Tourette syndrome and other neurodevelopmental disorders: a comprehensive review.
Cravedi, Elena; Deniau, Emmanuelle; Giannitelli, Marianna; Xavier, Jean; Hartmann, Andreas; Cohen, David
2017-01-01
Gilles de la Tourette syndrome (TS) is a complex developmental neuropsychiatric condition in which motor manifestations are often accompanied by comorbid conditions that impact the patient's quality of life. In the DSM-5, TS belongs to the "neurodevelopmental disorders" group, together with other neurodevelopmental conditions, frequently co-occurring. In this study, we searched the PubMed database using a combination of keywords associating TS and all neurodevelopmental diagnoses. From 1009 original reports, we identified 36 studies addressing TS and neurodevelopmental comorbidities. The available evidence suggests the following: (1) neurodevelopmental comorbidities in TS are the rule, rather than the exception; (2) attention deficit/hyperactivity disorder (ADHD) is the most frequent; (3) there is a continuum from a simple (TS + ADHD or/and learning disorder) to a more complex phenotype (TS + autism spectrum disorder). We conclude that a prompt diagnosis and a detailed description of TS comorbidities are necessary not only to understand the aetiological basis of neurodevelopmental disorders but also to address specific rehabilitative and therapeutic approaches.
2014-10-01
Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autism and autism spectrum disorders (ASD) are complex neurodevelopmental ...1. INTRODUCTION: Autism and autism spectrum disorders (ASD) are complex neurodevelopmental diseases that affect about 1% of children in the...and neurons. 2. KEYWORDS: Autism spectrum disorder, ASD, neurodevelopmental disease, disease modeling, induced pluripotent stem cell, iPS
ERIC Educational Resources Information Center
Ecker, Christine
2017-01-01
Autism spectrum disorder is a complex neurodevelopmental disorder, which is accompanied by differences in brain anatomy, functioning and brain connectivity. Due to its neurodevelopmental character, and the large phenotypic heterogeneity among individuals on the autism spectrum, the neurobiology of autism spectrum disorder is inherently difficult…
2011-10-01
to oxidative stress and abnormal brain energy metabolism in autism . Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. The...heterogeneous disorder, belonging to a group of neurodevelopmental disorders, known as the autism spec- trum disorders (ASDs) that include Asperger...Postmortem assessments of the brains of individuals with autism have unveiled early neurodevelop - mental alterations, including reduced programed cell
ERIC Educational Resources Information Center
Xiao, Zhou; Qiu, Ting; Ke, Xiaoyan; Xiao, Xiang; Xiao, Ting; Liang, Fengjing; Zou, Bing; Huang, Haiqing; Fang, Hui; Chu, Kangkang; Zhang, Jiuping; Liu, Yijun
2014-01-01
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that occurs within the first 3 years of life, which is marked by social skills and communication deficits along with stereotyped repetitive behavior. Although great efforts have been made to clarify the underlying neuroanatomical abnormalities and brain-behavior relationships…
Gene Expression Profiling in Rodent Models for Schizophrenia
Schijndel, Jessica E. Van; Martens, Gerard J.M
2010-01-01
The complex neurodevelopmental disorder schizophrenia is thought to be induced by an interaction between predisposing genes and environmental stressors. In order to get a better insight into the aetiology of this complex disorder, animal models have been developed. In this review, we summarize mRNA expression profiling studies on neurodevelopmental, pharmacological and genetic animal models for schizophrenia. We discuss parallels and contradictions among these studies, and propose strategies for future research. PMID:21629445
[Treatment of sensory information in neurodevelopmental disorders].
Zoenen, D; Delvenne, V
2018-01-01
The processing of information coming from the elementary sensory systems conditions the development and fulfilment of a child's abilities. A dysfunction in the sensory stimuli processing may generate behavioural patterns that might affect a child's learning capacities as well as his relational sphere. The DSM-5 recognizes the sensory abnormalities as part of the symptomatology of Autism Spectrum Disorders. However, similar features are observed in other neurodevelopmental disorders. Over the years, these conditions have been the subject of numerous controversies. Nowadays, they are all grouped together under the term of Neurodevelopmental Disorders in DSM-5. The semiology of these disorders is rich and complex due to the frequent presence of comorbidities and their impact on cognitive, behavioural, and sensorimotor organization but also on a child's personality, as well as his family, his school, or his social relationships. We carried out a review of the literature on the alterations in the treatment of sensory information in ASD but also on the different neurodevelopmental clinical panels in order to show their impact on child development. Atypical sensory profiles have been demonstrated in several neurodevelopmental clinical populations such as Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorders, Dysphasia and Intellectual Disability. Abnomalies in the processing of sensory information should be systematically evaluated in child developmental disorders.
Histone Lysine Methylation and Neurodevelopmental Disorders.
Kim, Jeong-Hoon; Lee, Jang Ho; Lee, Im-Soon; Lee, Sung Bae; Cho, Kyoung Sang
2017-06-30
Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.
Understanding Neurodevelopmental Disorders: The Promise of Regulatory Variation in the 3'UTRome.
Wanke, Kai A; Devanna, Paolo; Vernes, Sonja C
2018-04-01
Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1% to 2% of the human genome. With the advent of whole genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and noncoding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of noncoding variants identified per individual can be overwhelming, making it prudent to focus on noncoding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3'UTRome is a region of the noncoding genome that perfectly fulfills these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3'UTRome as binding sites for microRNAs or RNA binding proteins, or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3'UTRome will lead to the identification of new risk factors, new candidate disease genes, and a better understanding of the molecular mechanisms contributing to neurodevelopmental disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Holland, A.; Whittington, J.; Cohen, O.; Curfs, L.; Delahaye, F.; Dudley, O.; Horsthemke, B.; Lindgren, A. -C.; Nourissier, C.; Sharma, N.; Vogels, A.
2009-01-01
Background: Prader-Willi Syndrome (PWS) is a rare genetically determined neurodevelopmental disorder with a complex phenotype that changes with age. The rarity of the syndrome and the need to control for different variables such as genetic sub-type, age and gender limits clinical studies of sufficient size in any one country. A clinical research…
Defining Early Markers of Neurodevelopmental Disorders in Infants With TSC
2013-10-01
in (1) children with autism and tuberous sclerosis complex and (2) children with temporal lobe tubers. This study is the first to quantify atypical...Furthermore, we hypothesize that it is the dynamic interplay between aberrant functional connectivity and physiological stressors, such as epilepsy ...neurodevelopmental disorders in children with TSC, particularly the interaction between clinical factors (such as epilepsy or tuber burden) and cognitive and
Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders
Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran
2017-01-01
The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders. PMID:28824374
Chromatin Remodeling BAF (SWI/SNF) Complexes in Neural Development and Disorders.
Sokpor, Godwin; Xie, Yuanbin; Rosenbusch, Joachim; Tuoc, Tran
2017-01-01
The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality. Indeed, recent human exome sequencing and genome-wide association studies have revealed that mutations in BAF complex subunits are linked to neurodevelopmental disorders such as Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, Kleefstra's syndrome spectrum, Hirschsprung's disease, autism spectrum disorder, and schizophrenia. In this review, we focus on the latest insights into the functions of BAF complexes during neural development and the plausible mechanistic basis of how mutations in known BAF subunits are associated with certain neurodevelopmental disorders.
Ahmed-Popova, Ferihan M; Mantarkov, Mladen J; Sivkov, Stefan T; Akabaliev, Valentin H
2014-01-01
Dermatoglyphic pattern formation and differentiation are complex processes which have been in the focus of research interest ever since dermatoglyphics became a science. The patterns' early differentiation and genetic uniqueness as well as the relatively simple methods used to obtain and store fingerprints make it possible to study the relationship between certain dermatoglyphic characteristics and the underlying pathological processes in a number of diseases, including mental disorders. The present review reports published data from fundamental and clinical studies on dermatoglyphics primarily in schizophrenia and bipolar disorder to lend additional support for the neurodevelopmental hypothesis in the etiology of these disorders. Following an analysis of the theories of dermatoglyphics formation and the complex association between ridge patterns and central nervous system in early embryogenesis, an attempt is made to present dermatoglyphics as possible biological markers of impaired neurodevelopment. The contradictory data in the literature on dermatoglyphics in mental disorders suggest the need for further studies on these biological markers in order to identify their place in the neurodevelopmental etiological model of these diseases.
Wiwe Lipsker, Camilla; von Heijne, Margareta; Bölte, Sven; Wicksell, Rikard K
2018-05-01
Psychiatric disorders are common in paediatric patients with chronic pain, but the overall prevalence of comorbid neurodevelopmental disorders is unclear. We report on a case of severe chronic pain in a child with undiagnosed comorbid autism spectrum disorder and attention deficit hyperactivity disorder, where significant improvements in pain and function occurred following methylphenidate medication and parental behavioural training. The inclusion of behavioural assessment and screening for neurodevelopmental comorbidity may be essential in addressing complex paediatric chronic pain. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer
2016-01-01
AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690
Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex.
de Vries, Petrus J
2010-07-01
Until recently, the neuropsychiatric phenotype of tuberous sclerosis complex (TSC) was presumed to be caused by the structural brain abnormalities and/or seizures seen in the disorder. However, advances in the molecular biology of the disorder have shown that TSC is a mammalian target of rapamycin (mTOR) overactivation syndrome, and that direct molecular pathways exist between gene mutation and cognitive/neurodevelopmental phenotype. Molecularly-targeted treatments using mTOR inhibitors (such as rapamycin) are showing great promise for the physical and neurological phenotype of TSC. Pre-clinical and early-phase clinical studies of the cognitive and neurodevelopmental features of TSC suggest that some of the neuropsychiatric phenotypes might also be reversible, even in adults with the disorder. TSC, fragile X, neurofibromatosis type 1, and disorders associated with phosphatase and tensin homo (PTEN) mutations, all signal through the mTOR signaling pathway, with the TSC1-TSC2 protein complex as a molecular switchboard at its center. Together, these disorders represent as much as 14% of autism spectrum disorders (ASD). Therefore, we suggest that this signaling pathway is a key to the underlying pathophysiology of a significant subset of individuals with ASD. The study of molecularly targeted treatments in TSC and related disorders, therefore, may be of scientific and clinical value not only to those with TSC, but to a larger population that may have a neuropsychiatric phenotype attributable to mTOR overactivation or dysregulation. (c) 2010 The American Society for Experimental NeuroTherapeutics, Inc. Published by Elsevier Inc. All rights reserved.
Polan, Michelle B; Pastore, Matthew T; Steingass, Katherine; Hashimoto, Sayaka; Thrush, Devon L; Pyatt, Robert; Reshmi, Shalini; Gastier-Foster, Julie M; Astbury, Caroline; McBride, Kim L
2014-01-01
Recent studies have shown that certain copy number variations (CNV) are associated with a wide range of neurodevelopmental disorders, including autism spectrum disorders (ASD), bipolar disorder and intellectual disabilities. Implicated regions and genes have comprised a variety of post synaptic complex proteins and neurotransmitter receptors, including gamma-amino butyric acid A (GABAA). Clusters of GABAA receptor subunit genes are found on chromosomes 4p12, 5q34, 6q15 and 15q11-13. Maternally inherited 15q11-13 duplications among individuals with neurodevelopmental disorders are well described, but few case reports exist for the other regions. We describe a family with a 2.42 Mb duplication at chromosome 4p13 to 4p12, identified in the index case and other family members by oligonucleotide array comparative genomic hybridization, that contains 13 genes including a cluster of four GABAA receptor subunit genes. Fluorescent in-situ hybridization was used to confirm the duplication. The duplication segregates with a variety of neurodevelopmental disorders in this family, including ASD (index case), developmental delay, dyspraxia and ADHD (brother), global developmental delays (brother), learning disabilities (mother) and bipolar disorder (maternal grandmother). In addition, we identified and describe another individual unrelated to this family, with a similar duplication, who was diagnosed with ASD, ADHD and borderline intellectual disability. The 4p13 to 4p12 duplication appears to confer a susceptibility to a variety of neurodevelopmental disorders in these two families. We hypothesize that the duplication acts through a dosage effect of GABAA receptor subunit genes, adding evidence for alterations in the GABAergic system in the etiology of neurodevelopmental disorders. PMID:23695283
Cortical complexity in bipolar disorder applying a spherical harmonics approach.
Nenadic, Igor; Yotter, Rachel A; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian
2017-05-30
Recent studies using surface-based morphometry of structural magnetic resonance imaging data have suggested that some changes in bipolar disorder (BP) might be neurodevelopmental in origin. We applied a novel analysis of cortical complexity based on fractal dimensions in high-resolution structural MRI scans of 18 bipolar disorder patients and 26 healthy controls. Our region-of-interest based analysis revealed increases in fractal dimensions (in patients relative to controls) in left lateral orbitofrontal cortex and right precuneus, and decreases in right caudal middle frontal, entorhinal cortex, and right pars orbitalis, and left fusiform and posterior cingulate cortices. While our analysis is preliminary, it suggests that early neurodevelopmental pathologies might contribute to bipolar disorder, possibly through genetic mechanisms. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
The Roots of Autism and ADHD Twin Study in Sweden (RATSS).
Bölte, Sven; Willfors, Charlotte; Berggren, Steve; Norberg, Joakim; Poltrago, Lina; Mevel, Katell; Coco, Christina; Fransson, Peter; Borg, Jacqueline; Sitnikov, Rouslan; Toro, Roberto; Tammimies, Kristiina; Anderlid, Britt-Marie; Nordgren, Ann; Falk, Anna; Meyer, Urs; Kere, Juha; Landén, Mikael; Dalman, Christina; Ronald, Angelica; Anckarsäter, Henrik; Lichtenstein, Paul
2014-06-01
Neurodevelopmental disorders affect a substantial minority of the general population. Their origins are still largely unknown, but a complex interplay of genetic and environmental factors causing disturbances of the central nervous system's maturation and a variety of higher cognitive skills is presumed. Only limited research of rather small sample size and narrow scope has been conducted in neurodevelopmental disorders using a twin-differences design. The Roots of Autism and ADHD Twin Study in Sweden (RATSS) is an ongoing project targeting monozygotic twins discordant for categorical or dimensional autistic and inattentive/hyperactive-impulsive phenotypes as well as other neurodevelopmental disorders, and typically developing twin controls. Included pairs are 9 years of age or older, and comprehensively assessed for psychopathology, medical history, neuropsychology, and dysmorphology, as well as structural, functional, and molecular brain imaging. Specimens are collected for induced pluripotent (iPS) and neuroepithelial stem cells, genetic, gut bacteria, protein-/monoamine, and electron microscopy analyses. RATSS's objective is to generate a launch pad for novel surveys to understand the complexity of genotype-environment-phenotype interactions in autism spectrum disorder and attention-deficit hyperactivity disorder (ADHD). By October 2013, RATSS had collected data from 55 twin pairs, among them 10 monozygotic pairs discordant for autism spectrum disorder, seven for ADHD, and four for other neurodevelopmental disorders. This article describes the design, recruitment, data collection, measures, collected pairs' characteristics, as well as ongoing and planned analyses in RATSS. Potential gains of the study comprise the identification of environmentally mediated biomarkers, the emergence of candidates for drug development, translational modeling, and new leads for prevention of incapacitating outcomes.
Understanding the Comorbidity between Dyslexia and Attention-Deficit/Hyperactivity Disorder
ERIC Educational Resources Information Center
Boada, Richard; Willcutt, Erik G.; Pennington, Bruce F.
2012-01-01
Dyslexia and attention-deficit/hyperactivity disorder (ADHD) are 2 of the most prevalent complex neurodevelopmental disorders of childhood, each affecting approximately 5% of the population in the United States. These disorders are also each comorbid with speech sound disorder and language impairment. Understanding the nature of the comorbidity…
Attention-deficit/hyperactivity disorder during adulthood.
Magnin, E; Maurs, C
Attention-Deficit/Hyperactivity Disorder (ADHD), although considered a childhood-onset neurodevelopmental condition, is nevertheless a frequent and disabling condition in adults. A proportion of such patients are not diagnosed during childhood or adolescence, as diagnosis of the syndrome is rather complex, especially when other psychiatric, neurological or other neurodevelopmental conditions are also associated, yet comorbidities and consequences of ADHD are frequently observed in adults and older populations. As ADHD patients present to memory clinics with attentional and executive disorders, neuropsychological examinations of undiagnosed ADHD patients may reveal atypical cognitive profiles that can complicate the usual diagnostic procedure and increase the risk of delayed diagnosis or misdiagnosis. Thus, explorations of cognitive and/or behavioral disorders in adult populations should systematically screen for this neurodevelopmental condition. Accurate diagnosis could lead to non-pharmaceutical and/or pharmaceutical treatments to improve symptoms and quality of life for adult ADHD patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Bell, Carl C; Chimata, Radhika
2015-05-01
This study examined the point prevalence of neurodevelopmental disorders among predominantly low-income, African-American psychiatric patients at Jackson Park Hospital's Family Medicine Clinic on Chicago's South Side. Using active case ascertainment methodology, the authors assessed the records of 611 psychiatric patients visiting the clinic between May 23, 2013, and January 14, 2014, to identify those with DSM-5 neurodevelopmental disorders. A total of 297 patients (49%) met criteria for a neurodevelopmental disorder during childhood. Moreover, 237 (39%) had clinical profiles consistent with neurobehavioral disorder associated with prenatal alcohol exposure, and 53 (9%) had other neurodevelopmental disorders. The authors disagreed on the specific type of neurodevelopmental disorder of seven (1% of 611) of the 297 patients with neurodevelopmental disorders. A high prevalence of neurodevelopmental disorders was found among low-income predominantly African-American psychiatric patients on Chicago's South Side. If replicated, these findings should bring about substantial changes in medical practice with African-American patients.
Janecka, M; Mill, J; Basson, M A; Goriely, A; Spiers, H; Reichenberg, A; Schalkwyk, L; Fernandes, C
2017-01-31
Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders.
[Attention deficit hyperactivity disorder: from a neurodevelopmental perspective].
Fernandez-Jaen, A; Lopez-Martin, S; Albert, J; Martin Fernandez-Mayoralas, D; Fernandez-Perrone, A L; Calleja-Perez, B; Lopez-Arribas, S
2017-02-24
Neurodevelopmental disorders cover a heterogeneous group of disorders such as intellectual disability, autism spectrum disorders or specific learning difficulties, among others. The neurobiological and clinical variables seem to clearly justify the recent inclusion of attention deficit hyperactivity disorder (ADHD) as a neurodevelopmental disorder in the international classifications. Neurodevelopmental disorders are characterised by their dimensional nature and the distribution of the different symptoms in the population. These aspects are reviewed, specifically from the perspective of the clinical features and the neuropsychology of ADHD. The dimensional symptomatic nature of ADHD contrasts with the diagnostic criteria of this disorder according to different classifications or clinical guidelines. It also contrasts with the data collected by means of different complementary examinations (scales, tests, etc.). It is essential to understand the clinical continuum within each neurodevelopmental disorder (including ADHD), among the different neurodevelopmental disorders, and among the neurodevelopmental disorders and normality for their research, diagnosis and management. The development of instruments that provide support for this dimensional component is equally significant.
Targeted Treatments in Autism and Fragile X Syndrome
ERIC Educational Resources Information Center
Gurkan, C. Kagan; Hagerman, Randi J.
2012-01-01
Autism is a neurodevelopmental disorder consisting of a constellation of symptoms that sometimes occur as part of a complex disorder characterized by impairments in social interaction, communication and behavioral domains. It is a highly disabling disorder and there is a need for treatment targeting the core symptoms. Although autism is accepted…
Parenti, Ilaria; Teresa-Rodrigo, María E; Pozojevic, Jelena; Ruiz Gil, Sara; Bader, Ingrid; Braunholz, Diana; Bramswig, Nuria C; Gervasini, Cristina; Larizza, Lidia; Pfeiffer, Lutz; Ozkinay, Ferda; Ramos, Feliciano; Reiz, Benedikt; Rittinger, Olaf; Strom, Tim M; Watrin, Erwan; Wendt, Kerstin; Wieczorek, Dagmar; Wollnik, Bernd; Baquero-Montoya, Carolina; Pié, Juan; Deardorff, Matthew A; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J
2017-03-01
The coordinated tissue-specific regulation of gene expression is essential for the proper development of all organisms. Mutations in multiple transcriptional regulators cause a group of neurodevelopmental disorders termed "transcriptomopathies" that share core phenotypical features including growth retardation, developmental delay, intellectual disability and facial dysmorphism. Cornelia de Lange syndrome (CdLS) belongs to this class of disorders and is caused by mutations in different subunits or regulators of the cohesin complex. Herein, we report on the clinical and molecular characterization of seven patients with features overlapping with CdLS who were found to carry mutations in chromatin regulators previously associated to other neurodevelopmental disorders that are frequently considered in the differential diagnosis of CdLS. The identified mutations affect the methyltransferase-encoding genes KMT2A and SETD5 and different subunits of the SWI/SNF chromatin-remodeling complex. Complementary to this, a patient with Coffin-Siris syndrome was found to carry a missense substitution in NIPBL. Our findings indicate that mutations in a variety of chromatin-associated factors result in overlapping clinical phenotypes, underscoring the genetic heterogeneity that should be considered when assessing the clinical and molecular diagnosis of neurodevelopmental syndromes. It is clear that emerging molecular mechanisms of chromatin dysregulation are central to understanding the pathogenesis of these clinically overlapping genetic disorders.
Clinical Reasoning in the Assessment and Planning for Intervention for Autism Spectrum Disorder
ERIC Educational Resources Information Center
McCrimmon, Adam W.; Yule, Ashleigh E.
2017-01-01
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder whose incidence is rising. School-based professionals are in an ideal position to provide the much-needed assessment and intervention supports for students with ASD, as the professionals' placement within a formal system affords the opportunity to observe and support children…
ERIC Educational Resources Information Center
Berard, Nathalie; Loutzenhiser, Lynn; Sevigny, Phillip R.; Alfano, Dennis P.
2017-01-01
Autism Spectrum Disorder (ASD) is an aetiologically complex neurodevelopmental disorder characterized by deficits in social functioning. Children with ASD display a wide range of social competence and more variability in social domains as compared with either communication or repetitive behaviour domains. There is limited understanding of factors…
ERIC Educational Resources Information Center
Siniscalco, Dario; Sapone, Anna; Giordano, Catia; Cirillo, Alessandra; de Novellis, Vito; de Magistris, Laura; Rossi, Francesco; Fasano, Alessio; Maione, Sabatino; Antonucci, Nicola
2012-01-01
Autism and autism spectrum disorders (ASDs) are heterogeneous complex neuro-developmental disorders characterized by dysfunctions in social interaction and communication skills. Their pathogenesis has been linked to interactions between genes and environmental factors. Consistent with the evidence of certain similarities between immune cells and…
Yoshizaki, Kaichi; Furuse, Tamio; Kimura, Ryuichi; Tucci, Valter; Kaneda, Hideki; Wakana, Shigeharu; Osumi, Noriko
2016-01-01
Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder (ADHD) have increased over the last few decades. These neurodevelopmental disorders are characterized by a complex etiology, which involves multiple genes and gene-environmental interactions. Various genes that control specific properties of neural development exert pivotal roles in the occurrence and severity of phenotypes associated with neurodevelopmental disorders. Moreover, paternal aging has been reported as one of the factors that contribute to the risk of ASD and ADHD. Here we report, for the first time, that paternal aging has profound effects on the onset of behavioral abnormalities in mice carrying a mutation of Pax6, a gene with neurodevelopmental regulatory functions. We adopted an in vitro fertilization approach to restrict the influence of additional factors. Comprehensive behavioral analyses were performed in Sey/+ mice (i.e., Pax6 mutant heterozygotes) born from in vitro fertilization of sperm taken from young or aged Sey/+ fathers. No body weight changes were found in the four groups, i.e., Sey/+ and wild type (WT) mice born to young or aged father. However, we found important differences in maternal separation-induced ultrasonic vocalizations of Sey/+ mice born from young father and in the level of hyperactivity of Sey/+ mice born from aged fathers in the open-field test, respectively, compared to WT littermates. Phenotypes of anxiety were observed in both genotypes born from aged fathers compared with those born from young fathers. No significant difference was found in social behavior and sensorimotor gating among the four groups. These results indicate that mice with a single genetic risk factor can develop different phenotypes depending on the paternal age. Our study advocates for serious considerations on the role of paternal aging in breeding strategies for animal studies.
Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi
2018-05-16
Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our results suggest that proper control of TGF-β/Smads/CRMP2 signaling pathways is critical for the precise execution of neuronal morphogenesis, whose impairment eventually results in neurodevelopmental disorders. Copyright © 2018 the authors 0270-6474/18/384791-20$15.00/0.
Vitamin D and Autism: Clinical Review
ERIC Educational Resources Information Center
Kocovska, Eva; Fernell, Elisabeth; Billstedt, Eva; Minnis, Helen; Gillberg, Christopher
2012-01-01
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multiple genetic and environmental risk factors. The interplay between genetic and environmental factors has become the subject of intensified research in the last several years. Vitamin D deficiency has recently been proposed as a possible environmental risk…
Autism Spectrum Disorders Associated with Chromosomal Abnormalities
ERIC Educational Resources Information Center
Lo-Castro, Adriana; Benvenuto, Arianna; Galasso, Cinzia; Porfirio, Cristina; Curatolo, Paolo
2010-01-01
Autism spectrum disorders (ASDs) constitute a class of severe neurodevelopmental conditions with complex multifactorial and heterogeneous etiology. Despite high estimates of heritability, genetic causes of ASDs remain elusive, due to a high degree of genetic and phenotypic heterogeneity. So far, several "monogenic" forms of autism have been…
Wentz, Elisabet; Björk, Anna; Dahlgren, Jovanna
2017-01-01
To investigate prevalence of neurodevelopmental disorders in children with obesity and to compare body mass index (BMI) and metabolic profile in the children. Seventy-six children (37 girls, 39 boys) were consecutively recruited from a university outpatient clinic specialized in severe obesity. Neurodevelopmental disorders including attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and developmental coordination disorder (DCD) were assessed using interviews and questionnaires. Neurodevelopmental diagnoses were collected retrospectively in medical records. BMI ranged between 1.9 and 5.9 SDS and age between 5.1 and 16.5 years. In 13.2% and 18.4% ASD and ADHD was assigned, respectively. In addition, 25% screened positive for DCD, 31.6% had at least one neurodevelopmental disorder, and 18.4% had a parent who screened positive for adult ADHD. Girls with ASD/ADHD had higher BMI SDS than girls without neurodevelopmental disorder (P = 0.006). One third of children with obesity referred to specialist centers have a neurodevelopmental disorder including deviant motor skills, and these problems may deteriorate weight status. One fifth of the parents exhibit ADHD symptomatology which could partly explain the poor adherence by some families in obesity units. Future obesity therapy could benefit from incorporating a neurodevelopmental treatment approach. © 2016 The Obesity Society.
Reading and Language Disorders: The Importance of Both Quantity and Quality
Newbury, Dianne F.; Monaco, Anthony P.; Paracchini, Silvia
2014-01-01
Reading and language disorders are common childhood conditions that often co-occur with each other and with other neurodevelopmental impairments. There is strong evidence that disorders, such as dyslexia and Specific Language Impairment (SLI), have a genetic basis, but we expect the contributing genetic factors to be complex in nature. To date, only a few genes have been implicated in these traits. Their functional characterization has provided novel insight into the biology of neurodevelopmental disorders. However, the lack of biological markers and clear diagnostic criteria have prevented the collection of the large sample sizes required for well-powered genome-wide screens. One of the main challenges of the field will be to combine careful clinical assessment with high throughput genetic technologies within multidisciplinary collaborations. PMID:24705331
Schizophrenia and the neurodevelopmental continuum:evidence from genomics.
Owen, Michael J; O'Donovan, Michael C
2017-10-01
The idea that disturbances occurring early in brain development contribute to the pathogenesis of schizophrenia, often referred to as the neurodevelopmental hypothesis, has become widely accepted. Despite this, the disorder is viewed as being distinct nosologically, and by implication pathophysiologically and clinically, from syndromes such as autism spectrum disorders, attention-deficit/hyperactivity disorder (ADHD) and intellectual disability, which typically present in childhood and are grouped together as "neurodevelopmental disorders". An alternative view is that neurodevelopmental disorders, including schizophrenia, rather than being etiologically discrete entities, are better conceptualized as lying on an etiological and neurodevelopmental continuum, with the major clinical syndromes reflecting the severity, timing and predominant pattern of abnormal brain development and resulting functional abnormalities. It has also been suggested that, within the neurodevelopmental continuum, severe mental illnesses occupy a gradient of decreasing neurodevelopmental impairment as follows: intellectual disability, autism spectrum disorders, ADHD, schizophrenia and bipolar disorder. Recent genomic studies have identified large numbers of specific risk DNA changes and offer a direct and robust test of the predictions of the neurodevelopmental continuum model and gradient hypothesis. These findings are reviewed in detail. They not only support the view that schizophrenia is a disorder whose origins lie in disturbances of brain development, but also that it shares genetic risk and pathogenic mechanisms with the early onset neurodevelopmental disorders (intellectual disability, autism spectrum disorders and ADHD). They also support the idea that these disorders lie on a gradient of severity, implying that they differ to some extent quantitatively as well as qualitatively. These findings have important implications for nosology, clinical practice and research. © 2017 World Psychiatric Association.
Antisocial Personality as a Neurodevelopmental Disorder.
Raine, Adrian
2018-05-07
Although antisocial personality disorder (APD) is one of the most researched personality disorders, it is still surprisingly resistant to treatment. This lack of clinical progress may be partly due to the failure to view APD as a neurodevelopmental disorder and to consider early interventions. After first defining what constitutes a neurodevelopmental disorder, this review evaluates the extent to which APD meets neurodevelopmental criteria, covering structural and functional brain imaging, neurocognition, genetics and epigenetics, neurochemistry, and early health risk factors. Prevention and intervention strategies for APD are then outlined, focusing on addressing early biological and health systems, followed by forensic and clinical implications. It is argued both that APD meets criteria for consideration as a neurodevelopmental disorder and that consideration should be given both to the possibility that early onset conduct disorder is neurodevelopmental in nature, and also to the inclusion of psychopathy as a specifier in future Diagnostic and Statistical Manual revisions of APD.
2015-07-01
Programming of Neurodevelopmental Disorders PRINCIPAL INVESTIGATOR: Alexandre Bonnin, PhD CONTRACTING ORGANIZATION: University of Southern...Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders 5a. CONTRACT NUMBER W81XWH-13-1-0135 Pathway for the Fetal Programming of... Neurodevelopmental Disorders 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Alexandre Bonnin, PhD; 5d. PROJECT NUMBER Nick Goeden
Smith, Milo R; Glicksberg, Benjamin S; Li, Li; Chen, Rong; Morishita, Hirofumi; Dudley, Joel T
2018-01-01
High and increasing prevalence of neurodevelopmental disorders place enormous personal and economic burdens on society. Given the growing realization that the roots of neurodevelopmental disorders often lie in early childhood, there is an urgent need to identify childhood risk factors. Neurodevelopment is marked by periods of heightened experience-dependent neuroplasticity wherein neural circuitry is optimized by the environment. If these critical periods are disrupted, development of normal brain function can be permanently altered, leading to neurodevelopmental disorders. Here, we aim to systematically identify human variants in neuroplasticity-related genes that confer risk for neurodevelopmental disorders. Historically, this knowledge has been limited by a lack of techniques to identify genes related to neurodevelopmental plasticity in a high-throughput manner and a lack of methods to systematically identify mutations in these genes that confer risk for neurodevelopmental disorders. Using an integrative genomics approach, we determined loss-of-function (LOF) variants in putative plasticity genes, identified from transcriptional profiles of brain from mice with elevated plasticity, that were associated with neurodevelopmental disorders. From five shared differentially expressed genes found in two mouse models of juvenile-like elevated plasticity (juvenile wild-type or adult Lynx1-/- relative to adult wild-type) that were also genotyped in the Mount Sinai BioMe Biobank we identified multiple associations between LOF genes and increased risk for neurodevelopmental disorders across 10,510 patients linked to the Mount Sinai Electronic Medical Records (EMR), including epilepsy and schizophrenia. This work demonstrates a novel approach to identify neurodevelopmental risk genes and points toward a promising avenue to discover new drug targets to address the unmet therapeutic needs of neurodevelopmental disease.
Schizophrenia and the neurodevelopmental continuum:evidence from genomics
Owen, Michael J.; O'Donovan, Michael C.
2017-01-01
The idea that disturbances occurring early in brain development contribute to the pathogenesis of schizophrenia, often referred to as the neurodevelopmental hypothesis, has become widely accepted. Despite this, the disorder is viewed as being distinct nosologically, and by implication pathophysiologically and clinically, from syndromes such as autism spectrum disorders, attention‐deficit/hyperactivity disorder (ADHD) and intellectual disability, which typically present in childhood and are grouped together as “neurodevelopmental disorders”. An alternative view is that neurodevelopmental disorders, including schizophrenia, rather than being etiologically discrete entities, are better conceptualized as lying on an etiological and neurodevelopmental continuum, with the major clinical syndromes reflecting the severity, timing and predominant pattern of abnormal brain development and resulting functional abnormalities. It has also been suggested that, within the neurodevelopmental continuum, severe mental illnesses occupy a gradient of decreasing neurodevelopmental impairment as follows: intellectual disability, autism spectrum disorders, ADHD, schizophrenia and bipolar disorder. Recent genomic studies have identified large numbers of specific risk DNA changes and offer a direct and robust test of the predictions of the neurodevelopmental continuum model and gradient hypothesis. These findings are reviewed in detail. They not only support the view that schizophrenia is a disorder whose origins lie in disturbances of brain development, but also that it shares genetic risk and pathogenic mechanisms with the early onset neurodevelopmental disorders (intellectual disability, autism spectrum disorders and ADHD). They also support the idea that these disorders lie on a gradient of severity, implying that they differ to some extent quantitatively as well as qualitatively. These findings have important implications for nosology, clinical practice and research. PMID:28941101
From neural development to cognition: unexpected roles for chromatin
Ronan, Jehnna L.; Wu, Wei
2014-01-01
Recent genome-sequencing studies in human neurodevelopmental and psychiatric disorders have uncovered mutations in many chromatin regulators. These human genetic studies, along with studies in model organisms, are providing insight into chromatin regulatory mechanisms in neural development and how alterations to these mechanisms can cause cognitive deficits, such as intellectual disability. We discuss several implicated chromatin regulators, including BAF (also known as SWI/SNF) and CHD8 chromatin remodellers, HDAC4 and the Polycomb component EZH2. Interestingly, mutations in EZH2 and certain BAF complex components have roles in both neurodevelopmental disorders and cancer, and overlapping point mutations are suggesting functionally important residues and domains. We speculate on the contribution of these similar mutations to disparate disorders. PMID:23568486
ERIC Educational Resources Information Center
Jawaid, A.; Riby, D. M.; Owens, J.; White, S. W.; Tarar, T.; Schulz, P. E.
2012-01-01
In some neuro-developmental disorders, the combined effect of intellectual disability and atypicalities of social cognition may put individuals at increased vulnerability in their social environment. The neuro-developmental disorders Williams syndrome, characterised by "hypersociability", and autism spectrum disorders, characterised by "social…
Spinal motor neuron involvement in a patient with homozygous PRUNE mutation.
