowledge, and skills for the ONN as well as to determine which role possesses more responsibility for the tasks. The ONN role is evolving, and more was learned about its key tasks, including differences in the responsibilities of the ONN and the clinical or staff nurse. However, the RDS did not find an adequate difference in the knowledge required by the ONN and the clinical or staff nurse to support the need for a separate ONN certification.
Human sex differences in solving a virtual navigation problem.
Astur, Robert S; Purton, Andrea J; Zaniewski, Melanie J; Cimadevilla, Jose; Markus, Etan J
2016-07-15
The current study examined sex differences in initial and subsequent strategies in solving a navigational problem within a virtual reality environment. We tested 163 undergraduates on a virtual T-maze task that included probe trials designed to assess whether participants were responding using either a place or response strategy. Participants were also tested on a mental rotation task and memory of the details of the virtual room. There were no differences between the sexes in copying or recalling a map of the room or on first trial performance of the T-maze. However, at trial two, males show a significant advantage in solving the task, and approximately 80% of the males adopt a place strategy to solve the T-maze whereas females at that point showed no strategy preference. Across all testing, both males and females preferentially used a place strategy. We discuss how factors such as spatial priming affect strategy preferences and how such factors may differentially affect males and females. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaworski, Leszek; Swiatek, Anna; Zdunek, Ryszard
2013-09-01
The problem of insufficient accuracy of EGNOS correction for the territory of Poland, located at the edge of EGNOS range is well known. The EEI PECS project (EGNOS EUPOS Integration) assumes improving the EGNOS correction by using the GPS observations from Polish ASG-EUPOS stations. One of the EEI project tasks was the identification of EGNOS performance limitations over Poland and services for EGNOSS-EUPOS combination. The two sets of data were used for those goals: statistical, theoretical data obtained using the SBAS simulator software, real data obtained during the measurements. The real measurements were managed as two types of measurements: static and dynamic. Static measurements are continuously managing using Septentrio PolaRx2 receiver. The SRC permanent station works in IMAGE/PERFECT project. Dynamic measurements were managed using the Mobile GPS Laboratory (MGL). Receivers (geodetic and navigation) were working in two modes: determining navigation position from standalone GPS, determining navigation position from GPS plus EGNOS correction. The paper presents results of measurements' analyses and conclusions based on which the next tasks in EEI project are completed
Cognitive load of navigating without vision when guided by virtual sound versus spatial language.
Klatzky, Roberta L; Marston, James R; Giudice, Nicholas A; Golledge, Reginald G; Loomis, Jack M
2006-12-01
A vibrotactile N-back task was used to generate cognitive load while participants were guided along virtual paths without vision. As participants stepped in place, they moved along a virtual path of linear segments. Information was provided en route about the direction of the next turning point, by spatial language ("left," "right," or "straight") or virtual sound (i.e., the perceived azimuth of the sound indicated the target direction). The authors hypothesized that virtual sound, being processed at direct perceptual levels, would have lower load than even simple language commands, which require cognitive mediation. As predicted, whereas the guidance modes did not differ significantly in the no-load condition, participants showed shorter distance traveled and less time to complete a path when performing the N-back task while navigating with virtual sound as guidance. Virtual sound also produced better N-back performance than spatial language. By indicating the superiority of virtual sound for guidance when cognitive load is present, as is characteristic of everyday navigation, these results have implications for guidance systems for the visually impaired and others.
Autonomous Wheeled Robot Platform Testbed for Navigation and Mapping Using Low-Cost Sensors
NASA Astrophysics Data System (ADS)
Calero, D.; Fernandez, E.; Parés, M. E.
2017-11-01
This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.
Control-display mapping in brain-computer interfaces.
Thurlings, Marieke E; van Erp, Jan B F; Brouwer, Anne-Marie; Blankertz, Benjamin; Werkhoven, Peter
2012-01-01
Event-related potential (ERP) based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. When using a tactile ERP-BCI for navigation, mapping is required between navigation directions on a visual display and unambiguously corresponding tactile stimuli (tactors) from a tactile control device: control-display mapping (CDM). We investigated the effect of congruent (both display and control horizontal or both vertical) and incongruent (vertical display, horizontal control) CDMs on task performance, the ERP and potential BCI performance. Ten participants attended to a target (determined via CDM), in a stream of sequentially vibrating tactors. We show that congruent CDM yields best task performance, enhanced the P300 and results in increased estimated BCI performance. This suggests a reduced availability of attentional resources when operating an ERP-BCI with incongruent CDM. Additionally, we found an enhanced N2 for incongruent CDM, which indicates a conflict between visual display and tactile control orientations. Incongruency in control-display mapping reduces task performance. In this study, brain responses, task and system performance are related to (in)congruent mapping of command options and the corresponding stimuli in a brain-computer interface (BCI). Directional congruency reduces task errors, increases available attentional resources, improves BCI performance and thus facilitates human-computer interaction.
Learning to Predict Consequences as a Method of Knowledge Transfer in Reinforcement Learning.
Chalmers, Eric; Contreras, Edgar Bermudez; Robertson, Brandon; Luczak, Artur; Gruber, Aaron
2017-04-17
The reinforcement learning (RL) paradigm allows agents to solve tasks through trial-and-error learning. To be capable of efficient, long-term learning, RL agents should be able to apply knowledge gained in the past to new tasks they may encounter in the future. The ability to predict actions' consequences may facilitate such knowledge transfer. We consider here domains where an RL agent has access to two kinds of information: agent-centric information with constant semantics across tasks, and environment-centric information, which is necessary to solve the task, but with semantics that differ between tasks. For example, in robot navigation, environment-centric information may include the robot's geographic location, while agent-centric information may include sensor readings of various nearby obstacles. We propose that these situations provide an opportunity for a very natural style of knowledge transfer, in which the agent learns to predict actions' environmental consequences using agent-centric information. These predictions contain important information about the affordances and dangers present in a novel environment, and can effectively transfer knowledge from agent-centric to environment-centric learning systems. Using several example problems including spatial navigation and network routing, we show that our knowledge transfer approach can allow faster and lower cost learning than existing alternatives.
Route selection by rats and humans in a navigational traveling salesman problem.
Blaser, Rachel E; Ginchansky, Rachel R
2012-03-01
Spatial cognition is typically examined in non-human animals from the perspective of learning and memory. For this reason, spatial tasks are often constrained by the time necessary for training or the capacity of the animal's short-term memory. A spatial task with limited learning and memory demands could allow for more efficient study of some aspects of spatial cognition. The traveling salesman problem (TSP), used to study human visuospatial problem solving, is a simple task with modifiable learning and memory requirements. In the current study, humans and rats were characterized in a navigational version of the TSP. Subjects visited each of 10 baited targets in any sequence from a set starting location. Unlike similar experiments, the roles of learning and memory were purposely minimized; all targets were perceptually available, no distracters were used, and each configuration was tested only once. The task yielded a variety of behavioral measures, including target revisits and omissions, route length, and frequency of transitions between each pair of targets. Both humans and rats consistently chose routes that were more efficient than chance, but less efficient than optimal, and generally less efficient than routes produced by the nearest-neighbor strategy. We conclude that the TSP is a useful and flexible task for the study of spatial cognition in human and non-human animals.
Navigating with Inner Knowing and Awakened Presence: An Approach to Leading in a Complex World
ERIC Educational Resources Information Center
Sell, Katharina C.
2017-01-01
What are our options if we have to let go of the idea of controllability in our ever more complex world? What tools do we have to navigate in a territory that we can't "manage" anymore, where the old instruments of command and control have lost their grip? What makes us "know" when intellectual knowing capitulates in the face…
Murty, Vishnu P; LaBar, Kevin S; Hamilton, Derek A; Adcock, R Alison
2011-01-01
The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants' skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance-motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning.
Murty, Vishnu P.; LaBar, Kevin S.; Hamilton, Derek A.; Adcock, R. Alison
2011-01-01
The present study investigated the effects of approach versus avoidance motivation on declarative learning. Human participants navigated a virtual reality version of the Morris water task, a classic spatial memory paradigm, adapted to permit the experimental manipulation of motivation during learning. During this task, participants were instructed to navigate to correct platforms while avoiding incorrect platforms. To manipulate motivational states participants were either rewarded for navigating to correct locations (approach) or punished for navigating to incorrect platforms (avoidance). Participants’ skin conductance levels (SCLs) were recorded during navigation to investigate the role of physiological arousal in motivated learning. Behavioral results revealed that, overall, approach motivation enhanced and avoidance motivation impaired memory performance compared to nonmotivated spatial learning. This advantage was evident across several performance indices, including accuracy, learning rate, path length, and proximity to platform locations during probe trials. SCL analysis revealed three key findings. First, within subjects, arousal interacted with approach motivation, such that high arousal on a given trial was associated with performance deficits. In addition, across subjects, high arousal negated or reversed the benefits of approach motivation. Finally, low-performing, highly aroused participants showed SCL responses similar to those of avoidance–motivation participants, suggesting that for these individuals, opportunities for reward may evoke states of learning similar to those typically evoked by threats of punishment. These results provide a novel characterization of how approach and avoidance motivation influence declarative memory and indicate a critical and selective role for arousal in determining how reinforcement influences goal-oriented learning. PMID:22021253
Cultural background shapes spatial reference frame proclivity
Goeke, Caspar; Kornpetpanee, Suchada; Köster, Moritz; Fernández-Revelles, Andrés B.; Gramann, Klaus; König, Peter
2015-01-01
Spatial navigation is an essential human skill that is influenced by several factors. The present study investigates how gender, age, and cultural background account for differences in reference frame proclivity and performance in a virtual navigation task. Using an online navigation study, we recorded reaction times, error rates (confusion of turning axis), and reference frame proclivity (egocentric vs. allocentric reference frame) of 1823 participants. Reaction times significantly varied with gender and age, but were only marginally influenced by the cultural background of participants. Error rates were in line with these results and exhibited a significant influence of gender and culture, but not age. Participants’ cultural background significantly influenced reference frame selection; the majority of North-Americans preferred an allocentric strategy, while Latin-Americans preferred an egocentric navigation strategy. European and Asian groups were in between these two extremes. Neither the factor of age nor the factor of gender had a direct impact on participants’ navigation strategies. The strong effects of cultural background on navigation strategies without the influence of gender or age underlines the importance of socialized spatial cognitive processes and argues for socio-economic analysis in studies investigating human navigation. PMID:26073656
Boccia, M; Piccardi, L; Palermo, L; Nemmi, F; Sulpizio, V; Galati, G; Guariglia, C
2014-09-05
Visual mental imagery is a process that draws on different cognitive abilities and is affected by the contents of mental images. Several studies have demonstrated that different brain areas subtend the mental imagery of navigational and non-navigational contents. Here, we set out to determine whether there are distinct representations for navigational and geographical images. Specifically, we used a Spatial Compatibility Task (SCT) to assess the mental representation of a familiar navigational space (the campus), a familiar geographical space (the map of Italy) and familiar objects (the clock). Twenty-one participants judged whether the vertical or the horizontal arrangement of items was correct. We found that distinct representational strategies were preferred to solve different categories on the SCT, namely, the horizontal perspective for the campus and the vertical perspective for the clock and the map of Italy. Furthermore, we found significant effects due to individual differences in the vividness of mental images and in preferences for verbal versus visual strategies, which selectively affect the contents of mental images. Our results suggest that imagining a familiar navigational space is somewhat different from imagining a familiar geographical space. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Denov, Myriam; Bryan, Catherine
2012-01-01
Similar to refugees in general, independent child migrants are frequently constructed in academic and popular discourse as passive and powerless or as untrustworthy and potentially threatening. Such portrayals fail to capture how these youth actively navigate the complex experiences of forced migration. Drawing on interviews with independent child migrants who arrived in Canada and on the conceptual framework of social navigation, we argue that contrary to being powerless, and despite significant structural barriers, these youth deliberately and thoughtfully navigate flight by making strategic decisions and taking calculated risks thereby ensuring their survival and well-being. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.
NASA Astrophysics Data System (ADS)
Guo, Pengbin; Sun, Jian; Hu, Shuling; Xue, Ju
2018-02-01
Pulsar navigation is a promising navigation method for high-altitude orbit space tasks or deep space exploration. At present, an important reason for restricting the development of pulsar navigation is that navigation accuracy is not high due to the slow update of the measurements. In order to improve the accuracy of pulsar navigation, an asynchronous observation model which can improve the update rate of the measurements is proposed on the basis of satellite constellation which has a broad space for development because of its visibility and reliability. The simulation results show that the asynchronous observation model improves the positioning accuracy by 31.48% and velocity accuracy by 24.75% than that of the synchronous observation model. With the new Doppler effects compensation method in the asynchronous observation model proposed in this paper, the positioning accuracy is improved by 32.27%, and the velocity accuracy is improved by 34.07% than that of the traditional method. The simulation results show that without considering the clock error will result in a filtering divergence.
Neural Network Based Sensory Fusion for Landmark Detection
NASA Technical Reports Server (NTRS)
Kumbla, Kishan -K.; Akbarzadeh, Mohammad R.
1997-01-01
NASA is planning to send numerous unmanned planetary missions to explore the space. This requires autonomous robotic vehicles which can navigate in an unstructured, unknown, and uncertain environment. Landmark based navigation is a new area of research which differs from the traditional goal-oriented navigation, where a mobile robot starts from an initial point and reaches a destination in accordance with a pre-planned path. The landmark based navigation has the advantage of allowing the robot to find its way without communication with the mission control station and without exact knowledge of its coordinates. Current algorithms based on landmark navigation however pose several constraints. First, they require large memories to store the images. Second, the task of comparing the images using traditional methods is computationally intensive and consequently real-time implementation is difficult. The method proposed here consists of three stages, First stage utilizes a heuristic-based algorithm to identify significant objects. The second stage utilizes a neural network (NN) to efficiently classify images of the identified objects. The third stage combines distance information with the classification results of neural networks for efficient and intelligent navigation.
Aging specifically impairs switching to an allocentric navigational strategy
Harris, Mathew A.; Wiener, Jan M.; Wolbers, Thomas
2012-01-01
Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific “switch-to-place” deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation. PMID:23125833
Aging specifically impairs switching to an allocentric navigational strategy.
Harris, Mathew A; Wiener, Jan M; Wolbers, Thomas
2012-01-01
Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific "switch-to-place" deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation.
Galileo: The Added Value for Integrity in Harsh Environments.
Borio, Daniele; Gioia, Ciro
2016-01-16
A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability.
