A complex-network perspective on Alexander's wholeness
NASA Astrophysics Data System (ADS)
Jiang, Bin
2016-12-01
The wholeness, conceived and developed by Christopher Alexander, is what exists to some degree or other in space and matter, and can be described by precise mathematical language. However, it remains somehow mysterious and elusive, and therefore hard to grasp. This paper develops a complex network perspective on the wholeness to better understand the nature of order or beauty for sustainable design. I bring together a set of complexity-science subjects such as complex networks, fractal geometry, and in particular underlying scaling hierarchy derived by head/tail breaks - a classification scheme and a visualization tool for data with a heavy-tailed distribution, in order to make Alexander's profound thoughts more accessible to design practitioners and complexity-science researchers. Through several case studies (some of which Alexander studied), I demonstrate that the complex-network perspective helps reduce the mystery of wholeness and brings new insights to Alexander's thoughts on the concept of wholeness or objective beauty that exists in fine and deep structure. The complex-network perspective enables us to see things in their wholeness, and to better understand how the kind of structural beauty emerges from local actions guided by the 15 fundamental properties, and in particular by differentiation and adaptation processes. The wholeness goes beyond current complex network theory towards design or creation of living structures.
Complexity Leadership: A Theoretical Perspective
ERIC Educational Resources Information Center
Baltaci, Ali; Balci, Ali
2017-01-01
Complex systems are social networks composed of interactive employees interconnected through collaborative, dynamic ties such as shared goals, perspectives and needs. Complex systems are largely based on "the complex system theory". The complex system theory focuses mainly on finding out and developing strategies and behaviours that…
The stability of the international oil trade network from short-term and long-term perspectives
NASA Astrophysics Data System (ADS)
Sun, Qingru; Gao, Xiangyun; Zhong, Weiqiong; Liu, Nairong
2017-09-01
To examine the stability of the international oil trade network and explore the influence of countries and trade relationships on the trade stability, we construct weighted and unweighted international oil trade networks based on complex network theory using oil trading data between countries from 1996 to 2014. We analyze the stability of international oil trade network (IOTN) from short-term and long-term aspects. From the short-term perspective, we find that the trade volumes play an important role on the stability. Moreover, the weighted IOTN is stable; however, the unweighted networks can better reflect the actual evolution of IOTN. From the long-term perspective, we identify trade relationships that are maintained during the whole sample period to reveal the situation of the whole international oil trade. We provide a way to quantitatively measure the stability of complex network from short-term and long-term perspectives, which can be applied to measure and analyze trade stability of other goods or services.
Protein-Protein Interface and Disease: Perspective from Biomolecular Networks.
Hu, Guang; Xiao, Fei; Li, Yuqian; Li, Yuan; Vongsangnak, Wanwipa
Protein-protein interactions are involved in many important biological processes and molecular mechanisms of disease association. Structural studies of interfacial residues in protein complexes provide information on protein-protein interactions. Characterizing protein-protein interfaces, including binding sites and allosteric changes, thus pose an imminent challenge. With special focus on protein complexes, approaches based on network theory are proposed to meet this challenge. In this review we pay attention to protein-protein interfaces from the perspective of biomolecular networks and their roles in disease. We first describe the different roles of protein complexes in disease through several structural aspects of interfaces. We then discuss some recent advances in predicting hot spots and communication pathway analysis in terms of amino acid networks. Finally, we highlight possible future aspects of this area with respect to both methodology development and applications for disease treatment.
NASA Astrophysics Data System (ADS)
Guo, Long; Cai, XU
2009-08-01
It is shown that many real complex networks share distinctive features, such as the small-world effect and the heterogeneous property of connectivity of vertices, which are different from random networks and regular lattices. Although these features capture the important characteristics of complex networks, their applicability depends on the style of networks. To unravel the universal characteristics many complex networks have in common, we study the fractal dimensions of complex networks using the method introduced by Shanker. We find that the average 'density' (ρ(r)) of complex networks follows a better power-law function as a function of distance r with the exponent df, which is defined as the fractal dimension, in some real complex networks. Furthermore, we study the relation between df and the shortcuts Nadd in small-world networks and the size N in regular lattices. Our present work provides a new perspective to understand the dependence of the fractal dimension df on the complex network structure.
A network dynamics approach to chemical reaction networks
NASA Astrophysics Data System (ADS)
van der Schaft, A. J.; Rao, S.; Jayawardhana, B.
2016-04-01
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff's matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a 'zero' complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
NASA Astrophysics Data System (ADS)
Wang, Guanghui; Wang, Yufei; Liu, Yijun; Chi, Yuxue
2018-05-01
As the transmission of public opinion on the Internet in the “We the Media” era tends to be supraterritorial, concealed and complex, the traditional “point-to-surface” transmission of information has been transformed into “point-to-point” reciprocal transmission. A foundation for studies of the evolution of public opinion and its transmission on the Internet in the “We the Media” era can be laid by converting the massive amounts of fragmented information on public opinion that exists on “We the Media” platforms into structurally complex networks of information. This paper describes studies of structurally complex network-based modeling of public opinion on the Internet in the “We the Media” era from the perspective of the development and evolution of complex networks. The progress that has been made in research projects relevant to the structural modeling of public opinion on the Internet is comprehensively summarized. The review considers aspects such as regular grid-based modeling of the rules that describe the propagation of public opinion on the Internet in the “We the Media” era, social network modeling, dynamic network modeling, and supernetwork modeling. Moreover, an outlook for future studies that address complex network-based modeling of public opinion on the Internet is put forward as a summary from the perspective of modeling conducted using the techniques mentioned above.
Fuzzy Entropy Method for Quantifying Supply Chain Networks Complexity
NASA Astrophysics Data System (ADS)
Zhang, Jihui; Xu, Junqin
Supply chain is a special kind of complex network. Its complexity and uncertainty makes it very difficult to control and manage. Supply chains are faced with a rising complexity of products, structures, and processes. Because of the strong link between a supply chain’s complexity and its efficiency the supply chain complexity management becomes a major challenge of today’s business management. The aim of this paper is to quantify the complexity and organization level of an industrial network working towards the development of a ‘Supply Chain Network Analysis’ (SCNA). By measuring flows of goods and interaction costs between different sectors of activity within the supply chain borders, a network of flows is built and successively investigated by network analysis. The result of this study shows that our approach can provide an interesting conceptual perspective in which the modern supply network can be framed, and that network analysis can handle these issues in practice.
Carlos, Diene Monique; de Pádua, Elisabete Matallo Marchesini; da Silva, Lygia Maria Pereira; Silva, Marta Angélica Iossi; Marques, Walter Ernesto Ude; Leitão, Maria Neto da Cruz; Ferriani, Maria das Graças Carvalho
2017-08-01
To contribute the understanding of the network care provided to families involved in family violence against children and adolescents (FVACA), from the Primary Health Care (PHC) perspective. Children and adolescents figure among the main victims of violence around the world, which occurs predominantly in the family context. PHC-guided network care has emerged as a new process that contrasts with traditional approaches, which rely on fragmented, punctual and compensatory actions and produce simplified and segmented interventions in response to complex phenomena like violence. The Paradigm of Complexity interacts with the network care approach and, by articulating the multiple dimensions of the research phenomenon, contributes to its understanding. Qualitative research, based on the Paradigm of Complexity. Data were collected through minimal maps of the external institutional social network, focus groups and semi-structured interviews held with 41 PHC professionals in Brazil. The notions of comprehension and contextualisation as well as dialogical, recursive and holographic principles from complexity theory guided the data analysis. The two thematic categories that emerged revealed reduced institutional networks, with low-density and homogeneous bonds, which resulted in fragmented care in all stages of the care process. Although the network organisation of care for the families involved in FVACA is fundamental, the construction of these networks still represents a great challenge, as it requires the joint work of a multiprofessional team. For nursing to respond to the contemporary care demands in a contemplative and pertinent manner, a perspective and a reference framework need to be developed, leading to broader and more contextualised actions, with a multidimensional approach to the families and communities of which child and adolescent victims of violence are a part. © 2016 John Wiley & Sons Ltd.
A simple model clarifies the complicated relationships of complex networks
Zheng, Bojin; Wu, Hongrun; Kuang, Li; Qin, Jun; Du, Wenhua; Wang, Jianmin; Li, Deyi
2014-01-01
Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation. PMID:25160506
NASA Astrophysics Data System (ADS)
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Social networks and family violence in cross-cultural perspective.
Korbin, J E
1995-01-01
The purpose of this chapter was twofold. First, the chapter put forward a brief cross-cultural perspective indicating that multiple types of intrafamilial violence occur cross-culturally. Second, the chapter placed social networks at the core of a complex etiology of intrafamilial violence. The purpose of giving centrality to social networks is not to suggest that social networks are the sole or primary agent contributing to family violence but to broaden the context in which family violence is viewed beyond that of the perpetrator, the victim/survivor, or the violent dyad.
NASA Astrophysics Data System (ADS)
Li, Huajiao; An, Haizhong; Wang, Yue; Huang, Jiachen; Gao, Xiangyun
2016-05-01
Keeping abreast of trends in the articles and rapidly grasping a body of article's key points and relationship from a holistic perspective is a new challenge in both literature research and text mining. As the important component, keywords can present the core idea of the academic article. Usually, articles on a single theme or area could share one or some same keywords, and we can analyze topological features and evolution of the articles co-keyword networks and keywords co-occurrence networks to realize the in-depth analysis of the articles. This paper seeks to integrate statistics, text mining, complex networks and visualization to analyze all of the academic articles on one given theme, complex network(s). All 5944 ;complex networks; articles that were published between 1990 and 2013 and are available on the Web of Science are extracted. Based on the two-mode affiliation network theory, a new frontier of complex networks, we constructed two different networks, one taking the articles as nodes, the co-keyword relationships as edges and the quantity of co-keywords as the weight to construct articles co-keyword network, and another taking the articles' keywords as nodes, the co-occurrence relationships as edges and the quantity of simultaneous co-occurrences as the weight to construct keyword co-occurrence network. An integrated method for analyzing the topological features and evolution of the articles co-keyword network and keywords co-occurrence networks is proposed, and we also defined a new function to measure the innovation coefficient of the articles in annual level. This paper provides a useful tool and process for successfully achieving in-depth analysis and rapid understanding of the trends and relationships of articles in a holistic perspective.
A Complex Network Perspective on Clinical Science
Hofmann, Stefan G.; Curtiss, Joshua; McNally, Richard J.
2016-01-01
Contemporary classification systems for mental disorders assume that abnormal behaviors are expressions of latent disease entities. An alternative to the latent disease model is the complex network approach. Instead of assuming that symptoms arise from an underlying disease entity, the complex network approach holds that disorders exist as systems of interrelated elements of a network. This approach also provides a framework for the understanding of therapeutic change. Depending on the structure of the network, change can occur abruptly once the network reaches a critical threshold (the tipping point). Homogeneous and highly connected networks often recover more slowly from local perturbations when the network approaches the tipping point, allowing for the possibility to predict treatment change, relapse, and recovery. In this article we discuss the complex network approach as an alternative to the latent disease model, and we discuss its implications for classification, therapy, relapse, and recovery. PMID:27694457
Spreading dynamics on complex networks: a general stochastic approach.
Noël, Pierre-André; Allard, Antoine; Hébert-Dufresne, Laurent; Marceau, Vincent; Dubé, Louis J
2014-12-01
Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.
NASA Astrophysics Data System (ADS)
Čech, Radek; Mačutek, Ján; Žabokrtský, Zdeněk
2011-10-01
Syntax of natural language has been the focus of linguistics for decades. The complex network theory, being one of new research tools, opens new perspectives on syntax properties of the language. Despite numerous partial achievements, some fundamental problems remain unsolved. Specifically, although statistical properties typical for complex networks can be observed in all syntactic networks, the impact of syntax itself on these properties is still unclear. The aim of the present study is to shed more light on the role of syntax in the syntactic network structure. In particular, we concentrate on the impact of the syntactic function of a verb in the sentence on the complex network structure. Verbs play the decisive role in the sentence structure (“local” importance). From this fact we hypothesize the importance of verbs in the complex network (“global” importance). The importance of verb in the complex network is assessed by the number of links which are directed from the node representing verb to other nodes in the network. Six languages (Catalan, Czech, Dutch, Hungarian, Italian, Portuguese) were used for testing the hypothesis.
Multi-frequency complex network from time series for uncovering oil-water flow structure.
Gao, Zhong-Ke; Yang, Yu-Xuan; Fang, Peng-Cheng; Jin, Ning-De; Xia, Cheng-Yi; Hu, Li-Dan
2015-02-04
Uncovering complex oil-water flow structure represents a challenge in diverse scientific disciplines. This challenge stimulates us to develop a new distributed conductance sensor for measuring local flow signals at different positions and then propose a novel approach based on multi-frequency complex network to uncover the flow structures from experimental multivariate measurements. In particular, based on the Fast Fourier transform, we demonstrate how to derive multi-frequency complex network from multivariate time series. We construct complex networks at different frequencies and then detect community structures. Our results indicate that the community structures faithfully represent the structural features of oil-water flow patterns. Furthermore, we investigate the network statistic at different frequencies for each derived network and find that the frequency clustering coefficient enables to uncover the evolution of flow patterns and yield deep insights into the formation of flow structures. Current results present a first step towards a network visualization of complex flow patterns from a community structure perspective.
Social networks as embedded complex adaptive systems.
Benham-Hutchins, Marge; Clancy, Thomas R
2010-09-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 15th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, the authors discuss healthcare social networks as a hierarchy of embedded complex adaptive systems. The authors further examine the use of social network analysis tools as a means to understand complex communication patterns and reduce medical errors.
NASA Astrophysics Data System (ADS)
Donges, Jonathan F.; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V.; Marwan, Norbert; Dijkstra, Henk A.; Kurths, Jürgen
2015-11-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.
Combinatorial complexity of pathway analysis in metabolic networks.
Klamt, Steffen; Stelling, Jörg
2002-01-01
Elementary flux mode analysis is a promising approach for a pathway-oriented perspective of metabolic networks. However, in larger networks it is hampered by the combinatorial explosion of possible routes. In this work we give some estimations on the combinatorial complexity including theoretical upper bounds for the number of elementary flux modes in a network of a given size. In a case study, we computed the elementary modes in the central metabolism of Escherichia coli while utilizing four different substrates. Interestingly, although the number of modes occurring in this complex network can exceed half a million, it is still far below the upper bound. Hence, to a certain extent, pathway analysis of central catabolism is feasible to assess network properties such as flexibility and functionality.
Strogatz, S H
2001-03-08
The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.
Complex Network for a Crisis Contagion on AN Interbank System
NASA Astrophysics Data System (ADS)
Tirado, Mariano
2012-09-01
The main focus of this research is the contagion of a financial crisis on an interbank debt network. In order to simulate the crisis propagation a weighted community complex network based on growth strategy has been created. The contagion is described by a new way of disease propagation perspective based on the concept of a financial virus. The model reproduces the existence of TBTF banks and shows the impact that an initial TBTF bank crash produces in the interbank network depending on the magnitude of the initial crash and on the resistance that the network offers against the contagion propagation.
Spatial price dynamics: From complex network perspective
NASA Astrophysics Data System (ADS)
Li, Y. L.; Bi, J. T.; Sun, H. J.
2008-10-01
The spatial price problem means that if the supply price plus the transportation cost is less than the demand price, there exists a trade. Thus, after an amount of exchange, the demand price will decrease. This process is continuous until an equilibrium state is obtained. However, how the trade network structure affects this process has received little attention. In this paper, we give a evolving model to describe the levels of spatial price on different complex network structures. The simulation results show that the network with shorter path length is sensitive to the variation of prices.
Structural Preferential Attachment: Network Organization beyond the Link
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Allard, Antoine; Marceau, Vincent; Noël, Pierre-André; Dubé, Louis J.
2011-10-01
We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.
HIA, the next step: Defining models and roles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putters, Kim
If HIA is to be an effective instrument for optimising health interests in the policy making process it has to recognise the different contests in which policy is made and the relevance of both technical rationality and political rationality. Policy making may adopt a rational perspective in which there is a systematic and orderly progression from problem formulation to solution or a network perspective in which there are multiple interdependencies, extensive negotiation and compromise, and the steps from problem to formulation are not followed sequentially or in any particular order. Policy problems may be simple with clear causal pathways andmore » responsibilities or complex with unclear causal pathways and disputed responsibilities. Network analysis is required to show which stakeholders are involved, their support for health issues and the degree of consensus. From this analysis three models of HIA emerge. The first is the phases model which is fitted to simple problems and a rational perspective of policymaking. This model involves following structured steps. The second model is the rounds (Echternach) model that is fitted to complex problems and a network perspective of policymaking. This model is dynamic and concentrates on network solutions taking these steps in no particular order. The final model is the 'garbage can' model fitted to contexts which combine simple and complex problems. In this model HIA functions as a problem solver and signpost keeping all possible solutions and stakeholders in play and allowing solutions to emerge over time. HIA models should be the beginning rather than the conclusion of discussion the worlds of HIA and policymaking.« less
NASA Astrophysics Data System (ADS)
Griffiths, John D.
2015-12-01
The modern understanding of the brain as a large, complex network of interacting elements is a natural consequence of the Neuron Doctrine [1,2] that has been bolstered in recent years by the tools and concepts of connectomics. In this abstracted, network-centric view, the essence of neural and cognitive function derives from the flows between network elements of activity and information - or, more generally, causal influence. The appropriate characterization of causality in neural systems, therefore, is a question at the very heart of systems neuroscience.
Analysis of metro network performance from a complex network perspective
NASA Astrophysics Data System (ADS)
Wu, Xingtang; Dong, Hairong; Tse, Chi Kong; Ho, Ivan W. H.; Lau, Francis C. M.
2018-02-01
In this paper, the performance of metro networks is studied from a network science perspective. We review the structural efficiency of metro networks on the basis of a passenger's intuitive routing strategy that optimizes the number of transfers and the distance traveled.A new node centrality measure, called node occupying probability, is introduced for evaluating the level of utilization of stations. The robustness of a metro network is analyzed under several attack scenarios. Six metro networks (Beijing, London, Paris, Hong Kong, Tokyo and New York) are compared in terms of the node occupying probability and a few other performance parameters. Simulation results show that the New York metro system has better topological efficiency, the Tokyo and Hong Kong systems are the most robust under random attack and target attack, respectively.
The STIN in the Tale: A Socio-Technical Interaction Perspective on Networked Learning
ERIC Educational Resources Information Center
Walker, Steve; Creanor, Linda
2009-01-01
In this paper, we go beyond what have been described as "mechanistic" accounts of e-learning to explore the complexity of relationships between people and technology as encountered in cases of networked learning. We introduce from the social informatics literature the concept of sociotechnical interaction networks which focus on the…
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2018-03-01
I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.
Complexity, Chaos, and Nonlinear Dynamics: A New Perspective on Career Development Theory
ERIC Educational Resources Information Center
Bloch, Deborah P.
2005-01-01
The author presents a theory of career development drawing on nonlinear dynamics and chaos and complexity theories. Career is presented as a complex adaptive entity, a fractal of the human entity. Characteristics of complex adaptive entities, including (a) autopiesis, or self-regeneration; (b) open exchange; (c) participation in networks; (d)…
NASA Astrophysics Data System (ADS)
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
Shifting Perspectives: Using Complexity Theory to Anticipate Strategic Surprise
2015-08-08
Master’s Thesis 3. DATES COVERED (From - To) 21-07-2014 to 11-06-2015 4. TITLE AND SUBTITLE SHIFTING PERSPECTIVES: USING COMPLEXITY THEORY TO...SCA Socio-Cultural Analysis SNA Social Network Analysis TCO Transnational Criminal Organization U.S. United States WMD Weapons of Mass...the 2014 Russian invasion of Ukraine, and the rise of the Islamic State following the war in Iraq. Considering the amount of money , time, and emphasis
The game of go as a complex network
NASA Astrophysics Data System (ADS)
Georgeot, B.; Giraud, O.
2012-03-01
We study the game of go from a complex network perspective. We construct a directed network using a suitable definition of tactical moves including local patterns, and study this network for different datasets of professional and amateur games. The move distribution follows Zipf's law and the network is scale free, with statistical peculiarities different from other real directed networks, such as, e.g., the World Wide Web. These specificities reflect in the outcome of ranking algorithms applied to it. The fine study of the eigenvalues and eigenvectors of matrices used by the ranking algorithms singles out certain strategic situations. Our results should pave the way to a better modelization of board games and other types of human strategic scheming.
Modeling and dynamical topology properties of VANET based on complex networks theory
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Jie
2015-01-01
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate and control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What's more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.
Modeling and dynamical topology properties of VANET based on complex networks theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Li, Jie, E-mail: prof.li@foxmail.com
2015-01-15
Vehicular Ad hoc Network (VANET) is a special subset of multi-hop Mobile Ad hoc Networks in which vehicles can not only communicate with each other but also with the fixed equipments along the roads through wireless interfaces. Recently, it has been discovered that essential systems in real world share similar properties. When they are regarded as networks, among which the dynamic topology structure of VANET system is an important issue. Many real world networks are actually growing with preferential attachment like Internet, transportation system and telephone network. Those phenomena have brought great possibility in finding a strategy to calibrate andmore » control the topology parameters which can help find VANET topology change regulation to relieve traffic jam, prevent traffic accident and improve traffic safety. VANET is a typical complex network which has its basic characteristics. In this paper, we focus on the macroscopic Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) inter-vehicle communication network with complex network theory. In particular, this paper is the first one to propose a method analyzing the topological structure and performance of VANET and present the communications in VANET from a new perspective. Accordingly, we propose degree distribution, clustering coefficient and the short path length of complex network to implement our strategy by numerical example and simulation. All the results demonstrate that VANET shows small world network features and is characterized by a truncated scale-free degree distribution with power-law degree distribution. The average path length of the network is simulated numerically, which indicates that the network shows small-world property and is rarely affected by the randomness. What’s more, we carry out extensive simulations of information propagation and mathematically prove the power law property when γ > 2. The results of this study provide useful information for VANET optimization from a macroscopic perspective.« less
Does human migration affect international trade? A complex-network perspective.
Fagiolo, Giorgio; Mastrorillo, Marina
2014-01-01
This paper explores the relationships between international human migration and merchandise trade, using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960-2000. Next, we ask whether the position of any pair of countries in the migration network affects their bilateral trade flows. We show that: (i) both weighted and binary versions of the networks of international migration and trade are strongly correlated; (ii) such correlations can be mostly explained by country economic/demographic size and geographical distance; and (iii) pairs of countries that are more central in the international-migration network trade more. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries but also by their relative embeddedness in the complex web of corridors making up the network of international human migration.
Does Human Migration Affect International Trade? A Complex-Network Perspective
Fagiolo, Giorgio; Mastrorillo, Marina
2014-01-01
This paper explores the relationships between international human migration and merchandise trade using a complex-network approach. We firstly compare the topological structure of worldwide networks of human migration and bilateral trade over the period 1960–2000. Next, we ask whether pairs of countries that are more central in the migration network trade more. We show that: (i) the networks of international migration and trade are strongly correlated, and such correlation can be mostly explained by country economic/demographic size and geographical distance; (ii) centrality in the international-migration network boosts bilateral trade; (iii) intensive forms of country centrality are more trade enhancing than their extensive counterparts. Our findings suggest that bilateral trade between any two countries is not only affected by the presence of migrants from either countries, but also by their relative embeddedness in the complex web of corridors making up the network of international human migration. PMID:24828376
Interplay of ICP and IXP over the Internet with power-law features
NASA Astrophysics Data System (ADS)
Fan, Zhongyan; Tang, Wallace Kit-Sang
The Internet is the largest artificial network consisting of billions of IP devices, managed by tens of thousands of autonomous systems (ASes). Due to its importance, the Internet has received much attention and its topological features, mainly in AS-level, have been widely explored from the complex network perspective. However, most of the previous studies assume a homogeneous model in which nodes are indistinguishable in nature. It may be good for a general study of topological structure, but unfortunately it fails to reflect the functionality. The Internet ecology is in fact heterogeneous and highly complex. It consists of various elements such as Internet Exchange Points (IXPs), Internet Content Providers (ICPs), and normal Autonomous System (ASes), realizing different roles in the Internet. In this paper, we propose level-structured network models for investigating how ICP performs under the AS-topology with power-law features and how IXP enhances its performance from a complex network perspective. Based on real data, our results reveal that the power-law nature of the Internet facilitates content delivery not only in efficiency but also in path redundancy. Moreover, the proposed multi-level framework is able to clearly illustrate the significant benefits gained by ICP from IXP peerings.
NASA Astrophysics Data System (ADS)
Amancio, Diego Raphael
2014-12-01
Concepts and methods of complex networks have been applied to probe the properties of a myriad of real systems [1]. The finding that written texts modeled as graphs share several properties of other completely different real systems has inspired the study of language as a complex system [2]. Actually, language can be represented as a complex network in its several levels of complexity. As a consequence, morphological, syntactical and semantical properties have been employed in the construction of linguistic networks [3]. Even the character level has been useful to unfold particular patterns [4,5]. In the review by Cong and Liu [6], the authors emphasize the need to use the topological information of complex networks modeling the various spheres of the language to better understand its origins, evolution and organization. In addition, the authors cite the use of networks in applications aiming at holistic typology and stylistic variations. In this context, I will discuss some possible directions that could be followed in future research directed towards the understanding of language via topological characterization of complex linguistic networks. In addition, I will comment the use of network models for language processing applications. Additional prospects for future practical research lines will also be discussed in this comment.
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
Decoding the spatial signatures of multi-scale climate variability - a climate network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.
2017-12-01
During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.
Toward the establishment of design guidelines for effective 3D perspective interfaces
NASA Astrophysics Data System (ADS)
Fitzhugh, Elisabeth; Dixon, Sharon; Aleva, Denise; Smith, Eric; Ghrayeb, Joseph; Douglas, Lisa
2009-05-01
The propagation of information operation technologies, with correspondingly vast amounts of complex network information to be conveyed, significantly impacts operator workload. Information management research is rife with efforts to develop schemes to aid operators to identify, review, organize, and retrieve the wealth of available data. Data may take on such distinct forms as intelligence libraries, logistics databases, operational environment models, or network topologies. Increased use of taxonomies and semantic technologies opens opportunities to employ network visualization as a display mechanism for diverse information aggregations. The broad applicability of network visualizations is still being tested, but in current usage, the complexity of densely populated abstract networks suggests the potential utility of 3D. Employment of 2.5D in network visualization, using classic perceptual cues, creates a 3D experience within a 2D medium. It is anticipated that use of 3D perspective (2.5D) will enhance user ability to visually inspect large, complex, multidimensional networks. Current research for 2.5D visualizations demonstrates that display attributes, including color, shape, size, lighting, atmospheric effects, and shadows, significantly impact operator experience. However, guidelines for utilization of attributes in display design are limited. This paper discusses pilot experimentation intended to identify potential problem areas arising from these cues and determine how best to optimize perceptual cue settings. Development of optimized design guidelines will ensure that future experiments, comparing network displays with other visualizations, are not confounded or impeded by suboptimal attribute characterization. Current experimentation is anticipated to support development of cost-effective, visually effective methods to implement 3D in military applications.
NASA Astrophysics Data System (ADS)
Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen
2016-04-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].
Causal networks clarify productivity-richness interrelations, bivariate plots do not
Grace, James B.; Adler, Peter B.; Harpole, W. Stanley; Borer, Elizabeth T.; Seabloom, Eric W.
2014-01-01
We urge ecologists to consider productivity–richness relationships through the lens of causal networks to advance our understanding beyond bivariate analysis. Further, we emphasize that models based on a causal network conceptualization can also provide more meaningful guidance for conservation management than can a bivariate perspective. Measuring only two variables does not permit the evaluation of complex ideas nor resolve debates about underlying mechanisms.
NASA Astrophysics Data System (ADS)
Hu, Sen; Yang, Hualei; Cai, Boliang; Yang, Chunxia
2013-09-01
The economy system is a complex system, and the complex network is a powerful tool to study its complexity. Here we calculate the economic distance matrices based on annual GDP of nine economic sectors from 1995-2010 in 31 Chinese provinces and autonomous regions,1 then build several spatial economic networks through the threshold method and the Minimal Spanning Tree method. After the analysis on the structure of the networks and the influence of geographic distance, some conclusions are drawn. First, connectivity distribution of a spatial economic network does not follow the power law. Second, according to the network structure, nine economic sectors could be divided into two groups, and there is significant discrepancy of network structure between these two groups. Moreover, the influence of the geographic distance plays an important role on the structure of a spatial economic network, network parameters are changed with the influence of the geographic distance. At last, 2000 km is the critical value for geographic distance: for real estate and finance, the spearman’s rho with l<2000 is bigger than that with l>2000, and the case is opposite for other economic sectors.
Graph theoretical analysis of complex networks in the brain
Stam, Cornelis J; Reijneveld, Jaap C
2007-01-01
Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern. PMID:17908336
NASA Astrophysics Data System (ADS)
Zhang, Lin; Lu, Jian; Zhou, Jialin; Zhu, Jinqing; Li, Yunxuan; Wan, Qian
2018-03-01
Didi Dache is the most popular taxi order mobile app in China, which provides online taxi-hailing service. The obtained big database from this app could be used to analyze the complexities’ day-to-day dynamic evolution of Didi taxi trip network (DTTN) from the level of complex network dynamics. First, this paper proposes the data cleaning and modeling methods for expressing Nanjing’s DTTN as a complex network. Second, the three consecutive weeks’ data are cleaned to establish 21 DTTNs based on the proposed big data processing technology. Then, multiple topology measures that characterize the complexities’ day-to-day dynamic evolution of these networks are provided. Third, these measures of 21 DTTNs are calculated and subsequently explained with actual implications. They are used as a training set for modeling the BP neural network which is designed for predicting DTTN complexities evolution. Finally, the reliability of the designed BP neural network is verified by comparing with the actual data and the results obtained from ARIMA method simultaneously. Because network complexities are the basis for modeling cascading failures and conducting link prediction in complex system, this proposed research framework not only provides a novel perspective for analyzing DTTN from the level of system aggregated behavior, but can also be used to improve the DTTN management level.
Relationships between music training, speech processing, and word learning: a network perspective.
Elmer, Stefan; Jäncke, Lutz
2018-03-15
Numerous studies have documented the behavioral advantages conferred on professional musicians and children undergoing music training in processing speech sounds varying in the spectral and temporal dimensions. These beneficial effects have previously often been associated with local functional and structural changes in the auditory cortex (AC). However, this perspective is oversimplified, in that it does not take into account the intrinsic organization of the human brain, namely, neural networks and oscillatory dynamics. Therefore, we propose a new framework for extending these previous findings to a network perspective by integrating multimodal imaging, electrophysiology, and neural oscillations. In particular, we provide concrete examples of how functional and structural connectivity can be used to model simple neural circuits exerting a modulatory influence on AC activity. In addition, we describe how such a network approach can be used for better comprehending the beneficial effects of music training on more complex speech functions, such as word learning. © 2018 New York Academy of Sciences.
Congestion control for a fair packet delivery in WSN: from a complex system perspective.
Aguirre-Guerrero, Daniela; Marcelín-Jiménez, Ricardo; Rodriguez-Colina, Enrique; Pascoe-Chalke, Michael
2014-01-01
In this work, we propose that packets travelling across a wireless sensor network (WSN) can be seen as the active agents that make up a complex system, just like a bird flock or a fish school, for instance. From this perspective, the tools and models that have been developed to study this kind of systems have been applied. This is in order to create a distributed congestion control based on a set of simple rules programmed at the nodes of the WSN. Our results show that it is possible to adapt the carried traffic to the network capacity, even under stressing conditions. Also, the network performance shows a smooth degradation when the traffic goes beyond a threshold which is settled by the proposed self-organized control. In contrast, without any control, the network collapses before this threshold. The use of the proposed solution provides an effective strategy to address some of the common problems found in WSN deployment by providing a fair packet delivery. In addition, the network congestion is mitigated using adaptive traffic mechanisms based on a satisfaction parameter assessed by each packet which has impact on the global satisfaction of the traffic carried by the WSN.
Spectral Entropies as Information-Theoretic Tools for Complex Network Comparison
NASA Astrophysics Data System (ADS)
De Domenico, Manlio; Biamonte, Jacob
2016-10-01
Any physical system can be viewed from the perspective that information is implicitly represented in its state. However, the quantification of this information when it comes to complex networks has remained largely elusive. In this work, we use techniques inspired by quantum statistical mechanics to define an entropy measure for complex networks and to develop a set of information-theoretic tools, based on network spectral properties, such as Rényi q entropy, generalized Kullback-Leibler and Jensen-Shannon divergences, the latter allowing us to define a natural distance measure between complex networks. First, we show that by minimizing the Kullback-Leibler divergence between an observed network and a parametric network model, inference of model parameter(s) by means of maximum-likelihood estimation can be achieved and model selection can be performed with appropriate information criteria. Second, we show that the information-theoretic metric quantifies the distance between pairs of networks and we can use it, for instance, to cluster the layers of a multilayer system. By applying this framework to networks corresponding to sites of the human microbiome, we perform hierarchical cluster analysis and recover with high accuracy existing community-based associations. Our results imply that spectral-based statistical inference in complex networks results in demonstrably superior performance as well as a conceptual backbone, filling a gap towards a network information theory.
Self-determined mechanisms in complex networks
NASA Astrophysics Data System (ADS)
Liu, Yang; Yuan, Jian; Shan, Xiuming; Ren, Yong; Ma, Zhengxin
2008-03-01
Self-organized networks are pervasive in communication systems such as the Internet, overlay networks, peer-to-peer networks, and cluster-based services. These networks evolve into complex topologies, under specific driving forces, i.e. user demands, technological innovations, design objectives and so on. Our study focuses on the driving forces behind individual evolutions of network components, and their stimulation and domination to the self-organized networks which are defined as self-determined mechanisms in this paper. Understanding forces underlying the evolution of networks should enable informed design decisions and help to avoid unwanted surprises, such as congestion collapse. A case study on the macroscopic evolution of the Internet topology of autonomous systems under a specific driving force is then presented. Using computer simulations, it is found that the power-law degree distribution can originate from a connection preference to larger numbers of users, and that the small-world property can be caused by rapid growth in the number of users. Our results provide a new feasible perspective to understand intrinsic fundamentals in the topological evolution of complex networks.
A study of the spreading scheme for viral marketing based on a complex network model
NASA Astrophysics Data System (ADS)
Yang, Jianmei; Yao, Canzhong; Ma, Weicheng; Chen, Guanrong
2010-02-01
Buzzword-based viral marketing, known also as digital word-of-mouth marketing, is a marketing mode attached to some carriers on the Internet, which can rapidly copy marketing information at a low cost. Viral marketing actually uses a pre-existing social network where, however, the scale of the pre-existing network is believed to be so large and so random, so that its theoretical analysis is intractable and unmanageable. There are very few reports in the literature on how to design a spreading scheme for viral marketing on real social networks according to the traditional marketing theory or the relatively new network marketing theory. Complex network theory provides a new model for the study of large-scale complex systems, using the latest developments of graph theory and computing techniques. From this perspective, the present paper extends the complex network theory and modeling into the research of general viral marketing and develops a specific spreading scheme for viral marking and an approach to design the scheme based on a real complex network on the QQ instant messaging system. This approach is shown to be rather universal and can be further extended to the design of various spreading schemes for viral marketing based on different instant messaging systems.
Principal Perspectives on Social Networking and the Disruptive Effects of Cyberbullying
ERIC Educational Resources Information Center
Welker, Heidi Stevenson
2010-01-01
Cyberbullying on social networking sites such as MySpace and Facebook has had negative effects on children at school. Cyberbullying disruption during the school day adds to the complexity of maintaining school operations, safety, and academic achievement. With the advancement of technology, there is a gap in the literature on the disruption in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunden, Fanny; Peck, Ariana; Salzman, Julia
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less
Perspectives of construction robots
NASA Astrophysics Data System (ADS)
Stepanov, M. A.; Gridchin, A. M.
2018-03-01
This article is an overview of construction robots features, based on formulating the list of requirements for different types of construction robots in relation to different types of construction works.. It describes a variety of construction works and ways to construct new or to adapt existing robot designs for a construction process. Also, it shows the prospects of AI-controlled machines, implementation of automated control systems and networks on construction sites. In the end, different ways to develop and improve, including ecological aspect, the construction process through the wide robotization, creating of data communication networks and, in perspective, establishing of fully AI-controlled construction complex are formulated.
Autism Biomarkers: Challenges, Pitfalls and Possibilities
ERIC Educational Resources Information Center
Anderson, George M.
2015-01-01
Network perspectives, in their emphasis on components and their interactions, might afford the best approach to the complexities of the ASD realm. Categorical approaches are unlikely to be fruitful as one should not expect to find a single or even predominant underlying cause of autism behavior across individuals. It is possible that the complex,…
Revealing networks from dynamics: an introduction
NASA Astrophysics Data System (ADS)
Timme, Marc; Casadiego, Jose
2014-08-01
What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.
Bioinformatics: perspectives for the future.
Costa, Luciano da Fontoura
2004-12-30
I give here a very personal perspective of Bioinformatics and its future, starting by discussing the origin of the term (and area) of bioinformatics and proceeding by trying to foresee the development of related issues, including pattern recognition/data mining, the need to reintegrate biology, the potential of complex networks as a powerful and flexible framework for bioinformatics and the interplay between bio- and neuroinformatics. Human resource formation and market perspective are also addressed. Given the complexity and vastness of these issues and concepts, as well as the limited size of a scientific article and finite patience of the reader, these perspectives are surely incomplete and biased. However, it is expected that some of the questions and trends that are identified will motivate discussions during the IcoBiCoBi round table (with the same name as this article) and perhaps provide a more ample perspective among the participants of that conference and the readers of this text.
Network Analysis: Applications for the Developing Brain
Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.
2011-01-01
Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762
Domestic violence against children and adolescents: social support network perspectives.
Carlos, Diene Monique; Pádua, Elisabete Matallo Marchesini De; Fernandes, Maria Isabel Domingues; Leitão, Maria Neto da Cruz; Ferriani, Maria das Graças Carvalho
2017-07-20
To identify and analyze the social support network of families involved in violence against children and adolescents, from the perspective of health professionals and families in a municipality of the state of São Paulo, Brazil. This was a qualitative strategic social study, anchored in the paradigm of complexity. Data were collected from 41 health professionals and 15 families using institutional or personal network maps, and semi-structured interviews. Analysis was conducted by organizing the data, constructing theoretical frameworks, and categorizing resulting information. The category "weaving the network" was unveiled, with family experiences and professionals focused on a logic of fragmentation of care. The creation and implementation of public policy are urgently needed to address the needs of this population, by empowering families and communities and developing research that respects the multidimensional nature of the phenomenon.
Analyzing the causation of a railway accident based on a complex network
NASA Astrophysics Data System (ADS)
Ma, Xin; Li, Ke-Ping; Luo, Zi-Yan; Zhou, Jin
2014-02-01
In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the “7.23” China—Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.
The game of go as a complex network
NASA Astrophysics Data System (ADS)
Georgeot, Bertrand; Giraud, Olivier; Kandiah, Vivek
2014-03-01
We have studied the game of go, one of the most ancient and complex board games, from a complex network perspective. We have defined a proper categorization of moves taking into account the local environment, and shown that in this case Zipf's law emerges from data taken from real games. The network shows differences between professional and amateur games, different level of amateurs, or different phases of the game. Certain eigenvectors are localized on specific groups of moves which correspond to different strategies (communities of moves). The point of view developed should allow to better modelize such games and could also help to design simulators which could in the future beat good human players. Our approach could be used for other types of games, and in parallel shed light on the human decision making process.
ERIC Educational Resources Information Center
Jenkins, Darrell L.
The development, testing, introduction, evaluation, and refinement of a user interface for a statewide, multi-library online public access catalog network can be a very involved and politically complex enterprise. A multitude of perspectives, assumptions, preferences, and needs accompanies the multitude of players involved, i.e., library…
Health in All Policies (HiAP) governance: lessons from network governance.
Khayatzadeh-Mahani, Akram; Ruckert, Arne; Labonté, Ronald; Kenis, Patrick; Akbari-Javar, Mohammad Reza
2018-05-25
The Health in All Policies (HiAP) approach requires formal and sustained governance structures and mechanisms to ensure that the policies of various non-health sectors maximize positive and minimize negative impacts on population health. In this paper, we demonstrate the usefulness of a network perspective in understanding and contributing to the effectiveness of HiAP. We undertook an exploratory, qualitative case study of a HiAP structure in Iran, the Kerman province Council of Health and Food Security (CHFS) with diverse members from health and non-health sectors. We analyzed relevant policy texts and interviewed 32 policy actors involved in the CHFS. Data were analyzed using within-case analysis and constant comparative methodology. Our findings suggest that CHFS governance from a network perspective drew in practice on elements of two competing network governance modes: the network administrative organization (NAO) and the lead organization mode. Our results also show that a shift from a hierarchical and market-based mode of interaction to a network logic within CHFS has not yet taken place. In addition, CHFS suffers from large membership and an inability to address complex 'wicked problems', as well as low trust, legitimacy and goal consensus among its members. Drawing on other HiAP studies and commentaries, insights from organization network theory, and in-depth findings from our case study, we conclude that a NAO may be the most effective mode of governance for tackling complex social problems in HiAP structures. Since similar studies are limited, and our single case study may not be transferable across all contexts, we suggest that further research be undertaken to explore HiAP structures from a network perspective in different institutional and cultural settings. With increasing emphasis given to HiAP approaches in national and international health policy discourse, it is important that comparative knowledge about the effectiveness of HiAP governance arrangements be developed.
Knefel, Matthias; Tran, Ulrich S; Lueger-Schuster, Brigitte
2016-10-01
Posttraumatic Stress Disorder (PTSD), Complex PTSD, and Borderline Personality Disorder (BPD) share etiological risk factors and an overlapping set of associated symptoms. Since the ICD-11 proposal for trauma-related disorders, the relationship of these disorders has to be clarified. A novel approach to psychopathology, network analysis, allows for a detailed analysis of comorbidity on symptom level. Symptoms were assessed in adult survivors of childhood abuse (N=219) using the newly developed ICD-11 Trauma-Questionnaire and the SCID-II. The psychopathological network was analyzed using the network approach. PTSD and Complex PTSD symptoms were strongly connected within disorders and to a lesser degree between disorders. Symptoms of BPD were weakly connected to others. Re-experiencing and dissociation were the most central symptoms. Mental disorders are no discrete entities, clear boundaries are unlikely to be found. The psychopathological network revealed central symptoms that might be important targets for specific first interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterizing air quality data from complex network perspective.
Fan, Xinghua; Wang, Li; Xu, Huihui; Li, Shasha; Tian, Lixin
2016-02-01
Air quality depends mainly on changes in emission of pollutants and their precursors. Understanding its characteristics is the key to predicting and controlling air quality. In this study, complex networks were built to analyze topological characteristics of air quality data by correlation coefficient method. Firstly, PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) indexes of eight monitoring sites in Beijing were selected as samples from January 2013 to December 2014. Secondly, the C-C method was applied to determine the structure of phase space. Points in the reconstructed phase space were considered to be nodes of the network mapped. Then, edges were determined by nodes having the correlation greater than a critical threshold. Three properties of the constructed networks, degree distribution, clustering coefficient, and modularity, were used to determine the optimal value of the critical threshold. Finally, by analyzing and comparing topological properties, we pointed out that similarities and difference in the constructed complex networks revealed influence factors and their different roles on real air quality system.
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.
Breaking news dissemination in the media via propagation behavior based on complex network theory
NASA Astrophysics Data System (ADS)
Liu, Nairong; An, Haizhong; Gao, Xiangyun; Li, Huajiao; Hao, Xiaoqing
2016-07-01
The diffusion of breaking news largely relies on propagation behaviors in the media. The tremendous and intricate propagation relationships in the media form a complex network. An improved understanding of breaking news diffusion characteristics can be obtained through the complex network research. Drawing on the news data of Bohai Gulf oil spill event from June 2011 to May 2014, we constructed a weighted and directed complex network in which media are set as nodes, the propagation relationships as edges and the propagation times as the weight of the edges. The primary results show (1) the propagation network presents small world feature, which means relations among media are close and breaking news originating from any node can spread rapidly; (2) traditional media and official websites are the typical sources for news propagation, while business portals are news collectors and spreaders; (3) the propagation network is assortative and the group of core media facilities the spread of breaking news faster; (4) for online media, news originality factor become less important to propagation behaviors. This study offers a new insight to explore information dissemination from the perspective of statistical physics and is beneficial for utilizing the public opinion in a positive way.
Re-examining the paradox of structure: a child health network perspective.
McPherson, Charmaine M; Popp, Janice K; Lindstrom, Ronald R
2006-01-01
In their lead paper, Huerta, Casebeer and VanderPlaat argue that there are several key forces driving the development of health services delivery (HSD) networks, and propose a series of paradoxes and propositions to initiate this timely and essential dialogue. Ultimately, they submit that networks are likely to remain within the healthcare system to build system capacity and drive integration. Given this, they challenge us to further the dialogue and investigate these networks. While this peer commentary shares many of the lead author's perspectives, the generic nature of the discussion does not bring us to the relative complexities revealed in some HSD network practices. A Canadian child health network lens is used to re-examine the lead paper's conceptualization of network typologies and the proposed paradox of structure. We combine network practice and academic expertise to highlight the structural, governance and leadership tensions between traditional hierarchical public service organizations and the non-hierarchical nature of inter-organizational networks. Child health network leaders and members must examine and work with the challenges associated with importing traditional organizational cultures into an inter-organizationally networked context, while simultaneously maintaining these dual (or duelling) cultures.