Iacomino, Michele; Fiorillo, Chiara; Torella, Annalaura; Severino, Mariasavina; Broda, Paolo; Romano, Catia; Falsaperla, Raffaele; Pozzolini, Giulia; Minetti, Carlo; Striano, Pasquale; Nigro, Vincenzo; Zara, Federico
2018-05-01
In the last few years, whole exome sequencing (WES) allowed the identification of PRUNE mutations in patients featuring a complex neurological phenotype characterized by severe neurodevelopmental delay, microcephaly, epilepsy, optic atrophy, and brain or cerebellar atrophy. We describe an additional patient with homozygous PRUNE mutation who presented with spinal muscular atrophy phenotype, in addition to the already known brain developmental disorder. This novel feature expands the clinical consequences of PRUNE mutations and allow to converge PRUNE syndrome with previous descriptions of neurodevelopmental/neurodegenerative disorders linked to altered microtubule dynamics. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Uljarević, Mirko; Katsos, Napoleon; Hudry, Kristelle; Gibson, Jenny L
2016-11-01
Language and communication skills are essential aspects of child development, which are often disrupted in children with neurodevelopmental disorders. Cutting edge research in psycholinguistics suggests that multilingualism has potential to influence social, linguistic and cognitive development. Thus, multilingualism has implications for clinical assessment, diagnostic formulation, intervention and support offered to families. We present a systematic review and synthesis of the effects of multilingualism for children with neurodevelopmental disorders and discuss clinical implications. We conducted systematic searches for studies on multilingualism in neurodevelopmental disorders. Keywords for neurodevelopmental disorders were based on Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition categories as follows; Intellectual Disabilities, Communication Disorders, Autism Spectrum Disorder (ASD), Attention-Deficit/Hyperactivity Disorder, Specific Learning Disorder, Motor Disorders, Other Neurodevelopmental Disorders. We included only studies based on empirical research and published in peer-reviewed journals. Fifty studies met inclusion criteria. Thirty-eight studies explored multilingualism in Communication Disorders, 10 in ASD and two in Intellectual Disability. No studies on multilingualism in Specific Learning Disorder or Motor Disorders were identified. Studies which found a disadvantage for multilingual children with neurodevelopmental disorders were rare, and there appears little reason to assume that multilingualism has negative effects on various aspects of functioning across a range of conditions. In fact, when considering only those studies which have compared a multilingual group with developmental disorders to a monolingual group with similar disorders, the findings consistently show no adverse effects on language development or other aspects of functioning. In the case of ASD, a positive effect on communication and social functioning has been observed. There is little evidence to support the widely held view that multilingual exposure is detrimental to the linguistic or social development of individuals with neurodevelopmental disorders. However, we also note that the available pool of studies is small and the number of methodologically high quality studies is relatively low. We discuss implications of multilingualism for clinical management of neurodevelopmental disorders, and discuss possible directions for future research. © 2016 Association for Child and Adolescent Mental Health.
2014-07-01
Molecular Pathway for the Fetal Programming of Neurodevelopmental Disorders PRINCIPAL INVESTIGATOR: Alexandre Bonnin, PhD CONTRACTING...Fetal Programming of Neurodevelopmental Disorders 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Alexandre Bonnin, PhD; Betty...metabolism by maternal inflammation during early gestation constitutes a new molecular pathway for the fetal programming of neurodevelopmental
Janecka, M; Mill, J; Basson, M A; Goriely, A; Spiers, H; Reichenberg, A; Schalkwyk, L; Fernandes, C
2017-01-01
Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders. PMID:28140401
Autism Phenotypes in Tuberous Sclerosis Complex: Diagnostic and Treatment Considerations.
Gipson, Tanjala T; Poretti, Andrea; Thomas, Emily A; Jenkins, Kosunique T; Desai, Sonal; Johnston, Michael V
2015-12-01
Tuberous sclerosis complex is a multisystem, chronic genetic condition characterized by systemic growth of benign tumors and often accompanied by epilepsy, autism spectrum disorders, and intellectual disability. Nonetheless, the neurodevelopmental phenotype of these patients is not often detailed. The authors describe 3 individuals with tuberous sclerosis complex who share common characteristics that can help to identify a distinct profile of autism spectrum disorder. These findings include typical cognitive development, expressive and pragmatic language deficits, and anxiety. The authors also describe features specific to tuberous sclerosis complex that require consideration before diagnosing an autism spectrum disorder. Identifying distinct profiles of autism spectrum disorder in tuberous sclerosis complex can help optimize treatment across the life span. © The Author(s) 2015.
Mosca, Stephen J; Langevin, Lisa Marie; Dewey, Deborah; Innes, A Micheil; Lionel, Anath C; Marshall, Christian C; Scherer, Stephen W; Parboosingh, Jillian S; Bernier, Francois P
2016-12-01
Developmental coordination disorder is a common neurodevelopment disorder that frequently co-occurs with other neurodevelopmental disorders including attention-deficit hyperactivity disorder (ADHD). Copy-number variations (CNVs) have been implicated in a number of neurodevelopmental and psychiatric disorders; however, the proportion of heritability in developmental coordination disorder (DCD) attributed to CNVs has not been explored. This study aims to investigate how CNVs may contribute to the genetic architecture of DCD. CNV analysis was performed on 82 extensively phenotyped Canadian children with DCD, with or without co-occurring ADHD and/or reading disorder, and 2988 healthy European controls using identical genome-wide SNP microarrays and CNV calling algorithms. An increased rate of large and rare genic CNVs (p=0.009) was detected, and there was an enrichment of duplications spanning brain-expressed genes (p=0.039) and genes previously implicated in other neurodevelopmental disorders (p=0.043). Genes and loci of particular interest in this group included: GAP43, RBFOX1, PTPRN2, SHANK3, 16p11.2 and distal 22q11.2. Although no recurrent CNVs were identified, 26% of DCD cases, where sample availability permitted segregation analysis, were found to have a de novo rare CNV. Of the inherited CNVs, 64% were from a parent who also had a neurodevelopmental disorder. These findings suggest that there may be shared susceptibility genes for DCD and other neurodevelopmental disorders and highlight the need for thorough phenotyping when investigating the genetics of neurodevelopmental disorders. Furthermore, these data provide compelling evidence supporting a genetic basis for DCD, and further implicate rare CNVs in the aetiology of neurodevelopmental disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Shared Genetic Influences on ADHD Symptoms and Very Low-Frequency EEG Activity: A Twin Study
ERIC Educational Resources Information Center
Tye, Charlotte; Rijsdijk, Fruhling; Greven, Corina U.; Kuntsi, Jonna; Asherson, Philip; McLoughlin, Grainne
2012-01-01
Background: Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with a complex aetiology. The identification of candidate intermediate phenotypes that are both heritable and genetically linked to ADHD may facilitate the detection of susceptibility genes and elucidate aetiological pathways.…
Current Practice in Psychopharmacology for Children and Adolescents with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Floyd, Elizabeth Freeman; McIntosh, David E.
2009-01-01
Autism spectrum disorders (ASDs) are a complex group of neurodevelopmental conditions that develop in early childhood and involve a range of impairments in core areas of social interaction, communication, and restricted behavior and interests. Associated behavioral problems such as tantrums, aggression, and self-injury frequently compound the core…
Engineer, Crystal T; Hays, Seth A; Kilgard, Michael P
2017-01-01
Many children with autism and other neurodevelopmental disorders undergo expensive, time-consuming behavioral interventions that often yield only modest improvements. The development of adjunctive interventions that can increase the benefit of rehabilitation therapies is essential in order to improve the lives of individuals with neurodevelopmental disorders. Vagus nerve stimulation (VNS) is an FDA approved therapy that is safe and effective in reducing seizure frequency and duration in individuals with epilepsy. Individuals with neurodevelopmental disorders often exhibit decreased vagal tone, and studies indicate that VNS can be used to overcome an insufficient vagal response. Multiple studies have also documented significant improvements in quality of life after VNS therapy in individuals with neurodevelopmental disorders. Moreover, recent findings indicate that VNS significantly enhances the benefits of rehabilitative training in animal models and patients, leading to greater recovery in a variety of neurological diseases. Here, we review these findings and provide a discussion of how VNS paired with rehabilitation may yield benefits in the context of neurodevelopmental disorders. VNS paired with behavioral therapy may represent a potential new approach to enhance rehabilitation that could significantly improve the outcomes of individuals with neurodevelopmental disorders.
Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism
2017-01-01
The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment. PMID:28567415
Neurodevelopmental disorders in children born to mothers with systemic lupus erythematosus.
Vinet, É; Pineau, C A; Clarke, A E; Fombonne, É; Platt, R W; Bernatsky, S
2014-10-01
Children born to women with systemic lupus erythematosus seem to have a potentially increased risk of neurodevelopmental disorders compared to children born to healthy women. Recent experimental data suggest in utero exposure to maternal antibodies and cytokines as important risk factors for neurodevelopmental disorders. Interestingly, women with systemic lupus erythematosus display high levels of autoantibodies and cytokines, which have been shown, in animal models, to alter fetal brain development and induce behavioral anomalies in offspring. Furthermore, subjects with systemic lupus erythematosus and neurodevelopmental disorders share a common genetic predisposition, which could impair the fetal immune response to in utero immunologic insults. Moreover, systemic lupus erythematosus pregnancies are at increased risk of adverse obstetrical outcomes and medication exposures, which have been implicated as potential risk factors for neurodevelopmental disorders. In this article, we review the current state of knowledge on neurodevelopmental disorders and their potential determinants in systemic lupus erythematosus offspring. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Sleep Disturbances in Neurodevelopmental Disorders.
Robinson-Shelton, Althea; Malow, Beth A
2016-01-01
Sleep disturbances are extremely prevalent in children with neurodevelopmental disorders compared to typically developing children. The diagnostic criteria for many neurodevelopmental disorders include sleep disturbances. Sleep disturbance in this population is often multifactorial and caused by the interplay of genetic, neurobiological and environmental overlap. These disturbances often present either as insomnia or hypersomnia. Different sleep disorders present with these complaints and based on the clinical history and findings from diagnostic tests, an appropriate diagnosis can be made. This review aims to provide an overview of causes, diagnosis, and treatment of sleep disturbances in neurodevelopmental disorders that present primarily with symptoms of hypersomnia and/or insomnia.
An Open Conversation on Using Eye-Gaze Methods in Studies of Neurodevelopmental Disorders
ERIC Educational Resources Information Center
Venker, Courtney E.; Kover, Sara T.
2015-01-01
Purpose: Eye-gaze methods have the potential to advance the study of neurodevelopmental disorders. Despite their increasing use, challenges arise in using these methods with individuals with neurodevelopmental disorders and in reporting sufficient methodological detail such that the resulting research is replicable and interpretable. Method: This…
Correlates of Early Assessment of Neurodevelopmental Disorders in Lebanon
ERIC Educational Resources Information Center
Dirani, Leyla Akoury; Salamoun, Mariana
2014-01-01
Children with neurodevelopmental disorders who receive early therapeutic interventions present a better developmental pathway than children who do not. Early assessment of neurodevelopmental disorders is the first step in this process. This study aims at describing the variables that are in play in the first assessment of children with autism…
Schubert, D; Martens, G J M; Kolk, S M
2015-07-01
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
ACE: Health - Neurodevelopmental Disorders
Information about children reported to have ever been diagnosed with four different neurodevelopmental disorders: attention-deficit/hyperactivity disorder (ADHD), learning disabilities, autism, and intellectual disability.
Cognitive Abilities on Transitive Inference Using a Novel Touchscreen Technology for Mice
Silverman, J.L.; Gastrell, P.T.; Karras, M.N.; Solomon, M.; Crawley, J.N.
2015-01-01
Cognitive abilities are impaired in neurodevelopmental disorders, including autism spectrum disorder (ASD) and schizophrenia. Preclinical models with strong endophenotypes relevant to cognitive dysfunctions offer a valuable resource for therapeutic development. However, improved assays to test higher order cognition are needed. We employed touchscreen technology to design a complex transitive inference (TI) assay that requires cognitive flexibility and relational learning. C57BL/6J (B6) mice with good cognitive skills and BTBR T+tf/J (BTBR), a model of ASD with cognitive deficits, were evaluated in simple and complex touchscreen assays. Both B6 and BTBR acquired visual discrimination and reversal. BTBR displayed deficits on components of TI, when 4 stimuli pairs were interspersed, which required flexible integrated knowledge. BTBR displayed impairment on the A > E inference, analogous to the A > E deficit in ASD. B6 and BTBR mice both reached criterion on the B > D comparison, unlike the B > D impairment in schizophrenia. These results demonstrate that mice are capable of complex discriminations and higher order tasks using methods and equipment paralleling those used in humans. Our discovery that a mouse model of ASD displays a TI deficit similar to humans with ASD supports the use of the touchscreen technology for complex cognitive tasks in mouse models of neurodevelopmental disorders. PMID:24293564
Neurodevelopmental delay in children exposed in utero to hyperemesis gravidarum.
Fejzo, Marlena S; Magtira, Aromalyn; Schoenberg, Frederic Paik; Macgibbon, Kimber; Mullin, Patrick M
2015-06-01
The purpose of this study is to determine the frequency of emotional, behavioral, and learning disorders in children exposed in utero to hyperemesis gravidarum (HG) and to identify prognostic factors for these disorders. Neurodevelopmental outcomes of 312 children from 203 mothers with HG were compared to neurodevelopmental outcomes from 169 children from 89 unaffected mothers. Then the clinical profiles of patients with HG and a normal child outcome were compared to the clinical profiles of patients with HG and a child with neurodevelopmental delay to identify prognostic factors. Binary responses were analyzed using either a Chi-square or Fisher Exact test and continuous responses were analyzed using a t-test. Children exposed in utero to HG have a 3.28-fold increase in odds of a neurodevelopmental diagnosis including attention disorders, learning delay, sensory disorders, and speech and language delay (P<0.0005). Among characteristics of HG pregnancies, only early onset of symptoms (prior to 5 weeks gestation) was significantly linked to neurodevelopmental delay. We found no evidence for increased risk of 13 emotional, behavioral, and learning disorders, including autism, intellectual impairment, and obsessive-compulsive disorder. However, the study was not sufficiently powered to detect rare conditions. Medications, treatments, and preterm birth were not associated with an increased risk for neurodevelopmental delay. Women with HG are at a significantly increased risk of having a child with neurodevelopmental delay. Common antiemetic treatments were not linked to neurodevelopmental delay, but early symptoms may play a role. There is an urgent need to address whether aggressive treatment that includes vitamin and nutrient supplementation in women with early symptoms of severe nausea of pregnancy decreases the risk of neurodevelopmental delay. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Contribution of nonprimate animal models in understanding the etiology of schizophrenia
Lazar, Noah L.; Neufeld, Richard W.J.; Cain, Donald P.
2011-01-01
Schizophrenia is a severe psychiatric disorder that is characterized by positive and negative symptoms and cognitive impairments. The etiology of the disorder is complex, and it is thought to follow a multifactorial threshold model of inheritance with genetic and neurodevelopmental contributions to risk. Human studies are particularly useful in capturing the richness of the phenotype, but they are often limited to the use of correlational approaches. By assessing behavioural abnormalities in both humans and rodents, nonprimate animal models of schizophrenia provide unique insight into the etiology and mechanisms of the disorder. This review discusses the phenomenology and etiology of schizophrenia and the contribution of current nonprimate animal models with an emphasis on how research with models of neurotransmitter dysregulation, environmental risk factors, neurodevelopmental disruption and genetic risk factors can complement the literature on schizophrenia in humans. PMID:21247514
Bromley, Rebecca Louise; Mawer, George E; Briggs, Maria; Cheyne, Christopher; Clayton-Smith, Jill; García-Fiñana, Marta; Kneen, Rachel; Lucas, Sam B; Shallcross, Rebekah; Baker, Gus A
2013-06-01
The aim of this study was to compare the prevalence of diagnosed neurodevelopmental disorders in children exposed, in utero, to different antiepileptic drug treatments. A prospective cohort of women with epilepsy and a control group of women without epilepsy were recruited from antenatal clinics. The children of this cohort were followed longitudinally until 6 years of age (n=415). Diagnosis of a neurodevelopmental disorder was made independently of the research team. Multiple logistic regression analysis revealed an increase in risk of neurodevelopmental disorders in children exposed to monotherapy sodium valproate (VPA) (6/50, 12.0%; aOR 6.05, 95%CI 1.65 to 24.53, p=0.007) and in those exposed to polytherapy with sodium VPA (3/20, 15.0%; aOR 9.97, 95% CI 1.82 to 49.40, p=0.005) compared with control children (4/214; 1.87%). Autistic spectrum disorder was the most frequent diagnosis. No significant increase was found among children exposed to carbamazepine (1/50) or lamotrigine (2/30). An accumulation of evidence demonstrates that the risks associated with prenatal sodium VPA exposure include an increased prevalence of neurodevelopmental disorders. Whether such disorders are discrete or represent the severe end of a continuum of altered neurodevelopmental functioning requires further investigation. Replication and extension of this research is required to investigate the mechanism(s) underpinning the relationship. Finally, the increased likelihood of neurodevelopmental disorders should be communicated to women for whom sodium VPA is a treatment option.
The prevalence of neurodevelopmental disorders in children prenatally exposed to antiepileptic drugs
Bromley, Rebecca L; Mawer, George E; Briggs, Maria; Cheyne, Christopher; Clayton-Smith, Jill; García-Fiñana, Marta; Kneen, Rachel; Lucas, Sam B; Shallcross, Rebekah; Baker, Gus A
2014-01-01
The aim of this study was to compare the prevalence of diagnosed neurodevelopmental disorders in children exposed, in utero, to different antiepileptic drug (AED) treatments. A prospective cohort of women with epilepsy and a control group of women without epilepsy were recruited from antenatal clinics. The children of this cohort were followed longitudinally until six years of age (n=415). Diagnosis of a neurodevelopmental disorder was made independently of the research team. Multiple logistic regression analysis revealed an increase in risk of neurodevelopmental disorders in children exposed to monotherapy sodium valproate (6/50, 12.0%; aOR 6.05, 95%CI 1.65–24.53; p=0.007) and in those exposed to polytherapy with sodium valproate (3/20, 15.0%; aOR 9.97, 95%CI 1.82–49.40; p=0.005) compared to control children (4/214; 1.87%). Autistic spectrum disorder was the most frequent diagnosis. No significant increase was found amongst children exposed to carbamazepine (1/50) or lamotrigine (2/30). An accumulation of evidence demonstrates that the risks associated with prenatal sodium valproate exposure include an increased prevalence of neurodevelopmental disorders. Whether such disorders are discrete or represent the severe end of a continuum of altered neurodevelopmental functioning requires further investigation. Replication and extension of this research is required to investigate the mechanism(s) underpinning the relationship. Finally, the increased likelihood of neurodevelopmental disorders should be communicated to women for whom sodium valproate is a treatment option. PMID:23370617
Co-morbidity in Attention-Deficit Hyperactivity Disorder: A Clinical Study from India.
Jacob, P; Srinath, S; Girimaji, S; Seshadri, S; Sagar, J V
2016-12-01
To assess the prevalence of neurodevelopmental and psychiatric co-morbidities in children and adolescents diagnosed with attention-deficit hyperactivity disorder at a tertiary care child and adolescent psychiatry centre. A total of 63 children and adolescents who were diagnosed with attention-deficit hyperactivity disorder and fulfilled the inclusion criteria were comprehensively assessed for neurodevelopmental and psychiatric co-morbidities. The tools used included the Mini-International Neuropsychiatric Interview for Children and Adolescents, Attention Deficit Hyperactivity Disorder Rating Scale IV (ADHD-RS), Children's Global Assessment Scale, Clinical Global Impression Scale, Vineland Social Maturity Scale, and Childhood Autism Rating Scale. All except 1 subject had neurodevelopmental and / or psychiatric disorder co-morbid with attention-deficit hyperactivity disorder; 66.7% had both neurodevelopmental and psychiatric disorders. Specific learning disability was the most common co-existing neurodevelopmental disorder and oppositional defiant disorder was the most common psychiatric co-morbidity. The mean baseline ADHD-RS scores were significantly higher in the group with psychiatric co-morbidities, especially in the group with oppositional defiant disorder. Co-morbidity is present at a very high frequency in clinic-referred children diagnosed with attention-deficit hyperactivity disorder. Psychiatric co-morbidity, specifically oppositional defiant disorder, has an impact on the severity of attention-deficit hyperactivity disorder. Co-morbidity needs to be explicitly looked for during evaluation and managed appropriately.
Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura
2009-01-01
In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687
Neuropsychiatric manifestations in late-onset urea cycle disorder patients.
Serrano, Mercedes; Martins, Cecilia; Pérez-Dueñas, Belén; Gómez-López, Lilian; Murgui, Empar; Fons, Carmen; García-Cazorla, Angels; Artuch, Rafael; Jara, Fernando; Arranz, José A; Häberle, Johannes; Briones, Paz; Campistol, Jaume; Pineda, Mercedes; Vilaseca, Maria A
2010-03-01
Inherited urea cycle disorders represent one of the most common groups of inborn errors of metabolism. Late-onset urea cycle disorders caused by partial enzyme deficiencies may present with unexpected clinical phenotypes. We report 9 patients followed up in our hospital presenting late-onset urea cycle disorders who initially manifested neuropsychiatric/neurodevelopmental symptoms (the most prevalent neuropsychiatric/neurodevelopmental diagnoses were mental retardation, attention-deficit hyperactivity disorder [ADHD], language disorder, and delirium). Generally, these clinical pictures did not benefit from pharmacological treatment. Conversely, dietary treatment improved the symptoms. Regarding biochemical data, 2 patients showed normal ammonium but high glutamine levels. This study highlights the fact that neuropsychiatric/neurodevelopmental findings are common among the initial symptomatology of late-onset urea cycle disorders. The authors recommend that unexplained or nonresponsive neuropsychiatric/neurodevelopmental symptoms appearing during childhood or adolescence be followed by a study of ammonia and amino acid plasmatic levels to rule out a urea cycle disorder.
Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement
Bennett, Deborah; Bellinger, David C.; Birnbaum, Linda S.; Bradman, Asa; Chen, Aimin; Cory-Slechta, Deborah A.; Engel, Stephanie M.; Fallin, M. Daniele; Halladay, Alycia; Hauser, Russ; Hertz-Picciotto, Irva; Kwiatkowski, Carol F.; Lanphear, Bruce P.; Marquez, Emily; Marty, Melanie; McPartland, Jennifer; Newschaffer, Craig J.; Payne-Sturges, Devon; Patisaul, Heather B.; Perera, Frederica P.; Ritz, Beate; Sass, Jennifer; Schantz, Susan L.; Webster, Thomas F.; Whyatt, Robin M.; Woodruff, Tracey J.; Zoeller, R. Thomas; Anderko, Laura; Campbell, Carla; Conry, Jeanne A.; DeNicola, Nathaniel; Gould, Robert M.; Hirtz, Deborah; Huffling, Katie; Landrigan, Philip J.; Lavin, Arthur; Miller, Mark; Mitchell, Mark A.; Rubin, Leslie; Schettler, Ted; Tran, Ho Luong; Acosta, Annie; Brody, Charlotte; Miller, Elise; Miller, Pamela; Swanson, Maureen; Witherspoon, Nsedu Obot
2016-01-01
Summary: Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. Approach: Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects. Conclusion: Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. These measures are urgently needed if we are to protect healthy brain development so that current and future generations can reach their fullest potential. PMID:27479987
Green Space and Childhood Autism
Autism, a group of complex neurodevelopmental disorders typically identified in early childhood, affects more than 3 million people in the U.S. To date, the cause of autism is unclear. It is believed that autism results from a combination of genetic and environmental factors incl...
Bakare, Muideen O; Bello-Mojeed, Mashudat A; Munir, Kerim M; Ogun, Oluwayemi C; Eaton, Julian
2016-04-29
Late diagnosis and interventions characterize childhood neurodevelopmental disorders in Sub-Saharan Africa. This has negatively impacted on the prognosis of the children with neurodevelopmental disorders. This study examined the prevalence and pattern of neurodevelopmental delays among children under the age of 3 years attending immunization clinics in Lagos State, Nigeria and also affords opportunity of early follow-up and interventions, which had been documented to improve prognosis. The study involved two stage assessments; which consisted of first phase screening of the children for neurodevelopmental delays in immunization clinics at primary healthcare centers Lagos State, Nigeria and second phase which consists of definitive clinical evaluation and follow-up interventions for children screened positive for neurodevelopmental delays. Twenty seven (0.9%) of a total of 3,011 children under the age of 3 years were screened positive for neurodevelopmental delays and subsequently undergoing clinical evaluation and follow-up interventions. Preliminary working diagnoses among these children include cerebral palsy, autism spectrum disorder trait, nutritional deficiency, Down syndrome and Non-specific neurodevelopmental delay with co-morbid seizure disorder accounting for 33.3%, 14.8%, 18.5%, 7.4% and 25.9% respectively. This is a preliminary report that would be followed up with information on medium and long term intervention phase.
Jivraj, Jamil; Sacrey, Lori-Ann; Newton, Amanda; Nicholas, David; Zwaigenbaum, Lonnie
2014-10-01
Participatory research aims to increase the relevance and broaden the implementation of health research by involving those affected by the outcomes of health studies. Few studies within the field of neurodevelopmental disorders, particularly autism spectrum disorders, have involved autistic individuals as partners. This study sought to identify and characterize published participatory research partnerships between researchers and individuals with autism spectrum disorder or other neurodevelopmental disorders and examine the influence of participatory research partnerships on the research process and reported study outcomes. A search of databases and review of gray literature identified seven studies that described participatory research partnerships between academic researchers and individuals with autism spectrum disorder or other neurodevelopmental disorders. A comparative analysis of the studies revealed two key themes: (1) variations in the participatory research design and (2) limitations during the reporting of the depth of the partner's involvement. Both themes potentially limit the application and generalizability of the findings. The results of the review are discussed in relation to the use of evaluative frameworks for such participatory research studies to determine the potential benefits of participatory research partnerships within the neurodevelopmental and autism spectrum disorder populations. © The Author(s) 2014.
Maher, Gillian M; O'Keeffe, Gerard W; Kearney, Patricia M; Kenny, Louise C; Dinan, Timothy G; Mattsson, Molly; Khashan, Ali S
2018-06-06
Although research suggests an association between hypertensive disorders of pregnancy (HDP) and autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and other neurodevelopmental disorders in offspring, consensus is lacking. Given the increasing prevalence of hypertension in pregnancy, it is important to examine the association of HDP with neurodevelopmental outcome. To synthesize the published literature on the association between HDP and risk of neurodevelopmental disorders in offspring in a systematic review and meta-analysis. On the basis of a preprepared protocol, a systematic search of PubMed, CINAHL, Embase, PsycINFO, and Web of Science was performed from inception through June 7, 2017, supplemented by hand searching of reference lists. Two investigators independently reviewed titles, abstracts, and full-text articles. English-language cohort and case-control studies were included in which HDP and neurodevelopmental disorders were reported. Data extraction and quality appraisal were performed independently by 2 reviewers. Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed throughout. Random-effects meta-analyses of estimated pooled odds ratios (ORs) for HDP and ASD and for HDP and ADHD. Stand-alone estimates were reported for all other neurodevelopmental disorders. Of 1166 studies identified, 61 unique articles met inclusion criteria. Twenty studies reported estimates for ASD. Eleven of these (including 777 518 participants) reported adjusted estimates, with a pooled adjusted OR of 1.35 (95% CI, 1.11-1.64). Ten studies reported estimates for ADHD. Six of these (including 1 395 605 participants) reported adjusted estimates, with a pooled adjusted OR of 1.29 (95% CI, 1.22-1.36). Subgroup analyses according to type of exposure (ie, preeclampsia or other HDP) showed no statistically significant differences for ASD or ADHD. Thirty-one studies met inclusion criteria for all other neurodevelopmental disorders. Individual estimates reported for these were largely inconsistent, with few patterns of association observed. Exposure to HDP may be associated with an increase in the risk of ASD and ADHD. These findings highlight the need for greater pediatric surveillance of infants exposed to HDP to allow early intervention that may improve neurodevelopmental outcome.
Genes, Circuits, and Precision Therapies for Autism and Related Neurodevelopmental Disorders
2016-01-01
Research in genetics of neurodevelopmental disorders such as autism suggests that several hundred genes are likely risk factors for these disorders. This heterogeneity presents a challenge and an opportunity at the same time. While the exact identity of many of the genes remains to be discovered, genes identified to date encode for proteins that play roles in certain conserved pathways: protein synthesis, transcriptional/epigenetic regulation and synaptic signaling. Next generation of research in neurodevelopmental disorders needs to address the neural circuitry underlying the behavioral symptoms and co-morbidities, the cell types playing critical roles in these circuits and common intercellular signaling pathways that link diverse genes. Results from clinical trials have been mixed so far. Only when we are able to leverage the heterogeneity of neurodevelopmental disorders into precision medicine, will the mechanism-based therapeutics for these disorders start to unlock success. PMID:26472761
Gillberg, I Carina; Helles, Adam; Billstedt, Eva; Gillberg, Christopher
2016-01-01
We examined comorbid psychiatric and neurodevelopmental disorders in fifty adult males (mean age 30 years) with Asperger syndrome (AS) diagnosed in childhood and followed up prospectively for almost two decades (13-26 years). Only three of the 50 men had never met criteria for an additional psychiatric/neurodevelopmental diagnosis and more than half had ongoing comorbidity (most commonly either ADHD or depression or both). Any psychiatric comorbidity increased the risk of poorer outcome. The minority of the AS group who no longer met criteria for a full diagnosis of an autism spectrum disorder were usually free of current psychiatric comorbidity. The high rate of psychiatric/neurodevelopmental comorbidities underscores the need for a full psychiatric/neurodevelopmental assessment at follow-up of males with AS.
Dietrich, Kim N.; Eskenazi, Brenda; Schantz, Susan; Yolton, Kimberly; Rauh, Virginia A.; Johnson, Caroline B.; Alkon, Abbey; Canfield, Richard L.; Pessah, Isaac N.; Berman, Robert F.
2005-01-01
Principles and practices of pediatric neurotoxicology are reviewed here with the purpose of guiding the design and execution of the planned National Children’s Study. The developing human central nervous system is the target organ most vulnerable to environmental chemicals. An investigation of the effects of environmental exposures on child development is a complex endeavor that requires consideration of numerous critical factors pertinent to a study’s concept, design, and execution. These include the timing of neurodevelopmental assessment, matters of biologic plausibility, site, child and population factors, data quality assurance and control, the selection of appropriate domains and measures of neurobehavior, and data safety and monitoring. Here we summarize instruments for the assessment of the neonate, infant, and child that are being employed in the Centers for Children’s Environmental Health and Disease Prevention Research, sponsored by the National Institute of Environmental Health Sciences and the U.S. Environmental Protection Agency, discuss neural and neurobiologic measures of development, and consider the promises of gene–environment studies. The vulnerability of the human central nervous system to environmental chemicals has been well established, but the contribution these exposures may make to problems such as attention deficit disorder, conduct problems, pervasive developmental disorder, or autism spectrum disorder remain uncertain. Large-scale studies such as the National Children’s Study may provide some important clues. The human neurodevelopmental phenotype will be most clearly represented in models that include environmental chemical exposures, the social milieu, and complex human genetic characteristics that we are just beginning to understand. PMID:16203260
Ratto, Allison B; Anthony, Bruno J; Pugliese, Cara; Mendez, Rocio; Safer-Lichtenstein, Jonathan; Dudley, Katerina M; Kahn, Nicole F; Kenworthy, Lauren; Biel, Matthew; Martucci, Jillian L; Anthony, Laura G
2016-01-01
Low-income and ethnic minority families continue to face critical disparities in access to diagnostic and treatment services for neurodevelopmental conditions, such as autism spectrum disorder and attention deficit hyperactivity disorder. Despite the growing cultural diversity of the United States, ethnic minority children and families continue to be substantially underrepresented across research on neurodevelopmental disorders, and there is a particularly concerning lack of research on the treatment of these conditions in low-income and ethnic minority communities. Of note, there are currently no published studies on adapting autism spectrum disorder treatment for low-income Latino communities and relatively few studies documenting adapted treatments for children with attention deficit hyperactivity disorder in these communities. This article describes methodological considerations and adaptations made to research procedures using a Diffusion of Innovation framework in order to effectively recruit and engage low-income, ethnic minority, particularly Latino, families of children with neurodevelopmental disorders, in a comparative effectiveness trial of two school-based interventions for executive dysfunction. PMID:27313190
Neurodevelopmental Disorders (ASD and ADHD): DSM-5, ICD-10, and ICD-11.
Doernberg, Ellen; Hollander, Eric
2016-08-01
Neurodevelopmental disorders, specifically autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) have undergone considerable diagnostic evolution in the past decade. In the United States, the current system in place is the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), whereas worldwide, the International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (ICD-10) serves as a general medical system. This review will examine the differences in neurodevelopmental disorders between these two systems. First, we will review the important revisions made from the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR) to the DSM-5, with respect to ASD and ADHD. Next, we will cover the similarities and differences between ASD and ADHD classification in the DSM-5 and the ICD-10, and how these differences may have an effect on neurodevelopmental disorder diagnostics and classification. By examining the changes made for the DSM-5 in 2013, and critiquing the current ICD-10 system, we can help to anticipate and advise on the upcoming ICD-11, due to come online in 2017. Overall, this review serves to highlight the importance of progress towards complementary diagnostic classification systems, keeping in mind the difference in tradition and purpose of the DSM and the ICD, and that these systems are dynamic and changing as more is learned about neurodevelopmental disorders and their underlying etiology. Finally this review will discuss alternative diagnostic approaches, such as the Research Domain Criteria (RDoC) initiative, which links symptom domains to underlying biological and neurological mechanisms. The incorporation of new diagnostic directions could have a great effect on treatment development and insurance coverage for neurodevelopmental disorders worldwide.
Tourette Syndrome in the Classroom
ERIC Educational Resources Information Center
Coffman, Amanda
2012-01-01
Tourette syndrome is a neurodevelopmental disorder believed to be genetic. The most visible symptom is the presence of tics. These involuntary movements or sounds can range from simple (sniffing, throat clearing, blinking) to complex (words or phrases, hopping, body contortions). They may be frequent for a few weeks, then fade away almost…
Neurodevelopmental Variation as a Framework for Thinking about the Twice Exceptional
ERIC Educational Resources Information Center
Gilger, Jeffrey W.; Hynd, George W.
2008-01-01
Developmental exceptionalities span the range of learning abilities and encompass children with both learning disorders and learning gifts. The purpose of this article is to stimulate thinking about these exceptionalities, particularly the complexities and variations within and across people. Investigators tend to view learning disabilities or…
7,8-Dihydroxyflavone as a pro-neurotrophic treatment for neurodevelopmental disorders.
Du, X; Hill, R A
2015-10-01
Neurodevelopmental disorders are a group of conditions that arises from impairments of the central nervous system during its development. The causes of the various disorders are heterogeneous and the symptoms likewise are multifarious. Most of these disorders currently have very little available treatment that is effective in combating the plethora of serious symptoms. Brain-derived neurotrophic factor (BDNF) is a fundamental neurotrophin with vital functions during brain development. Pre-clinical studies have shown that increasing BDNF signalling may be a potent way to prevent, arrest or even reverse abnormal neurodevelopmental events arising from a variety of genetic or environmental causes. However, many difficulties make BDNF problematic to administer in an efficient manner. The recent discovery of a small BDNF-mimetic, the naturally occurring flavonoid 7,8-dihydroxyflavone (7,8-DHF), may provide an avenue to allow efficient and safe activation of the BDNF pathway in tackling the symptoms of neurodevelopmental disorders. Here, evidence will be provided to support the potential of 7,8-DHF as a novel treatment for several neurodevelopmental disorders where the BDNF signalling pathway is implicated in the pathophysiology and where benefits are therefore most likely to be derived from its implementation. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Duquette, Cheryll; Stodel, Emma; Fullarton, Stephanie; Hagglund, Karras
2006-01-01
Fetal Alcohol Spectrum Disorder (FASD) is a term that encompasses the various neurodevelopmental disorders experienced by individuals with prenatal alcohol exposure. FASD incorporates the terms Fetal Alcohol Syndrome (FAS), Fetal Alcohol Effects (FAE), and Alcohol-Related Neurodevelopmental Disorder (ARND). Early studies showed that students with…
ERIC Educational Resources Information Center
Gillberg, I. Carina; Helles, Adam; Billstedt, Eva; Gillberg, Christopher
2016-01-01
We examined comorbid psychiatric and neurodevelopmental disorders in fifty adult males (mean age 30 years) with Asperger syndrome (AS) diagnosed in childhood and followed up prospectively for almost two decades (13-26 years). Only three of the 50 men had "never" met criteria for an additional psychiatric/neurodevelopmental diagnosis and…
Ho, Karen S; Twede, Hope; Vanzo, Rena; Harward, Erin; Hensel, Charles H; Martin, Megan M; Page, Stephanie; Peiffer, Andreas; Mowery-Rushton, Patricia; Serrano, Moises; Wassman, E Robert
2016-01-01
Copy number variants (CNVs) as detected by chromosomal microarray analysis (CMA) significantly contribute to the etiology of neurodevelopmental disorders, such as developmental delay (DD), intellectual disability (ID), and autism spectrum disorder (ASD). This study summarizes the results of 3.5 years of CMA testing by a CLIA-certified clinical testing laboratory 5487 patients with neurodevelopmental conditions were clinically evaluated for rare copy number variants using a 2.8-million probe custom CMA optimized for the detection of CNVs associated with neurodevelopmental disorders. We report an overall detection rate of 29.4% in our neurodevelopmental cohort, which rises to nearly 33% when cases with DD/ID and/or MCA only are considered. The detection rate for the ASD cohort is also significant, at 25%. Additionally, we find that detection rate and pathogenic yield of CMA vary significantly depending on the primary indications for testing, the age of the individuals tested, and the specialty of the ordering doctor. We also report a significant difference between the detection rate on the ultrahigh resolution optimized array in comparison to the array from which it originated. This increase in detection can significantly contribute to the efficient and effective medical management of neurodevelopmental conditions in the clinic.