Galileo: The Added Value for Integrity in Harsh Environments
Borio, Daniele; Gioia, Ciro
2016-01-01
A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability. PMID:26784205
Zhong, Jimmy Y; Moffat, Scott D
2016-01-01
Previous studies have showed that spatial memory declines with age but have not clarified the relevance of different landmark cues for specifying heading directions among different age groups. This study examined differences between younger, middle-aged and older adults in route learning and memory tasks after they navigated a virtual maze that contained: (a) critical landmarks that were located at decision points (i.e., intersections) and (b) non-critical landmarks that were located at non-decision points (i.e., the sides of the route). Participants were given a recognition memory test for critical and non-critical landmarks and also given a landmark-direction associative learning task. Compared to younger adults, older adults committed more navigation errors during route learning and were poorer at associating the correct heading directions with both critical and non-critical landmarks. Notably, older adults exhibited a landmark-direction associative memory deficit at decision points; this was the first finding to show that an associative memory deficit exist among older adults in a navigational context for landmarks that are pertinent for reaching a goal, and suggest that older adults may expend more cognitive resources on the encoding of landmark/object features than on the binding of landmark and directional information. This study is also the first to show that older adults did not have a tendency to process non-critical landmarks, which were regarded as distractors/irrelevant cues for specifying the directions to reach the goal, to an equivalent or larger extent than younger adults. We explain this finding in view of the low number of non-critical cues in our virtual maze (relative to a real-world urban environment) that might not have evoked older adults' usual tendency toward processing or encoding distractors. We explain the age differences in navigational and cognitive performance with regards to functional and structural changes in the hippocampus and parahippocampus, and recommend further investigations into the functional connectivity between the prefrontal cortex and hippocampus for a better understanding of the landmark-direction associative learning among the elderly. Finally, it is hoped that the current behavioral findings will facilitate efforts to identify the neural markers of Alzheimer's disease, a disease that commonly involves navigational deficits.
Bioinspired magnetoreception and navigation using magnetic signatures as waypoints.
Taylor, Brian K
2018-05-15
Diverse taxa use Earth's magnetic field in conjunction with other sensory modalities to accomplish navigation tasks ranging from local homing to long-distance migration across continents and ocean basins. However, despite extensive research, the mechanisms that underlie animal magnetoreception are not clearly understood, and how animals use Earth's magnetic field to navigate is an active area of investigation. Concurrently, Earth's magnetic field offers a signal that engineered systems can leverage for navigation in environments where man-made systems such as GPS are unavailable or unreliable. Using a proxy for Earth's magnetic field, and inspired by migratory animal behavior, this work implements a behavioral strategy that uses combinations of magnetic field properties as rare or unique signatures that mark specific locations. Using a discrete number of these signatures as goal waypoints, the strategy navigates through a closed set of points several times in a variety of environmental conditions, and with various levels of sensor noise. The results from this engineering/quantitative biology approach support existing notions that some animals may use combinations of magnetic properties as navigational markers, and provides insights into features and constraints that would enable navigational success or failure. The findings also offer insights into how autonomous engineered platforms might be designed to leverage the magnetic field as a navigational resource.
Cornwell, Brian R; Salvadore, Giacomo; Colon-Rosario, Veronica; Latov, David R; Holroyd, Tom; Carver, Frederick W; Coppola, Richard; Manji, Husseini K; Zarate, Carlos A; Grillon, Christian
2010-07-01
Dysfunction of the hippocampus has long been suspected to be a key component of the pathophysiology of major depressive disorder. Despite evidence of hippocampal structural abnormalities in depressed patients, abnormal hippocampal functioning has not been demonstrated. The authors aimed to link spatial navigation deficits previously documented in depressed patients to abnormal hippocampal functioning using a virtual reality navigation task. Whole-head magnetoencephalography (MEG) recordings were collected while participants (19 patients diagnosed with major depressive disorder and 19 healthy subjects matched by gender and age) navigated a virtual Morris water maze to find a hidden platform; navigation to a visible platform served as a control condition. Behavioral measures were obtained to assess navigation performance. Theta oscillatory activity (4-8 Hz) was mapped across the brain on a voxel-wise basis using a spatial-filtering MEG source analysis technique. Depressed patients performed worse than healthy subjects in navigating to the hidden platform. Robust group differences in theta activity were observed in right medial temporal cortices during navigation, with patients exhibiting less engagement of the anterior hippocampus and parahippocampal cortices relative to comparison subjects. Left posterior hippocampal theta activity was positively correlated with individual performance within each group. Consistent with previous findings, depressed patients showed impaired spatial navigation. Dysfunction of right anterior hippocampus and parahippocampal cortices may underlie this deficit and stem from structural abnormalities commonly found in depressed patients.
van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W
2016-07-01
Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. Copyright © 2016 Elsevier Inc. All rights reserved.
PandaEPL: a library for programming spatial navigation experiments.
Solway, Alec; Miller, Jonathan F; Kahana, Michael J
2013-12-01
Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment.
PandaEPL: A library for programming spatial navigation experiments
Solway, Alec; Miller, Jonathan F.
2013-01-01
Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment. PMID:23549683
Virtual wayfinding using simulated prosthetic vision in gaze-locked viewing.
Wang, Lin; Yang, Liancheng; Dagnelie, Gislin
2008-11-01
To assess virtual maze navigation performance with simulated prosthetic vision in gaze-locked viewing, under the conditions of varying luminance contrast, background noise, and phosphene dropout. Four normally sighted subjects performed virtual maze navigation using simulated prosthetic vision in gaze-locked viewing, under five conditions of luminance contrast, background noise, and phosphene dropout. Navigation performance was measured as the time required to traverse a 10-room maze using a game controller, and the number of errors made during the trip. Navigation performance time (1) became stable after 6 to 10 trials, (2) remained similar on average at luminance contrast of 68% and 16% but had greater variation at 16%, (3) was not significantly affected by background noise, and (4) increased by 40% when 30% of phosphenes were removed. Navigation performance time and number of errors were significantly and positively correlated. Assuming that the simulated gaze-locked viewing conditions are extended to implant wearers, such prosthetic vision can be helpful for wayfinding in simple mobility tasks, though phosphene dropout may interfere with performance.
1991-09-27
AD-A241 692 II I] II I11 ANNUAL REPORT VOLUME 1 PART 2 TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATOIRY REPORT NO. AR-0142-91-001 September 27, 1991... DIGITAL EMULATION TECHNOLOGY LABORATORY Contract No. DASG60-89-C-0142 Sponsored By The United States Army ? trategic Defense Command COMPUTER...ANNUAL REPORT VOLUME 1 PART 2 TASK 1: DIGITAL EMULATION TECHNOLOGY LABORATORY September 27, 1991 Authors Thomas R. Collins and Stephen R. Wachtel
Objective measure of pilot workload
NASA Technical Reports Server (NTRS)
Kantowitz, B. H.
1984-01-01
Timesharing behavior in a data-entry task, similar to a pilot entering navigation data into an on-board computer is investigated. Auditory reaction time as a function of stimulus information and dimensionality is examined. This study has direct implications for stimulus selection for secondary tasks used in the GAT flight simulator at Ames Research Center. Attenuation effects of heat and cold stress in a psychological refractory period task were studied. The focus of interest is the general effects of stress on attention rather than upon specific temperature related phenomena.
Pavlova, Marina; Sokolov, Alexander; Krägeloh-Mann, Ingeborg
2007-02-01
Visual navigation in familiar and unfamiliar surroundings is an essential ingredient of adaptive daily life behavior. Recent brain imaging work helps to recognize that establishing connectivity between brain regions is of importance for successful navigation. Here, we ask whether the ability to navigate is impaired in adolescents who were born premature and suffer congenital bilateral periventricular brain damage that might affect the pathways interconnecting subcortical structures with cortex. Performance on a set of visual labyrinth tasks was significantly worse in patients with periventricular leukomalacia (PVL) as compared with premature-born controls without lesions and term-born adolescents. The ability for visual navigation inversely relates to the severity of motor disability, leg-dominated bilateral spastic cerebral palsy. This agrees with the view that navigation ability substantially improves with practice and might be compromised in individuals with restrictions in active spatial exploration. Visual navigation is negatively linked to the volumetric extent of lesions over the right parietal and frontal periventricular regions. Whereas impairments of visual processing of point-light biological motion are associated in patients with PVL with bilateral parietal periventricular lesions, navigation ability is specifically linked to the frontal lesions in the right hemisphere. We suggest that more anterior periventricular lesions impair the interrelations between the right hippocampus and cortical areas leading to disintegration of neural networks engaged in visual navigation. For the first time, we show that the severity of right frontal periventricular damage and leg-dominated motor disorders can serve as independent predictors of the visual navigation disability.
Chatterji, Madhabi
2016-12-01
This paper explores avenues for navigating evaluation design challenges posed by complex social programs (CSPs) and their environments when conducting studies that call for generalizable, causal inferences on the intervention's effectiveness. A definition is provided of a CSP drawing on examples from different fields, and an evaluation case is analyzed in depth to derive seven (7) major sources of complexity that typify CSPs, threatening assumptions of textbook-recommended experimental designs for performing impact evaluations. Theoretically-supported, alternative methodological strategies are discussed to navigate assumptions and counter the design challenges posed by the complex configurations and ecology of CSPs. Specific recommendations include: sequential refinement of the evaluation design through systems thinking, systems-informed logic modeling; and use of extended term, mixed methods (ETMM) approaches with exploratory and confirmatory phases of the evaluation. In the proposed approach, logic models are refined through direct induction and interactions with stakeholders. To better guide assumption evaluation, question-framing, and selection of appropriate methodological strategies, a multiphase evaluation design is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Bennett-Abney, Cheryl
2001-01-01
Three organizational tools for counselors are described: three-ring binder for notes, forms, and schedules; daily log of time and activities; and a tickler file with tasks arranged by days of the week. (SK)
A Mobile App (BEDSide Mobility) to Support Nurses' Tasks at the Patient's Bedside: Usability Study.
Ehrler, Frederic; Weinhold, Thomas; Joe, Jonathan; Lovis, Christian; Blondon, Katherine
2018-03-21
The introduction of clinical information systems has increased the amount of clinical documentation. Although this documentation generally improves patient safety, it has become a time-consuming task for nurses, which limits their time with the patient. On the basis of a user-centered methodology, we have developed a mobile app named BEDSide Mobility to support nurses in their daily workflow and to facilitate documentation at the bedside. The aim of the study was to assess the usability of the BEDSide Mobility app in terms of the navigation and interaction design through usability testing. Nurses were asked to complete a scenario reflecting their daily work with patients. Their interactions with the app were captured with eye-tracking glasses and by using the think aloud protocol. After completing the tasks, participants filled out the system usability scale questionnaire. Descriptive statistics were used to summarize task completion rates and the users' performance. A total of 10 nurses (aged 21-50) participated in the study. Overall, they were satisfied with the navigation, layout, and interaction design of the app, with the exception of one user who was unfamiliar with smartphones. The problems identified were related to the ambiguity of some icons, the navigation logic, and design inconsistency. Besides the usability issues identified in the app, the participants' results do indicate good usability, high acceptance, and high satisfaction with the developed app. However, the results must be taken with caution because of the poor ecological validity of the experimental setting. ©Frederic Ehrler, Thomas Weinhold, Jonathan Joe, Christian Lovis, Katherine Blondon. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 21.03.2018.
Evaluating the Ergonomics of Flexible Ureteroscopy.
Ludwig, Wesley W; Lee, Gyusung; Ziemba, Justin B; Ko, Joan S; Matlaga, Brian R
2017-10-01
To date, the ergonomics of flexible ureteroscopy (URS) have not been well described. We performed a study to assess the biomechanical stresses on urologists performing URS and to investigate the effect of ureteroscope type on these parameters. Electromyography (EMG) was used to quantify the activation level of muscle groups involved in URS. Surface EMG electrodes (Delsys, Boston, MA) were placed on the right and left thenar, flexor carpi ulnaris (FCU), extensor carpi ulnaris (ECU), biceps, triceps, and deltoid. Three endoscopes were studied: single-use digital (Boston Scientific LithoVue), reusable digital (Karl Storz Flex-X c ), and reusable fiber-optic (Karl Storz Flex-X 2 ). Each ureteroscope was used to perform a set sequence of navigation and procedural tasks in a training model. EMG data were processed and normalized to compare the maximum voluntary contractions between muscle groups. Cumulative muscular workload (CMW) and average muscular work per second (AWS) were used for comparative analysis. For navigational tasks, CMW and AWS were greatest for the ECU, followed in descending order by right and left thenar, FCU, biceps, deltoid, and triceps. For procedural tasks, CMW and AWS were greatest for the right thenar, followed in descending order by the left thenar, ECU, FCU, triceps, biceps, and deltoid. During navigational tasks, both LithoVue and Flex-X c had lower CMWs for every muscle group than Flex-X 2 (p < 0.05). LithoVue and Flex-X c had similar AWS and both were lower than Flex-X 2 for the right thenar, ECU, biceps, and deltoid activation (p < 0.05). During procedural tasks, both LithoVue and Flex-X c had lower CMWs and AWS for right and left thenar, ECU, and biceps than Flex-X 2 (p < 0.05). This study provides the first description of EMG-measured ergonomics of URS. Both the single-use and reusable digital ureteroscopes have similar profiles, and both have significantly better ergonomic metrics than the reusable fiber-optic ureteroscope.
Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source.
Liberzon, Alexander; Harrington, Kyra; Daniel, Nimrod; Gurka, Roi; Harari, Ally; Zilman, Gregory
2018-01-01
Some female moths attract male moths by emitting series of pulses of pheromone filaments propagating downwind. The turbulent nature of the wind creates a complex flow environment, and causes the filaments to propagate in the form of patches with varying concentration distributions. Inspired by moth navigation capabilities, we propose a navigation strategy that enables a flier to locate an upwind pulsating odor source in a windy environment using a single threshold-based detection sensor. This optomotor anemotaxis strategy is constructed based on the physical properties of the turbulent flow carrying discrete puffs of odor and does not involve learning, memory, complex decision making or statistical methods. We suggest that in turbulent plumes from a pulsating point source, an instantaneously measurable quantity referred as a "puff crossing time", improves the success rate as compared to the navigation strategies based on temporally regular zigzags due to intermittent contact, or an "internal counter", that do not use this information. Using computer simulations of fliers navigating in turbulent plumes of the pulsating point source for varying flow parameters such as turbulent intensities, plume meandering and wind gusts, we obtained statistics of navigation paths towards the pheromone sources. We quantified the probability of a successful navigation as well as the flight parameters such as the time spent searching and the total flight time, with respect to different turbulent intensities, meandering or gusts. The concepts learned using this model may help to design odor-based navigation of miniature airborne autonomous vehicles.