Time irreversibility and intrinsics revealing of series with complex network approach
NASA Astrophysics Data System (ADS)
Xiong, Hui; Shang, Pengjian; Xia, Jianan; Wang, Jing
2018-06-01
In this work, we analyze time series on the basis of the visibility graph algorithm that maps the original series into a graph. By taking into account the all-round information carried by the signals, the time irreversibility and fractal behavior of series are evaluated from a complex network perspective, and considered signals are further classified from different aspects. The reliability of the proposed analysis is supported by numerical simulations on synthesized uncorrelated random noise, short-term correlated chaotic systems and long-term correlated fractal processes, and by the empirical analysis on daily closing prices of eleven worldwide stock indices. Obtained results suggest that finite size has a significant effect on the evaluation, and that there might be no direct relation between the time irreversibility and long-range correlation of series. Similarity and dissimilarity between stock indices are also indicated from respective regional and global perspectives, showing the existence of multiple features of underlying systems.
Autism biomarkers: challenges, pitfalls and possibilities.
Anderson, George M
2015-04-01
Network perspectives, in their emphasis on components and their interactions, might afford the best approach to the complexities of the ASD realm. Categorical approaches are unlikely to be fruitful as one should not expect to find a single or even predominant underlying cause of autism behavior across individuals. It is possible that the complex, highly interactive, heterogeneous and individualistic nature of the autism realm is intractable in terms of identifying clinically useful biomarker tests. It is hopeful from an emergenic perspective that small corrective changes in a single component of a deleterious network/configuration might have large beneficial consequences on developmental trajectories and in later treatment. It is suggested that the relationship between ASD and intellectual disability might be fundamentally different in single-gene versus nonsyndromic ASD. It is strongly stated that available biomarker "tests" for autism/ASD will do more harm than good. Finally, the serotonin-melatonin-oxidative stress-placental intersection might be an especially fruitful area of biological investigation.
NASA Astrophysics Data System (ADS)
Eschenbächer, Jens; Seifert, Marcus; Thoben, Klaus-Dieter
Distributed innovation processes are considered as a new option to handle both the complexity and the speed in which new products and services need to be prepared. Indeed most research on innovation processes was focused on multinational companies with an intra-organisational perspective. The phenomena of innovation processes in networks - with an inter-organisational perspective - have been almost neglected. Collaborative networks present a perfect playground for such distributed innovation processes whereas the authors highlight in specific Virtual Organisation because of their dynamic behaviour. Research activities supporting distributed innovation processes in VO are rather new so that little knowledge about the management of such research is available. With the presentation of the collaborative network relationship analysis this gap will be addressed. It will be shown that a qualitative planning of collaboration intensities can support real business cases by proving knowledge and planning data.
Measuring the default risk of sovereign debt from the perspective of network
NASA Astrophysics Data System (ADS)
Chuang, Hongwei; Ho, Hwai-Chung
2013-05-01
Recently, there has been a growing interest in network research, especially in the fields of biology, computer science, and sociology. It is natural to address complex financial issues such as the European sovereign debt crisis from the perspective of network. In this article, we construct a network model according to the debt-credit relations instead of using the conventional methodology to measure the default risk. Based on the model, a risk index is examined using the quarterly report of consolidated foreign claims from the Bank for International Settlements (BIS) and debt/GDP ratios among these reporting countries. The empirical results show that this index can help the regulators and practitioners not only to determine the status of interconnectivity but also to point out the degree of the sovereign debt default risk. Our approach sheds new light on the investigation of quantifying the systemic risk.
MicroRNA-mediated regulatory circuits: outlook and perspectives
NASA Astrophysics Data System (ADS)
Cora', Davide; Re, Angela; Caselle, Michele; Bussolino, Federico
2017-08-01
MicroRNAs have been found to be necessary for regulating genes implicated in almost all signaling pathways, and consequently their dysfunction influences many diseases, including cancer. Understanding of the complexity of the microRNA-mediated regulatory network has grown in terms of size, connectivity and dynamics with the development of computational and, more recently, experimental high-throughput approaches for microRNA target identification. Newly developed studies on recurrent microRNA-mediated circuits in regulatory networks, also known as network motifs, have substantially contributed to addressing this complexity, and therefore to helping understand the ways by which microRNAs achieve their regulatory role. This review provides a summarizing view of the state-of-the-art, and perspectives of research efforts on microRNA-mediated regulatory motifs. In this review, we discuss the topological properties characterizing different types of circuits, and the regulatory features theoretically enabled by such properties, with a special emphasis on examples of circuits typifying their biological significance in experimentally validated contexts. Finally, we will consider possible future developments, in particular regarding microRNA-mediated circuits involving long non-coding RNAs and epigenetic regulators.
Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective
Gu, Shuo
2017-01-01
With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed. PMID:28690664
Modelling dendritic ecological networks in space: anintegrated network perspective
Peterson, Erin E.; Ver Hoef, Jay M.; Isaak, Dan J.; Falke, Jeffrey A.; Fortin, Marie-Josée; Jordon, Chris E.; McNyset, Kristina; Monestiez, Pascal; Ruesch, Aaron S.; Sengupta, Aritra; Som, Nicholas; Steel, E. Ashley; Theobald, David M.; Torgersen, Christian E.; Wenger, Seth J.
2013-01-01
the context of stream ecology. Within this context, we summarise the key innovations of a new family of spatial statistical models that describe spatial relationships in DENs. Finally, we discuss how different network analyses may be combined to address more complex and novel research questions. While our main focus is streams, the taxonomy of network analyses is also relevant anywhere spatial patterns in both network and 2-D space can be used to explore the influence of multi-scale processes on biota and their habitat (e.g. plant morphology and pest infestation, or preferential migration along stream or road corridors).
Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective.
Gu, Shuo; Pei, Jianfeng
2017-01-01
With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed.
NASA Astrophysics Data System (ADS)
Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo
2017-02-01
In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development.
Hybrid modeling and empirical analysis of automobile supply chain network
NASA Astrophysics Data System (ADS)
Sun, Jun-yan; Tang, Jian-ming; Fu, Wei-ping; Wu, Bing-ying
2017-05-01
Based on the connection mechanism of nodes which automatically select upstream and downstream agents, a simulation model for dynamic evolutionary process of consumer-driven automobile supply chain is established by integrating ABM and discrete modeling in the GIS-based map. Firstly, the rationality is proved by analyzing the consistency of sales and changes in various agent parameters between the simulation model and a real automobile supply chain. Second, through complex network theory, hierarchical structures of the model and relationships of networks at different levels are analyzed to calculate various characteristic parameters such as mean distance, mean clustering coefficients, and degree distributions. By doing so, it verifies that the model is a typical scale-free network and small-world network. Finally, the motion law of this model is analyzed from the perspective of complex self-adaptive systems. The chaotic state of the simulation system is verified, which suggests that this system has typical nonlinear characteristics. This model not only macroscopically illustrates the dynamic evolution of complex networks of automobile supply chain but also microcosmically reflects the business process of each agent. Moreover, the model construction and simulation of the system by means of combining CAS theory and complex networks supplies a novel method for supply chain analysis, as well as theory bases and experience for supply chain analysis of auto companies.
A Guide to the Literature on Learning Graphical Models
NASA Technical Reports Server (NTRS)
Buntine, Wray L.; Friedland, Peter (Technical Monitor)
1994-01-01
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and more generally, learning probabilistic graphical models. Because many problems in artificial intelligence, statistics and neural networks can be represented as a probabilistic graphical model, this area provides a unifying perspective on learning. This paper organizes the research in this area along methodological lines of increasing complexity.
Wigman, J T W; van Os, J; Borsboom, D; Wardenaar, K J; Epskamp, S; Klippel, A; Viechtbauer, W; Myin-Germeys, I; Wichers, M
2015-08-01
It has been suggested that the structure of psychopathology is best described as a complex network of components that interact in dynamic ways. The goal of the present paper was to examine the concept of psychopathology from a network perspective, combining complementary top-down and bottom-up approaches using momentary assessment techniques. A pooled Experience Sampling Method (ESM) dataset of three groups (individuals with a diagnosis of depression, psychotic disorder or no diagnosis) was used (pooled N = 599). The top-down approach explored the network structure of mental states across different diagnostic categories. For this purpose, networks of five momentary mental states ('cheerful', 'content', 'down', 'insecure' and 'suspicious') were compared between the three groups. The complementary bottom-up approach used principal component analysis to explore whether empirically derived network structures yield meaningful higher order clusters. Individuals with a clinical diagnosis had more strongly connected moment-to-moment network structures, especially the depressed group. This group also showed more interconnections specifically between positive and negative mental states than the psychotic group. In the bottom-up approach, all possible connections between mental states were clustered into seven main components that together captured the main characteristics of the network dynamics. Our combination of (i) comparing network structure of mental states across three diagnostically different groups and (ii) searching for trans-diagnostic network components across all pooled individuals showed that these two approaches yield different, complementary perspectives in the field of psychopathology. The network paradigm therefore may be useful to map transdiagnostic processes.
Sunden, Fanny; Peck, Ariana; Salzman, Julia; Ressl, Susanne; Herschlag, Daniel
2015-01-01
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modes of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes. DOI: http://dx.doi.org/10.7554/eLife.06181.001 PMID:25902402
Sunden, Fanny; Peck, Ariana; Salzman, Julia; ...
2015-04-22
Enzymes enable life by accelerating reaction rates to biological timescales. Conventional studies have focused on identifying the residues that have a direct involvement in an enzymatic reaction, but these so-called ‘catalytic residues’ are embedded in extensive interaction networks. Although fundamental to our understanding of enzyme function, evolution, and engineering, the properties of these networks have yet to be quantitatively and systematically explored. We dissected an interaction network of five residues in the active site of Escherichia coli alkaline phosphatase. Analysis of the complex catalytic interdependence of specific residues identified three energetically independent but structurally interconnected functional units with distinct modesmore » of cooperativity. From an evolutionary perspective, this network is orders of magnitude more probable to arise than a fully cooperative network. From a functional perspective, new catalytic insights emerge. Further, such comprehensive energetic characterization will be necessary to benchmark the algorithms required to rationally engineer highly efficient enzymes.« less
Using network analysis to study behavioural phenotypes: an example using domestic dogs.
Goold, Conor; Vas, Judit; Olsen, Christine; Newberry, Ruth C
2016-10-01
Phenotypic integration describes the complex interrelationships between organismal traits, traditionally focusing on morphology. Recently, research has sought to represent behavioural phenotypes as composed of quasi-independent latent traits. Concurrently, psychologists have opposed latent variable interpretations of human behaviour, proposing instead a network perspective envisaging interrelationships between behaviours as emerging from causal dependencies. Network analysis could also be applied to understand integrated behavioural phenotypes in animals. Here, we assimilate this cross-disciplinary progression of ideas by demonstrating the use of network analysis on survey data collected on behavioural and motivational characteristics of police patrol and detection dogs ( Canis lupus familiaris ). Networks of conditional independence relationships illustrated a number of functional connections between descriptors, which varied between dog types. The most central descriptors denoted desirable characteristics in both patrol and detection dog networks, with 'Playful' being widely correlated and possessing mediating relationships between descriptors. Bootstrap analyses revealed the stability of network results. We discuss the results in relation to previous research on dog personality, and benefits of using network analysis to study behavioural phenotypes. We conclude that a network perspective offers widespread opportunities for advancing the understanding of phenotypic integration in animal behaviour.
A network engineering perspective on probing and perturbing cognition with neurofeedback
Khambhati, Ankit N.
2017-01-01
Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. PMID:28445589
Flash crashes, bursts, and black swans: parallels between financial markets and healthcare systems.
West, Bruce J; Clancy, Thomas R
2010-11-01
As systems evolve over time, their natural tendency is to become increasingly more complex. Studies in the field of complex systems have generated new perspectives on management in social organizations such as hospitals. Much of this research appears as a natural extension of the cross-disciplinary field of systems theory. This is the 16th in a series of articles applying complex systems science to the traditional management concepts of planning, organizing, directing, coordinating, and controlling. In this article, Dr Clancy, the editor of this column, and co-author, Dr West, discuss how the collapse of global financial markets in 2008 may provide valuable insight into mechanisms of complex system behavior in healthcare. Dr West, a physicist and expert in the field of complex systems and network science, is author of a chapter in the book, On the Edge: Nursing in the Age of Complexity (Lindberg C, Nash S, Linberg C. Bordertown, NJ: Plexus Press; 2008) and his most recent book, Disrupted Networks: From Physics to Climate Change (West BJ, Scafetta N. Singapore: Disrupted Networks, World Scientific Publishing; 2010).
Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany
2018-03-19
Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership, and flexible structures and processes to accommodate the dynamic reality of these networks. Originality/value This case study builds on growing interest in the role of networks to foster large-scale change. The particular value rests on the longitudinal perspective on the evolution of a large, complex global network, and the use of theory to guide understanding.
NASA Astrophysics Data System (ADS)
Srimani, P. K.; Parimala, Y. G.
2011-12-01
A unique approach has been developed to study patterns in ragas of Carnatic Classical music based on artificial neural networks. Ragas in Carnatic music which have found their roots in the Vedic period, have grown on a Scientific foundation over thousands of years. However owing to its vastness and complexities it has always been a challenge for scientists and musicologists to give an all encompassing perspective both qualitatively and quantitatively. Cognition, comprehension and perception of ragas in Indian classical music have always been the subject of intensive research, highly intriguing and many facets of these are hitherto not unravelled. This paper is an attempt to view the melakartha ragas with a cognitive perspective using artificial neural network based approach which has given raise to very interesting results. The 72 ragas of the melakartha system were defined through the combination of frequencies occurring in each of them. The data sets were trained using several neural networks. 100% accurate pattern recognition and classification was obtained using linear regression, TLRN, MLP and RBF networks. Performance of the different network topologies, by varying various network parameters, were compared. Linear regression was found to be the best performing network.
Global multi-layer network of human mobility
Belyi, Alexander; Bojic, Iva; Sobolevsky, Stanislav; Sitko, Izabela; Hawelka, Bartosz; Rudikova, Lada; Kurbatski, Alexander; Ratti, Carlo
2017-01-01
ABSTRACT Recent availability of geo-localized data capturing individual human activity together with the statistical data on international migration opened up unprecedented opportunities for a study on global mobility. In this paper, we consider it from the perspective of a multi-layer complex network, built using a combination of three datasets: Twitter, Flickr and official migration data. Those datasets provide different, but equally important insights on the global mobility – while the first two highlight short-term visits of people from one country to another, the last one – migration – shows the long-term mobility perspective, when people relocate for good. The main purpose of the paper is to emphasize importance of this multi-layer approach capturing both aspects of human mobility at the same time. On the one hand, we show that although the general properties of different layers of the global mobility network are similar, there are important quantitative differences among them. On the other hand, we demonstrate that consideration of mobility from a multi-layer perspective can reveal important global spatial patterns in a way more consistent with those observed in other available relevant sources of international connections, in comparison to the spatial structure inferred from each network layer taken separately. PMID:28553155
The complex network of the Brazilian Popular Music
NASA Astrophysics Data System (ADS)
de Lima e Silva, D.; Medeiros Soares, M.; Henriques, M. V. C.; Schivani Alves, M. T.; de Aguiar, S. G.; de Carvalho, T. P.; Corso, G.; Lucena, L. S.
2004-02-01
We study the Brazilian Popular Music in a network perspective. We call the Brazilian Popular Music Network, BPMN, the graph where the vertices are the song writers and the links are determined by the existence of at least a common singer. The linking degree distribution of such graph shows power law and exponential regions. The exponent of the power law is compatible with the values obtained by the evolving network algorithms seen in the literature. The average path length of the BPMN is similar to the correspondent random graph, its clustering coefficient, however, is significantly larger. These results indicate that the BPMN forms a small-world network.
Xu, Ronghua; Wong, Wing-Keung; Chen, Guanrong; Huang, Shuo
2017-01-01
In this paper, we analyze the relationship among stock networks by focusing on the statistically reliable connectivity between financial time series, which accurately reflects the underlying pure stock structure. To do so, we firstly filter out the effect of market index on the correlations between paired stocks, and then take a t-test based P-threshold approach to lessening the complexity of the stock network based on the P values. We demonstrate the superiority of its performance in understanding network complexity by examining the Hong Kong stock market. By comparing with other filtering methods, we find that the P-threshold approach extracts purely and significantly correlated stock pairs, which reflect the well-defined hierarchical structure of the market. In analyzing the dynamic stock networks with fixed-size moving windows, our results show that three global financial crises, covered by the long-range time series, can be distinguishingly indicated from the network topological and evolutionary perspectives. In addition, we find that the assortativity coefficient can manifest the financial crises and therefore can serve as a good indicator of the financial market development. PMID:28145494
Cooperative Management of a Lithium-Ion Battery Energy Storage Network: A Distributed MPC Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Huazhen; Wu, Di; Yang, Tao
2016-12-12
This paper presents a study of cooperative power supply and storage for a network of Lithium-ion energy storage systems (LiBESSs). We propose to develop a distributed model predictive control (MPC) approach for two reasons. First, able to account for the practical constraints of a LiBESS, the MPC can enable a constraint-aware operation. Second, a distributed management can cope with a complex network that integrates a large number of LiBESSs over a complex communication topology. With this motivation, we then build a fully distributed MPC algorithm from an optimization perspective, which is based on an extension of the alternating direction methodmore » of multipliers (ADMM) method. A simulation example is provided to demonstrate the effectiveness of the proposed algorithm.« less
Heterarchies: Reconciling Networks and Hierarchies.
Cumming, Graeme S
2016-08-01
Social-ecological systems research suffers from a disconnect between hierarchical (top-down or bottom-up) and network (peer-to-peer) analyses. The concept of the heterarchy unifies these perspectives in a single framework. Here, I review the history and application of 'heterarchy' in neuroscience, ecology, archaeology, multiagent control systems, business and organisational studies, and politics. Recognising complex system architecture as a continuum along vertical and lateral axes ('flat versus hierarchical' and 'individual versus networked') suggests four basic types of heterarchy: reticulated, polycentric, pyramidal, and individualistic. Each has different implications for system functioning and resilience. Systems can also shift predictably and abruptly between architectures. Heterarchies suggest new ways of contextualising and generalising from case studies and new methods for analysing complex structure-function relations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cross-Dependency Inference in Multi-Layered Networks: A Collaborative Filtering Perspective.
Chen, Chen; Tong, Hanghang; Xie, Lei; Ying, Lei; He, Qing
2017-08-01
The increasingly connected world has catalyzed the fusion of networks from different domains, which facilitates the emergence of a new network model-multi-layered networks. Examples of such kind of network systems include critical infrastructure networks, biological systems, organization-level collaborations, cross-platform e-commerce, and so forth. One crucial structure that distances multi-layered network from other network models is its cross-layer dependency, which describes the associations between the nodes from different layers. Needless to say, the cross-layer dependency in the network plays an essential role in many data mining applications like system robustness analysis and complex network control. However, it remains a daunting task to know the exact dependency relationships due to noise, limited accessibility, and so forth. In this article, we tackle the cross-layer dependency inference problem by modeling it as a collective collaborative filtering problem. Based on this idea, we propose an effective algorithm Fascinate that can reveal unobserved dependencies with linear complexity. Moreover, we derive Fascinate-ZERO, an online variant of Fascinate that can respond to a newly added node timely by checking its neighborhood dependencies. We perform extensive evaluations on real datasets to substantiate the superiority of our proposed approaches.
Team Learning on the Edge of Chaos
ERIC Educational Resources Information Center
Fisser, Sandra; Browaeys, Marie-Joelle
2010-01-01
Purpose: Organizations as complex networks aim to survive. The purpose of this paper is to provide an alternative perspective to current organizational challenges by considering team learning as key factor for surviving this turbulent environment. Design/methodology/approach: The dominating approach in this paper comes from the complexity…
NASA Astrophysics Data System (ADS)
Agarwal, Ankit; Marwan, Norbert; Rathinasamy, Maheswaran; Oeztuerk, Ugur; Merz, Bruno; Kurths, Jürgen
2017-04-01
Understanding of the climate sytems has been of tremendous importance to different branches such as agriculture, flood, drought and water resources management etc. In this regard, complex networks analysis and time series analysis attracted considerable attention, owing to their potential role in understanding the climate system through characteristic properties. One of the basic requirements in studying climate network dynamics is to identify connections in space or time or space-time, depending upon the purpose. Although a wide variety of approaches have been developed and applied to identify and analyse spatio-temporal relationships by climate networks, there is still further need for improvements in particular when considering precipitation time series or interactions on different scales. In this regard, recent developments in the area of network theory, especially complex networks, offer new avenues, both for their generality about systems and for their holistic perspective about spatio-temporal relationships. The present study has made an attempt to apply the ideas developed in the field of complex networks to examine connections in regional climate networks with particular focus on multiscale spatiotemporal connections. This paper proposes a novel multiscale understanding of regional climate networks using wavelets. The proposed approach is applied to daily precipitation records observed at 543 selected stations from south Germany for a period of 110 years (1901-2010). Further, multiscale community mining is performed on the same study region to shed more light on the underlying processes at different time scales. Various network measure and tools so far employed provide micro-level (individual station) and macro-level (community structure) information of the network. It is interesting to investigate how the result of this study can be useful for future climate predictions and for evaluating climate models on their implementation regarding heavy precipitation. Keywords: Complex network, event synchronization, wavelet, regional climate network, multiscale community mining
A network engineering perspective on probing and perturbing cognition with neurofeedback.
Bassett, Danielle S; Khambhati, Ankit N
2017-05-01
Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Network Analysis: A Novel Approach to Understand Suicidal Behaviour
de Beurs, Derek
2017-01-01
Although suicide is a major public health issue worldwide, we understand little of the onset and development of suicidal behaviour. Suicidal behaviour is argued to be the end result of the complex interaction between psychological, social and biological factors. Epidemiological studies resulted in a range of risk factors for suicidal behaviour, but we do not yet understand how their interaction increases the risk for suicidal behaviour. A new approach called network analysis can help us better understand this process as it allows us to visualize and quantify the complex association between many different symptoms or risk factors. A network analysis of data containing information on suicidal patients can help us understand how risk factors interact and how their interaction is related to suicidal thoughts and behaviour. A network perspective has been successfully applied to the field of depression and psychosis, but not yet to the field of suicidology. In this theoretical article, I will introduce the concept of network analysis to the field of suicide prevention, and offer directions for future applications and studies.
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-01-01
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli, and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs. PMID:29113310
Yu, Bin; Xu, Jia-Meng; Li, Shan; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Zhang, Yan; Wang, Ming-Hui
2017-10-06
Gene regulatory networks (GRNs) research reveals complex life phenomena from the perspective of gene interaction, which is an important research field in systems biology. Traditional Bayesian networks have a high computational complexity, and the network structure scoring model has a single feature. Information-based approaches cannot identify the direction of regulation. In order to make up for the shortcomings of the above methods, this paper presents a novel hybrid learning method (DBNCS) based on dynamic Bayesian network (DBN) to construct the multiple time-delayed GRNs for the first time, combining the comprehensive score (CS) with the DBN model. DBNCS algorithm first uses CMI2NI (conditional mutual inclusive information-based network inference) algorithm for network structure profiles learning, namely the construction of search space. Then the redundant regulations are removed by using the recursive optimization algorithm (RO), thereby reduce the false positive rate. Secondly, the network structure profiles are decomposed into a set of cliques without loss, which can significantly reduce the computational complexity. Finally, DBN model is used to identify the direction of gene regulation within the cliques and search for the optimal network structure. The performance of DBNCS algorithm is evaluated by the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in Escherichia coli , and compared with other state-of-the-art methods. The experimental results show the rationality of the algorithm design and the outstanding performance of the GRNs.
Relational Frame Theory and Industrial/Organizational Psychology
ERIC Educational Resources Information Center
Stewart, Ian; Barnes-Holmes, Dermot; Barnes-Holmes, Yvonne; Bond, Frank W.; Hayes, Steven C.
2006-01-01
The current paper argues that a Relational Frame Theory account of complex human behavior including an analysis of relational frames, relational networks, rules and the concept of self can provide a potentially powerful new perspective on phenomena in the applied science of industrial/organizational (I/O) psychology. In this article, we first…
The Future of the Gender System: An Interventionist Approach
ERIC Educational Resources Information Center
Harkness, Sarah K.; Hall, Deborah L.
2010-01-01
Gender is one of the primary organizers of social life. Given this importance, gender has been studied from multiple vantages, including biological, sociocognitive, interpersonal, network, and institutional perspectives. The diversity of these approaches illustrates the complex nature of gender as a multilevel social construction and that the…
ERIC Educational Resources Information Center
Pendergast, Laura L.; Kaplan, Avi
2015-01-01
From an ecological perspective, learning and development in childhood and throughout the lifespan occur in the context of interactions within complex social networks. Collectively, the articles in this special issue illuminate three important themes related to teacher-student interactions within instructional contexts: relationships, competence,…
Models for the modern power grid
NASA Astrophysics Data System (ADS)
Nardelli, Pedro H. J.; Rubido, Nicolas; Wang, Chengwei; Baptista, Murilo S.; Pomalaza-Raez, Carlos; Cardieri, Paulo; Latva-aho, Matti
2014-10-01
This article reviews different kinds of models for the electric power grid that can be used to understand the modern power system, the smart grid. From the physical network to abstract energy markets, we identify in the literature different aspects that co-determine the spatio-temporal multilayer dynamics of power system. We start our review by showing how the generation, transmission and distribution characteristics of the traditional power grids are already subject to complex behaviour appearing as a result of the the interplay between dynamics of the nodes and topology, namely synchronisation and cascade effects. When dealing with smart grids, the system complexity increases even more: on top of the physical network of power lines and controllable sources of electricity, the modernisation brings information networks, renewable intermittent generation, market liberalisation, prosumers, among other aspects. In this case, we forecast a dynamical co-evolution of the smart grid and other kind of networked systems that cannot be understood isolated. This review compiles recent results that model electric power grids as complex systems, going beyond pure technological aspects. From this perspective, we then indicate possible ways to incorporate the diverse co-evolving systems into the smart grid model using, for example, network theory and multi-agent simulation.
Cascade phenomenon against subsequent failures in complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng
2018-06-01
Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.
Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks.
Wang, Wenjun; Chen, Xue; Jiao, Pengfei; Jin, Di
2017-12-05
Link prediction is an attractive research topic in the field of data mining and has significant applications in improving performance of recommendation system and exploring evolving mechanisms of the complex networks. A variety of complex systems in real world should be abstractly represented as bipartite networks, in which there are two types of nodes and no links connect nodes of the same type. In this paper, we propose a framework for link prediction in bipartite networks by combining the similarity based structure and the latent feature model from a new perspective. The framework is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes the local characteristics into consideration and encodes the geometrical information of the networks by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective function based on gradient descent. Extensive experiments on a variety of real world bipartite networks show that the proposed framework of link prediction has a more competitive, preferable and stable performance in comparison with the state-of-art methods.
Supply network science: Emergence of a new perspective on a classical field
NASA Astrophysics Data System (ADS)
Brintrup, Alexandra; Ledwoch, Anna
2018-03-01
Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.
Supply network science: Emergence of a new perspective on a classical field.
Brintrup, Alexandra; Ledwoch, Anna
2018-03-01
Supply networks emerge as companies procure goods from one another to produce their own products. Due to a chronic lack of data, studies on these emergent structures have long focussed on local neighbourhoods, assuming simple, chain-like structures. However, studies conducted since 2001 have shown that supply chains are indeed complex networks that exhibit similar organisational patterns to other network types. In this paper, we present a critical review of theoretical and model based studies which conceptualise supply chains from a network science perspective, showing that empirical data do not always support theoretical models that were developed, and argue that different industrial settings may present different characteristics. Consequently, a need that arises is the development and reconciliation of interpretation across different supply network layers such as contractual relations, material flow, financial links, and co-patenting, as these different projections tend to remain in disciplinary siloes. Other gaps include a lack of null models that show whether the observed properties are meaningful, a lack of dynamical models that can inform how layers evolve and adopt to changes, and a lack of studies that investigate how local decisions enable emergent outcomes. We conclude by asking the network science community to help bridge these gaps by engaging with this important area of research.
Maximizing information exchange between complex networks
NASA Astrophysics Data System (ADS)
West, Bruce J.; Geneston, Elvis L.; Grigolini, Paolo
2008-10-01
Science is not merely the smooth progressive interaction of hypothesis, experiment and theory, although it sometimes has that form. More realistically the scientific study of any given complex phenomenon generates a number of explanations, from a variety of perspectives, that eventually requires synthesis to achieve a deep level of insight and understanding. One such synthesis has created the field of out-of-equilibrium statistical physics as applied to the understanding of complex dynamic networks. Over the past forty years the concept of complexity has undergone a metamorphosis. Complexity was originally seen as a consequence of memory in individual particle trajectories, in full agreement with a Hamiltonian picture of microscopic dynamics and, in principle, macroscopic dynamics could be derived from the microscopic Hamiltonian picture. The main difficulty in deriving macroscopic dynamics from microscopic dynamics is the need to take into account the actions of a very large number of components. The existence of events such as abrupt jumps, considered by the conventional continuous time random walk approach to describing complexity was never perceived as conflicting with the Hamiltonian view. Herein we review many of the reasons why this traditional Hamiltonian view of complexity is unsatisfactory. We show that as a result of technological advances, which make the observation of single elementary events possible, the definition of complexity has shifted from the conventional memory concept towards the action of non-Poisson renewal events. We show that the observation of crucial processes, such as the intermittent fluorescence of blinking quantum dots as well as the brain’s response to music, as monitored by a set of electrodes attached to the scalp, has forced investigators to go beyond the traditional concept of complexity and to establish closer contact with the nascent field of complex networks. Complex networks form one of the most challenging areas of modern research overarching all of the traditional scientific disciplines. The transportation networks of planes, highways and railroads; the economic networks of global finance and stock markets; the social networks of terrorism, governments, businesses and churches; the physical networks of telephones, the Internet, earthquakes and global warming and the biological networks of gene regulation, the human body, clusters of neurons and food webs, share a number of apparently universal properties as the networks become increasingly complex. Ubiquitous aspects of such complex networks are the appearance of non-stationary and non-ergodic statistical processes and inverse power-law statistical distributions. Herein we review the traditional dynamical and phase-space methods for modeling such networks as their complexity increases and focus on the limitations of these procedures in explaining complex networks. Of course we will not be able to review the entire nascent field of network science, so we limit ourselves to a review of how certain complexity barriers have been surmounted using newly applied theoretical concepts such as aging, renewal, non-ergodic statistics and the fractional calculus. One emphasis of this review is information transport between complex networks, which requires a fundamental change in perception that we express as a transition from the familiar stochastic resonance to the new concept of complexity matching.
Implications of behavioral architecture for the evolution of self-organized division of labor.
Duarte, A; Scholtens, E; Weissing, F J
2012-01-01
Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization.
Implications of Behavioral Architecture for the Evolution of Self-Organized Division of Labor
Duarte, A.; Scholtens, E.; Weissing, F. J.
2012-01-01
Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization. PMID:22457609
The Internet As a Large-Scale Complex System
NASA Astrophysics Data System (ADS)
Park, Kihong; Willinger, Walter
2005-06-01
The Internet may be viewed as a "complex system" with diverse features and many components that can give rise to unexpected emergent phenomena, revealing much about its own engineering. This book brings together chapter contributions from a workshop held at the Santa Fe Institute in March 2001. This volume captures a snapshot of some features of the Internet that may be fruitfully approached using a complex systems perspective, meaning using interdisciplinary tools and methods to tackle the subject area. The Internet penetrates the socioeconomic fabric of everyday life; a broader and deeper grasp of the Internet may be needed to meet the challenges facing the future. The resulting empirical data have already proven to be invaluable for gaining novel insights into the network's spatio-temporal dynamics, and can be expected to become even more important when tryin to explain the Internet's complex and emergent behavior in terms of elementary networking-based mechanisms. The discoveries of fractal or self-similar network traffic traces, power-law behavior in network topology and World Wide Web connectivity are instances of unsuspected, emergent system traits. Another important factor at the heart of fair, efficient, and stable sharing of network resources is user behavior. Network systems, when habited by selfish or greedy users, take on the traits of a noncooperative multi-party game, and their stability and efficiency are integral to understanding the overall system and its dynamics. Lastly, fault-tolerance and robustness of large-scale network systems can exhibit spatial and temporal correlations whose effective analysis and management may benefit from rescaling techniques applied in certain physical and biological systems. The present book will bring together several of the leading workers involved in the analysis of complex systems with the future development of the Internet.
Developmental perspectives on nutrition and obesity from gestation to adolescence.
Esposito, Layla; Fisher, Jennifer O; Mennella, Julie A; Hoelscher, Deanna M; Huang, Terry T
2009-07-01
Obesity results from a complex combination of factors that act at many stages throughout a person's life. Therefore, examining childhood nutrition and obesity from a developmental perspective is warranted. A developmental perspective recognizes the cumulative effects of factors that contribute to eating behavior and obesity, including biological and socioenvironmental factors that are relevant at different stages of development. A developmental perspective considers family, school, and community context. During gestation, risk factors for obesity include maternal diet, overweight, and smoking. In early childhood, feeding practices, taste acquisition, and eating in the absence of hunger must be considered. As children become more independent during middle childhood and adolescence, school nutrition, food marketing, and social networks become focal points for obesity prevention or intervention. Combining a multilevel approach with a developmental perspective can inform more effective and sustainable strategies for obesity prevention.
"The Teacher Education Conversation": A Network of Cooperating Teachers
ERIC Educational Resources Information Center
Nielsen, Wendy S.; Triggs, Valerie; Clarke, Anthony; Collins, John
2010-01-01
This study investigated a professional learning community of cooperating teachers and university-based teacher educators. To examine our roles and perspectives as colleagues in teacher education, we drew on frameworks in teacher learning and complexity science. Monthly group meetings of this inquiry community were held over two school years in a…
Gao, Xiangyun; Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng
2018-03-01
Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion.
Huang, Shupei; Sun, Xiaoqi; Hao, Xiaoqing; An, Feng
2018-01-01
Microscopic factors are the basis of macroscopic phenomena. We proposed a network analysis paradigm to study the macroscopic financial system from a microstructure perspective. We built the cointegration network model and the Granger causality network model based on econometrics and complex network theory and chose stock price time series of the real estate industry and its upstream and downstream industries as empirical sample data. Then, we analysed the cointegration network for understanding the steady long-term equilibrium relationships and analysed the Granger causality network for identifying the diffusion paths of the potential risks in the system. The results showed that the influence from a few key stocks can spread conveniently in the system. The cointegration network and Granger causality network are helpful to detect the diffusion path between the industries. We can also identify and intervene in the transmission medium to curb risk diffusion. PMID:29657804
Bassett, Danielle S; Sporns, Olaf
2017-01-01
Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844
Damage spreading in spatial and small-world random Boolean networks
NASA Astrophysics Data System (ADS)
Lu, Qiming; Teuscher, Christof
2014-02-01
The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean networks (RBNs) are commonly used as a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other nonrandom connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the Hamming distance at very low connectivities (K¯≪1) and that the critical connectivity of stability Ks changes compared to random networks. At higher K¯, this scaling remains unchanged. We also show that the Hamming distance of spatially local networks scales with a power law as the system size N increases, but with a different exponent for local and small-world networks. The scaling arguments for small-world networks are obtained with respect to the system sizes and strength of spatially local connections. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.
A Network of Networks Perspective on Global Trade.
Maluck, Julian; Donner, Reik V
2015-01-01
Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990-2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector's role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network's substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends. The marked reorganization of trade patterns, associated with this economic crisis in comparison to "normal" annual fluctuations in the network structure is traced and quantified by a new widely applicable generalization of the Hamming distance to weighted networks.
Cresswell, Kathrin M; Worth, Allison; Sheikh, Aziz
2010-11-01
Actor-Network Theory (ANT) is an increasingly influential, but still deeply contested, approach to understand humans and their interactions with inanimate objects. We argue that health services research, and in particular evaluations of complex IT systems in health service organisations, may benefit from being informed by Actor-Network Theory perspectives. Despite some limitations, an Actor-Network Theory-based approach is conceptually useful in helping to appreciate the complexity of reality (including the complexity of organisations) and the active role of technology in this context. This can prove helpful in understanding how social effects are generated as a result of associations between different actors in a network. Of central importance in this respect is that Actor-Network Theory provides a lens through which to view the role of technology in shaping social processes. Attention to this shaping role can contribute to a more holistic appreciation of the complexity of technology introduction in healthcare settings. It can also prove practically useful in providing a theoretically informed approach to sampling (by drawing on informants that are related to the technology in question) and analysis (by providing a conceptual tool and vocabulary that can form the basis for interpretations). We draw on existing empirical work in this area and our ongoing work investigating the integration of electronic health record systems introduced as part of England's National Programme for Information Technology to illustrate salient points. Actor-Network Theory needs to be used pragmatically with an appreciation of its shortcomings. Our experiences suggest it can be helpful in investigating technology implementations in healthcare settings.
Grip on health: A complex systems approach to transform health care.
van Wietmarschen, Herman A; Wortelboer, Heleen M; van der Greef, Jan
2018-02-01
This article addresses the urgent need for a transition in health care to deal with the increasing prevalence of chronic diseases and associated rapid rise of health care costs. Chronic diseases evolve and are predominantly related to lifestyle and environment. A shift is needed from a reductionist repair mode of thinking, toward a more integrated biopsychosocial way of thinking about health. The aim of this article is to discuss the opportunities that complexity science offer for transforming health care toward optimal treatment and prevention of chronic lifestyle diseases. Health and health care is discussed from a complexity science perspective. The benefits of concepts developed in the field of complexity science for stimulating transitions in health care are explored. Complexity science supports the elucidation of the essence of health processes. It provides a unique perspective on health with a focus on the relationships within networks of dynamically interacting factors and the emergence of health out of the organization of those relationships. Novel types of complexity science-based intervention strategies are being developed. The first application in practice is the integrated obesity treatment program currently piloted in the Netherlands, focusing on health awareness and healing relationships. Complexity science offers various theories and methods to capture the path toward unhealthy and healthy states, facilitating the development of a dynamic integrated biopsychosocial perspective on health. This perspective offers unique insights into health processes for patients and citizens. In addition, dynamic models driven by personal data provide simulations of health processes and the ability to detect transitions between health states. Such models are essential for aligning and reconnecting the many institutions and disciplines involved in the health care sector and evolve toward an integrated health care ecosystem. © 2016 John Wiley & Sons, Ltd.
Shadows of complexity: what biological networks reveal about epistasis and pleiotropy
Tyler, Anna L.; Asselbergs, Folkert W.; Williams, Scott M.; Moore, Jason H.
2011-01-01
Pleiotropy, in which one mutation causes multiple phenotypes, has traditionally been seen as a deviation from the conventional observation in which one gene affects one phenotype. Epistasis, or gene-gene interaction, has also been treated as an exception to the Mendelian one gene-one phenotype paradigm. This simplified perspective belies the pervasive complexity of biology and hinders progress toward a deeper understanding of biological systems. We assert that epistasis and pleiotropy are not isolated occurrences, but ubiquitous and inherent properties of biomolecular networks. These phenomena should not be treated as exceptions, but rather as fundamental components of genetic analyses. A systems level understanding of epistasis and pleiotropy is, therefore, critical to furthering our understanding of human genetics and its contribution to common human disease. Finally, graph theory offers an intuitive and powerful set of tools with which to study the network bases of these important genetic phenomena. PMID:19204994
Between "design" and "bricolage": genetic networks, levels of selection, and adaptive evolution.
Wilkins, Adam S
2007-05-15
The extent to which "developmental constraints" in complex organisms restrict evolutionary directions remains contentious. Yet, other forms of internal constraint, which have received less attention, may also exist. It will be argued here that a set of partial constraints below the level of phenotypes, those involving genes and molecules, influences and channels the set of possible evolutionary trajectories. At the top-most organizational level there are the genetic network modules, whose operations directly underlie complex morphological traits. The properties of these network modules, however, have themselves been set by the evolutionary history of the component genes and their interactions. Characterization of the components, structures, and operational dynamics of specific genetic networks should lead to a better understanding not only of the morphological traits they underlie but of the biases that influence the directions of evolutionary change. Furthermore, such knowledge may permit assessment of the relative degrees of probability of short evolutionary trajectories, those on the microevolutionary scale. In effect, a "network perspective" may help transform evolutionary biology into a scientific enterprise with greater predictive capability than it has hitherto possessed.
Curiac, Daniel-Ioan
2016-04-07
Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues.
Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware
Srinivasa, Narayan; Stepp, Nigel D.; Cruz-Albrecht, Jose
2015-01-01
Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it. PMID:26648839
Yang, Jian; Bai, Shuying; Qu, Zhao; Chang, Hui
2017-01-01
In this paper, complex network theory is used to make time-series analysis of key indicators of governance structure and financing data. We analyze scientific listed companies’ governance data from 2010 to 2014 and divide them into groups in accordance with the similarity they share. Then we select sample companies to analyze their financing data and explore the influence of governance structure on financing decision and the financing preference they display. This paper reviews relevant laws and regulations of financing from the perspective of law and economics, then proposes reasonable suggestions to consummate the law for the purpose of regulating listed companies’ financing. The research provides a reference for making qualitative analysis on companies’ financing. PMID:28301510
Yang, Jian; Bai, Shuying; Qu, Zhao; Chang, Hui
2017-01-01
In this paper, complex network theory is used to make time-series analysis of key indicators of governance structure and financing data. We analyze scientific listed companies' governance data from 2010 to 2014 and divide them into groups in accordance with the similarity they share. Then we select sample companies to analyze their financing data and explore the influence of governance structure on financing decision and the financing preference they display. This paper reviews relevant laws and regulations of financing from the perspective of law and economics, then proposes reasonable suggestions to consummate the law for the purpose of regulating listed companies' financing. The research provides a reference for making qualitative analysis on companies' financing.
A Network of Networks Perspective on Global Trade
Maluck, Julian; Donner, Reik V.
2015-01-01
Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990–2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector’s role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network’s substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends. The marked reorganization of trade patterns, associated with this economic crisis in comparison to “normal” annual fluctuations in the network structure is traced and quantified by a new widely applicable generalization of the Hamming distance to weighted networks. PMID:26197439
A novel approach to characterize information radiation in complex networks
NASA Astrophysics Data System (ADS)
Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao
2016-06-01
The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better ;radiation explosive power;, while the small-world network has better ;radiation staying power;. The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.
Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network.
Al-Harazi, Olfat; Al Insaif, Sadiq; Al-Ajlan, Monirah A; Kaya, Namik; Dzimiri, Nduna; Colak, Dilek
2016-06-20
A disease phenotype generally reflects various pathobiological processes that interact in a complex network. The highly interconnected nature of the human protein interaction network (interactome) indicates that, at the molecular level, it is difficult to consider diseases as being independent of one another. Recently, genome-wide molecular measurements, data mining and bioinformatics approaches have provided the means to explore human diseases from a molecular basis. The exploration of diseases and a system of disease relationships based on the integration of genome-wide molecular data with the human interactome could offer a powerful perspective for understanding the molecular architecture of diseases. Recently, subnetwork markers have proven to be more robust and reliable than individual biomarker genes selected based on gene expression profiles alone, and achieve higher accuracy in disease classification. We have applied one of these methodologies to idiopathic dilated cardiomyopathy (IDCM) data that we have generated using a microarray and identified significant subnetworks associated with the disease. In this paper, we review the recent endeavours in this direction, and summarize the existing methodologies and computational tools for network-based analysis of complex diseases and molecular relationships among apparently different disorders and human disease network. We also discuss the future research trends and topics of this promising field. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Evolution of SH2 domains and phosphotyrosine signalling networks
Liu, Bernard A.; Nash, Piers D.
2012-01-01
Src homology 2 (SH2) domains mediate selective protein–protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks. PMID:22889907
Controllability of Surface Water Networks
NASA Astrophysics Data System (ADS)
Riasi, M. Sadegh; Yeghiazarian, Lilit
2017-12-01
To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.
International migration network: Topology and modeling
NASA Astrophysics Data System (ADS)
Fagiolo, Giorgio; Mastrorillo, Marina
2013-07-01
This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.
International migration network: topology and modeling.
Fagiolo, Giorgio; Mastrorillo, Marina
2013-07-01
This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.
USDA-ARS?s Scientific Manuscript database
Photorespiration is an important high flux metabolic pathway that is found in all oxygen-producing photosynthetic organisms. It is often viewed as a closed loop that recycles carbon to fuel the Calvin cycle. However, the photorespiratory cycle is known to interact with several primary metabolic path...