Katrancha, Sara M; Wu, Yi; Zhu, Minsheng; Eipper, Betty A; Koleske, Anthony J; Mains, Richard E
2017-12-01
Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Marschik, Peter B; Pokorny, Florian B; Peharz, Robert; Zhang, Dajie; O'Muircheartaigh, Jonathan; Roeyers, Herbert; Bölte, Sven; Spittle, Alicia J; Urlesberger, Berndt; Schuller, Björn; Poustka, Luise; Ozonoff, Sally; Pernkopf, Franz; Pock, Thomas; Tammimies, Kristiina; Enzinger, Christian; Krieber, Magdalena; Tomantschger, Iris; Bartl-Pokorny, Katrin D; Sigafoos, Jeff; Roche, Laura; Esposito, Gianluca; Gugatschka, Markus; Nielsen-Saines, Karin; Einspieler, Christa; Kaufmann, Walter E
2017-05-01
Substantial research exists focusing on the various aspects and domains of early human development. However, there is a clear blind spot in early postnatal development when dealing with neurodevelopmental disorders, especially those that manifest themselves clinically only in late infancy or even in childhood. This early developmental period may represent an important timeframe to study these disorders but has historically received far less research attention. We believe that only a comprehensive interdisciplinary approach will enable us to detect and delineate specific parameters for specific neurodevelopmental disorders at a very early age to improve early detection/diagnosis, enable prospective studies and eventually facilitate randomised trials of early intervention. In this article, we propose a dynamic framework for characterising neurofunctional biomarkers associated with specific disorders in the development of infants and children. We have named this automated detection 'Fingerprint Model', suggesting one possible approach to accurately and early identify neurodevelopmental disorders.
Picchioni, Dante; Reith, R. Michelle; Nadel, Jeffrey L.; Smith, Carolyn B.
2014-01-01
Sleep is important for neural plasticity, and plasticity underlies sleep-dependent memory consolidation. It is widely appreciated that protein synthesis plays an essential role in neural plasticity. Studies of sleep-dependent memory and sleep-dependent plasticity have begun to examine alterations in these functions in populations with neurological and psychiatric disorders. Such an approach acknowledges that disordered sleep may have functional consequences during wakefulness. Although neurodevelopmental disorders are not considered to be sleep disorders per se, recent data has revealed that sleep abnormalities are among the most prevalent and common symptoms and may contribute to the progression of these disorders. The main goal of this review is to highlight the role of disordered sleep in the pathology of neurodevelopmental disorders and to examine some potential mechanisms by which sleep-dependent plasticity may be altered. We will also briefly attempt to extend the same logic to the other end of the developmental spectrum and describe a potential role of disordered sleep in the pathology of neurodegenerative diseases. We conclude by discussing ongoing studies that might provide a more integrative approach to the study of sleep, plasticity, and neurodevelopmental disorders. PMID:24839550
Bareš, Martin; Apps, Richard; Kikinis, Zora; Timmann, Dagmar; Oz, Gulin; Ashe, James J; Loft, Michaela; Koutsikou, Stella; Cerminara, Nadia; Bushara, Khalaf O; Kašpárek, Tomáš
2015-04-01
The proceedings of the workshop synthesize the experimental, preclinical, and clinical data suggesting that the cerebellum, basal ganglia (BG), and their connections play an important role in pathophysiology of various movement disorders (like Parkinson's disease and atypical parkinsonian syndromes) or neurodevelopmental disorders (like autism). The contributions from individual distinguished speakers cover the neuroanatomical research of complex networks, neuroimaging data showing that the cerebellum and BG are connected to a wide range of other central nervous system structures involved in movement control. Especially, the cerebellum plays a more complex role in how the brain functions than previously thought.
Fluegge, Keith
2016-10-01
Neurodevelopmental disorders are increasing in prevalence worldwide. Previous work suggests that exposure to the environmental air pollutant and greenhouse gas - nitrous oxide (N 2 O) - may be an etiological factor in neurodevelopmental disorders through the targeting of several neural correlates. While a number of recent systematic reviews have addressed the role of general anesthesia in the surgical setting and neurodevelopmental outcomes, a narrative mini-review was conducted to first define and characterize the relevant variables (i.e., N 2 O, attention-deficit hyperactivity disorder [ADHD] and autism spectrum disorders [ASD]) and their potential interactions into a coherent, hypothesis-generating work. The narrative mini-review merges basic principles in environmental science, anesthesiology, and psychiatry to more fully develop the novel hypotheses that neurodevelopmental impairment found in conditions like ADHD and ASD may be due to exposure to the increasing air pollutant, N 2 O. The results of the present mini-review indicate that exposure to N 2 O, even at non-toxic doses, may modulate central neurotransmission and target many neural substrates directly implicated in neurodevelopmental disorders, including the glutamatergic, opioidergic, cholinergic, and dopaminergic systems. Epidemiological studies also indicate that early and repeated exposure to general anesthesia, including N 2 O, may contribute to later adverse neurodevelopmental outcomes in children. The current evidence and subsequent hypotheses suggest that a renewed interest be taken in the toxicological assessment of environmental N 2 O exposure using validated biomarkers and psychiatric endpoints. Given the relevance of N 2 O as a greenhouse gas, societies may also wish to engage in a more robust monitoring and reporting of N 2 O levels in the environment for climactic benefit as well. Copyright © 2016 Elsevier B.V. All rights reserved.
Neurodevelopmental disorders: cluster 2 of the proposed meta-structure for DSM-V and ICD-11.
Andrews, G; Pine, D S; Hobbs, M J; Anderson, T M; Sunderland, M
2009-12-01
DSM-IV and ICD-10 are atheoretical and largely descriptive. Although this achieves good reliability, the validity of diagnoses can be increased by an understanding of risk factors and other clinical features. In an effort to group mental disorders on this basis, five clusters have been proposed. We now consider the second cluster, namely neurodevelopmental disorders. We reviewed the literature in relation to 11 validating criteria proposed by a DSM-V Task Force Study Group. This cluster reflects disorders of neurodevelopment rather than a 'childhood' disorders cluster. It comprises disorders subcategorized in DSM-IV and ICD-10 as Mental Retardation; Learning, Motor, and Communication Disorders; and Pervasive Developmental Disorders. Although these disorders seem to be heterogeneous, they share similarities on some risk and clinical factors. There is evidence of a neurodevelopmental genetic phenotype, the disorders have an early emerging and continuing course, and all have salient cognitive symptoms. Within-cluster co-morbidity also supports grouping these disorders together. Other childhood disorders currently listed in DSM-IV share similarities with the Externalizing and Emotional clusters. These include Conduct Disorder, Attention Deficit Hyperactivity Disorder and Separation Anxiety Disorder. The Tic, Eating/Feeding and Elimination disorders, and Selective Mutisms were allocated to the 'Not Yet Assigned' group. Neurodevelopmental disorders meet some of the salient criteria proposed by the American Psychiatric Association (APA) to suggest a classification cluster.
Youngstrom, Eric; LaKind, Judy S.; Kenworthy, Lauren; Lipkin, Paul H.; Goodman, Michael; Squibb, Katherine; Mattison, Donald R.; Anthony, Bruno J.; Anthony, Laura Gutermuth
2010-01-01
With research suggesting increasing incidence of pediatric neurodevelopmental disorders, questions regarding etiology continue to be raised. Neurodevelopmental function tests have been used in epidemiology studies to evaluate relationships between environmental chemical exposures and neurodevelopmental deficits. Limitations of currently used tests and difficulties with their interpretation have been described, but a comprehensive critical examination of tests commonly used in studies of environmental chemicals and pediatric neurodevelopmental disorders has not been conducted. We provide here a listing and critical evaluation of commonly used neurodevelopmental tests in studies exploring effects from chemical exposures and recommend measures that are not often used, but should be considered. We also discuss important considerations in selecting appropriate tests and provide a case study by reviewing the literature on polychlorinated biphenyls. PMID:20195443
Research Review: Crossing Syndrome Boundaries in the Search for Brain Endophenotypes
ERIC Educational Resources Information Center
Levy, Yonata; Ebstein, Richard P.
2009-01-01
The inherent imprecision of behavioral phenotyping is the single most important factor contributing to the failure to discover the biological factors that are involved in psychiatric and neurodevelopmental disorders (e.g., Bearden & Freimer, 2006). In this review article we argue that in addition to an appreciation of the inherent complexity at…
Increased gender variance in autism spectrum disorders and attention deficit hyperactivity disorder.
Strang, John F; Kenworthy, Lauren; Dominska, Aleksandra; Sokoloff, Jennifer; Kenealy, Laura E; Berl, Madison; Walsh, Karin; Menvielle, Edgardo; Slesaransky-Poe, Graciela; Kim, Kyung-Eun; Luong-Tran, Caroline; Meagher, Haley; Wallace, Gregory L
2014-11-01
Evidence suggests over-representation of autism spectrum disorders (ASDs) and behavioral difficulties among people referred for gender issues, but rates of the wish to be the other gender (gender variance) among different neurodevelopmental disorders are unknown. This chart review study explored rates of gender variance as reported by parents on the Child Behavior Checklist (CBCL) in children with different neurodevelopmental disorders: ASD (N = 147, 24 females and 123 males), attention deficit hyperactivity disorder (ADHD; N = 126, 38 females and 88 males), or a medical neurodevelopmental disorder (N = 116, 57 females and 59 males), were compared with two non-referred groups [control sample (N = 165, 61 females and 104 males) and non-referred participants in the CBCL standardization sample (N = 1,605, 754 females and 851 males)]. Significantly greater proportions of participants with ASD (5.4%) or ADHD (4.8%) had parent reported gender variance than in the combined medical group (1.7%) or non-referred comparison groups (0-0.7%). As compared to non-referred comparisons, participants with ASD were 7.59 times more likely to express gender variance; participants with ADHD were 6.64 times more likely to express gender variance. The medical neurodevelopmental disorder group did not differ from non-referred samples in likelihood to express gender variance. Gender variance was related to elevated emotional symptoms in ADHD, but not in ASD. After accounting for sex ratio differences between the neurodevelopmental disorder and non-referred comparison groups, gender variance occurred equally in females and males.
Rollins, Caitlin K; Newburger, Jane W; Roberts, Amy E
2017-10-01
Neurodevelopmental impairment is common in children with moderate to severe congenital heart disease (CHD). As children live longer and healthier lives, research has focused on identifying causes of neurodevelopmental morbidity that significantly impact long-term quality of life. This review will address the role of genetic factors in predicting neurodevelopmental outcome in CHD. A robust literature suggests that among children with various forms of CHD, those with known genetic/extracardiac anomalies are at highest risk of neurodevelopmental impairment. Advances in genetic technology have identified genetic causes of CHD in an increasing percentage of patients. Further, emerging data suggest substantial overlap between mutations in children with CHD and those that have previously been associated with neurodevelopmental disorders. Innate and patient factors appear to be more important in predicting neurodevelopmental outcome than medical/surgical variables. Future research is needed to establish a broader understanding of the mutations that contribute to neurodevelopmental disorders and the variations in expressivity and penetrance.
Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes
Loe, Irene M.
2015-01-01
Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and th neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism. PMID:25585889
Children with optic nerve hypoplasia face a high risk of neurodevelopmental disorders.
Dahl, Sara; Wickström, Ronny; Ek, Ulla; Teär Fahnehjelm, Kristina
2018-03-01
Optic nerve hypoplasia (ONH) is a congenital ocular malformation that has been associated with neurodevelopmental disorders, but the prevalence in unilateral disease and less severe visual impairment is unknown. We studied intellectual disability and autism spectrum disorders (ASDs) in patients with ONH. This was a population-based cross-sectional cohort study of 65 patients (33 female) with ONH below 20 years of age, living in Stockholm in December 2009, with data analysed in January 2016. Of these 35 were bilateral and 30 were unilateral. Neurodevelopmental disorders were diagnosed or confirmed by neurological assessments, the Five to Fifteen parent questionnaire and reviewing previous neuropsychological investigations or conducting neuropsychological tests. Bilateral ONH patients had lower mean full scale intelligence quotient scores than unilateral patients (84.4 and 99.4, respectively, p = 0.049). We assessed intellectual disability in 55 eligible patients, and it was more common in patients with bilateral ONH (18 of 32, 56%) than unilateral ONH (two of 23, 9%, p < 0.001). ASDs were diagnosed in seven of 42 (17%) patients. Children with bilateral ONH had a high risk of neurodevelopmental disorders, especially intellectual disability. The risk was lower in unilateral ONH, but the levels of neurodevelopmental disorders warrant screening of both groups. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Adaptive Profiles in Autism and Other Neurodevelopmental Disorders
ERIC Educational Resources Information Center
Mouga, Susana; Almeida, Joana; Café, Cátia; Duque, Frederico; Oliveira, Guiomar
2015-01-01
We investigated the influence of specific autism spectrum disorder (ASD) deficits in learning adaptive behaviour, besides intelligence quotient (IQ). Participated 217 school-aged: ASD (N = 115), and other neurodevelopmental disorders (OND) groups (N = 102) matched by Full-Scale IQ. We compared standard scores of Vineland Adaptive Behaviour Scale…
ERIC Educational Resources Information Center
Ratto, Allison B.; Anthony, Bruno J.; Pugliese, Cara; Mendez, Rocio; Safer-Lichtenstein, Jonathan; Dudley, Katerina M.; Kahn, Nicole F.; Kenworthy, Lauren; Biel, Matthew; Martucci, Jillian L.; Anthony, Laura G.
2017-01-01
Low-income and ethnic minority families continue to face critical disparities in access to diagnostic and treatment services for neurodevelopmental conditions, such as autism spectrum disorder and attention deficit hyperactivity disorder. Despite the growing cultural diversity of the United States, ethnic minority children and families continue to…
Dichter, Gabriel S; Damiano, Cara A; Allen, John A
2012-07-06
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.
2012-01-01
This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette’s syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader–Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies. PMID:22958744
Ayyash, Hani F; Preece, Phillip; Morton, Richard; Cortese, Samuele
2015-06-01
Although melatonin is increasingly used for sleep disturbances in children with neurodevelopmental disorders, evidence on effective dose and impact on specific types of sleep disturbance is limited. We assessed 45 children (35 males, mean age: 6.3 ± 1.7 years) with neurodevelopmental disorders (n = 29: intellectual disability; n = 9: autism spectrum disorder; n = 7: attention-deficit/hyperactivity disorder) and sleep disturbances, treated with melatonin (mean duration: 326 days) with doses increased according to response. Thirty-eight percent of children responded to low (2.5-3 mg), 31% to medium (5-6 mg) and 9% to high doses (9-10 mg) of melatonin, with a significant increase in total hours of sleep/night, decreased sleep onset delay and decreased number of awakenings/night (all: p = 0.001), as measured with sleep diaries. No serious adverse events were reported. Melatonin is generally effective and safe in children with neurodevelopmental conditions. Increasing above 6 mg/night adds further benefit only in a small percentage of children.
Future Directions for Examination of Brain Networks in Neurodevelopmental Disorders.
Uddin, Lucina Q; Karlsgodt, Katherine H
2018-01-01
Neurodevelopmental disorders are associated with atypical development and maturation of brain networks. A recent focus on human connectomics research and the growing popularity of open science initiatives has created the ideal climate in which to make real progress toward understanding the neurobiology of disorders affecting youth. Here we outline future directions for neuroscience researchers examining brain networks in neurodevelopmental disorders, highlighting gaps in the current literature. We emphasize the importance of leveraging large neuroimaging and phenotypic data sets recently made available to the research community, and we suggest specific novel methodological approaches, including analysis of brain dynamics and structural connectivity, that have the potential to produce the greatest clinical insight. Transdiagnostic approaches will also become increasingly necessary as the Research Domain Criteria framework put forth by the National Institute of Mental Health permeates scientific discourse. During this exciting era of big data and increased computational sophistication of analytic tools, the possibilities for significant advancement in understanding neurodevelopmental disorders are limitless.
Smith, B L; Reyes, T M
2017-10-01
Maternal malnutrition significantly increases offspring risk for both metabolic and neurodevelopmental disorders. Animal models of maternal malnutrition have identified behavioral changes in the adult offspring related to executive function and reward processing. Together, these changes in executive and reward-based behaviors likely contribute to the etiology of both metabolic and neurodevelopmental disorders associated with maternal malnutrition. Concomitant with the behavioral effects, maternal malnutrition alters offspring expression of reward-related molecules and inflammatory signals in brain pathways that control executive function and reward. Neuroimmune pathways and microglial interactions in these specific brain circuits, either in early development or later in adulthood, could directly contribute to the maternal malnutrition-induced behavioral phenotypes. Understanding these mechanisms will help advance treatment strategies for metabolic and neurodevelopmental disorders, especially noninvasive dietary supplementation interventions. Copyright © 2017 Elsevier Inc. All rights reserved.
Samaco, Rodney C.; Fryer, John D.; Ren, Jun; Fyffe, Sharyl; Chao, Hsiao-Tuan; Sun, Yaling; Greer, John J.; Zoghbi, Huda Y.; Neul, Jeffrey L.
2008-01-01
Rett Syndrome, an X-linked dominant neurodevelopmental disorder characterized by regression of language and hand use, is primarily caused by mutations in methyl-CpG-binding protein 2 (MECP2). Loss of function mutations in MECP2 are also found in other neurodevelopmental disorders such as autism, Angelman-like syndrome and non-specific mental retardation. Furthermore, duplication of the MECP2 genomic region results in mental retardation with speech and social problems. The common features of human neurodevelopmental disorders caused by the loss or increase of MeCP2 function suggest that even modest alterations of MeCP2 protein levels result in neurodevelopmental problems. To determine whether a small reduction in MeCP2 level has phenotypic consequences, we characterized a conditional mouse allele of Mecp2 that expresses 50% of the wild-type level of MeCP2. Upon careful behavioral analysis, mice that harbor this allele display a spectrum of abnormalities such as learning and motor deficits, decreased anxiety, altered social behavior and nest building, decreased pain recognition and disrupted breathing patterns. These results indicate that precise control of MeCP2 is critical for normal behavior and predict that human neurodevelopmental disorders will result from a subtle reduction in MeCP2 expression. PMID:18321864
Intellectual Profiles in the Autism Spectrum and Other Neurodevelopmental Disorders
ERIC Educational Resources Information Center
Mouga, Susana; Café, Cátia; Almeida, Joana; Marques, Carla; Duque, Frederico; Oliveira, Guiomar
2016-01-01
The influence of specific autism spectrum disorder (ASD) deficits in Intelligence Quotients (IQ), Indexes and subtests from the Wechsler Intelligence Scale for Children-III was investigated in 445 school-aged children: ASD (N = 224) and other neurodevelopmental disorders (N = 221), matched by Full-Scale IQ and chronological age. ASD have lower…
Sleep in Neurodevelopmental Disorders
Esbensen, Anna J; Schwichtenberg, Amy J
2017-01-01
Individuals with intellectual and developmental disabilities (IDD) experience sleep problems at higher rates than the general population. Although individuals with IDD are a heterogeneous group, several sleep problems cluster within genetic syndromes or disorders. This review summarizes the prevalence of sleep problems experienced by individuals with Angelman syndrome, Cornelia de Lange syndrome, Cri du Chat syndrome, Down syndrome, fragile X syndrome, Prader-Willi syndrome, Smith-Magenis syndrome, Williams syndrome, autism spectrum disorder, and idiopathic IDD. Factors associated with sleep problems and the evidence for sleep treatments are reviewed for each neurodevelopmental disorder. Sleep research advancements in neurodevelopmental disorders are reviewed, including the need for consistency in defining and measuring sleep problems, considerations for research design and reporting of results, and considerations when evaluating sleep treatments. PMID:28503406
Melatonin for sleep problems in children with neurodevelopmental disorders.
2015-10-01
Children with neurodevelopmental disorders are at risk of sleep problems, typically difficulty getting to sleep, sleep/wake rhythm disturbances and reduced duration of sleep (insomnia). This may be associated with abnormally timed or inadequate secretion of melatonin, a naturally-occurring hormone involved in coordinating the body's sleep-wake cycle. Previously, we reviewed the use of a melatonin product licensed for primary insomnia in adults aged over 55 years. Here we review off-label and unlicensed use of melatonin in children with attention-deficit hyperactivity disorder (ADHD) or autism spectrum disorder or related neurodevelopmental disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Impact of bilirubin-induced neurologic dysfunction on neurodevelopmental outcomes.
Wusthoff, Courtney J; Loe, Irene M
2015-02-01
Bilirubin-induced neurologic dysfunction (BIND) is the constellation of neurologic sequelae following milder degrees of neonatal hyperbilirubinemia than are associated with kernicterus. Clinically, BIND may manifest after the neonatal period as developmental delay, cognitive impairment, disordered executive function, and behavioral and psychiatric disorders. However, there is controversy regarding the relative contribution of neonatal hyperbilirubinemia versus other risk factors to the development of later neurodevelopmental disorders in children with BIND. In this review, we focus on the empiric data from the past 25 years regarding neurodevelopmental outcomes and BIND, including specific effects on developmental delay, cognition, speech and language development, executive function, and the neurobehavioral disorders, such as attention deficit/hyperactivity disorder and autism. Copyright © 2014 Elsevier Ltd. All rights reserved.
A compensatory role for declarative memory in neurodevelopmental disorders.
Ullman, Michael T; Pullman, Mariel Y
2015-04-01
Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional in these disorders, and because it can learn and retain numerous types of information, functions, and tasks, this system should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fung, Lawrence K; Quintin, Eve-Marie; Haas, Brian W; Reiss, Allan L
2012-04-01
The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive-behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well - microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene-brain-behavior links occurring in neurodevelopmental disorders.
ERIC Educational Resources Information Center
Raznahan, A.; Joinson, C.; O'Callaghan, F.; Osborne, J. P.; Bolton, P. F.
2006-01-01
Background: Tuberous sclerosis (TS) is a multi- system disorder with complex genetics. The neurodevelopmental manifestations of TS are responsible for considerable morbidity. The prevalence of epilepsy and intellectual disabilities among individuals with TS have been well described. Ours is the first study that explores the prevalence and pattern…
ERIC Educational Resources Information Center
Jivraj, Jamil; Sacrey, Lori-Ann; Newton, Amanda; Nicholas, David; Zwaigenbaum, Lonnie
2014-01-01
Participatory research aims to increase the relevance and broaden the implementation of health research by involving those affected by the outcomes of health studies. Few studies within the field of neurodevelopmental disorders, particularly autism spectrum disorders, have involved autistic individuals as partners. This study sought to identify…
Shehata, Amany I; Hassanein, Faika I; Abdul-Ghani, Rashad
2016-02-01
Toxoplasma gondii is an opportunistic parasite with neurotropic characteristics that can mediate neurodevelopmental disorders, including mental, behavioral and personality aspects of their hosts. Therefore, the seroprevalence of anti-Toxoplasma antibodies has been studied in patients with different neurological disorders from different localities. On searching online databases, however, we could not find published studies on the seroprevalence of anti-Toxoplasma antibodies among patients with neurodevelopmental disorders in Egypt. Therefore, the present preliminary study was conducted to determine the serological profile of T. gondii infection among patients with non-schizophrenic neurodevelopmental disorders in Alexandria, Egypt. Data and blood samples were collected from 188 patients recruited for the study from four mental rehabilitation centers in the period from July 2014 to March 2015. The overall seropositivity rates of IgM and IgG among patients were 16.5% (31/188) and 50.0% (94/188), respectively. Of the studied patients' characteristics, only age was significantly associated with anti-Toxoplasma IgG seropositivity, with older patients being about twice more likely exposed to infection. However, no statistically significant association was found with IgM. In addition, seropositivity of anti-Toxoplasma IgG, but not IgM, was significantly associated with non-schizophrenic neurodevelopmental disorders; however, neither IgG nor IgM showed a significant association with cognitive impairment as indicated by the intelligence quotient scores. Copyright © 2015 Elsevier B.V. All rights reserved.
Glutamatergic synapses in neurodevelopmental disorders.
Moretto, Edoardo; Murru, Luca; Martano, Giuseppe; Sassone, Jenny; Passafaro, Maria
2018-06-08
Neurodevelopmental disorders (NDDs) are a group of diseases whose symptoms arise during childhood or adolescence and that impact several higher cognitive functions such as learning, sociability and mood. Accruing evidence suggests that a shared pathogenic mechanism underlying these diseases is the dysfunction of glutamatergic synapses. We summarize present knowledge on autism spectrum disorders (ASD), intellectual disability (ID), Down syndrome (DS), Rett syndrome (RS) and attention-deficit hyperactivity disorder (ADHD), highlighting the involvement of glutamatergic synapses and receptors in these disorders. The most commonly shared defects involve α-amino-3-hydroxy-5-methyl- 4-isoxazole propionic acid receptors (AMPARs), N-methyl-d-aspartate receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), whose functions are strongly linked to synaptic plasticity, affecting both cell-autonomous features as well as circuit formation. Moreover, the major scaffolding proteins and, thus, the general structure of the synapse are often deregulated in neurodevelopmental disorders, which is not surprising considering their crucial role in the regulation of glutamate receptor positioning and functioning. This convergence of defects supports the definition of neurodevelopmental disorders as a continuum of pathological manifestations, suggesting that glutamatergic synapses could be a therapeutic target to ameliorate patient symptomatology. Copyright © 2017. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Perovic, Alexandra; Modyanova, Nadya; Wexler, Ken
2013-01-01
This study investigates whether distinct neurodevelopmental disorders show distinct patterns of impairments in particular grammatical abilities and the relation of those grammatical patterns to general language delays and intellectual disabilities. We studied two disorders (autism and Williams syndrome [WS]) and two distinct properties (Principle…
ERIC Educational Resources Information Center
Kakooza-Mwesige, Angelina; Ssebyala, Keron; Karamagi, Charles; Kiguli, Sarah; Smith, Karen; Anderson, Meredith C.; Croen, Lisa A.; Trevathan, Edwin; Hansen, Robin; Smith, Daniel; Grether, Judith K.
2014-01-01
Neurodevelopmental disorders are recognized to be relatively common in developing countries but little data exist for planning effective prevention and intervention strategies. In particular, data on autism spectrum disorders are lacking. For application in Uganda, we developed a 23-question screener (23Q) that includes the Ten Questions screener…
ERIC Educational Resources Information Center
Arnsten, Amy F. T.; Rubia, Katya
2012-01-01
Objective: This article aims to review basic and clinical studies outlining the roles of prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compromised in childhood neurodevelopmental disorders and how these map into the neuroimaging evidence of circuit abnormalities in these disorders. Method: Studies of animals,…
A compensatory role for declarative memory in neurodevelopmental disorders
Ullman, Michael T.; Pullman, Mariel Y.
2015-01-01
Most research on neurodevelopmental disorders has focused on their abnormalities. However, what remains intact may also be important. Increasing evidence suggests that declarative memory, a critical learning and memory system in the brain, remains largely functional in a number of neurodevelopmental disorders. Because declarative memory remains functional, and because this system can learn and retain numerous types of information, functions, and tasks, it should be able to play compensatory roles for multiple types of impairments across the disorders. Here, we examine this hypothesis for specific language impairment, dyslexia, autism spectrum disorder, Tourette syndrome, and obsessive-compulsive disorder. We lay out specific predictions for the hypothesis and review existing behavioral, electrophysiological, and neuroimaging evidence. Overall, the evidence suggests that declarative memory indeed plays compensatory roles for a range of impairments across all five disorders. Finally, we discuss diagnostic, therapeutic and other implications. PMID:25597655
Copy Number Variation in Obsessive-Compulsive Disorder and Tourette Syndrome: A Cross-Disorder Study
McGrath, Lauren M.; Yu, Dongmei; Marshall, Christian; Davis, Lea K.; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A.; Osiecki, Lisa; O’Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A.; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Cath, Danielle C.; Cavallini, Maria C.; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, Damiaan; Derks, Eske M.; Dion, Yves; Rosário, Maria C.; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas; Garrido, Helena; Geller, Daniel; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A.; Hemmings, Sian M.J.; Herrera, Luis D.; Hounie, Ana G.; Jankovic, Joseph; Kennedy, James L; King, Robert A.; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L.; Lyon, Gholson J.; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T.; McMahon, William; Murphy, Dennis L.; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark; Robertson, Mary M.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Tischfield, Jay A.; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Shugart, Yin Yao; Miguel, Euripedes C.; Nicolini, Humberto; Oostra, Ben A.; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A.; Cox, Nancy J.; Hanna, Gregory L.; Brentani, Helena; Scherer, Stephen W.; Arnold, Paul D.; Stewart, S. Evelyn; Mathews, Carol A.; Knowles, James A.; Cook, Edwin H.; Pauls, David L.; Wang, Kai; Scharf, Jeremiah M.
2014-01-01
Objective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable, neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date. Method The primary analyses utilized a cross-disorder design for 2,699 patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls. Parental data facilitated a de novo analysis in 348 OCD trios. Results Although no global CNV burden was detected in the cross-disorder analysis or in secondary, disease-specific analyses, there was a 3.3-fold increased burden of large deletions previously associated with other neurodevelopmental disorders (p=.09). Half of these neurodevelopmental deletions were located in a single locus, 16p13.11 (5 patient deletions: 0 control deletions, p=0.08 in current study, p=0.025 compared to published controls). Three 16p13.11 deletions were confirmed de novo, providing further support to the etiological significance of this region. The overall OCD de novo rate was 1.4%, which is intermediate between published rates in controls (0.7%) and in autism or schizophrenia (2–4%). Conclusion Several converging lines of evidence implicate 16p13.11 deletions in OCD, with weaker evidence for a role in TS. The trend toward increased overall neurodevelopmental CNV burden in TS and OCD suggests that deletions previously associated with other neurodevelopmental disorders may also contribute to these phenotypes. PMID:25062598
Bodnar, Tamara S; Raineki, Charlis; Wertelecki, Wladimir; Yevtushok, Lyubov; Plotka, Larisa; Zymak-Zakutnya, Natalya; Honerkamp-Smith, Gordon; Wells, Alan; Rolland, Matthieu; Woodward, Todd S; Coles, Claire D; Kable, Julie A; Chambers, Christina D; Weinberg, Joanne
2018-05-05
Cytokines and chemokines are potent modulators of brain development and as such, dysregulation of the maternal immune system can result in deviations in the fetal cytokine balance, altering the course of typical brain development, and putting the individual on a "pathway to pathology". In the current study, we used a multi-variate approach to evaluate networks of interacting cytokines and investigated whether alterations in the maternal immune milieu could be linked to alcohol-related and alcohol-independent child neurodevelopmental delay. This was achieved through the measurement of 40 cytokines/chemokines from maternal blood samples collected during the second and third trimesters of pregnancy. Importantly, during the second trimester we identified network enrichment in levels of cytokines including IFN-ɣ, IL-10, TNF-β, TNF-α, and CRP associated with offspring neurodevelopmental delay. However, as elevations in levels of these cytokines have previously been reported in a wide range of neurodevelopmental disorders including autism spectrum disorder and schizophrenia, we suggest that this cytokine profile is likely not disorder specific, but rather may be an indicator of neurodevelopmental delay in general. By contrast, distinct clusters of activated/inhibited cytokines were identified based on maternal alcohol consumption and child neurodevelopmental outcome. Specifically, cytokines including IL-15, IL-10, MDC, and members of the VEGF sub-family were highest in alcohol-consuming mothers of children with neurodevelopmental delay and were identified in both network analyses and examination of individual cytokines, whereas a differential and unique cytokine profile was identified in the case of alcohol-independent child neurodevelopmental delay. We propose that the current findings could provide a critical step towards the development of early biomarkers and possibly interventions for alcohol-related neurodevelopmental delay. Importantly, the current approach could be informative for understanding mechanisms linking maternal immune system dysfunction and adverse child outcomes in a range of other neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.
Chen, Ginden; Chiang, Wan-Lin; Shu, Bih-Ching; Guo, Yue Leon; Chiou, Shu-Ti; Chiang, Tung-liang
2017-01-01
Objectives Whether birth by caesarean section (CS) increases the occurrence of neurodevelopmental disorders, asthma or obesity in childhood is controversial. We tried to demonstrate the association between children born by CS and the occurrence of the above three diseases at the age of 5.5 years. Methods The database of the Taiwan Birth Cohort Study which was designed to assess the developmental trajectories of 24 200 children born in 2005 was used in this study. Associations between children born by CS and these three diseases were evaluated before and after controlling for gestational age (GA) at birth, children’s characteristics and disease-related predisposing factors. Results Children born by CS had significant increases in neurodevelopmental disorders (20%), asthma (14%) and obesity (18%) compared with children born by vaginal delivery. The association between neurodevelopmental disorders and CS was attenuated after controlling for GA at birth (OR 1.15; 95% CI 0.98 to 1.34). Occurrence of neurodevelopmental disorders steadily declined with increasing GA up to ≤40–42 weeks. CS and childhood asthma were not significantly associated after controlling for parental history of asthma and GA at birth. Obesity in childhood remained significantly associated with CS (OR 1.13; 95% CI 1.04 to 1.24) after controlling for GA and disease-related factors. Conclusions Our results implied that the association between CS birth and children’s neurodevelopmental disorders was significantly influenced by GA. CS birth was weakly associated with childhood asthma since parental asthma and preterm births are stronger predisposing factors. The association between CS birth and childhood obesity was robust after controlling for disease-related factors. PMID:28963295
Reducing neurodevelopmental disorders and disability through research and interventions.
Boivin, Michael J; Kakooza, Angelina M; Warf, Benjamin C; Davidson, Leslie L; Grigorenko, Elena L
2015-11-19
We define neurodevelopment as the dynamic inter-relationship between genetic, brain, cognitive, emotional and behavioural processes across the developmental lifespan. Significant and persistent disruption to this dynamic process through environmental and genetic risk can lead to neurodevelopmental disorders and disability. Research designed to ameliorate neurodevelopmental disorders in low- and middle-income countries, as well as globally, will benefit enormously from the ongoing advances in understanding their genetic and epigenetic causes, as modified by environment and culture. We provide examples of advances in the prevention and treatment of, and the rehabilitation of those with, neurodevelopment disorders in low- and middle-income countries, along with opportunities for further strategic research initiatives. Our examples are not the only possibilities for strategic research, but they illustrate problems that, when solved, could have a considerable impact in low-resource settings. In each instance, research in low- and middle-income countries led to innovations in identification, surveillance and treatment of a neurodevelopmental disorder. These innovations have also been integrated with genotypic mapping of neurodevelopmental disorders, forming important preventative and rehabilitative interventions with the potential for high impact. These advances will ultimately allow us to understand how epigenetic influences shape neurodevelopmental risk and resilience over time and across populations. Clearly, the most strategic areas of research opportunity involve cross-disciplinary integration at the intersection between the environment, brain or behaviour neurodevelopment, and genetic and epigenetic science. At these junctions a robust integrative cross-disciplinary scientific approach is catalysing the creation of technologies and interventions for old problems. Such approaches will enable us to achieve and sustain the United Nations moral and legal mandate for child health and full development as a basic global human right.
Advances in Tourette syndrome: diagnoses and treatment.