Flare cue symbology and EVS for zero-zero weather landing
NASA Astrophysics Data System (ADS)
French, Guy A.; Murphy, David M.; Ercoline, William R.
2006-05-01
When flying an airplane, landing is arguably the most difficult task a pilot can do. This applies to pilots of all skill levels particularly as the level of complexity in both the aircraft and environment increase. Current navigational aids, such as an instrument landing system (ILS), do a good job of providing safe guidance for an approach to an airfield. These aids provide data to primary flight reference (PFR) displays on-board the aircraft depicting through symbology what the pilot's eyes should be seeing. Piloting an approach under visual meteorological conditions (VMC) is relatively easy compared to the various complex instrument approaches under instrument meteorological conditions (IMC) which may include flying in zero-zero weather. Perhaps the most critical point in the approach is the transition to landing where the rate of closure between the wheels and the runway is critical to a smooth, accurate landing. Very few PFR's provide this flare cue information. In this study we will evaluate examples of flare cueing symbology for use in landing an aircraft in the most difficult conditions. This research is a part of a larger demonstration effort using sensor technology to land in zero-zero weather at airfields that offer no or unreliable approach guidance. Several problems exist when landing without visual reference to the outside world. One is landing with a force greater than desired at touchdown and another is landing on a point of the runway other than desired. We compare different flare cueing systems to one another and against a baseline for completing this complex approach task.
Vision-Aided Inertial Navigation
NASA Technical Reports Server (NTRS)
Roumeliotis, Stergios I. (Inventor); Mourikis, Anastasios I. (Inventor)
2017-01-01
This document discloses, among other things, a system and method for implementing an algorithm to determine pose, velocity, acceleration or other navigation information using feature tracking data. The algorithm has computational complexity that is linear with the number of features tracked.
Niranjan, Soumya J; Huang, Chao-Hui S; Dionne-Odom, J Nicholas; Halilova, Karina I; Pisu, Maria; Drentea, Patricia; Kvale, Elizabeth A; Bevis, Kerri S; Butler, Thomas W; Partridge, Edward E; Rocque, Gabrielle B
2018-04-01
Respecting Choices is an evidence-based model of facilitating advance care planning (ACP) conversations between health-care professionals and patients. However, the effectiveness of whether lay patient navigators can successfully initiate Respecting Choices ACP conversations is unknown. As part of a large demonstration project (Patient Care Connect [PCC]), a cohort of lay patient navigators underwent Respecting Choices training and were tasked to initiate ACP conversations with Medicare beneficiaries diagnosed with cancer. This article explores PCC lay navigators' perceived barriers and facilitators in initiating Respecting Choices ACP conversations with older patients with cancer in order to inform implementation enhancements to lay navigator-facilitated ACP. Twenty-six lay navigators from 11 PCC cancer centers in 4 states (Alabama, George, Tennessee, and Florida) completed in-depth, one-on-one semistructured interviews between June 2015 and August 2015. Data were analyzed using a thematic analysis approach. This evaluation identifies 3 levels-patient, lay navigator, and organizational factors in addition to training needs that influence ACP implementation. Key facilitators included physician buy-in, patient readiness, and navigators' prior experience with end-of-life decision-making. Lay navigators' perceived challenges to initiating ACP conversations included timing of the conversation and social and personal taboos about discussing dying. Our results suggest that further training and health system support are needed for lay navigators playing a vital role in improving the implementation of ACP among older patients with cancer. The lived expertise of lay navigators along with flexible longitudinal relationships with patients and caregivers may uniquely position this workforce to promote ACP.
Smart Swarms of Bacteria-Inspired Agents with Performance Adaptable Interactions
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-01-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment – by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots. PMID:21980274
Smart swarms of bacteria-inspired agents with performance adaptable interactions.
Shklarsh, Adi; Ariel, Gil; Schneidman, Elad; Ben-Jacob, Eshel
2011-09-01
Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment--by decreasing the peers' influence while navigating in a beneficial direction, and increasing it otherwise. We show that inclusion of such performance dependent adaptable interactions significantly improves the collective swarming performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily be implemented in simple swarming robots.
Slime mold uses an externalized spatial “memory” to navigate in complex environments
Reid, Chris R.; Latty, Tanya; Dussutour, Audrey; Beekman, Madeleine
2012-01-01
Spatial memory enhances an organism’s navigational ability. Memory typically resides within the brain, but what if an organism has no brain? We show that the brainless slime mold Physarum polycephalum constructs a form of spatial memory by avoiding areas it has previously explored. This mechanism allows the slime mold to solve the U-shaped trap problem—a classic test of autonomous navigational ability commonly used in robotics—requiring the slime mold to reach a chemoattractive goal behind a U-shaped barrier. Drawn into the trap, the organism must rely on other methods than gradient-following to escape and reach the goal. Our data show that spatial memory enhances the organism’s ability to navigate in complex environments. We provide a unique demonstration of a spatial memory system in a nonneuronal organism, supporting the theory that an externalized spatial memory may be the functional precursor to the internal memory of higher organisms. PMID:23045640
Slime mold uses an externalized spatial "memory" to navigate in complex environments.
Reid, Chris R; Latty, Tanya; Dussutour, Audrey; Beekman, Madeleine
2012-10-23
Spatial memory enhances an organism's navigational ability. Memory typically resides within the brain, but what if an organism has no brain? We show that the brainless slime mold Physarum polycephalum constructs a form of spatial memory by avoiding areas it has previously explored. This mechanism allows the slime mold to solve the U-shaped trap problem--a classic test of autonomous navigational ability commonly used in robotics--requiring the slime mold to reach a chemoattractive goal behind a U-shaped barrier. Drawn into the trap, the organism must rely on other methods than gradient-following to escape and reach the goal. Our data show that spatial memory enhances the organism's ability to navigate in complex environments. We provide a unique demonstration of a spatial memory system in a nonneuronal organism, supporting the theory that an externalized spatial memory may be the functional precursor to the internal memory of higher organisms.
POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.; Reinhart, Felix
2012-01-01
Waves apply significant forces to small boats, in particular when such vessels are moving at a high speed in severe sea conditions. In addition, small high-speed boats run the risk of diving with the bow into the next wave crest during operations in the wavelengths and wave speeds that are typical for shallow water. In order to mitigate the issues of autonomous navigation in rough water, a hybrid controller called POSTMAN combines the concept of POS (point of sail) tack planning from the sailing domain with a standard PID (proportional-integral-derivative) controller that implements reliable target reaching for the motorized small boat control task. This is an embedded, adaptive software controller that uses look-ahead sensing in a closed loop method to perform path planning for safer navigation in rough waters. State-of-the-art controllers for small boats are based on complex models of the vessel's kinematics and dynamics. They enable the vessel to follow preplanned paths accurately and can theoretically control all of the small boat s six degrees of freedom. However, the problems of bow diving and other undesirable incidents are not addressed, and it is questionable if a six-DOF controller with basically a single actuator is possible at all. POSTMAN builds an adaptive capability into the controller based on sensed wave characteristics. This software will bring a muchneeded capability to unmanned small boats moving at high speeds. Previously, this class of boat was limited to wave heights of less than one meter in the sea states in which it could operate. POSTMAN is a major advance in autonomous safety for small maritime craft.
Deformable 3D-2D registration for guiding K-wire placement in pelvic trauma surgery
NASA Astrophysics Data System (ADS)
Goerres, J.; Jacobson, M.; Uneri, A.; de Silva, T.; Ketcha, M.; Reaungamornrat, S.; Vogt, S.; Kleinszig, G.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.
2017-03-01
Pelvic Kirschner wire (K-wire) insertion is a challenging surgical task requiring interpretation of complex 3D anatomical shape from 2D projections (fluoroscopy) and delivery of device trajectories within fairly narrow bone corridors in proximity to adjacent nerves and vessels. Over long trajectories ( 10-25 cm), K-wires tend to curve (deform), making conventional rigid navigation inaccurate at the tip location. A system is presented that provides accurate 3D localization and guidance of rigid or deformable surgical devices ("components" - e.g., K-wires) based on 3D-2D registration. The patient is registered to a preoperative CT image by virtually projecting digitally reconstructed radiographs (DRRs) and matching to two or more intraoperative x-ray projections. The K-wire is localized using an analogous procedure matching DRRs of a deformably parametrized model for the device component (deformable known-component registration, or dKC-Reg). A cadaver study was performed in which a K-wire trajectory was delivered in the pelvis. The system demonstrated target registration error (TRE) of 2.1 ± 0.3 mm in location of the K-wire tip (median ± interquartile range, IQR) and 0.8 ± 1.4º in orientation at the tip (median ± IQR), providing functionality analogous to surgical tracking / navigation using imaging systems already in the surgical arsenal without reliance on a surgical tracker. The method offers quantitative 3D guidance using images (e.g., inlet / outlet views) already acquired in the standard of care, potentially extending the advantages of navigation to broader utilization in trauma surgery to improve surgical precision and safety.
Lay Navigator Model for Impacting Cancer Health Disparities
Meade, Cathy D.; Wells, Kristen J.; Arevalo, Mariana; Calcano, Ercilia R.; Rivera, Marlene; Sarmiento, Yolanda; Freeman, Harold P; Roetzheim, Richard G.
2014-01-01
This paper recounts experiences, challenges, and lessons learned when implementing a lay patient navigator program to improve cancer care among medically underserved patients who presented in a primary care clinic with a breast or colorectal cancer abnormality. The program employed five lay navigators to navigate 588 patients. Central programmatic elements were: 1) use of bilingual lay navigators with familiarity of communities they served; 2) provision of training, education and supportive activities; 3) multidisciplinary clinical oversight that factored in caseload intensity; and 4) well-developed partnerships with community clinics and social service entities. Deconstruction of health care system information was fundamental to navigation processes. We conclude that a lay model of navigation is well suited to assist patients through complex health care systems; however, a stepped care model that includes both lay and professional navigation may be optimal to help patients across the entire continuum. PMID:24683043
Lay navigator model for impacting cancer health disparities.
Meade, Cathy D; Wells, Kristen J; Arevalo, Mariana; Calcano, Ercilia R; Rivera, Marlene; Sarmiento, Yolanda; Freeman, Harold P; Roetzheim, Richard G
2014-09-01
This paper recounts experiences, challenges, and lessons learned when implementing a lay patient navigator program to improve cancer care among medically underserved patients who presented in a primary care clinic with a breast or colorectal cancer abnormality. The program employed five lay navigators to navigate 588 patients. Central programmatic elements were the following: (1) use of bilingual lay navigators with familiarity of communities they served; (2) provision of training, education, and supportive activities; (3) multidisciplinary clinical oversight that factored in caseload intensity; and (4) well-developed partnerships with community clinics and social service entities. Deconstruction of healthcare system information was fundamental to navigation processes. We conclude that a lay model of navigation is well suited to assist patients through complex healthcare systems; however, a stepped care model that includes both lay and professional navigation may be optimal to help patients across the entire continuum.
[Assessing Motor-Cognition Interaction of Patients with Cognitive Disorders: Clinical Aspects].
Schniepp, R; Wuehr, M; Schöberl, F; Zwergal, A
2016-08-01
Difficulties of walking and deficits of cognitive functions appear to be associated in the elderly. Thus, clinical assessment in geriatry and neurology should focus on: (1) diagnostic approaches covering both domains of everyday functioning; (2) therapeutic interventions that take into account possible interactions and synergies of both domains. In order to assess the capability for motor-cognitive interactions in the elderly it is recommended to investigate walking patterns during dual-tasks (e.g. walking and counting backwards, walking and naming words) and to examine clinical tests of everyday mobility tasks, such as the Timed-up-and-go-Test and spatial navigation tasks. Patients with cognitive disorders often perform inferior with a reduction of walking speed and an increase of stepping variability. Dual-task performance appears to be a reliable parameter for long-term observations of the course of the disease. Moreover, it might improve the quality of the gait examination during diagnostic or therapeutic interventions (e.g. the spinal tap test in patients with NPH). Several studies further highlight gait deficits during dual-task walking as a marker for the everyday functioning and the quality of life in elderly persons and patients with cognitive disorders.Therapeutic approaches in this context comprise complex motor-cognitive interventions, such as Thai Chi and Dalcroze rhythmic exercises. These interventions appear to act synergistically in motor and cognitive domains. First evidence for the efficacy for improving executive functions and reducing the fall risk of patients with cognitive impairments is given, thought randomized, controlled trials are rare. © Georg Thieme Verlag KG Stuttgart · New York.
ADAPT: The Agent Development and Prototyping Testbed.
Shoulson, Alexander; Marshak, Nathan; Kapadia, Mubbasir; Badler, Norman I
2014-07-01
We present ADAPT, a flexible platform for designing and authoring functional, purposeful human characters in a rich virtual environment. Our framework incorporates character animation, navigation, and behavior with modular interchangeable components to produce narrative scenes. The animation system provides locomotion, reaching, gaze tracking, gesturing, sitting, and reactions to external physical forces, and can easily be extended with more functionality due to a decoupled, modular structure. The navigation component allows characters to maneuver through a complex environment with predictive steering for dynamic obstacle avoidance. Finally, our behavior framework allows a user to fully leverage a character's animation and navigation capabilities when authoring both individual decision-making and complex interactions between actors using a centralized, event-driven model.
The Complex Dynamics of Student Engagement in Novel Engineering Design Activities
NASA Astrophysics Data System (ADS)
McCormick, Mary
In engineering design, making sense of "messy," design situations is at the heart of the discipline (Schon, 1983); engineers in practice bring structure to design situations by organizing, negotiating, and coordinating multiple aspects (Bucciarelli, 1994; Stevens, Johri, & O'Connor, 2014). In classroom settings, however, students are more often given well-defined, content-focused engineering tasks (Jonassen, 2014). These tasks are based on the assumption that elementary students are unable to grapple with the complexity or open-endedness of engineering design (Crismond & Adams, 2012). The data I present in this dissertation suggest the opposite. I show that students are not only able to make sense of, or frame (Goffman, 1974), complex design situations, but that their framings dynamically involve their nascent abilities for engineering design. The context of this work is Novel Engineering, a larger research project that explores using children's literature as an access point for engineering design. Novel Engineering activities are inherently messy: there are characters with needs, settings with implicit constraints, and rich design situations. In a series of three studies, I show how students' framings of Novel Engineering design activities involve their reasoning and acting as beginning engineers. In the first study, I show two students whose caring for the story characters contributes to their stability in framing the task: they identify the needs of their fictional clients and iteratively design a solution to meet their clients' needs. In the second, I show how students' shifting and negotiating framings influence their engineering assumptions and evaluation criteria. In the third, I show how students' coordinating framings involve navigating a design process to meet clients' needs, classroom expectations, and technical requirements. Collectively, these studies contribute to literature by documenting students' productive beginnings in engineering design. The implications span research and practice, specifically targeting how we attend to and support students as they engage in engineering design.