Changing Places: A Cross-Language Perspective on Frequency and Family Size in Dutch and Hebrew
ERIC Educational Resources Information Center
Moscoso del Prado Martin, Fermin; Deutsch, Avital; Frost, Ram; Schreuder, Robert; De Jong, Nivja H.; Baayen, R. Harald
2005-01-01
This study uses the morphological family size effect as a tool for exploring the degree of isomorphism in the networks of morphologically related words in the Hebrew and Dutch mental lexicon. Hebrew and Dutch are genetically unrelated, and they structure their morphologically complex words in very different ways. Two visual lexical decision…
Student trajectories in physics: the need for analysis through a socio-cultural lens
NASA Astrophysics Data System (ADS)
Zapata, Mara
2010-09-01
An analysis of student connections through time and space relative to the core discipline of physics is attempted, as viewed through the lens of actor-network-theory, by Antonia Candela. Using lenses of cultural realities, networks, and perceived power in the discourse of one specific university in the capital city of Mexico and one undergraduate physics classroom, the trajectories and itineraries of students are analyzed, relative to a physics professor's pedagogical practices. This ethnographic study then yields comparisons between Mexican undergraduate students and students from the United States. Actor network theory recognizes that the symbiotic relationship existing between an actor and a continuum of space and time is defined by the symbiotic yet interdependent relationships and networks of practice (Lemke in Downward causation: Minds, bodies, and matter 2000). As part of this study and in line with actor-network-theory, human actors and non-human participants were viewed in relation to how subjects acted and were acted upon within networks of practice. Through this forum I reflect on this work with particular focus on the issues of situatedness of actors from a sociocultural perspective and how established networks viewed within this perspective frame and subsequently impact student trajectories and itineraries. In essence I argue for a need to look at a myriad of further complexities driving the symbiotic relationships being analyzed.
On Complex Networks Representation and Computation of Hydrologycal Quantities
NASA Astrophysics Data System (ADS)
Serafin, F.; Bancheri, M.; David, O.; Rigon, R.
2017-12-01
Water is our blue gold. Despite results of discovery-based science keep warning public opinion about the looming worldwide water crisis, water is still treated as a not worth taking resource. Could a different multi-scale perspective affect environmental decision-making more deeply? Can also a further pairing to a new graphical representation of processes interaction sway decision-making more effectively and public opinion consequently?This abstract introduces a complex networks driven way to represent catchments eco-hydrology and related flexible informatics to manage it. The representation is built upon mathematical category. A category is an algebraic structure that comprises "objects" linked by "arrows". It is an evolution of Petri Nets said Time Continuous Petri Nets (TCPN). It aims to display (water) budgets processes and catchment interactions using explicative and self-contained symbolism. The result improves readability of physical processes compared to current descriptions. The IT perspective hinges on the Object Modeling System (OMS) v3. The latter is a non-invasive flexible environmental modeling framework designed to support component-based model development. The implementation of a Directed Acyclic Graph (DAG) data structure, named Net3, has recently enhanced its flexibility. Net3 represents interacting systems as complex networks: vertices match up with any sort of time evolving quantity; edges correspond to their data (fluxes) interchange. It currently hosts JGrass-NewAge components, and those implementing travel time analysis of fluxes. Further bio-physical or management oriented components can be easily added.This talk introduces both graphical representation and related informatics exercising actual applications and examples.
Bae, Hojae; Puranik, Amey S; Gauvin, Robert; Edalat, Faramarz; Carrillo-Conde, Brenda; Peppas, Nicholas A; Khademhosseini, Ali
2012-11-14
Only a few engineered tissues-skin, cartilage, bladder-have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology.
Networked control of microgrid system of systems
NASA Astrophysics Data System (ADS)
Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.
2016-08-01
The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.
Bae, Hojae; Puranik, Amey S.; Gauvin, Robert; Edalat, Faramarz; Carrillo-Conde, Brenda; Peppas, Nicholas A.; Khademhosseini, Ali
2013-01-01
Only a few engineered tissues—skin, cartilage, bladder—have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology. PMID:23152325
Poornima, Paramasivan; Kumar, Jothi Dinesh; Zhao, Qiaoli; Blunder, Martina; Efferth, Thomas
2016-09-01
Despite massive investments in drug research and development, the significant decline in the number of new drugs approved or translated to clinical use raises the question, whether single targeted drug discovery is the right approach. To combat complex systemic diseases that harbour robust biological networks such as cancer, single target intervention is proved to be ineffective. In such cases, network pharmacology approaches are highly useful, because they differ from conventional drug discovery by addressing the ability of drugs to target numerous proteins or networks involved in a disease. Pleiotropic natural products are one of the promising strategies due to their multi-targeting and due to lower side effects. In this review, we discuss the application of network pharmacology for cancer drug discovery. We provide an overview of the current state of knowledge on network pharmacology, focus on different technical approaches and implications for cancer therapy (e.g. polypharmacology and synthetic lethality), and illustrate the therapeutic potential with selected examples green tea polyphenolics, Eleutherococcus senticosus, Rhodiola rosea, and Schisandra chinensis). Finally, we present future perspectives on their plausible applications for diagnosis and therapy of cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ravindran, Vandana; Sunitha, V.; Bagler, Ganesh
2017-05-01
Cancer is characterized by a complex web of regulatory mechanisms which makes it difficult to identify features that are central to its control. Molecular integrative models of cancer, generated with the help of data from experimental assays, facilitate use of control theory to probe for ways of controlling the state of such a complex dynamic network. We modeled the human cancer signaling network as a directed graph and analyzed it for its controllability, identification of driver nodes and their characterization. We identified the driver nodes using the maximum matching algorithm and classified them as backbone, peripheral and ordinary based on their role in regulatory interactions and control of the network. We found that the backbone driver nodes were key to driving the regulatory network into cancer phenotype (via mutations) as well as for steering into healthy phenotype (as drug targets). This implies that while backbone genes could lead to cancer by virtue of mutations, they are also therapeutic targets of cancer. Further, based on their impact on the size of the set of driver nodes, genes were characterized as indispensable, dispensable and neutral. Indispensable nodes within backbone of the network emerged as central to regulatory mechanisms of control of cancer. In addition to probing the cancer signaling network from the perspective of control, our findings suggest that indispensable backbone driver nodes could be potentially leveraged as therapeutic targets. This study also illustrates the application of structural controllability for studying the mechanisms underlying the regulation of complex diseases.
Guan, Jun; Xu, Xiaoyu; Wu, Shan; Xing, Lizhi
2018-01-01
The input-output table is very comprehensive and detailed in describing the national economic systems with abundant economic relationships, which contain supply and demand information among various industrial sectors. The complex network, a theory, and method for measuring the structure of a complex system can depict the structural characteristics of the internal structure of the researched object by measuring the structural indicators of the social and economic systems, revealing the complex relationships between the inner hierarchies and the external economic functions. In this paper, functions of industrial sectors on the global value chain are to be distinguished with bipartite graph theory, and inter-sector competitive relationships are to be extracted through resource allocation process. Furthermore, quantitative analysis indices will be proposed under the perspective of a complex network, which will be used to bring about simulations on the variation tendencies of economies' status in different situations of commercial intercourses. Finally, a new econophysics analytical framework of international trade is to be established.
Guan, Jun; Xu, Xiaoyu; Wu, Shan
2018-01-01
The input-output table is very comprehensive and detailed in describing the national economic systems with abundant economic relationships, which contain supply and demand information among various industrial sectors. The complex network, a theory, and method for measuring the structure of a complex system can depict the structural characteristics of the internal structure of the researched object by measuring the structural indicators of the social and economic systems, revealing the complex relationships between the inner hierarchies and the external economic functions. In this paper, functions of industrial sectors on the global value chain are to be distinguished with bipartite graph theory, and inter-sector competitive relationships are to be extracted through resource allocation process. Furthermore, quantitative analysis indices will be proposed under the perspective of a complex network, which will be used to bring about simulations on the variation tendencies of economies’ status in different situations of commercial intercourses. Finally, a new econophysics analytical framework of international trade is to be established. PMID:29813083
Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory
Ye, Qing; Guan, Jun
2016-01-01
This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors’ long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests. PMID:27218468
Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory.
Xing, Lizhi; Ye, Qing; Guan, Jun
2016-01-01
This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors' long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests.
Structure and function of complex brain networks
Sporns, Olaf
2013-01-01
An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898
Curiac, Daniel-Ioan
2016-01-01
Being often deployed in remote or hostile environments, wireless sensor networks are vulnerable to various types of security attacks. A possible solution to reduce the security risks is to use directional antennas instead of omnidirectional ones or in conjunction with them. Due to their increased complexity, higher costs and larger sizes, directional antennas are not traditionally used in wireless sensor networks, but recent technology trends may support this method. This paper surveys existing state of the art approaches in the field, offering a broad perspective of the future use of directional antennas in mitigating security risks, together with new challenges and open research issues. PMID:27070601
Animal welfare: a social networks perspective.
Kleinhappel, Tanja K; John, Elizabeth A; Pike, Thomas W; Wilkinson, Anna; Burman, Oliver H P
2016-01-01
Social network theory provides a useful tool to study complex social relationships in animals. The possibility to look beyond dyadic interactions by considering whole networks of social relationships allows researchers the opportunity to study social groups in more natural ways. As such, network-based analyses provide an informative way to investigate the factors influencing the social environment of group-living animals, and so has direct application to animal welfare. For example, animal groups in captivity are frequently disrupted by separations, reintroductions and/or mixing with unfamiliar individuals and this can lead to social stress and associated aggression. Social network analysis ofanimal groups can help identify the underlying causes of these socially-derived animal welfare concerns. In this review we discuss how this approach can be applied, and how it could be used to identify potential interventions and solutions in the area of animal welfare.
A Multilayer perspective for the analysis of urban transportation systems
Aleta, Alberto; Meloni, Sandro; Moreno, Yamir
2017-01-01
Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same transportation mode are grouped together, we study the interconnected structure of 9 different cities in Europe raging from small towns to mega-cities like London and Berlin highlighting their vulnerabilities and possible improvements. Finally, for the city of Zaragoza in Spain, we also consider data about service schedule and waiting times, which allow us to create a simple yet realistic model for urban mobility able to reproduce real-world facts and to test for network improvements. PMID:28295015
A Multilayer perspective for the analysis of urban transportation systems.
Aleta, Alberto; Meloni, Sandro; Moreno, Yamir
2017-03-15
Public urban mobility systems are composed by several transportation modes connected together. Most studies in urban mobility and planning often ignore the multi-layer nature of transportation systems considering only aggregated versions of this complex scenario. In this work we present a model for the representation of the transportation system of an entire city as a multiplex network. Using two different perspectives, one in which each line is a layer and one in which lines of the same transportation mode are grouped together, we study the interconnected structure of 9 different cities in Europe raging from small towns to mega-cities like London and Berlin highlighting their vulnerabilities and possible improvements. Finally, for the city of Zaragoza in Spain, we also consider data about service schedule and waiting times, which allow us to create a simple yet realistic model for urban mobility able to reproduce real-world facts and to test for network improvements.
Arancio, Walter
2012-04-01
Hutchinson-Gilford progeria syndrome (HGPS) is a rare human genetic disease that leads to premature aging. HGPS is caused by mutation in the Lamin-A (LMNA) gene that leads, in affected young individuals, to the accumulation of the progerin protein, usually present only in aging differentiated cells. Bioinformatics analyses of the network of interactions of the LMNA gene and transcripts are presented. The LMNA gene network has been analyzed using the BioGRID database (http://thebiogrid.org/) and related analysis tools such as Osprey (http://biodata.mshri.on.ca/osprey/servlet/Index) and GeneMANIA ( http://genemania.org/). The network of interaction of LMNA transcripts has been further analyzed following the competing endogenous (ceRNA) hypotheses (RNA cross-talk via microRNAs [miRNAs]) and using the miRWalk database and tools (www.ma.uni-heidelberg.de/apps/zmf/mirwalk/). These analyses suggest particular relevance of epigenetic modifiers (via acetylase complexes and specifically HTATIP histone acetylase) and adenosine triphosphate (ATP)-dependent chromatin remodelers (via pBAF, BAF, and SWI/SNF complexes).
Connectionist Architectures for Time Series Prediction of Dynamical Systems
NASA Astrophysics Data System (ADS)
Weigend, Andreas Sebastian
We investigate the effectiveness of connectionist networks for predicting the future continuation of temporal sequences. The problem of overfitting, particularly serious for short records of noisy data, is addressed by the method of weight-elimination: a term penalizing network complexity is added to the usual cost function in back-propagation. We describe the dynamics of the procedure and clarify the meaning of the parameters involved. From a Bayesian perspective, the complexity term can be usefully interpreted as an assumption about prior distribution of the weights. We analyze three time series. On the benchmark sunspot series, the networks outperform traditional statistical approaches. We show that the network performance does not deteriorate when there are more input units than needed. In the second example, the notoriously noisy foreign exchange rates series, we pick one weekday and one currency (DM vs. US). Given exchange rate information up to and including a Monday, the task is to predict the rate for the following Tuesday. Weight-elimination manages to extract a significant part of the dynamics and makes the solution interpretable. In the third example, the networks predict the resource utilization of a chaotic computational ecosystem for hundreds of steps forward in time.
Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome
NASA Astrophysics Data System (ADS)
Poirot, Olivier; Timsit, Youri
2016-05-01
From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.
The impact of network medicine in gastroenterology and hepatology.
Baffy, György
2013-10-01
In the footsteps of groundbreaking achievements made by biomedical research, another scientific revolution is unfolding. Systems biology draws from the chaos and complexity theory and applies computational models to predict emerging behavior of the interactions between genes, gene products, and environmental factors. Adaptation of systems biology to translational and clinical sciences has been termed network medicine, and is likely to change the way we think about preventing, predicting, diagnosing, and treating complex human diseases. Network medicine finds gene-disease associations by analyzing the unparalleled digital information discovered and created by high-throughput technologies (dubbed as "omics" science) and links genetic variance to clinical disease phenotypes through intermediate organizational levels of life such as the epigenome, transcriptome, proteome, and metabolome. Supported by large reference databases, unprecedented data storage capacity, and innovative computational analysis, network medicine is poised to find links between conditions that were thought to be distinct, uncover shared disease mechanisms and key drivers of the pathogenesis, predict individual disease outcomes and trajectories, identify novel therapeutic applications, and help avoid off-target and undesirable drug effects. Recent advances indicate that these perspectives are increasingly within our reach for understanding and managing complex diseases of the digestive system. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.
Insights into the Ecology and Evolution of Polyploid Plants through Network Analysis.
Gallagher, Joseph P; Grover, Corrinne E; Hu, Guanjing; Wendel, Jonathan F
2016-06-01
Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species. © 2016 John Wiley & Sons Ltd.
Rough set soft computing cancer classification and network: one stone, two birds.
Zhang, Yue
2010-07-15
Gene expression profiling provides tremendous information to help unravel the complexity of cancer. The selection of the most informative genes from huge noise for cancer classification has taken centre stage, along with predicting the function of such identified genes and the construction of direct gene regulatory networks at different system levels with a tuneable parameter. A new study by Wang and Gotoh described a novel Variable Precision Rough Sets-rooted robust soft computing method to successfully address these problems and has yielded some new insights. The significance of this progress and its perspectives will be discussed in this article.
Sparse dictionary learning for resting-state fMRI analysis
NASA Astrophysics Data System (ADS)
Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul
2011-09-01
Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.
Wolff, Sara M; Ellison, Melinda J; Hao, Yue; Cockrum, Rebecca R; Austin, Kathy J; Baraboo, Michael; Burch, Katherine; Lee, Hyuk Jin; Maurer, Taylor; Patil, Rocky; Ravelo, Andrea; Taxis, Tasia M; Truong, Huan; Lamberson, William R; Cammack, Kristi M; Conant, Gavin C
2017-06-08
Grazing mammals rely on their ruminal microbial symbionts to convert plant structural biomass into metabolites they can assimilate. To explore how this complex metabolic system adapts to the host animal's diet, we inferred a microbiome-level metabolic network from shotgun metagenomic data. Using comparative genomics, we then linked this microbial network to that of the host animal using a set of interface metabolites likely to be transferred to the host. When the host sheep were fed a grain-based diet, the induced microbial metabolic network showed several critical differences from those seen on the evolved forage-based diet. Grain-based (e.g., concentrate) diets tend to be dominated by a smaller set of reactions that employ metabolites that are nearer in network space to the host's metabolism. In addition, these reactions are more central in the network and employ substrates with shorter carbon backbones. Despite this apparent lower complexity, the concentrate-associated metabolic networks are actually more dissimilar from each other than are those of forage-fed animals. Because both groups of animals were initially fed on a forage diet, we propose that the diet switch drove the appearance of a number of different microbial networks, including a degenerate network characterized by an inefficient use of dietary nutrients. We used network simulations to show that such disparate networks are not an unexpected result of a diet shift. We argue that network approaches, particularly those that link the microbial network with that of the host, illuminate aspects of the structure of the microbiome not seen from a strictly taxonomic perspective. In particular, different diets induce predictable and significant differences in the enzymes used by the microbiome. Nonetheless, there are clearly a number of microbiomes of differing structure that show similar functional properties. Changes such as a diet shift uncover more of this type of diversity.
Diversified Control Paths: A Significant Way Disease Genes Perturb the Human Regulatory Network
Wang, Bingbo; Gao, Lin; Zhang, Qingfang; Li, Aimin; Deng, Yue; Guo, Xingli
2015-01-01
Background The complexity of biological systems motivates us to use the underlying networks to provide deep understanding of disease etiology and the human diseases are viewed as perturbations of dynamic properties of networks. Control theory that deals with dynamic systems has been successfully used to capture systems-level knowledge in large amount of quantitative biological interactions. But from the perspective of system control, the ways by which multiple genetic factors jointly perturb a disease phenotype still remain. Results In this work, we combine tools from control theory and network science to address the diversified control paths in complex networks. Then the ways by which the disease genes perturb biological systems are identified and quantified by the control paths in a human regulatory network. Furthermore, as an application, prioritization of candidate genes is presented by use of control path analysis and gene ontology annotation for definition of similarities. We use leave-one-out cross-validation to evaluate the ability of finding the gene-disease relationship. Results have shown compatible performance with previous sophisticated works, especially in directed systems. Conclusions Our results inspire a deeper understanding of molecular mechanisms that drive pathological processes. Diversified control paths offer a basis for integrated intervention techniques which will ultimately lead to the development of novel therapeutic strategies. PMID:26284649
Modeling epidemics on adaptively evolving networks: A data-mining perspective.
Kattis, Assimakis A; Holiday, Alexander; Stoica, Ana-Andreea; Kevrekidis, Ioannis G
2016-01-01
The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems-level) behavior. Obtaining reduced, small size accurate models in terms of these few statistical observables--that is, trying to coarse-grain the full network epidemic model to a small but useful macroscopic one--is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This is accomplished through Diffusion Maps (DMAPS), a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We discuss potential extensions of the approach, as well as possible shortcomings.
Wölfer, Ralf; Scheithauer, Herbert
2014-01-01
Bullying is a social phenomenon and although preventive interventions consequently address social mechanisms, evaluations hardly consider the complexity of peer processes. Therefore, the present study analyzes the efficacy of the fairplayer.manual bullying prevention program from a social network perspective. Within a pretest-posttest control group design, longitudinal data were available from 328 middle-school students (MAge = 13.7 years; 51% girls), who provided information on bullying behavior and interaction patterns. The revealed network parameters were utilized to examine the network change (MANCOVA) and the network dynamics (SIENA). Across both forms of analyses, findings revealed the hypothesized intervention-based decrease of bullies' social influence. Hence the present bullying prevention program, as one example of programs that successfully addresses both individual skills and social mechanisms, demonstrates the desired effect of reducing contextual opportunities for the exhibition of bullying behavior. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Leuchter, S.; Reinert, F.; Müller, W.
2014-06-01
Procurement and design of system architectures capable of network centric operations demand for an assessment scheme in order to compare different alternative realizations. In this contribution an assessment method for system architectures targeted at the C4ISR domain is presented. The method addresses the integration capability of software systems from a complex and distributed software system perspective focusing communication, interfaces and software. The aim is to evaluate the capability to integrate a system or its functions within a system-of-systems network. This method uses approaches from software architecture quality assessment and applies them on the system architecture level. It features a specific goal tree of several dimensions that are relevant for enterprise integration. These dimensions have to be weighed against each other and totalized using methods from the normative decision theory in order to reflect the intention of the particular enterprise integration effort. The indicators and measurements for many of the considered quality features rely on a model based view on systems, networks, and the enterprise. That means it is applicable to System-of-System specifications based on enterprise architectural frameworks relying on defined meta-models or domain ontologies for defining views and viewpoints. In the defense context we use the NATO Architecture Framework (NAF) to ground respective system models. The proposed assessment method allows evaluating and comparing competing system designs regarding their future integration potential. It is a contribution to the system-of-systems engineering methodology.
Consciousness, cognition and brain networks: New perspectives.
Aldana, E M; Valverde, J L; Fábregas, N
2016-10-01
A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Towards whole-body ultra-weak photon counting and imaging with a focus on human beings: a review.
Van Wijk, Roeland; Van Wijk, Eduard P A; van Wietmarschen, Herman A; van der Greef, Jan
2014-10-05
For decades, the relationship between ultra-weak photon emission (UPE) and the health state of the body is being studied. With the advent of systems biology, attention shifted from the association between UPE and reactive oxygen species towards UPE as a reflection of changed metabolic networks. Essential for this shift in thinking is the development of novel photon count statistical methods that more reflect the dynamics of the systems organization. Additionally, efforts to combine and correlate UPE data with other types of measurements such as metabolomics be key to understand the complexity of the human body. This review describes the history and developments in the area of human UPE research from a technical - methodological perspective, an experimental perspective and a theoretical perspective. There is ample evidence that human UPE research will allow a better understanding of the body as a complex dynamical system. The future lies in the further development of an integrated UPE and metabolomics platform for a personalized monitoring of changes of the system towards health or disease. Copyright © 2014 Elsevier B.V. All rights reserved.
DNA-Based Dynamic Reaction Networks.
Fu, Ting; Lyu, Yifan; Liu, Hui; Peng, Ruizi; Zhang, Xiaobing; Ye, Mao; Tan, Weihong
2018-05-21
Deriving from logical and mechanical interactions between DNA strands and complexes, DNA-based artificial reaction networks (RNs) are attractive for their high programmability, as well as cascading and fan-out ability, which are similar to the basic principles of electronic logic gates. Arising from the dream of creating novel computing mechanisms, researchers have placed high hopes on the development of DNA-based dynamic RNs and have strived to establish the basic theories and operative strategies of these networks. This review starts by looking back on the evolution of DNA dynamic RNs; in particular' the most significant applications in biochemistry occurring in recent years. Finally, we discuss the perspectives of DNA dynamic RNs and give a possible direction for the development of DNA circuits. Copyright © 2018. Published by Elsevier Ltd.
Haruta, Shin; Yoshida, Takehito; Aoi, Yoshiteru; Kaneko, Kunihiko; Futamata, Hiroyuki
2013-01-01
In the past couple of decades, molecular ecological techniques have been developed to elucidate microbial diversity and distribution in microbial ecosystems. Currently, modern techniques, represented by meta-omics and single cell observations, are revealing the incredible complexity of microbial ecosystems and the large degree of phenotypic variation. These studies propound that microbiological techniques are insufficient to untangle the complex microbial network. This minireview introduces the application of advanced mathematical approaches in combination with microbiological experiments to microbial ecological studies. These combinational approaches have successfully elucidated novel microbial behaviors that had not been recognized previously. Furthermore, the theoretical perspective also provides an understanding of the plasticity, robustness and stability of complex microbial ecosystems in nature. PMID:23995424
Power-law behavior in complex organizational communication networks during crisis
NASA Astrophysics Data System (ADS)
Uddin, Shahadat; Murshed, Shahriar Tanvir Hasan; Hossain, Liaquat
2011-08-01
Communication networks can be described as patterns of contacts which are created due to the flow of messages and information shared among participating actors. Contemporary organizations are now commonly viewed as dynamic systems of adaptation and evolution containing several parts, which interact with one another both in internal and in external environment. Although there is limited consensus among researchers on the precise definition of organizational crisis, there is evidence of shared meaning: crisis produces individual crisis, crisis can be associated with positive or negative conditions, crises can be situations having been precipitated quickly or suddenly or situations that have developed over time and are predictable etc. In this research, we study the power-law behavior of an organizational email communication network during crisis from complexity perspective. Power law simply describes that, the probability that a randomly selected node has k links (i.e. degree k) follows P(k)∼k, where γ is the degree exponent. We used social network analysis tools and techniques to analyze the email communication dataset. We tested two propositions: (1) as organization goes through crisis, a few actors, who are prominent or more active, will become central, and (2) the daily communication network as well as the actors in the communication network exhibit power-law behavior. Our preliminary results support these two propositions. The outcome of this study may provide significant advancement in exploring organizational communication network behavior during crisis.
Homological scaffolds of brain functional networks
Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.
2014-01-01
Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177
The Network Organization of Cancer-associated Protein Complexes in Human Tissues
Zhao, Jing; Lee, Sang Hoon; Huss, Mikael; Holme, Petter
2013-01-01
Differential gene expression profiles for detecting disease genes have been studied intensively in systems biology. However, it is known that various biological functions achieved by proteins follow from the ability of the protein to form complexes by physically binding to each other. In other words, the functional units are often protein complexes rather than individual proteins. Thus, we seek to replace the perspective of disease-related genes by disease-related complexes, exemplifying with data on 39 human solid tissue cancers and their original normal tissues. To obtain the differential abundance levels of protein complexes, we apply an optimization algorithm to genome-wide differential expression data. From the differential abundance of complexes, we extract tissue- and cancer-selective complexes, and investigate their relevance to cancer. The method is supported by a clustering tendency of bipartite cancer-complex relationships, as well as a more concrete and realistic approach to disease-related proteomics. PMID:23567845
Waliszewski, P; Molski, M; Konarski, J
1998-06-01
A keystone of the molecular reductionist approach to cellular biology is a specific deductive strategy relating genotype to phenotype-two distinct categories. This relationship is based on the assumption that the intermediary cellular network of actively transcribed genes and their regulatory elements is deterministic (i.e., a link between expression of a gene and a phenotypic trait can always be identified, and evolution of the network in time is predetermined). However, experimental data suggest that the relationship between genotype and phenotype is nonbijective (i.e., a gene can contribute to the emergence of more than just one phenotypic trait or a phenotypic trait can be determined by expression of several genes). This implies nonlinearity (i.e., lack of the proportional relationship between input and the outcome), complexity (i.e. emergence of the hierarchical network of multiple cross-interacting elements that is sensitive to initial conditions, possesses multiple equilibria, organizes spontaneously into different morphological patterns, and is controlled in dispersed rather than centralized manner), and quasi-determinism (i.e., coexistence of deterministic and nondeterministic events) of the network. Nonlinearity within the space of the cellular molecular events underlies the existence of a fractal structure within a number of metabolic processes, and patterns of tissue growth, which is measured experimentally as a fractal dimension. Because of its complexity, the same phenotype can be associated with a number of alternative sequences of cellular events. Moreover, the primary cause initiating phenotypic evolution of cells such as malignant transformation can be favored probabilistically, but not identified unequivocally. Thermodynamic fluctuations of energy rather than gene mutations, the material traits of the fluctuations alter both the molecular and informational structure of the network. Then, the interplay between deterministic chaos, complexity, self-organization, and natural selection drives formation of malignant phenotype. This concept offers a novel perspective for investigation of tumorigenesis without invalidating current molecular findings. The essay integrates the ideas of the sciences of complexity in a biological context.
Hartwright, Charlotte E; Apperly, Ian A; Hansen, Peter C
2012-07-16
Belief-desire reasoning is a core component of 'Theory of Mind' (ToM), which can be used to explain and predict the behaviour of agents. Neuroimaging studies reliably identify a network of brain regions comprising a 'standard' network for ToM, including temporoparietal junction and medial prefrontal cortex. Whilst considerable experimental evidence suggests that executive control (EC) may support a functioning ToM, co-ordination of neural systems for ToM and EC is poorly understood. We report here use of a novel task in which psychologically relevant ToM parameters (true versus false belief; approach versus avoidance desire) were manipulated orthogonally. The valence of these parameters not only modulated brain activity in the 'standard' ToM network but also in EC regions. Varying the valence of both beliefs and desires recruits anterior cingulate cortex, suggesting a shared inhibitory component associated with negatively valenced mental state concepts. Varying the valence of beliefs additionally draws on ventrolateral prefrontal cortex, reflecting the need to inhibit self perspective. These data provide the first evidence that separate functional and neural systems for EC may be recruited in the service of different aspects of ToM. Copyright © 2012 Elsevier Inc. All rights reserved.
Optimization of cascading failure on complex network based on NNIA
NASA Astrophysics Data System (ADS)
Zhu, Qian; Zhu, Zhiliang; Qi, Yi; Yu, Hai; Xu, Yanjie
2018-07-01
Recently, the robustness of networks under cascading failure has attracted extensive attention. Different from previous studies, we concentrate on how to improve the robustness of the networks from the perspective of intelligent optimization. We establish two multi-objective optimization models that comprehensively consider the operational cost of the edges in the networks and the robustness of the networks. The NNIA (Non-dominated Neighbor Immune Algorithm) is applied to solve the optimization models. We finished simulations of the Barabási-Albert (BA) network and Erdös-Rényi (ER) network. In the solutions, we find the edges that can facilitate the propagation of cascading failure and the edges that can suppress the propagation of cascading failure. From the conclusions, we take optimal protection measures to weaken the damage caused by cascading failures. We also consider actual situations of operational cost feasibility of the edges. People can make a more practical choice based on the operational cost. Our work will be helpful in the design of highly robust networks or improvement of the robustness of networks in the future.
Global nurse leader perspectives on health systems and workforce challenges.
Gantz, Nancy Rollins; Sherman, Rose; Jasper, Melanie; Choo, Chua Gek; Herrin-Griffith, Donna; Harris, Kathy
2012-05-01
As part of the 2011 annual American Organization of Nurse Executives conference held in San Diego, California, a session was presented that focused on nursing workforce and health systems challenges from a global perspective. This article includes content addressed during the session representing nurse leader perspectives from the UK, Singapore and the USA. Recent events in global economic markets have highlighted the interdependence of countries. There is now a global focus on health-care costs and quality as government leaders struggle to reduce budgets and remain solvent. Finding solutions to these complex problems requires that nurse leaders adopt more of a world view and network with one another as they look for best practices and creative strategies. Nursing leadership challenges such as staffing, competency development, ageing populations, reduced health-care funding and maintaining quality are now common global problems. There is a need for innovation in nursing practice to accommodate the enormous challenges facing nursing's future. Opportunities on an international scale for nurse leaders to have dialogue and network, such as the conference presentation discussed in this article, will become increasingly more important to facilitate the development of innovative leadership strategies. © 2012 Blackwell Publishing Ltd.
A statistical physics perspective on criticality in financial markets
NASA Astrophysics Data System (ADS)
Bury, Thomas
2013-11-01
Stock markets are complex systems exhibiting collective phenomena and particular features such as synchronization, fluctuations distributed as power-laws, non-random structures and similarity to neural networks. Such specific properties suggest that markets operate at a very special point. Financial markets are believed to be critical by analogy to physical systems, but little statistically founded evidence has been given. Through a data-based methodology and comparison to simulations inspired by the statistical physics of complex systems, we show that the Dow Jones and index sets are not rigorously critical. However, financial systems are closer to criticality in the crash neighborhood.
Latent variable models are network models.
Molenaar, Peter C M
2010-06-01
Cramer et al. present an original and interesting network perspective on comorbidity and contrast this perspective with a more traditional interpretation of comorbidity in terms of latent variable theory. My commentary focuses on the relationship between the two perspectives; that is, it aims to qualify the presumed contrast between interpretations in terms of networks and latent variables.
Rough Set Soft Computing Cancer Classification and Network: One Stone, Two Birds
Zhang, Yue
2010-01-01
Gene expression profiling provides tremendous information to help unravel the complexity of cancer. The selection of the most informative genes from huge noise for cancer classification has taken centre stage, along with predicting the function of such identified genes and the construction of direct gene regulatory networks at different system levels with a tuneable parameter. A new study by Wang and Gotoh described a novel Variable Precision Rough Sets-rooted robust soft computing method to successfully address these problems and has yielded some new insights. The significance of this progress and its perspectives will be discussed in this article. PMID:20706619
NASA Technical Reports Server (NTRS)
Aller, Robert O.; Miller, Albert
1990-01-01
The status of the NASA assets which are operated by the Office of Space Operations is briefly reviewed. These assets include the ground network, the space network, and communications and data handling facilities. The current plans for each element are examined, and a projection of each is made to meet the user needs in the 21st century. The following factors are noted: increasingly responsive support will be required by the users; operational support concepts must be cost-effective to serve future missions; and a high degree of system reliability and availability will be required to support manned exploration and increasingly complex missions.
Structure and mechanics of aegagropilae fiber network.
Verhille, Gautier; Moulinet, Sébastien; Vandenberghe, Nicolas; Adda-Bedia, Mokhtar; Le Gal, Patrice
2017-05-02
Fiber networks encompass a wide range of natural and manmade materials. The threads or filaments from which they are formed span a wide range of length scales: from nanometers, as in biological tissues and bundles of carbon nanotubes, to millimeters, as in paper and insulation materials. The mechanical and thermal behavior of these complex structures depends on both the individual response of the constituent fibers and the density and degree of entanglement of the network. A question of paramount importance is how to control the formation of a given fiber network to optimize a desired function. The study of fiber clustering of natural flocs could be useful for improving fabrication processes, such as in the paper and textile industries. Here, we use the example of aegagropilae that are the remains of a seagrass ( Posidonia oceanica ) found on Mediterranean beaches. First, we characterize different aspects of their structure and mechanical response, and second, we draw conclusions on their formation process. We show that these natural aggregates are formed in open sea by random aggregation and compaction of fibers held together by friction forces. Although formed in a natural environment, thus under relatively unconstrained conditions, the geometrical and mechanical properties of the resulting fiber aggregates are quite robust. This study opens perspectives for manufacturing complex fiber network materials.
NASA Astrophysics Data System (ADS)
Fu, Peihua; Zhu, Anding; Ni, He; Zhao, Xin; Li, Xiulin
2018-01-01
Ponzi schemes always lead to mass disasters after collapse. It is important to study the critical behaviors of both social dynamics and financial outcomes for Ponzi scheme diffusion in complex networks. We develop the potential-investor-divestor-investor (PIDI) model by considering the individual behavior of direct reinvestment. We find that only the spreading rate relates to the epidemic outbreak while the reinvestment rate relates to the zero and non-zero final states for social dynamics of both homo- and inhomogeneous networks. Financially, we find that there is a critical spreading threshold, above which the scheme needs not to use its own initial capital for taking off, i.e. the starting cost is covered by the rapidly inflowing funds. However, the higher the cost per recruit, the larger the critical spreading threshold and the worse the financial outcomes. Theoretical and simulation results also reveal that schemes are easier to take off in inhomogeneous networks. The reinvestment rate does not affect the starting. However, it improves the financial outcome in the early stages and postpones the outbreak of financial collapse. Some policy suggestions for the regulator from the perspective of social physics are proposed in the end of the paper.
The patient perspective in health care networks.
Raus, Kasper; Mortier, Eric; Eeckloo, Kristof
2018-06-05
Health care organization is entering a new age. Focus is increasingly shifting from individual health care institutions to interorganizational collaboration and health care networks. Much hope is set on such networks which have been argued to improve economic efficiency and quality of care. However, this does not automatically mean they are always ethically justified. A relevant question that remains is what ethical obligations or duties one can ascribe to these networks especially because networks involve many risks. Due to their often amorphous and complex structure, collective responsibility and accountability may increase while individual responsibility goes down. We argue that a business ethics approach to ethical obligations for health care networks, is problematic and we propose to opt for a patient perspective. Using the classic four principles of biomedical ethics (justice, nonmaleficence, beneficence and autonomy) it is possible to identify specific ethical duties. Based on the principle of justice, health care networks have an ethical duty to provide just and fair access for all patients and to be transparent to patients about how access is regulated. The principle of nonmaleficence implies an obligation to guarantee patient safety, whereas the principle of beneficence implies an obligation for health care networks to guarantee continuity of care in all its dimensions. Finally, the principle of autonomy is translated into a specific obligation to promote and respect patient choice. Networks that fail to meet any of these conditions are suspect and cannot be justified ethically. Faced with daunting challenges, the health care system is changing rapidly. Currently many hopes ride on integrated care and broad health care networks. Such networks are the topic of empirical debate, but more attention should be given to the ethical aspects. Health care networks raise new and pressing ethical issues and we are in need of a framework for assessing how and when such networks are justified.
Food Web Designer: a flexible tool to visualize interaction networks.
Sint, Daniela; Traugott, Michael
Species are embedded in complex networks of ecological interactions and assessing these networks provides a powerful approach to understand what the consequences of these interactions are for ecosystem functioning and services. This is mandatory to develop and evaluate strategies for the management and control of pests. Graphical representations of networks can help recognize patterns that might be overlooked otherwise. However, there is a lack of software which allows visualizing these complex interaction networks. Food Web Designer is a stand-alone, highly flexible and user friendly software tool to quantitatively visualize trophic and other types of bipartite and tripartite interaction networks. It is offered free of charge for use on Microsoft Windows platforms. Food Web Designer is easy to use without the need to learn a specific syntax due to its graphical user interface. Up to three (trophic) levels can be connected using links cascading from or pointing towards the taxa within each level to illustrate top-down and bottom-up connections. Link width/strength and abundance of taxa can be quantified, allowing generating fully quantitative networks. Network datasets can be imported, saved for later adjustment and the interaction webs can be exported as pictures for graphical display in different file formats. We show how Food Web Designer can be used to draw predator-prey and host-parasitoid food webs, demonstrating that this software is a simple and straightforward tool to graphically display interaction networks for assessing pest control or any other type of interaction in both managed and natural ecosystems from an ecological network perspective.
Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio
2017-11-01
The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Network approaches for expert decisions in sports.
Glöckner, Andreas; Heinen, Thomas; Johnson, Joseph G; Raab, Markus
2012-04-01
This paper focuses on a model comparison to explain choices based on gaze behavior via simulation procedures. We tested two classes of models, a parallel constraint satisfaction (PCS) artificial neuronal network model and an accumulator model in a handball decision-making task from a lab experiment. Both models predict action in an option-generation task in which options can be chosen from the perspective of a playmaker in handball (i.e., passing to another player or shooting at the goal). Model simulations are based on a dataset of generated options together with gaze behavior measurements from 74 expert handball players for 22 pieces of video footage. We implemented both classes of models as deterministic vs. probabilistic models including and excluding fitted parameters. Results indicated that both classes of models can fit and predict participants' initially generated options based on gaze behavior data, and that overall, the classes of models performed about equally well. Early fixations were thereby particularly predictive for choices. We conclude that the analyses of complex environments via network approaches can be successfully applied to the field of experts' decision making in sports and provide perspectives for further theoretical developments. Copyright © 2011 Elsevier B.V. All rights reserved.
Measures for brain connectivity analysis: nodes centrality and their invariant patterns
NASA Astrophysics Data System (ADS)
da Silva, Laysa Mayra Uchôa; Baltazar, Carlos Arruda; Silva, Camila Aquemi; Ribeiro, Mauricio Watanabe; de Aratanha, Maria Adelia Albano; Deolindo, Camila Sardeto; Rodrigues, Abner Cardoso; Machado, Birajara Soares
2017-07-01
The high dynamical complexity of the brain is related to its small-world topology, which enable both segregated and integrated information processing capabilities. Several measures of connectivity estimation have already been employed to characterize functional brain networks from multivariate electrophysiological data. However, understanding the properties of each measure that lead to a better description of the real topology and capture the complex phenomena present in the brain remains challenging. In this work we compared four nonlinear connectivity measures and show that each method characterizes distinct features of brain interactions. The results suggest an invariance of global network parameters from different behavioral states and that more complete description may be reached considering local features, independently of the connectivity measure employed. Our findings also point to future perspectives in connectivity studies that combine distinct and complementary dependence measures in assembling higher dimensions manifolds.
Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach.
Stampanoni Bassi, Mario; Gilio, Luana; Buttari, Fabio; Maffei, Pierpaolo; Marfia, Girolama A; Restivo, Domenico A; Centonze, Diego; Iezzi, Ennio
2017-01-01
Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.
NASA Astrophysics Data System (ADS)
Chen, Shaopei; Tan, Jianjun; Ray, C.; Claramunt, C.; Sun, Qinqin
2008-10-01
Diversity is one of the main characteristics of transportation data collected from multiple sources or formats, which can be extremely complex and disparate. Moreover, these multimodal transportation data are usually characterised by spatial and temporal properties. Multimodal transportation network data modelling involves both an engineering and research domain that has attracted the design of a number of spatio-temporal data models in the geographic information system (GIS). However, the application of these specific models to multimodal transportation network is still a challenging task. This research addresses this challenge from both integrated multimodal data organization and object-oriented modelling perspectives, that is, how a complex urban transportation network should be organized, represented and modeled appropriately when considering a multimodal point of view, and using object-oriented modelling method. We proposed an integrated GIS-based data model for multimodal urban transportation network that lays a foundation to enhance the multimodal transportation network analysis and management. This modelling method organizes and integrates multimodal transit network data, and supports multiple representations for spatio-temporal objects and relationship as both visual and graphic views. The data model is expressed by using a spatio-temporal object-oriented modelling method, i.e., the unified modelling language (UML) extended to spatial and temporal plug-in for visual languages (PVLs), which provides an essential support to the spatio-temporal data modelling for transportation GIS.
Brown, B.L.; Swan, C.M.; Auerbach, D.A.; Campbell, Grant E.H.; Hitt, N.P.; Maloney, K.O.; Patrick, C.
2011-01-01
Explaining the mechanisms underlying patterns of species diversity and composition in riverine networks is challenging. Historically, community ecologists have conceived of communities as largely isolated entities and have focused on local environmental factors and interspecific interactions as the major forces determining species composition. However, stream ecologists have long embraced a multiscale approach to studying riverine ecosystems and have studied both local factors and larger-scale regional factors, such as dispersal and disturbance. River networks exhibit a dendritic spatial structure that can constrain aquatic organisms when their dispersal is influenced by or confined to the river network. We contend that the principles of metacommunity theory would help stream ecologists to understand how the complex spatial structure of river networks mediates the relative influences of local and regional control on species composition. From a basic ecological perspective, the concept is attractive because new evidence suggests that the importance of regional processes (dispersal) depends on spatial structure of habitat and on connection to the regional species pool. The role of local factors relative to regional factors will vary with spatial position in a river network. From an applied perspective, the long-standing view in ecology that local community composition is an indicator of habitat quality may not be uniformly applicable across a river network, but the strength of such bioassessment approaches probably will depend on spatial position in the network. The principles of metacommunity theory are broadly applicable across taxa and systems but seem of particular consequence to stream ecology given the unique spatial structure of riverine systems. By explicitly embracing processes at multiple spatial scales, metacommunity theory provides a foundation on which to build a richer understanding of stream communities.
Evolving science of marine reserves: New developments and emerging research frontiers
Gaines, Steven D.; Lester, Sarah E.; Grorud-Colvert, Kirsten; Costello, Christopher; Pollnac, Richard
2010-01-01
The field of marine reserve science has matured greatly over the last decade, moving beyond studies of single reserves and beyond perspectives from single disciplines. This Special Feature exemplifies recent advances in marine reserve research, showing insights gained from synthetic studies of reserve networks, long-term changes within reserves, integration of social and ecological science research, and balance between reserve design for conservation as well as fishery and other commercial objectives. This rich body of research helps to inform conservation planning for marine ecosystems but also poses new challenges for further study, including how to best design integrated fisheries management and conservation systems, how to effectively evaluate the performance of entire reserve networks, and how to examine the complex coupling between ecological and socioeconomic responses to reserve networks. PMID:20978212
Community detection in complex networks using link prediction
NASA Astrophysics Data System (ADS)
Cheng, Hui-Min; Ning, Yi-Zi; Yin, Zhao; Yan, Chao; Liu, Xin; Zhang, Zhong-Yuan
2018-01-01
Community detection and link prediction are both of great significance in network analysis, which provide very valuable insights into topological structures of the network from different perspectives. In this paper, we propose a novel community detection algorithm with inclusion of link prediction, motivated by the question whether link prediction can be devoted to improving the accuracy of community partition. For link prediction, we propose two novel indices to compute the similarity between each pair of nodes, one of which aims to add missing links, and the other tries to remove spurious edges. Extensive experiments are conducted on benchmark data sets, and the results of our proposed algorithm are compared with two classes of baselines. In conclusion, our proposed algorithm is competitive, revealing that link prediction does improve the precision of community detection.
Controlling Complex Systems and Developing Dynamic Technology
NASA Astrophysics Data System (ADS)
Avizienis, Audrius Victor
In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit complex dynamics (e.g. both short- and long-term changes in conductivity) in response to applied voltage signals. Characterization of these atomic switch networks (ASNs) brought out interesting parallels to biological neural networks, including power-law scaling in the statistics of electrical signal propagation and dynamic self-organization of differentiated subnetworks. A reservoir computing (RC) strategy was employed to utilize measurements of electrical signals dynamically generated in ASNs to perform time-series memory and manipulation tasks including a parity test and arbitrary waveform generation. These results represent the useful integration of a complex network into a dynamic physical RC device.