Serajee, Fatema J; Mahbubul Huq, A H M
2015-06-01
Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder characterized by multiple motor tics and at least one vocal or phonic tic, and often one or more comorbid psychiatric disorders. Premonitory sensory urges before tic execution and desire for "just-right" perception are central features. The pathophysiology involves cortico-striato-thalamo-cortical circuits and possibly dopaminergic system. TS is considered a genetic disorder but the genetics is complex and likely involves rare mutations, common variants, and environmental and epigenetic factors. Treatment is multimodal and includes education and reassurance, behavioral interventions, pharmacologic, and rarely, surgical interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
High burden of genetic conditions diagnosed in a cardiac neurodevelopmental clinic.
Goldenberg, Paula C; Adler, Betsy J; Parrott, Ashley; Anixt, Julia; Mason, Karen; Phillips, Jannel; Cooper, David S; Ware, Stephanie M; Marino, Bradley S
2017-04-01
There is a known high prevalence of genetic and clinical syndrome diagnoses in the paediatric cardiac population. These disorders often have multisystem effects, which may have an important impact on neurodevelopmental outcomes. Taken together, these facts suggest that patients and families may benefit from consultation by genetic specialists in a cardiac neurodevelopmental clinic. This study assessed the burden of genetic disorders and utility of genetics evaluation in a cardiac neurodevelopmental clinic. A retrospective chart review was conducted of patients evaluated in a cardiac neurodevelopmental clinic from 6 December, 2011 to 16 April, 2013. All patients were seen by a cardiovascular geneticist with genetic counselling support. A total of 214 patients were included in this study; 64 of these patients had a pre-existing genetic or syndromic diagnosis. Following genetics evaluation, an additional 19 were given a new clinical or laboratory-confirmed genetic diagnosis including environmental such as teratogenic exposures, malformation associations, chromosomal disorders, and single-gene disorders. Genetic testing was recommended for 112 patients; radiological imaging to screen for congenital anomalies for 17 patients; subspecialist medical referrals for 73 patients; and non-genetic clinical laboratory testing for 14 patients. Syndrome-specific guidelines were available and followed for 25 patients with known diagnosis. American Academy of Pediatrics Red Book asplenia guideline recommendations were given for five heterotaxy patients, and family-based cardiac screening was recommended for 23 families affected by left ventricular outflow tract obstruction. Genetics involvement in a cardiac neurodevelopmental clinic is helpful in identifying new unifying diagnoses and providing syndrome-specific care, which may impact the patient's overall health status and neurodevelopmental outcome.
Hirjak, Dusan; Wolf, Robert C; Paternoga, Isa; Kubera, Katharina M; Thomann, Anne K; Stieltjes, Bram; Maier-Hein, Klaus H; Thomann, Philipp A
2016-05-01
Neurological soft signs (NSS) are frequently found in psychiatric disorders of significant neurodevelopmental origin. Previous MRI studies in schizophrenia have shown that NSS are associated with abnormal cortical, thalamic and cerebellar structure and function. So far, however, no neuroimaging studies investigated brain correlates of NSS in individuals with Asperger-Syndrome (AS) and the question whether the two disorders exhibit common or disease-specific cortical correlates of NSS remains unresolved. High-resolution MRI data at 3 T were obtained from 48 demographically matched individuals (16 schizophrenia patients, 16 subjects with AS and 16 healthy individuals). The surface-based analysis via Freesurfer enabled calculation of cortical thickness, area and folding (local gyrification index, LGI). NSS were examined on the Heidelberg Scale and related to cortical measures. In schizophrenia, higher NSS were associated with reduced cortical thickness and LGI in fronto-temporo-parietal brain areas. In AS, higher NSS were associated with increased frontotemporal cortical thickness. This study lends further support to the hypothesis that disorder-specific mechanisms contribute to NSS expression in schizophrenia and AS. Pointing towards dissociable neural patterns may help deconstruct the complex processes underlying NSS in these neurodevelopmental disorders.
Cryptorchidism and increased risk of neurodevelopmental disorders.
Chen, Jianping; Sørensen, Henrik Toft; Miao, Maohua; Liang, Hong; Ehrenstein, Vera; Wang, Ziliang; Yuan, Wei; Li, Jiong
2018-01-01
Male congenital malformations as cryptorchidism may contribute to the development of neurodevelopmental disorders directly or via shared familial genetic and/or environmental factors, but the evidence is sparse. Using population-based health registries, we conducted a cohort study of all liveborn singleton boys in Denmark during 1979-2008. Boys with a diagnosis of cryptorchidism were categorized into the exposed cohort and the other boys into the unexposed comparison cohort. The outcomes were diagnoses of any neurodevelopmental disorders and their subtypes. We used Cox proportional hazards regression to compute hazard ratios (HRs), taking into consideration several potential confounders. Among 884,083 male infants, 27,505 received a diagnosis of cryptorchidism during follow-up. Boys with cryptorchidism were more likely to be diagnosed with intellectual disability (HR = 1.77; 95%confidence interval [CI]:1.59,1.97), autism spectrum disorders (ASD) (HR = 1.24; 95% CI:1.13,1.35), attention-deficit hyperactivity disorder (ADHD) (HR = 1.17; 95% CI: 1.08,1.26), anxiety (HR = 1.09; 95% CI: 1.01,1.17), and other behavioral/emotional disorders (HR = 1.16; 95% CI: 1.08,1.26) compared to boys without cryptorchidism. The observed risks of intellectual disability, ASD, and ADHD were increased further in boys with bilateral cryptorchidism. Except for anxiety, cryptorchid boys had higher risks of neurodevelopmental disorders than their non-cryptorchid full brothers. The observed increased risks were similar among boys who underwent orchiopexy, as well as among those with shorter waiting times for this surgery. Cryptorchidism may be associated with increased risks of intellectual disability, ASD, ADHD, and other behavioral/emotional disorders. Cryptorchidism and neurodevelopmental disorders may have shared genetic or in-utero/early postnatal risk factors, which need to be further investigated. Copyright © 2017. Published by Elsevier Ltd.
Developmental pathways to autism: A review of prospective studies of infants at risk☆
Jones, Emily J.H.; Gliga, Teodora; Bedford, Rachael; Charman, Tony; Johnson, Mark H.
2014-01-01
Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders characterized by impairments in social interaction and communication, and the presence of restrictive and repetitive behaviors. Symptoms of ASD likely emerge from a complex interaction between pre-existing neurodevelopmental vulnerabilities and the child's environment, modified by compensatory skills and protective factors. Prospective studies of infants at high familial risk for ASD (who have an older sibling with a diagnosis) are beginning to characterize these developmental pathways to the emergence of clinical symptoms. Here, we review the range of behavioral and neurocognitive markers for later ASD that have been identified in high-risk infants in the first years of life. We discuss theoretical implications of emerging patterns, and identify key directions for future work, including potential resolutions to several methodological challenges for the field. Mapping how ASD unfolds from birth is critical to our understanding of the developmental mechanisms underlying this disorder. A more nuanced understanding of developmental pathways to ASD will help us not only to identify children who need early intervention, but also to improve the range of interventions available to them. PMID:24361967
Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders
Francis, S.M.; Sagar, A.; Levin-Decanini, T.; Liu, W.; Carter, C.S.; Jacob, S.
2015-01-01
Oxytocin (OT) and arginine vasopressin (AVP) are two small, related neuropeptide hormones found in many mammalian species, including humans. Dysregulation of these neuropeptides have been associated with changes in behavior, especially social interactions. We review how the OT and AVP systems have been investigated in Autism Spectrum Disorder (ASD), Prader–Willi Syndrome (PWS), Williams Syndrome (WS) and Fragile X syndrome (FXS). All of these neurodevelopmental disorders (NDD) are marked by social deficits. While PWS, WS and FXS have identified genetic mutations, ASD stems from multiple genes with complex interactions. Animal models of NDD are invaluable for studying the role and relatedness of OT and AVP in the developing brain. We present data from a FXS mouse model affecting the fragile X mental retardation 1 (Fmr1) gene, resulting in decreased OT and AVP staining cells in some brain regions. Reviewing the research about OT and AVP in these NDD suggests that altered OT pathways may be downstream from different etiological factors and perturbations in development. This has implications for ongoing studies of the therapeutic application of OT in NDD. PMID:24462936
Fung, Lawrence K.; Quintin, Eve-Marie; Haas, Brian W.
2013-01-01
Purpose of review The overarching goal of this review is to compare and contrast the cognitive-behavioral features of fragile X syndrome (FraX) and Williams syndrome and to review the putative neural and molecular underpinnings of these features. Information is presented in a framework that provides guiding principles for conceptualizing gene-brain-behavior associations in neurodevelopmental disorders. Recent findings Abnormalities, in particular cognitive-behavioral domains with similarities in underlying neurodevelopmental correlates, occur in both FraX and Williams syndrome including aberrant frontostriatal pathways leading to executive function deficits, and magnocellular/dorsal visual stream, superior parietal lobe, inferior parietal lobe, and postcentral gyrus abnormalities contributing to deficits in visuospatial function. Compelling cognitive–behavioral and neurodevelopmental contrasts also exist in these two disorders, for example, aberrant amygdala and fusiform cortex structure and function occurring in the context of contrasting social behavioral phenotypes, and temporal cortical and cerebellar abnormalities potentially underlying differences in language function. Abnormal dendritic development is a shared neurodevelopmental morphologic feature between FraX and Williams syndrome. Commonalities in molecular machinery and processes across FraX and Williams syndrome occur as well – microRNAs involved in translational regulation of major synaptic proteins; scaffolding proteins in excitatory synapses; and proteins involved in axonal development. Summary Although the genetic variations leading to FraX and Williams syndrome are different, important similarities and contrasts in the phenotype, neurocircuitry, molecular machinery, and cellular processes in these two disorders allow for a unique approach to conceptualizing gene–brain–behavior links occurring in neurodevelopmental disorders. PMID:22395002
Maternal obesity and neurodevelopmental and psychiatric disorders in offspring
Edlow, Andrea G.
2017-01-01
There is a growing body of evidence from both human epidemiologic and animal studies that prenatal and lactational exposure to maternal obesity and high-fat diet are associated with neurodevelopmental and psychiatric disorders in offspring. These disorders include cognitive impairment, autism spectrum disorders, attention deficit hyperactivity disorder, cerebral palsy, anxiety and depression, schizophrenia, and eating disorders. This review synthesizes human and animal data linking maternal obesity and high-fat diet consumption to abnormal fetal brain development and neurodevelopmental and psychiatric morbidity in offspring. In addition, it highlights key mechanisms by which maternal obesity and maternal diet might impact fetal and offspring neurodevelopment, including neuroinflammation; increased oxidative stress, dysregulated insulin, glucose, and leptin signaling; dysregulated serotonergic and dopaminergic signaling; and perturbations in synaptic plasticity. Finally, the review summarizes available evidence regarding investigational therapeutic approaches to mitigate the harmful effects of maternal obesity on fetal and offspring neurodevelopment. PMID:27684946
School Neuropsychology Consultation in Neurodevelopmental Disorders
ERIC Educational Resources Information Center
Decker, Scott L.
2008-01-01
The role of school psychologists with training in neuropsychology is examined within the context of multitiered models of service delivery and educational reform policies. An expanded role is suggested that builds on expertise in the assessment of neurodevelopmental disorders and extends to broader tiers through consultation practice. Changes in…
Jokiranta-Olkoniemi, Elina; Cheslack-Postava, Keely; Sucksdorff, Dan; Suominen, Auli; Gyllenberg, David; Chudal, Roshan; Leivonen, Susanna; Gissler, Mika; Brown, Alan S; Sourander, Andre
2016-06-01
Previous research has focused on examining the familial clustering of schizophrenia, bipolar disorder, and autism spectrum disorders (ASD). Little is known about the clustering of other psychiatric and neurodevelopmental disorders among siblings of persons with ASD. To examine the risk for psychiatric and neurodevelopmental disorders among full siblings of probands with ASD. The Finnish Prenatal Study of Autism and Autism Spectrum Disorders used a population-based cohort that included children born from January 1, 1987, to December 31, 2005, who received a diagnosis of ASD by December 31, 2007. Each case was individually matched to 4 control participants by sex and date and place of birth. The siblings of the cases and controls were born from January 1, 1977, to December 31, 2005, and received a diagnosis from January 1, 1987, to December 31, 2009. This nested case-control study included 3578 cases with ASD with 6022 full siblings and 11 775 controls with 22 127 siblings from Finnish national registers. Data were analyzed from March 6, 2014, to February 12, 2016. The adjusted risk ratio (RR) for psychiatric and neurodevelopmental disorders among siblings of probands with ASD vs siblings of matched controls. Additional analyses were conducted separately for ASD subgroups, including childhood autism, Asperger syndrome, and pervasive developmental disorders not otherwise specified. Analyses were further stratified by sex and intellectual disability among the probands. Among the 3578 cases with ASD (2841 boys [79.4%]) and 11 775 controls (9345 boys [79.4%]), 1319 cases (36.9%) and 2052 controls (17.4%) had at least 1 sibling diagnosed with any psychiatric or neurodevelopmental disorder (adjusted RR, 2.5; 95% CI, 2.3-2.6). The largest associations were observed for childhood-onset disorders (1061 cases [29.7%] vs 1362 controls [11.6%]; adjusted RR, 3.0; 95% CI, 2.8-3.3), including ASD (374 cases [10.5%] vs 125 controls [1.1%]; adjusted RR, 11.8; 95% CI, 9.4-14.7), tic disorders (28 cases [0.8%] vs 24 controls [0.2%]; adjusted RR, 4.3; 95% CI, 2.3-8.2), attention-deficit/hyperactivity disorder (189 cases [5.3%] vs 180 controls [1.5%]; adjusted RR, 3.7; 95% CI, 2.9-4.7), learning and coordination disorders (563 cases [15.7%] vs 697 controls [5.9%]; adjusted RR, 3.2; 95% CI, 2.8-3.6), intellectual disability (104 cases [2.9%] vs 137 controls [1.2%]; adjusted RR, 3.1; 95% CI, 2.3-4.2), conduct and oppositional disorders (180 cases [5.0%] vs 221 controls [1.9%]; adjusted RR, 2.8; 95% CI, 2.2-3.5), and emotional disorders with onset specific to childhood (126 cases [3.5%] vs 157 controls [1.3%]; adjusted RR, 2.6; 95% CI, 1.9-3.4). Autism spectrum disorders were also associated with schizophrenia spectrum disorders, affective disorders, anxiety disorders, and other neurotic and personality disorders among siblings. Psychiatric and neurodevelopmental disorders cluster among siblings of probands with ASD. For etiologic research, these findings provide further evidence that several psychiatric and neurodevelopmental disorders have common risk factors.
Rapamycin Prevents Seizures After Depletion of STRADA in a Rare Neurodevelopmental Disorder
Parker, Whitney E.; Orlova, Ksenia A.; Parker, William H.; Birnbaum, Jacqueline F.; Krymskaya, Vera P.; Goncharov, Dmitry A.; Baybis, Marianna; Helfferich, Jelte; Okochi, Kei; Strauss, Kevin A.; Crino, Peter B.
2013-01-01
A rare neurodevelopmental disorder in the Old Order Mennonite population called PMSE (polyhydramnios, megalencephaly, and symptomatic epilepsy syndrome; also called Pretzel syndrome) is characterized by infantile-onset epilepsy, neurocognitive delay, craniofacial dysmorphism, and histopathological evidence of heterotopic neurons in subcortical white matter and subependymal regions. PMSE is caused by a homozygous deletion of exons 9 to 13 of the LYK5/STRADA gene, which encodes the pseudokinase STRADA, an upstream inhibitor of mammalian target of rapamycin complex 1 (mTORC1). We show that disrupted pathfinding in migrating mouse neural progenitor cells in vitro caused by STRADA depletion is prevented by mTORC1 inhibition with rapamycin or inhibition of its downstream effector p70 S6 kinase (p70S6K) with the drug PF-4708671 (p70S6Ki). We demonstrate that rapamycin can rescue aberrant cortical lamination and heterotopia associated with STRADA depletion in the mouse cerebral cortex. Constitutive mTORC1 signaling and a migration defect observed in fibroblasts from patients with PMSE were also prevented by mTORC1 inhibition. On the basis of these preclinical findings, we treated five PMSE patients with sirolimus (rapamycin) without complication and observed a reduction in seizure frequency and an improvement in receptive language. Our findings demonstrate a mechanistic link between STRADA loss and mTORC1 hyperactivity in PMSE, and suggest that mTORC1 inhibition may be a potential treatment for PMSE as well as other mTOR-associated neurodevelopmental disorders. PMID:23616120
Treatments for Neurodevelopmental Disorders: Evidence, Advocacy, and the Internet
ERIC Educational Resources Information Center
Di Pietro, Nina C.; Whiteley, Louise; Mizgalewicz, Ania; Illes, Judy
2013-01-01
The Internet is a major source of health-related information for parents of sick children despite concerns surrounding quality. For neurodevelopmental disorders, the websites of advocacy groups are a largely unexamined source of information. We evaluated treatment information posted on nine highly-trafficked advocacy websites for autism, cerebral…
ERIC Educational Resources Information Center
Simacek, Jessica; Dimian, Adele F.; McComas, Jennifer J.
2017-01-01
Young children with neurodevelopmental disorders such as autism spectrum disorders (ASD) and Rett syndrome often experience severe communication impairments. This study examined the efficacy of parent-implemented communication assessment and intervention with remote coaching via telehealth on the acquisition of early communication skills of three…
Neurodevelopmental and behavioural paediatrics.
McDowell, Michael
2015-01-01
One of the notable shifts in Paediatrics across the last 50 years has been towards disorders that are chronic and qualitative in nature. In addition to physical health, these impact on childhood development, behaviour and wellbeing. Understanding and management of these problems extends the traditional biological toolkit of paediatrics into the complexities of uncertainties of psychological and social context. In Australasia, the profession has responded with the development of Community Paediatrics as a recognised sub-specialty, of which Neurodevelopmental and Behavioural Paediatrics is an important component. These developments are reviewed along with consideration of future challenges for this field of health care. © 2015 The Author. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Wade, Mark; Prime, Heather; Madigan, Sheri
2015-01-01
Neurodevelopmental disorders represent a broad class of childhood neurological conditions that have a significant bearing on the wellbeing of children, families, and communities. In this review, we draw on evidence from two common and widely studied neurodevelopmental disorders—autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD)—to demonstrate the utility of genetically informed sibling designs in uncovering the nature and pathogenesis of these conditions. Specifically, we examine how twin, recurrence risk, and infant prospective tracking studies have contributed to our understanding of genetic and environmental liabilities towards neurodevelopmental morbidity through their impact on neurocognitive processes and structural/functional neuroanatomy. It is suggested that the siblings of children with ASD and ADHD are at risk not only of clinically elevated problems in these areas, but also of subthreshold symptoms and/or subtle impairments in various neurocognitive skills and other domains of psychosocial health. Finally, we close with a discussion on the practical relevance of sibling designs and how these might be used in the service of early screening, prevention, and intervention efforts that aim to alleviate the negative downstream consequences associated with disorders of neurodevelopment. PMID:26258141
ERIC Educational Resources Information Center
Hogue, Aaron; Evans, Steven W.; Levin, Frances R.
2017-01-01
This article introduces neurodevelopmental and clinical considerations for treating adolescents with co-occurring attention deficit hyperactivity disorder (ADHD) and adolescent substance use (ASU) in outpatient settings. We first describe neurobiological impairments common to ADHD and ASU, including comorbidity with conduct disorder, that evoke a…
Different Neurodevelopmental Symptoms Have a Common Genetic Etiology
ERIC Educational Resources Information Center
Pettersson, Erik; Anckarsäter, Henrik; Gillberg, Christopher; Lichtenstein, Paul
2013-01-01
Background: Although neurodevelopmental disorders are demarcated as discrete entities in the Diagnostic Statistical Manual of mental disorders, empirical evidence indicates that there is a high degree of overlap among them. The first aim of this investigation was to explore if a single general factor could account for the large degree of observed…
Long-term neurodevelopmental benefits of breastfeeding.
Bar, Sari; Milanaik, Ruth; Adesman, Andrew
2016-08-01
The American Academy of Pediatrics recommends exclusive breastfeeding for the first 6 months of an infant#$#apos;s life, with continuation of breastfeeding for at least a year or as mutually desired by mother and child. A robust body of research literature documenting the short-term medical, developmental, and emotional benefits of breastfeeding for infants and toddlers supports this position. This article reviews the neurodevelopmental benefits of breastfeeding as it relates to preschool and school-age children, with particular emphasis on cognitive development, attention-deficit/hyperactivity disorder, and autism spectrum disorder. The majority of research studies examining breastfeeding and long-term neurodevelopmental outcomes suggest that children who breastfeed for longer than 6 months have better cognitive outcomes, lower risk of developing attention-deficit/hyperactivity disorder, and lower risk of being diagnosed with autism spectrum disorder. Pediatricians play a critical role in educating and counseling families about infant nutrition and feeding. Along with the many positive short-term medical effects that breastfeeding confers, physicians should be aware of the growing body of research suggesting that there are also significant long-term neurodevelopmental benefits of breastfeeding.
New insights into the role of motion and form vision in neurodevelopmental disorders.
Johnston, Richard; Pitchford, Nicola J; Roach, Neil W; Ledgeway, Timothy
2017-12-01
A selective deficit in processing the global (overall) motion, but not form, of spatially extensive objects in the visual scene is frequently associated with several neurodevelopmental disorders, including preterm birth. Existing theories that proposed to explain the origin of this visual impairment are, however, challenged by recent research. In this review, we explore alternative hypotheses for why deficits in the processing of global motion, relative to global form, might arise. We describe recent evidence that has utilised novel tasks of global motion and global form to elucidate the underlying nature of the visual deficit reported in different neurodevelopmental disorders. We also examine the role of IQ and how the sex of an individual can influence performance on these tasks, as these are factors that are associated with performance on global motion tasks, but have not been systematically controlled for in previous studies exploring visual processing in clinical populations. Finally, we suggest that a new theoretical framework is needed for visual processing in neurodevelopmental disorders and present recommendations for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chen, Ginden; Chiang, Wan-Lin; Shu, Bih-Ching; Guo, Yue Leon; Chiou, Shu-Ti; Chiang, Tung-Liang
2017-09-27
Whether birth by caesarean section (CS) increases the occurrence of neurodevelopmental disorders, asthma or obesity in childhood is controversial. We tried to demonstrate the association between children born by CS and the occurrence of the above three diseases at the age of 5.5 years. The database of the Taiwan Birth Cohort Study which was designed to assess the developmental trajectories of 24 200 children born in 2005 was used in this study. Associations between children born by CS and these three diseases were evaluated before and after controlling for gestational age (GA) at birth, children's characteristics and disease-related predisposing factors. Children born by CS had significant increases in neurodevelopmental disorders (20%), asthma (14%) and obesity (18%) compared with children born by vaginal delivery. The association between neurodevelopmental disorders and CS was attenuated after controlling for GA at birth (OR 1.15; 95% CI 0.98 to 1.34). Occurrence of neurodevelopmental disorders steadily declined with increasing GA up to ≤40-42 weeks. CS and childhood asthma were not significantly associated after controlling for parental history of asthma and GA at birth. Obesity in childhood remained significantly associated with CS (OR 1.13; 95% CI 1.04 to 1.24) after controlling for GA and disease-related factors. Our results implied that the association between CS birth and children's neurodevelopmental disorders was significantly influenced by GA. CS birth was weakly associated with childhood asthma since parental asthma and preterm births are stronger predisposing factors. The association between CS birth and childhood obesity was robust after controlling for disease-related factors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
De novo mutations in regulatory elements in neurodevelopmental disorders
Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.
2018-01-01
We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236
Management of sleep disorders in neurodevelopmental disorders and genetic syndromes.
Heussler, Helen S
2016-03-01
Sleep disorders in individuals with developmental difficulties continue to be a significant challenge for families, carers, and therapists with a major impact on individuals and carers alike. This review is designed to update the reader on recent developments in this area. A systematic search identified a variety of studies illustrating advances in the regulation of circadian rhythm and sleep disturbance in neurodevelopmental disorders. Specific advances are likely to lead in some disorders to targeted therapies. There is strong evidence that behavioural and sleep hygiene measures should be first line therapy; however, studies are still limited in this area. Nonpharmacological measures such as exercise, sensory interventions, and behavioural are reported. Behavioural regulation and sleep hygiene demonstrate the best evidence for improved sleep parameters in individuals with neurodisability. Although the mainstay of management of children with sleep problems and neurodevelopmental disability is similar to that of typically developing children, there is emerging evidence of behavioural strategies being successful in large-scale trials and the promise of more targeted therapies for more specific resistant disorders.
Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi
2016-09-01
Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3',5'-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)-an enzyme involved in the metabolism of T4-by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile-treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Hirashima, Rika; Michimae, Hirofumi; Takemoto, Hiroaki; Sasaki, Aya; Kobayashi, Yoshinori; Itoh, Tomoo; Tukey, Robert H.
2016-01-01
Anticonvulsants can increase the risk of developing neurotoxicity in infants; however, the underlying mechanism has not been elucidated to date. Thyroxine [3,5,3′,5′-l-tetraiodothyronine (T4)] plays crucial roles in the development of the central nervous system. In this study, we hypothesized that induction of UDP-glucuronosyltransferase 1A1 (UGT1A1)—an enzyme involved in the metabolism of T4—by anticonvulsants would reduce serum T4 levels and cause neurodevelopmental toxicity. Exposure of mice to phenytoin during both the prenatal and postnatal periods significantly induced UGT1A1 and decreased serum T4 levels on postnatal day 14. In the phenytoin-treated mice, the mRNA levels of synaptophysin and synapsin I in the hippocampus were lower than those in the control mice. The thickness of the external granule cell layer was greater in phenytoin-treated mice, indicating that induction of UGT1A1 during the perinatal period caused neurodevelopmental disorders. Exposure to phenytoin during only the postnatal period also caused these neurodevelopmental disorders. A T4 replacement attenuated the increase in thickness of the external granule cell layer, indicating that the reduced T4 was specifically associated with the phenytoin-induced neurodevelopmental disorder. In addition, these neurodevelopmental disorders were also found in the carbamazepine- and pregnenolone-16-α-carbonitrile–treated mice. Our study is the first to indicate that UGT1A1 can control neurodevelopment by regulating serum T4 levels. PMID:27413119
Different neurodevelopmental symptoms have a common genetic etiology.
Pettersson, Erik; Anckarsäter, Henrik; Gillberg, Christopher; Lichtenstein, Paul
2013-12-01
Although neurodevelopmental disorders are demarcated as discrete entities in the Diagnostic Statistical Manual of mental disorders, empirical evidence indicates that there is a high degree of overlap among them. The first aim of this investigation was to explore if a single general factor could account for the large degree of observed overlap among neurodevelopmental problems, and explore whether this potential factor was primarily genetic or environmental in origin. The second aim was to explore whether there was systematic covariation, either genetic or environmental, over and above that contributed by the potential general factor, unique to each syndrome. Parents of all Swedish 9- and 12-year-old twin pairs born between 1992 and 2002 were targeted for interview regarding problems typical of autism spectrum disorders, ADHD and other neurodevelopmental conditions (response rate: 80 percent). Structural equation modeling was conducted on 6,595 pairs to examine the genetic and environmental structure of 53 neurodevelopmental problems. One general genetic factor accounted for a large proportion of the phenotypic covariation among the 53 symptoms. Three specific genetic subfactors identified 'impulsivity,' 'learning problems,' and 'tics and autism,' respectively. Three unique environment factors identified 'autism,' 'hyperactivity and impulsivity,' and 'inattention and learning problems,' respectively. One general genetic factor was responsible for the wide-spread phenotypic overlap among all neurodevelopmental symptoms, highlighting the importance of addressing broad patient needs rather than specific diagnoses. The unique genetic factors may help guide diagnostic nomenclature, whereas the unique environmental factors may highlight that neurodevelopmental symptoms are responsive to change at the individual level and may provide clues into different mechanisms and treatments. Future research would benefit from assessing the general factor separately from specific factors to better understand observed overlap among neurodevelopmental problems. © 2013 The Authors. Journal of Child Psychology and Psychiatry © 2013 Association for Child and Adolescent Mental Health.
The effects of aging on the BTBR mouse model of autism spectrum disorder
Jasien, Joan M.; Daimon, Caitlin M.; Wang, Rui; Shapiro, Bruce K.; Martin, Bronwen; Maudsley, Stuart
2014-01-01
Autism spectrum disorder (ASD) is a complex heterogeneous neurodevelopmental disorder characterized by alterations in social functioning, communicative abilities, and engagement in repetitive or restrictive behaviors. The process of aging in individuals with autism and related neurodevelopmental disorders is not well understood, despite the fact that the number of individuals with ASD aged 65 and older is projected to increase by over half a million individuals in the next 20 years. To elucidate the effects of aging in the context of a modified central nervous system, we investigated the effects of age on the BTBR T + tf/j mouse, a well characterized and widely used mouse model that displays an ASD-like phenotype. We found that a reduction in social behavior persists into old age in male BTBR T + tf/j mice. We employed quantitative proteomics to discover potential alterations in signaling systems that could regulate aging in the BTBR mice. Unbiased proteomic analysis of hippocampal and cortical tissue of BTBR mice compared to age-matched wild-type controls revealed a significant decrease in brain derived neurotrophic factor and significant increases in multiple synaptic markers (spinophilin, Synapsin I, PSD 95, NeuN), as well as distinct changes in functional pathways related to these proteins, including “Neural synaptic plasticity regulation” and “Neurotransmitter secretion regulation.” Taken together, these results contribute to our understanding of the effects of aging on an ASD-like mouse model in regards to both behavior and protein alterations, though additional studies are needed to fully understand the complex interplay underlying aging in mouse models displaying an ASD-like phenotype. PMID:25225482
A novel missense mutation in GRIN2A causes a nonepileptic neurodevelopmental disorder.
Fernández-Marmiesse, Ana; Kusumoto, Hirofumi; Rekarte, Saray; Roca, Iria; Zhang, Jin; Myers, Scott J; Traynelis, Stephen F; Couce, Mª Luz; Gutierrez-Solana, Luis; Yuan, Hongjie
2018-04-11
Mutations in the GRIN2A gene, which encodes the GluN2A (glutamate [NMDA] receptor subunit epsilon-1) subunit of the N-methyl-d-aspartate receptor, have been identified in patients with epilepsy-aphasia spectrum disorders, idiopathic focal epilepsies with centrotemporal spikes, and epileptic encephalopathies with severe developmental delay. However, thus far, mutations in this gene have not been associated with a nonepileptic neurodevelopmental disorder with dystonia. The objective of this study was to identify the disease-causing gene in 2 siblings with neurodevelopmental and movement disorders with no epileptiform abnormalities. The study method was targeted next-generation sequencing panel for neuropediatric disorders and subsequent electrophysiological studies. The 2 siblings carry a novel missense mutation in the GRIN2A gene (p.Ala643Asp) that was not detected in genomic DNA isolated from blood cells of their parents, suggesting that the mutation is the consequence of germinal mosaicism in 1 progenitor. In functional studies, the GluN2A-A643D mutation increased the potency of the agonists L-glutamate and glycine and decreased the potency of endogenous negative modulators, including protons, magnesium and zinc but reduced agonist-evoked peak current response in mammalian cells, suggesting that this mutation has a mixed effect on N-methyl-d-aspartate receptor function. De novo GRIN2A mutations can give rise to a neurodevelopmental and movement disorder without epilepsy. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
Neurodevelopmental behavioral and cognitive disorders.
Jeste, Shafali Spurling
2015-06-01
Neurodevelopmental disorders are a group of heterogeneous conditions characterized by a delay or disturbance in the acquisition of skills in a variety of developmental domains, including motor, social, language, and cognition. This article reviews the most commonly diagnosed neurodevelopmental disorders, which include attention deficit hyperactivity disorder (ADHD), autism spectrum disorder, global developmental delay, and intellectual disability and also provides updates on diagnosis, neurobiology, treatment, and issues surrounding the transition to adulthood. Although symptoms emerge at discrete points in childhood, these disorders result from abnormal brain maturation that likely precedes clinical impairment. As a result, research has focused on the identification of predictive biological and behavioral markers, with the ultimate goal of initiating treatments that may either alter developmental trajectories or lessen clinical severity. Advances in the methods used to identify genetic variants, from chromosomal microarray analysis to whole exome sequencing, have facilitated the characterization of many genetic mutations and syndromes that share common pathways to abnormal circuit formation and brain development. Not only do genetic discoveries enrich our understanding of mechanisms underlying atypical development, but they also allow us to identify more homogeneous subgroups within this spectrum of conditions. Impairments do continue into adulthood, with challenges in the transition to adulthood including the management of comorbidities and the provision of educational and vocational supports. Advances in our understanding of the neurobiology and developmental trajectories of these disorders will pave the way for tremendous advances in treatment. Mechanism-based therapies for genetic syndromes are being studied with the goal of expanding targeted treatments to nonsyndromic forms of neurodevelopmental disorders.
Integrating care for neurodevelopmental disorders by unpacking control: A grounded theory study
Waxegård, Gustaf; Thulesius, Hans
2016-01-01
Background To establish integrated healthcare pathways for patients with neurodevelopmental disorders (ND) such as autism spectrum disorder and attention-deficit hyperactivity disorder is challenging. This study sets out to investigate the main concerns for healthcare professionals when integrating ND care pathways and how they resolve these concerns. Methods Using classic grounded theory (Glaser), we analysed efforts to improve and integrate an ND care pathway for children and youth in a Swedish region over a period of 6 years. Data from 42 individual interviews with a range of ND professionals, nine group interviews with healthcare teams, participant observation, a 2-day dialogue conference, focus group meetings, regional media coverage, and reports from other Swedish regional ND projects were analysed. Results The main concern for participants was to deal with overwhelming ND complexity by unpacking control, which is control over strategies to define patients’ status and needs. Unpacking control is key to the professionals’ strivings to expand constructive life space for patients, to squeeze health care to reach available care goals, to promote professional ideologies, and to uphold workplace integrity. Control-seeking behaviour in relation to ND unpacking is ubiquitous and complicates integration of ND care pathways. Conclusions The Unpacking control theory expands central aspects of professions theory and may help to improve ND care development. PMID:27609793
ERIC Educational Resources Information Center
Bell, Emily; Wallace, Tessa; Chouinard, Isabelle; Shevell, Michael; Racine, Eric
2011-01-01
Faced with the limitations of currently available mainstream medical treatments and interventions, parents of children with neurodevelopmental disorders often seek information about unproven interventions. These interventions frequently have undetermined efficacy and uncertain safety profiles. In this article, we present a general background and…
Atypical Pupillary Light Reflex in Individuals with Autism
2013-07-01
N. Takahashi Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA S. E. Christ D. Q. Beversdorf...receiving clinical services at the University of Missouri Thompson Center for Autism and Neurodevelopmental Disorders, an interdisciplinary academic...10-1-0474 TITLE: Atypical Pupillary Light Reflex in Individuals With Autism PRINCIPAL INVESTIGATOR: Gang Yao, Ph.D
ERIC Educational Resources Information Center
Harms, Melanie D.
2013-01-01
Individuals with neurodevelopmental disorders are challenged with memory and language deficits that impact their skills acquisition (Martin, Klusek, Estigarriba, & Roberts, 2009; Turner & Alborz, 2003). The value of music when applied as an antecedent and a reinforcer has long been established to address such memory and language deficits…
ERIC Educational Resources Information Center
Chilosi, Anna M.; Comparini, Alessandro; Scusa, Maria F.; Berrettini, Stefano; Forli, Francesca; Battini, Roberta; Cipriani, Paola; Cioni, Giovanni
2010-01-01
Aim: The effects of sensorineural hearing loss (SNHL) are often complicated by additional disabilities, but the epidemiology of associated disorders is not clearly defined. The aim of this study was to evaluate the frequency and type of additional neurodevelopmental disabilities in a sample of children with SNHL and to investigate the relation…
Rice, Timothy R
2017-04-01
Children born premature are at risk for neurodevelopmental disorders, including autism and schizophrenia. This piece advances the hypothesis that altered androgen exposure observed in premature infants is an important mediator of the neurodevelopmental risk in males associated with prematurity. Specifically, the alterations of normative physiologic postnatal activations of the hypothalamic-pituitary-gonadal axis that occur in preterm males are hypothesized to contribute to the risk of neuropsychiatric pathology of prematurity through altered androgen-mediated organizational effects on the developing brain. The physiology of testosterone and male central nervous system development in full-term births is reviewed and compared to the developmental processes of prematurity. The effects of the altered testosterone physiology observed within prematurity outside of the central nervous system are reviewed as a segue into a discussion of the effects within the nervous system, with a special focus on autism spectrum disorders and attention deficit hyperactivity disorder. The explanatory power of this model is reviewed as a supplement to the preexisting models of prematurity and neurodevelopmental risk, including infection and other perinatal central nervous system insults. The emphasis is placed on altered androgen exposure as serving as just one among many mediators of neurodevelopmental risk that may be of interest for further research and evidence-based investigation. Implications for diagnosis, management and preventative treatments conclude the piece.
Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders.
Francis, S M; Sagar, A; Levin-Decanini, T; Liu, W; Carter, C S; Jacob, S
2014-09-11
Oxytocin (OT) and arginine vasopressin (AVP) are two small, related neuropeptide hormones found in many mammalian species, including humans. Dysregulation of these neuropeptides have been associated with changes in behavior, especially social interactions. We review how the OT and AVP systems have been investigated in Autism Spectrum Disorder (ASD), Prader-Willi Syndrome (PWS), Williams Syndrome (WS) and Fragile X syndrome (FXS). All of these neurodevelopmental disorders (NDD) are marked by social deficits. While PWS, WS and FXS have identified genetic mutations, ASD stems from multiple genes with complex interactions. Animal models of NDD are invaluable for studying the role and relatedness of OT and AVP in the developing brain. We present data from a FXS mouse model affecting the fragile X mental retardation 1 (Fmr1) gene, resulting in decreased OT and AVP staining cells in some brain regions. Reviewing the research about OT and AVP in these NDD suggests that altered OT pathways may be downstream from different etiological factors and perturbations in development. This has implications for ongoing studies of the therapeutic application of OT in NDD. This article is part of a Special Issue entitled Oxytocin and Social Behav. Copyright © 2014. Published by Elsevier B.V.
[Neuroanatomical, genetic and neurochemical aspects of infantile autism].
Gerhant, Aneta; Olajossy, Marcin; Olajossy-Hilkesberger, Luiza
2013-01-01
Infantile autism is a neurodevelopmental disorder characterized by impairments in communication, reciprocal social interaction and restricted repetitive behaviors or interests. Although the cause of these disorders is not yet known, studies strongly suggest a genetic basis with a complex mode of inheritance. The etiopathogenetic processes of autism are extremely complex, which is reflected in the varying course and its symptomatology. Trajectories of brain development and volumes of its structures are aberrant in autistic patients. It is suggested that disturbances in sertotoninergic, gabaergic, glutaminergic, cholinergic and dopaminergic neurotransmission can be responsible for symptoms of autism as well as can disturb the development of the young brain. The objective of this article is to present the results of reasearch on neuroanatomical, neurochemical and genetic aspects of autism.
2012-10-01
M. (2005). Epigenetic overlap in autism -spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Human...chronic oxidative stress may contribute to immune dysregulation in autism . 1. Introduction Autism is a behaviorally defined neurodevelopmental disor...and risk of autism spectrum disorders,” Journal of Neurodevelop - mental Disorders, vol. 3, no. 2, pp. 132–143, 2011. [18] S. Biswas, A. S. Chida, and
The Neurobiological Basis for Social Affiliation in Autism Spectrum Disorder and Schizophrenia
Crider, Amanda; Pillai, Anilkumar
2016-01-01
Social interaction and communication are complex behavioral paradigms involving many components. Many different neurotransmitters, hormones, sensory inputs, and brain regions are involved in the act of social engagement and verbal or nonverbal communication. Autism Spectrum Disorder (ASD) and schizophrenia are two neurodevelopmental disorders that have social and language deficits as hallmark symptoms, but show very different etiologies. The output of social dysfunction is common to both ASD and schizophrenia, but this likely arises from very different pathophysiological means. This review will attempt to compile and interpret human and animal studies showing the neurobiological basis for the development of social and language deficits in ASD and schizophrenia as well as a comparison of the two disorders. PMID:27695666
Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle
2016-01-06
Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.
EEG complexity as a biomarker for autism spectrum disorder risk
2011-01-01
Background Complex neurodevelopmental disorders may be characterized by subtle brain function signatures early in life before behavioral symptoms are apparent. Such endophenotypes may be measurable biomarkers for later cognitive impairments. The nonlinear complexity of electroencephalography (EEG) signals is believed to contain information about the architecture of the neural networks in the brain on many scales. Early detection of abnormalities in EEG signals may be an early biomarker for developmental cognitive disorders. The goal of this paper is to demonstrate that the modified multiscale entropy (mMSE) computed on the basis of resting state EEG data can be used as a biomarker of normal brain development and distinguish typically developing children from a group of infants at high risk for autism spectrum disorder (ASD), defined on the basis of an older sibling with ASD. Methods Using mMSE as a feature vector, a multiclass support vector machine algorithm was used to classify typically developing and high-risk groups. Classification was computed separately within each age group from 6 to 24 months. Results Multiscale entropy appears to go through a different developmental trajectory in infants at high risk for autism (HRA) than it does in typically developing controls. Differences appear to be greatest at ages 9 to 12 months. Using several machine learning algorithms with mMSE as a feature vector, infants were classified with over 80% accuracy into control and HRA groups at age 9 months. Classification accuracy for boys was close to 100% at age 9 months and remains high (70% to 90%) at ages 12 and 18 months. For girls, classification accuracy was highest at age 6 months, but declines thereafter. Conclusions This proof-of-principle study suggests that mMSE computed from resting state EEG signals may be a useful biomarker for early detection of risk for ASD and abnormalities in cognitive development in infants. To our knowledge, this is the first demonstration of an information theoretic analysis of EEG data for biomarkers in infants at risk for a complex neurodevelopmental disorder. PMID:21342500
SQUED™ Series 28.1 Home-use and Treatment of Autowave Reverberator of Autism
2017-11-24
Autistic Disorder; Autism Spectrum Disorder; Child Development Disorders, Pervasive; Neurodevelopmental Disorders; Mental Disorders; Asperger's Syndrome; Neurobehavioral Manifestations; Nervous System Diseases
[Autism: An early neurodevelopmental disorder].
Bonnet-Brilhault, F
2017-04-01
With approximately 67 million individuals affected worldwide, autism spectrum disorder (ASD) is the fastest growing neurodevelopmental disorder (United Nations, 2011), with a prevalence estimated to be 1/100. In France ASD affects approximately 600,000 individuals (from childhood to adulthood, half of whom are also mentally retarded), who thus have a major handicap in communication and in adapting to daily life, which leads autism to be recognized as a national public health priority. ASD is a neurodevelopmental disorder that affects several domains (i.e., socio-emotional, language, sensori-motor, executive functioning). These disorders are expressed early in life with an age of onset around 18 months. Despite evidence suggesting a strong genetic link with ASD, the genetic determinant remains unclear. The clinical picture is characterized by impairments in social interaction and communication and the presence of restrictive and repetitive behaviors (DSM-5, ICD-10). However, in addition to these two main dimensions there is significant comorbidity between ASD and other neurodevelopmental disorders such as attention deficit hyperactivity disorder or with genetic and medical conditions. One of the diagnostic features of ASD is its early emergence: symptoms must begin in early childhood for a diagnosis to be given. Due to brain plasticity, early interventions are essential to facilitate clinical improvement. Therefore, general practitioners and pediatricians are on the front line to detect early signs of ASD and to guide both medical explorations and early rehabilitation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Sun, Jing; Buys, Nicholas
2012-01-01
The purpose of this study is to examine the association of deficits of executive function (EF) and neurodevelopmental disorders in preterm children and the potential of assessing EF in infants as means of early identification. EF refers to a collection of related but somewhat discrete abilities, the main ones being working memory, inhibition, and planning. There is a general consensus that EF governs goal-directed behavior that requires holding those plans or programs on-line until executed, inhibiting irrelevant action and planning a sequence of actions. EF plays an essential role in cognitive development and is vital to individual social and intellectual success. Most researchers believe in the coordination and integrate cognitive-perceptual processes in relation to time and space, thus regulating higher-order cognitive processes, such as problem solving, reasoning, logical and flexible thinking, and decision-making. The importance of the maturation of the frontal lobe, particularly the prefrontal cortex, to the development of EF in childhood has been emphasized. Therefore, any abnormal development in the prefrontal lobes of infants and children could be expected to result in significant deficits in cognitive functioning. As this is a late-maturing part of the brain, various neurodevelopmental disorders, such as autism spectrum disorders, attention deficit hyperactivity disorder, language disorders, and schizophrenia, as well as acquired disorders of the right brain (and traumatic brain injury) impair EF, and the prefrontal cortex may be particularly susceptible to delayed development in these populations. The deficits of EF in infants are persistent into childhood and related to neurodevelopmental disorders in childhood and adolescence.
Batsukh, Tserendulam; Schulz, Yvonne; Wolf, Stephan; Rabe, Tamara I.; Oellerich, Thomas; Urlaub, Henning; Schaefer, Inga-Marie; Pauli, Silke
2012-01-01
Background Mutations in the chromodomain helicase DNA binding protein 7 gene (CHD7) lead to CHARGE syndrome, an autosomal dominant multiple malformation disorder. Proteins involved in chromatin remodeling typically act in multiprotein complexes. We previously demonstrated that a part of human CHD7 interacts with a part of human CHD8, another chromodomain helicase DNA binding protein presumably being involved in the pathogenesis of neurodevelopmental (NDD) and autism spectrum disorders (ASD). Because identification of novel CHD7 and CHD8 interacting partners will provide further insights into the pathogenesis of CHARGE syndrome and ASD/NDD, we searched for additional associated polypeptides using the method of stable isotope labeling by amino acids in cell culture (SILAC) in combination with mass spectrometry. Principle findings The hitherto uncharacterized FAM124B (Family with sequence similarity 124B) was identified as a potential interaction partner of both CHD7 and CHD8. We confirmed the result by co-immunoprecipitation studies and showed a direct binding to the CHD8 part by direct yeast two hybrid experiments. Furthermore, we characterized FAM124B as a mainly nuclear localized protein with a widespread expression in embryonic and adult mouse tissues. Conclusion Our results demonstrate that FAM124B is a potential interacting partner of a CHD7 and CHD8 containing complex. From the overlapping expression pattern between Chd7 and Fam124B at murine embryonic day E12.5 and the high expression of Fam124B in the developing mouse brain, we conclude that Fam124B is a novel protein possibly involved in the pathogenesis of CHARGE syndrome and neurodevelopmental disorders. PMID:23285124
ERIC Educational Resources Information Center
Eklund, Hanna; Findon, James; Cadman, Tim; Hayward, Hannah; Murphy, Declan; Asherson, Philip; Glaser, Karen; Xenitidis, Kiriakos
2018-01-01
This study used the Camberwell Assessment of Need for adults with Developmental and Intellectual Disabilities (CANDID) to examine the social, physical health and mental health needs of 168 young people (aged 14-24 years) with neurodevelopmental disorders and compared young person and parent ratings of need. Agreement was poor in 21 out of 25…
Epigenetic Mistakes in Neurodevelopmental Disorders.
Mastrototaro, Giuseppina; Zaghi, Mattia; Sessa, Alessandro
2017-04-01
Epigenetics is the array of the chromatin modifications that customize in cell-, stage-, or condition-specific manner the information encloses in plain DNA molecules. Increasing evidences suggest the importance of epigenetic mechanisms for development and maintenance of central nervous system. In fact, a large number of newly discovered genetic causes of neurodevelopmental disorders such as intellectual disability, autism spectrum disorders, and many other syndromes are mutations within genes encoding for chromatin remodeling enzymes. Here, we review recent findings on the epigenetic origin of human diseases, with emphasis on disorders that affect development of the nervous system, and discuss novel therapeutic avenues that target epigenetic mechanisms.
Aberrant Proteostasis of BMAL1 Underlies Circadian Abnormalities in a Paradigmatic mTOR-opathy.
Lipton, Jonathan O; Boyle, Lara M; Yuan, Elizabeth D; Hochstrasser, Kevin J; Chifamba, Fortunate F; Nathan, Ashwin; Tsai, Peter T; Davis, Fred; Sahin, Mustafa
2017-07-25
Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder characterized by mutations in either the TSC1 or TSC2 genes, whose products form a critical inhibitor of the mechanistic target of rapamycin (mTOR). Loss of TSC1/2 gene function renders an mTOR-overactivated state. Clinically, TSC manifests with epilepsy, intellectual disability, autism, and sleep dysfunction. Here, we report that mouse models of TSC have abnormal circadian rhythms. We show that mTOR regulates the proteostasis of the core clock protein BMAL1, affecting its translation, degradation, and subcellular localization. This results in elevated levels of BMAL1 and a dysfunctional clock that displays abnormal timekeeping under constant conditions and exaggerated responses to phase resetting. Genetically lowering the dose of BMAL1 rescues circadian behavioral phenotypes in TSC mouse models. These findings indicate that BMAL1 deregulation is a feature of the mTOR-activated state and suggest a molecular mechanism for mitigating circadian phenotypes in a neurodevelopmental disorder. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Altered neuronal network and rescue in a human MECP2 duplication model
Nageshappa, Savitha; Carromeu, Cassiano; Trujillo, Cleber A.; Mesci, Pinar; Espuny-Camacho, Ira; Pasciuto, Emanuela; Vanderhaeghen, Pierre; Verfaillie, Catherine; Raitano, Susanna; Kumar, Anujith; Carvalho, Claudia M.B.; Bagni, Claudia; Ramocki, Melissa B.; Araujo, Bruno H. S.; Torres, Laila B.; Lupski, James R.; Van Esch, Hilde; Muotri, Alysson R.
2015-01-01
Increased dosage of MeCP2 results in a dramatic neurodevelopmental phenotype with onset at birth. We generated induced pluripotent stem cells (iPSC) from patients with the MECP2 duplication syndrome (MECP2dup), carrying different duplication sizes, to study the impact of increased MeCP2 dosage in human neurons. We show that cortical neurons derived from these different MECP2dup iPSC lines have increase synaptogenesis and dendritic complexity. Additionally, using multi-electrodes arrays, we show that neuronal network synchronization was altered in MECP2dup-derived neurons. Given MeCP2 function at the epigenetic level, we tested if these alterations were reversible using a library of compounds with defined activity on epigenetic pathways. One histone deacetylase inhibitor, NCH-51, was validated as a potential clinical candidate. Interestingly, this compound has never been considered before as a therapeutic alternative for neurological disorders. Our model recapitulates early stages of the human MECP2 duplication syndrome and represents a promising cellular tool to facilitate therapeutic drug screening for severe neurodevelopmental disorders. PMID:26347316
Neurodevelopmental correlates of proneness to guilt and shame in adolescence and early adulthood.
Whittle, Sarah; Liu, Kirra; Bastin, Coralie; Harrison, Ben J; Davey, Christopher G
2016-06-01
Investigating how brain development during adolescence and early adulthood underlies guilt- and shame-proneness may be important for understanding risk processes for mental disorders. The aim of this study was to investigate the neurodevelopmental correlates of interpersonal guilt- and shame-proneness in healthy adolescents and young adults using structural magnetic resonance imaging (sMRI). Sixty participants (age range: 15-25) completed sMRI and self-report measures of interpersonal guilt- and shame-proneness. Independent of interpersonal guilt, higher levels of shame-proneness were associated with thinner posterior cingulate cortex (PCC) thickness and smaller amygdala volume. Higher levels of shame-proneness were also associated with attenuated age-related reductions in thickness of lateral orbitofrontal cortex (lOFC). Our findings highlight the complexities in understanding brain-behavior relationships during the adolescent/young adult period. Results were consistent with growing evidence that accelerated cortical thinning during adolescence may be associated with superior socioemotional functioning. Further research is required to understand the implications of these findings for mental disorders characterized by higher levels of guilt and shame. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Npas4 deficiency and prenatal stress interact to affect social recognition in mice.
Heslin, K; Coutellier, L
2018-06-01
Neurodevelopmental disorders such as autism spectrum disorders and schizophrenia have an expansive array of reported genetic and environmental contributing factors. However, none of these factors alone can account for a substantial proportion of cases of either disorder. Instead, many gene-by-environment interactions are responsible for neurodevelopmental disturbances that lead to these disorders. The current experiment used heterozygous knock-out mice to examine a potential interaction between 2 factors commonly linked to neurodevelopmental disorders and cognitive deficit: imbalanced excitatory/inhibitory signaling in the cortex and prenatal stress (PNS) exposure. Both of these factors have been linked to disrupt GABAergic signaling in the prefrontal cortex (PFC), a common feature of neurodevelopmental disorders. The neuronal PAS domain protein 4 (Npas4) gene is instrumental in regulation of the excitatory/inhibitory balance in the cortex and hippocampus in response to activation. Npas4 heterozygous and wild-type male and female mice were exposed to either PNS or standard gestation, then evaluated during adulthood in social and anxiety behavioral measures. The combination of PNS and Npas4 deficiency in male mice impaired social recognition. This behavioral deficit was associated with decreased parvalbumin and cFos protein expression in the infralimbic region of the PFC following social stimulation in Npas4 heterozygous males. In contrast, females displayed fewer behavioral effects and molecular changes in PFC in response to PNS and decreased Npas4. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Risk factors in autism: Thinking outside the brain
Matelski, Lauren; Van de Water, Judy
2017-01-01
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions that have been rising markedly in prevalence for the past 30 years, now thought to affect 1 in 68 in the United States. This has prompted the search for possible explanations, and has even resulted in some controversy regarding the “true” prevalence of autism. ASD are influenced by a variety of genetic, environmental, and possibly immunological factors that act during critical periods to alter key developmental processes. This can affect multiple systems and manifests as the social and behavioral deficits that define these disorders. The interaction of environmental exposures in the context of an individual’s genetic susceptibilities manifests differently in each case, leading to heterogeneous phenotypes and varied comorbid symptoms within the disorder. This has also made it very difficult to elucidate underlying genes and exposure profiles, but progress is being made in this area. Some pharmaceutical drugs, toxicants, and metabolic and nutritional factors have been identified in epidemiological studies as increasing autism risk, especially during the prenatal period. Immunologic risk factors, including maternal infection during pregnancy, autoantibodies to fetal brain proteins, and familial autoimmune disease, have consistently been observed across multiple studies, as have immune abnormalities in individuals with ASD. Mechanistic research using animal models and patient-derived stem cells will help researchers to understand the complex etiology of these neurodevelopmental disorders, which will lead to more effective therapies and preventative strategies. Proposed therapies that need more investigation include special diets, probiotics, immune modulation, oxytocin, and personalized pharmacogenomic targets. The ongoing search for biomarkers and better treatments will result in earlier identification of ASD and provide much needed help and relief for afflicted families. PMID:26725748
Implication of LRRC4C and DPP6 in neurodevelopmental disorders
Maussion, Gilles; Cruceanu, Cristiana; Rosenfeld, Jill A.; Bell, Scott C.; Jollant, Fabrice; Szatkiewicz, Jin; Collins, Ryan L.; Hanscom, Carrie; Kolobova, Ilaria; de Champfleur, Nicolas Menjot; Blumenthal, Ian; Chiang, Colby; Ota, Vanessa; Hultman, Christina; O’Dushlaine, Colm; McCarroll, Steve; Alda, Martin; Jacquemont, Sebastien; Ordulu, Zehra; Marshall, Christian R.; Carter, Melissa T.; Shaffer, Lisa G.; Sklar, Pamela; Girirajan, Santhosh; Morton, Cynthia C.; Gusella, James F.; Turecki, Gustavo; Stavropoulos, D. J.; Sullivan, Patrick F.; Scherer, Stephen W.; Talkowski, Michael E.; Ernst, Carl
2018-01-01
We performed whole-genome sequencing on an individual from a family with variable psychiatric phenotypes that had a sensory processing disorder, apraxia, and autism. The proband harbored a maternally inherited balanced translocation (46,XY,t(11;14)(p12;p12)mat) that disrupted LRRC4C, a member of the highly specialized netrin G family of axon guidance molecules. The proband also inherited a paternally derived chromosomal inversion that disrupted DPP6, a potassium channel interacting protein. Copy Number (CN) analysis in 14,077 cases with neurodevelopmental disorders and 8,960 control subjects revealed that 60% of cases with exonic deletions in LRRC4C had a second clinically recognizable syndrome associated with variable clinical phenotypes, including 16p11.2, 1q44, and 2q33.1 CN syndromes, suggesting LRRC4C deletion variants may be modifiers of neurodevelopmental disorders. In vitro, functional assessments modeling patient deletions in LRRC4C suggest a negative regulatory role of these exons found in the untranslated region of LRRC4C, which has a single, terminal coding exon. These data suggest that the proband’s autism may be due to the inheritance of disruptions in both DPP6 and LRRC4C, and may highlight the importance of the netrin G family and potassium channel interacting molecules in neurodevelopmental disorders. PMID:27759917
2011-01-01
Introduction Autism is a complex neurodevelopmental disorder in which the interactions of genetic, epigenetic and environmental influences are thought to play a causal role. In humans, throughout embryonic and fetal life, brain development is exquisitely susceptible to injury caused by exposure to toxic chemicals present in the environment. Although the use of herbal supplements during pregnancy is relatively common, little information is available on their association with fetal neurodevelopment. This is, to the best of our knowledge, the first report in the literature to associate a new plausible mechanism of neurodevelopmental toxicity with a case of autism spectrum disorder through a vitamin deficiency potentiated by concomitant use of herbal supplements and ethanol exposure. Case presentation We describe the pediatric environmental history of a three-year-old Caucasian girl with an autism spectrum disorder. We utilized her pediatric environmental history to evaluate constitutional, genetic, and environmental factors pertinent to manifestation of neurodevelopment disorders. Both parents reported prenatal exposure to several risk factors of interest. A year prior to conception the mother began a weight loss diet and ingested 1200 mg/day of 'horsetail' (Equisetum arvense) herbal remedies containing thiaminase, an enzyme that with long-term use can lead to vitamin deficiency. The mother reported a significant weight loss during the pregnancy and a deficiency of B-complex vitamins. Thiamine (vitamin B1) deficiency could have been potentiated by the horsetail's thiaminase activity and ethanol exposure during pregnancy. No other risk factors were identified. Conclusions A detailed and careful pediatric environmental history, which includes daily intake, herbal remedies and ethanol exposure, should be obtained from all patients with autism spectrum disorder. Maternal consumption of ethanol and of herbal supplements with suspected or potential toxicity should be avoided during pregnancy. The prospective parents should perform preconception planning before pregnancy. PMID:21453474
Genetic control of postnatal human brain growth
van Dyck, Laura I.; Morrow, Eric M.
2017-01-01
Purpose of review Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. Recent findings Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, postmortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. Summary In order to understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders. PMID:27898583
Gay, Olivier; Plaze, Marion; Oppenheim, Catherine; Gaillard, Raphael; Olié, Jean-Pierre; Krebs, Marie-Odile; Cachia, Arnaud
2017-03-01
Several clinical and radiological markers of early neurodevelopmental deviations have been independently associated with cognitive impairment in patients with schizophrenia. The aim of our study was to test the cumulative and/or interactive effects of these early neurodevelopmental factors on cognitive control (CC) deficit, a core feature of schizophrenia. We recruited patients with first-episode schizophrenia-spectrum disorders, who underwent structural MRI. We evaluated CC efficiency using the Trail Making Test (TMT). Several markers of early brain development were measured: neurological soft signs (NSS), handedness, sulcal pattern of the anterior cingulate cortex (ACC) and ventricle enlargement. We included 41 patients with schizophrenia in our analysis, which revealed a main effect of ACC morphology ( p = 0.041) as well as interactions between NSS and ACC morphology ( p = 0.005), between NSS and handedness ( p = 0.044) and between ACC morphology and cerebrospinal fluid (CSF) volume ( p = 0.005) on CC measured using the TMT-B score - the TMT-A score. No 3- or 4-way interactions were detected between the 4 neurodevelopmental factors. The sample size was clearly adapted to detect main effects and 2-way interactions, but may have limited the statistical power to investigate higher-order interactions. The effects of treatment and illness duration were limited as the study design involved only patients with first-episode psychosis. To our knowledge, our study provides the first evidence of cumulative and interactive effects of different neurodevelopmental markers on CC efficiency in patients with schizophrenia. Such findings, in line with the neurodevelopmental model of schizophrenia, support the notion that CC impairments in patients with schizophrenia may be the final common pathway of several early neurodevelopmental mechanisms.
Gay, Olivier; Plaze, Marion; Oppenheim, Catherine; Gaillard, Raphael; Olié, Jean-Pierre; Krebs, Marie-Odile; Cachia, Arnaud
2017-01-01
Background Several clinical and radiological markers of early neurodevelopmental deviations have been independently associated with cognitive impairment in patients with schizophrenia. The aim of our study was to test the cumulative and/or interactive effects of these early neurodevelopmental factors on cognitive control (CC) deficit, a core feature of schizophrenia. Methods We recruited patients with first-episode schizophrenia-spectrum disorders, who underwent structural MRI. We evaluated CC efficiency using the Trail Making Test (TMT). Several markers of early brain development were measured: neurological soft signs (NSS), handedness, sulcal pattern of the anterior cingulate cortex (ACC) and ventricle enlargement. Results We included 41 patients with schizophrenia in our analysis, which revealed a main effect of ACC morphology (p = 0.041) as well as interactions between NSS and ACC morphology (p = 0.005), between NSS and handedness (p = 0.044) and between ACC morphology and cerebrospinal fluid (CSF) volume (p = 0.005) on CC measured using the TMT-B score – the TMT-A score. Limitations No 3- or 4-way interactions were detected between the 4 neurodevelopmental factors. The sample size was clearly adapted to detect main effects and 2-way interactions, but may have limited the statistical power to investigate higher-order interactions. The effects of treatment and illness duration were limited as the study design involved only patients with first-episode psychosis. Conclusion To our knowledge, our study provides the first evidence of cumulative and interactive effects of different neurodevelopmental markers on CC efficiency in patients with schizophrenia. Such findings, in line with the neurodevelopmental model of schizophrenia, support the notion that CC impairments in patients with schizophrenia may be the final common pathway of several early neurodevelopmental mechanisms. PMID:28245174
[Genotype/phenotype correlation in autism: genetic models and phenotypic characterization].
Bonnet-Brilhault, F
2011-02-01
Autism spectrum disorders are a class of conditions categorized by communication problems, ritualistic behaviors, and deficits in social behaviors. This class of disorders merges a heterogeneous group of neurodevelopmental disorders regarding some phenotypic and probably physiopathological aspects. Genetic basis is well admitted, however, considering phenotypic and genotypic heterogeneity, correspondences between genotype and phenotype have yet to be established. To better identify such correspondences, genetic models have to be identified and phenotypic markers have to be characterized. Recent insights show that a variety of genetic mechanisms may be involved in autism spectrum disorders, i.e. single gene disorders, copy number variations and polygenic mechanisms. These current genetic models are described. Regarding clinical aspects, several approaches can be used in genetic studies. Nosographical approach, especially with the concept of autism spectrum disorders, merges a large group of disorders with clinical heterogeneity and may fail to identify clear genotype/phenotype correlations. Dimensional approach referred in genetic studies to the notion of "Broad Autism Phenotype" related to a constellation of language, personality, and social-behavioral features present in relatives that mirror the symptom domains of autism, but are much milder in expression. Studies of this broad autism phenotype may provide a potentially important complementary approach for detecting the genes involved in these domains. However, control population used in those studies need to be well characterized too. Identification of endophenotypes seems to offer more promising results. Endophenotypes, which are supposed to be more proximal markers of gene action in the same biological pathway, linking genes and complex clinical symptoms, are thought to be less genetically complex than the broader disease phenotype, indexing a limited aspect of genetic risk for the disorder as a whole. However, strategies useful to characterize such phenotypic markers (for example, electrophysiological markers) have to take into account that autism is an early neurodevelopmental disorder occurring during childhood when brain development and maturation are in process. Recent genetic results have improved our knowledge in genetic basis in autism. Nevertheless, correspondences with phenotypic markers remain challenging according to phenotypic and genotypic heterogeneity. Copyright © 2010 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Durieux, Alice M. S.; Fernandes, Cathy; Murphy, Declan; Labouesse, Marie Anais; Giovanoli, Sandra; Meyer, Urs; Li, Qi; So, Po-Wah; McAlonan, Grainne
2015-01-01
An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span. PMID:26696857
Hsiao, Elaine Y; McBride, Sara W; Hsien, Sophia; Sharon, Gil; Hyde, Embriette R; McCue, Tyler; Codelli, Julian A; Chow, Janet; Reisman, Sarah E; Petrosino, Joseph F; Patterson, Paul H; Mazmanian, Sarkis K
2013-12-19
Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders. Copyright © 2013 Elsevier Inc. All rights reserved.
Hatakenaka, Yuhei; Fernell, Elisabeth; Sakaguchi, Masahiko; Ninomiya, Hitoshi; Fukunaga, Ichiro; Gillberg, Christopher
2016-01-01
Early identification of autism spectrum disorder, intellectual developmental disorder, attention-deficit/hyperactivity disorder, and other neurodevelopmental disorders/problems is crucial, yet diagnosis is often delayed for years under the often misguided "wait-and-see" paradigm. The early symptomatic syndromes eliciting neurodevelopmental clinical examinations-questionnaire (ESSENCE-Q) is a brief (12-item) screening questionnaire developed specifically for the purpose of speeding up the identification process of a wide variety of neurodevelopmental problems. The aims were to 1) estimate the reliability of the ESSENCE-Q, 2) evaluate the clinical cutoff levels suggested by the author of the ESSENCE-Q, and 3) propose optimal cutoff levels based on receiver operating characteristic analysis. The ESSENCE-Q was used for 1 year by a psychiatrist in Kochi, Japan, assessing children under the age of 6 years referred for developmental problems. The children were also clinically assessed with regard to whether or not they met criteria for a developmental disorder (diagnosis positive and diagnosis negative groups). We contrasted the results of the ESSENCE-Q and those of clinical diagnostic assessments in 130 cases. Cronbach's alpha was 0.82, sensitivity was 0.94 (95% confidence interval [CI]: [0.88, 0.98]), and specificity 0.53 (95% CI: [0.28, 0.77]), which are reasonable psychometrics for a first-step screening tool. Based on receiver operating characteristic analysis, we recommended an optimal cutoff level of yes ≥2 or maybe/a little ≥3 on the ESSENCE-Q (0.87 (95% CI: [0.79, 0.92]) sensitivity and 0.77 (95% CI: [0.50, 0.93]) specificity). The ESSENCE-Q can be a good instrument for use as a screening tool for aiding in the process of early identification of neurodevelopmental disorders in clinical settings. To establish the broader validity and reliability of the ESSENCE-Q, case-control studies and general population studies of children in different age groups are needed.
Miller, Anton; Shen, Jane; Mâsse, Louise C
2016-06-15
Allocation of resources for services and supports for children with neurodevelopmental disorders/disabilities (NDD/D) is often based on the presence of specific health conditions. This study investigated the relative roles of a child's diagnosed health condition and neurodevelopmental and related functional characteristics in explaining child and family health and well-being. The data on children with NDD/D (ages 5 to 14; weighted n = 120,700) are from the 2006 Participation and Activity Limitation Survey (PALS), a population-based Canadian survey of parents of children with functional limitations/disabilities. Direct and indirect effects of child diagnosis status-autism spectrum disorder (ASD)/not ASD-and functional characteristics (particularly, ASD-related impairments in speech, cognition, and emotion and behaviour) on child participation and family health and well-being were investigated in a series of structural equation models, while controlling for covariates. All models adequately fitted the data. Child ASD diagnosis was significantly associated with child participation and family health and well-being. When ASD-related child functional characteristics were added to the model, all direct effects from child diagnosis on child and family outcomes disappeared; the effect of child diagnosis on child and family outcomes was fully mediated via ASD-related child functional characteristics. Children's neurodevelopmental functional characteristics are integral to understanding the child and family health-related impact of neurodevelopmental disorders such as ASD. These findings have implications for the relative weighting given to functional versus diagnosis-specific factors in considering needs for services and supports.
Elucidating the Links Between Endocrine Disruptors and Neurodevelopment
Blawas, Ashley M.; Gray, Kimberly; Heindel, Jerrold J.; Lawler, Cindy P.
2015-01-01
Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes. PMID:25714811
Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders
Verkhratsky, Alexei; Parpura, Vladimir
2015-01-01
Astroglial cells represent a main element in the maintenance of homeostasis and providing defense to the brain. Consequently, their dysfunction underlies many, if not all, neurological, neuropsychiatric and neurodegenerative disorders. General astrogliopathy is evident in diametrically opposing morpho-functional changes in astrocytes, i.e. their hypertrophy along with reactivity or atrophy with asthenia. Neurological disorders with astroglial participation can be genetic, of which Alexander disease is a primary sporadic astrogliopathy, environmentally caused, such as heavy metal encephalopathies, or neurodevelopmental in origin. Astroglia also play a role in major neuropsychiatric disorders, ranging from schizophrenia to depression, as well as in additive disorders. Furthermore, astroglia contribute to neurodegenerative processes seen in amyotrophic lateral sclerosis, Alzheimer’s and Huntington’s diseases. PMID:25843667
Gyllenberg, David; Marttila, Mikko; Sund, Reijo; Jokiranta-Olkoniemi, Elina; Sourander, André; Gissler, Mika; Ristikari, Tiina
2018-03-01
Comprehensive overviews of the temporal changes in treated psychiatric and neurodevelopmental disorders during adolescence are scarce. We reviewed data from two national cohorts, 10 years apart, to establish the change in use of specialised services for psychiatric and neurodevelopmental diagnoses in Finland. We compared the nationwide register-based incidence of psychiatric and neurodevelopmental diagnoses between the 12th birthday and 18th birthday of adolescents born in Finland in 1987 and 1997. Adolescents who emigrated or died before their 12th birthday and those with missing covariate data were excluded, as were those who, when aged 11 years, had lived in a municipality belonging to a hospital district with obviously incomplete data reports during any follow-up years in our study. Our primary outcomes were time to incident specialised service use for any psychiatric or neurodevelopmental disorder and for 17 specific diagnostic classes. We also investigated whether adolescents who died by suicide had accessed specialised services before their deaths. The cumulative incidence of psychiatric or neurodevelopmental disorders increased from 9·8 in the 1987 cohort to 14·9 in the 1997 cohort (difference 5·2 percentage points [95% CI 4·8-5·5]) among girls, and from 6·2 in the 1987 cohort to 8·8 in the 1997 (2·6 percentage points [2·4-2·9]) among boys. The hazard ratio for the overall relative increase in neurodevelopment and psychiatric disorders in the 1997 cohort compared with the 1987 cohort was 1·6 (95% CI 1·5-1·8) among girls and 1·5 (1·4-1·6) among boys. Of the studied diagnostic classes, we noted significant (ie, p<0·001) relative increases for ten of 17 diagnoses among girls and 11 among boys. Of the adolescents who died by suicide before age 18, only five of 16 in the 1987 cohort and two of 12 in the 1997 cohort had used specialised services in the 6 months before their death. The large absolute rise in service use for psychiatric or neurodevelopmental disorders points to the need to deliver effective treatment to a rapidly increased patient population, whereas the relative increase in specific diagnoses should inform clinical practice. Despite increasing service use, identification of adolescents at risk of suicide remains a major public health priority. Academy of Finland, Brain and Behavior Research Foundation, Finnish Medical Foundation. Copyright © 2018 Elsevier Ltd. All rights reserved.
The autistic brain in the context of normal neurodevelopment.