Navigation Operations for the Magnetospheric Multiscale Mission
NASA Technical Reports Server (NTRS)
Long, Anne; Farahmand, Mitra; Carpenter, Russell
2015-01-01
The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.
Factors influencing use of an e-health website in a community sample of older adults.
Czaja, Sara J; Sharit, Joseph; Lee, Chin Chin; Nair, Sankaran N; Hernández, Mario A; Arana, Neysarí; Fu, Shih Hua
2013-01-01
The use of the internet as a source of health information and link to healthcare services has raised concerns about the ability of consumers, especially vulnerable populations such as older adults, to access these applications. This study examined the influence of training on the ability of adults (aged 45+ years) to use the Medicare.gov website to solve problems related to health management. The influence of computer experience and cognitive abilities on performance was also examined. Seventy-one participants, aged 47-92, were randomized into a Multimedia training, Unimodal training, or Cold Start condition and completed three healthcare management problems. MEASUREMENT AND ANALYSES: Computer/internet experience was measured via questionnaire, and cognitive abilities were assessed using standard neuropsychological tests. Performance metrics included measures of navigation, accuracy and efficiency. Data were analyzed using analysis of variance, χ(2) and regression techniques. The data indicate that there was no difference among the three conditions on measures of accuracy, efficiency, or navigation. However, results of the regression analyses showed that, overall, people who received training performed better on the tasks, as evidenced by greater accuracy and efficiency. Performance was also significantly influenced by prior computer experience and cognitive abilities. Participants with more computer experience and higher cognitive abilities performed better. The findings indicate that training, experience, and abilities are important when using complex health websites. However, training alone is not sufficient. The complexity of web content needs to be considered to ensure successful use of these websites by those with lower abilities.
Factors influencing use of an e-health website in a community sample of older adults
Sharit, Joseph; Lee, Chin Chin; Nair, Sankaran N; Hernández, Mario A; Arana, Neysarí; Fu, Shih Hua
2013-01-01
Objective The use of the internet as a source of health information and link to healthcare services has raised concerns about the ability of consumers, especially vulnerable populations such as older adults, to access these applications. This study examined the influence of training on the ability of adults (aged 45+ years) to use the Medicare.gov website to solve problems related to health management. The influence of computer experience and cognitive abilities on performance was also examined. Design Seventy-one participants, aged 47–92, were randomized into a Multimedia training, Unimodal training, or Cold Start condition and completed three healthcare management problems. Measurement and analyses Computer/internet experience was measured via questionnaire, and cognitive abilities were assessed using standard neuropsychological tests. Performance metrics included measures of navigation, accuracy and efficiency. Data were analyzed using analysis of variance, χ2 and regression techniques. Results The data indicate that there was no difference among the three conditions on measures of accuracy, efficiency, or navigation. However, results of the regression analyses showed that, overall, people who received training performed better on the tasks, as evidenced by greater accuracy and efficiency. Performance was also significantly influenced by prior computer experience and cognitive abilities. Participants with more computer experience and higher cognitive abilities performed better. Conclusions The findings indicate that training, experience, and abilities are important when using complex health websites. However, training alone is not sufficient. The complexity of web content needs to be considered to ensure successful use of these websites by those with lower abilities. PMID:22802269
NASA Astrophysics Data System (ADS)
Smith-Ferguson, Jules; Reid, Chris R.; Latty, Tanya; Beekman, Madeleine
2017-10-01
The ability to navigate through an environment is critical to most organisms’ ability to survive and reproduce. The presence of a memory system greatly enhances navigational success. Therefore, natural selection is likely to drive the creation of memory systems, even in non-neuronal organisms, if having such a system is adaptive. Here we examine if the external spatial memory system present in the acellular slime mould, Physarum polycephalum, provides an adaptive advantage for resource acquisition. P. polycephalum lays tracks of extracellular slime as it moves through its environment. Previous work has shown that the presence of extracellular slime allows the organism to escape from a trap in laboratory experiments simply by avoiding areas previously explored. Here we further investigate the benefits of using extracellular slime as an external spatial memory by testing the organism’s ability to navigate through environments of differing complexity with and without the ability to use its external memory. Our results suggest that the external memory has an adaptive advantage in ‘open’ and simple bounded environments. However, in a complex bounded environment, the extracellular slime provides no advantage, and may even negatively affect the organism’s navigational abilities. Our results indicate that the exact experimental set up matters if one wants to fully understand how the presence of extracellular slime affects the slime mould’s search behaviour.
Factor and Organizational Substitutions to Minimize Costs in the Navy
2013-12-01
navigation, propulsion, combat, hotel , communications, in-service support and any system corresponding to further tasks such as transport, hospital...propulsion, combat, hotel , communications, in-service support and any system corresponding to further tasks such as transport, hospital services and command...contract, a cadet may be able to increase her branch choice priority. The Officer Career Satisfaction Program (OCSP) is an incentive program with
Manipulations of Start and Food Locations Affect Navigation on a Foraging Task
ERIC Educational Resources Information Center
Martin, Gerard M.; Pirzada, Ashar; Bridger, Alexander; Tomlin, Julian; Thorpe, Christina M.; Skinner, Darlene M.
2011-01-01
Rats were able to search multiple food cups in a foraging task and successfully return to a fixed, but not a variable, start location. Reducing the number of food cups to be searched resulted in an improvement in performance in the variable start condition. Performance was better when only one or two food cups had to be visited but was still…
Human Factors Engineering #3 Crewstation Assessment for the OH-58F Helicopter
2014-03-01
Additionally, workload was assessed for level of interoperability 2 (LOI 2) tasks that the aircrew performed with an unmanned aircraft system (UAS...TTP tactics, techniques, and procedures UAS unmanned aircraft system 47 VFR visual flight rules VMC visual meteorological conditions VTR...For example, pilots often perform navigation tasks, communicate via multiple radios, monitor aircraft systems , and assist the pilot on the controls
Space-based navigation for RLVs and ELVs
DOT National Transportation Integrated Search
2006-02-08
The Aerospace Corporation was tasked by the Volpe National Transportation System Center to provide technical support to the Federal Aviation Administration, Office of the Associate Administrator for Commercial Space Transportation (FAA/AST), by perfo...
Virtual Reality: An Instructional Medium for Visual-Spatial Tasks.
ERIC Educational Resources Information Center
Regian, J. Wesley; And Others
1992-01-01
Describes an empirical exploration of the instructional potential of virtual reality as an interface for simulation-based training. Shows that subjects learned spatial-procedural and spatial-navigational skills in virtual reality. (SR)
Navigation of a care and welfare robot
NASA Astrophysics Data System (ADS)
Yukawa, Toshihiro; Hosoya, Osamu; Saito, Naoki; Okano, Hideharu
2005-12-01
In this paper, we propose the development of a robot that can perform nursing tasks in a hospital. In a narrow environment such as a sickroom or a hallway, the robot must be able to move freely in arbitrary directions. Therefore, the robot needs to have high controllability and the capability to make precise movements. Our robot can recognize a line by using cameras, and can be controlled in the reference directions by means of comparison with original cell map information; furthermore, it moves safely on the basis of an original center-line established permanently in the building. Correspondence between the robot and a centralized control center enables the robot's autonomous movement in the hospital. Through a navigation system using cell map information, the robot is able to perform nursing tasks smoothly by changing the camera angle.
Using a contextualized sensemaking model for interaction design: A case study of tumor contouring.
Aselmaa, Anet; van Herk, Marcel; Laprie, Anne; Nestle, Ursula; Götz, Irina; Wiedenmann, Nicole; Schimek-Jasch, Tanja; Picaud, Francois; Syrykh, Charlotte; Cagetti, Leonel V; Jolnerovski, Maria; Song, Yu; Goossens, Richard H M
2017-01-01
Sensemaking theories help designers understand the cognitive processes of a user when he/she performs a complicated task. This paper introduces a two-step approach of incorporating sensemaking support within the design of health information systems by: (1) modeling the sensemaking process of physicians while performing a task, and (2) identifying software interaction design requirements that support sensemaking based on this model. The two-step approach is presented based on a case study of the tumor contouring clinical task for radiotherapy planning. In the first step of the approach, a contextualized sensemaking model was developed to describe the sensemaking process based on the goal, the workflow and the context of the task. In the second step, based on a research software prototype, an experiment was conducted where three contouring tasks were performed by eight physicians respectively. Four types of navigation interactions and five types of interaction sequence patterns were identified by analyzing the gathered interaction log data from those twenty-four cases. Further in-depth study on each of the navigation interactions and interaction sequence patterns in relation to the contextualized sensemaking model revealed five main areas for design improvements to increase sensemaking support. Outcomes of the case study indicate that the proposed two-step approach was beneficial for gaining a deeper understanding of the sensemaking process during the task, as well as for identifying design requirements for better sensemaking support. Copyright © 2016. Published by Elsevier Inc.
Data mining for personal navigation
NASA Astrophysics Data System (ADS)
Hariharan, Gurushyam; Franti, Pasi; Mehta, Sandeep
2002-03-01
Relevance is the key in defining what data is to be extracted from the Internet. Traditionally, relevance has been defined mainly by keywords and user profiles. In this paper we discuss a fairly untouched dimension to relevance: location. Any navigational information sought by a user at large on earth is evidently governed by his location. We believe that task oriented data mining of the web amalgamated with location information is the key to providing relevant information for personal navigation. We explore the existential hurdles and propose novel approaches to tackle them. We also present naive, task-oriented data mining based approaches and their implementations in Java, to extract location based information. Ad-hoc pairing of data with coordinates (x, y) is very rare on the web. But if the same co-ordinates are converted to a logical address (state/city/street), a wide spectrum of location-based information base opens up. Hence, given the coordinates (x, y) on the earth, the scheme points to the logical address of the user. Location based information could either be picked up from fixed and known service providers (e.g. Yellow Pages) or from any arbitrary website on the Web. Once the web servers providing information relevant to the logical address are located, task oriented data mining is performed over these sites keeping in mind what information is interesting to the contemporary user. After all this, a simple data stream is provided to the user with information scaled to his convenience. The scheme has been implemented for cities of Finland.
Laparoscopic assistance by operating room nurses: Results of a virtual-reality study.
Paschold, M; Huber, T; Maedge, S; Zeissig, S R; Lang, H; Kneist, W
2017-04-01
Laparoscopic assistance is often entrusted to a less experienced resident, medical student, or operating room nurse. Data regarding laparoscopic training for operating room nurses are not available. The aim of the study was to analyse the initial performance level and learning curves of operating room nurses in basic laparoscopic surgery compared with medical students and surgical residents to determine their ability to assist with this type of procedure. The study was designed to compare the initial virtual reality performance level and learning curves of user groups to analyse competence in laparoscopic assistance. The study subjects were operating room nurses, medical students, and first year residents. Participants performed three validated tasks (camera navigation, peg transfer, fine dissection) on a virtual reality laparoscopic simulator three times in 3 consecutive days. Laparoscopic experts were enrolled as a control group. Participants filled out questionnaires before and after the course. Nurses and students were comparable in their initial performance (p>0.05). Residents performed better in camera navigation than students and nurses and reached the expert level for this task. Residents, students, and nurses had comparable bimanual skills throughout the study; while, experts performed significantly better in bimanual manoeuvres at all times (p<0.05). The included user groups had comparable skills for bimanual tasks. Residents with limited experience reached the expert level in camera navigation. With training, nurses, students, and first year residents are equally capable of assisting in basic laparoscopic procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kraemer, David J.M.; Schinazi, Victor R.; Cawkwell, Philip B.; Tekriwal, Anand; Epstein, Russell A.; Thompson-Schill, Sharon L.
2016-01-01
Using novel virtual cities, we investigated the influence of verbal and visual strategies on the encoding of navigation-relevant information in a large-scale virtual environment. In two experiments, participants watched videos of routes through four virtual cities and were subsequently tested on their memory for observed landmarks and on their ability to make judgments regarding the relative directions of the different landmarks along the route. In the first experiment, self-report questionnaires measuring visual and verbal cognitive styles were administered to examine correlations between cognitive styles, landmark recognition, and judgments of relative direction. Results demonstrate a tradeoff in which the verbal cognitive style is more beneficial for recognizing individual landmarks than for judging relative directions between them, whereas the visual cognitive style is more beneficial for judging relative directions than for landmark recognition. In a second experiment, we manipulated the use of verbal and visual strategies by varying task instructions given to separate groups of participants. Results confirm that a verbal strategy benefits landmark memory, whereas a visual strategy benefits judgments of relative direction. The manipulation of strategy by altering task instructions appears to trump individual differences in cognitive style. Taken together, we find that processing different details during route encoding, whether due to individual proclivities (Experiment 1) or task instructions (Experiment 2), results in benefits for different components of navigation relevant information. These findings also highlight the value of considering multiple sources of individual differences as part of spatial cognition investigations. PMID:27668486
Cheap or Robust? The practical realization of self-driving wheelchair technology.
Burhanpurkar, Maya; Labbe, Mathieu; Guan, Charlie; Michaud, Francois; Kelly, Jonathan
2017-07-01
To date, self-driving experimental wheelchair technologies have been either inexpensive or robust, but not both. Yet, in order to achieve real-world acceptance, both qualities are fundamentally essential. We present a unique approach to achieve inexpensive and robust autonomous and semi-autonomous assistive navigation for existing fielded wheelchairs, of which there are approximately 5 million units in Canada and United States alone. Our prototype wheelchair platform is capable of localization and mapping, as well as robust obstacle avoidance, using only a commodity RGB-D sensor and wheel odometry. As a specific example of the navigation capabilities, we focus on the single most common navigation problem: the traversal of narrow doorways in arbitrary environments. The software we have developed is generalizable to corridor following, desk docking, and other navigation tasks that are either extremely difficult or impossible for people with upper-body mobility impairments.