Vrahatis, Aristidis G; Rapti, Angeliki; Sioutas, Spyros; Tsakalidis, Athanasios
2017-01-01
In the era of Systems Biology and growing flow of omics experimental data from high throughput techniques, experimentalists are in need of more precise pathway-based tools to unravel the inherent complexity of diseases and biological processes. Subpathway-based approaches are the emerging generation of pathway-based analysis elucidating the biological mechanisms under the perspective of local topologies onto a complex pathway network. Towards this orientation, we developed PerSub, a graph-based algorithm which detects subpathways perturbed by a complex disease. The perturbations are imprinted through differentially expressed and co-expressed subpathways as recorded by RNA-seq experiments. Our novel algorithm is applied on data obtained from a real experimental study and the identified subpathways provide biological evidence for the brain aging.
MEMS for optical switching: technologies, applications, and perspectives
NASA Astrophysics Data System (ADS)
Lin, Lih-Y.; Goldstein, Evan L.
1999-09-01
Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, lowcost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.
MEMS for optical switching: technologies, applications, and perspectives
NASA Astrophysics Data System (ADS)
Lin, Lih-Yuan; Goldstein, Evan L.
1999-09-01
Micro-electro-mechanical-systems (MEMS), due to their unique ability to integrate electrical, mechanical, and optical elements on a single chip, have recently begun to exhibit great potential for realizing optical components and subsystems in compact, low-cost form. Recently, this technology has been applied to wavelength-division-multiplexed (WDM) networks, and resulted in advances in several network elements, including switches, filters, modulators, and wavelength-add/drop multiplexers. Due largely to the exploding capacity demand arising from data traffic, the transmission capacity demanded of and available from WDM networks is anticipated to increase rapidly. For managing such networks, optical switching is of particular interest due to the fact that its complexity is essentially immune to steady advances in the per-channel bit-rate. We will review various micromachined optical-switching technologies, emphasizing studies of their reliability. We then summarizing recent progress in the free-space MEMS optical switch we have demonstrated.
A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology
NASA Astrophysics Data System (ADS)
Al-Husseini, Amal
In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers additional constraints on the maximum degree of each node as well as the energy consumption relative to degree changes. This gives more realistic results from a dynamical network perspective. It results in balanced network-wide energy consumption. The results show that networks constructed using the proposed approach have good properties for different centrality measures. The outcomes of the presented research are beneficial to building WSN control models with greater self-organization properties which leads to optimal energy consumption.
Advances on plant-pathogen interactions from molecular toward systems biology perspectives.
Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique
2017-05-01
In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future. © 2016 The Authors. The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Pusuluri, Sai Teja
Energy landscapes are often used as metaphors for phenomena in biology, social sciences and finance. Different methods have been implemented in the past for the construction of energy landscapes. Neural network models based on spin glass physics provide an excellent mathematical framework for the construction of energy landscapes. This framework uses a minimal number of parameters and constructs the landscape using data from the actual phenomena. In the past neural network models were used to mimic the storage and retrieval process of memories (patterns) in the brain. With advances in the field now, these models are being used in machine learning, deep learning and modeling of complex phenomena. Most of the past literature focuses on increasing the storage capacity and stability of stored patterns in the network but does not study these models from a modeling perspective or an energy landscape perspective. This dissertation focuses on neural network models both from a modeling perspective and from an energy landscape perspective. I firstly show how the cellular interconversion phenomenon can be modeled as a transition between attractor states on an epigenetic landscape constructed using neural network models. The model allows the identification of a reaction coordinate of cellular interconversion by analyzing experimental and simulation time course data. Monte Carlo simulations of the model show that the initial phase of cellular interconversion is a Poisson process and the later phase of cellular interconversion is a deterministic process. Secondly, I explore the static features of landscapes generated using neural network models, such as sizes of basins of attraction and densities of metastable states. The simulation results show that the static landscape features are strongly dependent on the correlation strength and correlation structure between patterns. Using different hierarchical structures of the correlation between patterns affects the landscape features. These results show how the static landscape features can be controlled by adjusting the correlations between patterns. Finally, I explore the dynamical features of landscapes generated using neural network models such as the stability of minima and the transition rates between minima. The results from this project show that the stability depends on the correlations between patterns. It is also found that the transition rates between minima strongly depend on the type of bias applied and the correlation between patterns. The results from this part of the dissertation can be useful in engineering an energy landscape without even having the complete information about the associated minima of the landscape.
NASA Astrophysics Data System (ADS)
Costa, Cristina Chuva; da Cunha, Paulo Rupino
The way the Internet has connected millions of users at negligible costs has changed playing field for companies. Several stakeholders can now come together in virtual networks to create innovative business models that would be unfeasible in the physical world. However, the more radical the departure from the established models of value creation, the bigger the complexity in ensuring the sustained interest of the involved parties and the stability of the bonds. To address this problem, we sought inspiration in the Actor-Network Theory (ANT), which is capable of providing insights into socio-technical settings where human and non-human agents interact. We describe how several of its principles, ideas, and concepts were adapted and embedded in our approach for complex business model design or analysis. A simple illustration is provided. Our iterative approach helps systematically scrutinize and tune the contributions and returns of the various actors, ensuring that all end up with an attractive value proposal, thus promoting the robustness of the network. Guidelines for the services that an underlying information system must provide are also derived from the results.
Multilayer modeling and analysis of human brain networks
2017-01-01
Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916
Model of community emergence in weighted social networks
NASA Astrophysics Data System (ADS)
Kumpula, J. M.; Onnela, J.-P.; Saramäki, J.; Kertész, J.; Kaski, K.
2009-04-01
Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes.
NASA Astrophysics Data System (ADS)
Christensen, Claire Petra
Across diverse fields ranging from physics to biology, sociology, and economics, the technological advances of the past decade have engendered an unprecedented explosion of data on highly complex systems with thousands, if not millions of interacting components. These systems exist at many scales of size and complexity, and it is becoming ever-more apparent that they are, in fact, universal, arising in every field of study. Moreover, they share fundamental properties---chief among these, that the individual interactions of their constituent parts may be well-understood, but the characteristic behaviour produced by the confluence of these interactions---by these complex networks---is unpredictable; in a nutshell, the whole is more than the sum of its parts. There is, perhaps, no better illustration of this concept than the discoveries being made regarding complex networks in the biological sciences. In particular, though the sequencing of the human genome in 2003 was a remarkable feat, scientists understand that the "cellular-level blueprints" for the human being are cellular-level parts lists, but they say nothing (explicitly) about cellular-level processes. The challenge of modern molecular biology is to understand these processes in terms of the networks of parts---in terms of the interactions among proteins, enzymes, genes, and metabolites---as it is these processes that ultimately differentiate animate from inanimate, giving rise to life! It is the goal of systems biology---an umbrella field encapsulating everything from molecular biology to epidemiology in social systems---to understand processes in terms of fundamental networks of core biological parts, be they proteins or people. By virtue of the fact that there are literally countless complex systems, not to mention tools and techniques used to infer, simulate, analyze, and model these systems, it is impossible to give a truly comprehensive account of the history and study of complex systems. The author's own publications have contributed network inference, simulation, modeling, and analysis methods to the much larger body of work in systems biology, and indeed, in network science. The aim of this thesis is therefore twofold: to present this original work in the historical context of network science, but also to provide sufficient review and reference regarding complex systems (with an emphasis on complex networks in systems biology) and tools and techniques for their inference, simulation, analysis, and modeling, such that the reader will be comfortable in seeking out further information on the subject. The review-like Chapters 1, 2, and 4 are intended to convey the co-evolution of network science and the slow but noticeable breakdown of boundaries between disciplines in academia as research and comparison of diverse systems has brought to light the shared properties of these systems. It is the author's hope that theses chapters impart some sense of the remarkable and rapid progress in complex systems research that has led to this unprecedented academic synergy. Chapters 3 and 5 detail the author's original work in the context of complex systems research. Chapter 3 presents the methods and results of a two-stage modeling process that generates candidate gene-regulatory networks of the bacterium B.subtilis from experimentally obtained, yet mathematically underdetermined microchip array data. These networks are then analyzed from a graph theoretical perspective, and their biological viability is critiqued by comparing the networks' graph theoretical properties to those of other biological systems. The results of topological perturbation analyses revealing commonalities in behavior at multiple levels of complexity are also presented, and are shown to be an invaluable means by which to ascertain the level of complexity to which the network inference process is robust to noise. Chapter 5 outlines a learning algorithm for the development of a realistic, evolving social network (a city) into which a disease is introduced. The results of simulations in populations spanning two orders of magnitude are compared to prevaccine era measles data for England and Wales and demonstrate that the simulations are able to capture the quantitative and qualitative features of epidemics in populations as small as 10,000 people. The work presented in Chapter 5 validates the utility of network simulation in concurrently probing contact network dynamics and disease dynamics.
Reframing the challenges to integrated care: a complex-adaptive systems perspective.
Tsasis, Peter; Evans, Jenna M; Owen, Susan
2012-01-01
Despite over two decades of international experience and research on health systems integration, integrated care has not developed widely. We hypothesized that part of the problem may lie in how we conceptualize the integration process and the complex systems within which integrated care is enacted. This study aims to contribute to discourse regarding the relevance and utility of a complex-adaptive systems (CAS) perspective on integrated care. In the Canadian province of Ontario, government mandated the development of fourteen Local Health Integration Networks in 2006. Against the backdrop of these efforts to integrate care, we collected focus group data from a diverse sample of healthcare professionals in the Greater Toronto Area using convenience and snowball sampling. A semi-structured interview guide was used to elicit participant views and experiences of health systems integration. We use a CAS framework to describe and analyze the data, and to assess the theoretical fit of a CAS perspective with the dominant themes in participant responses. Our findings indicate that integration is challenged by system complexity, weak ties and poor alignment among professionals and organizations, a lack of funding incentives to support collaborative work, and a bureaucratic environment based on a command and control approach to management. Using a CAS framework, we identified several characteristics of CAS in our data, including diverse, interdependent and semi-autonomous actors; embedded co-evolutionary systems; emergent behaviours and non-linearity; and self-organizing capacity. One possible explanation for the lack of systems change towards integration is that we have failed to treat the healthcare system as complex-adaptive. The data suggest that future integration initiatives must be anchored in a CAS perspective, and focus on building the system's capacity to self-organize. We conclude that integrating care requires policies and management practices that promote system awareness, relationship-building and information-sharing, and that recognize change as an evolving learning process rather than a series of programmatic steps.
Ferguson, Michael A.; Anderson, Jeffrey S.; Spreng, R. Nathan
2017-01-01
Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease.
Brughmans, Tom; de Waal, Maaike S; Hofman, Corinne L; Brandes, Ulrik
2018-01-01
This paper presents a study of the visual properties of natural and Amerindian cultural landscapes in late pre-colonial East-Guadeloupe and of how these visual properties affected social interactions. Through a review of descriptive and formal visibility studies in Caribbean archaeology, it reveals that the ability of visual properties to affect past human behaviour is frequently evoked but the more complex of these hypotheses are rarely studied formally. To explore such complex hypotheses, the current study applies a range of techniques: total viewsheds, cumulative viewsheds, visual neighbourhood configurations and visibility networks. Experiments were performed to explore the control of seascapes, the functioning of hypothetical smoke signalling networks, the correlation of these visual properties with stylistic similarities of material culture found at sites and the change of visual properties over time. The results of these experiments suggest that only few sites in Eastern Guadeloupe are located in areas that are particularly suitable to visually control possible sea routes for short- and long-distance exchange; that visual control over sea areas was not a factor of importance for the existence of micro-style areas; that during the early phase of the Late Ceramic Age networks per landmass are connected and dense and that they incorporate all sites, a structure that would allow hypothetical smoke signalling networks; and that the visual properties of locations of the late sites Morne Souffleur and Morne Cybèle-1 were not ideal for defensive purposes. These results led us to propose a multi-scalar hypothesis for how lines of sight between settlements in the Lesser Antilles could have structured past human behaviour: short-distance visibility networks represent the structuring of navigation and communication within landmasses, whereas the landmasses themselves served as focal points for regional navigation and interaction. We conclude by emphasising that since our archaeological theories about visual properties usually take a multi-scalar landscape perspective, there is a need for this perspective to be reflected in our formal visibility methods as is made possible by the methods used in this paper.
Verkhivker, Gennady M
2016-01-01
The human protein kinome presents one of the largest protein families that orchestrate functional processes in complex cellular networks, and when perturbed, can cause various cancers. The abundance and diversity of genetic, structural, and biochemical data underlies the complexity of mechanisms by which targeted and personalized drugs can combat mutational profiles in protein kinases. Coupled with the evolution of system biology approaches, genomic and proteomic technologies are rapidly identifying and charactering novel resistance mechanisms with the goal to inform rationale design of personalized kinase drugs. Integration of experimental and computational approaches can help to bring these data into a unified conceptual framework and develop robust models for predicting the clinical drug resistance. In the current study, we employ a battery of synergistic computational approaches that integrate genetic, evolutionary, biochemical, and structural data to characterize the effect of cancer mutations in protein kinases. We provide a detailed structural classification and analysis of genetic signatures associated with oncogenic mutations. By integrating genetic and structural data, we employ network modeling to dissect mechanisms of kinase drug sensitivities to oncogenic EGFR mutations. Using biophysical simulations and analysis of protein structure networks, we show that conformational-specific drug binding of Lapatinib may elicit resistant mutations in the EGFR kinase that are linked with the ligand-mediated changes in the residue interaction networks and global network properties of key residues that are responsible for structural stability of specific functional states. A strong network dependency on high centrality residues in the conformation-specific Lapatinib-EGFR complex may explain vulnerability of drug binding to a broad spectrum of mutations and the emergence of drug resistance. Our study offers a systems-based perspective on drug design by unravelling complex relationships between robustness of targeted kinase genes and binding specificity of targeted kinase drugs. We discuss how these approaches can exploit advances in chemical biology and network science to develop novel strategies for rationally tailored and robust personalized drug therapies.
NASA Astrophysics Data System (ADS)
Li, Huajiao; Fang, Wei; An, Haizhong; Gao, Xiangyun; Yan, Lili
2016-05-01
Economic networks in the real world are not homogeneous; therefore, it is important to study economic networks with heterogeneous nodes and edges to simulate a real network more precisely. In this paper, we present an empirical study of the one-mode derivative holding-based network constructed by the two-mode affiliation network of two sets of actors using the data of worldwide listed energy companies and their shareholders. First, we identify the primitive relationship in the two-mode affiliation network of the two sets of actors. Then, we present the method used to construct the derivative network based on the shareholding relationship between two sets of actors and the affiliation relationship between actors and events. After constructing the derivative network, we analyze different topological features on the node level, edge level and entire network level and explain the meanings of the different values of the topological features combining the empirical data. This study is helpful for expanding the usage of complex networks to heterogeneous economic networks. For empirical research on the worldwide listed energy stock market, this study is useful for discovering the inner relationships between the nations and regions from a new perspective.
Viral Hepatitis in Hawai‘i - Differing Perspectives
Bannan, Michael; Bauman, Kay; Collis, Tarquin; Hall, Alba; Haning, William; Hannemann, Shoshana; Hare, C Bradley; Humphry, Joseph; Jao, Robert; Leevy, Carroll; Lusk, Heather; Ochoa, Edward; Palafox, Neal; Withers, Nancy; Akinaka, Kenneth
2010-01-01
This publication contains information from a conference titled “Individual Perspectives on the Silent Epidemic of Viral Hepatitis in Hawai‘i” held in October of 2007 with updates and additional contributions from annual conferences in 2008 and 2009. These conferences were sponsored by the Hepatitis Support Network of Hawai‘i and held in Honolulu, Hawai‘i at the Queen's Conference Center. The primary objectives of the conferences have been to heighten awareness of viral hepatitis in Hawai‘i and to bring together health care professionals to learn about these infections and to help them respond to the challenges they bring to the people of Hawai‘i. The initial conference was oriented to present the unique and individual perspectives of patients, physicians, and other healthcare providers specific to the complex issues of hepatitis in an effort to help them understand their role in the context of others and to develop a team approach in responding to this epidemic. PMID:20533191
Viral hepatitis in Hawai'i--differing perspectives.
Tice, Alan D; Bannan, Michael; Bauman, Kay; Collis, Tarquin; Hall, Alba; Haning, William; Hannemann, Shoshana; Hare, C Bradley; Humphry, Joseph; Jao, Robert; Leevy, Carroll; Lusk, Heather; Ochoa, Edward; Palafox, Neal; Withers, Nancy; Akinaka, Kenneth
2010-04-01
This publication contains information from a conference titled "Individual Perspectives on the Silent Epidemic of Viral Hepatitis in Hawai'i" held in October of 2007 with updates and additional contributions from annual conferences in 2008 and 2009. These conferences were sponsored by the Hepatitis Support Network of Hawai'i and held in Honolulu, Hawai'i at the Queen's Conference Center. The primary objectives of the conferences have been to heighten awareness of viral hepatitis in Hawai'i and to bring together health care professionals to learn about these infections and to help them respond to the challenges they bring to the people of Hawai'i. The initial conference was oriented to present the unique and individual perspectives of patients, physicians, and other healthcare providers specific to the complex issues of hepatitis in an effort to help them understand their role in the context of others and to develop a team approach in responding to this epidemic.
Metabolic Compartmentation – A System Level Property of Muscle Cells
Saks, Valdur; Beraud, Nathalie; Wallimann, Theo
2008-01-01
Problems of quantitative investigation of intracellular diffusion and compartmentation of metabolites are analyzed. Principal controversies in recently published analyses of these problems for the living cells are discussed. It is shown that the formal theoretical analysis of diffusion of metabolites based on Fick's equation and using fixed diffusion coefficients for diluted homogenous aqueous solutions, but applied for biological systems in vivo without any comparison with experimental results, may lead to misleading conclusions, which are contradictory to most biological observations. However, if the same theoretical methods are used for analysis of actual experimental data, the apparent diffusion constants obtained are orders of magnitude lower than those in diluted aqueous solutions. Thus, it can be concluded that local restrictions of diffusion of metabolites in a cell are a system-level properties caused by complex structural organization of the cells, macromolecular crowding, cytoskeletal networks and organization of metabolic pathways into multienzyme complexes and metabolons. This results in microcompartmentation of metabolites, their channeling between enzymes and in modular organization of cellular metabolic networks. The perspectives of further studies of these complex intracellular interactions in the framework of Systems Biology are discussed. PMID:19325782
Proteome-scale human interactomics
Luck, Katja; Sheynkman, Gloria M.; Zhang, Ivy; Vidal, Marc
2017-01-01
Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome-scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life. PMID:28284537
Frantz, Terrill L
2012-01-01
This paper introduces the contemporary perspectives and techniques of social network analysis (SNA) and agent-based modeling (ABM) and advocates applying them to advance various aspects of complementary and alternative medicine (CAM). SNA and ABM are invaluable methods for representing, analyzing and projecting complex, relational, social phenomena; they provide both an insightful vantage point and a set of analytic tools that can be useful in a wide range of contexts. Applying these methods in the CAM context can aid the ongoing advances in the CAM field, in both its scientific aspects and in developing broader acceptance in associated stakeholder communities. Copyright © 2012 S. Karger AG, Basel.
A Chemical Engineer's Perspective on Health and Disease
Androulakis, Ioannis P.
2014-01-01
Chemical process systems engineering considers complex supply chains which are coupled networks of dynamically interacting systems. The quest to optimize the supply chain while meeting robustness and flexibility constraints in the face of ever changing environments necessitated the development of theoretical and computational tools for the analysis, synthesis and design of such complex engineered architectures. However, it was realized early on that optimality is a complex characteristic required to achieve proper balance between multiple, often competing, objectives. As we begin to unravel life's intricate complexities, we realize that that living systems share similar structural and dynamic characteristics; hence much can be learned about biological complexity from engineered systems. In this article, we draw analogies between concepts in process systems engineering and conceptual models of health and disease; establish connections between these concepts and physiologic modeling; and describe how these mirror onto the physiological counterparts of engineered systems. PMID:25506103
Ant-inspired density estimation via random walks.
Musco, Cameron; Su, Hsin-Hao; Lynch, Nancy A
2017-10-03
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks.
Scale-Free Networks and Commercial Air Carrier Transportation in the United States
NASA Technical Reports Server (NTRS)
Conway, Sheila R.
2004-01-01
Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.
The Changing Nature of Suicide Attacks: A Social Network Perspective
ERIC Educational Resources Information Center
Pedahzur, Ami; Perliger, Arie
2006-01-01
To comprehend the developments underlying the suicide attacks of recent years, we suggest that the organizational approach, which until recently was used to explain this phenomenon, should be complemented with a social network perspective. By employing a social network analysis of Palestinian suicide networks, the authors found that, in contrast…
He, Min; van Wijk, Eduard; van Wietmarschen, Herman; Wang, Mei; Sun, Mengmeng; Koval, Slavik; van Wijk, Roeland; Hankemeier, Thomas; van der Greef, Jan
2017-03-01
The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective. Copyright © 2017 Elsevier B.V. All rights reserved.
Employment, Social Networks and Undocumented Migrants: The Employer Perspective
Bloch, Alice; McKay, Sonia
2015-01-01
This article draws on data from qualitative interviews with ethnic enclave and ethnic economy business entrepreneurs from Chinese, Bangladeshi and Turkish-speaking communities in London. Routes into business and worker recruitment practices are explored, demonstrating the centrality of social capital in the form of family and other social networks within these processes. The article investigates what employers consider the desirable characteristics of workers: trust, kinship, gender, social networks, language compatibility and the needs of the business intersect with racialised notions of workers’ strengths and characteristics. Finally, we consider changing practices in relation to the employment of undocumented migrants, in the context of an increasingly punitive legislative regime. The complex and variable impact of policy alongside the ways in which other obligations and positions outweigh the fear and risks of sanctions associated with non-compliance is revealed. PMID:25866421
SuperJet International case study: a business network start-up in the aeronautics industry
NASA Astrophysics Data System (ADS)
Corallo, Angelo; de Maggio, Marco; Storelli, Davide
This chapter presents the SuperJet International case study, a start-up in the aeronautics industry characterized by a process-oriented approach and a complex and as yet evolving network of partnerships and collaborations. The chapter aims to describe the key points of the start-up process, highlighting common factors and differences compared to the TEKNE Methodology of Change, with particular reference to the second and third phase, namely, the design and deployment of new techno-organizational systems. The SuperJet International startup is presented as a case study where strategic and organizational aspects have been jointly conceived from a network-driven perspective. The chapter compares some of the guidelines of the TEKNE Methodology of Change with experiences and actual practices deriving from interviews with key players in SJI's start-up process.
Information spread of emergency events: path searching on social networks.
Dai, Weihui; Hu, Hongzhi; Wu, Tunan; Dai, Yonghui
2014-01-01
Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning.
Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network
NASA Astrophysics Data System (ADS)
Xu, Chuan-Ming; Yan, Yan; Zhu, Xiao-Wu; Li, Xiao-Teng; Chen, Xiao-Song
2013-11-01
The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.
Voluntary Vaccination through Self-organizing Behaviors on Locally-mixed Social Networks.
Shi, Benyun; Qiu, Hongjun; Niu, Wenfang; Ren, Yizhi; Ding, Hong; Chen, Dan
2017-06-01
Voluntary vaccination reflects how individuals weigh the risk of infection and the cost of vaccination against the spread of vaccine-preventable diseases, such as smallpox and measles. In a homogeneously mixing population, the infection risk of an individual depends largely on the proportion of vaccinated individuals due to the effects of herd immunity. While in a structured population, the infection risk can also be affected by the structure of individuals' social network. In this paper, we focus on studying individuals' self-organizing behaviors under the circumstance of voluntary vaccination in different types of social networks. Specifically, we assume that each individual together with his/her neighbors forms a local well-mixed environment, where individuals meet equally often as long as they have a common neighbor. We carry out simulations on four types of locally-mixed social networks to investigate the network effects on voluntary vaccination. Furthermore, we also evaluate individuals' vaccinating decisions through interacting with their "neighbors of neighbors". The results and findings of this paper provide a new perspective for vaccination policy-making by taking into consideration human responses in complex social networks.
Network analysis: A new way of understanding psychopathology?
Fonseca-Pedrero, Eduardo
Current taxonomic systems are based on a descriptive and categorical approach where psychopathological symptoms and signs are caused by a hypothetical underlying mental disorder. In order to circumvent the limitations of classification systems, it is necessary to incorporate new conceptual and psychometric models that allow to understand, analyze and intervene in psychopathological phenomena from another perspective. The main goal was to present a new approach called network analysis for its application in the field of psychopathology. First of all, a brief introduction where psychopathological disorders are conceived as complex dynamic systems was carried out. Key concepts, as well as the different types of networks and the procedures for their estimation, are discussed. Following this, centrality measures, important for the understanding of the network as well as to examine the relevance of the variables within the network were addressed. These factors were then exemplified by estimating a network of self-reported psychopathological symptoms in a representative sample of adolescents. Finally, a brief recapitulation is made and future lines of research are discussed. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.
The geometry of chaotic dynamics — a complex network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Heitzig, J.; Donges, J. F.; Zou, Y.; Marwan, N.; Kurths, J.
2011-12-01
Recently, several complex network approaches to time series analysis have been developed and applied to study a wide range of model systems as well as real-world data, e.g., geophysical or financial time series. Among these techniques, recurrence-based concepts and prominently ɛ-recurrence networks, most faithfully represent the geometrical fine structure of the attractors underlying chaotic (and less interestingly non-chaotic) time series. In this paper we demonstrate that the well known graph theoretical properties local clustering coefficient and global (network) transitivity can meaningfully be exploited to define two new local and two new global measures of dimension in phase space: local upper and lower clustering dimension as well as global upper and lower transitivity dimension. Rigorous analytical as well as numerical results for self-similar sets and simple chaotic model systems suggest that these measures are well-behaved in most non-pathological situations and that they can be estimated reasonably well using ɛ-recurrence networks constructed from relatively short time series. Moreover, we study the relationship between clustering and transitivity dimensions on the one hand, and traditional measures like pointwise dimension or local Lyapunov dimension on the other hand. We also provide further evidence that the local clustering coefficients, or equivalently the local clustering dimensions, are useful for identifying unstable periodic orbits and other dynamically invariant objects from time series. Our results demonstrate that ɛ-recurrence networks exhibit an important link between dynamical systems and graph theory.
Networking—a statistical physics perspective
NASA Astrophysics Data System (ADS)
Yeung, Chi Ho; Saad, David
2013-03-01
Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.
Park, Jihoon; Mori, Hiroki; Okuyama, Yuji; Asada, Minoru
2017-01-01
Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the "information networks" different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed.
An edge-centric perspective on the human connectome: link communities in the brain.
de Reus, Marcel A; Saenger, Victor M; Kahn, René S; van den Heuvel, Martijn P
2014-10-05
Brain function depends on efficient processing and integration of information within a complex network of neural interactions, known as the connectome. An important aspect of connectome architecture is the existence of community structure, providing an anatomical basis for the occurrence of functional specialization. Typically, communities are defined as groups of densely connected network nodes, representing clusters of brain regions. Looking at the connectome from a different perspective, instead focusing on the interconnecting links or edges, we find that the white matter pathways between brain regions also exhibit community structure. Eleven link communities were identified: five spanning through the midline fissure, three through the left hemisphere and three through the right hemisphere. We show that these link communities are consistently identifiable and investigate the network characteristics of their underlying white matter pathways. Furthermore, examination of the relationship between link communities and brain regions revealed that the majority of brain regions participate in multiple link communities. In particular, the highly connected and central hub regions showed a rich level of community participation, supporting the notion that these hubs play a pivotal role as confluence zones in which neural information from different domains merges. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Permitted and forbidden sets in symmetric threshold-linear networks.
Hahnloser, Richard H R; Seung, H Sebastian; Slotine, Jean-Jacques
2003-03-01
The richness and complexity of recurrent cortical circuits is an inexhaustible source of inspiration for thinking about high-level biological computation. In past theoretical studies, constraints on the synaptic connection patterns of threshold-linear networks were found that guaranteed bounded network dynamics, convergence to attractive fixed points, and multistability, all fundamental aspects of cortical information processing. However, these conditions were only sufficient, and it remained unclear which were the minimal (necessary) conditions for convergence and multistability. We show that symmetric threshold-linear networks converge to a set of attractive fixed points if and only if the network matrix is copositive. Furthermore, the set of attractive fixed points is nonconnected (the network is multiattractive) if and only if the network matrix is not positive semidefinite. There are permitted sets of neurons that can be coactive at a stable steady state and forbidden sets that cannot. Permitted sets are clustered in the sense that subsets of permitted sets are permitted and supersets of forbidden sets are forbidden. By viewing permitted sets as memories stored in the synaptic connections, we provide a formulation of long-term memory that is more general than the traditional perspective of fixed-point attractor networks. There is a close correspondence between threshold-linear networks and networks defined by the generalized Lotka-Volterra equations.
Insights into Tropical Tropospheric Ozone from Satellite and Sonde Data
NASA Technical Reports Server (NTRS)
Thompson, Anne M.
2003-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The data reside at: http://code916.gsfc.nasa.gov/Data_services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this. In addition to leading the SHADOZ network, we have been producing near-real tropical tropospheric ozone ('TTO') data from the Total Ozone Mapping Spectrometer (TOMS) since 1997 with Prof. Hudson and students at the University of Maryland: http://metosrv2.umd.edu/tropo. Further perspective on the complexity of tropospheric ozone variability is shown using satellite observations.
Abrams, John M; White, Michael A
2004-12-01
In development and in the adult, complex signaling pathways operate within and between cells to coordinate proliferation and cell death. These networks can be viewed as coupling devices that link engines driving the cell cycle and the initiation of apoptosis. We propose three simple frameworks for modeling the effects of proliferative drive on apoptotic propensity. This perspective offers a potentially useful foundation for predicting group behaviors of cells in normal and pathological settings.
Mudgal, Richa; Srinivasan, Narayanaswamy; Chandra, Nagasuma
2017-07-01
Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function, and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology, and designing enzymes with new functional capabilities. Proteins 2017; 85:1319-1335. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Allard, Pierre-Marie; Péresse, Tiphaine; Bisson, Jonathan; Gindro, Katia; Marcourt, Laurence; Pham, Van Cuong; Roussi, Fanny; Litaudon, Marc; Wolfender, Jean-Luc
2016-03-15
Dereplication represents a key step for rapidly identifying known secondary metabolites in complex biological matrices. In this context, liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is increasingly used and, via untargeted data-dependent MS/MS experiments, massive amounts of detailed information on the chemical composition of crude extracts can be generated. An efficient exploitation of such data sets requires automated data treatment and access to dedicated fragmentation databases. Various novel bioinformatics approaches such as molecular networking (MN) and in-silico fragmentation tools have emerged recently and provide new perspective for early metabolite identification in natural products (NPs) research. Here we propose an innovative dereplication strategy based on the combination of MN with an extensive in-silico MS/MS fragmentation database of NPs. Using two case studies, we demonstrate that this combined approach offers a powerful tool to navigate through the chemistry of complex NPs extracts, dereplicate metabolites, and annotate analogues of database entries.
Computational modelling of genome-scale metabolic networks and its application to CHO cell cultures.
Rejc, Živa; Magdevska, Lidija; Tršelič, Tilen; Osolin, Timotej; Vodopivec, Rok; Mraz, Jakob; Pavliha, Eva; Zimic, Nikolaj; Cvitanović, Tanja; Rozman, Damjana; Moškon, Miha; Mraz, Miha
2017-09-01
Genome-scale metabolic models (GEMs) have become increasingly important in recent years. Currently, GEMs are the most accurate in silico representation of the genotype-phenotype link. They allow us to study complex networks from the systems perspective. Their application may drastically reduce the amount of experimental and clinical work, improve diagnostic tools and increase our understanding of complex biological phenomena. GEMs have also demonstrated high potential for the optimisation of bio-based production of recombinant proteins. Herein, we review the basic concepts, methods, resources and software tools used for the reconstruction and application of GEMs. We overview the evolution of the modelling efforts devoted to the metabolism of Chinese Hamster Ovary (CHO) cells. We present a case study on CHO cell metabolism under different amino acid depletions. This leads us to the identification of the most influential as well as essential amino acids in selected CHO cell lines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Attacker-defender game from a network science perspective
NASA Astrophysics Data System (ADS)
Li, Ya-Peng; Tan, Suo-Yi; Deng, Ye; Wu, Jun
2018-05-01
Dealing with the protection of critical infrastructures, many game-theoretic methods have been developed to study the strategic interactions between defenders and attackers. However, most game models ignore the interrelationship between different components within a certain system. In this paper, we propose a simultaneous-move attacker-defender game model, which is a two-player zero-sum static game with complete information. The strategies and payoffs of this game are defined on the basis of the topology structure of the infrastructure system, which is represented by a complex network. Due to the complexity of strategies, the attack and defense strategies are confined by two typical strategies, namely, targeted strategy and random strategy. The simulation results indicate that in a scale-free network, the attacker virtually always attacks randomly in the Nash equilibrium. With a small cost-sensitive parameter, representing the degree to which costs increase with the importance of a target, the defender protects the hub targets with large degrees preferentially. When the cost-sensitive parameter exceeds a threshold, the defender switches to protecting nodes randomly. Our work provides a new theoretical framework to analyze the confrontations between the attacker and the defender on critical infrastructures and deserves further study.
Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore
Ibrahim, Bashar; Henze, Richard; Gruenert, Gerd; Egbert, Matthew; Huwald, Jan; Dittrich, Peter
2013-01-01
A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. PMID:24709796
Taking Systems Medicine to Heart.
Trachana, Kalliopi; Bargaje, Rhishikesh; Glusman, Gustavo; Price, Nathan D; Huang, Sui; Hood, Leroy E
2018-04-27
Systems medicine is a holistic approach to deciphering the complexity of human physiology in health and disease. In essence, a living body is constituted of networks of dynamically interacting units (molecules, cells, organs, etc) that underlie its collective functions. Declining resilience because of aging and other chronic environmental exposures drives the system to transition from a health state to a disease state; these transitions, triggered by acute perturbations or chronic disturbance, manifest as qualitative shifts in the interactions and dynamics of the disease-perturbed networks. Understanding health-to-disease transitions poses a high-dimensional nonlinear reconstruction problem that requires deep understanding of biology and innovation in study design, technology, and data analysis. With a focus on the principles of systems medicine, this Review discusses approaches for deciphering this biological complexity from a novel perspective, namely, understanding how disease-perturbed networks function; their study provides insights into fundamental disease mechanisms. The immediate goals for systems medicine are to identify early transitions to cardiovascular (and other chronic) diseases and to accelerate the translation of new preventive, diagnostic, or therapeutic targets into clinical practice, a critical step in the development of personalized, predictive, preventive, and participatory (P4) medicine. © 2018 American Heart Association, Inc.
Best, Paul; Badham, Jennifer; Corepal, Rekesh; O'Neill, Roisin F; Tully, Mark A; Kee, Frank; Hunter, Ruth F
2017-11-23
While Patient and Public Involvement (PPI) is encouraged throughout the research process, engagement is typically limited to intervention design and post-analysis stages. There are few approaches to participatory data analyses within complex health interventions. Using qualitative data from a feasibility randomised controlled trial (RCT), this proof-of-concept study tests the value of a new approach to participatory data analysis called Participatory Theme Elicitation (PTE). Forty excerpts were given to eight members of a youth advisory PPI panel to sort into piles based on their perception of related thematic content. Using algorithms to detect communities in networks, excerpts were then assigned to a thematic cluster that combined the panel members' perspectives. Network analysis techniques were also used to identify key excerpts in each grouping that were then further explored qualitatively. While PTE analysis was, for the most part, consistent with the researcher-led analysis, young people also identified new emerging thematic content. PTE appears promising for encouraging user led identification of themes arising from qualitative data collected during complex interventions. Further work is required to validate and extend this method. ClinicalTrials.gov, ID: NCT02455986 . Retrospectively Registered on 21 May 2015.
Yousefi Nooraie, Reza; Khan, Sobia; Gutberg, Jennifer; Baker, G Ross
2018-01-01
Although implementation models broadly recognize the importance of social relationships, our knowledge about applying social network analysis (SNA) to formative, process, and outcome evaluations of health system interventions is limited. We explored applications of adopting an SNA lens to inform implementation planning, engagement and execution, and evaluation. We used Health Links, a province-wide program in Canada aiming to improve care coordination among multiple providers of high-needs patients, as an example of a health system intervention. At the planning phase, an SNA can depict the structure, network influencers, and composition of clusters at various levels. It can inform the engagement and execution by identifying potential targets (e.g., opinion leaders) and by revealing structural gaps and clusters. It can also be used to assess the outcomes of the intervention, such as its success in increasing network connectivity; changing the position of certain actors; and bridging across specialties, organizations, and sectors. We provided an overview of how an SNA lens can shed light on the complexity of implementation along the entire implementation pathway, by revealing the relational barriers and facilitators, the application of network-informed and network-altering interventions, and testing hypotheses on network consequences of the implementation.
Mapping the online communication patterns of political conversations
NASA Astrophysics Data System (ADS)
Borondo, J.; Morales, A. J.; Benito, R. M.; Losada, J. C.
2014-11-01
The structure of the social networks in which individuals are embedded influences their political choices and therefore their voting behavior. Nowadays, social media represent a new channel for individuals to communicate, what together with the availability of the data, makes it possible to analyze the online social network resulting from political conversations. Here, by taking advantage of the recently developed techniques to analyze complex systems, we map the communication patterns resulting from Spanish political conversations. We identify the different existing communities, building networks of communities, and finding that users cluster themselves in politically homogeneous networks. We found that while most of the collective attention was monopolized by politicians, traditional media accounts were still the preferred sources from which to propagate information. Finally, we propose methods to analyze the use of different languages, finding a clear trend from sympathizers of several political parties to overuse or infra-use each language. We conclude that, on the light of a social media analysis perspective, the political conversation is constrained by both ideology and language.
NASA Astrophysics Data System (ADS)
di Volo, Matteo; Burioni, Raffaella; Casartelli, Mario; Livi, Roberto; Vezzani, Alessandro
2016-01-01
We study the dynamics of networks with inhibitory and excitatory leak-integrate-and-fire neurons with short-term synaptic plasticity in the presence of depressive and facilitating mechanisms. The dynamics is analyzed by a heterogeneous mean-field approximation, which allows us to keep track of the effects of structural disorder in the network. We describe the complex behavior of different classes of excitatory and inhibitory components, which give rise to a rich dynamical phase diagram as a function of the fraction of inhibitory neurons. Using the same mean-field approach, we study and solve a global inverse problem: reconstructing the degree probability distributions of the inhibitory and excitatory components and the fraction of inhibitory neurons from the knowledge of the average synaptic activity field. This approach unveils new perspectives on the numerical study of neural network dynamics and the possibility of using these models as a test bed for the analysis of experimental data.
Framework for cascade size calculations on random networks
NASA Astrophysics Data System (ADS)
Burkholz, Rebekka; Schweitzer, Frank
2018-04-01
We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.
Adverse outcome pathway networks II: Network analytics.
Villeneuve, Daniel L; Angrish, Michelle M; Fortin, Marie C; Katsiadaki, Ioanna; Leonard, Marc; Margiotta-Casaluci, Luigi; Munn, Sharon; O'Brien, Jason M; Pollesch, Nathan L; Smith, L Cody; Zhang, Xiaowei; Knapen, Dries
2018-06-01
Toxicological responses to stressors are more complex than the simple one-biological-perturbation to one-adverse-outcome model portrayed by individual adverse outcome pathways (AOPs). Consequently, the AOP framework was designed to facilitate de facto development of AOP networks that can aid in the understanding and prediction of pleiotropic and interactive effects more common to environmentally realistic, complex exposure scenarios. The present study introduces nascent concepts related to the qualitative analysis of AOP networks. First, graph theory-based approaches for identifying important topological features are illustrated using 2 example AOP networks derived from existing AOP descriptions. Second, considerations for identifying the most significant path(s) through an AOP network from either a biological or risk assessment perspective are described. Finally, approaches for identifying interactions among AOPs that may result in additive, synergistic, or antagonistic responses (or previously undefined emergent patterns of response) are introduced. Along with a companion article (part I), these concepts set the stage for the development of tools and case studies that will facilitate more rigorous analysis of AOP networks, and the utility of AOP network-based predictions, for use in research and regulatory decision-making. The present study addresses one of the major themes identified through a Society of Environmental Toxicology and Chemistry Horizon Scanning effort focused on advancing the AOP framework. Environ Toxicol Chem 2018;37:1734-1748. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Mori, Hiroki; Okuyama, Yuji; Asada, Minoru
2017-01-01
Chaotic itinerancy is a phenomenon in which the state of a nonlinear dynamical system spontaneously explores and attracts certain states in a state space. From this perspective, the diverse behavior of animals and its spontaneous transitions lead to a complex coupled dynamical system, including a physical body and a brain. Herein, a series of simulations using different types of non-linear oscillator networks (i.e., regular, small-world, scale-free, random) with a musculoskeletal model (i.e., a snake-like robot) as a physical body are conducted to understand how the chaotic itinerancy of bodily behavior emerges from the coupled dynamics between the body and the brain. A behavior analysis (behavior clustering) and network analysis for the classified behavior are then applied. The former consists of feature vector extraction from the motions and classification of the movement patterns that emerged from the coupled dynamics. The network structures behind the classified movement patterns are revealed by estimating the “information networks” different from the given non-linear oscillator networks based on the transfer entropy which finds the information flow among neurons. The experimental results show that: (1) the number of movement patterns and their duration depend on the sensor ratio to control the balance of strength between the body and the brain dynamics and on the type of the given non-linear oscillator networks; and (2) two kinds of information networks are found behind two kinds movement patterns with different durations by utilizing the complex network measures, clustering coefficient and the shortest path length with a negative and a positive relationship with the duration periods of movement patterns. The current results seem promising for a future extension of the method to a more complicated body and environment. Several requirements are also discussed. PMID:28796797
Transfer of Training: Adding Insight through Social Network Analysis
ERIC Educational Resources Information Center
Van den Bossche, Piet; Segers, Mien
2013-01-01
This article reviews studies which apply a social network perspective to examine transfer of training. The theory behind social networks focuses on the interpersonal mechanisms and social structures that exist among interacting units such as people within an organization. A premise of this perspective is that individual's behaviors and outcomes…
Information Spread of Emergency Events: Path Searching on Social Networks
Hu, Hongzhi; Wu, Tunan
2014-01-01
Emergency has attracted global attentions of government and the public, and it will easily trigger a series of serious social problems if it is not supervised effectively in the dissemination process. In the Internet world, people communicate with each other and form various virtual communities based on social networks, which lead to a complex and fast information spread pattern of emergency events. This paper collects Internet data based on data acquisition and topic detection technology, analyzes the process of information spread on social networks, describes the diffusions and impacts of that information from the perspective of random graph, and finally seeks the key paths through an improved IBF algorithm. Application cases have shown that this algorithm can search the shortest spread paths efficiently, which may help us to guide and control the information dissemination of emergency events on early warning. PMID:24600323
Enabling large-scale viscoelastic calculations via neural network acceleration
NASA Astrophysics Data System (ADS)
Robinson DeVries, P.; Thompson, T. B.; Meade, B. J.
2017-12-01
One of the most significant challenges involved in efforts to understand the effects of repeated earthquake cycle activity are the computational costs of large-scale viscoelastic earthquake cycle models. Deep artificial neural networks (ANNs) can be used to discover new, compact, and accurate computational representations of viscoelastic physics. Once found, these efficient ANN representations may replace computationally intensive viscoelastic codes and accelerate large-scale viscoelastic calculations by more than 50,000%. This magnitude of acceleration enables the modeling of geometrically complex faults over thousands of earthquake cycles across wider ranges of model parameters and at larger spatial and temporal scales than have been previously possible. Perhaps most interestingly from a scientific perspective, ANN representations of viscoelastic physics may lead to basic advances in the understanding of the underlying model phenomenology. We demonstrate the potential of artificial neural networks to illuminate fundamental physical insights with specific examples.
The transmission of fluctuation among price indices based on Granger causality network
NASA Astrophysics Data System (ADS)
Sun, Qingru; Gao, Xiangyun; Wen, Shaobo; Chen, Zhihua; Hao, Xiaoqing
2018-09-01
In this paper, we provide a method of statistical physics to analyze the fluctuation of transmission by constructing Granger causality network among price indices (PIGCN) from a systematical perspective, using complex network theory combined with Granger causality method. In economic system, there are numerous price indices, of which the relationships are extreme complicated. Thus, time series data of 6 types of price indices of China, including 113 kinds of sub price indices, are selected as example of empirical study. Through the analysis of the structure of PIGCN, we identify important price indices with high transmission range, high intermediation capacity, high cohesion and the fluctuation transmission path of price indices, respectively. Furthermore, dynamic relationships among price indices are revealed. Based on these results, we provide several policy implications for monitoring the diffusion of risk of price fluctuation. Our method can also be used to study the price indices of other countries, which is generally applicable.
NASA Astrophysics Data System (ADS)
Adelina, W.; Kusumastuti, R. D.