Ziats, Mark N; Edmonson, Catherine; Rennert, Owen M
2015-01-01
The etiology of autism spectrum disorders (ASDs) is complex and largely unclear. Among various lines of inquiry, many have suggested convergence onto disruptions in both neural circuitry and immune regulation/glial cell function pathways. However, the interpretation of the relationship between these two putative mechanisms has largely focused on the role of exogenous factors and insults, such as maternal infection, in activating immune pathways that in turn result in neural network abnormalities. Yet, given recent insights into our understanding of human neurodevelopment, and in particular the critical role of glia and the immune system in normal brain development, it is important to consider these putative pathological processes in their appropriate normal neurodevelopmental context. In this review, we explore the hypothesis that the autistic brain cellular phenotype likely represents intrinsic abnormalities of glial/immune processes constitutively operant in normal brain development that result in the observed neural network dysfunction. We review recent studies demonstrating the intercalated role of neural circuit development, the immune system, and glial cells in the normal developing brain, and integrate them with studies demonstrating pathological alterations in these processes in autism. By discussing known abnormalities in the autistic brain in the context of normal brain development, we explore the hypothesis that the glial/immune component of ASD may instead be related to intrinsic exaggerated/abnormal constitutive neurodevelopmental processes such as network pruning. Moreover, this hypothesis may be relevant to other neurodevelopmental disorders that share genetic, pathologic, and clinical features with autism.
Developmental mechanisms in the prodrome to psychosis
Walker, Elaine F.; Trotman, Hanan D.; Goulding, Sandra M.; Holtzman, Carrie W.; Ryan, Arthur T.; McDonald, Allison; Shapiro, Daniel I.; Brasfield, Joy L.
2014-01-01
Psychotic disorders continue to be among the most disabling and scientifically challenging of all mental illnesses. Accumulating research findings suggest that the etiologic processes underlying the development of these disorders are more complex than had previously been assumed. At the same time, this complexity has revealed a wider range of potential options for preventive intervention, both psychosocial and biological. In part, these opportunities result from our increased understanding of the dynamic and multifaceted nature of the neurodevelopmental mechanisms involved in the disease process, as well as the evidence that many of these entail processes that are malleable. In this article, we review the burgeoning research literature on the prodrome to psychosis, based on studies of individuals who meet clinical high risk criteria. This literature has examined a range of factors, including cognitive, genetic, psychosocial, and neurobiological. We then turn to a discussion of some contemporary models of the etiology of psychosis that emphasize the prodromal period. These models encompass the origins of vulnerability in fetal development, as well as postnatal stress, the immune response, and neuromaturational processes in adolescent brain development that appear to go awry during the prodrome to psychosis. Then, informed by these neurodevelopmental models of etiology, we turn to the application of new research paradigms that will address critical issues in future investigations. It is expected that these studies will play a major role in setting the stage for clinical trials aimed at preventive intervention. PMID:24342857
A review of vulnerability and risks for schizophrenia: Beyond the two hit hypothesis
Davis, Justin; Eyre, Harris; Jacka, Felice N; Dodd, Seetal; Dean, Olivia; McEwen, Sarah; Debnath, Monojit; McGrath, John; Maes, Michael; Amminger, Paul; McGorry, Patrick D; Pantelis, Christos; Berk, Michael
2016-01-01
Schizophrenia risk has often been conceptualized using a model which requires two hits in order to generate the clinical phenotype—the first as an early priming in a genetically predisposed individual and the second a likely environmental insult. The aim of this paper was to review the literature and reformulate this binary risk-vulnerability model. We sourced the data for this narrative review from the electronic database PUBMED. Our search terms were not limited by language or date of publication. The development of schizophrenia may be driven by genetic vulnerability interacting with multiple vulnerability factors including lowered prenatal vitamin D exposure, viral infections, smoking intelligence quotient, social cognition cannabis use, social defeat, nutrition and childhood trauma. It is likely that these genetic risks, environmental risks and vulnerability factors are cumulative and interactive with each other and with critical periods of neurodevelopmental vulnerability. The development of schizophrenia is likely to be more complex and nuanced than the binary two hit model originally proposed nearly thirty years ago. Risk appears influenced by a more complex process involving genetic risk interfacing with multiple potentially interacting hits and vulnerability factors occurring at key periods of neurodevelopmental activity, which culminate in the expression of disease state. These risks are common across a number of neuropsychiatric and medical disorders, which might inform common preventive and intervention strategies across non-communicable disorders. PMID:27073049
Neurodevelopmental profile of Fetal Alcohol Spectrum Disorder: A systematic review.
Lange, Shannon; Rovet, Joanne; Rehm, Jürgen; Popova, Svetlana
2017-06-23
In an effort to improve the screening and diagnosis of individuals with Fetal Alcohol Spectrum Disorder (FASD), research has focused on the identification of a unique neurodevelopmental profile characteristic of this population. The objective of this review was to identify any existing neurodevelopmental profiles of FASD and review their classification function in order to identify gaps and limitations of the current literature. A systematic search for studies published up to the end of December 2016 reporting an identified neurodevelopmental profile of FASD was conducted using multiple electronic bibliographic databases. The search was not limited geographically or by language of publication. Original research published in a peer-reviewed journal that involved the evaluation of the classification function of an identified neurodevelopmental profile of FASD was included. Two approaches have been taken to determine the pathognomonic neurodevelopmental features of FASD, namely the utilization of i) behavioral observations/ratings by parents/caregivers and ii) subtest scores from standardized test batteries assessing a variety of neurodevelopmental domains. Both approaches show some promise, with the former approach (which is dominated by research on the Neurobehavioral Screening Tool) having good sensitivity (63% to 98%), but varying specificity (42% to 100%), and the latter approach having good specificity (72% to 96%), but varying sensitivity (60% to 88%). The current review revealed that research in this area remains limited and a definitive neurodevelopmental profile of FASD has not been established. However, the identification of a neurodevelopmental profile will aid in the accurate identification of individuals with FASD, by adding to the armamentarium of clinicians. The full review protocol is available in PROSPERO ( http://www.crd.york.ac.uk/PROSPERO/ ); registration number CRD42016039326; registered 20 May 2016.
Role of mTOR Complexes in Neurogenesis.
LiCausi, Francesca; Hartman, Nathaniel W
2018-05-22
Dysregulation of neural stem cells (NSCs) is associated with several neurodevelopmental disorders, including epilepsy and autism spectrum disorder. The mammalian target of rapamycin (mTOR) integrates the intracellular signals to control cell growth, nutrient metabolism, and protein translation. mTOR regulates many functions in the development of the brain, such as proliferation, differentiation, migration, and dendrite formation. In addition, mTOR is important in synaptic formation and plasticity. Abnormalities in mTOR activity is linked with severe deficits in nervous system development, including tumors, autism, and seizures. Dissecting the wide-ranging roles of mTOR activity during critical periods in development will greatly expand our understanding of neurogenesis.
Dendritic spine dysgenesis in Rett syndrome
Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas
2014-01-01
Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341
Berridge, Michael J
2018-02-01
The process of development depends on a number of signaling systems that regulates the progressive sequence of developmental events. Infertility and neurodevelopmental diseases, such as attention deficit hyperactivity disorder, autism spectrum disorders, and schizophrenia, are caused by specific alterations in these signaling processes. Calcium signaling plays a prominent role throughout development beginning at fertilization and continuing through early development, implantation, and organ differentiation such as heart and brain development. Vitamin D plays a major role in regulating these signaling processes that control development. There is an increase in infertility and an onset of neurodevelopmental diseases when vitamin D is deficient. The way in which vitamin D deficiency acts to alter development is a major feature of this review. One of the primary functions of vitamin D is to maintain the phenotypic stability of both the Ca 2+ and redox signaling pathways that play such a key role throughout development.
Kaneko, Miki; Yamashita, Yushiro; Iramina, Keiji
2016-01-18
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by symptoms of inattention, hyperactivity, and impulsivity. Soft neurological signs (SNS) are minor neurological abnormalities in motor performance, and are used as one evaluation method for neurodevelopmental delays in children with ADHD. Our aim is to establish a quantitative evaluation system for children with ADHD. We focused on the arm movement called pronation and supination, which is one such soft neurological sign. Thirty three children with ADHD aged 7-11 years (27 males, six females) and twenty five adults participants aged 21-29 years old (19 males, six females) participated in our experiments. Our results suggested that the pronation and supination function in children with ADHD has a tendency to lag behind that of typically developing children by several years. From these results, our system has a possibility to objectively evaluate the neurodevelopmental delay of children with ADHD.
Neurodevelopmental Reflex Testing in Neonatal Rat Pups.
Nguyen, Antoinette T; Armstrong, Edward A; Yager, Jerome Y
2017-04-24
Neurodevelopmental reflex testing is commonly used in clinical practice to assess the maturation of the nervous system. Neurodevelopmental reflexes are also referred to as primitive reflexes. They are sensitive and consistent with later outcomes. Abnormal reflexes are described as an absence, persistence, reappearance, or latency of reflexes, which are predictive indices of infants that are at high risk for neurodevelopmental disorders. Animal models of neurodevelopmental disabilities, such as cerebral palsy, often display aberrant developmental reflexes, as would be observed in human infants. The techniques described assess a variety of neurodevelopmental reflexes in neonatal rats. Neurodevelopmental reflex testing offers the investigator a testing method that is not otherwise available in such young animals. The methodology presented here aims to assist investigators in examining developmental milestones in neonatal rats as a method of detecting early-onset brain injury and/or determining the effectiveness of therapeutic interventions. The methodology presented here aims to provide a general guideline for investigators.
Zauche, Lauren Head; Darcy Mahoney, Ashley E; Higgins, Melinda K
Co-occurring neurodevelopmental disabilities (including cognitive and language delays and attention deficit hyperactivity disorder) affect over half of children with ASD and may affect later behavioral, language, and cognitive outcomes beyond the ASD diagnosis. However, no studies have examined predictors of co-occurring neurodevelopmental disabilities in children with ASD. This study investigated whether maternal sociodemographic, perinatal and neonatal factors are associated with co-occurring disabilities. This study involved a retrospective analysis of medical records for children diagnosed with ASD between 2009 and 2010 at an Autism Center in the southeast United States. Logistic regression was used to identify predictors of co-occurring neurodevelopmental disabilities. Of the 385 children in the sample, 61% had a co-occurring neurodevelopmental disability. Children whose mothers had less education (OR: 0.905), had never been married (OR: 1.803), or had bleeding during pregnancy (OR: 2.233) were more likely to have a co-occurring neurodevelopmental disability. Both preterm birth and African American race were associated with bleeding during pregnancy. Several maternal and perinatal risk factors for ASD were found to put children at risk for further diagnoses of co-occurring neurodevelopmental disabilities. While prematurity, a well-established risk factor for ASD, as well as maternal ethnicity was not found to increase the risk of a co-occurring disability, this study suggests that bleeding during pregnancy may moderate these relationships. Understanding maternal, perinatal, and neonatal risk factors may inform healthcare provider screening for ASD and co-occurring neurodevelopmental disabilities by helping providers recognize infants who present with multiple risk factors. Copyright © 2017 Elsevier Inc. All rights reserved.
The child neurology clinical workforce in 2015
Bale, James F.; Mintz, Mark; Joshi, Sucheta M.; Gilbert, Donald L.; Radabaugh, Carrie; Ruch-Ross, Holly
2016-01-01
Objectives: More than a decade has passed since the last major workforce survey of child neurologists in the United States; thus, a reassessment of the child neurology workforce is needed, along with an inaugural assessment of a new related field, neurodevelopmental disabilities. Methods: The American Academy of Pediatrics and the Child Neurology Society conducted an electronic survey in 2015 of child neurologists and neurodevelopmental disabilities specialists. Results: The majority of respondents participate in maintenance of certification, practice in academic medical centers, and offer subspecialty care. EEG reading and epilepsy care are common subspecialty practice areas, although many child neurologists have not had formal training in this field. In keeping with broader trends, medical school debts are substantially higher than in the past and will often take many years to pay off. Although a broad majority would choose these fields again, there are widespread dissatisfactions with compensation and benefits given the length of training and the complexity of care provided, and frustrations with mounting regulatory and administrative stresses that interfere with clinical practice. Conclusions: Although not unique to child neurology and neurodevelopmental disabilities, such issues may present barriers for the recruitment of trainees into these fields. Creative approaches to enhance the recruitment of the next generation of child neurologists and neurodevelopmental disabilities specialists will benefit society, especially in light of all the exciting new treatments under development for an array of chronic childhood neurologic disorders. PMID:27566740
Durukan, İbrahim; Kara, Koray; Almbaideen, Mahmoud; Karaman, Dursun; Gül, Hesna
2018-03-01
Recent studies have shown that individuals with neurodevelopmental disorders and their relatives have problems expressing and recognizing emotions, but there is a lack of studies on alexithymia, and the relationship between parental alexithymia and depression-anxiety symptoms in these groups. The aim of this study was therefore to measure alexithymia, depression, and anxiety levels in parents of children with pervasive developmental disorders and attention deficit-hyperactivity disorder (ADHD), and determine whether there is a positive correlation between the child's neurodevelopmental problem severity and parent scores. Parents of 29 autistic disorder (AD), 28 pervasive developmental disorder not otherwise specified (PDD-NOS) and 29 ADHD children were recruited into the study, and completed a demographic information form, as well as the Toronto Alexithymia Scale (TAS-20), Beck Depression Inventory, and State-Trait Anxiety Inventory. Alexithymia symptoms were higher in parents of children with AD than in others but unexpectedly, also these symptoms were higher in ADHD parents than in PDD-NOS groups. In addition, there were unexpected differences according to alexithymia subtype, while only the difference in maternal TAS-1 scores (difficulty in describing feelings) were statistically significant. Parental depression and state anxiety scores were increased as the child's symptom severity increased, but trait anxiety symptoms were higher in the AD and ADHD group than in the PDD-NOS group. In all groups, maternal depression and anxiety scores were higher than paternal scores, and differences were significant for depression and anxiety types in AD, and for only anxiety types in ADHD parents. The AD group had the strongest correlation between parental depression-anxiety and alexithymia. The possibility of alexithymia, depression and anxiety should be kept in mind when working with parents of children with neurodevelopmental disorders. © 2017 Japan Pediatric Society.
Arnsten, Amy F T; Rubia, Katya
2012-04-01
This article aims to review basic and clinical studies outlining the roles of prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compromised in childhood neurodevelopmental disorders and how these map into the neuroimaging evidence of circuit abnormalities in these disorders. Studies of animals, normally developing children, and patients with neurodevelopmental disorders were reviewed, with focus on neuroimaging studies. The PFC provides "top-down" regulation of attention, inhibition/cognitive control, motivation, and emotion through connections with posterior cortical and subcortical structures. Dorsolateral and inferior PFC regulate attention and cognitive/inhibitory control, whereas orbital and ventromedial structures regulate motivation and affect. PFC circuitries are very sensitive to their neurochemical environment, and small changes in the underlying neurotransmitter systems, e.g. by medications, can produce large effects on mediated function. Neuroimaging studies of children with neurodevelopmental disorders show altered brain structure and function in distinctive circuits respecting this organization. Children with attention-deficit/hyperactivity disorder show prominent abnormalities in the inferior PFC and its connections to striatal, cerebellar, and parietal regions, whereas children with conduct disorder show alterations in the paralimbic system, comprising ventromedial, lateral orbitofrontal, and superior temporal cortices together with specific underlying limbic regions, regulating motivation and emotion control. Children with major depressive disorder show alterations in ventral orbital and limbic activity, particularly in the left hemisphere, mediating emotions. Finally, children with obsessive-compulsive disorder appear to have a dysregulation in orbito-fronto-striatal inhibitory control pathways, but also deficits in dorsolateral fronto-parietal systems of attention. Altogether, there is a good correspondence between anatomical circuitry mediating compromised functions and patterns of brain structure and function changes in children with neuropsychiatric disorders. Medications may optimize the neurochemical environment in PFC and associated circuitries, and improve structure and function. Copyright © 2012 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Vilor-Tejedor, Natàlia; Cáceres, Alejandro; Pujol, Jesús; Sunyer, Jordi; González, Juan R
2017-12-01
Joint analysis of genetic and neuroimaging data, known as Imaging Genetics (IG), offers an opportunity to deepen our knowledge of the biological mechanisms of neurodevelopmental domains. There has been exponential growth in the literature on IG studies, which challenges the standardization of analysis methods in this field. In this review we give a complete up-to-date account of IG studies on attention deficit hyperactivity disorder (ADHD) and related neurodevelopmental domains, which serves as a reference catalog for researchers working on this neurological disorder. We searched MEDLINE/Pubmed and identified 37 articles on IG of ADHD that met our eligibility criteria. We carefully cataloged these articles according to imaging technique, genes and brain region, and summarized the main results and characteristics of each study. We found that IG studies on ADHD generally focus on dopaminergic genes and the structure of basal ganglia using structural Magnetic Resonance Imaging (MRI). We found little research involving multiple genetic factors and brain regions because of the scarce use of multivariate strategies in data analysis. IG of ADHD and related neurodevelopmental domains is still in its early stages, and a lack of replicated findings is one of the most pressing challenges in the field.
Wakschlag, Lauren S; Perlman, Susan B; Blair, R James; Leibenluft, Ellen; Briggs-Gowan, Margaret J; Pine, Daniel S
2018-02-01
The arrival of the Journal's 175th anniversary occurs at a time of recent advances in research, providing an ideal opportunity to present a neurodevelopmental roadmap for understanding, preventing, and treating psychiatric disorders. Such a roadmap is particularly relevant for early-childhood-onset neurodevelopmental conditions, which emerge when experience-dependent neuroplasticity is at its peak. Employing a novel developmental specification approach, this review places recent neurodevelopmental research on early childhood disruptive behavior within the historical context of the Journal. The authors highlight irritability and callous behavior as two core exemplars of early disruptive behavior. Both phenotypes can be reliably differentiated from normative variation as early as the first years of life. Both link to discrete pathophysiology: irritability with disruptions in prefrontal regulation of emotion, and callous behavior with abnormal fear processing. Each phenotype also possesses clinical and predictive utility. Based on a nomologic net of evidence, the authors conclude that early disruptive behavior is neurodevelopmental in nature and should be reclassified as an early-childhood-onset neurodevelopmental condition in DSM-5. Rapid translation from neurodevelopmental discovery to clinical application has transformative potential for psychiatric approaches of the millennium. [AJP at 175: Remembering Our Past As We Envision Our Future November 1938: Electroencephalographic Analyses of Behavior Problem Children Herbert Jasper and colleagues found that brain abnormalities revealed by EEG are a potential causal factor in childhood behavioral disorders. (Am J Psychiatry 1938; 95:641-658 )].
Gastrointestinal Disorders in Children with Neurodevelopmental Disabilities
ERIC Educational Resources Information Center
Sullivan, Peter B.
2008-01-01
Children with neurodevelopmental disabilities such as cerebral palsy (CP), spina bifida, or inborn errors of metabolism frequently have associated gastrointestinal problems. These include oral motor dysfunction leading to feeding difficulties, risk of aspiration, prolonged feeding times, and malnutrition with its attendant physical compromise.…
Ajdacic-Gross, Vladeta; Aleksandrowicz, Aleksandra; Rodgers, Stephanie; Mutsch, Margot; Tesic, Anja; Müller, Mario; Kawohl, Wolfram; Rössler, Wulf; Seifritz, Erich; Castelao, Enrique; Strippoli, Marie-Pierre F; Vandeleur, Caroline; von Känel, Roland; Paolicelli, Rosa; Landolt, Markus A; Witthauer, Cornelia; Lieb, Roselind; Preisig, Martin
2016-12-22
To examine the associations between mental disorders and infectious, atopic, inflammatory diseases while adjusting for other risk factors. We used data from PsyCoLaus, a large Swiss Population Cohort Study ( n = 3720; age range 35-66). Lifetime diagnoses of mental disorders were grouped into the following categories: Neurodevelopmental, anxiety (early and late onset), mood and substance disorders. They were regressed on infectious, atopic and other inflammatory diseases adjusting for sex, educational level, familial aggregation, childhood adversities and traumatic experiences in childhood. A multivariate logistic regression was applied to each group of disorders. In a complementary analysis interactions with sex were introduced via nested effects. Associations with infectious, atopic and other chronic inflammatory diseases were observable together with consistent effects of childhood adversities and familial aggregation, and less consistent effects of trauma in each group of mental disorders. Streptococcal infections were associated with neurodevelopmental disorders (men), and measles/mumps/rubella-infections with early and late anxiety disorders (women). Gastric inflammatory diseases took effect in mood disorders (both sexes) and in early disorders (men). Similarly, irritable bowel syndrome was prominent in a sex-specific way in mood disorders in women, and, moreover, was associated with early and late anxiety disorders. Atopic diseases were associated with late anxiety disorders. Acne (associations with mood disorders in men) and psoriasis (associations with early anxiety disorders in men and mood disorders in women) contributed sex-specific results. Urinary tract infections were associated with mood disorders and, in addition, in a sex-specific way with late anxiety disorders (men), and neurodevelopmental and early anxiety disorders (women). Infectious, atopic and inflammatory diseases are important risk factors for all groups of mental disorders. The sexual dimorphism of the associations is pronounced.
Long-Term Neurodevelopmental Outcomes After Preterm Birth
Soleimani, Farin; Zaheri, Farzaneh; Abdi, Fatemeh
2014-01-01
Context: All over the the world, preterm birth is a major cause of death and important neurodevelopmental disorders. Approximately 9.6% (12.9 million) births worldwide are preterm. Evidence Acquisition: In this review, databases such as PubMed, EMBASE, ISI, Scopus, Google Scholar and Iranian databases including Iranmedex, and SID were researched to review relevant literature. A comprehensive search was performed using combinations of various keywords. Results: Cerebral palsy especially spastic diplegia, intellectual disability, visual (retinopathy of prematurity) and hearing impairments are the main neurodevelopmental disorders associated with prematurity. Conclusions: The increased survival of preterm infants was not associated with lower complications. There is now increasing evidence of sustained adverse outcomes into school age and adolescence, for preterm infants. PMID:25068052
Translational animal models of autism and neurodevelopmental disorders.
Crawley, Jacqueline N
2012-09-01
Autism is a neurodevelopmental disorder whose diagnosis is based on three behavioral criteria: unusual reciprocal social interactions, deficits in communication, and stereotyped repetitive behaviors with restricted interests. A large number of de novo single gene mutations and chromosomal deletions are associated with autism spectrum disorders. Based on the strong genetic evidence, mice with targeted mutations in homologous genes have been generated as translational research tools. Mouse models of autism have revealed behavioral and biological outcomes of mutations in risk genes. The field is now poised to employ the most robust phenotypes in the most replicable mouse models for preclinical screening of novel therapeutics.
Mathu-Muju, Kavita R; Li, Hsin-Fang; Nam, Lisa H; Bush, Heather M
2016-01-01
The purposes of this study were to: (1) describe the comorbidity burden in children with autism spectrum disorder (ASD) receiving dental treatment under general anesthesia (GA); and (2) characterize the complexity of these concurrent comorbidities. A retrospective chart review was completed of 303 children with ASD who received dental treatment under GA. All comorbidities, in addition to the primary diagnosis of ASD, were categorized using the International Classification of Diseases-10 codes. The interconnectedness of the comorbidities was graphically displayed using a network plot. Network indices (degree centrality, betweenness centrality, closeness centrality) were used to characterize the comorbidities that exhibited the highest connectedness to ASD. The network plot of medical diagnoses for children with ASD was highly complex, with multiple connected comorbidities. Developmental delay, speech delay, intellectual disability, and seizure disorders exhibited the highest connectedness to ASD. Children with autism spectrum disorder may have a significant comorbidity burden of closely related neurodevelopmental disorders. The medical history review should assess the severity of these concurrent disorders to evaluate a patient's potential ability to cooperate for dental treatment and to determine appropriate behavior guidance techniques to facilitate the delivery of dental care.
New-onset psychosis associated with dandy-walker variant in an adolescent female patient.
Ryan, Molly; Grenier, Ernesto; Castro, Anthony; Nemeroff, Charles B
2012-01-01
The relationship between psychotic disorders, in particular, schizophrenia, and neurodevelopmental abnormalities has been conceptualized in the latest literature. Dandy-Walker variant, defined by cystic dilatation of the fourth ventricle and hypoplasia of the inferior portion of the vermis without enlargement of the posterior fossa, is a distinctive entity believed to represent a mild subtype of Dandy-Walker complex. The authors hypothesize a correlation between new onset of psychosis and cerebellar abnormalities in an adolescent patient.
Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech.
Worthey, Elizabeth A; Raca, Gordana; Laffin, Jennifer J; Wilk, Brandon M; Harris, Jeremy M; Jakielski, Kathy J; Dimmock, David P; Strand, Edythe A; Shriberg, Lawrence D
2013-10-02
Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker's speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX). A total of 8 (80%) of the 10 participants had clinically reportable variants in one or two of the six genes, with variants in ATP13A4, KIAA0319 and CNTNAP2 being the most prevalent. Similar to the results reported in emerging WES studies of other complex neurodevelopmental disorders, our findings from this first WES study of CAS are interpreted as support for heterogeneous genetic origins of this pediatric motor speech disorder with multiple genes, pathways and complex interactions. We also submit that our findings illustrate the potential use of WES for both gene identification and case-by-case clinical diagnostics in pediatric motor speech disorders.
Gori, Simone; Molteni, Massimo; Facoetti, Andrea
2016-01-01
A visual illusion refers to a percept that is different in some aspect from the physical stimulus. Illusions are a powerful non-invasive tool for understanding the neurobiology of vision, telling us, indirectly, how the brain processes visual stimuli. There are some neurodevelopmental disorders characterized by visual deficits. Surprisingly, just a few studies investigated illusory perception in clinical populations. Our aim is to review the literature supporting a possible role for visual illusions in helping us understand the visual deficits in developmental dyslexia and autism spectrum disorder. Future studies could develop new tools – based on visual illusions – to identify an early risk for neurodevelopmental disorders. PMID:27199702
AbstractBackground: Synaptogenesis is a critical neurodevelopmental process whereby pre-and postsynaptic neurons form apposed sites of contact specialized for excitatory and inhibitory neurotransmission. Many neurodevelopmental disorders are thought to reflect altered patterns of...
Brain Imaging in Children with Neurodevelopmental Disorders.
ERIC Educational Resources Information Center
Mantovani, John F.
1994-01-01
This article reviews neuroimaging techniques such as cranial ultrasound, computed tomography scanning, and magnetic resonance imaging. Their roles in the care of children with neurodevelopmental disabilities include identification of high-risk infants, establishment of the diagnosis and prognosis in affected children, and enhancement of discussion…
Can ω-3 fatty acids and tocotrienol-rich vitamin E reduce symptoms of neurodevelopmental disorders?
Gumpricht, Eric; Rockway, Susie
2014-01-01
The incidence of childhood neurodevelopmental disorders, which include autism, attention-deficit hyperactivity disorders, and apraxia, are increasing worldwide and have a profound effect on the behaviors, cognitive skills, mood, and self-esteem of these children. Although the etiologies of these disorders are unclear, they often accompany genetic and biochemical abnormalities resulting in cognitive and communication difficulties. Because cognitive and neural development require essential fatty acids (particularly long-chain ω-3 fatty acids often lacking in mother's and children's diets) during critical growth periods, the potential behavior-modifying effects of these fatty acids as "brain nutrients" has attracted considerable attention. Additionally, there is compelling evidence for increased oxidative stress, altered antioxidant defenses, and neuroinflammation in these children. The purpose of this review is to provide a scientific rationale based on cellular, experimental animal model, observational, and clinical intervention studies for incorporating the combination of ω-3 fatty acids and tocotrienol-rich vitamin E as complementary nutritional therapies in children with neurodevelopmental disorders. Should this nutritional combination correct key clinical or biochemical outcomes and/or improve behavioral patterns, it would provide a safe, complementary option for these children. Copyright © 2014 Elsevier Inc. All rights reserved.
Gréa, Hélène; Scheid, Isabelle; Gaman, Alexandru; Rogemond, Véronique; Gillet, Sandy; Honnorat, Jérôme; Bolognani, Federico; Czech, Christian; Bouquet, Céline; Toledano, Elie; Bouvard, Manuel; Delorme, Richard; Groc, Laurent; Leboyer, Marion
2017-03-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by dysfunctions in social interactions resulting from a complex interplay between immunogenetic and environmental risk factors. Autoimmunity has been proposed as a major etiological component of ASD. Whether specific autoantibodies directed against brain targets are involved in ASD remains an open question. Here, we identified within a cohort an ASD patient with multiple circulating autoantibodies, including the well-characterized one against glutamate NMDA receptor (NMDAR-Ab). The patient exhibited alexithymia and previously suffered from two major depressive episodes without psychotic symptoms. Using a single molecule-based imaging approach, we demonstrate that neither NMDAR-Ab type G immunoglobulin purified from the ASD patient serum, nor that from a seropositive healthy subject, disorganize membrane NMDAR complexes at synapses. These findings suggest that the autistic patient NMDAR-Abs do not play a direct role in the etiology of ASD and that other autoantibodies directed against neuronal targets should be investigated.
McConnell, Michael J; Moran, John V; Abyzov, Alexej; Akbarian, Schahram; Bae, Taejeong; Cortes-Ciriano, Isidro; Erwin, Jennifer A; Fasching, Liana; Flasch, Diane A; Freed, Donald; Ganz, Javier; Jaffe, Andrew E; Kwan, Kenneth Y; Kwon, Minseok; Lodato, Michael A; Mills, Ryan E; Paquola, Apua C M; Rodin, Rachel E; Rosenbluh, Chaggai; Sestan, Nenad; Sherman, Maxwell A; Shin, Joo Heon; Song, Saera; Straub, Richard E; Thorpe, Jeremy; Weinberger, Daniel R; Urban, Alexander E; Zhou, Bo; Gage, Fred H; Lehner, Thomas; Senthil, Geetha; Walsh, Christopher A; Chess, Andrew; Courchesne, Eric; Gleeson, Joseph G; Kidd, Jeffrey M; Park, Peter J; Pevsner, Jonathan; Vaccarino, Flora M
2017-04-28
Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders. Copyright © 2017, American Association for the Advancement of Science.
Garay, Paula A.; McAllister, A. Kimberley
2010-01-01
Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522
Genetic aspects of autism spectrum disorders: insights from animal models
Banerjee, Swati; Riordan, Maeveen; Bhat, Manzoor A.
2014-01-01
Autism spectrum disorders (ASDs) are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development, and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy, and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute toward the formation, stabilization, and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD. PMID:24605088
Trent, Simon; Dean, Rachel; Veit, Bonnie; Cassano, Tommaso; Bedse, Gaurav; Ojarikre, Obah A.; Humby, Trevor; Davies, William
2013-01-01
Summary Chromosomal deletions at Xp22.3 appear to influence vulnerability to the neurodevelopmental disorders attention deficit hyperactivity disorder (ADHD) and autism. 39,XY*O mice, which lack the murine orthologue of the Xp22.3 ADHD candidate gene STS (encoding steroid sulfatase), exhibit behavioural phenotypes relevant to such disorders (e.g. hyperactivity), elevated hippocampal serotonin (5-HT) levels, and reduced serum levels of dehydroepiandrosterone (DHEA). Here we initially show that 39,XY*O mice are also deficient for the recently-characterised murine orthologue of the Xp22.3 autism candidate gene ASMT (encoding acetylserotonin-O-methyltransferase). Subsequently, to specify potential behavioural correlates of elevated hippocampal 5-HT arising due to the genetic lesion, we compared 39,XY*O MF1 mice to 40,XY MF1 mice on behavioural tasks taxing hippocampal and/or 5-HT function (a ‘foraging’ task, an object-location task, and the 1-choice serial reaction time task of impulsivity). Although Sts/Asmt deficiency did not influence foraging behaviour, reactivity to familiar objects in novel locations, or ‘ability to wait’, it did result in markedly increased response rates; these rates correlated with hippocampal 5-HT levels and are likely to index behavioural perseveration, a frequent feature of neurodevelopmental disorders. Additionally, we show that whilst there was no systematic relationship between serum DHEA levels and hippocampal 5-HT levels across 39,XY*O and 40,XY mice, there was a significant inverse linear correlation between serum DHEA levels and activity. Our data suggest that deficiency for genes within Xp22.3 could influence core behavioural features of neurodevelopmental disorders via dissociable effects on hippocampal neurochemistry and steroid hormone levels, and that the mediating neurobiological mechanisms may be investigated in the 39,XY*O model. PMID:23276394
Partitioning heritability analysis reveals a shared genetic basis of brain anatomy and schizophrenia
Lee, Phil H.; Baker, Justin T.; Holmes, Avram J.; Jahanshad, Neda; Ge, Tian; Jung, Jae-Yoon; Cruz, Yanela; Manoach, Dara S.; Hibar, Derrek P.; Faskowitz, Joshua; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicolas H.; Wright, Margaret J.; Öngür, Dost; Buckner, Randy; Roffman, Joshua; Thompson, Paul M.; Smoller, Jordan W.
2016-01-01
Schizophrenia is a devastating neurodevelopmental disorder with a complex genetic etiology. Widespread cortical gray matter loss has been observed in patients and prodromal samples. However, it remains unresolved whether schizophrenia-associated cortical structure variations arise due to disease etiology or secondary to the illness. Here we address this question using a partitioning-based heritability analysis of genome-wide SNP and neuroimaging data from 1,750 healthy individuals. We find that schizophrenia-associated genetic variants explain a significantly enriched proportion of trait heritability in eight brain phenotypes (FDR=10%). In particular, intracranial volume (ICV) and left superior frontal gyrus thickness exhibit significant and robust associations with schizophrenia genetic risk under varying SNP selection conditions. Cross disorder comparison suggests that the neurogenetic architecture of schizophrenia-associated brain regions is, at least in part, shared with other psychiatric disorders. Our study highlights key neuroanatomical correlates of schizophrenia genetic risk in the general population. These may provide fundamental insights into the complex pathophysiology of the illness, and a potential link to neurocognitive deficits shaping the disorder. PMID:27725656
Lee, P H; Baker, J T; Holmes, A J; Jahanshad, N; Ge, T; Jung, J-Y; Cruz, Y; Manoach, D S; Hibar, D P; Faskowitz, J; McMahon, K L; de Zubicaray, G I; Martin, N H; Wright, M J; Öngür, D; Buckner, R; Roffman, J; Thompson, P M; Smoller, J W
2016-12-01
Schizophrenia is a devastating neurodevelopmental disorder with a complex genetic etiology. Widespread cortical gray matter loss has been observed in patients and prodromal samples. However, it remains unresolved whether schizophrenia-associated cortical structure variations arise due to disease etiology or secondary to the illness. Here we address this question using a partitioning-based heritability analysis of genome-wide single-nucleotide polymorphism (SNP) and neuroimaging data from 1750 healthy individuals. We find that schizophrenia-associated genetic variants explain a significantly enriched proportion of trait heritability in eight brain phenotypes (false discovery rate=10%). In particular, intracranial volume and left superior frontal gyrus thickness exhibit significant and robust associations with schizophrenia genetic risk under varying SNP selection conditions. Cross-disorder comparison suggests that the neurogenetic architecture of schizophrenia-associated brain regions is, at least in part, shared with other psychiatric disorders. Our study highlights key neuroanatomical correlates of schizophrenia genetic risk in the general population. These may provide fundamental insights into the complex pathophysiology of the illness, and a potential link to neurocognitive deficits shaping the disorder.
Neurodevelopmental Disorders in Low- and Middle-Income Countries
ERIC Educational Resources Information Center
Newton, Charles R.
2012-01-01
In "Global Perspective on Early Diagnosis and Intervention for Children with Developmental Delays and Disabilities" (p1079-1084, this issue), Scherzer et al. highlighted the potential increase in neurodevelopmental impairments and disabilities affecting an increasing number of children in low- and middle-income countries (LMIC). In this…
Neurodevelopmental Treatment (NDT): Therapeutic Intervention and Its Efficacy.