Orbit Determination and Navigation Software Testing for the Mars Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Pini, Alex
2011-01-01
During the extended science phase of the Mars Reconnaissance Orbiter's lifecycle, the operational duties pertaining to navigation primarily involve orbit determination. The orbit determination process utilizes radiometric tracking data and is used for the prediction and reconstruction of MRO's trajectories. Predictions are done twice per week for ephemeris updates on-board the spacecraft and for planning purposes. Orbit Trim Maneuvers (OTM-s) are also designed using the predicted trajectory. Reconstructions, which incorporate a batch estimator, provide precise information about the spacecraft state to be synchronized with scientific measurements. These tasks were conducted regularly to validate the results obtained by the MRO Navigation Team. Additionally, the team is in the process of converting to newer versions of the navigation software and operating system. The capability to model multiple densities in the Martian atmosphere is also being implemented. However, testing outputs among these different configurations was necessary to ensure compliance to a satisfactory degree.
Bellassen, Virginie; Iglói, Kinga; de Souza, Leonardo Cruz; Dubois, Bruno; Rondi-Reig, Laure
2012-02-08
Episodic memory impairment is a hallmark for early diagnosis of Alzheimer's disease. Most actual tests used to diagnose Alzheimer's disease do not assess the spatiotemporal properties of episodic memory and lead to false-positive or -negative diagnosis. We used a newly developed, nonverbal navigation test for Human, based on the objective experimental testing of a spatiotemporal experience, to differentially Alzheimer's disease at the mild stage (N = 16 patients) from frontotemporal lobar degeneration (N = 11 patients) and normal aging (N = 24 subjects). Comparing navigation parameters and standard neuropsychological tests, temporal order memory appeared to have the highest predictive power for mild Alzheimer's disease diagnosis versus frontotemporal lobar degeneration and normal aging. This test was also nonredundant with classical neuropsychological tests. As a conclusion, our results suggest that temporal order memory tested in a spatial navigation task may provide a selective behavioral marker of Alzheimer's disease.
Maaroufi, Karima; Had-Aissouni, Laurence; Melon, Christophe; Sakly, Mohsen; Abdelmelek, Hafedh; Poucet, Bruno; Save, Etienne
2014-01-01
The increasing use of mobile phone technology over the last decade raises concerns about the impact of high frequency electromagnetic fields (EMF) on health. More recently, a link between EMF, iron overload in the brain and neurodegenerative disorders including Parkinson's and Alzheimer's diseases has been suggested. Co-exposure to EMF and brain iron overload may have a greater impact on brain tissues and cognitive processes than each treatment by itself. To examine this hypothesis, Long-Evans rats submitted to 900 MHz exposure or combined 900 MHz EMF and iron overload treatments were tested in various spatial learning tasks (navigation task in the Morris water maze, working memory task in the radial-arm maze, and object exploration task involving spatial and non spatial processing). Biogenic monoamines and metabolites (dopamine, serotonin) and oxidative stress were measured. Rats exposed to EMF were impaired in the object exploration task but not in the navigation and working memory tasks. They also showed alterations of monoamine content in several brain areas but mainly in the hippocampus. Rats that received combined treatment did not show greater behavioral and neurochemical deficits than EMF-exposed rats. None of the two treatments produced global oxidative stress. These results show that there is an impact of EMF on the brain and cognitive processes but this impact is revealed only in a task exploiting spontaneous exploratory activity. In contrast, there are no synergistic effects between EMF and a high content of iron in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.
Usefulness of virtual reality in assessment of medical student laparoscopic skill.
Matzke, Josh; Ziegler, Craig; Martin, Kevin; Crawford, Stuart; Sutton, Erica
2017-05-01
This study evaluates if undergraduate medical trainees' laparoscopic skills acquisition could be assessed using a virtual reality (VR) simulator and how the resultant metrics correlate with performance of Fundamentals of Laparoscopic Surgery (FLS) tasks. Our hypothesis is that the VR simulator metrics will correlate with passing results in a competency-based curriculum (FLS). Twenty-eight fourth-year medical students applying for surgical residency were recruited to participate in a VR training curriculum comprised of camera navigation, hand eye coordination, and FLS tasks: circle cutting (CC), ligating loop (LL), peg transfer (PT), and intracorporeal knot tying (IKT). Students were given 8 wk to achieve proficiency goals, after which they were observed performing FLS tasks. The ability of the VR simulator to detect penalties in each of the FLS tasks and correlations of time taken to complete tasks are reported. Twenty-five students trained in all components of the curriculum. All students were proficient in camera navigation and hand eye coordination tasks. Proficiency was achieved in CC, LL, PT, and IKT by 21, 19, 23, and one student, respectively. VR simulation showed high specificity for predicting zero penalties on the observed CC, LL, and PT tasks (80%, 75%, and 80%, respectively). VR can be used to assess medical student's acquisition of laparoscopic skills. The absence of penalties in the simulator reasonably predicts the absence of penalties in all FLS skills, except IKT. The skills acquired by trainees can be used in residency for further monitoring of progress toward proficiency. Copyright © 2016 Elsevier Inc. All rights reserved.
Collective navigation of complex networks: Participatory greedy routing.
Kleineberg, Kaj-Kolja; Helbing, Dirk
2017-06-06
Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.
NASA Astrophysics Data System (ADS)
Latulippe, Maxime; Felfoul, Ouajdi; Dupont, Pierre E.; Martel, Sylvain
2016-02-01
The magnetic navigation of drugs in the vascular network promises to increase the efficacy and reduce the secondary toxicity of cancer treatments by targeting tumors directly. Recently, dipole field navigation (DFN) was proposed as the first method achieving both high field and high navigation gradient strengths for whole-body interventions in deep tissues. This is achieved by introducing large ferromagnetic cores around the patient inside a magnetic resonance imaging (MRI) scanner. However, doing so distorts the static field inside the scanner, which prevents imaging during the intervention. This limitation constrains DFN to open-loop navigation, thus exposing the risk of a harmful toxicity in case of a navigation failure. Here, we are interested in periodically assessing drug targeting efficiency using MRI even in the presence of a core. We demonstrate, using a clinical scanner, that it is in fact possible to acquire, in specific regions around a core, images of sufficient quality to perform this task. We show that the core can be moved inside the scanner to a position minimizing the distortion effect in the region of interest for imaging. Moving the core can be done automatically using the gradient coils of the scanner, which then also enables the core to be repositioned to perform navigation to additional targets. The feasibility and potential of the approach are validated in an in vitro experiment demonstrating navigation and assessment at two targets.
Darekar, Anuja; Lamontagne, Anouk; Fung, Joyce
2015-04-01
Circumvention around an obstacle entails a dynamic interaction with the obstacle to maintain a safe clearance. We used a novel mathematical interpolation method based on the modified Shepard's method of Inverse Distance Weighting to compute dynamic clearance that reflected this interaction as well as minimal clearance. This proof-of-principle study included seven young healthy, four post-stroke and four healthy age-matched individuals. A virtual environment designed to assess obstacle circumvention was used to administer a locomotor (walking) and a perceptuo-motor (navigation with a joystick) task. In both tasks, participants were asked to navigate towards a target while avoiding collision with a moving obstacle that approached from either head-on, or 30° left or right. Among young individuals, dynamic clearance did not differ significantly between obstacle approach directions in both tasks. Post-stroke individuals maintained larger and smaller dynamic clearance during the locomotor and the perceptuo-motor task respectively as compared to age-matched controls. Dynamic clearance was larger than minimal distance from the obstacle irrespective of the group, task and obstacle approach direction. Also, in contrast to minimal distance, dynamic clearance can respond differently to different avoidance behaviors. Such a measure can be beneficial in contrasting obstacle avoidance behaviors in different populations with mobility problems. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Karmali, M. S.
1983-01-01
This study was devoted to an investigation of the feasibility of applying advanced image processing techniques to enhance radar image characteristics that are pertinent to the pilot's navigation and guidance task. Millimeter (95 GHz) wave radar images for the overwater (i.e., offshore oil rigs) and overland (Heliport) scenario were used as a data base. The purpose of the study was to determine the applicability of image enhancement and scene analysis algorithms to detect and improve target characteristics (i.e., manmade objects such as buildings, parking lots, cars, roads, helicopters, towers, landing pads, etc.) that would be helpful to the pilot in determining his own position/orientation with respect to the outside world and assist him in the navigation task. Results of this study show that significant improvements in the raw radar image may be obtained using two dimensional image processing algorithms. In the overwater case, it is possible to remove the ocean clutter by thresholding the image data, and furthermore to extract the target boundary as well as the tower and catwalk locations using noise cleaning (e.g., median filter) and edge detection (e.g., Sobel operator) algorithms.
Andruchow, Nadia D; Konishi, Kyoko; Shatenstein, Bryna; Bohbot, Véronique D
2017-10-01
Evidence from several cross-sectional studies indicates that an increase in omega-6 to omega-3 fatty acids (FAs) may negatively affect cognition in old age. The hippocampus is among the first neural structures affected by age and atrophy in this brain region is associated with cognitive decline. Therefore, we hypothesized that a lower omega-6:3 FA ratio would predict better hippocampus-dependent spatial memory, and a higher general cognitive status. Fifty-two healthy older adults completed a Food Frequency Questionnaire, the Montreal Cognitive Assessment test (MoCA; a test of global cognition) and virtual navigation tasks that assess navigational strategies and spatial memory. In this cross-sectional study, a lower ratio of omega-6 to omega-3 FA intake strongly predicted more accurate hippocampus-dependent spatial memory and faster learning on our virtual navigation tasks, as well as higher cognitive status overall. These results may help elucidate why certain dietary patterns with a lower omega-6:3 FA ratio, like the Mediterranean diet, are associated with reduced risk of cognitive decline. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Rocha, Tânia; Bessa, Maximino; Gonçalves, Martinho; Cabral, Luciana; Godinho, Francisco; Peres, Emanuel; Reis, Manuel C; Magalhães, Luís; Chalmers, Alan
2012-11-01
One of the most mentioned problems of web accessibility, as recognized in several different studies, is related to the difficulty regarding the perception of what is or is not clickable in a web page. In particular, a key problem is the recognition of hyperlinks by a specific group of people, namely those with intellectual disabilities. This experiment investigated a methodology based on the direct observation, video recording, interview and data obtained by an eye tracker device. Ten participants took part in this study. They were divided into two groups and asked to perform two tasks: 'Sing a song' and 'Listen to a story' in two websites. These websites were developed to include specific details. The first website presented an image navigation menu (INM), whereas the other one showed a text navigation menu (TNM). There was a general improvement regarding the participants' performance when using INMs. The referred analysis indeed shows that not only did these specific participants gain a better understanding of the demanding task, but also they showed an improved perception concerning the content of the navigation menu that included hyperlinks with images. © 2012 Blackwell Publishing Ltd.
Computer-assisted spinal osteotomy: a technical note and report of four cases.
Fujibayashi, Shunsuke; Neo, Masashi; Takemoto, Mitsuru; Ota, Masato; Nakayama, Tomitaka; Toguchida, Junya; Nakamura, Takashi
2010-08-15
A report of 4 cases of spinal osteotomy performed under the guidance of a computer-assisted navigation system and a technical note about the use of the navigation system for spinal osteotomy. To document the surgical technique and usefulness of computer-assisted surgery for spinal osteotomy. A computer-assisted navigation system provides accurate 3-dimensional (3D) real-time surgical information during the operation. Although there are many reports on the accuracy and usefulness of a navigation system for pedicle screw placement, there are few reports on the application for spinal osteotomy. We report on 4 complex cases including 3 solitary malignant spinal tumors and 1 spinal kyphotic deformity of ankylosing spondylitis, which were treated surgically using a computer-assisted spinal osteotomy. The surgical technique and postoperative clinical and radiologic results are presented. 3D spinal osteotomy under the guidance of a computer-assisted navigation system was performed successfully in 4 patients. All malignant tumors were resected en bloc, and the spinal deformity was corrected precisely according to the preoperative plan. Pathologic analysis confirmed the en bloc resection without tumor exposure in the 3 patients with a spinal tumor. The use of a computer-assisted navigation system will help ensure the safety and efficacy of a complex 3D spinal osteotomy.
NASA Technical Reports Server (NTRS)
Idris, Husni; Shen, Ni; Wing, David J.
2011-01-01
The growing demand for air travel is increasing the need for mitigating air traffic congestion and complexity problems, which are already at high levels. At the same time new surveillance, navigation, and communication technologies are enabling major transformations in the air traffic management system, including net-based information sharing and collaboration, performance-based access to airspace resources, and trajectory-based rather than clearance-based operations. The new system will feature different schemes for allocating tasks and responsibilities between the ground and airborne agents and between the human and automation, with potential capacity and cost benefits. Therefore, complexity management requires new metrics and methods that can support these new schemes. This paper presents metrics and methods for preserving trajectory flexibility that have been proposed to support a trajectory-based approach for complexity management by airborne or ground-based systems. It presents extensions to these metrics as well as to the initial research conducted to investigate the hypothesis that using these metrics to guide user and service provider actions will naturally mitigate traffic complexity. The analysis showed promising results in that: (1) Trajectory flexibility preservation mitigated traffic complexity as indicated by inducing self-organization in the traffic patterns and lowering traffic complexity indicators such as dynamic density and traffic entropy. (2)Trajectory flexibility preservation reduced the potential for secondary conflicts in separation assurance. (3) Trajectory flexibility metrics showed potential application to support user and service provider negotiations for minimizing the constraints imposed on trajectories without jeopardizing their objectives.
SLAM algorithm applied to robotics assistance for navigation in unknown environments.
Cheein, Fernando A Auat; Lopez, Natalia; Soria, Carlos M; di Sciascio, Fernando A; Pereira, Fernando Lobo; Carelli, Ricardo
2010-02-17
The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM) algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous). The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI). In this paper, a sequential Extended Kalman Filter (EKF) feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how to use the MCI. The SLAM results have shown a consistent reconstruction of the environment. The obtained map was stored inside the Muscle-Computer Interface. The integration of a highly demanding processing algorithm (SLAM) with a MCI and the communication between both in real time have shown to be consistent and successful. The metric map generated by the mobile robot would allow possible future autonomous navigation without direct control of the user, whose function could be relegated to choose robot destinations. Also, the mobile robot shares the same kinematic model of a motorized wheelchair. This advantage can be exploited for wheelchair autonomous navigation.