2017-01-01
This study is about business strategy selection for green supply chain management (GSCM) for PT XYZ by using Analytic Network Process (ANP). GSCM is initiated as a response to reduce environmental impacts from industrial activities. The purposes of this study are identifying criteria and sub criteria in selecting GSCM Strategy, and analysing a suitable GSCM strategy for PT XYZ. This study proposes ANP network with 6 criteria and 29 sub criteria, which are obtained from the literature and experts’ judgements. One of the six criteria contains GSCM strategy options, namely risk-based strategy, efficiency-based strategy, innovation-based strategy, and closed loop strategy. ANP solves complex GSCM strategy-selection by using a more structured process and considering green perspectives from experts. The result indicates that innovation-based strategy is the most suitable green supply chain management strategy for PT XYZ.
More than a meal: integrating non-feeding interactions into food webs
Kéfi, Sonia; Berlow, Eric L.; Wieters, Evie A.; Navarrete, Sergio A.; Petchey, Owen L.; Wood, Spencer A.; Boit, Alice; Joppa, Lucas N.; Lafferty, Kevin D.; Williams, Richard J.; Martinez, Neo D.; Menge, Bruce A.; Blanchette, Carol A.; Iles, Alison C.; Brose, Ulrich
2012-01-01
Organisms eating each other are only one of many types of well documented and important interactions among species. Other such types include habitat modification, predator interference and facilitation. However, ecological network research has been typically limited to either pure food webs or to networks of only a few (<3) interaction types. The great diversity of non-trophic interactions observed in nature has been poorly addressed by ecologists and largely excluded from network theory. Herein, we propose a conceptual framework that organises this diversity into three main functional classes defined by how they modify specific parameters in a dynamic food web model. This approach provides a path forward for incorporating non-trophic interactions in traditional food web models and offers a new perspective on tackling ecological complexity that should stimulate both theoretical and empirical approaches to understanding the patterns and dynamics of diverse species interactions in nature.
Pritchard, Leighton; Birch, Paul
2011-04-01
Plants have biochemical defences against stresses from predators, parasites and pathogens. In this review we discuss the interaction of plant defences with microbial pathogens such as bacteria, fungi and oomycetes, and viruses. We examine principles of complex dynamic networks that allow identification of network components that are differentially and predictably sensitive to perturbation, thus making them likely effector targets. We relate these principles to recent developments in our understanding of known effector targets in plant-pathogen systems, and propose a systems-level framework for the interpretation and modelling of host-microbe interactions mediated by effectors. We describe this framework briefly, and conclude by discussing useful experimental approaches for populating this framework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Proteome-Scale Human Interactomics.
Luck, Katja; Sheynkman, Gloria M; Zhang, Ivy; Vidal, Marc
2017-05-01
Cellular functions are mediated by complex interactome networks of physical, biochemical, and functional interactions between DNA sequences, RNA molecules, proteins, lipids, and small metabolites. A thorough understanding of cellular organization requires accurate and relatively complete models of interactome networks at proteome scale. The recent publication of four human protein-protein interaction (PPI) maps represents a technological breakthrough and an unprecedented resource for the scientific community, heralding a new era of proteome-scale human interactomics. Our knowledge gained from these and complementary studies provides fresh insights into the opportunities and challenges when analyzing systematically generated interactome data, defines a clear roadmap towards the generation of a first reference interactome, and reveals new perspectives on the organization of cellular life. Copyright © 2017 Elsevier Ltd. All rights reserved.
International business cycle synchronization since the 1870s: Evidence from a novel network approach
NASA Astrophysics Data System (ADS)
Antonakakis, Nikolaos; Gogas, Periklis; Papadimitriou, Theophilos; Sarantitis, Georgios Antonios
2016-04-01
In this study, we examine the issue of business cycle synchronization from a historical perspective in 27 developed and developing countries. Based on a novel complex network approach, the Threshold-Minimum Dominating Set (T-MDS), our results reveal heterogeneous patterns of international business cycle synchronization during fundamental globalization periods since the 1870s. In particular, the proposed methodology reveals that worldwide business cycles de-coupled during the Gold Standard, though they were synchronized during the Great Depression. The Bretton Woods era was associated with a lower degree of synchronization as compared to that during the Great Depression, while worldwide business cycle synchronization increased to unprecedented levels during the latest period of floating exchange rates and the Great Recession.
Beyond the Labor Market Paradigm: A Social Network Perspective on Teacher Recruitment and Retention
ERIC Educational Resources Information Center
Baker-Doyle, Kira
2010-01-01
This article identifies limits of the dominant labor market perspective (LMP) in research on teacher recruitment and retention and describes how research that incorporates a social network perspective (SNP) can contribute to the knowledge base and development of teacher education, staffing, and professional development approaches. A discussion of…
OmicsNet: a web-based tool for creation and visual analysis of biological networks in 3D space.
Zhou, Guangyan; Xia, Jianguo
2018-06-07
Biological networks play increasingly important roles in omics data integration and systems biology. Over the past decade, many excellent tools have been developed to support creation, analysis and visualization of biological networks. However, important limitations remain: most tools are standalone programs, the majority of them focus on protein-protein interaction (PPI) or metabolic networks, and visualizations often suffer from 'hairball' effects when networks become large. To help address these limitations, we developed OmicsNet - a novel web-based tool that allows users to easily create different types of molecular interaction networks and visually explore them in a three-dimensional (3D) space. Users can upload one or multiple lists of molecules of interest (genes/proteins, microRNAs, transcription factors or metabolites) to create and merge different types of biological networks. The 3D network visualization system was implemented using the powerful Web Graphics Library (WebGL) technology that works natively in most major browsers. OmicsNet supports force-directed layout, multi-layered perspective layout, as well as spherical layout to help visualize and navigate complex networks. A rich set of functions have been implemented to allow users to perform coloring, shading, topology analysis, and enrichment analysis. OmicsNet is freely available at http://www.omicsnet.ca.
Structure constrained by metadata in networks of chess players.
Almeira, Nahuel; Schaigorodsky, Ana L; Perotti, Juan I; Billoni, Orlando V
2017-11-09
Chess is an emblematic sport that stands out because of its age, popularity and complexity. It has served to study human behavior from the perspective of a wide number of disciplines, from cognitive skills such as memory and learning, to aspects like innovation and decision-making. Given that an extensive documentation of chess games played throughout history is available, it is possible to perform detailed and statistically significant studies about this sport. Here we use one of the most extensive chess databases in the world to construct two networks of chess players. One of the networks includes games that were played over-the-board and the other contains games played on the Internet. We study the main topological characteristics of the networks, such as degree distribution and correlations, transitivity and community structure. We complement the structural analysis by incorporating players' level of play as node metadata. Although both networks are topologically different, we show that in both cases players gather in communities according to their expertise and that an emergent rich-club structure, composed by the top-rated players, is also present.
Realistic modeling of neurons and networks: towards brain simulation.
D'Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
2013-01-01
Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field.
Realistic modeling of neurons and networks: towards brain simulation
D’Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
Summary Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field. PMID:24139652
Conditions for duality between fluxes and concentrations in biochemical networks
Fleming, Ronan M.T.; Vlassis, Nikos; Thiele, Ines; Saunders, Michael A.
2016-01-01
Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes. PMID:27345817
Conditions for duality between fluxes and concentrations in biochemical networks
Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines; ...
2016-06-23
Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less
Conditions for duality between fluxes and concentrations in biochemical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Ronan M. T.; Vlassis, Nikos; Thiele, Ines
Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We alsomore » provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality.The condition prescribes that, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes« less
Small-world human brain networks: Perspectives and challenges.
Liao, Xuhong; Vasilakos, Athanasios V; He, Yong
2017-06-01
Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.
Issues in PCS interoperability and Internetworking
NASA Technical Reports Server (NTRS)
Dean, Richard A.; Estabrook, Polly
1995-01-01
This paper is an expansion of an earlier paper on Satellite/Terrestrial PCS which addressed issues for interoperability that included Networks, Services, Voice Coders and Mobility/Security. This paper focuses on the narrower topic of Network Reference Models and associated interfaces and protocols. The network reference models are addressed from the perspective of the User, the Cellular Carrier, the PSN Carrier, and the Radio Vendor. Each perspective is presented in the way these systems have evolved. The TIA TR46/GSM reference model will be reviewed. Variations in the use of this model that are prevalent in the industry will be discussed. These are the North American Cellular networks, the GSM networks, and the North American Carriers/Bellcore perspective. The paper concludes with the presentation of issues that develop from looking at merging satellite service into a world of many different networks.
Li, Wan; Zhu, Lina; Huang, Hao; He, Yuehan; Lv, Junjie; Li, Weimin; Chen, Lina; He, Weiming
2017-10-01
Complex chronic diseases are caused by the effects of genetic and environmental factors. Single nucleotide polymorphisms (SNPs), one common type of genetic variations, played vital roles in diseases. We hypothesized that disease risk functional SNPs in coding regions and protein interaction network modules were more likely to contribute to the identification of disease susceptible genes for complex chronic diseases. This could help to further reveal the pathogenesis of complex chronic diseases. Disease risk SNPs were first recognized from public SNP data for coronary heart disease (CHD), hypertension (HT) and type 2 diabetes (T2D). SNPs in coding regions that were classified into nonsense and missense by integrating several SNP functional annotation databases were treated as functional SNPs. Then, regions significantly associated with each disease were screened using random permutations for disease risk functional SNPs. Corresponding to these regions, 155, 169 and 173 potential disease susceptible genes were identified for CHD, HT and T2D, respectively. A disease-related gene product interaction network in environmental context was constructed for interacting gene products of both disease genes and potential disease susceptible genes for these diseases. After functional enrichment analysis for disease associated modules, 5 CHD susceptible genes, 7 HT susceptible genes and 3 T2D susceptible genes were finally identified, some of which had pleiotropic effects. Most of these genes were verified to be related to these diseases in literature. This was similar for disease genes identified from another method proposed by Lee et al. from a different aspect. This research could provide novel perspectives for diagnosis and treatment of complex chronic diseases and susceptible genes identification for other diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Ant-inspired density estimation via random walks
Musco, Cameron; Su, Hsin-Hao
2017-01-01
Many ant species use distributed population density estimation in applications ranging from quorum sensing, to task allocation, to appraisal of enemy colony strength. It has been shown that ants estimate local population density by tracking encounter rates: The higher the density, the more often the ants bump into each other. We study distributed density estimation from a theoretical perspective. We prove that a group of anonymous agents randomly walking on a grid are able to estimate their density within a small multiplicative error in few steps by measuring their rates of encounter with other agents. Despite dependencies inherent in the fact that nearby agents may collide repeatedly (and, worse, cannot recognize when this happens), our bound nearly matches what would be required to estimate density by independently sampling grid locations. From a biological perspective, our work helps shed light on how ants and other social insects can obtain relatively accurate density estimates via encounter rates. From a technical perspective, our analysis provides tools for understanding complex dependencies in the collision probabilities of multiple random walks. We bound the strength of these dependencies using local mixing properties of the underlying graph. Our results extend beyond the grid to more general graphs, and we discuss applications to size estimation for social networks, density estimation for robot swarms, and random walk-based sampling for sensor networks. PMID:28928146
Abraham, Eyal; Hendler, Talma; Zagoory-Sharon, Orna; Feldman, Ruth
2016-11-01
The cross-generational transmission of mammalian sociality, initiated by the parent's postpartum brain plasticity and species-typical behavior that buttress offspring's socialization, has not been studied in humans. In this longitudinal study, we measured brain response of 45 primary-caregiving parents to their infant's stimuli, observed parent-infant interactions, and assayed parental oxytocin (OT). Intra- and inter-network connectivity were computed in three main networks of the human parental brain: core limbic, embodied simulation and mentalizing. During preschool, two key child social competencies were observed: emotion regulation and socialization. Parent's network integrity in infancy predicted preschoolers' social outcomes, with subcortical and cortical network integrity foreshadowing simple evolutionary-based regulatory tactics vs complex self-regulatory strategies and advanced socialization. Parent-infant synchrony mediated the links between connectivity of the parent's embodied simulation network and preschoolers' ability to use cognitive/executive emotion regulation strategies, highlighting the inherently dyadic nature of this network and its long-term effects on tuning young to social life. Parent's inter-network core limbic-embodied simulation connectivity predicted children's OT as moderated by parental OT. Findings challenge solipsistic neuroscience perspectives by demonstrating how the parent-offspring interface enables the brain of one human to profoundly impact long-term adaptation of another. © The Author (2016). Published by Oxford University Press.
Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio
2014-06-30
Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems.
Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio
2014-01-01
Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems. PMID:24976386
Abraham, Eyal; Hendler, Talma; Zagoory-Sharon, Orna
2016-01-01
The cross-generational transmission of mammalian sociality, initiated by the parent’s postpartum brain plasticity and species-typical behavior that buttress offspring’s socialization, has not been studied in humans. In this longitudinal study, we measured brain response of 45 primary-caregiving parents to their infant’s stimuli, observed parent–infant interactions, and assayed parental oxytocin (OT). Intra- and inter-network connectivity were computed in three main networks of the human parental brain: core limbic, embodied simulation and mentalizing. During preschool, two key child social competencies were observed: emotion regulation and socialization. Parent’s network integrity in infancy predicted preschoolers’ social outcomes, with subcortical and cortical network integrity foreshadowing simple evolutionary-based regulatory tactics vs complex self-regulatory strategies and advanced socialization. Parent–infant synchrony mediated the links between connectivity of the parent’s embodied simulation network and preschoolers' ability to use cognitive/executive emotion regulation strategies, highlighting the inherently dyadic nature of this network and its long-term effects on tuning young to social life. Parent’s inter-network core limbic-embodied simulation connectivity predicted children’s OT as moderated by parental OT. Findings challenge solipsistic neuroscience perspectives by demonstrating how the parent–offspring interface enables the brain of one human to profoundly impact long-term adaptation of another. PMID:27369068
Words Analysis of Online Chinese News Headlines about Trending Events: A Complex Network Perspective
Li, Huajiao; Fang, Wei; An, Haizhong; Huang, Xuan
2015-01-01
Because the volume of information available online is growing at breakneck speed, keeping up with meaning and information communicated by the media and netizens is a new challenge both for scholars and for companies who must address public relations crises. Most current theories and tools are directed at identifying one website or one piece of online news and do not attempt to develop a rapid understanding of all websites and all news covering one topic. This paper represents an effort to integrate statistics, word segmentation, complex networks and visualization to analyze headlines’ keywords and words relationships in online Chinese news using two samples: the 2011 Bohai Bay oil spill and the 2010 Gulf of Mexico oil spill. We gathered all the news headlines concerning the two trending events in the search results from Baidu, the most popular Chinese search engine. We used Simple Chinese Word Segmentation to segment all the headlines into words and then took words as nodes and considered adjacent relations as edges to construct word networks both using the whole sample and at the monthly level. Finally, we develop an integrated mechanism to analyze the features of words’ networks based on news headlines that can account for all the keywords in the news about a particular event and therefore track the evolution of news deeply and rapidly. PMID:25807376
Li, Huajiao; Fang, Wei; An, Haizhong; Huang, Xuan
2015-01-01
Because the volume of information available online is growing at breakneck speed, keeping up with meaning and information communicated by the media and netizens is a new challenge both for scholars and for companies who must address public relations crises. Most current theories and tools are directed at identifying one website or one piece of online news and do not attempt to develop a rapid understanding of all websites and all news covering one topic. This paper represents an effort to integrate statistics, word segmentation, complex networks and visualization to analyze headlines' keywords and words relationships in online Chinese news using two samples: the 2011 Bohai Bay oil spill and the 2010 Gulf of Mexico oil spill. We gathered all the news headlines concerning the two trending events in the search results from Baidu, the most popular Chinese search engine. We used Simple Chinese Word Segmentation to segment all the headlines into words and then took words as nodes and considered adjacent relations as edges to construct word networks both using the whole sample and at the monthly level. Finally, we develop an integrated mechanism to analyze the features of words' networks based on news headlines that can account for all the keywords in the news about a particular event and therefore track the evolution of news deeply and rapidly.
Global spatio-temporal patterns in human migration: a complex network perspective.
Davis, Kyle F; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca
2013-01-01
Migration is a powerful adaptive strategy for humans to navigate hardship and pursue a better quality of life. As a universal vehicle facilitating exchanges of ideas, culture, money and goods, international migration is a major contributor to globalization. Consisting of countries linked by multiple connections of human movements, global migration constitutes a network. Despite the important role of human migration in connecting various communities in different parts of the world, the topology and behavior of the international migration network and its changes through time remain poorly understood. Here we show that the global human migration network became more interconnected during the latter half of the twentieth century and that migrant destination choice partly reflects colonial and postcolonial histories, language, religion, and distances. From 1960 to 2000 we found a steady increase in network transitivity (i.e. connectivity between nodes connected to the same node), a decrease in average path length and an upward shift in degree distribution, all of which strengthened the 'small-world' behavior of the migration network. Furthermore, we found that distinct groups of countries preferentially interact to form migration communities based largely on historical, cultural and economic factors.
Social networks and future direction for obesity research: A scoping review
Nam, Soohyun; Redeker, Nancy; Whittemore, Robin
2014-01-01
Despite significant efforts to decrease obesity rates, the prevalence of obesity continues to increase in the United States. Obesity-risk behaviors—physical inactivity, unhealthy eating, and sleep deprivation—are intertwined during daily life and are difficult to improve in the current social environment. Studies show that social networks—the thick webs of social relations and interactions—influence various health outcomes, such as HIV risk behaviors, alcohol consumption, smoking, depression, and cardiovascular mortality; however, there is limited information on the influences of social networks on obesity and obesity-risk behaviors. Given the complexities of the bio-behavioral pathology of obesity, and the lack of clear evidence of effectiveness and sustainability of existing interventions that are usually focused on an individual approach, targeting change in an individual’s health behaviors or attitude may not take socio-contextual factors into account; there is a pressing need for a new perspective on this problem. In this review we evaluate the literature on social networks as a potential approach for obesity prevention and treatment: how social networks affect various health outcomes and present two major social network data analyses (i.e. egocentric and sociometric analysis); and discuss implications and future direction for obesity research using social networks. PMID:25982770
What can graph theory tell us about word learning and lexical retrieval?
Vitevitch, Michael S
2008-04-01
Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of phonological word-forms. Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar, 1998), was used to examine several characteristics of a network derived from a computerized database of the adult lexicon. Nodes in the network represented words, and a link connected two nodes if the words were phonological neighbors. The average path length and clustering coefficient suggest that the phonological network exhibits small-world characteristics. The degree distribution was fit better by an exponential rather than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of these structural characteristics were also found in graphs that were formed by 2 simple stochastic processes suggesting that similar processes might influence the development of the lexicon. The graph theoretic perspective may provide novel insights about the mental lexicon and lead to future studies that help us better understand language development and processing.
ERIC Educational Resources Information Center
Simovska, V.
2004-01-01
The paper addresses the issue of student participation from the perspective of the health-promoting schools initiative. It draws on experience from the Macedonian Network of Health-Promoting Schools and its collaboration with the Danish as well as other country networks within the European Network of Health-Promoting Schools. Student participation…
Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L.; Bassaganya-Riera, Josep; Hafler, David A.; Sontag, Eduardo; Wang, Jin; Tsang, John S.; Day, Judy D.; Kleinstein, Steven; Butte, Atul J.; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C.
2016-01-01
Emergent responses of the immune system result from integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the NIAID workshop “Complex Systems Science, Modeling and Immunity” and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. PMID:27986392
RNA silencing in plant symbiotic bacteria: Insights from a protein-centric view.
Jiménez-Zurdo, José I; Robledo, Marta
2017-12-02
Extensive work in model enterobacteria has evidenced that the RNA chaperone Hfq and several endoribonucleases, such as RNase E or RNase III, serve pivotal roles in small RNA-mediated post-transcriptional silencing of gene expression. Characterization of these protein hubs commonly provide global functional and mechanistic insights into complex sRNA regulatory networks. The legume endosymbiont Sinorhizobium meliloti is a non-classical model bacterium with a very complex lifestyle in which riboregulation is expected to play important adaptive functions. Here, we discuss current knowledge about RNA silencing in S. meliloti from the perspective of the activity of Hfq and a recently discovered endoribonuclease (YbeY) exhibiting unprecedented catalytic versatility for the cleavage of single- and double-stranded RNA molecules.
Model-Based 3-D recognition System Using Gabor Features and Neural Networks
1990-12-01
Hubel , David H. and Torsten N. Wiesel . "Brain Mechanisms of Vision," Sinific...different perspective views. (31) 6 SCENE TEMPLATE (x, y ) i t(x, y ) I (f.,) ILFOURIE TO I)1 TRN POLAR T 8( f) TRANS l~e s~f..,OI RADIAL T on,""f J SNVERS FT...x, y ) - exp(- n[(x-x )da’ + ( y - y )P]) (1) x exp(-2zi[uo(x-x.) + vo( y - y .)]) This function describes a complex exponential windowed by a
ERIC Educational Resources Information Center
Jorgensen, Mary; Fichten, Catherine; King, Laura; Havel, Alice
2018-01-01
The purpose of these conference proceedings is to provide an in-depth understanding of what was presented and discussed at the Ed-ICT International Network Montreal Symposium: Stakeholder Perspectives. The focus of the Ed-ICT International Network is to explore the role that information and communication technologies (ICTs)--including computers,…
ERIC Educational Resources Information Center
Blickle, Gerhard; Witzki, Alexander H.; Schneider, Paula B.
2009-01-01
Career success of early employees was analyzed from a power perspective and a developmental network perspective. In a predictive field study with 112 employees mentoring support and mentors' power were assessed in the first wave, employees' networking was assessed after two years, and career success (i.e. income and hierarchical position) and…
Understanding brain networks and brain organization
Pessoa, Luiz
2014-01-01
What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. As others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal “true” subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different “slices” of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks. PMID:24819881
Impact of the topology of global macroeconomic network on the spreading of economic crises.
Lee, Kyu-Min; Yang, Jae-Suk; Kim, Gunn; Lee, Jaesung; Goh, Kwang-Il; Kim, In-mook
2011-03-31
Throughout economic history, the global economy has experienced recurring crises. The persistent recurrence of such economic crises calls for an understanding of their generic features rather than treating them as singular events. The global economic system is a highly complex system and can best be viewed in terms of a network of interacting macroeconomic agents. In this regard, from the perspective of collective network dynamics, here we explore how the topology of the global macroeconomic network affects the patterns of spreading of economic crises. Using a simple toy model of crisis spreading, we demonstrate that an individual country's role in crisis spreading is not only dependent on its gross macroeconomic capacities, but also on its local and global connectivity profile in the context of the world economic network. We find that on one hand clustering of weak links at the regional scale can significantly aggravate the spread of crises, but on the other hand the current network structure at the global scale harbors higher tolerance of extreme crises compared to more "globalized" random networks. These results suggest that there can be a potential hidden cost in the ongoing globalization movement towards establishing less-constrained, trans-regional economic links between countries, by increasing vulnerability of the global economic system to extreme crises.
Impact of the Topology of Global Macroeconomic Network on the Spreading of Economic Crises
Lee, Kyu-Min; Yang, Jae-Suk; Kim, Gunn; Lee, Jaesung; Goh, Kwang-Il; Kim, In-mook
2011-01-01
Throughout economic history, the global economy has experienced recurring crises. The persistent recurrence of such economic crises calls for an understanding of their generic features rather than treating them as singular events. The global economic system is a highly complex system and can best be viewed in terms of a network of interacting macroeconomic agents. In this regard, from the perspective of collective network dynamics, here we explore how the topology of the global macroeconomic network affects the patterns of spreading of economic crises. Using a simple toy model of crisis spreading, we demonstrate that an individual country's role in crisis spreading is not only dependent on its gross macroeconomic capacities, but also on its local and global connectivity profile in the context of the world economic network. We find that on one hand clustering of weak links at the regional scale can significantly aggravate the spread of crises, but on the other hand the current network structure at the global scale harbors higher tolerance of extreme crises compared to more “globalized” random networks. These results suggest that there can be a potential hidden cost in the ongoing globalization movement towards establishing less-constrained, trans-regional economic links between countries, by increasing vulnerability of the global economic system to extreme crises. PMID:21483794
Social networks and future direction for obesity research: A scoping review.
Nam, Soohyun; Redeker, Nancy; Whittemore, Robin
2015-01-01
Despite significant efforts to decrease obesity rates, the prevalence of obesity continues to increase in the United States. Obesity risk behaviors including physical inactivity, unhealthy eating, and sleep deprivation are intertwined during daily life and are difficult to improve in the current social environment. Studies show that social networks-the thick webs of social relations and interactions-influence various health outcomes, such as HIV risk behaviors, alcohol consumption, smoking, depression, and cardiovascular mortality; however, there is limited information on the influences of social networks on obesity and obesity risk behaviors. Given the complexities of the biobehavioral pathology of obesity and the lack of clear evidence of effectiveness and sustainability of existing interventions that are usually focused on an individual approach, targeting change in an individual's health behaviors or attitude may not take sociocontextual factors into account; there is a pressing need for a new perspective on this problem. In this review, we evaluate the literature on social networks as a potential approach for obesity prevention and treatment (i.e., how social networks affect various health outcomes), present two major social network data analyses (i.e., egocentric and sociometric analysis), and discuss implications and the future direction for obesity research using social networks. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Levy, Sue
1992-01-01
Presents a library automation vendor's perspective on networking based on activities at Ameritech Information Systems. Topics discussed include the information explosion; information technology; user expectations and needs; remote access; the library of the future; systems integration; ownership versus access; copyright laws; and the role of the…
Psychology and social networks: a dynamic network theory perspective.
Westaby, James D; Pfaff, Danielle L; Redding, Nicholas
2014-04-01
Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Sharma, Vijay
2009-09-10
Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts.
Sharma, Vijay
2009-01-01
Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts. PMID:19812706
The architecture of dynamic reservoir in the echo state network
NASA Astrophysics Data System (ADS)
Cui, Hongyan; Liu, Xiang; Li, Lixiang
2012-09-01
Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.
Systems biology impact on antiepileptic drug discovery.
Margineanu, Doru Georg
2012-02-01
Systems biology (SB), a recent trend in bioscience research to consider the complex interactions in biological systems from a holistic perspective, sees the disease as a disturbed network of interactions, rather than alteration of single molecular component(s). SB-relying network pharmacology replaces the prevailing focus on specific drug-receptor interaction and the corollary of rational drug design of "magic bullets", by the search for multi-target drugs that would act on biological networks as "magic shotguns". Epilepsy being a multi-factorial, polygenic and dynamic pathology, SB approach appears particularly fit and promising for antiepileptic drug (AED) discovery. In fact, long before the advent of SB, AED discovery already involved some SB-like elements. A reported SB project aimed to find out new drug targets in epilepsy relies on a relational database that integrates clinical information, recordings from deep electrodes and 3D-brain imagery with histology and molecular biology data on modified expression of specific genes in the brain regions displaying spontaneous epileptic activity. Since hitting a single target does not treat complex diseases, a proper pharmacological promiscuity might impart on an AED the merit of being multi-potent. However, multi-target drug discovery entails the complicated task of optimizing multiple activities of compounds, while having to balance drug-like properties and to control unwanted effects. Specific design tools for this new approach in drug discovery barely emerge, but computational methods making reliable in silico predictions of poly-pharmacology did appear, and their progress might be quite rapid. The current move away from reductionism into network pharmacology allows expecting that a proper integration of the intrinsic complexity of epileptic pathology in AED discovery might result in literally anti-epileptic drugs. Copyright © 2011 Elsevier B.V. All rights reserved.
Cabral, Joana; Kringelbach, Morten L; Deco, Gustavo
2017-10-15
Over the last decade, we have observed a revolution in brain structural and functional Connectomics. On one hand, we have an ever-more detailed characterization of the brain's white matter structural connectome. On the other, we have a repertoire of consistent functional networks that form and dissipate over time during rest. Despite the evident spatial similarities between structural and functional connectivity, understanding how different time-evolving functional networks spontaneously emerge from a single structural network requires analyzing the problem from the perspective of complex network dynamics and dynamical system's theory. In that direction, bottom-up computational models are useful tools to test theoretical scenarios and depict the mechanisms at the genesis of resting-state activity. Here, we provide an overview of the different mechanistic scenarios proposed over the last decade via computational models. Importantly, we highlight the need of incorporating additional model constraints considering the properties observed at finer temporal scales with MEG and the dynamical properties of FC in order to refresh the list of candidate scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.
MATE: Machine Learning for Adaptive Calibration Template Detection
Donné, Simon; De Vylder, Jonas; Goossens, Bart; Philips, Wilfried
2016-01-01
The problem of camera calibration is two-fold. On the one hand, the parameters are estimated from known correspondences between the captured image and the real world. On the other, these correspondences themselves—typically in the form of chessboard corners—need to be found. Many distinct approaches for this feature template extraction are available, often of large computational and/or implementational complexity. We exploit the generalized nature of deep learning networks to detect checkerboard corners: our proposed method is a convolutional neural network (CNN) trained on a large set of example chessboard images, which generalizes several existing solutions. The network is trained explicitly against noisy inputs, as well as inputs with large degrees of lens distortion. The trained network that we evaluate is as accurate as existing techniques while offering improved execution time and increased adaptability to specific situations with little effort. The proposed method is not only robust against the types of degradation present in the training set (lens distortions, and large amounts of sensor noise), but also to perspective deformations, e.g., resulting from multi-camera set-ups. PMID:27827920
Methods for biological data integration: perspectives and challenges
Gligorijević, Vladimir; Pržulj, Nataša
2015-01-01
Rapid technological advances have led to the production of different types of biological data and enabled construction of complex networks with various types of interactions between diverse biological entities. Standard network data analysis methods were shown to be limited in dealing with such heterogeneous networked data and consequently, new methods for integrative data analyses have been proposed. The integrative methods can collectively mine multiple types of biological data and produce more holistic, systems-level biological insights. We survey recent methods for collective mining (integration) of various types of networked biological data. We compare different state-of-the-art methods for data integration and highlight their advantages and disadvantages in addressing important biological problems. We identify the important computational challenges of these methods and provide a general guideline for which methods are suited for specific biological problems, or specific data types. Moreover, we propose that recent non-negative matrix factorization-based approaches may become the integration methodology of choice, as they are well suited and accurate in dealing with heterogeneous data and have many opportunities for further development. PMID:26490630
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-18
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach
NASA Astrophysics Data System (ADS)
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-01
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
2014-01-01
Background Family violence is a significant and complex public health problem that demands collaboration between researchers, practitioners, and policymakers for systemic, sustainable solutions. An integrated knowledge translation network was developed to support joint research production and application in the area. The purpose of this study was to determine the extent to which the international Preventing Violence Across the Lifespan (PreVAiL) Research Network built effective partnerships among its members, with a focus on the knowledge user partner perspective. Methods This mixed-methods study employed a combination of questionnaire and semi-structured interviews to understand partnerships two years after PreVAiL’s inception. The questionnaire examined communication, collaborative research, dissemination of research, research findings, negotiation, partnership enhancement, information needs, rapport, and commitment. The interviews elicited feedback about partners’ experiences with being part of the network. Results Five main findings were highlighted: i) knowledge user partner involvement varied across activities, ranging from 11% to 79% participation rates; ii) partners and researchers generally converged on their assessment of communication indicators; iii) partners valued the network at both an individual level and to fulfill their organizations’ mandates; iv) being part of PreVAiL allowed partners to readily contact researchers, and partners felt comfortable acting as an intermediary between PreVAiL and the rest of their own organization; v) application of research was just emerging; partners needed more actionable insights to determine ways to move forward given the research at that point in time. Conclusions Our results demonstrate the importance of developing and nurturing strong partnerships for integrated knowledge translation. Our findings are applicable to other network-oriented partnerships where a diversity of stakeholders work to address complex, multi-faceted public health problems. PMID:24886489
Fractal Physiology and the Fractional Calculus: A Perspective
West, Bruce J.
2010-01-01
This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. We emphasize the difference between homeostatic and allometric control mechanisms. Homeostatic control has a negative feedback character, which is both local and rapid. Allometric control, on the other hand, is a relatively new concept that takes into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the network variable. We hypothesize that allometric control maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can often be described using the fractional calculus to capture the dynamics of complex physiologic networks. PMID:21423355
Vanishing point: Scale independence in geomorphological hierarchies
NASA Astrophysics Data System (ADS)
Phillips, Jonathan D.
2016-08-01
Scale linkage problems in geosciences are often associated with a hierarchy of components. Both dynamical systems perspectives and intuition suggest that processes or relationships operating at fundamentally different scales are independent with respect to influences on system dynamics. But how far apart is ;fundamentally different;-that is, what is the ;vanishing point; at which scales are no longer interdependent? And how do we reconcile that with the idea (again, supported by both theory and intuition) that we can work our way along scale hierarchies from microscale to planetary (and vice-versa)? Graph and network theory are employed here to address these questions. Analysis of two archetypal hierarchical networks shows low algebraic connectivity, indicating low levels of inferential synchronization. This explains the apparent paradox between scale independence and hierarchical linkages. Incorporating more hierarchical levels results in an increase in complexity or entropy of the network as a whole, but at a nonlinear rate. Complexity increases as a power α of the number of levels in the hierarchy, with α < 1 and usually ≤ 0.6. However, algebraic connectivity decreases at a more rapid rate. Thus, the ability to infer one part of the hierarchical network from other level decays rapidly as more levels are added. Relatedness among system components decreases with differences in scale or resolution, analogous to distance decay in the spatial domain. These findings suggest a strategy of identifying and focusing on the most important or interesting scale levels, rather than attempting to identify the smallest or largest scale levels and work top-down or bottom-up from there. Examples are given from soil geomorphology and karst flow networks.
2017-01-01
The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization. PMID:28873432
Xing, Lizhi
2017-01-01
The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization.
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control
NASA Astrophysics Data System (ADS)
Zheng, Mao-Kuan; Ming, Xin-Guo; Zhang, Xian-Yu; Li, Guo-Ming
2017-09-01
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the circumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian network of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly proportionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The integration of bigdata analytics and BN method offers a whole new perspective in manufacturing quality control.
"Promotores'" Perspectives on a Male-to-Male Peer Network
ERIC Educational Resources Information Center
Macia, Laura; Ruiz, Hector Camilo; Boyzo, Roberto; Documet, Patricia Isabel
2016-01-01
Little documentation exists about male community health workers ("promotores") networks. The experiences of "promotores" can provide input on how to attract, train, supervise and maintain male "promotores" in CHW programs. We present the experience and perspectives of "promotores" who participated in a male…
Turrini, Alessandra; Giovannetti, Manuela
2012-02-01
Soil fungi play a crucial role in producing fundamental ecosystem services such as soil fertility, formation and maintenance, nutrient cycling and plant community dynamics. However, they have received little attention in the field of conservation biology. Arbuscular mycorrhizal fungi (AMF) are beneficial soil symbionts fulfilling a key function in the complex networks of belowground/aboveground biotic interactions as they live in association with the roots of most (80%) land plant families and influence not only soil fertility but also plant nutrition, diversity and productivity. The diversity of AMF communities can decline due to habitat loss and anthropogenic disturbance, especially in agro-ecosystems, and many valuable ecotypes could become extinct before they are even discovered. Consequently, long-term strategies are urgently needed to ensure their conservation in habitats where they naturally occur and have evolved. Protected areas, where living organisms are under the care of national and international authorities, represent an appropriate place for the in situ conservation of AMF, providing them with adapted situations together with established complex networks of interactions with different components within each specific ecosystem. Here, we review data available about the main present-day threats to AMF and the current state of knowledge about their occurrence in protected sites worldwide, providing a checklist of national parks and nature reserves where they have been reported. The aim was to offer a strategic perspective to increase awareness of the importance of conserving these beneficial plant symbionts and of preserving their biodiversity in the years to come.
Hydropower in the Southeast: Balancing Lakeview and Production Optimization
NASA Astrophysics Data System (ADS)
Engstrom, J.
2017-12-01
Hydropower is the most important source of renewable electricity in Southeastern U.S. However, the region is repeatedly struck by droughts, and there are many conflicting interests in the limited water resource. This study takes a historical perspective and investigates how hydropower production patterns have changed over time, considering both natural drivers and human dimensions. Hydropower production is strongly tied to the natural variability of large-scale atmospheric drivers (teleconnections) as they affect the water availability in the whole river system and partly also the market demand. To balance the water resource between different interests is a complex task, and the conflicting interests vary by basin, sometimes over a relatively small geographic area. Here road networks adjacent to the hydropower reservoirs are used as an indicator of human development and recreational activities. Through a network analysis of the historical development of road networks surrounding the reservoir, the local and regional conflicting interests are identified and the influence on renewable electricity production quantified.
Kiefer, Christiane; Koch, Marcus A.
2012-01-01
74 of the currently accepted 111 taxa of the North American genus Boechera (Brassicaceae) were subject to pyhlogenetic reconstruction and network analysis. The dataset comprised 911 accessions for which ITS sequences were analyzed. Phylogenetic analyses yielded largely unresolved trees. Together with the network analysis confirming this result this can be interpreted as an indication for multiple, independent, and rapid diversification events. Network analyses were superimposed with datasets describing i) geographical distribution, ii) taxonomy, iii) reproductive mode, and iv) distribution history based on phylogeographic evidence. Our results provide first direct evidence for enormous reticulate evolution in the entire genus and give further insights into the evolutionary history of this complex genus on a continental scale. In addition two novel single-copy gene markers, orthologues of the Arabidopsis thaliana genes At2g25920 and At3g18900, were analyzed for subsets of taxa and confirmed the findings obtained through the ITS data. PMID:22606266
Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma
2015-04-29
Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential for pigmentation which can be further explored to better understand normal pigmentation as well as its pathologies including vitiligo and melanoma, and enable therapeutic intervention.
NASA Astrophysics Data System (ADS)
West, Damien; West, Bruce J.
2012-07-01
There are a substantial number of empirical relations that began with the identification of a pattern in data; were shown to have a terse power-law description; were interpreted using existing theory; reached the level of "law" and given a name; only to be subsequently fade away when it proved impossible to connect the "law" with a larger body of theory and/or data. Various forms of allometry relations (ARs) have followed this path. The ARs in biology are nearly two hundred years old and those in ecology, geophysics, physiology and other areas of investigation are not that much younger. In general if X is a measure of the size of a complex host network and Y is a property of a complex subnetwork embedded within the host network a theoretical AR exists between the two when Y = aXb. We emphasize that the reductionistic models of AR interpret X and Y as dynamic variables, albeit the ARs themselves are explicitly time independent even though in some cases the parameter values change over time. On the other hand, the phenomenological models of AR are based on the statistical analysis of data and interpret X and Y as averages to yield the empirical AR:
The neural correlates of obsessive-compulsive disorder: a multimodal perspective.
Moreira, P S; Marques, P; Soriano-Mas, C; Magalhães, R; Sousa, N; Soares, J M; Morgado, P
2017-08-29
Obsessive-compulsive disorder (OCD) is one of the most debilitating psychiatric conditions. An extensive body of the literature has described some of the neurobiological mechanisms underlying the core manifestations of the disorder. Nevertheless, most reports have focused on individual modalities of structural/functional brain alterations, mainly through targeted approaches, thus possibly precluding the power of unbiased exploratory approaches. Eighty subjects (40 OCD and 40 healthy controls) participated in a multimodal magnetic resonance imaging (MRI) investigation, integrating structural and functional data. Voxel-based morphometry analysis was conducted to compare between-group volumetric differences. The whole-brain functional connectome, derived from resting-state functional connectivity (FC), was analyzed with the network-based statistic methodology. Results from structural and functional analysis were integrated in mediation models. OCD patients revealed volumetric reductions in the right superior temporal sulcus. Patients had significantly decreased FC in two distinct subnetworks: the first, involving the orbitofrontal cortex, temporal poles and the subgenual anterior cingulate cortex; the second, comprising the lingual and postcentral gyri. On the opposite, a network formed by connections between thalamic and occipital regions had significantly increased FC in patients. Integrative models revealed direct and indirect associations between volumetric alterations and FC networks. This study suggests that OCD patients display alterations in brain structure and FC, involving complex networks of brain regions. Furthermore, we provided evidence for direct and indirect associations between structural and functional alterations representing complex patterns of interactions between separate brain regions, which may be of upmost relevance for explaining the pathophysiology of the disorder.
Mapping Cellular Polarity Networks Using Mass Spectrometry-based Strategies.
Daulat, Avais M; Puvirajesinghe, Tania M; Camoin, Luc; Borg, Jean-Paul
2018-05-18
Cell polarity is a vital biological process involved in the building, maintenance and normal functioning of tissues in invertebrates and vertebrates. Unsurprisingly, molecular defects affecting polarity organization and functions have a strong impact on tissue homeostasis, embryonic development and adult life, and may directly or indirectly lead to diseases. Genetic studies have demonstrated the causative effect of several polarity genes in diseases; however, much remains to be clarified before a comprehensive view of the molecular organization and regulation of the protein networks associated with polarity proteins is obtained. This challenge can be approached head-on using proteomics to identify protein complexes involved in cell polarity and their modifications in a spatio-temporal manner. We review the fundamental basics of mass spectrometry techniques and provide an in-depth analysis of how mass spectrometry has been instrumental in understanding the complex and dynamic nature of some cell polarity networks at the tissue (apico-basal and planar cell polarities) and cellular (cell migration, ciliogenesis) levels, with the fine dissection of the interconnections between prototypic cell polarity proteins and signal transduction cascades in normal and pathological situations. This review primarily focuses on epithelial structures which are the fundamental building blocks for most metazoan tissues, used as the archetypal model to study cellular polarity. This field offers broad perspectives thanks to the ever-increasing sensitivity of mass spectrometry and its use in combination with recently developed molecular strategies able to probe in situ proteomic networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jia, Jingjing; Li, Huajiao; Zhou, Jinsheng; Jiang, Meihui; Dong, Di
2018-03-01
Research on the price fluctuation transmission of the carbon trading pilot market is of great significance for the establishment of China's unified carbon market and its development in the future. In this paper, the carbon market transaction prices of Beijing, Shanghai, Tianjin, Shenzhen, and Guangdong were selected from December 29, 2013 to March 26, 2016, as sample data. Based on the view of the complex network theory, we construct a price fluctuation transmission network model of five pilot carbon markets in China, with the purposes of analyzing the topological features of this network, including point intensity, weighted clustering coefficient, betweenness centrality, and community structure, and elucidating the characteristics and transmission mechanism of price fluctuation in China's five pilot cities. The results of point intensity and weighted clustering coefficient show that the carbon prices in the five markets remained unchanged and transmitted smoothly in general, and price fragmentation is serious; however, at some point, the price fluctuates with mass phenomena. The result of betweenness centrality reflects that a small number of price fluctuations can control the whole market carbon price transmission and price fluctuation evolves in an alternate manner. The study provides direction for the scientific management of the carbon price. Policy makers should take a positive role in promoting market activity, preventing the risks that may arise from mass trade and scientifically forecasting the volatility of trading prices, which will provide experience for the establishment of a unified carbon market in China.
Comparing Networks from a Data Analysis Perspective
NASA Astrophysics Data System (ADS)
Li, Wei; Yang, Jing-Yu
To probe network characteristics, two predominant ways of network comparison are global property statistics and subgraph enumeration. However, they suffer from limited information and exhaustible computing. Here, we present an approach to compare networks from the perspective of data analysis. Initially, the approach projects each node of original network as a high-dimensional data point, and the network is seen as clouds of data points. Then the dispersion information of the principal component analysis (PCA) projection of the generated data clouds can be used to distinguish networks. We applied this node projection method to the yeast protein-protein interaction networks and the Internet Autonomous System networks, two types of networks with several similar higher properties. The method can efficiently distinguish one from the other. The identical result of different datasets from independent sources also indicated that the method is a robust and universal framework.
NASA Astrophysics Data System (ADS)
Xiao, Xiaojun; Du, Chunsheng; Zhou, Rongsheng
2004-04-01
As a result of data traffic"s exponential growth, network is currently evolving from fixed circuit switched services to dynamic packet switched services, which has brought unprecedented changes to the existing transport infrastructure. It is generally agreed that automatic switched optical network (ASON) is one of the promising solutions for the next generation optical networks. In this paper, we present the results of our experimental tests and economic analysis on ASON. The intention of this paper is to present our perspective, in terms of evolution strategy toward ASON, on next generation optical networks. It is shown through experimental tests that the performance of current Pre-standard ASON enabled equipments satisfies the basic requirements of network operators and is ready for initial deployment. The results of the economic analysis show that network operators can be benefit from the deployment of ASON from three sides. Firstly, ASON can reduce the CAPEX for network expanding by integrating multiple ADM & DCS into one box. Secondly, ASON can reduce the OPEX for network operation by introducing automatic resource control scheme. Finally, ASON can increase margin revenue by providing new optical network services such as Bandwidth on Demand, optical VPN etc. Finally, the evolution strategy is proposed as our perspective toward next generation optical networks. We hope the evolution strategy introduced may be helpful for the network operators to gracefully migrate their fixed ring based legacy networks to next generation dynamic mesh based network.