ERIC Educational Resources Information Center
Stern, Francine Martin; Gorga, Delia
1988-01-01
Use of neurodevelopmental treatment, also known as the Bobath method, is discussed, including its history, philosophy, goals, and treatment emphasis with infants and children with movement disorders. Examples of children before and after therapeutic intervention illustrate use of the technique, and controversies in measuring therapy efficacy are…
Ghibellini, Giulia; Brancati, Francesco; Castori, Marco
2015-03-01
In the last decade, increasing attention has been devoted to the extra-articular and extra-cutaneous manifestations of joint hypermobility syndrome, also termed Ehlers-Danlos syndrome, hypermobility type (i.e., JHS/EDS-HT). Despite the fact that the current diagnostic criteria for both disorders remain focused on joint hypermobility, musculoskeletal pain and skin changes, medical practice and research have started investigating a wide spectrum of visceral, neurological and developmental complications, which represent major burdens for affected individuals. In particular, children with generalized joint hypermobility often present with various neurodevelopmental issues and can be referred for neurological consultation. It is common that investigations in these patients yield negative or inconsistent results, eventually leading to the exclusion of any structural neurological or muscle disorder. In the context of specialized clinics for connective tissue disorders, a clear relationship between generalized joint hypermobility and a characteristic neurodevelopmental profile affecting coordination is emerging. The clinical features of these patients tend to overlap with those of developmental coordination disorder and can be associated with learning and other disabilities. Physical and psychological consequences of these additional difficulties add to the chief manifestations of the pre-existing connective tissue disorder, affecting the well-being and development of children and their families. In this review, particular attention is devoted to the nature of the link between joint hypermobility, coordination difficulties and neurodevelopmental issues in children. Presumed pathogenesis and management issues are explored in order to attract more attention on this association and nurture future clinical research. © 2015 Wiley Periodicals, Inc.
Mullegama, Sureni V.; Alaimo, Joseph T.; Chen, Li; Elsea, Sarah H.
2015-01-01
Roughly 20% of autism spectrum disorders (ASD) are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5) is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention. PMID:25853262
Chen, Heng; Uddin, Lucina Q; Duan, Xujun; Zheng, Junjie; Long, Zhiliang; Zhang, Youxue; Guo, Xiaonan; Zhang, Yan; Zhao, Jingping; Chen, Huafu
2017-11-01
Schizophrenia and autism spectrum disorder (ASD) are two prevalent neurodevelopmental disorders sharing some similar genetic basis and clinical features. The extent to which they share common neural substrates remains unclear. Resting-state fMRI data were collected from 35 drug-naïve adolescent participants with first-episode schizophrenia (15.6 ± 1.8 years old) and 31 healthy controls (15.4 ± 1.6 years old). Data from 22 participants with ASD (13.1 ± 3.1 years old) and 21 healthy controls (12.9 ± 2.9 years old) were downloaded from the Autism Brain Imaging Data Exchange. Resting-state functional networks were constructed using predefined regions of interest. Multivariate pattern analysis combined with multi-task regression feature selection methods were conducted in two datasets separately. Classification between individuals with disorders and controls was achieved with high accuracy (schizophrenia dataset: accuracy = 83%; ASD dataset: accuracy = 80%). Shared atypical brain connections contributing to classification were mostly present in the default mode network (DMN) and salience network (SN). These functional connections were further related to severity of social deficits in ASD (p = 0.002). Distinct atypical connections were also more related to the DMN and SN, but showed different atypical connectivity patterns between the two disorders. These results suggest some common neural mechanisms contributing to schizophrenia and ASD, and may aid in understanding the pathology of these two neurodevelopmental disorders. Autism Res 2017, 10: 1776-1786. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism spectrum disorder (ASD) and schizophrenia are two common neurodevelopmental disorders which share several genetic and behavioral features. The present study identified common neural mechanisms contributing to ASD and schizophrenia using resting-state functional MRI data. The results may help to understand the pathology of these two neurodevelopmental disorders. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Gillberg, Christopher
2010-01-01
Co-existence of disorders--including attention-deficit/hyperactivity disorder, oppositional defiant disorder, tic disorder, developmental coordination disorder, and autism spectrum disorder--and sharing of symptoms across disorders (sometimes referred to as comorbidity) is the rule rather than the exception in child psychiatry and developmental…
Tangled webs: tracing the connections between genes and cognition.
Fisher, Simon E
2006-09-01
The rise of molecular genetics is having a pervasive influence in a wide variety of fields, including research into neurodevelopmental disorders like dyslexia, speech and language impairments, and autism. There are many studies underway which are attempting to determine the roles of genetic factors in the aetiology of these disorders. Beyond the obvious implications for diagnosis, treatment and understanding, success in these efforts promises to shed light on the links between genes and aspects of cognition and behaviour. However, the deceptive simplicity of finding correlations between genetic and phenotypic variation has led to a common misconception that there exist straightforward linear relationships between specific genes and particular behavioural and/or cognitive outputs. The problem is exacerbated by the adoption of an abstract view of the nature of the gene, without consideration of molecular, developmental or ontogenetic frameworks. To illustrate the limitations of this perspective, I select two cases from recent research into the genetic underpinnings of neurodevelopmental disorders. First, I discuss the proposal that dyslexia can be dissected into distinct components specified by different genes. Second, I review the story of the FOXP2 gene and its role in human speech and language. In both cases, adoption of an abstract concept of the gene can lead to erroneous conclusions, which are incompatible with current knowledge of molecular and developmental systems. Genes do not specify behaviours or cognitive processes; they make regulatory factors, signalling molecules, receptors, enzymes, and so on, that interact in highly complex networks, modulated by environmental influences, in order to build and maintain the brain. I propose that it is necessary for us to fully embrace the complexity of biological systems, if we are ever to untangle the webs that link genes to cognition.
Wright, Hannah F.; Mills, Daniel S.
2017-01-01
There is growing scientific and societal recognition of the role that pet dogs can play in healthy development of children; both those who are neuro-typically developing and those who live with a neuro-developmental disorder, such as autism or attention deficit hyperactivity disorder. However, little attention has been paid to how living with children positively and negatively affects quality of life of a pet dog. In this exploratory study we conducted semi-structured interviews with parents of neuro-typically developing children (n = 18) and those with a neuro-developmental disorder (n = 18) who owned a pet dog, until no new factors were identified. Living with children brought potentially positive benefits to the dog’s life including: imposition of a routine, participation in recreational activities and the development of a strong bond between the child and the dog. The importance of maintaining a routine was particularly prevalent in families with children with neuro-developmental disorders. Potential negative factors included having to cope with child meltdowns and tantrums, over stimulation from child visitors, harsh contact and rough and tumble play with the child. The regularity and intensity of meltdowns and tantrums was particularly evident in responses from parents with children with a neuro-developmental disorder. However, child visitors and rough play and contact were mentioned similarly across the groups. Protective factors included having a safe haven for the dog to escape to, parent’s awareness of stress signs and child education in dog-interaction. Parents were also asked to complete a stress response scale to provide an initial quantitative comparison of stress responses between dogs living with the two family-types. Parents with neuro-typically developing children more frequently observed their dog rapidly running away from a situation and less frequently observed their dog widening their eyes, than parents with children with a neuro-developmental disorder. We propose the development of a stress audit based on the findings reported here, to prevent potential dangerous situations, which may lead to dog bites and dog relinquishment and allow owners to maximise the benefits of dog ownership. PMID:28953961
Hall, Sophie S; Wright, Hannah F; Mills, Daniel S
2017-01-01
There is growing scientific and societal recognition of the role that pet dogs can play in healthy development of children; both those who are neuro-typically developing and those who live with a neuro-developmental disorder, such as autism or attention deficit hyperactivity disorder. However, little attention has been paid to how living with children positively and negatively affects quality of life of a pet dog. In this exploratory study we conducted semi-structured interviews with parents of neuro-typically developing children (n = 18) and those with a neuro-developmental disorder (n = 18) who owned a pet dog, until no new factors were identified. Living with children brought potentially positive benefits to the dog's life including: imposition of a routine, participation in recreational activities and the development of a strong bond between the child and the dog. The importance of maintaining a routine was particularly prevalent in families with children with neuro-developmental disorders. Potential negative factors included having to cope with child meltdowns and tantrums, over stimulation from child visitors, harsh contact and rough and tumble play with the child. The regularity and intensity of meltdowns and tantrums was particularly evident in responses from parents with children with a neuro-developmental disorder. However, child visitors and rough play and contact were mentioned similarly across the groups. Protective factors included having a safe haven for the dog to escape to, parent's awareness of stress signs and child education in dog-interaction. Parents were also asked to complete a stress response scale to provide an initial quantitative comparison of stress responses between dogs living with the two family-types. Parents with neuro-typically developing children more frequently observed their dog rapidly running away from a situation and less frequently observed their dog widening their eyes, than parents with children with a neuro-developmental disorder. We propose the development of a stress audit based on the findings reported here, to prevent potential dangerous situations, which may lead to dog bites and dog relinquishment and allow owners to maximise the benefits of dog ownership.
Towards a Neurodevelopmental Model of Clinical Case Formulation
Solomon, Marjorie; Hessl, David; Chiu, Sufen; Olsen, Emily; Hendren, Robert
2009-01-01
Rapid advances in molecular genetics and neuroimaging over the last 10-20 years have been a catalyst for research in neurobiology, developmental psychopathology, and translational neuroscience. Methods of study in psychiatry, previously described as “slow maturing,” now are becoming sufficiently sophisticated to more effectively investigate the biology of higher mental processes. Despite these technological advances, the recognition that psychiatric disorders are disorders of neurodevelopment, and the importance of case formulation to clinical practice, a neurodevelopmental model of case formulation has not yet been articulated. The goals of this manuscript, which is organized as a clinical case conference, are to begin to articulate a neurodevelopmental model of case formulation, to illustrate its value, and finally to explore how clinical psychiatric practice might evolve in the future if this model were employed. PMID:19248925
Ambra1 Shapes Hippocampal Inhibition/Excitation Balance: Role in Neurodevelopmental Disorders.
Nobili, Annalisa; Krashia, Paraskevi; Cordella, Alberto; La Barbera, Livia; Dell'Acqua, Maria Concetta; Caruso, Angela; Pignataro, Annabella; Marino, Ramona; Sciarra, Francesca; Biamonte, Filippo; Scattoni, Maria Luisa; Ammassari-Teule, Martine; Cecconi, Francesco; Berretta, Nicola; Keller, Flavio; Mercuri, Nicola Biagio; D'Amelio, Marcello
2018-02-27
Imbalances between excitatory and inhibitory synaptic transmission cause brain network dysfunction and are central to the pathogenesis of neurodevelopmental disorders. Parvalbumin interneurons are highly implicated in this imbalance. Here, we probed the social behavior and hippocampal function of mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene crucial for brain development. We show that heterozygous Ambra1 mice (Ambra +/- ) are characterized by loss of hippocampal parvalbumin interneurons, decreases in the inhibition/excitation ratio, and altered social behaviors that are solely restricted to the female gender. Loss of parvalbumin interneurons in Ambra1 +/- females is further linked to reductions of the inhibitory drive onto principal neurons and alterations in network oscillatory activity, CA1 synaptic plasticity, and pyramidal neuron spine density. Parvalbumin interneuron loss is underlined by increased apoptosis during the embryonic development of progenitor neurons in the medial ganglionic eminence. Together, these findings identify an Ambra1-dependent mechanism that drives inhibition/excitation imbalance in the hippocampus, contributing to abnormal brain activity reminiscent of neurodevelopmental disorders.
Fragile X syndrome neurobiology translates into rational therapy.
Braat, Sien; Kooy, R Frank
2014-04-01
Causal genetic defects have been identified for various neurodevelopmental disorders. A key example in this respect is fragile X syndrome, one of the most frequent genetic causes of intellectual disability and autism. Since the discovery of the causal gene, insights into the underlying pathophysiological mechanisms have increased exponentially. Over the past years, defects were discovered in pathways that are potentially amendable by pharmacological treatment. These findings have inspired the initiation of clinical trials in patients. The targeted pathways converge in part with those of related neurodevelopmental disorders raising hopes that the treatments developed for this specific disorder might be more broadly applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.
Translational animal models of autism and neurodevelopmental disorders
Crawley, Jacqueline N.
2012-01-01
Autism is a neurodevelopmental disorder whose diagnosis is based on three behavioral criteria: unusual reciprocal social interactions, deficits in communication, and stereotyped repetitive behaviors with restricted interests. A large number of de novo single gene mutations and chromosomal deletions are associated with autism spectrum disorders. Based on the strong genetic evidence, mice with targeted mutations in homologous genes have been generated as translational research tools. Mouse models of autism have revealed behavioral and biological outcomes of mutations in risk genes. The field is now poised to employ the most robust phenotypes in the most replicable mouse models for preclinical screening of novel therapeutics. PMID:23226954
Perinatal Pitocin as an Early ADHD Biomarker: Neurodevelopmental Risk?
ERIC Educational Resources Information Center
Kurth, Lisa; Haussmann, Robert
2011-01-01
Objective: To investigate a potential relationship between coincidental increases in perinatal Pitocin usage and subsequent childhood ADHD onset in an attempt to isolate a specific risk factor as an early biomarker of this neurodevelopmental disorder. Method: Maternal labor/delivery and corresponding childbirth records of 172 regionally diverse,…
The child neurology clinical workforce in 2015: Report of the AAP/CNS Joint Taskforce.
Kang, Peter B; Bale, James F; Mintz, Mark; Joshi, Sucheta M; Gilbert, Donald L; Radabaugh, Carrie; Ruch-Ross, Holly
2016-09-27
More than a decade has passed since the last major workforce survey of child neurologists in the United States; thus, a reassessment of the child neurology workforce is needed, along with an inaugural assessment of a new related field, neurodevelopmental disabilities. The American Academy of Pediatrics and the Child Neurology Society conducted an electronic survey in 2015 of child neurologists and neurodevelopmental disabilities specialists. The majority of respondents participate in maintenance of certification, practice in academic medical centers, and offer subspecialty care. EEG reading and epilepsy care are common subspecialty practice areas, although many child neurologists have not had formal training in this field. In keeping with broader trends, medical school debts are substantially higher than in the past and will often take many years to pay off. Although a broad majority would choose these fields again, there are widespread dissatisfactions with compensation and benefits given the length of training and the complexity of care provided, and frustrations with mounting regulatory and administrative stresses that interfere with clinical practice. Although not unique to child neurology and neurodevelopmental disabilities, such issues may present barriers for the recruitment of trainees into these fields. Creative approaches to enhance the recruitment of the next generation of child neurologists and neurodevelopmental disabilities specialists will benefit society, especially in light of all the exciting new treatments under development for an array of chronic childhood neurologic disorders. © 2016 American Academy of Neurology.
Insel, Thomas R
2010-11-11
How will we view schizophrenia in 2030? Schizophrenia today is a chronic, frequently disabling mental disorder that affects about one per cent of the world's population. After a century of studying schizophrenia, the cause of the disorder remains unknown. Treatments, especially pharmacological treatments, have been in wide use for nearly half a century, yet there is little evidence that these treatments have substantially improved outcomes for most people with schizophrenia. These current unsatisfactory outcomes may change as we approach schizophrenia as a neurodevelopmental disorder with psychosis as a late, potentially preventable stage of the illness. This 'rethinking' of schizophrenia as a neurodevelopmental disorder, which is profoundly different from the way we have seen this illness for the past century, yields new hope for prevention and cure over the next two decades.
Hand stereotypies distinguish Rett syndrome from autism disorder.
Goldman, Sylvie; Temudo, Teresa
2012-07-01
Rett syndrome (RTT) and autism disorder (AD) are 2 neurodevelopmental disorders of early life that share phenotypic features, one being hand stereotypies. Distinguishing RTT from AD often represents a challenge, and given their distinct long-term prognoses, this issue may have far-reaching implications. With the advances in genetic testing, the contribution of clinical manifestations in distinguishing RTT from AD has been overlooked. A comparison of hand stereotypies in 20 children with RTT and 20 with AD was performed using detailed analyses of videotaped standardized observations. Striking differences are observed between RTT and AD children. In RTT, hand stereotypies are predominantly complex, continuous, localized to the body midline, and involving mouthing. Conversely, in AD children, hand stereotypies are simple, bilateral, intermittent, and often involving objects. These results provide important clinical signs useful to the differential diagnosis of RTT versus AD, especially when genetic testing for RTT is not an option. Copyright © 2012 Movement Disorder Society.
Difference or Disorder? Cultural Issues in Understanding Neurodevelopmental Disorders
ERIC Educational Resources Information Center
Norbury, Courtenay Frazier; Sparks, Alison
2013-01-01
Developmental disorders, such as autism spectrum disorder and specific language impairment, are biologically based disorders that currently rely on behaviorally defined criteria for diagnosis and treatment. Specific behaviors that are included in diagnostic frameworks and the point at which individual differences in behavior constitute abnormality…
Childhood Neurodevelopmental Disorders and Violent Criminality: A Sibling Control Study
ERIC Educational Resources Information Center
Lundström, Sebastian; Forsman, Mats; Larsson, Henrik; Kerekes, Nora; Serlachius, Eva; Långström, Niklas; Lichtenstein, Paul
2014-01-01
The longitudinal relationship between attention deficit hyperactivity disorder (ADHD) and violent criminality has been extensively documented, while long-term effects of autism spectrum disorders (ASDs), tic disorders (TDs), and obsessive compulsive disorder (OCD) on criminality have been scarcely studied. Using population-based registers of all…
Madore, Charlotte; Leyrolle, Quentin; Lacabanne, Chloé; Benmamar-Badel, Anouk; Joffre, Corinne; Nadjar, Agnes
2016-01-01
Several genetic causes of autism spectrum disorder (ASD) have been identified. However, more recent work has highlighted that certain environmental exposures early in life may also account for some cases of autism. Environmental insults during pregnancy, such as infection or malnutrition, seem to dramatically impact brain development. Maternal viral or bacterial infections have been characterized as disruptors of brain shaping, even if their underlying mechanisms are not yet fully understood. Poor nutritional diversity, as well as nutrient deficiency, is strongly associated with neurodevelopmental disorders in children. For instance, imbalanced levels of essential fatty acids, and especially polyunsaturated fatty acids (PUFAs), are observed in patients with ASD and other neurodevelopmental disorders (e.g., attention deficit hyperactivity disorder (ADHD) and schizophrenia). Interestingly, PUFAs, and specifically n-3 PUFAs, are powerful immunomodulators that exert anti-inflammatory properties. These prenatal dietary and immunologic factors not only impact the fetal brain, but also affect the microbiota. Recent work suggests that the microbiota could be the missing link between environmental insults in prenatal life and future neurodevelopmental disorders. As both nutrition and inflammation can massively affect the microbiota, we discuss here how understanding the crosstalk between these three actors could provide a promising framework to better elucidate ASD etiology. PMID:27840741
Genestine, Matthieu; Lin, Lulu; Durens, Madel; Yan, Yan; Jiang, Yiqin; Prem, Smrithi; Bailoor, Kunal; Kelly, Brian; Sonsalla, Patricia K.; Matteson, Paul G.; Silverman, Jill; Crawley, Jacqueline N.; Millonig, James H.; DiCicco-Bloom, Emanuel
2015-01-01
Many genes involved in brain development have been associated with human neurodevelopmental disorders, but underlying pathophysiological mechanisms remain undefined. Human genetic and mouse behavioral analyses suggest that ENGRAILED-2 (EN2) contributes to neurodevelopmental disorders, especially autism spectrum disorder. In mouse, En2 exhibits dynamic spatiotemporal expression in embryonic mid-hindbrain regions where monoamine neurons emerge. Considering their importance in neuropsychiatric disorders, we characterized monoamine systems in relation to forebrain neurogenesis in En2-knockout (En2-KO) mice. Transmitter levels of serotonin, dopamine and norepinephrine (NE) were dysregulated from Postnatal day 7 (P7) to P21 in En2-KO, though NE exhibited the greatest abnormalities. While NE levels were reduced ∼35% in forebrain, they were increased 40–75% in hindbrain and cerebellum, and these patterns paralleled changes in locus coeruleus (LC) fiber innervation, respectively. Although En2 promoter was active in Embryonic day 14.5–15.5 LC neurons, expression diminished thereafter and gene deletion did not alter brainstem NE neuron numbers. Significantly, in parallel with reduced NE levels, En2-KO forebrain regions exhibited reduced growth, particularly hippocampus, where P21 dentate gyrus granule neurons were decreased 16%, suggesting abnormal neurogenesis. Indeed, hippocampal neurogenic regions showed increased cell death (+77%) and unexpectedly, increased proliferation. Excess proliferation was restricted to early Sox2/Tbr2 progenitors whereas increased apoptosis occurred in differentiating (Dcx) neuroblasts, accompanied by reduced newborn neuron survival. Abnormal neurogenesis may reflect NE deficits because intra-hippocampal injections of β-adrenergic agonists reversed cell death. These studies suggest that disruption of hindbrain patterning genes can alter monoamine system development and thereby produce forebrain defects that are relevant to human neurodevelopmental disorders. PMID:26220976
Measuring Functional Skills in Preschool Children at Risk for Neurodevelopmental Disabilities
ERIC Educational Resources Information Center
Msall, Michael E.
2005-01-01
Approximately 400,000 preschool children have a major neurodevelopmental disorder impacting on mobility, cognitive-adaptive, or communicative skills. As many as 1 in 3 children live at psychosocial disadvantage because of poverty, parental mental illness or substance misuse, or low parental educational (i.e. less than high school). In the past…
An Analogue Assessment of Repetitive Hand Behaviours in Girls and Young Women with Rett Syndrome
ERIC Educational Resources Information Center
Wales, L.; Charman, T.; Mount, R. H.
2004-01-01
Rett syndrome is a neuro-developmental disorder that almost exclusively affects females. In addition to neuro-developmental regression and loss of hand skills, apraxia, deceleration of head growth, and increasing spasticity and scoliosis, a number of behavioural features are also seen, including stereotypic hand movements, hyperventilation and…
Talkowski, Michael E.; Rosenfeld, Jill A.; Blumenthal, Ian; Pillalamarri, Vamsee; Chiang, Colby; Heilbut, Adrian; Ernst, Carl; Hanscom, Carrie; Rossin, Elizabeth; Lindgren, Amelia; Pereira, Shahrin; Ruderfer, Douglas; Kirby, Andrew; Ripke, Stephan; Harris, David; Lee, Ji-Hyun; Ha, Kyungsoo; Kim, Hyung-Goo; Solomon, Benjamin D.; Gropman, Andrea L.; Lucente, Diane; Sims, Katherine; Ohsumi, Toshiro K.; Borowsky, Mark L.; Loranger, Stephanie; Quade, Bradley; Lage, Kasper; Miles, Judith; Wu, Bai-Lin; Shen, Yiping; Neale, Benjamin; Shaffer, Lisa G.; Daly, Mark J.; Morton, Cynthia C.; Gusella, James F.
2012-01-01
SUMMARY Balanced chromosomal abnormalities (BCAs) represent a reservoir of single gene disruptions in neurodevelopmental disorders (NDD). We sequenced BCAs in autism and related NDDs, revealing disruption of 33 loci in four general categories: 1) genes associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, CDKL5), 2) single gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, SNURF-SNRPN), 3) novel risk loci (e.g., CHD8, KIRREL3, ZNF507), and 4) genes associated with later onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, ANK3). We also discovered profoundly increased burden of copy number variants among 19,556 neurodevelopmental cases compared to 13,991 controls (p = 2.07×10−47) and enrichment of polygenic risk alleles from autism and schizophrenia genome-wide association studies (p = 0.0018 and 0.0009, respectively). Our findings suggest a polygenic risk model of autism incorporating loci of strong effect and indicate that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages. PMID:22521361
Kerekes, Nóra; Lundström, Sebastian; Chang, Zheng; Tajnia, Armin; Jern, Patrick; Lichtenstein, Paul; Nilsson, Thomas; Anckarsäter, Henrik
2014-01-01
Background. Previous research has supported gender-specific aetiological factors in oppositional defiant disorder (ODD) and conduct disorder (CD). The aims of this study were to identify gender-specific associations between the behavioural problems-ODD/CD-like problems-and the neurodevelopmental disorders-attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD)-and to investigate underlying genetic effects. Methods. 17,220 twins aged 9 or 12 were screened using the Autism-Tics, AD/HD and other Comorbidities inventory. The main covariates of ODD- and CD-like problems were investigated, and the relative importance of unique versus shared hereditary and environmental effects was estimated using twin model fitting. Results. Social interaction problems (one of the ASD subdomains) was the strongest neurodevelopmental covariate of the behavioural problems in both genders, while ADHD-related hyperactivity/impulsiveness in boys and inattention in girls stood out as important covariates of CD-like problems. Genetic effects accounted for 50%-62% of the variance in behavioural problems, except in CD-like problems in girls (26%). Genetic and environmental effects linked to ADHD and ASD also influenced ODD-like problems in both genders and, to a lesser extent, CD-like problems in boys, but not in girls. Conclusions. The gender-specific patterns should be considered in the assessment and treatment, especially of CD.
Generalised joint hypermobility and neurodevelopmental traits in a non-clinical adult population
Glans, Martin; Humble, Mats B.
2017-01-01
Background Generalised joint hypermobility (GJH) is reportedly overrepresented among clinical cases of attention deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and developmental coordination disorder (DCD). It is unknown if these associations are dimensional and, therefore, also relevant among non-clinical populations. Aims To investigate if GJH correlates with sub-syndromal neurodevelopmental symptoms in a normal population. Method Hakim-Grahame’s 5-part questionnaire (5PQ) on GJH, neuropsychiatric screening scales measuring ADHD and ASD traits, and a DCD-related question concerning clumsiness were distributed to a non-clinical, adult, Swedish population (n=1039). Results In total, 887 individuals met our entry criteria. We found no associations between GJH and sub-syndromal symptoms of ADHD, ASD or DCD. Conclusions Although GJH is overrepresented in clinical cases with neurodevelopmental disorders, such an association seems absent in a normal population. Thus, if GJH serves as a biomarker cutting across diagnostic boundaries, this association is presumably limited to clinical populations. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2017. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:28959454
Neuropsychological study of IQ scores in offspring of parents with bipolar I disorder.
Sharma, Aditya; Camilleri, Nigel; Grunze, Heinz; Barron, Evelyn; Le Couteur, James; Close, Andrew; Rushton, Steven; Kelly, Thomas; Ferrier, Ian Nicol; Le Couteur, Ann
2017-01-01
Studies comparing IQ in Offspring of Bipolar Parents (OBP) with Offspring of Healthy Controls (OHC) have reported conflicting findings. They have included OBP with mental health/neurodevelopmental disorders and/or pharmacological treatment which could affect results. This UK study aimed to assess IQ in OBP with no mental health/neurodevelopmental disorder and assess the relationship of sociodemographic variables with IQ. IQ data using the Wechsler Abbreviated Scale of Intelligence (WASI) from 24 OBP and 34 OHC from the North East of England was analysed using mixed-effects modelling. All participants had IQ in the average range. OBP differed statistically significantly from OHC on Full Scale IQ (p = .001), Performance IQ (PIQ) (p = .003) and Verbal IQ (VIQ) (p = .001) but not on the PIQ-VIQ split. OBP and OHC groups did not differ on socio-economic status (SES) and gender. SES made a statistically significant contribution to the variance of IQ scores (p = .001). Using a robust statistical model of analysis, the OBP with no current/past history of mental health/neurodevelopmental disorders had lower IQ scores compared to OHC. This finding should be borne in mind when assessing and recommending interventions for OBP.
Raine, Adrian; Lee, Lydia; Yang, Yaling; Colletti, Patrick
2010-09-01
Antisocial personality disorder and psychopathy have been hypothesised to have a neurodevelopmental basis, but this proposition has not been formally tested. This study tests the hypothesis that individuals with cavum septum pellucidum (CSP), a marker of limbic neural maldevelopment, will show higher levels of psychopathy and antisocial personality. Cavum septum pellucidum was assessed using anatomical magnetic resonance imaging in a community sample. Those with CSP (n = 19) were compared with those lacking CSP (n = 68) on antisocial personality, psychopathy and criminal offending. Those with CSP had significantly higher levels of antisocial personality, psychopathy, arrests and convictions compared with controls. The pervasiveness of this association was indicated by the fact that those lacking a diagnosis of antisocial personality disorder, but who were charged or convicted for an offence, had a more extensive CSP than non-antisocial controls. Results could not be attributed to prior trauma exposure, head injury, demographic factors or comorbid psychiatric conditions. Our findings appear to be the first to provide evidence for a neurodevelopmental brain abnormality in those with antisocial personality disorder and psychopathy, and support the hypothesis that early maldevelopment of limbic and septal structures predisposes to the spectrum of antisocial behaviours.
Raine, Adrian; Lee, Lydia; Yang, Yaling; Colletti, Patrick
2010-01-01
Background Antisocial personality disorder and psychopathy have been hypothesised to have a neurodevelopmental basis, but this proposition has not been formally tested. Aims This study tests the hypothesis that individuals with cavum septum pellucidum (CSP), a marker of limbic neural maldevelopment, will show higher levels of psychopathy and antisocial personality. Method Cavum septum pellucidum was assessed using anatomical magnetic resonance imaging in a community sample. Those with CSP (n = 19) were compared with those lacking CSP (n = 68) on antisocial personality, psychopathy and criminal offending. Results Those with CSP had significantly higher levels of antisocial personality, psychopathy, arrests and convictions compared with controls. The pervasiveness of this association was indicated by the fact that those lacking a diagnosis of antisocial personality disorder, but who were charged or convicted for an offence, had a more extensive CSP than non-antisocial controls. Results could not be attributed to prior trauma exposure, head injury, demographic factors or comorbid psychiatric conditions. Conclusions Our findings appear to be the first to provide evidence for a neurodevelopmental brain abnormality in those with antisocial personality disorder and psychopathy, and support the hypothesis that early maldevelopment of limbic and septal structures predisposes to the spectrum of antisocial behaviours. PMID:20807962
Vaivre-Douret, L; Boschi, A; Cuny, M L; Clouard, C; Mosser, A; Golse, B; Philippe, A; Bourgeois, M; Boddaert, N; Puget, S
2016-12-01
Left temporal arachnoid cyst and specific learning disorders associated with pervasive developmental disorders - not otherwise specified (PDD-NOS): contributions of an integrative neuro-psychomotor, neuropsychological, psychopathological and neurosurgical approach about a case report in a child (François). With DSM-IV and DSM-IV-TR, the terminology of pervasive developmental disorders (PDD) covers two main categories of infantile disorders: disorders of "strictly" autistic nature and pervasive developmental disorders - not otherwise specified (PDD-NOS). Under the terminology of multiple complex developmental disorder (MCDD), it is proposed to classify children presenting symptoms approaching the psychotic disharmonies and usually diagnosed as PDD-NOS. Such a category of developmental disorders is now included without nosographic distinction in the autistic spectrum in the Diagnostic and Statistical Manual of mental disorders (DSM-V). We are reporting a case report of a 6-year-old boy which shows a PDD-NoS/MCDD complex symptomatology type. This child presents multiple disorders: minor neurological signs (soft signs), neuro-psychomotor disorders, developmental coordination disorder (DCD), communication, thought, and regulation of emotions disorders, attention deficit disorders (ADD); in the presence of a high verbal intellectual potential, which makes it difficult to establish a clear diagnosis. A cerebral magnetic resonance imaging (MRI) was carried out due to the presence of minor neurological signs (soft signs) and of neurodevelopmental multiple disorders. The MRI revealed a voluminous arachnoid temporo-polar left cyst with a marked mass effect on the left temporal lobe. A neurosurgical intervention allowed to observe the gradual disappearance of the specific symptomatology (in particular soft signs, neuro-psychomotor functions and autistic symptoms) secondary to the interference of the cyst's pressure with intracranial areas involving neurological and psychopathological abnormalities, underlying at the same time the reversibility of the disorders after decompression as demonstrated in some studies. There are always, with a quantitative and qualitative decrease, an emotional dysregulation, a DCD, an ADD as well as impairments in the executive functions. This clinical case underlines the necessity of an evaluation in a transdisciplinary way and to follow the developmental evolution of the child in order to focus adapted therapeutics. Furthermore, with neurodevelopmental disorders not specified, it is important to examine the presence of soft signs with standardized neuro-psychomotor assessment, and then, to propose an MRI investigation. To our knowledge, this is the first report in the literature with a school age child of an unusual association between a temporal arachnoid cyst associated with PDD-NOS/MCDD. Copyright © 2016 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Epigenetic dysregulation in cognitive disorders.
Gräff, Johannes; Mansuy, Isabelle M
2009-07-01
Epigenetic mechanisms are not only essential for biological functions requiring stable molecular changes such as the establishment of cell identity and tissue formation, they also constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that both aspects of epigenetic mechanisms play a pivotal role in complex brain functions. Evidence from patients with neurodegenerative and neurodevelopmental disorders such as Alzheimer's disease and Rett syndrome indicated that epigenetic mechanisms and chromatin remodeling need to be tightly controlled for proper cognitive functions, and their dysregulation can have devastating consequences. However, because they are dynamic, epigenetic mechanisms are also potentially reversible and may provide powerful means for pharmacological intervention. This review outlines major cognitive disorders known to be associated with epigenetic dysregulation, and discusses the potential of 'epigenetic medicine' as a promising cure.
Clinical management of behavioral characteristics of Prader-Willi syndrome.
Ho, Alan Y; Dimitropoulos, Anastasia
2010-05-06
Prader-Willi syndrome (PWS) is a complex neurodevelopmental disorder caused by an abnormality on the long arm of chromosome 15 (q11-q13) that results in a host of phenotypic characteristics, dominated primarily by hyperphagia and insatiable appetite. Characteristic behavioral disturbances in PWS include excessive interest in food, skin picking, difficulty with a change in routine, temper tantrums, obsessive and compulsive behaviors, and mood fluctuations. Individuals with PWS typically have intellectual disabilities (borderline to mild/moderate mental retardation) and exhibit a higher overall behavior disturbance compared to individuals with similar intellectual disability. Due to its multisystem disorder, family members, caregivers, physicians, dieticians, and speech-language pathologists all play an important role in the management and treatment of symptoms in an individual with PWS. This article reviews current research on behavior and cognition in PWS and discusses management guidelines for this disorder.
ERIC Educational Resources Information Center
Brieber, Sarah; Neufang, Susanne; Bruning, Nicole; Kamp-Becker, Inge; Remschmidt, Helmut; Herpertz-Dahlmann, Beate; Fink, Gereon R.; Konrad, Kerstin
2007-01-01
Background: Although autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are two distinct neurodevelopmental diseases, they share behavioural, neuropsychological and neurobiological characteristics. For the identification of endophenotypes across diagnostic categories, further investigations of phenotypic overlap…
The Relationship between Autism Spectrum Disorder and Melatonin during Fetal Development.
Jin, Yunho; Choi, Jeonghyun; Won, Jinyoung; Hong, Yonggeun
2018-01-18
The aim of this review is to clarify the interrelationship between melatonin and autism spectrum disorder (ASD) during fetal development. ASD refers to a diverse range of neurodevelopmental disorders characterized by social deficits, impaired communication, and stereotyped or repetitive behaviors. Melatonin, which is secreted by the pineal gland, has well-established neuroprotective and circadian entraining effects. During pregnancy, the hormone crosses the placenta into the fetal circulation and transmits photoperiodic information to the fetus allowing the establishment of normal sleep patterns and circadian rhythms that are essential for normal neurodevelopment. Melatonin synthesis is frequently impaired in patients with ASD. The hormone reduces oxidative stress, which is harmful to the central nervous system. Therefore, the neuroprotective and circadian entraining roles of melatonin may reduce the risk of neurodevelopmental disorders such as ASD.