Sharma, Greeshma; Gramann, Klaus; Chandra, Sushil; Singh, Vijander; Mittal, Alok Prakash
2017-09-01
Emerging evidence suggests that the variations in the ability to navigate through any real or virtual environment are accompanied by distinct underlying cortical activations in multiple regions of the brain. These activations may appear due to the use of different frame of reference (FOR) for representing an environment. The present study investigated the brain dynamics in the good and bad navigators using Graph Theoretical analysis applied to low-density electroencephalography (EEG) data. Individual navigation skills were rated according to the performance in a virtual reality (VR)-based navigation task and the effect of navigator's proclivity towards a particular FOR on the navigation performance was explored. Participants were introduced to a novel virtual environment that they learned from a first-person or an aerial perspective and were subsequently assessed on the basis of efficiency with which they learnt and recalled. The graph theoretical parameters, path length (PL), global efficiency (GE), and clustering coefficient (CC) were computed for the functional connectivity network in the theta and alpha frequency bands. During acquisition of the spatial information, good navigators were distinguished by a lower degree of dispersion in the functional connectivity compared to the bad navigators. Within the groups of good and bad navigators, better performers were characterised by the formation of multiple hubs at various sites and the percentage of connectivity or small world index. The proclivity towards a specific FOR during exploration of a new environment was not found to have any bearing on the spatial learning. These findings may have wider implications for how the functional connectivity in the good and bad navigators differs during spatial information acquisition and retrieval in the domains of rescue operations and defence systems.
McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan
2016-01-01
Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the "wild". We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain's Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design.
McKendrick, Ryan; Parasuraman, Raja; Murtza, Rabia; Formwalt, Alice; Baccus, Wendy; Paczynski, Martin; Ayaz, Hasan
2016-01-01
Highly mobile computing devices promise to improve quality of life, productivity, and performance. Increased situation awareness and reduced mental workload are two potential means by which this can be accomplished. However, it is difficult to measure these concepts in the “wild”. We employed ultra-portable battery operated and wireless functional near infrared spectroscopy (fNIRS) to non-invasively measure hemodynamic changes in the brain’s Prefrontal cortex (PFC). Measurements were taken during navigation of a college campus with either a hand-held display, or an Augmented reality wearable display (ARWD). Hemodynamic measures were also paired with secondary tasks of visual perception and auditory working memory to provide behavioral assessment of situation awareness and mental workload. Navigating with an augmented reality wearable display produced the least workload during the auditory working memory task, and a trend for improved situation awareness in our measures of prefrontal hemodynamics. The hemodynamics associated with errors were also different between the two devices. Errors with an augmented reality wearable display were associated with increased prefrontal activity and the opposite was observed for the hand-held display. This suggests that the cognitive mechanisms underlying errors between the two devices differ. These findings show fNIRS is a valuable tool for assessing new technology in ecologically valid settings and that ARWDs offer benefits with regards to mental workload while navigating, and potentially superior situation awareness with improved display design. PMID:27242480
Choice numeracy and physicians-in-training performance: the case of Medicare Part D
Hanoch, Yaniv; Miron-Shatz, Talya; Cole, Helen; Himmelstein, Mary; Federman, Alex D.
2017-01-01
In choosing a prescription plan, Medicare beneficiaries in the US usually face over 50 options. Many have turned to their physicians for help with this complex task. However, exactly how well do physicians navigate information on Part D plans is still an open question. In this study, we explored this unanswered question by examining the effect of choice-set size and numeracy levels on a physician-in-training’s ability to choose appropriate Medicare drug plans. Consistent with our hypotheses, increases in choice sets correlated significantly with fewer correct answers, and higher numeracy levels were associated with more correct answers. Hence, our data further highlight the role of numeracy in financial- and health-related decision making, and also raise concerns about physicians’ ability to help patients choose the optimal Part D plan. PMID:20658834
NASA Technical Reports Server (NTRS)
Beyer, J.; Jacobus, C.; Mitchell, B.
1987-01-01
Range imagery from a laser scanner can be used to provide sufficient information for docking and obstacle avoidance procedures to be performed automatically. Three dimensional model-based computer vision algorithms in development can perform these tasks even with targets which may not be cooperative (that is, objects without special targets or markers to provide unambiguous location points). Roll, pitch and yaw of the vehicle can be taken into account as image scanning takes place, so that these can be corrected when the image is converted from egocentric to world coordinates. Other attributes of the sensor, such as the registered reflectence and texture channels, provide additional data sources for algorithm robustness. Temporal fusion of sensor immages can take place in the work coordinate domain, allowing for the building of complex maps in three dimensional space.
Simulating visibility under reduced acuity and contrast sensitivity.
Thompson, William B; Legge, Gordon E; Kersten, Daniel J; Shakespeare, Robert A; Lei, Quan
2017-04-01
Architects and lighting designers have difficulty designing spaces that are accessible to those with low vision, since the complex nature of most architectural spaces requires a site-specific analysis of the visibility of mobility hazards and key landmarks needed for navigation. We describe a method that can be utilized in the architectural design process for simulating the effects of reduced acuity and contrast on visibility. The key contribution is the development of a way to parameterize the simulation using standard clinical measures of acuity and contrast sensitivity. While these measures are known to be imperfect predictors of visual function, they provide a way of characterizing general levels of visual performance that is familiar to both those working in low vision and our target end-users in the architectural and lighting-design communities. We validate the simulation using a letter-recognition task.
Simulating Visibility Under Reduced Acuity and Contrast Sensitivity
Thompson, William B.; Legge, Gordon E.; Kersten, Daniel J.; Shakespeare, Robert A.; Lei, Quan
2017-01-01
Architects and lighting designers have difficulty designing spaces that are accessible to those with low vision, since the complex nature of most architectural spaces requires a site-specific analysis of the visibility of mobility hazards and key landmarks needed for navigation. We describe a method that can be utilized in the architectural design process for simulating the effects of reduced acuity and contrast on visibility. The key contribution is the development of a way to parameterize the simulation using standard clinical measures of acuity and contrast sensitivity. While these measures are known to be imperfect predictors of visual function, they provide a way of characterizing general levels of visual performance that is familiar to both those working in low vision and our target end-users in the architectural and lighting design communities. We validate the simulation using a letter recognition task. PMID:28375328
D Topological Indoor Building Modeling Integrated with Open Street Map
NASA Astrophysics Data System (ADS)
Jamali, A.; Rahman, A. Abdul; Boguslawski, P.
2016-09-01
Considering various fields of applications for building surveying and various demands, geometry representation of a building is the most crucial aspect of a building survey. The interiors of the buildings need to be described along with the relative locations of the rooms, corridors, doors and exits in many kinds of emergency response, such as fire, bombs, smoke, and pollution. Topological representation is a challenging task within the Geography Information Science (GIS) environment, as the data structures required to express these relationships are particularly difficult to develop. Even within the Computer Aided Design (CAD) community, the structures for expressing the relationships between adjacent building parts are complex and often incomplete. In this paper, an integration of 3D topological indoor building modeling in Dual Half Edge (DHE) data structure and outdoor navigation network from Open Street Map (OSM) is presented.
Autonomous exploration and mapping of unknown environments
NASA Astrophysics Data System (ADS)
Owens, Jason; Osteen, Phil; Fields, MaryAnne
2012-06-01
Autonomous exploration and mapping is a vital capability for future robotic systems expected to function in arbitrary complex environments. In this paper, we describe an end-to-end robotic solution for remotely mapping buildings. For a typical mapping system, an unmanned system is directed to enter an unknown building at a distance, sense the internal structure, and, barring additional tasks, while in situ, create a 2-D map of the building. This map provides a useful and intuitive representation of the environment for the remote operator. We have integrated a robust mapping and exploration system utilizing laser range scanners and RGB-D cameras, and we demonstrate an exploration and metacognition algorithm on a robotic platform. The algorithm allows the robot to safely navigate the building, explore the interior, report significant features to the operator, and generate a consistent map - all while maintaining localization.
AstroNavigation: Freely-available Online Instruction for Performing a Sight Reduction
NASA Astrophysics Data System (ADS)
Gessner Stewart, Susan; Grundstrom, Erika; Caudel, Dave
2015-08-01
A reliable method of obtaining your geographic location from observations of celestial bodies is globally available. This online learning module, developed through a collaboration between Vanderbilt University and the U.S. Naval Observatory, serves to address the need for freely-available comprehensive instruction in celestial navigation online. Specifically targeted are the steps of preforming a sight reduction to obtain a terrestrial position using this technique. Difficult concepts such as plotting on a navigational chart and the complexities of using navigation publications are facilitated through this online content delivery, rooted in effective course design principles. There is good potential in using celestial navigation as a tool for stimulating interest in astronomy given its resourcefulness and accessibility.
Evaluating a de-cluttering technique for NextGen RNAV and RNP charts
DOT National Transportation Integrated Search
2012-10-14
The authors propose a de-cluttering technique to simplify the depiction of visually complex Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures by reducing the number of paths shown on a single chart page. An experiment was co...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
... functions. List of Subjects in 32 CFR Part 706 Marine safety, Navigation (water), and Vessels. Accordingly... out of alignment alignment with the the upper and middle upper and middle task task light in meters light in meters by: by: USV 11MUCO601 0.85 11MUCO602 0.85 11MUCO603 0.85 11MUCO604 0.85 USS FORT WORTH...
Magnifying Smartphone Screen Using Google Glass for Low-Vision Users.
Pundlik, Shrinivas; HuaQi Yi; Rui Liu; Peli, Eli; Gang Luo
2017-01-01
Magnification is a key accessibility feature used by low-vision smartphone users. However, small screen size can lead to loss of context and make interaction with magnified displays challenging. We hypothesize that controlling the viewport with head motion can be natural and help in gaining access to magnified displays. We implement this idea using a Google Glass that displays the magnified smartphone screenshots received in real time via Bluetooth. Instead of navigating with touch gestures on the magnified smartphone display, the users can view different screen locations by rotating their head, and remotely interacting with the smartphone. It is equivalent to looking at a large virtual image through a head contingent viewing port, in this case, the Glass display with ~ 15 ° field of view. The system can transfer seven screenshots per second at 8 × magnification, sufficient for tasks where the display content does not change rapidly. A pilot evaluation of this approach was conducted with eight normally sighted and four visually impaired subjects performing assigned tasks using calculator and music player apps. Results showed that performance in the calculation task was faster with the Glass than with the phone's built-in screen zoom. We conclude that head contingent scanning control can be beneficial in navigating magnified small smartphone displays, at least for tasks involving familiar content layout.
Hou, Bowen; He, Zhangming; Li, Dong; Zhou, Haiyin; Wang, Jiongqi
2018-05-27
Strap-down inertial navigation system/celestial navigation system ( SINS/CNS) integrated navigation is a high precision navigation technique for ballistic missiles. The traditional navigation method has a divergence in the position error. A deeply integrated mode for SINS/CNS navigation system is proposed to improve the navigation accuracy of ballistic missile. The deeply integrated navigation principle is described and the observability of the navigation system is analyzed. The nonlinearity, as well as the large outliers and the Gaussian mixture noises, often exists during the actual navigation process, leading to the divergence phenomenon of the navigation filter. The new nonlinear Kalman filter on the basis of the maximum correntropy theory and unscented transformation, named the maximum correntropy unscented Kalman filter, is deduced, and the computational complexity is analyzed. The unscented transformation is used for restricting the nonlinearity of the system equation, and the maximum correntropy theory is used to deal with the non-Gaussian noises. Finally, numerical simulation illustrates the superiority of the proposed filter compared with the traditional unscented Kalman filter. The comparison results show that the large outliers and the influence of non-Gaussian noises for SINS/CNS deeply integrated navigation is significantly reduced through the proposed filter.
Martelli, S; Zaffagnini, S; Bignozzi, S; Lopomo, N F; Iacono, F; Marcacci, M
2007-10-01
In this paper a new navigation system, KIN-Nav, developed for research and used during 80 anterior cruciate ligament (ACL) reconstructions is described. KIN-Nav is a user-friendly navigation system for flexible intraoperative acquisitions of anatomical and kinematic data, suitable for validation of biomechanical hypotheses. It performs real-time quantitative evaluation of antero-posterior, internal-external, and varus-valgus knee laxity at any degree of flexion and provides a new interface for this task, suitable also for comparison of pre-operative and post-operative knee laxity and surgical documentation. In this paper the concept and features of KIN-Nav, which represents a new approach to navigation and allows the investigation of new quantitative measurements in ACL reconstruction, are described. Two clinical studies are reported, as examples of clinical potentiality and correct use of this methodology. In this paper a preliminary analysis of KIN-Nav's reliability and clinical efficacy, performed during blinded repeated measures by three independent examiners, is also given. This analysis is the first assessment of the potential of navigation systems for evaluating knee kinematics.
The attribution of success when using navigation aids.
Brown, Michael; Houghton, Robert; Sharples, Sarah; Morley, Jeremy
2015-01-01
Attitudes towards geographic information technology is a seldom explored research area that can be explained with reference to established theories of attribution. This article reports on a study of how the attribution of success and failure in pedestrian navigation varies with level of automation, degree of success and locus of control. A total of 113 participants took part in a survey exploring reflections on personal experiences and vignettes describing fictional navigation experiences. A complex relationship was discovered in which success tends to be attributed to skill and failure to the navigation aid when participants describe their own experiences. A reversed pattern of results was found when discussing the navigation of others. It was also found that navigation success and failure are associated with personal skill to a greater extent when using paper maps, as compared with web-based routing engines or satellite navigation systems. This article explores the influences on the attribution of success and failure when using navigation aids. A survey was performed exploring interpretations of navigation experiences. Level of success, self or other as navigator and type of navigation aid used are all found to influence the attribution of outcomes to internal or external factors.
The attribution of success when using navigation aids
Brown, Michael; Houghton, Robert; Sharples, Sarah; Morley, Jeremy
2015-01-01
Attitudes towards geographic information technology is a seldom explored research area that can be explained with reference to established theories of attribution. This article reports on a study of how the attribution of success and failure in pedestrian navigation varies with level of automation, degree of success and locus of control. A total of 113 participants took part in a survey exploring reflections on personal experiences and vignettes describing fictional navigation experiences. A complex relationship was discovered in which success tends to be attributed to skill and failure to the navigation aid when participants describe their own experiences. A reversed pattern of results was found when discussing the navigation of others. It was also found that navigation success and failure are associated with personal skill to a greater extent when using paper maps, as compared with web-based routing engines or satellite navigation systems. Practitioner Summary: This article explores the influences on the attribution of success and failure when using navigation aids. A survey was performed exploring interpretations of navigation experiences. Level of success, self or other as navigator and type of navigation aid used are all found to influence the attribution of outcomes to internal or external factors. PMID:25384842
Human factors assessment of SC-214 message set
DOT National Transportation Integrated Search
2010-08-18
This is a presentation that was given at the Communication Navigation and Surveillance (CNS) Task Force Meeting. It discusses a review of current literature, analysis of Pilot Deviations and ASRS reports involving data link communications, and discus...