Zhang, Fangbo; Tang, Shihuan; Liu, Xi; Gao, Yibo; Wang, Yanping
2013-01-01
At the molecular level, it is acknowledged that a TCM formula is often a complex system, which challenges researchers to fully understand its underlying pharmacological action. However, module detection technique developed from complex network provides new insight into systematic investigation of the mode of action of a TCM formula from the molecule perspective. We here proposed a computational approach integrating the module detection technique into a 2-class heterogeneous network (2-HN) which models the complex pharmacological system of a TCM formula. This approach takes three steps: construction of a 2-HN, identification of primary pharmacological units, and pathway analysis. We employed this approach to study Shu-feng-jie-du (SHU) formula, which aimed at discovering its molecular mechanism in defending against influenza infection. Actually, four primary pharmacological units were identified from the 2-HN for SHU formula and further analysis revealed numbers of biological pathways modulated by the four pharmacological units. 24 out of 40 enriched pathways that were ranked in top 10 corresponding to each of the four pharmacological units were found to be involved in the process of influenza infection. Therefore, this approach is capable of uncovering the mode of action underlying a TCM formula via module analysis. PMID:24376467
Semino, Laura N; Marksteiner, Josef; Brauchle, Gernot; Danay, Erik
2017-04-13
Associations between depression, personality traits, and emotions are complex and reciprocal. The aim of this study is to explore these interactions in dynamical networks and in a linear way over time depending on the severity of depression. Participants included 110 patients with depressive symptoms (DSM-5 criteria) who were recruited between October 2015 and February 2016 during their inpatient stay in a general psychiatric hospital in Hall in Tyrol, Austria. The patients filled out the Beck Depression Inventory-II, a German emotional competence questionnaire (Emotionale Kompetenz Fragebogen), Positive and Negative Affect Schedule, and the German versions of the Big Five Inventory-short form and State-Trait-Anxiety-Depression Inventory regarding symptoms, emotions, and personality during their inpatient stay and at a 3-month follow-up by mail. Network and regression analyses were performed to explore interactions both in a linear and a dynamical way at baseline and 3 months later. Regression analyses showed that emotions and personality traits gain importance for the prediction of depressive symptoms with decreasing symptomatology at follow-up (personality: baseline, adjusted R2 = 0.24, P < .001; follow-up, adjusted R2 = 0.65, P < .001). Network analyses additionally showed that the interaction network of depression, emotions, and personality traits is significantly denser and more interconnected (network comparison test: P = .03) at follow-up than at baseline, meaning that with decreased symptoms interconnections get stronger. During depression, personality traits and emotions are walled off and not strongly interconnected with depressive symptoms in networks. With decreasing depressive symptomatology, interfusing of these areas begins and interconnections become stronger. This finding has practical implications for interventions in an acute depressive state and with decreased symptoms. The network approach offers a new perspective on interactions and is a way to make the complexity of these interactions more tangible. © Copyright 2017 Physicians Postgraduate Press, Inc.
Visualisation and graph-theoretic analysis of a large-scale protein structural interactome
Bolser, Dan; Dafas, Panos; Harrington, Richard; Park, Jong; Schroeder, Michael
2003-01-01
Background Large-scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in the PDB. PSIMAP incorporates both functional and evolutionary information into a single network. Results We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Conclusions Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level. PMID:14531933
What Can Graph Theory Tell Us About Word Learning and Lexical Retrieval?
Vitevitch, Michael S.
2008-01-01
Purpose Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of phonological word-forms. Method Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar, 1998), was used to examine several characteristics of a network derived from a computerized database of the adult lexicon. Nodes in the network represented words, and a link connected two nodes if the words were phonological neighbors. Results The average path length and clustering coefficient suggest that the phonological network exhibits small-world characteristics. The degree distribution was fit better by an exponential rather than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of these structural characteristics were also found in graphs that were formed by 2 simple stochastic processes suggesting that similar processes might influence the development of the lexicon. Conclusions The graph theoretic perspective may provide novel insights about the mental lexicon and lead to future studies that help us better understand language development and processing. PMID:18367686
Bissell, Paul; Peacock, Marian; Holdsworth, Michelle; Powell, Katie; Wilcox, John; Clonan, Angie
2018-06-19
This study explores the ways in which social networks might shape accounts about food practices. Drawing on insights from the work of Christakis and Fowler () whose claims about the linkages between obesity and social networks have been the subject of vigorous debate in the sociological literature, we present qualitative data from a study of women's' accounts of social networks and food practices, conducted in Nottingham, England. We tentatively suggest that whilst social networks in their broadest sense, might shape what was perceived to be normal and acceptable in relation to food practices (and provide everyday discursive resources which normalise practice), the relationship between the two is more complex than the linear relationship proposed by Christakis and Fowler. Here, we introduce the idea of assumed shared food narratives (ASFNs), which, we propose, sheds light on motive talk about food practices, and which also provide practical and discursive resources to actors seeking to protect and defend against 'untoward' behaviour, in the context of public health messages around food and eating. We suggest that understanding ASFNs and the ways in which they are embedded in social networks represents a novel way of understanding food and eating practices from a sociological perspective. © 2018 Foundation for the Sociology of Health & Illness.
[The dimension of the paradigm of complexity in health systems].
Fajardo-Ortiz, Guillermo; Fernández-Ortega, Miguel Ángel; Ortiz-Montalvo, Armando; Olivares-Santos, Roberto Antonio
2015-01-01
This article presents elements to better understand health systems from the complety paradigm, innovative perspective that offers other ways in the conception of the scientific knowledge prevalent away from linear, characterized by the arise of emerging dissociative and behaviors, based on the intra and trans-disciplinarity concepts such knowledges explain and understand in a different way what happens in the health systems with a view to efficiency and effectiveness. The complexity paradigm means another way of conceptualizing the knowledge, is different from the prevalent epistemology, is still under construction does not separate, not isolated, is not reductionist, or fixed, does not solve the problems, but gives other bases to know them and study them, is a different strategy, a perspective that has basis in the systems theory, informatics and cybernetics beyond traditional knowledge, the positive logics, the newtonian physics and symmetric mathematics, in which everything is centered and balanced, joint the "soft sciences and hard sciences", it has present the Social Determinants of Health and organizational culture. Under the complexity paradigm the health systems are identified with the following concepts: entropy, neguentropy, the thermodynamic second law, attractors, chaos theory, fractals, selfmanagement and self-organization, emerging behaviors, percolation, uncertainty, networks and robusteness; such expressions open new possibilities to improve the management and better understanding of the health systems, giving rise to consider health systems as complex adaptive systems. Copyright © 2015. Published by Masson Doyma México S.A.
3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures.
Luo, Yongxiang; Lin, Xin; Huang, Peng
2018-04-24
It is promising that artificial tissues/organs for clinical application can be produced via 3D bioprinting of living cells and biomaterials. The construction of microstructures biomimicking native tissues is crucially important to create artificial tissues with biological functions. For instance, the fabrication of vessel-like networks to supply cells with initial nutrient and oxygen, and the arrangement of multiple types of cells for creating lamellar/complex tissues through 3D bioprinting are widely reported. The current advances in 3D bioprinting of artificial tissues from the view of construction of biomimetic microstructures, especially the fabrication of lamellar, vascular, and complex structures are summarized. In the end, the conclusion and perspective of 3D bioprinting for clinical applications are elaborated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holistic Practice in Traumatic Brain Injury Rehabilitation: Perspectives of Health Practitioners
Wright, Courtney J.; Zeeman, Heidi; Biezaitis, Valda
2016-01-01
Given that the literature suggests there are various (and often contradictory) interpretations of holistic practice in brain injury rehabilitation and multiple complexities in its implementation (including complex setting, discipline, and client-base factors), this study aimed to examine the experiences of practitioners in their conceptualization and delivery of holistic practice in their respective settings. Nineteen health practitioners purposively sampled from an extensive Brain Injury Network in Queensland, Australia participated in individual interviews. A systematic text analysis process using Leximancer qualitative analysis program was undertaken, followed by manual thematic analysis to develop overarching themes. The findings from this study have identified several items for future inter-professional development that will not only benefit the practitioners working in brain injury rehabilitation settings, but the patients and their families as well. PMID:27270604
Holistic Practice in Traumatic Brain Injury Rehabilitation: Perspectives of Health Practitioners.
Wright, Courtney J; Zeeman, Heidi; Biezaitis, Valda
2016-01-01
Given that the literature suggests there are various (and often contradictory) interpretations of holistic practice in brain injury rehabilitation and multiple complexities in its implementation (including complex setting, discipline, and client-base factors), this study aimed to examine the experiences of practitioners in their conceptualization and delivery of holistic practice in their respective settings. Nineteen health practitioners purposively sampled from an extensive Brain Injury Network in Queensland, Australia participated in individual interviews. A systematic text analysis process using Leximancer qualitative analysis program was undertaken, followed by manual thematic analysis to develop overarching themes. The findings from this study have identified several items for future inter-professional development that will not only benefit the practitioners working in brain injury rehabilitation settings, but the patients and their families as well.
Hamed, Mohamed; Spaniol, Christian; Nazarieh, Maryam; Helms, Volkhard
2015-07-01
TFmiR is a freely available web server for deep and integrative analysis of combinatorial regulatory interactions between transcription factors, microRNAs and target genes that are involved in disease pathogenesis. Since the inner workings of cells rely on the correct functioning of an enormously complex system of activating and repressing interactions that can be perturbed in many ways, TFmiR helps to better elucidate cellular mechanisms at the molecular level from a network perspective. The provided topological and functional analyses promote TFmiR as a reliable systems biology tool for researchers across the life science communities. TFmiR web server is accessible through the following URL: http://service.bioinformatik.uni-saarland.de/tfmir. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhu, Zhen; Puliga, Michelangelo; Cerina, Federica; Chessa, Alessandro; Riccaboni, Massimo
2015-01-01
The fragmentation of production across countries has become an important feature of the globalization in recent decades and is often conceptualized by the term “global value chains” (GVCs). When empirically investigating the GVCs, previous studies are mainly interested in knowing how global the GVCs are rather than how the GVCs look like. From a complex networks perspective, we use the World Input-Output Database (WIOD) to study the evolution of the global production system. We find that the industry-level GVCs are indeed not chain-like but are better characterized by the tree topology. Hence, we compute the global value trees (GVTs) for all the industries available in the WIOD. Moreover, we compute an industry importance measure based on the GVTs and compare it with other network centrality measures. Finally, we discuss some future applications of the GVTs. PMID:25978067
Sánchez de Madariaga, Inés; Ruiz Cantero, María Teresa
2014-01-01
The European Commission supports several routes for incorporating the gender perspective. The Commission currently supports the new Horizon 2020 program, and also funds projects such as "gendered innovations", which show how gender innovations increase the quality of research and professional practice for health and welfare. One of the policy instruments is the Recommendation on Gender, Science and Innovation. Against this background, the international European Cooperation in Science and Technology (COST) network genderSTE (Gender, Science, Technology and Environment) was created, which seeks to: 1) promote structural changes in institutions to increase the number of women researchers; 2) identify the gender dimensions relevant to the environment; and 3) improve the integration of a gender perspective in research and technology. COST GenderSTE supports networking and the dissemination of knowledge with a gender perspective. All these tools provide an opportunity to incorporate a gender perspective in research in Europe. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.
Modular Toolkit for Data Processing (MDP): A Python Data Processing Framework.
Zito, Tiziano; Wilbert, Niko; Wiskott, Laurenz; Berkes, Pietro
2008-01-01
Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. Computations are performed efficiently in terms of speed and memory requirements. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. MDP has been written in the context of theoretical research in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms are used. Its simplicity on the user's side, the variety of readily available algorithms, and the reusability of the implemented units make it also a useful educational tool.
Hansen, Rieke; Pauleit, Stephan
2014-05-01
Green infrastructure (GI) and ecosystem services (ES) are promoted as concepts that have potential to improve environmental planning in urban areas based on a more holistic understanding of the complex interrelations and dynamics of social-ecological systems. However, the scientific discourses around both concepts still lack application-oriented frameworks that consider such a holistic perspective and are suitable to mainstream GI and ES in planning practice. This literature review explores how multifunctionality as one important principle of GI planning can be operationalized by approaches developed and tested in ES research. Specifically, approaches developed in ES research can help to assess the integrity of GI networks, balance ES supply and demand, and consider trade-offs. A conceptual framework for the assessment of multifunctionality from a social-ecological perspective is proposed that can inform the design of planning processes and support stronger exchange between GI and ES research.
Armstrong, Rachel
2010-01-01
This report details a workshop held at the Bartlett School of Architecture, University College London, to initiate interdisciplinary collaborations for the practice of systems architecture, which is a new model for the generation of sustainable architecture that combines the discipline of the study of the built environment with the scientific study of complexity, or systems science, and adopts the perspective of systems theory. Systems architecture offers new perspectives on the organization of the built environment that enable architects to consider architecture as a series of interconnected networks with embedded links into natural systems. The public workshop brought together architects and scientists working with the convergence of nanotechnology, biotechnology, information technology, and cognitive science and with living technology to investigate the possibility of a new generation of smart materials that are implied by this approach.
Team Learning: New Insights Through a Temporal Lens.
Lehmann-Willenbrock, Nale
2017-04-01
Team learning is a complex social phenomenon that develops and changes over time. Hence, to promote understanding of the fine-grained dynamics of team learning, research should account for the temporal patterns of team learning behavior. Taking important steps in this direction, this special issue offers novel insights into the dynamics of team learning by advocating a temporal perspective. Based on a symposium presented at the 2016 Interdisciplinary Network for Group Research (INGRoup) Conference in Helsinki, the four empirical articles in this special issue showcase four different and innovative approaches to implementing a temporal perspective in team learning research. Specifically, the contributions highlight team learning dynamics in student teams, self-managing teams, teacher teams, and command and control teams. The articles cover a broad range of methods and designs, including both qualitative and quantitative methodologies, and longitudinal as well as micro-temporal approaches. The contributors represent four countries and five different disciplines in group research.
A Low Complexity System Based on Multiple Weighted Decision Trees for Indoor Localization
Sánchez-Rodríguez, David; Hernández-Morera, Pablo; Quinteiro, José Ma.; Alonso-González, Itziar
2015-01-01
Indoor position estimation has become an attractive research topic due to growing interest in location-aware services. Nevertheless, satisfying solutions have not been found with the considerations of both accuracy and system complexity. From the perspective of lightweight mobile devices, they are extremely important characteristics, because both the processor power and energy availability are limited. Hence, an indoor localization system with high computational complexity can cause complete battery drain within a few hours. In our research, we use a data mining technique named boosting to develop a localization system based on multiple weighted decision trees to predict the device location, since it has high accuracy and low computational complexity. The localization system is built using a dataset from sensor fusion, which combines the strength of radio signals from different wireless local area network access points and device orientation information from a digital compass built-in mobile device, so that extra sensors are unnecessary. Experimental results indicate that the proposed system leads to substantial improvements on computational complexity over the widely-used traditional fingerprinting methods, and it has a better accuracy than they have. PMID:26110413
First-principles molecular dynamics simulation of the Ca 2UO 2(CO 3) 3 complex in water
Priest, Chad; Tian, Ziqi; Jiang, De-en
2016-01-22
Recent experiments have shown that the neutral Ca 2UO 2(CO 3) 3 complex is the dominant species of uranium in many uranyl-containing streams. However, the structure and solvation of such a species in water has not been investigated from first principles. Herein we present a first principles molecular dynamics perspective of the Ca 2UO 2(CO 3) 3 complex in water based on density functional theory and Born–Oppenheimer approximation. We find that the Ca 2UO 2(CO 3) 3 complex is very stable in our simulation timeframe for three different concentrations considered and that the key distances from our simulation are inmore » good agreement with the experimental data from extended X-ray absorption fine structure (EXAFS) spectroscopy. More important, we find that the two Ca ions bind differently in the complex, as a result of the hydrogen-bonding network around the whole complex. Furthermore, this finding invites confirmation from time-resolved EXAFS and has implications in understanding the dissociative equilibrium of the Ca 2UO 2(CO 3) 3 complex in water.« less
Covariance, correlation matrix, and the multiscale community structure of networks.
Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing
2010-07-01
Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.
A brief history and technical review of the expert system research
NASA Astrophysics Data System (ADS)
Tan, Haocheng
2017-09-01
The expert system is a computer system that emulates the decision-making ability of a human expert, which aims to solve complex problems by reasoning knowledge. It is an important branch of artificial intelligence. In this paper, firstly, we briefly introduce the development and basic structure of the expert system. Then, from the perspective of the enabling technology, we classify the current expert systems and elaborate four expert systems: The Rule-Based Expert System, the Framework-Based Expert System, the Fuzzy Logic-Based Expert System and the Expert System Based on Neural Network.
Auditory Power-Law Activation Avalanches Exhibit a Fundamental Computational Ground State
NASA Astrophysics Data System (ADS)
Stoop, Ruedi; Gomez, Florian
2016-07-01
The cochlea provides a biological information-processing paradigm that we are only beginning to understand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynamical nodes, on which even a simple sound input triggers subnetworks of activated elements that follow power-law size statistics ("avalanches"). From dynamical systems theory, power-law size distributions relate to a fundamental ground state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.
Chinese lexical networks: The structure, function and formation
NASA Astrophysics Data System (ADS)
Li, Jianyu; Zhou, Jie; Luo, Xiaoyue; Yang, Zhanxin
2012-11-01
In this paper Chinese phrases are modeled using complex networks theory. We analyze statistical properties of the networks and find that phrase networks display some important features: not only small world and the power-law distribution, but also hierarchical structure and disassortative mixing. These statistical traits display the global organization of Chinese phrases. The origin and formation of such traits are analyzed from a macroscopic Chinese culture and philosophy perspective. It is interesting to find that Chinese culture and philosophy may shape the formation and structure of Chinese phrases. To uncover the structural design principles of networks, network motif patterns are studied. It is shown that they serve as basic building blocks to form the whole phrase networks, especially triad 38 (feed forward loop) plays a more important role in forming most of the phrases and other motifs. The distinct structure may not only keep the networks stable and robust, but also be helpful for information processing. The results of the paper can give some insight into Chinese language learning and language acquisition. It strengthens the idea that learning the phrases helps to understand Chinese culture. On the other side, understanding Chinese culture and philosophy does help to learn Chinese phrases. The hub nodes in the networks show the close relationship with Chinese culture and philosophy. Learning or teaching the hub characters, hub-linking phrases and phrases which are meaning related based on motif feature should be very useful and important for Chinese learning and acquisition.
NASA Astrophysics Data System (ADS)
Wen, Shaobo; An, Haizhong; Chen, Zhihua; Liu, Xueyong
2017-08-01
In traditional econometrics, a time series must be in a stationary sequence. However, it usually shows time-varying fluctuations, and it remains a challenge to execute a multiscale analysis of the data and discover the topological characteristics of conduction in different scales. Wavelet analysis and complex networks in physical statistics have special advantages in solving these problems. We select the exchange rate variable from the Chinese market and the commodity price index variable from the world market as the time series of our study. We explore the driving factors behind the behavior of the two markets and their topological characteristics in three steps. First, we use the Kalman filter to find the optimal estimation of the relationship between the two markets. Second, wavelet analysis is used to extract the scales of the relationship that are driven by different frequency wavelets. Meanwhile, we search for the actual economic variables corresponding to different frequency wavelets. Finally, a complex network is used to search for the transfer characteristics of the combination of states driven by different frequency wavelets. The results show that statistical physics have a unique advantage over traditional econometrics. The Chinese market has time-varying impacts on the world market: it has greater influence when the world economy is stable and less influence in times of turmoil. The process of forming the state combination is random. Transitions between state combinations have a clustering feature. Based on these characteristics, we can effectively reduce the information burden on investors and correctly respond to the government's policy mix.
Statistical mechanics of complex neural systems and high dimensional data
NASA Astrophysics Data System (ADS)
Advani, Madhu; Lahiri, Subhaneil; Ganguli, Surya
2013-03-01
Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? Second, how can we extract meaningful models of neuronal systems from high dimensional datasets? To aid in these challenges, we give a pedagogical review of a collection of ideas and theoretical methods arising at the intersection of statistical physics, computer science and neurobiology. We introduce the interrelated replica and cavity methods, which originated in statistical physics as powerful ways to quantitatively analyze large highly heterogeneous systems of many interacting degrees of freedom. We also introduce the closely related notion of message passing in graphical models, which originated in computer science as a distributed algorithm capable of solving large inference and optimization problems involving many coupled variables. We then show how both the statistical physics and computer science perspectives can be applied in a wide diversity of contexts to problems arising in theoretical neuroscience and data analysis. Along the way we discuss spin glasses, learning theory, illusions of structure in noise, random matrices, dimensionality reduction and compressed sensing, all within the unified formalism of the replica method. Moreover, we review recent conceptual connections between message passing in graphical models, and neural computation and learning. Overall, these ideas illustrate how statistical physics and computer science might provide a lens through which we can uncover emergent computational functions buried deep within the dynamical complexities of neuronal networks.
Trends of the World Input and Output Network of Global Trade
del Río-Chanona, Rita María; Grujić, Jelena; Jeldtoft Jensen, Henrik
2017-01-01
The international trade naturally maps onto a complex networks. Theoretical analysis of this network gives valuable insights about the global economic system. Although different economic data sets have been investigated from the network perspective, little attention has been paid to its dynamical behaviour. Here we take the World Input Output Data set, which has values of the annual transactions between 40 different countries of 35 different sectors for the period of 15 years, and infer the time interdependence between countries and sectors. As a measure of interdependence we use correlations between various time series of the network characteristics. First we form 15 primary networks for each year of the data we have, where nodes are countries and links are annual exports from one country to the other. Then we calculate the strengths (weighted degree) and PageRank of each country in each of the 15 networks for 15 different years. This leads to sets of time series and by calculating the correlations between these we form a secondary network where the links are the positive correlations between different countries or sectors. Furthermore, we also form a secondary network where the links are negative correlations in order to study the competition between countries and sectors. By analysing this secondary network we obtain a clearer picture of the mutual influences between countries. As one might expect, we find that political and geographical circumstances play an important role. However, the derived correlation network reveals surprising aspects which are hidden in the primary network. Sometimes countries which belong to the same community in the original network are found to be competitors in the secondary networks. E.g. Spain and Portugal are always in the same trade flow community, nevertheless secondary network analysis reveal that they exhibit contrary time evolution. PMID:28125656
Trends of the World Input and Output Network of Global Trade.
Del Río-Chanona, Rita María; Grujić, Jelena; Jeldtoft Jensen, Henrik
2017-01-01
The international trade naturally maps onto a complex networks. Theoretical analysis of this network gives valuable insights about the global economic system. Although different economic data sets have been investigated from the network perspective, little attention has been paid to its dynamical behaviour. Here we take the World Input Output Data set, which has values of the annual transactions between 40 different countries of 35 different sectors for the period of 15 years, and infer the time interdependence between countries and sectors. As a measure of interdependence we use correlations between various time series of the network characteristics. First we form 15 primary networks for each year of the data we have, where nodes are countries and links are annual exports from one country to the other. Then we calculate the strengths (weighted degree) and PageRank of each country in each of the 15 networks for 15 different years. This leads to sets of time series and by calculating the correlations between these we form a secondary network where the links are the positive correlations between different countries or sectors. Furthermore, we also form a secondary network where the links are negative correlations in order to study the competition between countries and sectors. By analysing this secondary network we obtain a clearer picture of the mutual influences between countries. As one might expect, we find that political and geographical circumstances play an important role. However, the derived correlation network reveals surprising aspects which are hidden in the primary network. Sometimes countries which belong to the same community in the original network are found to be competitors in the secondary networks. E.g. Spain and Portugal are always in the same trade flow community, nevertheless secondary network analysis reveal that they exhibit contrary time evolution.
Dam, Alieske E H; Boots, Lizzy M M; van Boxtel, Martin P J; Verhey, Frans R J; de Vugt, Marjolein E
2017-06-13
Access to social support contributes to feelings of independence and better social health. This qualitative study aims to investigate multi-informant perspectives on informal social support in dementia care networks. Ten spousal caregivers of people with dementia (PwD) completed an ecogram, a social network card and a semi-structured interview. The ecogram aimed to trigger subjective experiences regarding social support. Subsequently, 17 network members were interviewed. The qualitative analyses identified codes, categories, and themes. Sixth themes emerged: (1) barriers to ask for support; (2) facilitators to ask for support; (3) barriers to offer support; (4) facilitators to offer support; (5) a mismatch between supply and demand of social support; and (6) openness in communication to repair the imbalance. Integrating social network perspectives resulted in a novel model identifying a mismatch between the supply and demand of social support, strengthened by a cognitive bias: caregivers reported to think for other social network members and vice versa. Openness in communication in formal and informal care systems might repair this mismatch.
Synchronization in node of complex networks consist of complex chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang, E-mail: qiangweibeihua@163.com; Digital Images Processing Institute of Beihua University, BeiHua University, Jilin, 132011, Jilin; Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024
2014-07-15
A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.
Nigenda, Gustavo; González-Robledo, Luz María; Juárez-Ramírez, Clara; Adam, Taghreed
2016-05-13
In 2003, Mexico's Seguro Popular de Salud (SPS), was launched as an innovative financial mechanism implemented to channel new funds to provide health insurance to 50 million Mexicans and to reduce systemic financial inequities. The objective of this article is to understand the complexity and dynamics that contributed to the adaptation of the policy in the implementation stage, how these changes occurred, and why, from a complex and adaptive systems perspective. A complex adaptive systems (CAS) framework was used to carry out a secondary analysis of data obtained from four SPS's implementation evaluations. We first identified key actors, their roles, incentives and power, and their responses to the policy and guidelines. We then developed a causal loop diagram to disentangle the feedback dynamics associated with the modifications of the policy implementation which we then analyzed using a CAS perspective. Implementation variations were identified in seven core design features during the first 10 years of implementation period, and in each case, the SPS's central coordination introduced modifications in response to the reactions of the different actors. We identified several CAS phenomena associated with these changes including phase transitions, network emergence, resistance to change, history dependence, and feedback loops. Our findings generate valuable lessons to policy implementation processes, especially those involving a monetary component, where the emergence of coping mechanisms and other CAS phenomena inevitably lead to modifications of policies and their interpretation by those who implement them. These include the difficulty of implementing strategies that aim to pool funds through solidarity among beneficiaries where the rich support the poor when there are no incentives for the rich to do so. Also, how resistance to change and history dependence can pose significant challenges to implementing changes, where the local actors use their significant power to oppose or modify these changes.
NASA Astrophysics Data System (ADS)
Zavidovique, Bertrand; Lo Bosco, Giosue'
pt. A. Information: data organization and communication. Statistical information: a Bayesian perspective / R. B. Stern, C. A. de B. Pereira. Multi-a(ge)nt graph patrolling and partitioning / Y. Elor, A. M. Bruckstein. The role of noise in brain function / S. Roy, R. Llinas. F-granulation, generalized rough entropy and image analysis / S. K. Pal. Fast redshift clustering with the Baire (ultra) metric / F. Murtagh, P. Contreras. Interactive classification oriented superresolution of multispectral images / P. Ruiz ... [et al.]. Blind processing in astrophysical data analysis / E. Salerno, L. Bedini. The extinction map of the orion molecular cloud / G. Scandariato (best student's paper), I. Pagano, M. Robberto -- pt. B. System: structure and behaviour. Common grounds: the role of perception in science and the nature of transitions / G. Bernroider. Looking the world from inside: intrinsic geometry of complex systems / L. Boi. The butterfly and the photon: new perspectives on unpredictability, and the notion of casual reality, in quantum physics / T. N. Palmer. Self-replicated wave patterns in neural networks with complex threshold / V. I. Nekorkin. A local explication of causation / G. Boniolo, R. Faraldo, A. Saggion. Evolving complexity, cognition, and consciousness / H. Liljenstrom. Self-assembly, modularity and physical complexity / S. E. Ahnert. The category of topological thermodynamics / R. M. Kiehn. Anti-phase spiking patterns / M. P. Igaev, A. S. Dmitrichev, V. I. Nekorkin -- pt. C. Data/system representation. Reality, models and representations: the case of galaxies, intelligence and avatars / J-C. Heudin. Astronomical images and data mining in the international virtual observatory context / F. Pasian, M. Brescia, G. Longo. Dame: a web oriented infrastructure for scientific data mining and exploration / S. Cavuoti ... [et al.]. Galactic phase spaces / D. Chakrabarty. From data to images: a shape based approach for fluorescence tomography / O. Dorn, K. E. Prieto. The influence of texture symmetry in marker pointing: experimenting with humans and algorithms / M. Cardaci, M. E. Tabacchi. A multiscale autocorrelation function for anisotropy studies / M. Scuderi ... [et al.]. A multiscale, lacunarity and neural network method for [symbol]/h discrimination in extensive air showers / A. Pagliaro, F. D'anna, G. D'ali Staiti. Bayesian semi-parametric curve-fitting and clustering in SDSS data / S. Mukkhopadhyay, S. Roy, S. Bhattacharya.
Flexible Redistribution in Cognitive Networks.
Hartwigsen, Gesa
2018-06-15
Previous work has emphasized that cognitive functions in the human brain are organized into large-scale networks. However, the mechanisms that allow these networks to compensate for focal disruptions remain elusive. I suggest a new perspective on the compensatory flexibility of cognitive networks. First, I demonstrate that cognitive networks can rapidly change the functional weight of the relative contribution of different regions. Second, I argue that there is an asymmetry in the compensatory potential of different kinds of networks. Specifically, recruitment of domain-general functions can partially compensate for focal disruptions of specialized cognitive functions, but not vice versa. Considering the compensatory potential within and across networks will increase our understanding of functional adaptation and reorganization after brain lesions and offers a new perspective on large-scale neural network (re-)organization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Trust Networks: A New Perspective on Pedigree and the Ambiguities of Admissions
ERIC Educational Resources Information Center
Posselt, Julie R.
2018-01-01
Privileging elite academic pedigrees in graduate admissions preserves racial and socioeconomic inequities that many institutions say they wish to reduce. To understand this preference, I integrate across perspectives on trust in rational choice, social capital, and social network theories, and use the resulting framework to interpret 68 interviews…
Social Network Perspectives Reveal Strength of Academic Developers as Weak Ties
ERIC Educational Resources Information Center
Matthews, Kelly E.; Crampton, Andrea; Hill, Matthew; Johnson, Elizabeth D.; Sharma, Manjula D.; Varsavsky, Cristina
2015-01-01
Social network perspectives acknowledge the influence of disciplinary cultures on academics' teaching beliefs and practices with implications for academic developers. The contribution of academic developers in 18 scholarship of teaching and learning (SoTL) projects situated in the sciences are explored by drawing on data from a two-year national…
NASA Astrophysics Data System (ADS)
Shi, Li; Wu, Lun; Chi, Guanghua; Liu, Yu
2016-10-01
Space and place are two fundamental concepts in geography. Geographical factors have long been known as drivers of many aspects of people's social networks. But whether and how space and place affect social networks differently are still unclear. The widespread use of location-aware devices provides a novel source for distinguishing the mechanisms of their impacts on social networks. Using mobile phone data, this paper explores the effects of space and place on social networks. From the perspective of space, we confirm the distance decay effect in social networks, based on a comparison between synthetic social ties generated by a null model and actual social ties derived from real-world data. From the perspective of place, we introduce several measures to evaluate interactions between individuals and inspect the trio relationship including distance, spatio-temporal co-occurrence, and social ties. We found that people's interaction is a more important factor than spatial proximity, indicating that the spatial factor has a stronger impact on social networks in place compared to that in space. Furthermore, we verify the hypothesis that interactions play an important role in strengthening friendships.
Through the Immune Looking Glass: A Model for Brain Memory Strategies
Sánchez-Ramón, Silvia; Faure, Florence
2016-01-01
The immune system (IS) and the central nervous system (CNS) are complex cognitive networks involved in defining the identity (self) of the individual through recognition and memory processes that enable one to anticipate responses to stimuli. Brain memory has traditionally been classified as either implicit or explicit on psychological and anatomical grounds, with reminiscences of the evolutionarily-based innate-adaptive IS responses. Beyond the multineuronal networks of the CNS, we propose a theoretical model of brain memory integrating the CNS as a whole. This is achieved by analogical reasoning between the operational rules of recognition and memory processes in both systems, coupled to an evolutionary analysis. In this new model, the hippocampus is no longer specifically ascribed to explicit memory but rather it both becomes part of the innate (implicit) memory system and tightly controls the explicit memory system. Alike the antigen presenting cells for the IS, the hippocampus would integrate transient and pseudo-specific (i.e., danger-fear) memories and would drive the formation of long-term and highly specific or explicit memories (i.e., the taste of the Proust’s madeleine cake) by the more complex and recent, evolutionarily speaking, neocortex. Experimental and clinical evidence is provided to support the model. We believe that the singularity of this model’s approximation could help to gain a better understanding of the mechanisms operating in brain memory strategies from a large-scale network perspective. PMID:26869886
Heberle, Henry; Carazzolle, Marcelo Falsarella; Telles, Guilherme P; Meirelles, Gabriela Vaz; Minghim, Rosane
2017-09-13
The advent of "omics" science has brought new perspectives in contemporary biology through the high-throughput analyses of molecular interactions, providing new clues in protein/gene function and in the organization of biological pathways. Biomolecular interaction networks, or graphs, are simple abstract representations where the components of a cell (e.g. proteins, metabolites etc.) are represented by nodes and their interactions are represented by edges. An appropriate visualization of data is crucial for understanding such networks, since pathways are related to functions that occur in specific regions of the cell. The force-directed layout is an important and widely used technique to draw networks according to their topologies. Placing the networks into cellular compartments helps to quickly identify where network elements are located and, more specifically, concentrated. Currently, only a few tools provide the capability of visually organizing networks by cellular compartments. Most of them cannot handle large and dense networks. Even for small networks with hundreds of nodes the available tools are not able to reposition the network while the user is interacting, limiting the visual exploration capability. Here we propose CellNetVis, a web tool to easily display biological networks in a cell diagram employing a constrained force-directed layout algorithm. The tool is freely available and open-source. It was originally designed for networks generated by the Integrated Interactome System and can be used with networks from others databases, like InnateDB. CellNetVis has demonstrated to be applicable for dynamic investigation of complex networks over a consistent representation of a cell on the Web, with capabilities not matched elsewhere.
Alcoholism: a systems approach from molecular physiology to addictive behavior.
Spanagel, Rainer
2009-04-01
Alcohol consumption is an integral part of daily life in many societies. The benefits associated with the production, sale, and use of alcoholic beverages come at an enormous cost to these societies. The World Health Organization ranks alcohol as one of the primary causes of the global burden of disease in industrialized countries. Alcohol-related diseases, especially alcoholism, are the result of cumulative responses to alcohol exposure, the genetic make-up of an individual, and the environmental perturbations over time. This complex gene x environment interaction, which has to be seen in a life-span perspective, leads to a large heterogeneity among alcohol-dependent patients, in terms of both the symptom dimensions and the severity of this disorder. Therefore, a reductionistic approach is not very practical if a better understanding of the pathological processes leading to an addictive behavior is to be achieved. Instead, a systems-oriented perspective in which the interactions and dynamics of all endogenous and environmental factors involved are centrally integrated, will lead to further progress in alcohol research. This review adheres to a systems biology perspective such that the interaction of alcohol with primary and secondary targets within the brain is described in relation to the behavioral consequences. As a result of the interaction of alcohol with these targets, alterations in gene expression and synaptic plasticity take place that lead to long-lasting alteration in neuronal network activity. As a subsequent consequence, alcohol-seeking responses ensue that can finally lead via complex environmental interactions to an addictive behavior.
The 5As team patient study: patient perspectives on the role of primary care in obesity management.
Torti, Jacqueline; Luig, Thea; Borowitz, Michelle; Johnson, Jeffrey A; Sharma, Arya M; Campbell-Scherer, Denise L
2017-02-08
Over 60% of people have overweight or obesity, but only a third report receiving counselling from primary care providers. We explored patients' perspectives on the role of primary care in obesity management and their experience with existing resources, with a view to develop an improved understanding of this perspective, and more effective management strategies. Qualitative study employing semi-structured interviews and thematic analysis, with a sample of 28 patients from a cohort of 255 patients living with obesity and receiving care to support their weight management in a large Primary Care Network of family practices in Alberta. Four illustrative themes emerged: (1) the patient-physician relationship plays an important role in the adequacy of obesity management; (2) patients have clear expectations of substantive conversations with their primary care team; (3) complex conditions affect weight and patients require assistance tailored to individual obesity drivers; (4) current services provide support in important ways (accessibility, availability, accountability, affordability, consistency of messaging), but are not yet meeting patient needs for individual plans, advanced education, and follow-up opportunities. Patients have clear expectations that their primary care physician asks them about weight within a supportive therapeutic relationship. They see obesity as a complex phenomenon with multiple drivers. They want their healthcare providers to assess and address their root causes - not simplistic advice to "eat less, move more". Patients felt that the current services were positive resources, but expressed needs for tailored weight management plans, and longer-term follow-up.
Yeung, D Y; Fung, H H; Lang, F R
2007-01-01
Gender differences in social network characteristics are well documented in the literature. Socio-emotional selectivity theory emphasizes the importance of future time perception on selection of social partners whereas cultural studies stress the roles of Renqing (relationship orientation) on social interactions. This study examined the effects of future time perspective and adherence to Renqing on social network characteristics, and their associations with psychological well-being of 321 Chinese men and women, aged 28-91 years. Results showed that adherence to Renqing partially accounted for gender differences in the number of relatives, even after controlling for the effects of extraversion and structural factors. Moreover, women, but not men, with lower adherence to Renqing and more limited future time perspective were found to be happier when they had fewer close friends in their social networks.
Huang, Yuecheng; Cheng, Wuyi; Luo, Sida; Luo, Yun; Ma, Chengchen; He, Tailin
2016-01-01
The features of the asynchronous correlation between accident indices and the factors that influence accidents can provide an effective reference for warnings of coal mining accidents. However, what are the features of this correlation? To answer this question, data from the China coal price index and the number of deaths from coal mining accidents were selected as the sample data. The fluctuation modes of the asynchronous correlation between the two data sets were defined according to the asynchronous correlation coefficients, symbolization, and sliding windows. We then built several directed and weighted network models, within which the fluctuation modes and the transformations between modes were represented by nodes and edges. Then, the features of the asynchronous correlation between these two variables could be studied from a perspective of network topology. We found that the correlation between the price index and the accidental deaths was asynchronous and fluctuating. Certain aspects, such as the key fluctuation modes, the subgroups characteristics, the transmission medium, the periodicity and transmission path length in the network, were analyzed by using complex network theory, analytical methods and spectral analysis method. These results provide a scientific reference for generating warnings for coal mining accidents based on economic indices.
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Donner, Reik V.; Marwan, Norbert; Kurths, Jürgen
2013-09-01
Characterizing the mechanism of drop formation at the interface of horizontal oil-water stratified flows is a fundamental problem eliciting a great deal of attention from different disciplines. We experimentally and theoretically investigate the formation and transition of horizontal oil-water stratified flows. We design a new multi-sector conductance sensor and measure multivariate signals from two different stratified flow patterns. Using the Adaptive Optimal Kernel Time-Frequency Representation (AOK TFR) we first characterize the flow behavior from an energy and frequency point of view. Then, we infer multivariate recurrence networks from the experimental data and investigate the cross-transitivity for each constructed network. We find that the cross-transitivity allows quantitatively uncovering the flow behavior when the stratified flow evolves from a stable state to an unstable one and recovers deeper insights into the mechanism governing the formation of droplets at the interface of stratified flows, a task that existing methods based on AOK TFR fail to work. These findings present a first step towards an improved understanding of the dynamic mechanism leading to the transition of horizontal oil-water stratified flows from a complex-network perspective.
Wible, Ryan S; Sutter, Thomas R
2017-03-20
The unique biophysical and electronic properties of cysteine make this molecule one of the most biologically critical amino acids in the proteome. The defining sulfur atom in cysteine is much larger than the oxygen and nitrogen atoms more commonly found in the other amino acids. As a result of its size, the valence electrons of sulfur are highly polarizable. Unique protein microenvironments favor the polarization of sulfur, thus increasing the overt reactivity of cysteine. Here, we provide a brief overview of the endogenous generation of reactive oxygen and electrophilic species and specific examples of enzymes and transcription factors in which the oxidation or covalent modification of cysteine in those proteins modulates their function. The perspective concludes with a discussion of cysteine chemistry and biophysics, the hard and soft acids and bases model, and the proposal of the Soft Cysteine Signaling Network: a hypothesis proposing the existence of a complex signaling network governed by layered chemical reactivity and cross-talk in which the chemical modification of reactive cysteine in biological networks triggers the reorganization of intracellular biochemistry to mitigate spikes in endogenous or exogenous oxidative or electrophilic stress.
Mapping and discrimination of networks in the complexity-entropy plane
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2017-10-01
Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.
Godoi, Heloisa; Andrade, Selma Regina de; Mello, Ana Lúcia Schaefer Ferreira de
2017-09-28
: The objective was to describe the governance system used in structuring the regionalized healthcare network in Santa Catarina State, Brazil, based on the Bipartite Inter-Managerial Commission (CIB), with a focus on structuring of oral healthcare. This was a qualitative, exploratory-descriptive documental study, based on the foundations of governance as an analytical tool through identification of the dimensions actors, norms, nodal points, and processes. Secondary data were collected from the minutes of CIB meetings held from January 2011 to December 2015. The analysis shows weaknesses in CIB governance in Santa Catarina in relation to regionalized structuring of oral healthcare from a network perspective. Structuring of oral healthcare occurs in parallel to that of other thematic networks in the state and shows the expansion of dental services, especially those with medium complexity, as an effect of the prevailing governance process. The relations established between administrators and decision-making processes allowed recognizing this network's "prescription", since there is little negotiation and local demand, limited more to following recommendations and incentives from the federal/state sphere, intermediated by staff from the State Health Secretariat. Thus, setting a policy agenda for oral healthcare for the population of Santa Catarina is weakened, with a peripheral position in relation to other health programs.
Eriksson, Ulrika; Asplund, Kenneth; Sellström, Eva
2010-01-01
People are influenced by the neighborhood in which they live. The neighborhood may be particularly important for children's wellbeing because of the constraints it imposes on their patterns of daily activities. Furthermore, the neighborhood is a central context for social development, being a place where children form networks and learn social skills and values. The aim of this study was to describe how social capital in the neighborhood is perceived by children living in rural areas, and to reveal what this adds to their sense of wellbeing. The study had a descriptive research design with a qualitative approach. Seven single-sex focus group interviews were conducted with children the in 6th grade (aged 11-12 years). Data were analyzed using deductive content analysis. The children perceived a lack of social capital due to environmental and social constraints in their everyday lives. However, their wellbeing was enhanced by strong cohesion in the neighborhood. In addition, settings such as the school, the natural environment, and sporting associations were highly valued and emerged as crucial factors for enhancing the children's wellbeing. The spatial isolation that characterizes rural areas created a special context of social network structures, cohesion and trust, but was also a breeding ground for exclusion and social control. The stories revealed paradoxical feelings of living in a good and safe area that simultaneously felt isolated and restricted. From a rural perspective, this study reveals the complexity of the children's perceptions of their social environment, and the ways in which these perceptions have both positive and negative effects on wellbeing. The results highlight how important it is for health professionals in rural areas to consider the complex influence of bonding social capital on children's wellbeing, and to be aware that it can promote exclusion as well as cohesion.
Identifying and Investigating the "Best" Schools: A Network-Based Analysis
ERIC Educational Resources Information Center
Joshi, Priyadarshani
2018-01-01
This paper aims to provide a fresh perspective on the predominantly negative discourse on schooling quality in low-income countries by focusing on the research questions: "How can one identify great schools and what makes them special?" Using a network-based perspective, I measure peer evaluations of quality in two districts in Nepal.…
The National Research and Education Network (NREN): Research and Policy Perspectives.
ERIC Educational Resources Information Center
McClure, Charles R.; And Others
This book provides an overview and status report on the progress made in developing the National Research and Education Network (NREN) as of early 1991. It reports on a number of investigations that provide a research and policy perspective on the NREN and computer-mediated communication (CMC), and brings together key source documents that have…
ERIC Educational Resources Information Center
Chen, Tse-Mei; Barnett, George A.
2000-01-01
Analysis of 64 countries representing the largest number of international student exchanges examines student flows from a macro perspective. Findings indicate that the international student exchange network is relatively stable; the United States and Western industrialized nations are at the center; East European and Asian countries have become…
Dusi, Veronica; Ghidoni, Alice; Ravera, Alice; De Ferrari, Gaetano M.; Calvillo, Laura
2016-01-01
Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described. PMID:27242392
Secure Large-Scale Airport Simulations Using Distributed Computational Resources
NASA Technical Reports Server (NTRS)
McDermott, William J.; Maluf, David A.; Gawdiak, Yuri; Tran, Peter; Clancy, Dan (Technical Monitor)
2001-01-01
To fully conduct research that will support the far-term concepts, technologies and methods required to improve the safety of Air Transportation a simulation environment of the requisite degree of fidelity must first be in place. The Virtual National Airspace Simulation (VNAS) will provide the underlying infrastructure necessary for such a simulation system. Aerospace-specific knowledge management services such as intelligent data-integration middleware will support the management of information associated with this complex and critically important operational environment. This simulation environment, in conjunction with a distributed network of supercomputers, and high-speed network connections to aircraft, and to Federal Aviation Administration (FAA), airline and other data-sources will provide the capability to continuously monitor and measure operational performance against expected performance. The VNAS will also provide the tools to use this performance baseline to obtain a perspective of what is happening today and of the potential impact of proposed changes before they are introduced into the system.
The Virtual Pelvic Floor, a tele-immersive educational environment.
Pearl, R. K.; Evenhouse, R.; Rasmussen, M.; Dech, F.; Silverstein, J. C.; Prokasy, S.; Panko, W. B.
1999-01-01
This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet. Images Figure 1 Figure 2 Figure 3 PMID:10566378
Papatsoris, Athanasios G; Karamouzis, Michalis V; Papavassiliou, Athanasios G
2007-03-01
Prostate cancer is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths. Initially, tumor growth is androgen dependent and thus responsive to pharmacologic androgen deprivation, but there is a high rate of treatment failure because the disease evolves in an androgen-independent state. Growing evidence suggests that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade represents a pivotal molecular circuitry participating directly or indirectly in prostate cancer evolution. The crucial role of the protein elements comprising this complex signal transduction network makes them potential targets for pharmacologic interference. Here, we will delineate the current knowledge regarding the involvement of the Ras/MAPK pathway in prostate carcinogenesis, spotlight ongoing research concerning the development of novel targeted agents such as the Ras/MAPK inhibitors in prostate cancer, and discuss the future perspectives of their therapeutic efficacy.
Fractal analysis on human dynamics of library loans
NASA Astrophysics Data System (ADS)
Fan, Chao; Guo, Jin-Li; Zha, Yi-Long
2012-12-01
In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The values of the Hurst exponent and length of non-periodic cycle calculated through rescaled range analysis indicate that the time series of human behaviors and their sub-series are fractal with self-similarity and long-range dependence. Then the time series are converted into complex networks by the visibility algorithm. The topological properties of the networks such as scale-free property and small-world effect imply that there is a close relationship among the numbers of repetitious behaviors performed by people during certain periods of time. Our work implies that there is intrinsic regularity in the human collective repetitious behaviors. The conclusions may be helpful to develop some new approaches to investigate the fractal feature and mechanism of human dynamics, and provide some references for the management and forecast of human collective behaviors.
Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L; Bassaganya-Riera, Josep; Hafler, David A; Sontag, Eduardo; Wang, Jin; Tsang, John S; Day, Judy D; Kleinstein, Steven H; Butte, Atul J; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C
2017-02-01
Emergent responses of the immune system result from the integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for the systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the National Institute of Allergy and Infectious Disease (NIAID) workshop 'Complex Systems Science, Modeling and Immunity' and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling, and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
A National Perspective on Women Owning Woodlands (WOW) Networks
ERIC Educational Resources Information Center
Huff, Emily S.
2017-01-01
This article provides a national overview of women owning woodlands (WOW) networks and the barriers and successes they encounter. Qualitative interview data with key network leaders were used for increasing understanding of how these networks operate. Network leaders were all connected professionally, and all successful WOW networks involved…
Network Analysis Highlights Complex Interactions between Pathogen, Host and Commensal Microbiota
Boutin, Sébastien; Bernatchez, Louis; Audet, Céline; Derôme, Nicolas
2013-01-01
Interactions between bacteria and their host represent a full continuum from pathogenicity to mutualism. From an evolutionary perspective, host-bacteria relationships are no longer considered a two-component system but rather a complex network. In this study, we focused on the relationship between brook charr (Salvelinus fontinalis) and bacterial communities developing on skin mucus. We hypothesized that stressful conditions such as those occurring in aquaculture production induce shifts in the bacterial community of healthy fish, thus allowing pathogens to cause infections. The results showed that fish skin mucus microbiota taxonomical structure is highly specific, its diversity being partly influenced by the surrounding water bacterial community. Two types of taxonomic co-variation patterns emerged across 121 contrasted communities’ samples: one encompassing four genera well known for their probiotic properties, the other harboring five genera mostly associated with pathogen species. The homeostasis of fish bacterial community was extensively disturbed by induction of physiological stress in that both: 1) the abundance of probiotic-like bacteria decreased after stress exposure; and 2) pathogenic bacteria increased following stress exposure. This study provides further insights regarding the role of mutualistic bacteria as a primary host protection barrier. PMID:24376845
Greene, Amanda E; Todorova, Mariana T; Seyfried, Thomas N
2003-08-01
Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.
Insensitive dependence of delay-induced oscillation death on complex networks
NASA Astrophysics Data System (ADS)
Zou, Wei; Zheng, Xing; Zhan, Meng
2011-06-01
Oscillation death (also called amplitude death), a phenomenon of coupling induced stabilization of an unstable equilibrium, is studied for an arbitrary symmetric complex network with delay-coupled oscillators, and the critical conditions for its linear stability are explicitly obtained. All cases including one oscillator, a pair of oscillators, regular oscillator networks, and complex oscillator networks with delay feedback coupling, can be treated in a unified form. For an arbitrary symmetric network, we find that the corresponding smallest eigenvalue of the Laplacian λN (0 >λN ≥ -1) completely determines the death island, and as λN is located within the insensitive parameter region for nearly all complex networks, the death island keeps nearly the largest and does not sensitively depend on the complex network structures. This insensitivity effect has been tested for many typical complex networks including Watts-Strogatz (WS) and Newman-Watts (NW) small world networks, general scale-free (SF) networks, Erdos-Renyi (ER) random networks, geographical networks, and networks with community structures and is expected to be helpful for our understanding of dynamics on complex networks.
Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Khan, Muhammad Farhan; Naeem, Muhammad; Anpalagan, Alagan
2015-03-25
The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed.
Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Farhan Khan, Muhammad; Naeem, Muhammad; Anpalagan, Alagan
2015-01-01
The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed. PMID:25815444
Sampling from complex networks using distributed learning automata
NASA Astrophysics Data System (ADS)
Rezvanian, Alireza; Rahmati, Mohammad; Meybodi, Mohammad Reza
2014-02-01
A complex network provides a framework for modeling many real-world phenomena in the form of a network. In general, a complex network is considered as a graph of real world phenomena such as biological networks, ecological networks, technological networks, information networks and particularly social networks. Recently, major studies are reported for the characterization of social networks due to a growing trend in analysis of online social networks as dynamic complex large-scale graphs. Due to the large scale and limited access of real networks, the network model is characterized using an appropriate part of a network by sampling approaches. In this paper, a new sampling algorithm based on distributed learning automata has been proposed for sampling from complex networks. In the proposed algorithm, a set of distributed learning automata cooperate with each other in order to take appropriate samples from the given network. To investigate the performance of the proposed algorithm, several simulation experiments are conducted on well-known complex networks. Experimental results are compared with several sampling methods in terms of different measures. The experimental results demonstrate the superiority of the proposed algorithm over the others.
NASA Astrophysics Data System (ADS)
An, Pengli; Li, Huajiao; Zhou, Jinsheng; Chen, Fan
2017-10-01
Complex network theory is a widely used tool in the empirical research of financial markets. Two-mode and multi-mode networks are new trends and represent new directions in that they can more accurately simulate relationships between entities. In this paper, we use data for Chinese listed companies holding non-listed financial companies over a ten-year period to construct two networks: a two-mode primitive network in which listed companies and non-listed financial companies are considered actors and events, respectively, and a one-mode network that is constructed based on the decreasing-mode method in which listed companies are considered nodes. We analyze the evolution of the listed company co-holding network from several perspectives, including that of the whole network, of information control ability, of implicit relationships, of community division and of small-world characteristics. The results of the analysis indicate that (1) China's developing stock market affects the share-holding condition of listed companies holding non-listed financial companies; (2) the information control ability of co-holding networks is focused on a few listed companies and the implicit relationship of investment preference between listed companies is determined by the co-holding behavior; (3) the community division of the co-holding network is increasingly obvious, as determined by the investment preferences among listed companies; and (4) the small-world characteristics of the co-holding network are increasingly obvious, resulting in reduced communication costs. In this paper, we conduct an evolution analysis and develop an understanding of the factors that influence the listed companies co-holding network. This study will help illuminate research on evolution analysis.
Bond, Katherine C.; Macfarlane, Sarah B.; Burke, Charlanne; Ungchusak, Kumnuan; Wibulpolprasert, Suwit
2013-01-01
We examine the emergence, development, and value of regional infectious disease surveillance networks that neighboring countries worldwide are organizing to control cross-border outbreaks at their source. The regional perspective represented in the paper is intended to serve as an instructive framework for others who decide to launch such networks as new technologies and emerging threats bring countries even closer together. Distinct from more formal networks in geographic regions designated by the World Health Organization (WHO), these networks usually involve groupings of fewer countries chosen by national governments to optimize surveillance efforts. Sometimes referred to as sub-regional, these “self-organizing” networks complement national and local government recognition with informal relationships across borders among epidemiologists, scientists, ministry officials, health workers, border officers, and community members. Their development over time reflects both incremental learning and growing connections among network actors; and changing disease patterns, with infectious disease threats shifting over time from local to regional to global levels. Not only has this regional disease surveillance network model expanded across the globe, it has also expanded from a mostly practitioner-based network model to one that covers training, capacity-building, and multidisciplinary research. Today, several of these networks are linked through Connecting Organizations for Regional Disease Surveillance (CORDS). We explore how regional disease surveillance networks add value to global disease detection and response by complementing other systems and efforts, by harnessing their power to achieve other goals such as health and human security, and by helping countries adapt to complex challenges via multi-sectoral solutions. We note that governmental commitment and trust among participating individuals are critical to the success of regional infectious disease surveillance networks. PMID:23362414
Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem
Williams, Patricia AH; Woodward, Andrew J
2015-01-01
The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat. PMID:26229513
Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem.
Williams, Patricia Ah; Woodward, Andrew J
2015-01-01
The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat.
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
Cytokines and cytokine networks target neurons to modulate long-term potentiation.
Prieto, G Aleph; Cotman, Carl W
2017-04-01
Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cytokines and cytokine networks target neurons to modulate long-term potentiation
Prieto, G. Aleph; Cotman, Carl W.
2017-01-01
Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. PMID:28377062
Marketing for health-care organizations: an introduction to network management.
Boonekamp, L C
1994-01-01
The introduction of regulated competition in health care in several Western countries confronts health care providing organizations with changing relationships, with their environment and a need for knowledge and skills to analyse and improve their market position. Marketing receives more and more attention, as recent developments in this field of study provide a specific perspective on the relationships between an organization and external and internal parties. In doing so, a basis is offered for network management. A problem is that the existing marketing literature is not entirely appropriate for the specific characteristics of health care. After a description of the developments in marketing and its most recent key concepts, the applicability of these concepts in health-care organizations is discussed. States that for the health-care sector, dominated by complex networks of interorganizational relationships, the strategic marketing vision on relationships can be very useful. At the same time however, the operationalization of these concepts requires special attention and a distinct role of the management of health-care organizations, because of the characteristics of such organizations and the specific type of their service delivery.
Modelling dendritic ecological networks in space: An integrated network perspective
Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger
2013-01-01
Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...
Percolation Features on Climate Network under Attacks of El Niño Events
NASA Astrophysics Data System (ADS)
Lu, Z.
2015-12-01
Percolation theory under different attacks is one of the main research areas in complex networks but never be applied to investigate climate network. In this study, for the first time we construct a climate network of surface air temperature field to analyze its percolation features. Here, we regard El Niño event as a kind of naturally attacks generated from Pacific Ocean to attack its upper climate network. We find that El Niño event leads an abrupt percolation phase transition to the climate network which makes it splitting and unstable suddenly. Comparing the results of the climate network under three different forms of attacks, including most connected attack (MA), localized attack (LA) and random attack (RA) respectively, it is found that both MA and LA lead first-order transition and RA leads second-order transition to the climate network. Furthermore, we find that most real attacks consist of all these three forms of attacks. With El Niño event emerging, the ratios of LA and MA increase and dominate the style of attack while RA decreasing. It means the percolation phase transition due to El Niño events is close to first-order transition mostly affected by LA and MA. Our research may help us further understand two questions from perspective of percolation on network: (1) Why not all warming in Pacific Ocean but El Niño events could affect the climate. (2) Why the climate affected by El Niño events changes abruptly.
Şahin, Charlotte; Iseringhausen, Olaf; Hower, Kira; Liebe, Constanze; Rethmeier-Hanke, Anja; Wedmann, Bernd
2018-04-01
Regional planning of healthcare requires special consideration for the complex needs of elderly, multimorbid people living in a domestic environment. In the District of Lippe, a hospital (Klinikum Lippe) and network of ambulatory care physicians (Ärztenetz Lippe) developed and tested a geriatric care network based on case management for geriatric patients living in a domestic environment. The establishment of the geriatric care network (e.g. promoting networking acceptance and implementation) was formatively evaluated, e. g. with qualitative methods. Data were acquired by guideline-based interviews with experts and analyzed by qualitative content analysis according to Mayring. Structural effects included forming a cross-sectoral and interdisciplinary network for a functioning care network and a geriatric care pathway. The practical work of case managers (CM) is essential for communication with patients, family members and care providers as well as integrating providers into the network. A critical factor was working together with general practitioners and the close cooperation with the hospital's department of geriatric. The quality of care is improved because of exchange of information between sectors and continuity in the course of care. In the District of Lippe the quality of care was improved and structures of care were integrated by the network according to the needs of the target group. The integrative perspective was achieved in particular by the geriatric care pathway and integration of providers into the communication and care process; however, the scope of this care model could not be extended into routine care due to the rigid and subdivided health care system.
Social network approaches to leadership: an integrative conceptual review.
Carter, Dorothy R; DeChurch, Leslie A; Braun, Michael T; Contractor, Noshir S
2015-05-01
Contemporary definitions of leadership advance a view of the phenomenon as relational, situated in specific social contexts, involving patterned emergent processes, and encompassing both formal and informal influence. Paralleling these views is a growing interest in leveraging social network approaches to study leadership. Social network approaches provide a set of theories and methods with which to articulate and investigate, with greater precision and rigor, the wide variety of relational perspectives implied by contemporary leadership theories. Our goal is to advance this domain through an integrative conceptual review. We begin by answering the question of why-Why adopt a network approach to study leadership? Then, we offer a framework for organizing prior research. Our review reveals 3 areas of research, which we term: (a) leadership in networks, (b) leadership as networks, and (c) leadership in and as networks. By clarifying the conceptual underpinnings, key findings, and themes within each area, this review serves as a foundation for future inquiry that capitalizes on, and programmatically builds upon, the insights of prior work. Our final contribution is to advance an agenda for future research that harnesses the confluent ideas at the intersection of leadership in and as networks. Leadership in and as networks represents a paradigm shift in leadership research-from an emphasis on the static traits and behaviors of formal leaders whose actions are contingent upon situational constraints, toward an emphasis on the complex and patterned relational processes that interact with the embedding social context to jointly constitute leadership emergence and effectiveness. (c) 2015 APA, all rights reserved.
Why Network? Theoretical Perspectives on Networking
ERIC Educational Resources Information Center
Muijs, Daniel; West, Mel; Ainscow, Mel
2010-01-01
In recent years, networking and collaboration have become increasingly popular in education. However, there is at present a lack of attention to the theoretical basis of networking, which could illuminate when and when not to network and under what conditions networks are likely to be successful. In this paper, we will attempt to sketch the…
NASA Astrophysics Data System (ADS)
Bao, Yanli; Hua, Hefeng
2017-03-01
Network capability is the enterprise's capability to set up, manage, maintain and use a variety of relations between enterprises, and to obtain resources for improving competitiveness. Tourism in China is in a transformation period from sightseeing to leisure and vacation. Scenic spots as well as tourist enterprises can learn from some other enterprises in the process of resource development, and build up its own network relations in order to get resources for their survival and development. Through the effective management of network relations, the performance of resource development will be improved. By analyzing literature on network capability and the case analysis of Wuxi Huishan Ancient Town, the role of network capacity in the tourism resource development is explored and resource development path is built from the perspective of network capability. Finally, the tourism resource development process model based on network capacity is proposed. This model mainly includes setting up network vision, resource identification, resource acquisition, resource utilization and tourism project development. In these steps, network construction, network management and improving network center status are key points.
Three perspectives on complexity: entropy, compression, subsymmetry
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Balasubramanian, Karthi
2017-12-01
There is no single universally accepted definition of `Complexity'. There are several perspectives on complexity and what constitutes complex behaviour or complex systems, as opposed to regular, predictable behaviour and simple systems. In this paper, we explore the following perspectives on complexity: effort-to-describe (Shannon entropy H, Lempel-Ziv complexity LZ), effort-to-compress (ETC complexity) and degree-of-order (Subsymmetry or SubSym). While Shannon entropy and LZ are very popular and widely used, ETC is relatively a new complexity measure. In this paper, we also propose a novel normalized complexity measure SubSym based on the existing idea of counting the number of subsymmetries or palindromes within a sequence. We compare the performance of these complexity measures on the following tasks: (A) characterizing complexity of short binary sequences of lengths 4 to 16, (B) distinguishing periodic and chaotic time series from 1D logistic map and 2D Hénon map, (C) analyzing the complexity of stochastic time series generated from 2-state Markov chains, and (D) distinguishing between tonic and irregular spiking patterns generated from the `Adaptive exponential integrate-and-fire' neuron model. Our study reveals that each perspective has its own advantages and uniqueness while also having an overlap with each other.
Do Branch Lengths Help to Locate a Tree in a Phylogenetic Network?
Gambette, Philippe; van Iersel, Leo; Kelk, Steven; Pardi, Fabio; Scornavacca, Celine
2016-09-01
Phylogenetic networks are increasingly used in evolutionary biology to represent the history of species that have undergone reticulate events such as horizontal gene transfer, hybrid speciation and recombination. One of the most fundamental questions that arise in this context is whether the evolution of a gene with one copy in all species can be explained by a given network. In mathematical terms, this is often translated in the following way: is a given phylogenetic tree contained in a given phylogenetic network? Recently this tree containment problem has been widely investigated from a computational perspective, but most studies have only focused on the topology of the phylogenies, ignoring a piece of information that, in the case of phylogenetic trees, is routinely inferred by evolutionary analyses: branch lengths. These measure the amount of change (e.g., nucleotide substitutions) that has occurred along each branch of the phylogeny. Here, we study a number of versions of the tree containment problem that explicitly account for branch lengths. We show that, although length information has the potential to locate more precisely a tree within a network, the problem is computationally hard in its most general form. On a positive note, for a number of special cases of biological relevance, we provide algorithms that solve this problem efficiently. This includes the case of networks of limited complexity, for which it is possible to recover, among the trees contained by the network with the same topology as the input tree, the closest one in terms of branch lengths.
The brain network reflecting bodily self-consciousness: a functional connectivity study
Ionta, Silvio; Martuzzi, Roberto; Salomon, Roy
2014-01-01
Several brain regions are important for processing self-location and first-person perspective, two important aspects of bodily self-consciousness. However, the interplay between these regions has not been clarified. In addition, while self-location and first-person perspective in healthy subjects are associated with bilateral activity in temporoparietal junction (TPJ), disturbed self-location and first-person perspective result from damage of only the right TPJ. Identifying the involved brain network and understanding the role of hemispheric specializations in encoding self-location and first-person perspective, will provide important information on system-level interactions neurally mediating bodily self-consciousness. Here, we used functional connectivity and showed that right and left TPJ are bilaterally connected to supplementary motor area, ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex. Furthermore, the functional connectivity between right TPJ and right insula had the highest selectivity for changes in self-location and first-person perspective. Finally, functional connectivity revealed hemispheric differences showing that self-location and first-person perspective modulated the connectivity between right TPJ, right posterior insula, and right supplementary motor area, and between left TPJ and right anterior insula. The present data extend previous evidence on healthy populations and clinical observations in neurological deficits, supporting a bilateral, but right-hemispheric dominant, network for bodily self-consciousness. PMID:24396007
NASA Astrophysics Data System (ADS)
Buryi, E. V.
1998-05-01
The main problems in the synthesis of an object recognition system, based on the principles of operation of neuron networks, are considered. Advantages are demonstrated of a hierarchical structure of the recognition algorithm. The use of reading of the amplitude spectrum of signals as information tags is justified and a method is developed for determination of the dimensionality of the tag space. Methods are suggested for ensuring the stability of object recognition in the optical range. It is concluded that it should be possible to recognise perspectives of complex objects.
Multi-scale modelling of rubber-like materials and soft tissues: an appraisal
Puglisi, G.
2016-01-01
We survey, in a partial way, multi-scale approaches for the modelling of rubber-like and soft tissues and compare them with classical macroscopic phenomenological models. Our aim is to show how it is possible to obtain practical mathematical models for the mechanical behaviour of these materials incorporating mesoscopic (network scale) information. Multi-scale approaches are crucial for the theoretical comprehension and prediction of the complex mechanical response of these materials. Moreover, such models are fundamental in the perspective of the design, through manipulation at the micro- and nano-scales, of new polymeric and bioinspired materials with exceptional macroscopic properties. PMID:27118927
Genetic heterogeneity in autism: From single gene to a pathway perspective.
An, Joon Yong; Claudianos, Charles
2016-09-01
The extreme genetic heterogeneity of autism spectrum disorder (ASD) represents a major challenge. Recent advances in genetic screening and systems biology approaches have extended our knowledge of the genetic etiology of ASD. In this review, we discuss the paradigm shift from a single gene causation model to pathway perturbation model as a guide to better understand the pathophysiology of ASD. We discuss recent genetic findings obtained through next-generation sequencing (NGS) and examine various integrative analyses using systems biology and complex networks approaches that identify convergent patterns of genetic elements associated with ASD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gradient descent learning algorithm overview: a general dynamical systems perspective.
Baldi, P
1995-01-01
Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.
Graduate Employability: The Perspective of Social Network Learning
ERIC Educational Resources Information Center
Chen, Yong
2017-01-01
This study provides a conceptual framework for understanding how the graduate acquire employability through the social network in the Chinese context, using insights from the social network theory. This paper builds a conceptual model of the relationship among social network, social network learning and the graduate employability, and uses…
GENERAL PERSPECTIVE VIEW OF THE COMPLEX, VIEW LOOKING NORTHWEST AT ...
GENERAL PERSPECTIVE VIEW OF THE COMPLEX, VIEW LOOKING NORTHWEST AT THE OREGON FORESTER'S OFFICE BUILDING, WITH MILL CREEK IN THE FOREGROUND. - Oregon State Forester's Office Complex, 2600 State Street, Salem, Marion, OR
GENERAL PERSPECTIVE VIEW OF THE COMPLEX, VIEW LOOKING WEST AT ...
GENERAL PERSPECTIVE VIEW OF THE COMPLEX, VIEW LOOKING WEST AT THE MOTORPOOL, AUTOMOTIVE SHOP AND FOREST PROTECTION BUILDING (FROM LEFT TO RIGHT). - Oregon State Forester's Office Complex, 2600 State Street, Salem, Marion, OR
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Complex quantum network geometries: Evolution and phase transitions.
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Inference of gene regulatory networks from time series by Tsallis entropy
2011-01-01
Background The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 ≤ q ≤ 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/. PMID:21545720
Thinking on building the network cardiovasology of Chinese medicine.
Yu, Gui; Wang, Jie
2012-11-01
With advances in complex network theory, the thinking and methods regarding complex systems have changed revolutionarily. Network biology and network pharmacology were built by applying network-based approaches in biomedical research. The cardiovascular system may be regarded as a complex network, and cardiovascular diseases may be taken as the damage of structure and function of the cardiovascular network. Although Chinese medicine (CM) is effective in treating cardiovascular diseases, its mechanisms are still unclear. With the guidance of complex network theory, network biology and network pharmacology, network-based approaches could be used in the study of CM in preventing and treating cardiovascular diseases. A new discipline-network cardiovasology of CM was, therefore, developed. In this paper, complex network theory, network biology and network pharmacology were introduced and the connotation of "disease-syndrome-formula-herb" was illustrated from the network angle. Network biology could be used to analyze cardiovascular diseases and syndromes and network pharmacology could be used to analyze CM formulas and herbs. The "network-network"-based approaches could provide a new view for elucidating the mechanisms of CM treatment.
Perspectives on Machine Learning for Classification of Schizotypy Using fMRI Data.
Madsen, Kristoffer H; Krohne, Laerke G; Cai, Xin-Lu; Wang, Yi; Chan, Raymond C K
2018-03-15
Functional magnetic resonance imaging is capable of estimating functional activation and connectivity in the human brain, and lately there has been increased interest in the use of these functional modalities combined with machine learning for identification of psychiatric traits. While these methods bear great potential for early diagnosis and better understanding of disease processes, there are wide ranges of processing choices and pitfalls that may severely hamper interpretation and generalization performance unless carefully considered. In this perspective article, we aim to motivate the use of machine learning schizotypy research. To this end, we describe common data processing steps while commenting on best practices and procedures. First, we introduce the important role of schizotypy to motivate the importance of reliable classification, and summarize existing machine learning literature on schizotypy. Then, we describe procedures for extraction of features based on fMRI data, including statistical parametric mapping, parcellation, complex network analysis, and decomposition methods, as well as classification with a special focus on support vector classification and deep learning. We provide more detailed descriptions and software as supplementary material. Finally, we present current challenges in machine learning for classification of schizotypy and comment on future trends and perspectives.
An information dimension of weighted complex networks
NASA Astrophysics Data System (ADS)
Wen, Tao; Jiang, Wen
2018-07-01
The fractal and self-similarity are important properties in complex networks. Information dimension is a useful dimension for complex networks to reveal these properties. In this paper, an information dimension is proposed for weighted complex networks. Based on the box-covering algorithm for weighted complex networks (BCANw), the proposed method can deal with the weighted complex networks which appear frequently in the real-world, and it can get the influence of the number of nodes in each box on the information dimension. To show the wide scope of information dimension, some applications are illustrated, indicating that the proposed method is effective and feasible.
Detection of protein complex from protein-protein interaction network using Markov clustering
NASA Astrophysics Data System (ADS)
Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.
2017-05-01
Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.
Thirumalai, D; Hyeon, Changbong
2018-06-19
Signal transmission at the molecular level in many biological complexes occurs through allosteric transitions. Allostery describes the responses of a complex to binding of ligands at sites that are spatially well separated from the binding region. We describe the structural perturbation method, based on phonon propagation in solids, which can be used to determine the signal-transmitting allostery wiring diagram (AWD) in large but finite-sized biological complexes. Application to the bacterial chaperonin GroEL-GroES complex shows that the AWD determined from structures also drives the allosteric transitions dynamically. From both a structural and dynamical perspective these transitions are largely determined by formation and rupture of salt-bridges. The molecular description of allostery in GroEL provides insights into its function, which is quantitatively described by the iterative annealing mechanism. Remarkably, in this complex molecular machine, a deep connection is established between the structures, reaction cycle during which GroEL undergoes a sequence of allosteric transitions, and function, in a self-consistent manner.This article is part of a discussion meeting issue 'Allostery and molecular machines'. © 2018 The Author(s).
Shiue, Ivy; Samberg, Leah; Kulohoma, Benard; Dogaru, Diana; Wyborn, Carina; Hamel, Perrine; Jørgensen, Peter Søgaard; Lussier, Paul; Sundaram, Bharath; Lim, Michelle; Tironi, Antonio
2014-01-01
Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”. PMID:25390795
Robustness and structure of complex networks
NASA Astrophysics Data System (ADS)
Shao, Shuai
This dissertation covers the two major parts of my PhD research on statistical physics and complex networks: i) modeling a new type of attack -- localized attack, and investigating robustness of complex networks under this type of attack; ii) discovering the clustering structure in complex networks and its influence on the robustness of coupled networks. Complex networks appear in every aspect of our daily life and are widely studied in Physics, Mathematics, Biology, and Computer Science. One important property of complex networks is their robustness under attacks, which depends crucially on the nature of attacks and the structure of the networks themselves. Previous studies have focused on two types of attack: random attack and targeted attack, which, however, are insufficient to describe many real-world damages. Here we propose a new type of attack -- localized attack, and study the robustness of complex networks under this type of attack, both analytically and via simulation. On the other hand, we also study the clustering structure in the network, and its influence on the robustness of a complex network system. In the first part, we propose a theoretical framework to study the robustness of complex networks under localized attack based on percolation theory and generating function method. We investigate the percolation properties, including the critical threshold of the phase transition pc and the size of the giant component Pinfinity. We compare localized attack with random attack and find that while random regular (RR) networks are more robust against localized attack, Erdoḧs-Renyi (ER) networks are equally robust under both types of attacks. As for scale-free (SF) networks, their robustness depends crucially on the degree exponent lambda. The simulation results show perfect agreement with theoretical predictions. We also test our model on two real-world networks: a peer-to-peer computer network and an airline network, and find that the real-world networks are much more vulnerable to localized attack compared with random attack. In the second part, we extend the tree-like generating function method to incorporating clustering structure in complex networks. We study the robustness of a complex network system, especially a network of networks (NON) with clustering structure in each network. We find that the system becomes less robust as we increase the clustering coefficient of each network. For a partially dependent network system, we also find that the influence of the clustering coefficient on network robustness decreases as we decrease the coupling strength, and the critical coupling strength qc, at which the first-order phase transition changes to second-order, increases as we increase the clustering coefficient.
GENERAL PERSPECTIVE VIEW OF THE COMPLEX, VIEW LOOKING EAST AT ...
GENERAL PERSPECTIVE VIEW OF THE COMPLEX, VIEW LOOKING EAST AT THE FOREST PROTECTION BUILDING, THE MOTORPOOL, AND THE AUTOMOTIVE SHOP (FROM LEFT TO RIGHT). - Oregon State Forester's Office Complex, 2600 State Street, Salem, Marion, OR
Structural Behavioral Study on the General Aviation Network Based on Complex Network
NASA Astrophysics Data System (ADS)
Zhang, Liang; Lu, Na
2017-12-01
The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.
The Promise of Global Networks. 1999 Annual Review.
ERIC Educational Resources Information Center
Institute for Information Studies, Queenstown, MD.
This collection of commissioned papers provides a variety of perspectives on the impact of global information networks. The following articles are included: "The Promise of Global Networks: An Introduction" (Jorge Reina Schement); "Architecture and Expectations: Networks of the World--Unite!" (Marjory S. Blumenthal); "The…
Finding gene regulatory network candidates using the gene expression knowledge base.
Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin
2014-12-10
Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.
Local and global responses in complex gene regulation networks
NASA Astrophysics Data System (ADS)
Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro
2009-04-01
An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.
Teachers' Motives for Learning in Networks: Costs, Rewards and Community Interest
ERIC Educational Resources Information Center
van den Beemt, Antoine; Ketelaar, Evelien; Diepstraten, Isabelle; de Laat, Maarten
2018-01-01
Background: This paper discusses teachers' perspectives on learning networks and their motives for participating in these networks. Although it is widely held that teachers' learning may be developed through learning networks, not all teachers participate in such networks. Purpose: The theme of reciprocity, central to studies in the area of…
Nahmias, Susa Beckman; Nahmias, Daniella
2011-08-01
The last few decades have provided new perspectives on the increasingly complex interrelationships between the evolutionary epidemiology of STDs and their agents, human sexuality, and economic, social, cultural, and technological developments. Rapidly emerging HIV/AIDS, globalization, migration, and information technology are some factors that stress the importance of focusing on how old and new sexually transmitted infections (STIs) are spread, both in and between networks and populations. This review of determinants of STI transmission emphasizes their impact on disease prevalence and transmission, as well as their potential for affecting the agents themselves--directly or indirectly. Interventions aiming to control the spread of STIs and HIV on the different levels of society need to be adapted to the specific environment and need to integrate social structures, such as economic and gender inequality and mobility, as well as the great variability and complexity of sexual behavior. © 2011 New York Academy of Sciences.
Oxytocin: parallel processing in the social brain?
Dölen, Gül
2015-06-01
Early studies attempting to disentangle the network complexity of the brain exploited the accessibility of sensory receptive fields to reveal circuits made up of synapses connected both in series and in parallel. More recently, extension of this organisational principle beyond the sensory systems has been made possible by the advent of modern molecular, viral and optogenetic approaches. Here, evidence supporting parallel processing of social behaviours mediated by oxytocin is reviewed. Understanding oxytocinergic signalling from this perspective has significant implications for the design of oxytocin-based therapeutic interventions aimed at disorders such as autism, where disrupted social function is a core clinical feature. Moreover, identification of opportunities for novel technology development will require a better appreciation of the complexity of the circuit-level organisation of the social brain. © 2015 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd on behalf of British Society for Neuroendocrinology.
Industrial systems biology and its impact on synthetic biology of yeast cell factories.
Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens
2016-06-01
Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
[The contribution of neuroscience to the understanding of moral behavior].
Slachevsky, Andrea; Silva, Jaime R; Prenafeta, María Luisa; Novoa, Fernando
2009-03-01
The neuro-scientific study of moral actions and judgments is particularly relevant to medicine, especially when assessing behavior disorders secondary to brain diseases. In this paper, moral behavior is reviewed from an evolutionary and neuro-scientific perspective. We discuss the role of emotions in moral decisions, the role of brain development in moral development and the cerebral basis of moral behavior. Empirical evidence shows a relationship between brain and moral development: changes in cerebral architecture are related to changes in moral decision complexity. Moral development takes a long time, achieving its maturity during adulthood. It is suggested that moral cognition depends on cerebral regions and neural networks related to emotional and cognitive processing (i.e. prefrontal and temporal cortex) and that moral judgments are complex affective and cognitive phenomena. This paper concludes with the suggestion that a satisfactory clinical/legal evaluation of a patient requires that the neural basis of moral behavior should be taken into account.
Petri net-based dependability modeling methodology for reconfigurable field programmable gate arrays
NASA Astrophysics Data System (ADS)
Graczyk, Rafał; Orleański, Piotr; Poźniak, Krzysztof
2015-09-01
Dependability modeling is an important issue for aerospace and space equipment designers. From system level perspective, one has to choose from multitude of possible architectures, redundancy levels, component combinations in a way to meet desired properties and dependability and finally fit within required cost and time budgets. Modeling of such systems is getting harder as its levels of complexity grow together with demand for more functional and flexible, yet more available systems that govern more and more crucial parts of our civilization's infrastructure (aerospace transport systems, telecommunications, exploration probes). In this article promising method of modeling complex systems using Petri networks is introduced in context of qualitative and quantitative dependability analysis. This method, although with some limitation and drawback offer still convenient visual formal method of describing system behavior on different levels (functional, timing, random events) and offers straight correspondence to underlying mathematical engine, perfect for simulations and engineering support.
NASA Astrophysics Data System (ADS)
Sokolovskiy, Vladimir; Grünebohm, Anna; Buchelnikov, Vasiliy; Entel, Peter
2014-09-01
This special issue collects contributions from the participants of the "Information in Dynamical Systems and Complex Systems" workshop, which cover a wide range of important problems and new approaches that lie in the intersection of information theory and dynamical systems. The contributions include theoretical characterization and understanding of the different types of information flow and causality in general stochastic processes, inference and identification of coupling structure and parameters of system dynamics, rigorous coarse-grain modeling of network dynamical systems, and exact statistical testing of fundamental information-theoretic quantities such as the mutual information. The collective efforts reported herein reflect a modern perspective of the intimate connection between dynamical systems and information flow, leading to the promise of better understanding and modeling of natural complex systems and better/optimal design of engineering systems.
Arena, Paolo; Calí, Marco; Patané, Luca; Portera, Agnese; Strauss, Roland
2016-09-01
Classification and sequence learning are relevant capabilities used by living beings to extract complex information from the environment for behavioral control. The insect world is full of examples where the presentation time of specific stimuli shapes the behavioral response. On the basis of previously developed neural models, inspired by Drosophila melanogaster, a new architecture for classification and sequence learning is here presented under the perspective of the Neural Reuse theory. Classification of relevant input stimuli is performed through resonant neurons, activated by the complex dynamics generated in a lattice of recurrent spiking neurons modeling the insect Mushroom Bodies neuropile. The network devoted to context formation is able to reconstruct the learned sequence and also to trace the subsequences present in the provided input. A sensitivity analysis to parameter variation and noise is reported. Experiments on a roving robot are reported to show the capabilities of the architecture used as a neural controller.
Approaching human language with complex networks
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).
Features and perspectives of automatized construction crane-manipulators
NASA Astrophysics Data System (ADS)
Stepanov, Mikhail A.; Ilukhin, Peter A.
2018-03-01
Modern construction industry still has a high percentage of manual labor, and the greatest prospects of improving the construction process are lying in the field of automatization. In this article automatized construction manipulator-cranes are being studied in order to achieve the most rational design scheme. This is done through formulating a list of general conditions necessary for such cranes and a set of specialized kinematical conditions. A variety of kinematical schemes is evaluated via these conditions, and some are taken for further dynamical analisys. The comparative dynamical analisys of taken schemes was made and the most rational scheme was defined. Therefore a basis for a more complex and practical research of manipulator-cranes design is given and ways to implement them on practical level can now be calculated properly. Also, the perspectives of implementation of automated control systems and informational networks on construction sites in order to boost the quality of construction works, safety of labour and ecological safety are shown.
Perspectives on Regulatory T Cell Therapies
Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S.P.; Buer, Jan
2009-01-01
Summary Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (Treg) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, Treg cell therapies and development of drugs that specifically enhance Treg cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human Treg cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 at different levels, hampered such an approach. Recent identification of the orphan receptor glycoprotein-A repetitions predominant (GARP or LRRC32) as Treg cell-specific key molecule that dominantly controls FOXP3 via a positive feedback loop opens up new perspectives for molecular and cellular therapies. This brief review focuses on the role of GARP as a safeguard of a complex regulatory network of human Treg cells and its implications for regulatory T cell therapies in autoimmunity and graft-versus-host disease. PMID:21076548
Perspectives on Regulatory T Cell Therapies.
Probst-Kepper, Michael; Kröger, Andrea; Garritsen, Henk S P; Buer, Jan
2009-01-01
Adoptive transfer in animal models clearly indicate an essential role of CD4+ CD25+ FOXP3+ regulatory T (T(reg)) cells in prevention and treatment of autoimmune and graft-versus-host disease. Thus, T(reg) cell therapies and development of drugs that specifically enhance T(reg) cell function and development represent promising tools to establish dominant tolerance. So far, lack of specific markers to differentiate human T(reg) cells from activated CD4+ CD25+ effector T cells, which also express FOXP3 at different levels, hampered such an approach. Recent identification of the orphan receptor glycoprotein-A repetitions predominant (GARP or LRRC32) as T(reg) cell-specific key molecule that dominantly controls FOXP3 via a positive feedback loop opens up new perspectives for molecular and cellular therapies. This brief review focuses on the role of GARP as a safeguard of a complex regulatory network of human T(reg) cells and its implications for regulatory T cell therapies in autoimmunity and graft-versus-host disease.
Universal Connection through Art: Role of Mirror Neurons in Art Production and Reception
Piechowski-Jozwiak, Bartlomiej; Boller, François; Bogousslavsky, Julien
2017-01-01
Art is defined as expression or application of human creative skill and imagination producing works to be appreciated primarily for their aesthetic value or emotional power. This definition encompasses two very important elements—the creation and reception of art—and by doing so it establishes a link, a dialogue between the artist and spectator. From the evolutionary biological perspective, activities need to have an immediate or remote effect on the population through improving survival, gene selection, and environmental adjustment, and this includes art. It may serve as a universal means of communication bypassing time, cultural, ethnic, and social differences. The neurological mechanisms of both art production and appreciation are researched by neuroscientists and discussed both in terms of healthy brain biology and complex neuronal networking perspectives. In this paper, we describe folk art and the issue of symbolic archetypes in psychoanalytic thought as well as offer neuronal mechanisms for art by emphasizing mirror/neurons and the role they play in it. PMID:28475130
Ottaviani, E; Valensin, S; Franceschi, C
1998-04-16
The evolutionary perspective indicates that an immune-neuroendocrine effector system integrating innate immunity, stress and inflammation is present in invertebrates. This defense network, centered on the macrophage and exerting primitive and highly promiscuous recognition units, is very effective, ancestral and appears to have been conserved throughout evolution from invertebrates to higher vertebrates. It would seem that there was a "big bang" in the recognition system of lower vertebrates, and T and B cell repertoires, MHC and antibodies suddenly appeared. We argue that this phenomenon is the counterpart of the increasing complexity of the internal circuitry and recognition units in the effector system. The immediate consequences were a progressive enlargement of the pathogen repertoire and new problems regarding self/not-self discrimination. Probably not by chance, a new organ appeared, capable of purging cells able of excessive self recognition. This organ, the thymus, appears to be the result of a well known evolutionary strategy of re-using pre-existing material (neuroendocrine cells and mediators constituting the thymic microenvironment). This bricolage at an organ level is similar to the effect we have already described at the level of molecules and functions of the defense network, and has a general counterpart at genetic level. Thus, in vertebrates, the conserved immune-neuroendocrine effector system remains of fundamental importance in defense against pathogens, while its efficiency has increased through synergy with the new, clonotipical recognition repertoire.
Action observation network in childhood: a comparative fMRI study with adults.
Biagi, Laura; Cioni, Giovanni; Fogassi, Leonardo; Guzzetta, Andrea; Sgandurra, Giuseppina; Tosetti, Michela
2016-11-01
Very little is known about the action observation network and the mirror neuron system (AON/MNS) in children and its age-related properties compared with those observed in adults. In the present fMRI study we explored the activation of areas belonging to the AON/MNS in children and adults during observation of complex hand-grasping actions, as compared to observation of simple grasping acts executed with the left and the right hand, seen from a first person perspective. The results indicate that during the action observation tasks in children there was activation of a cortical network similar to that found in adults, including the premotor cortex, the posterior part of the inferior frontal gyrus and the posterior parietal lobe. However, the activation in children was more widespread and showed a higher inter-subject variability compared with adults. Furthermore, the activated network seems more lateralized to the left hemisphere in adults and more bilateral in children, with a linear growth of lateralization index as a function of age. Finally, in children the activation in the anterior intraparietal cortex (AIP) of each hemisphere was higher during observation of the contralateral hand (hand identity effect) and during the observation of complex actions relative to simple grasping acts, confirming the role of AIP for action-related hand identity previously described in adults. These results support the assumption that structure and size of action representations are sensitive to mechanisms of development and show physiological plasticity. These properties of the AON/MNS could constitute a powerful tool for spontaneous reorganization and recovery of motor deficits after brain injury in children and in adults, as well as for specific rehabilitation programmes. © 2015 John Wiley & Sons Ltd.
The Comet Halley archive: Summary volume
NASA Technical Reports Server (NTRS)
Sekanina, Zdenek (Editor); Fry, Lori (Editor)
1991-01-01
The contents are as follows: The Organizational History of the International Halley Watch; Operations of the International Halley Watch from a Lead Center Perspective; The Steering Group; Astrometry Network; Infrared Studies Network; Large-Scale Phenomena Network; Meteor Studies Network; Near-Nucleus Studies Network; Photometry and Polarimetry Network; Radio Science Network; Spectroscopy and Spectrophotometry Network; Amateur Observation Network; Use of the CD-ROM Archive; The 1986 Passage of Comet Halley; and Recent Observations of Comet Halley.
Our Selections and Decisions: Inherent Features of the Nervous System?
NASA Astrophysics Data System (ADS)
Rösler, Frank
The chapter summarizes findings on the neuronal bases of decisionmaking. Taking the phenomenon of selection it will be explained that systems built only from excitatory and inhibitory neuron (populations) have the emergent property of selecting between different alternatives. These considerations suggest that there exists a hierarchical architecture with central selection switches. However, in such a system, functions of selection and decision-making are not localized, but rather emerge from an interaction of several participating networks. These are, on the one hand, networks that process specific input and output representations and, on the other hand, networks that regulate the relative activation/inhibition of the specific input and output networks. These ideas are supported by recent empirical evidence. Moreover, other studies show that rather complex psychological variables, like subjective probability estimates, expected gains and losses, prediction errors, etc., do have biological correlates, i.e., they can be localized in time and space as activation states of neural networks and single cells. These findings suggest that selections and decisions are consequences of an architecture which, seen from a biological perspective, is fully deterministic. However, a transposition of such nomothetic functional principles into the idiographic domain, i.e., using them as elements for comprehensive 'mechanistic' explanations of individual decisions, seems not to be possible because of principle limitations. Therefore, individual decisions will remain predictable by means of probabilistic models alone.
Perspectives on Complexity, Its Definition and Applications in the Field
ERIC Educational Resources Information Center
Koopmans, Matthijs
2017-01-01
There is considerable variation in the dynamical literature in how the term "complexity" is used. While there have been several attempts to describe from an educational perspective what complexity encompasses, the term is frequently used without an explicit definition. To forge a shared understanding of what complexity means, the purpose…
Embodied Perspective Taking in Learning about Complex Systems
ERIC Educational Resources Information Center
Soylu, Firat; Holbert, Nathan; Brady, Corey; Wilensky, Uri
2017-01-01
In this paper we present a learning design approach that leverages perspective-taking to help students learn about complex systems. We define perspective-taking as projecting one's identity onto external entities (both animate and inanimate) in an effort to predict and anticipate events based on ecological cues, to automatically sense the…
Systems thinking and complexity: considerations for health promoting schools.