Space shuttle onboard navigation console expert/trainer system
NASA Technical Reports Server (NTRS)
Wang, Lui; Bochsler, Dan
1987-01-01
A software system for use in enhancing operational performance as well as training ground controllers in monitoring onboard Space Shuttle navigation sensors is described. The Onboard Navigation (ONAV) development reflects a trend toward following a structured and methodical approach to development. The ONAV system must deal with integrated conventional and expert system software, complex interfaces, and implementation limitations due to the target operational environment. An overview of the onboard navigation sensor monitoring function is presented, along with a description of guidelines driving the development effort, requirements that the system must meet, current progress, and future efforts.
Sneider, Jennifer Tropp; Sava, Simona; Rogowska, Jadwiga; Yurgelun-Todd, Deborah A
2011-10-01
The hippocampus plays a significant role in spatial memory processing, with sex differences being prominent on various spatial tasks. This study examined sex differences in healthy adults, using functional magnetic resonance imaging (fMRI) in areas implicated in spatial processing during navigation of a virtual analogue of the Morris water-maze. There were three conditions: learning, hidden, and visible control. There were no significant differences in performance measures. However, sex differences were found in regional brain activation during learning in the right hippocampus, right parahippocampal gyrus, and the cingulate cortex. During the hidden condition, the hippocampus, parahippocampal gyrus, and cingulate cortex were activated in both men and women. Additional brain areas involved in spatial processing may be recruited in women when learning information about the environment, by utilizing external cues (landmarks) more than do men, contributing to the observed sex differences in brain activation.
Flight Crew Task Management in Non-Normal Situations
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Trujillo, Anna C.
1996-01-01
Task management (TM) is always performed on the flight deck, although not always explicitly, consistently, or rigorously. Nowhere is TM as important as it is in dealing with non-normal situations. The objective of this study was to analyze pilot TM behavior for non-normal situations. Specifically, the study observed pilots performance in a full workload environment in order to discern their TM strategies. This study identified four different TM prioritization and allocation strategies: Aviate-Navigate-Communicate-Manage Systems; Perceived Severity; Procedure Based; and Event/Interrupt Driven. Subjects used these strategies to manage their personal workload and to schedule monitoring and assessment of the situation. The Perceived Severity strategy for personal workload management combined with the Aviate-Navigate-Communicate-Manage Systems strategy for monitoring and assessing appeared to be the most effective (fewest errors and fastest response times) in responding to the novel system failure used in this study.
Laterality, spatial abilities, and accident proneness.
Voyer, Susan D; Voyer, Daniel
2015-01-01
Although handedness as a measure of cerebral specialization has been linked to accident proneness, more direct measures of laterality are rarely considered. The present study aimed to fill that gap in the existing research. In addition, individual difference factors in accident proneness were further examined with the inclusion of mental rotation and navigation abilities measures. One hundred and forty participants were asked to complete the Mental Rotations Test, the Santa Barbara Sense of Direction scale, the Greyscales task, the Fused Dichotic Word Test, the Waterloo Handedness Questionnaire, and a grip strength task before answering questions related to number of accidents in five areas. Results indicated that handedness scores, absolute visual laterality score, absolute response time on the auditory laterality index, and navigation ability were significant predictors of the total number of accidents. Results are discussed with respect to cerebral hemispheric specialization and risk-taking attitudes and behavior.
Modeling the customer in electronic commerce.
Helander, M G; Khalid, H M
2000-12-01
This paper reviews interface design of web pages for e-commerce. Different tasks in e-commerce are contrasted. A systems model is used to illustrate the information flow between three subsystems in e-commerce: store environment, customer, and web technology. A customer makes several decisions: to enter the store, to navigate, to purchase, to pay, and to keep the merchandize. This artificial environment must be designed so that it can support customer decision-making. To retain customers it must be pleasing and fun, and create a task with natural flow. Customers have different needs, competence and motivation, which affect decision-making. It may therefore be important to customize the design of the e-store environment. Future ergonomics research will have to investigate perceptual aspects, such as presentation of merchandize, and cognitive issues, such as product search and navigation, as well as decision making while considering various economic parameters. Five theories on e-commerce research are presented.
ERIC Educational Resources Information Center
Kim, YouJin; Taguchi, Naoko
2016-01-01
Previous task complexity studies have suggested that learners produce more negotiation of meaning opportunities during complex tasks than simple tasks (Robinson, 2011). The present study builds on the existing task complexity literature by examining the impact of task complexity and pragmatic situational demands on the number of learning…
Navigating Difficulty in Classroom-Community Outreach Projects
ERIC Educational Resources Information Center
Rosenberg, Lauren
2017-01-01
Sustainability in community engagement projects depends on careful attention to the ways we navigate complex, often challenging relationships with our partners, our students, agencies, and the institutions in which we occupy multiple, sometimes competing roles. This article considers the difficulty inherent in developing and maintaining…
Literacy Coaching for Transformative Pedagogies: Navigating Intellectual Unrest
ERIC Educational Resources Information Center
Dozier, Cheryl L.
2014-01-01
Dozier illuminates the notion of intellectual unrest and the complexities of mandated professional development for teachers. She challenges readers to reconsider how mandated professional development is crafted and invites literacy coaches to become collaborative critical designers of practices with teachers to help them navigate competing…
Patient Registration Using Photogrammetric Surface Reconstruction from Smartphone Imagery
NASA Astrophysics Data System (ADS)
Hellwich, O.; Rose, A.; Bien, T.; Malolepszy, C.; Mucha, D.; Krüger, T.
2016-06-01
In navigated surgery the patient's body has to be co-registered with presurgically acquired 3D data in order to enable navigation of the surgical instrument. For this purpose the body surface of the patient can be acquired by means of photogrammetry and co-registered to corresponding surfaces in the presurgical data. In this paper this task is exemplarily solved for 3D data of human heads using the face surface to establish correspondence. We focus on investigation of achieved geometric accuracies reporting positioning errors in the range of 1 mm.
Boly, M; Coleman, M R; Davis, M H; Hampshire, A; Bor, D; Moonen, G; Maquet, P A; Pickard, J D; Laureys, S; Owen, A M
2007-07-01
The assessment of voluntary behavior in non-communicative brain injured patients is often challenging due to the existence of profound motor impairment. In the absence of a full understanding of the neural correlates of consciousness, even a normal activation in response to passive sensory stimulation cannot be considered as proof of the presence of awareness in these patients. In contrast, predicted activation in response to the instruction to perform a mental imagery task would provide evidence of voluntary task-dependent brain activity, and hence of consciousness, in non-communicative patients. However, no data yet exist to indicate which imagery instructions would yield reliable single subject activation. The aim of the present study was to establish such a paradigm in healthy volunteers. Two exploratory experiments evaluated the reproducibility of individual brain activation elicited by four distinct mental imagery tasks. The two most robust mental imagery tasks were found to be spatial navigation and motor imagery. In a third experiment, where these two tasks were directly compared, differentiation of each task from one another and from rest periods was assessed blindly using a priori criteria and was correct for every volunteer. The spatial navigation and motor imagery tasks described here permit the identification of volitional brain activation at the single subject level, without a motor response. Volunteer as well as patient data [Owen, A.M., Coleman, M.R., Boly, M., Davis, M.H., Laureys, S., Pickard J.D., 2006. Detecting awareness in the vegetative state. Science 313, 1402] strongly suggest that this paradigm may provide a method for assessing the presence of volitional brain activity, and thus of consciousness, in non-communicative brain-injured patients.
Vorhees, Charles V.; Williams, Michael T.
2016-01-01
Advantageous maneuvering through the environment to find food and avoid or escape danger is central to survival of most animal species. The ability to do so depends on learning and remembering different locations, especially home-base. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues (proximal cues), for egocentric navigation. Whereas allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures, egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and when over-learned, becomes procedural memory. Allocentric assessment methods have been extensively reviewed elsewhere. The purpose of this paper is to review one specific method for assessing egocentric, route-based navigation in rats: the Cincinnati Water Maze (CWM). The test is an asymmetric multiple-T maze arranged in such a way that rats must learn to find path openings along walls rather at ends in order to reach the goal. Failing to do this leads to cul-de-sacs and repeated errors. The task may be learned in the light or dark, but in the dark, wherein distal cues are eliminated, provides the best assessment of egocentric navigation. When used in conjunction with tests of other types of learning, such as allocentric navigation, the CWM provides a balanced approach to assessing the two major forms of navigational learning and memory found in mammals. PMID:27545092
Casap, Nardy; Nadel, Sahar; Tarazi, Eyal; Weiss, Ervin I
2011-10-01
This study evaluated the benefits of a virtual reality navigation system for teaching the surgical stage of dental implantation to final-year dental students. The study aimed to assess the students' performance in dental implantation assignments by comparing freehand protocols with virtual reality navigation. Forty final-year dentistry students without previous experience in dental implantation surgery were given an implantation assignment comprising 3 tasks. Marking, drilling, and widening of implant holes were executed by a freehand protocol on the 2 mandibular sides by 1 group and by virtual reality navigation on 1 side and contralaterally with the freehand protocol by the other group. Subjective and objective assessments of the students' performance were graded. Marking with the navigation system was more accurate than with the standard protocol. The 2 groups performed similarly in the 2-mm drilling on the 2 mandibular sides. Widening of the 2 mesial holes to 3 mm was significantly better with the second execution in the standard protocol group, but not in the navigation group. The navigation group's second-site freehand drilling of the molar was significantly worse than the first. The execution of all assignments was significantly faster in the freehand group than in the navigation group (60.75 vs 77.25 minutes, P = .02). Self-assessment only partly matched the objective measurements and was more realistic in the standard protocol group. Despite the improved performance with the navigation system, the added value of training in dental implantation surgery with virtual reality navigation was minimal. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Circadian time-place (or time-route) learning in rats with hippocampal lesions.
Cole, Emily; Mistlberger, Ralph E; Merza, Devon; Trigiani, Lianne J; Madularu, Dan; Simundic, Amanda; Mumby, Dave G
2016-12-01
Circadian time-place learning (TPL) is the ability to remember both the place and biological time of day that a significant event occurred (e.g., food availability). This ability requires that a circadian clock provide phase information (a time tag) to cognitive systems involved in linking representations of an event with spatial reference memory. To date, it is unclear which neuronal substrates are critical in this process, but one candidate structure is the hippocampus (HPC). The HPC is essential for normal performance on tasks that require allocentric spatial memory and exhibits circadian rhythms of gene expression that are sensitive to meal timing. Using a novel TPL training procedure and enriched, multidimensional environment, we trained rats to locate a food reward that varied between two locations relative to time of day. After rats acquired the task, they received either HPC or SHAM lesions and were re-tested. Rats with HPC lesions were initially impaired on the task relative to SHAM rats, but re-attained high scores with continued testing. Probe tests revealed that the rats were not using an alternation strategy or relying on light-dark transitions to locate the food reward. We hypothesize that transient disruption and recovery reflect a switch from HPC-dependent allocentric navigation (learning places) to dorsal striatum-dependent egocentric spatial navigation (learning routes to a location). Whatever the navigation strategy, these results demonstrate that the HPC is not required for rats to find food in different locations using circadian phase as a discriminative cue. Copyright © 2016 Elsevier Inc. All rights reserved.
Dissociation of spatial memory systems in Williams syndrome.
Bostelmann, Mathilde; Fragnière, Emilie; Costanzo, Floriana; Di Vara, Silvia; Menghini, Deny; Vicari, Stefano; Lavenex, Pierre; Lavenex, Pamela Banta
2017-11-01
Williams syndrome (WS), a genetic deletion syndrome, is characterized by severe visuospatial deficits affecting performance on both tabletop spatial tasks and on tasks which assess orientation and navigation. Nevertheless, previous studies of WS spatial capacities have ignored the fact that two different spatial memory systems are believed to contribute parallel spatial representations supporting navigation. The place learning system depends on the hippocampal formation and creates flexible relational representations of the environment, also known as cognitive maps. The spatial response learning system depends on the striatum and creates fixed stimulus-response representations, also known as habits. Indeed, no study assessing WS spatial competence has used tasks which selectively target these two spatial memory systems. Here, we report that individuals with WS exhibit a dissociation in their spatial abilities subserved by these two memory systems. As compared to typically developing (TD) children in the same mental age range, place learning performance was impaired in individuals with WS. In contrast, their spatial response learning performance was facilitated. Our findings in individuals with WS and TD children suggest that place learning and response learning interact competitively to control the behavioral strategies normally used to support human spatial navigation. Our findings further suggest that the neural pathways supporting place learning may be affected by the genetic deletion that characterizes WS, whereas those supporting response learning may be relatively preserved. The dissociation observed between these two spatial memory systems provides a coherent theoretical framework to characterize the spatial abilities of individuals with WS, and may lead to the development of new learning strategies based on their facilitated response learning abilities. © 2017 Wiley Periodicals, Inc.
Thoresen, John C; Francelet, Rebecca; Coltekin, Arzu; Richter, Kai-Florian; Fabrikant, Sara I; Sandi, Carmen
2016-07-01
Navigation through an environment is a fundamental human activity. Although group differences in navigational ability are documented (e.g., gender), little is known about traits that predict these abilities. Apart from a well-established link between mental rotational abilities and navigational learning abilities, recent studies point to an influence of trait anxiety on the formation of internal cognitive spatial representations. However, it is unknown whether trait anxiety affects the processing of information obtained through externalized representations such as maps. Here, we addressed this question by taking into account emerging evidence indicating impaired performance in executive tasks by high trait anxiety specifically in individuals with lower executive capacities. For this purpose, we tested 104 male participants, previously characterised on trait anxiety and mental rotation ability, on a newly-designed map-based route learning task, where participants matched routes presented dynamically on a city map to one presented immediately before (same/different judgments). We predicted an interaction between trait anxiety and mental rotation ability, specifically that performance in the route learning task would be negatively affected by anxiety in participants with low mental rotation ability. Importantly, and as predicted, an interaction between anxiety and mental rotation ability was observed: trait anxiety negatively affected participants with low-but not high-mental rotation ability. Our study reveals a detrimental role of trait anxiety in map-based route learning and specifies a disadvantage in the processing of map representations for high-anxious individuals with low mental rotation abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Mission control of multiple unmanned aerial vehicles: a workload analysis.
Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon
2005-01-01
With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.