Rosas, Scott R
2017-04-01
The health promoting schools concept reflects a comprehensive and integrated philosophy to improving student and personnel health and well-being. Conceptualized as a configuration of interacting, interdependent parts connected through a web of relationships that form a whole greater than the sum of its parts, school health promotion initiatives often target several levels (e.g. individual, professional, procedural and policy) simultaneously. Health promoting initiatives, such as those operationalized under the whole school approach, include several interconnected components that are coordinated to improve health outcomes in complex settings. These complex systems interventions are embedded in intricate arrangements of physical, biological, ecological, social, political and organizational relationships. Systems thinking and characteristics of complex adaptive systems are introduced in this article to provide a perspective that emphasizes the patterns of inter-relationships associated with the nonlinear, dynamic and adaptive nature of complex hierarchical systems. Four systems thinking areas: knowledge, networks, models and organizing are explored as a means to further manage the complex nature of the development and sustainability of health promoting schools. Applying systems thinking and insights about complex adaptive systems can illuminate how to address challenges found in settings with both complicated (i.e. multi-level and multisite) and complex aspects (i.e. synergistic processes and emergent outcomes). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S.; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology. PMID:23162688
Huang, Yuecheng; Cheng, Wuyi; Luo, Sida; Luo, Yun; Ma, Chengchen; He, Tailin
2016-01-01
The features of the asynchronous correlation between accident indices and the factors that influence accidents can provide an effective reference for warnings of coal mining accidents. However, what are the features of this correlation? To answer this question, data from the China coal price index and the number of deaths from coal mining accidents were selected as the sample data. The fluctuation modes of the asynchronous correlation between the two data sets were defined according to the asynchronous correlation coefficients, symbolization, and sliding windows. We then built several directed and weighted network models, within which the fluctuation modes and the transformations between modes were represented by nodes and edges. Then, the features of the asynchronous correlation between these two variables could be studied from a perspective of network topology. We found that the correlation between the price index and the accidental deaths was asynchronous and fluctuating. Certain aspects, such as the key fluctuation modes, the subgroups characteristics, the transmission medium, the periodicity and transmission path length in the network, were analyzed by using complex network theory, analytical methods and spectral analysis method. These results provide a scientific reference for generating warnings for coal mining accidents based on economic indices. PMID:27902748
Relational Diversity Promotes Cooperation in Prisoner’s Dilemma Games
Xu, Bo; Wang, Jianwei; Deng, Ruipu; Li, Miao
2014-01-01
Relational diversity can be characterized by heterogeneous distributions of tie strengths in social networks and this diversity is present not only among humans, but throughout the animal world. We account for this observation by analyzing two network datasets from Facebook. We measure the strength of a tie by calculating the extent of overlap of friends between the two individuals. Based on the previous findings in human experiments, we argue that it is very unlikely that players will allocate their investments equally to their neighbors. There is a tendency that players prefer to donate more to their intimate friends. We find that if players preferentially allocate their investments to their good friends, cooperation will be promoted in PDG. We proved that the facilitation of the cooperative strategy relies mostly on the cooperative allies between best friends, resulting in the formation of cooperative clusters which are able to prevail against the defectors even when there is a large cost to cooperate. Moreover, we discover that the effect of relational diversity cannot be analyzed by adopting classical complex networks models, because neither of the artificial networks is able to produce networks with diverse distributions of tie strengths. It is of vital importance to introduce real social networks to study the influence of diverse relations especially when it comes to humans. This research proposes a brand new perspective to understand the influence of social relations on the emergence of cooperation in evolutionary prisoner’s dilemma games. PMID:25474354
Relational diversity promotes cooperation in prisoner's dilemma games.
Xu, Bo; Wang, Jianwei; Deng, Ruipu; Li, Miao
2014-01-01
Relational diversity can be characterized by heterogeneous distributions of tie strengths in social networks and this diversity is present not only among humans, but throughout the animal world. We account for this observation by analyzing two network datasets from Facebook. We measure the strength of a tie by calculating the extent of overlap of friends between the two individuals. Based on the previous findings in human experiments, we argue that it is very unlikely that players will allocate their investments equally to their neighbors. There is a tendency that players prefer to donate more to their intimate friends. We find that if players preferentially allocate their investments to their good friends, cooperation will be promoted in PDG. We proved that the facilitation of the cooperative strategy relies mostly on the cooperative allies between best friends, resulting in the formation of cooperative clusters which are able to prevail against the defectors even when there is a large cost to cooperate. Moreover, we discover that the effect of relational diversity cannot be analyzed by adopting classical complex networks models, because neither of the artificial networks is able to produce networks with diverse distributions of tie strengths. It is of vital importance to introduce real social networks to study the influence of diverse relations especially when it comes to humans. This research proposes a brand new perspective to understand the influence of social relations on the emergence of cooperation in evolutionary prisoner's dilemma games.
Implementation and application of ACL in campus network
NASA Astrophysics Data System (ADS)
Zheng, Shiyong; Li, Zhao; Li, Biqing
2017-03-01
In this paper, it firstly introduces the related knowledge of access control list (ACL) technology, hardware requirements and software configuration. Then it discusses the topological structure of campus network from the perspective of campus network planning as well as demonstrates the application of ACL technology in campus network combined with examples.
Composing Networks: Writing Practices on Mobile Devices
ERIC Educational Resources Information Center
Swarts, Jason
2016-01-01
This article is an investigation of composing practices through which people create networks with mobile phones. By looking through the lens of actor-network theory, the author portrays the networking activity of mobile phone users as translation, what Latour describes as an infralanguage to which different disciplinary perspectives can be…
Networks: A Route to Improving Performance in Manufacturing SMEs
ERIC Educational Resources Information Center
Coleman, J.
2003-01-01
Perceived as important contributors to economic growth, network and cluster groups are currently receiving much attention. The same may be said of SMEs. But practical and theoretical perspectives indicate that SMEs, and particularly the owner-managers, place little value on networks and have only limited networking resources. Consequently, they do…
Campus Network Strategies: A Small College Perspective.
ERIC Educational Resources Information Center
Moberg, Thomas
1999-01-01
Offers advice to administrators and faculty in small colleges on planning, building, and managing campus computer networks. Also included are observations about the network as a strategic asset, funding and staffing issues, and planning for unexpected results. (Author/MSE)
Architecture and biological applications of artificial neural networks: a tuberculosis perspective.
Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran
2015-01-01
Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.
Approaching human language with complex networks.
Cong, Jin; Liu, Haitao
2014-12-01
The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics). Copyright © 2014 Elsevier B.V. All rights reserved.
Visibility in the topology of complex networks
NASA Astrophysics Data System (ADS)
Tsiotas, Dimitrios; Charakopoulos, Avraam
2018-09-01
Taking its inspiration from the visibility algorithm, which was proposed by Lacasa et al. (2008) to convert a time-series into a complex network, this paper develops and proposes a novel expansion of this algorithm that allows generating a visibility graph from a complex network instead of a time-series that is currently applicable. The purpose of this approach is to apply the idea of visibility from the field of time-series to complex networks in order to interpret the network topology as a landscape. Visibility in complex networks is a multivariate property producing an associated visibility graph that maps the ability of a node "to see" other nodes in the network that lie beyond the range of its neighborhood, in terms of a control-attribute. Within this context, this paper examines the visibility topology produced by connectivity (degree) in comparison with the original (source) network, in order to detect what patterns or forces describe the mechanism under which a network is converted to a visibility graph. The overall analysis shows that visibility is a property that increases the connectivity in networks, it may contribute to pattern recognition (among which the detection of the scale-free topology) and it is worth to be applied to complex networks in order to reveal the potential of signal processing beyond the range of its neighborhood. Generally, this paper promotes interdisciplinary research in complex networks providing new insights to network science.
Graph distance for complex networks
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki
2016-10-01
Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.
Minimum Map of Social Institutional Network: a multidimensional strategy for research in Nursing.
Carlos, Diene Monique; Pádua, Elisabete Matallo Marchesini de; Nakano, Ana Márcia Spanó; Ferriani, Maria das Graças Carvalho
2016-06-01
To analyze the use of methodological strategies in qualitative research - Minimum Maps of Social Institutional Network, as proposed to understand the phenomena in the multidimensional perspective. Methodological theoretical essay in which we aimed to reflect on the use of innovative methodological strategies in nursing research, supported in Complex Paradigm fundamentals. The minimum map of Social Institutional External Network aims to identify institutional linkages and gaps for the intervention work of the surveyed institutions. The use of these maps provided important advances in know-how qualitative research in Health and Nursing. In this perspective, the use of minimum Social Intitutional Network maps can be stimulated and enhanced to meet the current demands of the contemporary world, particularly for its flexibility in adapting to various research subjects; breadth and depth of discussion; and possibilities with health services. Analisar o uso de estratégias metodológicas em pesquisas qualitativas - Mapa mínimo da Rede Social Institucional, como proposta para compreender os fenômenos na perspectiva multidimensional. Ensaio teórico metodológico em que buscou-se refletir sobre o uso de estratégias metodológicas inovadoras de pesquisa na enfermagem, sustentada nos fundamentos do Pensamento Complexo. O mapa mínimo da Rede Social Institucional Externa tem o objetivo de identificar os vínculos institucionais e lacunas para o trabalho de intervenção das instituições pesquisadas. O uso destes mapas proporcionou avanços importantes no saber-fazer pesquisa qualitativa em Saúde e Enfermagem. Nessa perspectiva, o uso de mapas mínimos da Rede Social Institucional pode ser estimulado e potencializado para responder às atuais demandas da contemporaneidade, em especial pela sua flexibilidade na adequação a diversos objetos de pesquisa; amplitude e profundidade de discussão; e possibilidades de articulação com a prática dos serviços.
Mawocha, Samkeliso C; Fetters, Michael D; Legocki, Laurie J; Guetterman, Timothy C; Frederiksen, Shirley; Barsan, William G; Lewis, Roger J; Berry, Donald A; Meurer, William J
2017-06-01
Adaptive clinical trials use accumulating data from enrolled subjects to alter trial conduct in pre-specified ways based on quantitative decision rules. In this research, we sought to characterize the perspectives of key stakeholders during the development process of confirmatory-phase adaptive clinical trials within an emergency clinical trials network and to build a model to guide future development of adaptive clinical trials. We used an ethnographic, qualitative approach to evaluate key stakeholders' views about the adaptive clinical trial development process. Stakeholders participated in a series of multidisciplinary meetings during the development of five adaptive clinical trials and completed a Strengths-Weaknesses-Opportunities-Threats questionnaire. In the analysis, we elucidated overarching themes across the stakeholders' responses to develop a conceptual model. Four major overarching themes emerged during the analysis of stakeholders' responses to questioning: the perceived statistical complexity of adaptive clinical trials and the roles of collaboration, communication, and time during the development process. Frequent and open communication and collaboration were viewed by stakeholders as critical during the development process, as were the careful management of time and logistical issues related to the complexity of planning adaptive clinical trials. The Adaptive Design Development Model illustrates how statistical complexity, time, communication, and collaboration are moderating factors in the adaptive design development process. The intensity and iterative nature of this process underscores the need for funding mechanisms for the development of novel trial proposals in academic settings.
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.
Capturing the Interplay of Dynamics and Networks through Parameterizations of Laplacian Operators
2016-08-24
important vertices and communities in the network. Specifically, for each dynamical process in this framework, we define a centrality measure that...vertices as a potential cluster (or community ) with respect to this process. We show that the subset-quality function generalizes the traditional conductance...compare the different perspectives they create on network structure. Subjects Network Science and Online Social Networks Keywords Network, Community
An Attractor-Based Complexity Measurement for Boolean Recurrent Neural Networks
Cabessa, Jérémie; Villa, Alessandro E. P.
2014-01-01
We provide a novel refined attractor-based complexity measurement for Boolean recurrent neural networks that represents an assessment of their computational power in terms of the significance of their attractor dynamics. This complexity measurement is achieved by first proving a computational equivalence between Boolean recurrent neural networks and some specific class of -automata, and then translating the most refined classification of -automata to the Boolean neural network context. As a result, a hierarchical classification of Boolean neural networks based on their attractive dynamics is obtained, thus providing a novel refined attractor-based complexity measurement for Boolean recurrent neural networks. These results provide new theoretical insights to the computational and dynamical capabilities of neural networks according to their attractive potentialities. An application of our findings is illustrated by the analysis of the dynamics of a simplified model of the basal ganglia-thalamocortical network simulated by a Boolean recurrent neural network. This example shows the significance of measuring network complexity, and how our results bear new founding elements for the understanding of the complexity of real brain circuits. PMID:24727866
Nuclear Receptor Variants in Liver Disease
Müllenbach, Roman; Weber, Susanne N.; Lammert, Frank
2012-01-01
This review aims to provide a snapshot of the actual state of knowledge on genetic variants of nuclear receptors (NR) involved in regulating important aspects of liver metabolism. It recapitulates recent evidence for the application of NR in genetic diagnosis of monogenic (“Mendelian”) liver disease and their use in clinical diagnosis. Genetic analysis of multifactorial liver diseases such as viral hepatitis or fatty liver disease identifies key players in disease predisposition and progression. Evidence from these analyses points towards a role of NR polymorphisms in common diseases, linking regulatory networks to complex and variable phenotypes. The new insights into NR variants also offer perspectives and cautionary advice for their use as handles towards diagnosis and treatment. PMID:22523693
ERIC Educational Resources Information Center
Xiang, Qiao
2014-01-01
As wireless cyber-physical systems (WCPS) are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). In this dissertation, we explore the potentials of two INP methods, packet packing and network coding, on improving network performance while…
ERIC Educational Resources Information Center
Reychav, Iris; Raban, Daphne Ruth; McHaney, Roger
2018-01-01
The current empirical study examines relationships between network measures and learning performance from a social network analysis perspective. We collected computerized, networking data to analyze how 401 junior high students connected to classroom peers using text- and video-based material on iPads. Following a period of computerized…
ERIC Educational Resources Information Center
Rodway, Joelle
2015-01-01
Networks are frequently cited as an important knowledge mobilization strategy; however, there is little empirical research that considers how they connect research and practice. Taking a social network perspective, I explore how central office personnel find, understand and share research knowledge within a research brokering network. This mixed…
Kotamäki, Niina; Thessler, Sirpa; Koskiaho, Jari; Hannukkala, Asko O.; Huitu, Hanna; Huttula, Timo; Havento, Jukka; Järvenpää, Markku
2009-01-01
Sensor networks are increasingly being implemented for environmental monitoring and agriculture to provide spatially accurate and continuous environmental information and (near) real-time applications. These networks provide a large amount of data which poses challenges for ensuring data quality and extracting relevant information. In the present paper we describe a river basin scale wireless sensor network for agriculture and water monitoring. The network, called SoilWeather, is unique and the first of this type in Finland. The performance of the network is assessed from the user and maintainer perspectives, concentrating on data quality, network maintenance and applications. The results showed that the SoilWeather network has been functioning in a relatively reliable way, but also that the maintenance and data quality assurance by automatic algorithms and calibration samples requires a lot of effort, especially in continuous water monitoring over large areas. We see great benefits on sensor networks enabling continuous, real-time monitoring, while data quality control and maintenance efforts highlight the need for tight collaboration between sensor and sensor network owners to decrease costs and increase the quality of the sensor data in large scale applications. PMID:22574050
Matrix isolation studies of hydrogen bonding - An historical perspective
NASA Astrophysics Data System (ADS)
Barnes, Austin J.
2018-07-01
An historical introduction sets matrix isolation in perspective with other spectroscopic techniques for studying hydrogen-bonded complexes. This is followed by detailed accounts of various aspects of hydrogen-bonded complexes that have been studied using matrix isolation spectroscopy: Matrix effects: stabilisation of complexes. Strongly hydrogen-bonded molecular complexes: the vibrational correlation diagram. Anomalous spectra: the Ratajczak-Yaremko model. Metastable complexes. Csbnd H hydrogen bonding and blue shifting hydrogen bonds.
Deep Learning and Its Applications in Biomedicine.
Cao, Chensi; Liu, Feng; Tan, Hai; Song, Deshou; Shu, Wenjie; Li, Weizhong; Zhou, Yiming; Bo, Xiaochen; Xie, Zhi
2018-02-01
Advances in biological and medical technologies have been providing us explosive volumes of biological and physiological data, such as medical images, electroencephalography, genomic and protein sequences. Learning from these data facilitates the understanding of human health and disease. Developed from artificial neural networks, deep learning-based algorithms show great promise in extracting features and learning patterns from complex data. The aim of this paper is to provide an overview of deep learning techniques and some of the state-of-the-art applications in the biomedical field. We first introduce the development of artificial neural network and deep learning. We then describe two main components of deep learning, i.e., deep learning architectures and model optimization. Subsequently, some examples are demonstrated for deep learning applications, including medical image classification, genomic sequence analysis, as well as protein structure classification and prediction. Finally, we offer our perspectives for the future directions in the field of deep learning. Copyright © 2018. Production and hosting by Elsevier B.V.
Toroody, Ahmad Bahoo; Abaei, Mohammad Mahdy; Gholamnia, Reza
2016-12-01
Risk assessment can be classified into two broad categories: traditional and modern. This paper is aimed at contrasting the functional resonance analysis method (FRAM) as a modern approach with the fault tree analysis (FTA) as a traditional method, regarding assessing the risks of a complex system. Applied methodology by which the risk assessment is carried out, is presented in each approach. Also, FRAM network is executed with regard to nonlinear interaction of human and organizational levels to assess the safety of technological systems. The methodology is implemented for lifting structures deep offshore. The main finding of this paper is that the combined application of FTA and FRAM during risk assessment, could provide complementary perspectives and may contribute to a more comprehensive understanding of an incident. Finally, it is shown that coupling a FRAM network with a suitable quantitative method will result in a plausible outcome for a predefined accident scenario.
Pricing the Services in Dynamic Environment: Agent Pricing Model
NASA Astrophysics Data System (ADS)
Žagar, Drago; Rupčić, Slavko; Rimac-Drlje, Snježana
New Internet applications and services as well as new user demands open many new issues concerning dynamic management of quality of service and price for received service, respectively. The main goals of Internet service providers are to maximize profit and maintain a negotiated quality of service. From the users' perspective the main goal is to maximize ratio of received QoS and costs of service. However, achieving these objectives could become very complex if we know that Internet service users might during the session become highly dynamic and proactive. This connotes changes in user profile or network provider/s profile caused by high level of user mobility or variable level of user demands. This paper proposes a new agent based pricing architecture for serving the highly dynamic customers in context of dynamic user/network environment. The proposed architecture comprises main aspects and basic parameters that will enable objective and transparent assessment of the costs for the service those Internet users receive while dynamically change QoS demands and cost profile.
Perspective: Maximum caliber is a general variational principle for dynamical systems
NASA Astrophysics Data System (ADS)
Dixit, Purushottam D.; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A.
2018-01-01
We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics—such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production—are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.
Mycobacterium tuberculosis two-component systems and implications in novel vaccines and drugs.
Zhou, PeiFu; Long, QuanXin; Zhou, YeXin; Wang, HongHai; Xie, JianPing
2012-01-01
Communication is vital for nearly all organisms to survive and thrive. For some particularly successful intracellular pathogens, a robust and precise signal transduction system is imperative for handling the complex, volatile, and harsh niche. The communication network of the etiology of tuberculosis, Mycobacterium tuberculosis (M.tb), namely two-component system (TCS), the eukaryotic-like Ser/Thr protein kinases(STPKs) system, the protein tyrosine kinase(PTK) system and the extracytoplasmic function σ(ECF-σ) system, determine how the pathogen responds to environmental fluctuations. At least 12 pair TCSs and four orphan proteins (three response regulators, Rv2884, Rv0260c, Rv0818, and one putative sensory transduction protein, Rv3143) can be found in the M.tb H37Rv genome. They regulate various aspects of M.tb, including virulence, dormancy, persistence, and drug resistance. This review focuses on the physiological roles of TCSs and the network of M.tb TCSs from a systems biology perspective. The implications of TCSs for better vaccine and new drug targets against tuberculosis are also examined.
From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.
Bauer, Eugen; Thiele, Ines
2018-01-01
An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.
Neuroscience of drug craving for addiction medicine: From circuits to therapies.
Ekhtiari, Hamed; Nasseri, Padideh; Yavari, Fatemeh; Mokri, Azarkhsh; Monterosso, John
2016-01-01
Drug craving is a dynamic neurocognitive emotional-motivational response to a wide range of cues, from internal to external environments and from drug-related to stressful or affective events. The subjective feeling of craving, as an appetitive or compulsive state, could be considered a part of this multidimensional process, with modules in different levels of consciousness and embodiment. The neural correspondence of this dynamic and complex phenomenon may be productively investigated in relation to regional, small-scale networks, large-scale networks, and brain states. Within cognitive neuroscience, this approach has provided a long list of neural and cognitive targets for craving modulations with different cognitive, electrical, or pharmacological interventions. There are new opportunities to integrate different approaches for carving management from environmental, behavioral, psychosocial, cognitive, and neural perspectives. By using cognitive neuroscience models that treat drug craving as a dynamic and multidimensional process, these approaches may yield more effective interventions for addiction medicine. © 2016 Elsevier B.V. All rights reserved.
Perspective: Maximum caliber is a general variational principle for dynamical systems.
Dixit, Purushottam D; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A
2018-01-07
We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics-such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production-are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.
Low latency network and distributed storage for next generation HPC systems: the ExaNeSt project
NASA Astrophysics Data System (ADS)
Ammendola, R.; Biagioni, A.; Cretaro, P.; Frezza, O.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Paolucci, P. S.; Pastorelli, E.; Pisani, F.; Simula, F.; Vicini, P.; Navaridas, J.; Chaix, F.; Chrysos, N.; Katevenis, M.; Papaeustathiou, V.
2017-10-01
With processor architecture evolution, the HPC market has undergone a paradigm shift. The adoption of low-cost, Linux-based clusters extended the reach of HPC from its roots in modelling and simulation of complex physical systems to a broader range of industries, from biotechnology, cloud computing, computer analytics and big data challenges to manufacturing sectors. In this perspective, the near future HPC systems can be envisioned as composed of millions of low-power computing cores, densely packed — meaning cooling by appropriate technology — with a tightly interconnected, low latency and high performance network and equipped with a distributed storage architecture. Each of these features — dense packing, distributed storage and high performance interconnect — represents a challenge, made all the harder by the need to solve them at the same time. These challenges lie as stumbling blocks along the road towards Exascale-class systems; the ExaNeSt project acknowledges them and tasks itself with investigating ways around them.
Huang, Xiaomei; Zhou, Xi; Hu, Qing; Sun, Binyu; Deng, Mingming; Qi, Xiaolong; Lü, Muhan
2018-01-28
Esophageal cancer is a malignant digestive tract cancer with high mortality. Although studies have found that esophageal cancer is involved in a complex and important gene regulation network, the pathogenesis remains unclear. The recently described long non-coding RNAs (lncRNAs) are one effective part of the gene regulation network. However, in past decades, lncRNAs were thought to be "transcript noise" or "pseudogenes" and were thus ignored. Early studies indicated that lncRNAs play pivotal roles during evolution. However, in recent years, increasing research has revealed that many lncRNAs are associated with tumorigenesis. In particular, lncRNAs may act as important elements for epigenetic regulation, transcription, post-transcriptional regulation and post-translational modification of proteins. Additionally, they may be novel biomarkers for tumors and therapeutic targets in cancer. Here, we summarize the functions of lncRNAs in esophageal cancer, with an emphasis on lncRNA-mediated regulatory mechanisms that affect the biological characteristics of esophageal cancer. Copyright © 2017 Elsevier B.V. All rights reserved.
Creative thinking as orchestrated by semantic processing vs. cognitive control brain networks.
Abraham, Anna
2014-01-01
Creativity is primarily investigated within the neuroscientific perspective as a unitary construct. While such an approach is beneficial when trying to infer the general picture regarding creativity and brain function, it is insufficient if the objective is to uncover the information processing brain mechanisms by which creativity occurs. As creative thinking emerges through the dynamic interplay between several cognitive processes, assessing the neural correlates of these operations would enable the development and characterization of an information processing framework from which to better understand this complex ability. This article focuses on two aspects of creative cognition that are central to generating original ideas. "Conceptual expansion" refers to the ability to widen one's conceptual structures to include unusual or novel associations, while "overcoming knowledge constraints" refers to our ability to override the constraining influence imposed by salient or pertinent knowledge when trying to be creative. Neuroimaging and neuropsychological evidence is presented to illustrate how semantic processing and cognitive control networks in the brain differentially modulate these critical facets of creative cognition.
Detecting complexes from edge-weighted PPI networks via genes expression analysis.
Zhang, Zehua; Song, Jian; Tang, Jijun; Xu, Xinying; Guo, Fei
2018-04-24
Identifying complexes from PPI networks has become a key problem to elucidate protein functions and identify signal and biological processes in a cell. Proteins binding as complexes are important roles of life activity. Accurate determination of complexes in PPI networks is crucial for understanding principles of cellular organization. We propose a novel method to identify complexes on PPI networks, based on different co-expression information. First, we use Markov Cluster Algorithm with an edge-weighting scheme to calculate complexes on PPI networks. Then, we propose some significant features, such as graph information and gene expression analysis, to filter and modify complexes predicted by Markov Cluster Algorithm. To evaluate our method, we test on two experimental yeast PPI networks. On DIP network, our method has Precision and F-Measure values of 0.6004 and 0.5528. On MIPS network, our method has F-Measure and S n values of 0.3774 and 0.3453. Comparing to existing methods, our method improves Precision value by at least 0.1752, F-Measure value by at least 0.0448, S n value by at least 0.0771. Experiments show that our method achieves better results than some state-of-the-art methods for identifying complexes on PPI networks, with the prediction quality improved in terms of evaluation criteria.
The Legitimation of Novel Technologies: The Case of Nanotechnology
NASA Astrophysics Data System (ADS)
Thyroff, Anastasia E.
Nanotechnology is the control, manipulation, and application of matter on an atomic and molecular level. The technology is complex and confusing to consumers, and its long-term safety and effect on the human body, as well as the environment, are unknown. However, for the past decade, nanotechnology has been used to develop consumer products and food with novel and attractive attributes. Since nanotechnology is still not well known, it is not legitimized; that is, it has not been deemed safe and accepted by society. However, the market for nanotechnology is in the legitimation process. It will take an entire network of key stakeholders playing a specific roles for nanotechnology to legitimize. Specifically, each key stakeholder will align with a certain cultural discourse to frame nanotechnology in a particular way that complements their values. In Essay 1, I follow previous market system dynamic's literature and combine Actor Network Theory (ANT), Foucault's Discourse on Power and Goffman's Frame analysis to theoretically explore what the actor network for nanotechnology looks like. Four dominate frames are identified: 1) Advancement (i.e., government), 2) Management (i.e., industry), 3) Development (i.e., academia/scientists), and 4) Informant (i.e., NGO). Essay 2 empirically explores each actor's perspective on the nanotechnology network through a total of 24 interviews. A hermeneutic approach is used to analyze the 208 page text and themes describing each actor's role from a self and other's perspective are discussed. Additionally, three overarching themes (i.e., contradiction, constance, and cutoff) emerge; these themes describe the degree of similarity in how actors view their role in the nanotechnology network compared to how other actor's view that actor's role. In Essay 3, I bring critical theory into market system's research to better contextualize market formation theories. Specifically, I discuss how critical theory can be used to supplement ANT. I suggest that ANT can be combined with critical theory to better understand the process of translation through exploring conflicts and contradictions among key stakeholders. To show this process, I explore the juxtaposition of economic benefits vs. cultural concerns that has emerged in the nanotechnology marketplace. It is determined that this exploration process can determine why mobilization has not occurred.
A Novel BA Complex Network Model on Color Template Matching
Han, Risheng; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching. PMID:25243235
A novel BA complex network model on color template matching.
Han, Risheng; Shen, Shigen; Yue, Guangxue; Ding, Hui
2014-01-01
A novel BA complex network model of color space is proposed based on two fundamental rules of BA scale-free network model: growth and preferential attachment. The scale-free characteristic of color space is discovered by analyzing evolving process of template's color distribution. And then the template's BA complex network model can be used to select important color pixels which have much larger effects than other color pixels in matching process. The proposed BA complex network model of color space can be easily integrated into many traditional template matching algorithms, such as SSD based matching and SAD based matching. Experiments show the performance of color template matching results can be improved based on the proposed algorithm. To the best of our knowledge, this is the first study about how to model the color space of images using a proper complex network model and apply the complex network model to template matching.
Johnson, Mark R
2018-04-01
Previous literature on cheating has focused on defining the concept, assigning responsibility to individual players, collaborative social processes or technical faults in a game's rules. By contrast, this paper applies an actor-network perspective to understanding 'cheating' in games, and explores how the concept is rhetorically effective in sociotechnical controversies. The article identifies human and nonhuman actors whose interests and properties were translated in a case study of 'edge sorting' - identifying minor but crucial differences in tessellated patterns on the backs of playing cards, and using these to estimate their values. In the ensuing legal controversy, the defending actors - casinos - retranslated the interests of actors to position edge sorting as cheating. This allowed the casinos to emerge victorious in a legal battle over almost twenty million dollars. Analyzing this dispute shows that cheating is both sociotechnically complex as an act and an extremely powerful rhetorical tool for actors seeking to prevent changes to previously-established networks. Science and Technology Studies (STS) offers a rich toolkit for examining cheating, but in addition the cheating discourse may be valuable to STS, enlarging our repertoire of actor strategies relevant to sociotechnical disputes.
The complexity of classical music networks
NASA Astrophysics Data System (ADS)
Rolla, Vitor; Kestenberg, Juliano; Velho, Luiz
2018-02-01
Previous works suggest that musical networks often present the scale-free and the small-world properties. From a musician's perspective, the most important aspect missing in those studies was harmony. In addition to that, the previous works made use of outdated statistical methods. Traditionally, least-squares linear regression is utilised to fit a power law to a given data set. However, according to Clauset et al. such a traditional method can produce inaccurate estimates for the power law exponent. In this paper, we present an analysis of musical networks which considers the existence of chords (an essential element of harmony). Here we show that only 52.5% of music in our database presents the scale-free property, while 62.5% of those pieces present the small-world property. Previous works argue that music is highly scale-free; consequently, it sounds appealing and coherent. In contrast, our results show that not all pieces of music present the scale-free and the small-world properties. In summary, this research is focused on the relationship between musical notes (Do, Re, Mi, Fa, Sol, La, Si, and their sharps) and accompaniment in classical music compositions. More information about this research project is available at https://eden.dei.uc.pt/~vitorgr/MS.html.
Research Methodology on Language Development from a Complex Systems Perspective
ERIC Educational Resources Information Center
Larsen-Freeman, Diane; Cameron, Lynne
2008-01-01
Changes to research methodology motivated by the adoption of a complexity theory perspective on language development are considered. The dynamic, nonlinear, and open nature of complex systems, together with their tendency toward self-organization and interaction across levels and timescales, requires changes in traditional views of the functions…
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Minimal perceptrons for memorizing complex patterns
NASA Astrophysics Data System (ADS)
Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo
2016-11-01
Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.
Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia
2012-06-21
Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.
Aydin, Cem Iskender; Ozkaynak, Begum; Rodríguez-Labajos, Beatriz; Yenilmez, Taylan
2017-01-01
This paper examines conflicts that occur between mining companies and civil society organizations (CSOs) around the world and offers an innovative analysis of mining conflicts from a social network perspective. The analysis showed that, as the number of CSOs involved in a conflict increased, its outcome was more likely to be perceived as a success in terms of environmental justice (EJ); if a CSO was connected to other central CSOs, the average perception of EJ success was likely to increase; and as network distance between two conflicts increased (or decreased), they were more likely to lead to different (or similar) EJ outcomes. Such network effects in mining conflicts have policy implications for EJ movements. It would be a strategic move on the part of successful CSOs to become involved in other major conflicts and disseminate information about how they achieved greater EJ success.
The Social Context of Adolescent Smoking: A Systems Perspective
Hipp, John R.; Timberlake, David S.
2010-01-01
We used a systems science perspective to examine adolescents' personal networks, school networks, and neighborhoods as a system through which emotional support and peer influence flow, and we sought to determine whether these flows affected past-month smoking at 2 time points, 1994–1995 and 1996. To test relationships, we employed structural equation modeling and used public-use data from the National Longitudinal Study of Adolescent Health (n = 6504). Personal network properties affected past-month smoking at both time points via the flow of emotional support. We observed a feedback loop from personal network properties to emotional support and then to past-month smoking. Past-month smoking at time 1 fed back to positively affect in-degree centrality (i.e., popularity). Findings suggest that networks and neighborhoods in this system positively affected past-month smoking via flows of emotional support. PMID:20466966
Aydin, Cem Iskender; Ozkaynak, Begum; Rodríguez-Labajos, Beatriz
2017-01-01
This paper examines conflicts that occur between mining companies and civil society organizations (CSOs) around the world and offers an innovative analysis of mining conflicts from a social network perspective. The analysis showed that, as the number of CSOs involved in a conflict increased, its outcome was more likely to be perceived as a success in terms of environmental justice (EJ); if a CSO was connected to other central CSOs, the average perception of EJ success was likely to increase; and as network distance between two conflicts increased (or decreased), they were more likely to lead to different (or similar) EJ outcomes. Such network effects in mining conflicts have policy implications for EJ movements. It would be a strategic move on the part of successful CSOs to become involved in other major conflicts and disseminate information about how they achieved greater EJ success. PMID:28686618
Advances in the Theory of Complex Networks
NASA Astrophysics Data System (ADS)
Peruani, Fernando
An exhaustive and comprehensive review on the theory of complex networks would imply nowadays a titanic task, and it would result in a lengthy work containing plenty of technical details of arguable relevance. Instead, this chapter addresses very briefly the ABC of complex network theory, visiting only the hallmarks of the theoretical founding, to finally focus on two of the most interesting and promising current research problems: the study of dynamical processes on transportation networks and the identification of communities in complex networks.
ERIC Educational Resources Information Center
Engel, Paul G. H.; van den Bor, Wout
1995-01-01
Application of a knowledge and information systems perspective shows how agricultural innovation can be enhanced through networking. In the Netherlands, a number of alternative systems of inquiry and learning are infused with this perspective: participatory technology development, participatory rural appraisal, soft systems methodology, and rapid…
Inter-generational Contact From a Network Perspective
Marcum, Christopher Steven; Koehly, Laura M.
2015-01-01
Pathways for resource—or other—exchanges within families have long been known to be dependent on the structure of relations between generations (Silverstein, 2011; Fuller-Thomson et al., 1997; Agree et al., 2005; Treas and Marcum, 2011). Much life course research has theorized models of inter-generational exchange— including, the ‘sandwich generation’ (Miller, 1981) and the ‘skipped generation’ pathways (Chalfie, 1994)—but there is little work relating these theories to relevant network mechanisms such as liaison brokerage (Gould and Fernandez, 1989) and other triadic configurations (Davis and Leinhardt, 1972; Wasserman and Faust, 1994). To address this, a survey of models of resource allocation between members of inter-generational households from a network perspective is introduced in this paper. Exemplary data come from health discussion networks among Mexican-origin multi-generational households. PMID:26047986
Complex network construction based on user group attention sequence
NASA Astrophysics Data System (ADS)
Zhang, Gaowei; Xu, Lingyu; Wang, Lei
2018-04-01
In the traditional complex network construction, it is often to use the similarity between nodes, build the weight of the network, and finally build the network. However, this approach tends to focus only on the coupling between nodes, while ignoring the information transfer between nodes and the transfer of directionality. In the network public opinion space, based on the set of stock series that the network groups pay attention to within a certain period of time, we vectorize the different stocks and build a complex network.
Identification of hybrid node and link communities in complex networks
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-01-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010
Identification of hybrid node and link communities in complex networks.
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-02
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Identification of hybrid node and link communities in complex networks
NASA Astrophysics Data System (ADS)
He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong
2015-03-01
Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.
Online Community Detection for Large Complex Networks
Pan, Gang; Zhang, Wangsheng; Wu, Zhaohui; Li, Shijian
2014-01-01
Complex networks describe a wide range of systems in nature and society. To understand complex networks, it is crucial to investigate their community structure. In this paper, we develop an online community detection algorithm with linear time complexity for large complex networks. Our algorithm processes a network edge by edge in the order that the network is fed to the algorithm. If a new edge is added, it just updates the existing community structure in constant time, and does not need to re-compute the whole network. Therefore, it can efficiently process large networks in real time. Our algorithm optimizes expected modularity instead of modularity at each step to avoid poor performance. The experiments are carried out using 11 public data sets, and are measured by two criteria, modularity and NMI (Normalized Mutual Information). The results show that our algorithm's running time is less than the commonly used Louvain algorithm while it gives competitive performance. PMID:25061683
Pruning artificial neural networks using neural complexity measures.
Jorgensen, Thomas D; Haynes, Barry P; Norlund, Charlotte C F
2008-10-01
This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.
Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.
Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen
2016-05-01
Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.
Using complex networks to characterize international business cycles.
Caraiani, Petre
2013-01-01
There is a rapidly expanding literature on the application of complex networks in economics that focused mostly on stock markets. In this paper, we discuss an application of complex networks to study international business cycles. We construct complex networks based on GDP data from two data sets on G7 and OECD economies. Besides the well-known correlation-based networks, we also use a specific tool for presenting causality in economics, the Granger causality. We consider different filtering methods to derive the stationary component of the GDP series for each of the countries in the samples. The networks were found to be sensitive to the detrending method. While the correlation networks provide information on comovement between the national economies, the Granger causality networks can better predict fluctuations in countries' GDP. By using them, we can obtain directed networks allows us to determine the relative influence of different countries on the global economy network. The US appears as the key player for both the G7 and OECD samples. The use of complex networks is valuable for understanding the business cycle comovements at an international level.
The difficulties of systematic reviews.
Westgate, Martin J; Lindenmayer, David B
2017-10-01
The need for robust evidence to support conservation actions has driven the adoption of systematic approaches to research synthesis in ecology. However, applying systematic review to complex or open questions remains challenging, and this task is becoming more difficult as the quantity of scientific literature increases. We drew on the science of linguistics for guidance as to why the process of identifying and sorting information during systematic review remains so labor intensive, and to provide potential solutions. Several linguistic properties of peer-reviewed corpora-including nonrandom selection of review topics, small-world properties of semantic networks, and spatiotemporal variation in word meaning-greatly increase the effort needed to complete the systematic review process. Conversely, the resolution of these semantic complexities is a common motivation for narrative reviews, but this process is rarely enacted with the rigor applied during linguistic analysis. Therefore, linguistics provides a unifying framework for understanding some key challenges of systematic review and highlights 2 useful directions for future research. First, in cases where semantic complexity generates barriers to synthesis, ecologists should consider drawing on existing methods-such as natural language processing or the construction of research thesauri and ontologies-that provide tools for mapping and resolving that complexity. These tools could help individual researchers classify research material in a more robust manner and provide valuable guidance for future researchers on that topic. Second, a linguistic perspective highlights that scientific writing is a rich resource worthy of detailed study, an observation that can sometimes be lost during the search for data during systematic review or meta-analysis. For example, mapping semantic networks can reveal redundancy and complementarity among scientific concepts, leading to new insights and research questions. Consequently, wider adoption of linguistic approaches may facilitate improved rigor and richness in research synthesis. © 2017 Society for Conservation Biology.
Support network of adolescents with chronic disease: adolescents' perspective.
Kyngäs, Helvi
2004-12-01
The purpose of this study was to describe the support network of adolescents with a chronic disease from their own perspective. Data were collected by interviewing adolescents with asthma, epilepsy, juvenile rheumatoid arthritis (JRA) and insulin-dependent diabetes mellitus (IDDM). The sample consisted of 40 adolescents aged between 13 and 17 years. Interview data were examined using content analysis. Six main categories were established to describe the support network of adolescents with a chronic disease: parents, peers, school, health care providers, technology and pets. Peers were divided into two groups: fellow sufferers and peers without a chronic disease. At school, teachers, school nurses and classmates were part of the support network. Health care providers included nurses, physicians and physiotherapists. Technology was also part of the support network and included four techniques that may be used to communicate: computers, mobile telephones, television and videos. The results provided a useful insight into the social network of adolescents with chronic disease and serve to raise awareness of the problems and opinions experienced by adolescents with this condition.
Evidence for Healthy Cities: reflections on practice, method and theory.
de Leeuw, Evelyne
2009-11-01
The European Healthy Cities project can be characterized as a social movement that employs an extremely wide range of political, social and behavioural interventions for the development and sustenance of urban population health. At all of these levels, the movement is inspired by ideological, theoretical and evidence-based perspectives. The result of this stance is a dynamic, complex and diverse landscape of initiatives, plans, programmes and actions. In quantitative terms (the number of WHO designated cities and associated cities and communities through national networks), 'Healthy Cities' can be regarded as an extraordinary accomplishment and a credit for both WHO and cities in the movement. In qualitative terms, however, critics of the movement have maintained that little evidence on its success and effectiveness has been generated. This critique finds its foundations in the mere perceptions of evidence, the politics of science and urban governance, and perspectives on the preferred or professed utilities of evidence-based health notions. The article reviews the nature of evidence and its interface with politics and governance. Applying a conceptual framework combining insights from knowledge utilization theory, theoretical perspectives on (health) policy development, theory-based evaluations and planned intervention approaches, it demonstrates that, although the evidence is overwhelming, there are barriers to the implementation of such evidence that should be further addressed by 'Healthy Cities'.
Defining Team Effort Involved in Patient Care from the Primary Care Physician's Perspective.
Hwang, Andrew S; Atlas, Steven J; Hong, Johan; Ashburner, Jeffrey M; Zai, Adrian H; Grant, Richard W; Hong, Clemens S
2017-03-01
A better understanding of the attributes of patients who require more effort to manage may improve risk adjustment approaches and lead to more efficient resource allocation, improved patient care and health outcomes, and reduced burnout in primary care clinicians. To identify and characterize high-effort patients from the physician's perspective. Cohort study. Ninety-nine primary care physicians in an academic primary care network. From a list of 100 randomly selected patients in their panels, PCPs identified patients who required a high level of team-based effort and patients they considered complex. For high-effort patients, PCPs indicated which factors influenced their decision: medical/care coordination, behavioral health, and/or socioeconomic factors. We examined differences in patient characteristics based on PCP-defined effort and complexity. Among 9594 eligible patients, PCPs classified 2277 (23.7 %) as high-effort and 2676 (27.9 %) as complex. Behavioral health issues were the major driver of effort in younger patients, while medical/care coordination issues predominated in older patients. Compared to low-effort patients, high-effort patients were significantly (P < 0.01 for all) more likely to have higher rates of medical (e.g. 23.2 % vs. 6.3 % for diabetes) and behavioral health problems (e.g. 9.8 % vs. 2.9 % for substance use disorder), more frequent primary care visits (10.9 vs. 6.0 visits), and higher acute care utilization rates (25.8 % vs. 7.7 % for emergency department [ED] visits and 15.0 % vs. 3.9 % for hospitalization). Almost one in five (18 %) patients who were considered high-effort were not deemed complex by the same PCPs. Patients defined as high-effort by their primary care physicians, not all of whom were medically complex, appear to have a high burden of psychosocial issues that may not be accounted for in current chronic disease-focused risk adjustment approaches.
Le, Duc-Hau
2015-01-01
Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with prostate cancer and selected the top 100 highly ranked candidate protein complexes. Interestingly, 69 of them were evidenced since at least one of their protein elements are known to be associated with prostate cancer. Our proposed method, including the framework to construct functional similarity protein complex networks and the neighborhood-based algorithm on these networks, could be used for identification of novel disease-protein complex associations.
Building trusting relationships in online health communities.
Zhao, Jing; Ha, Sejin; Widdows, Richard
2013-09-01
This study investigates consumers' use of online health communities (OHCs) for healthcare from a relationship building perspective based on the commitment-trust theory of relationships. The study proposes that perspective taking, empathic concern, self-efficacy, and network density affect the development of both cognitive and affective trust, which together determine OHC members' membership continuance intention (MCI) and knowledge contribution. Data collected from eight existing OHCs (N=255) were utilized to test the hypothesized model. Results show that perspective taking and self-efficacy can increase cognitive trust and affective trust, respectively. Network density contributes to cognitive and affective trust. Both cognitive trust and affective trust influence MCI, while only affective trust impacts members' knowledge contribution behaviors.
McDonough, Ian M.; Nashiro, Kaoru
2014-01-01
An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity. PMID:24959130
Investigation of a protein complex network
NASA Astrophysics Data System (ADS)
Mashaghi, A. R.; Ramezanpour, A.; Karimipour, V.
2004-09-01
The budding yeast Saccharomyces cerevisiae is the first eukaryote whose genome has been completely sequenced. It is also the first eukaryotic cell whose proteome (the set of all proteins) and interactome (the network of all mutual interactions between proteins) has been analyzed. In this paper we study the structure of the yeast protein complex network in which weighted edges between complexes represent the number of shared proteins. It is found that the network of protein complexes is a small world network with scale free behavior for many of its distributions. However we find that there are no strong correlations between the weights and degrees of neighboring complexes. To reveal non-random features of the network we also compare it with a null model in which the complexes randomly select their proteins. Finally we propose a simple evolutionary model based on duplication and divergence of proteins.
Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks.
Castrillo, Juan I; Oliver, Stephen G
2016-01-01
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
GENERAL PERSPECTIVE VIEW OF THE EAST SIDE OF THE COMPLEX, ...
GENERAL PERSPECTIVE VIEW OF THE EAST SIDE OF THE COMPLEX, VIEW LOOKING SOUTH WITH THE FIRE CACHE BUILDING, COMMUNICATIONS BUILDING, GRAPHICS BUILDING, FOREST PRACTICES BUILDING, AND THE K.O.G. (KEEP OREGON GREEN) BUILDING VISIBLE FROM LEFT TO RIGHT. - Oregon State Forester's Office Complex, 2600 State Street, Salem, Marion, OR