Task allocation model for minimization of completion time in distributed computer systems
NASA Astrophysics Data System (ADS)
Wang, Jai-Ping; Steidley, Carl W.
1993-08-01
A task in a distributed computing system consists of a set of related modules. Each of the modules will execute on one of the processors of the system and communicate with some other modules. In addition, precedence relationships may exist among the modules. Task allocation is an essential activity in distributed-software design. This activity is of importance to all phases of the development of a distributed system. This paper establishes task completion-time models and task allocation models for minimizing task completion time. Current work in this area is either at the experimental level or without the consideration of precedence relationships among modules. The development of mathematical models for the computation of task completion time and task allocation will benefit many real-time computer applications such as radar systems, navigation systems, industrial process control systems, image processing systems, and artificial intelligence oriented systems.
Optimal Navigation of Self-Propelled Colloids in Microstructured Mazes
NASA Astrophysics Data System (ADS)
Yang, Yuguang; Bevan, Michael
Controlling navigation of self-propelled microscopic `robots' subject to random Brownian motion in complex microstructured environments (e.g., porous media, tumor vasculature) is important to many emerging applications (e.g., enhanced oil recovery, drug delivery). In this work, we design an optimal feedback policy to navigate an active self-propelled colloidal rod in complex mazes with various obstacle types. Actuation of the rods is modelled based on a light-controlled osmotic flow mechanism, which produces different propulsion velocities along the rod's long axis. Actuator-parameterized Langevin equations, with soft rod-obstacle repulsive interactions, are developed to describe the system dynamics. A Markov decision process (MDP) framework is used for optimal policy calculations with design goals of colloidal rods reaching target end points in minimum time. Simulations show that optimal MDP-based policies are able to control rod trajectories to reach target regions order-of-magnitudes faster than uncontrolled rods, which diverges as maze complexity increases. An efficient multi-graph based implementation for MDP is also presented, which scales linearly with the maze dimension.
Lost in transportation: Information measures and cognitive limits in multilayer navigation.
Gallotti, Riccardo; Porter, Mason A; Barthelemy, Marc
2016-02-01
Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world's 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the "Dunbar number," which represents a limit to the size of an individual's friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially.
NASA Astrophysics Data System (ADS)
Štefanička, Tomáš; Ďuračiová, Renata; Seres, Csaba
2017-12-01
As a complex of buildings, the Faculty of Natural Sciences of the Comenius University in Bratislava tends to be difficult to navigate in spite of its size. An indoor navigation application could potentially save a lot of time and frustration. There are currently numerous technologies used in indoor navigation systems. Some of them focus on a high degree of precision and require significant financial investment; others provide only static information about a current location. In this paper we focused on the determination of an approximate location using inertial measurement systems available on most smartphones, i.e., a gyroscope and an accelerometer. The actual position of the device was calculated using "a walk detection method" based on a delayed lack of motion. We have developed an indoor navigation application that relies solely on open source JavaScript libraries to visualize the interior of the building and calculate the shortest path utilizing Dijsktra's routing algorithm. The application logic is located on the client side, so the software is able to work offline. Our solution represents an accessible lowcost and platform-independent web application that can significantly improve navigation at the Faculty of Natural Sciences. Although our application has been developed on a specific building complex, it could be used in other interiors as well.
Lost in transportation: Information measures and cognitive limits in multilayer navigation
Gallotti, Riccardo; Porter, Mason A.; Barthelemy, Marc
2016-01-01
Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world’s 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the “Dunbar number,” which represents a limit to the size of an individual’s friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially. PMID:26989769
CURV 3: Characteristics and mission applications
NASA Astrophysics Data System (ADS)
Perkins, W. W.; Brady, L. K.
1984-03-01
The Cable-Controlled Underwater Recovery Vehicle (CURV) program was begun by NOSC for the specific purpose of developing economical systems to recover test ordnance at NOSC's Long Beach and San Clemente Island test ranges. CURV 3 is the latest in this series of tethered, unmanned, remotely controlled vehicles and its present capabilities far exceed the original CURV 1. Originally conceived for use as a search and recovery vehicle, CURV has evolved into a versatile and easily adaptable multipurpose work vehicle capable of performing search and recovery tasks as well as pursuing test, evaluation, exploration, and work projects. Basically, CURV is a composite of integrated subsystems including such items as propulsion, search and navigation, optics, hydraulics, and tools. Because it is unmanned and does not require life support or other complex support systems, CURV is able to perform most undersea tasks more economically and efficiently than maned systems. Also, since it is powered and controlled from the surface, CURV has a continuous, unlimited operating capability. Under emergency conditions, the vehicle can operate to 10,000-foot depths. CURV can be easily transported to any spot in the world. Upon arrival of the vehicle, control van, cable, and support gear can be mounted on a suitable ship of opportunity.
Heutagogic approach to developing capable learners.
Abraham, Reem Rachel; Komattil, Ramnarayan
2017-03-01
The twenty-first century higher education sector has come a long way after undergoing continuous metamorphosis from pedagogy to andragogy. Most of the educational approaches adopted in medical schools are directed towards developing more of competencies and less of capability, which is the ability to use competencies in novel contexts. Competencies alone are not sufficient to thrive in the present day work place as medical profession subsumes complex contexts; it is in this scenario that, medical educators are entrusted with the challenging task of developing "capable learners". In the heutagogical approach, learners are required to decide upon what to learn and how to learn and therefore the control of the learning process is on the learner and the role of the teacher becomes that of a navigator. This paper highlights the current higher educational practices based on heutagogy, considers its application in the context of Problem-based learning and also discusses a few challenges in incorporating this approach in the existing undergraduate medical curriculum. The article proposes the use of social media in order to support learner autonomy, which in turn improves learners' cognitive engagement with content and tasks, thereby assisting the development of attributes associated with capability.
NASA Astrophysics Data System (ADS)
Howerton, William
This thesis presents a method for the integration of complex network control algorithms with localized agent specific algorithms for maneuvering and obstacle avoidance. This method allows for successful implementation of group and agent specific behaviors. It has proven to be robust and will work for a variety of vehicle platforms. Initially, a review and implementation of two specific algorithms will be detailed. The first, a modified Kuramoto model was developed by Xu [1] which utilizes tools from graph theory to efficiently perform the task of distributing agents. The second algorithm developed by Kim [2] is an effective method for wheeled robots to avoid local obstacles using a limit-cycle navigation method. The results of implementing these methods on a test-bed of wheeled robots will be presented. Control issues related to outside disturbances not anticipated in the original theory are then discussed. A novel method of using simulated agents to separate the task of distributing agents from agent specific velocity and heading commands has been developed and implemented to address these issues. This new method can be used to combine various behaviors and is not limited to a specific control algorithm.
Orientation and metacognition in virtual space.
Tenbrink, Thora; Salwiczek, Lucie H
2016-05-01
Cognitive scientists increasingly use virtual reality scenarios to address spatial perception, orientation, and navigation. If based on desktops rather than mobile immersive environments, this involves a discrepancy between the physically experienced static position and the visually perceived dynamic scene, leading to cognitive challenges that users of virtual worlds may or may not be aware of. The frequently reported loss of orientation and worse performance in point-to-origin tasks relate to the difficulty of establishing a consistent reference system on an allocentric or egocentric basis. We address the verbalizability of spatial concepts relevant in this regard, along with the conscious strategies reported by participants. Behavioral and verbal data were collected using a perceptually sparse virtual tunnel scenario that has frequently been used to differentiate between humans' preferred reference systems. Surprisingly, the linguistic data we collected relate to reference system verbalizations known from the earlier literature only to a limited extent, but instead reveal complex cognitive mechanisms and strategies. Orientation in desktop virtual reality appears to pose considerable challenges, which participants react to by conceptualizing the task in individual ways that do not systematically relate to the generic concepts of egocentric and allocentric reference frames. (c) 2016 APA, all rights reserved).
The Effect of Physical Load and Environment on Soldier Performance
2014-02-01
when walking over obstacles compared with standing still with and without a load. Knapik et al. (1990) found significant decrements in military...load carriage (34–61 kg carried 20 km) led to decrements in subsequent physical performance but not in cognitive ability. Crowell et al. (1999) found...with a simultaneous visual navigation task was thought to be advantageous; Wickens’s (1984) multiple resource theory stated that different tasks can
Barry, Robert L.; Williams, Joy M.; Klassen, L. Martyn; Gallivan, Jason P.; Culham, Jody C.
2009-01-01
Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is currently the dominant technique for non-invasive investigation of brain functions. One of the challenges with BOLD fMRI, particularly at high fields, is compensation for the effects of spatiotemporally varying magnetic field inhomogeneities (ΔB0) caused by normal subject respiration, and in some studies, movement of the subject during the scan to perform tasks related to the functional paradigm. The presence of ΔB0 during data acquisition distorts reconstructed images and introduces extraneous fluctuations in the fMRI time series that decrease the BOLD contrast-to-noise ratio. Optimization of the fMRI data-processing pipeline to compensate for geometric distortions is of paramount importance to ensure high quality of fMRI data. To investigate ΔB0 caused by subject movement, echo-planar imaging scans were collected with and without concurrent motion of a phantom arm. The phantom arm was constructed and moved by the experimenter to emulate forearm motions while subjects remained still and observed a visual stimulation paradigm. These data were then subjected to eight different combinations of preprocessing steps. The best preprocessing pipeline included navigator correction, a complex phase regressor, and spatial smoothing. The synergy between navigator correction and phase regression reduced geometric distortions better than either step in isolation, and preconditioned the data to make them more amenable to the benefits of spatial smoothing. The combination of these steps provided a 10% increase in t-statistics compared to only navigator correction and spatial smoothing, and reduced the noise and false activations in regions where no legitimate effects would occur. PMID:19695810
Is a "Complex" Task Really Complex? Validating the Assumption of Cognitive Task Complexity
ERIC Educational Resources Information Center
Sasayama, Shoko
2016-01-01
In research on task-based learning and teaching, it has traditionally been assumed that differing degrees of cognitive task complexity can be inferred through task design and/or observations of differing qualities in linguistic production elicited by second language (L2) communication tasks. Without validating this assumption, however, it is…
Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment
Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé
2015-01-01
Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments. PMID:27019593
Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment.
Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé
2015-01-01
Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments.
Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.
Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain
2013-02-01
Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.
NASA Technical Reports Server (NTRS)
Ouzts, Peter J.; Soloway, Donald I.; Moerder, Daniel D.; Wolpert, David H.; Benavides, Jose Victor
2009-01-01
Airbreathing hypersonic systems offer distinct performance advantages over rocket-based systems for space access vehicles. However, these performance advantages are dependent upon advances in current state-of-the-art technologies in many areas such as ram/scramjet propulsion integration, high temperature materials, aero-elastic structures, thermal protection systems, transition to hypersonics and hypersonic control elements within the framework of complex physics and new design methods. The complex interactions between elements of an airbreathing hypersonic vehicle represent a new paradigm in vehicle design to achieve the optimal performance necessary to meet space access mission objectives. In the past, guidance, navigation, and control (GNC) analysis often follows completion of the vehicle conceptual design process. Individual component groups design subsystems which are then integrated into a vehicle configuration. GNC is presented the task of developing control approaches to meet vehicle performance objectives given that configuration. This approach may be sufficient for vehicles where significant performance margins exist. However, for higher performance vehicles engaging the GNC discipline too late in the design cycle has been costly. For example, the X-29 experimental flight vehicle was built as a technology demonstrator. One of the many technologies to be demonstrated was the use of light-weight material composites for structural components. The use of light-weight materials increased the flexibility of the X- 29 beyond that of conventional metal alloy constructed aircraft. This effect was not considered when the vehicle control system was designed and built. The impact of this is that the control system did not have enough control authority to compensate for the effects of the first fundamental structural mode of the vehicle. As a result, the resulting pitch rate response of the vehicle was below specification and no post-design changes could recover the desired capability.
Scenarios Creation and Use in the Arctic Council's Arctic Marine Shipping Assessment
NASA Astrophysics Data System (ADS)
Brigham, L. W.
2016-12-01
The Arctic Council's Arctic Marine Shipping Assessment (AMSA), conducted 2004-2009, used a scenarios-based approach to reveal the complexity of future Arctic marine navigation and to develop a set of plausible futures. The initial task was to use experts and stakeholders in brainstorming sessions to identify the key drivers and uncertainties for Arctic marine navigation. AMSA scenario participants identified 120 driving forces or factors that may influence future levels of marine activity. This effort illustrated the broad, global connections that can impact future use of the Arctic Ocean. Two primary factors were selected to anchor, as axes of uncertainty, the scenarios matrix: resources and trade (the level of demand for Arctic natural resources and trade); and, governance (the degree of relative stability of rules and standards for marine use both within the Arctic and internationally). Four scenarios were created by crossing the two primary drivers: a Polar Lows scenario (low demand and unstable governance); an Arctic Race scenario (high demand and unstable governance); a Polar Preserve scenario (low demand and stable governance); and, an Arctic Saga scenario (high demand and stable governance). The AMSA scenarios effort proved to be an effective and powerful way to communicate to the Arctic Council diplomats, Arctic indigenous peoples, maritime stakeholders and many other actors in the global community the complexities influencing the future of Arctic shipping and marine operations. The scenarios approach facilitated unconstrained thinking and identified the many plausible linkages of the Arctic to the global economic system. The AMSA scenarios work was influential in the Arctic ministers' approval of the framework set of AMSA recommendations that are being implemented today to enhance Arctic marine safety and environmental protection.
33 CFR 149.665 - What are the requirements for a general alarm system?
Code of Federal Regulations, 2011 CFR
2011-07-01
...? Each pumping platform complex must have a general alarm system that: (a) Is capable of being manually... general alarm system? 149.665 Section 149.665 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Design...
33 CFR 149.675 - What are the requirements for the public address system?
Code of Federal Regulations, 2011 CFR
2011-07-01
...? (a) For a manned deepwater port, each pumping platform complex must have a public address system... public address system? 149.675 Section 149.675 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Design...
33 CFR 149.125 - What are the requirements for the malfunction detection system?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Each oil and natural gas system, between a pumping platform complex and the shore, must have a system... malfunction detection system? 149.125 Section 149.125 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT...
33 CFR 149.665 - What are the requirements for a general alarm system?
Code of Federal Regulations, 2010 CFR
2010-07-01
...? Each pumping platform complex must have a general alarm system that: (a) Is capable of being manually... general alarm system? 149.665 Section 149.665 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: DESIGN, CONSTRUCTION, AND EQUIPMENT Design...