Schoch, Kelly; Meng, Linyan; Szelinger, Szabolcs; Bearden, David R; Stray-Pedersen, Asbjorg; Busk, Oyvind L; Stong, Nicholas; Liston, Eriskay; Cohn, Ronald D; Scaglia, Fernando; Rosenfeld, Jill A; Tarpinian, Jennifer; Skraban, Cara M; Deardorff, Matthew A; Friedman, Jeremy N; Akdemir, Zeynep Coban; Walley, Nicole; Mikati, Mohamad A; Kranz, Peter G; Jasien, Joan; McConkie-Rosell, Allyn; McDonald, Marie; Wechsler, Stephanie Burns; Freemark, Michael; Kansagra, Sujay; Freedman, Sharon; Bali, Deeksha; Millan, Francisca; Bale, Sherri; Nelson, Stanley F; Lee, Hane; Dorrani, Naghmeh; Goldstein, David B; Xiao, Rui; Yang, Yaping; Posey, Jennifer E; Martinez-Agosto, Julian A; Lupski, James R; Wangler, Michael F; Shashi, Vandana
2017-02-02
Whole-exome sequencing (WES) has increasingly enabled new pathogenic gene variant identification for undiagnosed neurodevelopmental disorders and provided insights into both gene function and disease biology. Here, we describe seven children with a neurodevelopmental disorder characterized by microcephaly, profound developmental delays and/or intellectual disability, cataracts, severe epilepsy including infantile spasms, irritability, failure to thrive, and stereotypic hand movements. Brain imaging in these individuals reveals delay in myelination and cerebral atrophy. We observe an identical recurrent de novo heterozygous c.892C>T (p.Arg298Trp) variant in the nucleus accumbens associated 1 (NACC1) gene in seven affected individuals. One of the seven individuals is mosaic for this variant. NACC1 encodes a transcriptional repressor implicated in gene expression and has not previously been associated with germline disorders. The probability of finding the same missense NACC1 variant by chance in 7 out of 17,228 individuals who underwent WES for diagnoses of neurodevelopmental phenotypes is extremely small and achieves genome-wide significance (p = 1.25 × 10 -14 ). Selective constraint against missense variants in NACC1 makes this excess of an identical missense variant in all seven individuals more remarkable. Our findings are consistent with a germline recurrent mutational hotspot associated with an allele-specific neurodevelopmental phenotype in NACC1. Copyright © 2017 American Society of Human Genetics. All rights reserved.
Annual Research Review: Infant Development, Autism, and ADHD--Early Pathways to Emerging Disorders
ERIC Educational Resources Information Center
Johnson, Mark H.; Gliga, Teodora; Jones, Emily; Charman, Tony
2015-01-01
Background: Autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neurodevelopmental disorders, with a high degree of co-occurrence. Methods: Prospective longitudinal studies of infants who later meet criteria for ASD or ADHD offer the opportunity to determine whether the two disorders share…
ERIC Educational Resources Information Center
Rao, Patricia A.; Landa, Rebecca J.
2014-01-01
Autism spectrum disorder and attention deficit hyperactivity disorder are neurodevelopmental disorders that cannot be codiagnosed under existing diagnostic guidelines ("Diagnostic and Statistical Manual of the American Psychiatric Association," 4th ed., text rev.). However, reports are emerging that attention deficit hyperactivity…
ERIC Educational Resources Information Center
Stores, Gregory, Ed.; Wiggs, Luci, Ed.
The 30 papers in this collection are arranged in five sections which address general issues, neurodevelopmental disorders, other neurological conditions, non-neurological pediatric disorders, and psychiatric disorders. The papers are: (1) "Sleep Disturbance: A Serious, Widespread, Yet Neglected Problem in Disorders of Development"…
Reynolds, Stacey; Lane, Shelly J; Richards, Lorie
2010-09-01
The field of behavioral neuroscience has been successful in using an animal model of enriched environments for over five decades to measure the rehabilitative and preventative effects of sensory, cognitive and motor stimulation in animal models. Several key principles of enriched environments match those used in sensory integration therapy, a treatment used for children with neurodevelopmental disorders. This paper reviews the paradigm of environmental enrichment, compares animal models of enriched environments to principles of sensory integration treatment, and discusses applications for the rehabilitation of neurodevelopmental disorders. Based on this review, the essential features in the enriched environment paradigm which should be included in sensory integration treatment are multiple sensory experiences, novelty in the environment, and active engagement in challenging cognitive, sensory, and motor tasks. Use of sensory integration treatment may be most applicable for children with anxiety, hypersensitivity, repetitive behaviors or heightened levels of stress. Additionally, individuals with deficits in social behavior, social participation, or impairments in learning and memory may show gains with this type of treatment.
Khandaker, Golam M.; Stochl, Jan; Zammit, Stanley; Lewis, Glyn; Jones, Peter B
2014-01-01
Background Schizophrenia has a neurodevelopmental component to its origin, and may share overlapping pathogenic mechanisms with childhood neurodevelopmental disorders (ND). Yet longitudinal studies of psychotic outcomes among individuals with ND are limited. We report a population-based prospective study of six common childhood ND, subsequent neurocognitive performance and the risk of psychotic experiences (PEs) in early adolescence. Methods PEs were assessed by semi-structured interviews at age 13 years. IQ and working memory were measured between ages 9 and 11 years. The presence of six neurodevelopmental disorders (autism spectrum, dyslexia, dyspraxia, dysgraphia, dysorthographia, dyscalculia) was determined from parent-completed questionnaire at age 9 years. Linear regression calculated mean difference in cognitive scores between those with and without ND. The association between ND and PEs was expressed as odds ratio (OR); effects of cognitive deficits were examined. Potential confounders included age, gender, father’s social class, ethnicity and maternal education. Results Out of 8,220 children, 487 (5.9%) were reported to have ND at age 9 years. Children with, compared with those without ND performed worse on all cognitive measures; adjusted mean difference in total IQ 6.84 (95% CI 5.00- 8.69). The association between total IQ and ND was linear (p<0.0001). The risk of PEs was higher in those with, compared with those without ND; adjusted OR for definite PEs 1.76 (95% CI 1.11- 2.79). IQ (but not working memory) deficit partly explained this association. Conclusion Higher risk of PEs in early adolescence among individuals with childhood ND is consistent with the neurodevelopmental hypothesis of schizophrenia. PMID:25066026
Trent, Simon; Dean, Rachel; Veit, Bonnie; Cassano, Tommaso; Bedse, Gaurav; Ojarikre, Obah A; Humby, Trevor; Davies, William
2013-08-01
Chromosomal deletions at Xp22.3 appear to influence vulnerability to the neurodevelopmental disorders attention deficit hyperactivity disorder (ADHD) and autism. 39,X(Y*)O mice, which lack the murine orthologue of the Xp22.3 ADHD candidate gene STS (encoding steroid sulfatase), exhibit behavioural phenotypes relevant to such disorders (e.g. hyperactivity), elevated hippocampal serotonin (5-HT) levels, and reduced serum levels of dehydroepiandrosterone (DHEA). Here we initially show that 39,X(Y*)O mice are also deficient for the recently-characterised murine orthologue of the Xp22.3 autism candidate gene ASMT (encoding acetylserotonin-O-methyltransferase). Subsequently, to specify potential behavioural correlates of elevated hippocampal 5-HT arising due to the genetic lesion, we compared 39,X(Y*)O MF1 mice to 40,XY MF1 mice on behavioural tasks taxing hippocampal and/or 5-HT function (a 'foraging' task, an object-location task, and the 1-choice serial reaction time task of impulsivity). Although Sts/Asmt deficiency did not influence foraging behaviour, reactivity to familiar objects in novel locations, or 'ability to wait', it did result in markedly increased response rates; these rates correlated with hippocampal 5-HT levels and are likely to index behavioural perseveration, a frequent feature of neurodevelopmental disorders. Additionally, we show that whilst there was no systematic relationship between serum DHEA levels and hippocampal 5-HT levels across 39,X(Y*)O and 40,XY mice, there was a significant inverse linear correlation between serum DHEA levels and activity. Our data suggest that deficiency for genes within Xp22.3 could influence core behavioural features of neurodevelopmental disorders via dissociable effects on hippocampal neurochemistry and steroid hormone levels, and that the mediating neurobiological mechanisms may be investigated in the 39,X(Y*)O model. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sealy, Julie; Glovinsky, Ira P
2016-01-01
This randomized controlled trial examined the reflective functioning capacities of caregivers who have a child with a neurodevelopmental disorder between the ages of 2 years 0 months and 6 years 11 months. Children with a neurodevelopmental disorder receive a range of diagnoses, including sutism; however, they all exhibit social communication challenges that can derail social relationships. Forty parent-child dyads in Barbados were randomly assigned to either a developmental individual-difference, relationship-based/floortime(DIR/FT) group (n = 20), or a psychoeducational (wait-list) group (n = 20) with parental reflective functioning measured before and after a 12-week DIR/FT treatment intervention. Results revealed significant gains in parental reflective functioning in the treatment group, as compared to the psychoeducational (wait-list) group, after the 12-week relationship-focused intervention. © 2016 Michigan Association for Infant Mental Health.
Pesticides, Neurodevelopmental Disagreement, and Bradford Hill's Guidelines.
Shrader-Frechette, Kristin; ChoGlueck, Christopher
2016-06-27
Neurodevelopmental disorders such as autism affect one-eighth of all U.S. newborns. Yet scientists, accessing the same data and using Bradford-Hill guidelines, draw different conclusions about the causes of these disorders. They disagree about the pesticide-harm hypothesis, that typical United States prenatal pesticide exposure can cause neurodevelopmental damage. This article aims to discover whether apparent scientific disagreement about this hypothesis might be partly attributable to questionable interpretations of the Bradford-Hill causal guidelines. Key scientists, who claim to employ Bradford-Hill causal guidelines, yet fail to accept the pesticide-harm hypothesis, fall into errors of trimming the guidelines, requiring statistically-significant data, and ignoring semi-experimental evidence. However, the main scientists who accept the hypothesis appear to commit none of these errors. Although settling disagreement over the pesticide-harm hypothesis requires extensive analysis, this article suggests that at least some conflicts may arise because of questionable interpretations of the guidelines.
Biscaldi, Monica; Rauh, Reinhold; Müller, Cora; Irion, Lisa; Saville, Christopher W N; Schulz, Eberhard; Klein, Christoph
2015-12-01
Deficits in motor and imitation abilities are a core finding in autism spectrum disorders (ASD), but impaired motor functions are also found in attention deficit/hyperactivity disorder (ADHD). Given recent theorising about potential aetiological overlap between the two disorders, the present study aimed to assess difficulties in motor performance and imitation of facial movements and meaningless gestures in a sample of 24 ADHD patients, 22 patients with ASD, and 20 typically developing children, matched for age (6-13 years) and similar in IQ (>80). Furthermore, we explored the impact of comorbid ADHD symptoms on motor and imitation performance in the ASD sample and the interrelationships between the two groups of variables in the clinical groups separately. The results show motor dysfunction was common to both disorders, but imitation deficits were specific to ASD. Together with the pattern of interrelated motor and imitation abilities, which we found exclusively in the ASD group, our findings suggest complex phenotypic, and possibly aetiological, relationships between the two neurodevelopmental conditions.
Nonconvulsive status epilepticus and neurodevelopmental delay.
Dirik, Eray; Yiş, Uluç; Hüdaoglu, Orkide; Kurul, Semra
2006-09-01
Nonconvulsive status epilepticus is characterized by continuous or near continuous epileptiform discharges on electroencephalography without overt motor or sensory phenomena. It is a symptomatic condition related to a disease such as epileptic encephalopathy or a metabolic disorder. Children with isolated nonconvulsive status epilepticus rarely present with global neurodevelopmental delay. This report describes an 18-month-old male who presented with global neurodevelopmental delay and decreased alertness in whom electrical status epilepticus during sleep, which is a form of nonconvulsive status epilepticus, was determined. Metabolic investigations and cranial magnetic resonance imaging were normal. He began to achieve developmental milestones after treatment with valproic acid. Although rare, pediatric neurologists and pediatricians must be aware of this condition in making the differential diagnosis of global neurodevelopmental delay and decreased alertness.
ErbB4 in Laminated Brain Structures: A Neurodevelopmental Approach to Schizophrenia
Perez-Garcia, Carlos G.
2015-01-01
The susceptibility genes for schizophrenia Neuregulin-1 (NRG1) and ErbB4 have critical functions during brain development and in the adult. Alterations in the ErbB4 signaling pathway cause a variety of neurodevelopmental defects including deficiencies in neuronal migration, synaptic plasticity, and myelination. I have used the ErbB4-/- HER4heart KO mice to study the neurodevelopmental insults associated to deficiencies in the NRG1-ErbB4 signaling pathway and their potential implication with brain disorders such as schizophrenia, a chronic psychiatric disease affecting 1% of the population worldwide. ErbB4 deletion results in an array of neurodevelopmental deficits that are consistent with a schizophrenic model. First, similar defects appear in multiple brain structures, from the cortex to the cerebellum. Second, these defects affect multiple aspects of brain development, from deficits in neuronal migration to impairments in excitatory/inhibitory systems, including reductions in brain volume, cortical and cerebellar heterotopias, alterations in number and distribution of specific subpopulations of interneurons, deficiencies in the astrocytic and oligodendrocytic lineages, and additional insults in major brain structures. This suggests that alterations in specific neurodevelopmental genes that play similar functions in multiple neuroanatomical structures might account for some of the symptomatology observed in schizophrenic patients, such as defects in cognition. ErbB4 mutation uncovers flaws in brain development that are compatible with a neurodevelopmental model of schizophrenia, and it establishes a comprehensive model to study the basis of the disorder before symptoms are detected in the adult. PMID:26733804
Oberman, Lindsay M.; Enticott, Peter G.; Casanova, Manuel F.; Rotenberg, Alexander; Pascual-Leone, Alvaro; McCracken, James T.
2016-01-01
Autism Spectrum Disorder (ASD) is a behaviorally defined complex neurodevelopmental syndrome characterized by impairments in social communication, by the presence of restricted and repetitive behaviors, interests and activities, and by abnormalities in sensory reactivity. Transcranial magnetic stimulation (TMS) is a promising, emerging tool for the study and potential treatment of ASD. Recent studies suggest that TMS measures provide rapid and noninvasive pathophysiological ASD biomarkers. Furthermore, repetitive TMS (rTMS) may represent a novel treatment strategy for reducing some of the core and associated ASD symptoms. However, the available literature on the TMS use in ASD is preliminary, composed of studies with methodological limitations. Thus, off-label clinical rTMS use for therapeutic interventions in ASD without an investigational device exemption and outside of an IRB approved research trial is premature pending further, adequately powered and controlled trials. Leaders in this field have gathered annually for a two-day conference (prior to the 2014 and 2015 International Meeting for Autism Research, IMFAR) to share recent progress, promote collaboration across laboratories, and establish consensus on protocols. Here we review the literature in the use of TMS in ASD in the context of the unique challenges required for the study and exploration of treatment strategies in this population. We also suggest future directions for this field of investigations. While its true potential in ASD has yet to be delineated, TMS represents an innovative research tool and a novel, possibly transformative approach to the treatment of neurodevelopmental disorders. PMID:26536383
Wise, Alexandria; Tenezaca, Luis; Fernandez, Robert W; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F; Venkatesh, Tadmiri
2015-01-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.
Gabriele, Michele; Lopez Tobon, Alejandro; D'Agostino, Giuseppe; Testa, Giuseppe
2018-06-08
The complexity of the human brain emerges from a long and finely tuned developmental process orchestrated by the crosstalk between genome and environment. Vis à vis other species, the human brain displays unique functional and morphological features that result from this extensive developmental process that is, unsurprisingly, highly vulnerable to both genetically and environmentally induced alterations. One of the most striking outcomes of the recent surge of sequencing-based studies on neurodevelopmental disorders (NDDs) is the emergence of chromatin regulation as one of the two domains most affected by causative mutations or Copy Number Variations besides synaptic function, whose involvement had been largely predicted for obvious reasons. These observations place chromatin dysfunction at the top of the molecular pathways hierarchy that ushers in a sizeable proportion of NDDs and that manifest themselves through synaptic dysfunction and recurrent systemic clinical manifestation. Here we undertake a conceptual investigation of chromatin dysfunction in NDDs with the aim of systematizing the available evidence in a new framework: first, we tease out the developmental vulnerabilities in human corticogenesis as a structuring entry point into the causation of NDDs; second, we provide a much needed clarification of the multiple meanings and explanatory frameworks revolving around "epigenetics", highlighting those that are most relevant for the analysis of these disorders; finally we go in-depth into paradigmatic examples of NDD-causing chromatin dysregulation, with a special focus on human experimental models and datasets. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Increased burden of deleterious variants in essential genes in autism spectrum disorder.
Ji, Xiao; Kember, Rachel L; Brown, Christopher D; Bućan, Maja
2016-12-27
Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication, and repetitive behavior. It is estimated that hundreds of genes contribute to ASD. We asked if genes with a strong effect on survival and fitness contribute to ASD risk. Human orthologs of genes with an essential role in pre- and postnatal development in the mouse [essential genes (EGs)] are enriched for disease genes and under strong purifying selection relative to human orthologs of mouse genes with a known nonlethal phenotype [nonessential genes (NEGs)]. This intolerance to deleterious mutations, commonly observed haploinsufficiency, and the importance of EGs in development suggest a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. With a comprehensive catalog of 3,915 mammalian EGs, we provide compelling evidence for a stronger contribution of EGs to ASD risk compared with NEGs. By examining the exonic de novo and inherited variants from 1,781 ASD quartet families, we show a significantly higher burden of damaging mutations in EGs in ASD probands compared with their non-ASD siblings. The analysis of EGs in the developing brain identified clusters of coexpressed EGs implicated in ASD. Finally, we suggest a high-priority list of 29 EGs with potential ASD risk as targets for future functional and behavioral studies. Overall, we show that large-scale studies of gene function in model organisms provide a powerful approach for prioritization of genes and pathogenic variants identified by sequencing studies of human disease.
Increased burden of deleterious variants in essential genes in autism spectrum disorder
Kember, Rachel L.; Brown, Christopher D.; Bućan, Maja
2016-01-01
Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication, and repetitive behavior. It is estimated that hundreds of genes contribute to ASD. We asked if genes with a strong effect on survival and fitness contribute to ASD risk. Human orthologs of genes with an essential role in pre- and postnatal development in the mouse [essential genes (EGs)] are enriched for disease genes and under strong purifying selection relative to human orthologs of mouse genes with a known nonlethal phenotype [nonessential genes (NEGs)]. This intolerance to deleterious mutations, commonly observed haploinsufficiency, and the importance of EGs in development suggest a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. With a comprehensive catalog of 3,915 mammalian EGs, we provide compelling evidence for a stronger contribution of EGs to ASD risk compared with NEGs. By examining the exonic de novo and inherited variants from 1,781 ASD quartet families, we show a significantly higher burden of damaging mutations in EGs in ASD probands compared with their non-ASD siblings. The analysis of EGs in the developing brain identified clusters of coexpressed EGs implicated in ASD. Finally, we suggest a high-priority list of 29 EGs with potential ASD risk as targets for future functional and behavioral studies. Overall, we show that large-scale studies of gene function in model organisms provide a powerful approach for prioritization of genes and pathogenic variants identified by sequencing studies of human disease. PMID:27956632
Early neurodevelopmental screening in tuberous sclerosis complex: a potential window of opportunity.
Gipson, Tanjala T; Gerner, Gwendolyn; Srivastava, Siddharth; Poretti, Andrea; Vaurio, Rebecca; Hartman, Adam; Johnston, Michael V
2014-09-01
Infants born with tuberous sclerosis complex, a genetic condition resulting from a mutation in TSC1 or TSC2, are at increased risk for intellectual disability and/or autism. Features of epilepsy, neuropathology, genetics, as well as timing and type of mechanism-based medications have been proposed as risk factors. Neurodevelopmental outcomes have been reported among these studies; however, few include data about the individuals' early neurodevelopmental profile, a factor that may contribute significantly to these outcomes. Further, there is no clinical standard for the neurodevelopmental assessment of these infants. The paucity of data regarding the natural history of neurodevelopment in infants with tuberous sclerosis complex and the lack of a gold standard for neurodevelopmental evaluation present a significant challenge for clinicians and researchers. During the first year of life, we tracked the onset of infantile spasms, the type and timing of antiepileptic treatments, and the associated response of two age-matched infants with tuberous sclerosis complex. We also employed Capute Scales as a part of a structured neurodevelopmental evaluation to characterize and compare their neurodevelopmental profiles. Infant 1 developed infantile spasms with confirmed hypsarrhythmia at 4 months of age. Treatment with vigabatrin was initiated within 24 hours with near immediate cessation of seizures and no further seizures to date. Expressive language delay was detected at 12 months and treated with speech and/or language therapy. Infant 2 developed complex partial seizures at 1 month. Treatment included levetiracetam, oxcarbazepine, and the ketogenic diet. Vigabatrin was initiated on detection of hypsarrhythmia after 4 months. Intractable epilepsy persists to date. Global developmental delay was evident by 8 months and treated with physical, occupational, and speech and/or language therapy. Many risk factors have been associated with intellectual disability and/or autism in individuals with tuberous sclerosis complex; however, few data are available regarding practical clinical tools for early identification. In our case series, inclusion of the Capute Scales as a part of routine medical care led to the identification of developmental delays in the first 12 months of life and selection of targeted neurodevelopmental interventions. Development of a risk-based assessment using this approach will be the focus of future studies as it may provide a potential window of opportunity for both research and clinical purposes. In research, it may serve as an objective outcome measure. Clinically, this type of assessment has potential for informing clinical treatment decisions and serving as a prognostic indicator of long-term cognitive and psychiatric outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
[Vojta's method as the early neurodevelopmental diagnosis and therapy concept].
Banaszek, Grazyna
2010-01-01
Vaclav Vojta (1917-2000) developed an early diagnostic method of the neurodevelopmental disorder of infants and came up with therapeutic concept consisting in releasing of global motor complexes by means of the stimulation of proper areas on patients body. In the diagnostics apart from very careful observation of the spontaneous movement of the infant and examination of the reflexes that are characteristic for the first weeks of human's life, Vojta applied the examination of the 7 postural reactions. Presence of the trouble in patterns and dynamics of the postural reactions Vojta called Central Nervous Coordination Disorder--CNCD and regarded as work diagnosis or alarm signal indicating necessity of application of the therapy, especially when asymmetry of the muscle tone and primitive reflexes beyond their physiological appearance period are observed or the number of the abnormal reactions exceeds 5. Global motor complexes as reflex locomotion--crawling and rotation--consist of all the partial motion patterns, which are gradually used by healthy infant in the process of postural and motor ontogenesis. Providing the central nervous system with proper external stimulation allows to, using neuronal plasticity, recreate an access to the human's postural development program and gradually replace pathological motor patterns by those more regular. Exercises repeated several times a day rebuilt support, erectile and vertical mechanisms, improve automatic postural control and phase lower limb movement. Affecting especially on autochtonic muscles of the spine exercises balance synergic cooperation of muscle groups in the trunk and those surrounding key body joints. This way they correct body's posture and peripheral motion and pathology of the outlasted primitive reflexes gradually withdraws.
Vance, Alasdair; Arduca, Yolanda; Sanders, Michelle; Karamitsios, Mary; Hall, Nicole; Hetrick, Sarah
2006-08-30
The associations between neurodevelopmental deficits (NDD) and (1) attention deficit hyperactivity disorder, combined type (ADHD-CT) and (2) internalising disorders have been replicated. To date, the specific association between standardized NDD and carefully defined ADHD-CT alone, dysthymic disorder alone and anxiety disorders alone has not been systematically investigated in children of primary school age. A cross-sectional study of NDD in 99 six- to 12-year-old children with categorically and dimensionally defined ADHD-CT alone, dysthymic disorder alone and anxiety disorders alone and 20 age-matched healthy children was undertaken. The ADHD-CT and dysthymic disorder groups had increased total neurological subtle signs, compared to the anxiety disorders group, which, in turn, had increased total neurological subtle signs compared with the healthy children. Interestingly, the dysthymic disorder children had increased conjugate eye gaze difficulties compared with the other three groups. The differences remained after controlling for full scale IQ. These findings suggest a neurobiological underpinning of dysthymic disorder, while confirming that of ADHD-CT in primary school age children. Future studies will explore whether the above more specific neurological subtle signs are developmental phase specific or independent associations.
[Gastrointestinal disorders in children with cerebral palsy and neurodevelopmental disabilities].
González Jiménez, D; Díaz Martin, J J; Bousoño García, C; Jiménez Treviño, S
2010-12-01
Recent data suggest that, contrary to initial expectations with improvements in perinatal medicine, the prevalence of cerebral palsy has not decreased over the last 20 years. Gastrointestinal disorders are a major chronic problem in most of children with cerebral palsy and in children with neurodevelopmental disabilities. A multidisciplinary approach, with input from neurologists, gastroenterologists, nurses, dieticians and other specialists, can make a major contribution to the medical wellbeing and quality of life of these children and their caregivers. This article focuses on diagnostic methods and therapeutic options available for major nutritional and gastrointestinal problems in patients with neurological disabilities: gastroesophageal reflux, constipation and swallowing disorders. Copyright © 2009 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
Basic pharmacology of NMDA receptors.
Gonda, Xenia
2012-01-01
NMDA receptors are ionotropic receptors mediating glutamatergic neurotransmission and play a role in several basic functions in the central nervous system, from regulating neurodevelopment and synaptic plasticity, learning and memory formation, cognitive processes, rhythm generation necessary for locomotor activity and breathing, and excitotoxicity. Due to their complex involvement in the above processes, NMDA receptors have been established to play a role in the etiopathology of several neuropsychiatric disorders such as ischaemia and traumatic brain injury, neurodegenerative disorders, pain syndromes, addiction, affective disorders and such neurodevelopmental disorders as autism or schizophrenia. NMDA receptors contain multiple types of subunits with distinct functional and pharmacological properties making the picture more complex. These receptors also offer multiple binding sites to be targeted with pharmacons, however, early broad-spectrum NMDA receptor antagonists had limited clinical use due to their intolerable adverse effect profile. The discovery of several types of subunit selective NMDA receptor antagonists may offer valuable therapeutic possibilities for several disorders, with improved clinical efficacy and decreased side effects. However, in spite of our increasing knowledge concerning the involvement of NMDA receptors in pathological processes, molecules with a selective action, tolerable side effect profile and good clinical efficacy are still only in clinical development in the majority of cases. Nevertheless, NMDA receptors offer a novel opportunity in the treatment of various neuropsychiatric conditions.
The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative
Calkins, Monica E.; Merikangas, Kathleen R.; Moore, Tyler M.; Burstein, Marcy; Behr, Meckenzie A; Satterthwaite, Theodore D.; Ruparel, Kosha; Wolf, Daniel H.; Roalf, David R.; Mentch, Frank D.; Qiu, Haijun; Chiavacci, Rosetta; Connolly, John J.; Sleiman, Patrick M.A.; Gur, Ruben C.
2015-01-01
Background An integrative multidisciplinary approach is required to elucidate the multiple factors that shape neurodevelopmental trajectories of mental disorders. The Philadelphia Neurodevelopmental Cohort (PNC), funded by the National Institute of Mental Health Grand Opportunity (GO) mechanism of the American Recovery and Reinvestment Act, was designed to characterize clinical and neurobehavioral phenotypes of genotyped youths. Data generated, which are recently available through the NIMH Database of Genotypes and Phenotypes (dbGaP), have garnered considerable interest. We provide an overview of PNC recruitment and clinical assessment methods to allow informed use and interpretation of the PNC resource by the scientific community. We also evaluate the structure of the assessment tools and their criterion validity. Methods Participants were recruited from a large pool of youths (n=13,958) previously identified and genotyped at The Children's Hospital of Philadelphia. A comprehensive computerized tool for structured evaluation of psychopathology domains (GOASSESS) was constructed. We administered GOASSESS to all participants and used factor analysis to evaluate its structure. Results A total of 9,498 youths (ages 8-21; mean age=14.2; European-American=55.8%; African-American=32.9%; Other=11.4%) were enrolled. Factor analysis revealed a strong general psychopathology factor, and specific ‘anxious-misery’, ‘fear’ and ‘behavior’ factors. The ‘behavior’ factor had a small negative correlation (−0.21) with overall accuracy of neurocognitive performance, particularly in tests of executive and complex reasoning. Being female had a high association with the ‘anxious-misery’ and low association with the ‘behavior’ factors. The psychosis spectrum was also best characterized by a general factor and three specific factors: ideas about ‘special abilities/persecution,’ ‘unusual thoughts/perceptions,’ and ‘negative/disorganized’ symptoms. Conclusions The PNC assessment mechanism yielded psychopathology data with strong factorial validity in a large diverse community cohort of genotyped youths. Factor scores should be useful for dimensional integration with other modalities (neuroimaging, genomics). Thus, PNC public domain resources can advance understanding of complex inter-relationships among genes, cognition, brain and behavior involved in neurodevelopment of common mental disorders. PMID:25858255
ERIC Educational Resources Information Center
Bramham, Jessica; Ambery, Fiona; Young, Susan; Morris, Robin; Russell, Ailsa; Xenitidis, Kiriakos; Asherson, Philip; Murphy, Declan
2009-01-01
Executive functioning deficits characterize the neuropsychological profiles of the childhood neurodevelopmental disorders of attention deficit hyperactivity disorder (ADHD) and autistic spectrum disorder (ASD). This study sought to determine whether similar impairments exist in adults with ADHD (N = 53) and ASD (N = 45) in comparison with a…
Typical and atypical brain development: a review of neuroimaging studies
Dennis, Emily L.; Thompson, Paul M.
2013-01-01
In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders. PMID:24174907
Typical and atypical brain development: a review of neuroimaging studies.
Dennis, Emily L; Thompson, Paul M
2013-09-01
In the course of development, the brain undergoes a remarkable process of restructuring as it adapts to the environment and becomes more efficient in processing information. A variety of brain imaging methods can be used to probe how anatomy, connectivity, and function change in the developing brain. Here we review recent discoveries regarding these brain changes in both typically developing individuals and individuals with neurodevelopmental disorders. We begin with typical development, summarizing research on changes in regional brain volume and tissue density, cortical thickness, white matter integrity, and functional connectivity. Space limits preclude the coverage of all neurodevelopmental disorders; instead, we cover a representative selection of studies examining neural correlates of autism, attention deficit/hyperactivity disorder, Fragile X, 22q11.2 deletion syndrome, Williams syndrome, Down syndrome, and Turner syndrome. Where possible, we focus on studies that identify an age by diagnosis interaction, suggesting an altered developmental trajectory. The studies we review generally cover the developmental period from infancy to early adulthood. Great progress has been made over the last 20 years in mapping how the brain matures with MR technology. With ever-improving technology, we expect this progress to accelerate, offering a deeper understanding of brain development, and more effective interventions for neurodevelopmental disorders.
Reinhard, Sarah M; Razak, Khaleel; Ethell, Iryna M
2015-01-01
The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called 'critical periods.' MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer's disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders.
Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions.
Lacivita, Enza; Perrone, Roberto; Margari, Lucia; Leopoldo, Marcello
2017-11-22
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.
Bipolar Disorder and Cognitive Dysfunction: A Complex Link.
Cipriani, Gabriele; Danti, Sabrina; Carlesi, Cecilia; Cammisuli, Davide Maria; Di Fiorino, Mario
2017-10-01
The aim of this article was to describe the current evidence regarding phenomenon of cognitive functioning and dementia in bipolar disorder (BD). Cochrane Library and PubMed searches were conducted for relevant articles, chapters, and books published before 2016. Search terms used included "bipolar disorder," "cognitive dysfunction," and "dementia." At the end of the selection process, 159 studies were included in our qualitative synthesis. As result, cognitive impairments in BD have been previously considered as infrequent and limited to the affective episodes. Nowadays, there is evidence of stable and lasting cognitive dysfunctions in all phases of BD, including remission phase, particularly in the following domains: attention, memory, and executive functions. The cause of cognitive impairment in BD raises the question if it subtends a neurodevelopmental or a neurodegenerative process. Impaired cognitive functioning associated with BD may contribute significantly to functional disability, in addition to the distorted affective component usually emphasized.
Ben Said, Mohamed; Robel, Laurence; Golse, Bernard; Jais, Jean Philippe
2017-01-01
Autism spectrum disorders (ASD) are complex neuro-developmental disorders affecting children in their early age. The diagnosis of ASD relies on multidisciplinary investigations, in psychiatry, neurology, genetics, electrophysiology, neuro-imagery, audiology and ophthalmology. In order to support clinicians, researchers and public health decision makers, we designed an information system dedicated to ASD, called TEDIS. TEDIS was designed to manage systematic, exhaustive and continuous multi-centric patient data collection via secured Internet connections. In this paper, we present the security policy and security infrastructure we developed to protect ASD' patients' clinical data and patients' privacy. We tested our system on 359 ASD patient records in a local secured intranet environment and showed that the security system is functional, with a consistent, transparent and safe encrypting-decrypting behavior. It is ready for deployment in the nine ASD expert assessment centers in the Ile de France district.
Parental perspectives on the causes of an autism spectrum disorder in their children.
Mercer, L; Creighton, S; Holden, J J A; Lewis, M E S
2006-02-01
Autism Spectrum Disorders (ASDs) are complex neurodevelopmental disorders with many biological causes, including genetic, syndromic and environmental. Such etiologic heterogeneity impacts considerably upon parents' needs for understanding their child's diagnosis. A descriptive survey was designed to investigate parental views on the cause(s) of ASD in their child. Among the 41 parents who replied to the questionnaire, genetic influences (90.2%), perinatal factors (68.3%), diet (51.2%), prenatal factors (43.9%) and vaccines (40.0%) were considered to be the most significant contributory factors. Parents reported inaccurately high recurrence risks, misperceptions of the contribution of various putative factors, feelings of guilt and blame regarding their child's diagnosis, as well as a lack of advocacy for genetic counseling by non-geneticist professionals. This study offers clinicians and researchers further insight into what parents believe contributed to their child's diagnosis of ASD and will help facilitate genetic counseling for these families.
Adult Learning Disorders: Contemporary Issues
ERIC Educational Resources Information Center
Wolf, Lorraine E., Ed.; Schreiber, Hope E., Ed.; Wasserstein, Jeanette, Ed.
2008-01-01
Recent advances in neuroimaging and genetics technologies have enhanced our understanding of neurodevelopmental disorders in adults. The authors in this volume not only discuss such advances as they apply to adults with learning disorders, but also address their translation into clinical practice. One cluster of chapters addresses developmental…
Uddin, L Q; Dajani, D R; Voorhies, W; Bednarz, H; Kana, R K
2017-08-22
Children with neurodevelopmental disorders benefit most from early interventions and treatments. The development and validation of brain-based biomarkers to aid in objective diagnosis can facilitate this important clinical aim. The objective of this review is to provide an overview of current progress in the use of neuroimaging to identify brain-based biomarkers for autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), two prevalent neurodevelopmental disorders. We summarize empirical work that has laid the foundation for using neuroimaging to objectively quantify brain structure and function in ways that are beginning to be used in biomarker development, noting limitations of the data currently available. The most successful machine learning methods that have been developed and applied to date are discussed. Overall, there is increasing evidence that specific features (for example, functional connectivity, gray matter volume) of brain regions comprising the salience and default mode networks can be used to discriminate ASD from typical development. Brain regions contributing to successful discrimination of ADHD from typical development appear to be more widespread, however there is initial evidence that features derived from frontal and cerebellar regions are most informative for classification. The identification of brain-based biomarkers for ASD and ADHD could potentially assist in objective diagnosis, monitoring of treatment response and prediction of outcomes for children with these neurodevelopmental disorders. At present, however, the field has yet to identify reliable and reproducible biomarkers for these disorders, and must address issues related to clinical heterogeneity, methodological standardization and cross-site validation before further progress can be achieved.
Morin-Moncet, Olivier; Bélanger, Anne-Marie; Beauchamp, Miriam H.; Leonard, Gabriel
2017-01-01
Dyslexia and Attention deficit disorder (AD) are prevalent neurodevelopmental conditions in children and adolescents. They have high comorbidity rates and have both been associated with motor difficulties. Little is known, however, about what is shared or differentiated in dyslexia and AD in terms of motor abilities. Even when motor skill problems are identified, few studies have used the same measurement tools, resulting in inconstant findings. The present study assessed increasingly complex gross motor skills in children and adolescents with dyslexia, AD, and with both Dyslexia and AD. Our results suggest normal performance on simple motor-speed tests, whereas all three groups share a common impairment on unimanual and bimanual sequential motor tasks. Children in these groups generally improve with practice to the same level as normal subjects, though they make more errors. In addition, children with AD are the most impaired on complex bimanual out-of-phase movements and with manual dexterity. These latter findings are examined in light of the Multiple Deficit Model. PMID:28542319
Seizures and Epilepsy and Their Relationship to Autism Spectrum Disorders
ERIC Educational Resources Information Center
Matson, Johnny L.; Neal, Daniene
2009-01-01
Autism spectrum disorders (ASD) are serious neurodevelopmental disorders which often co-occur with intellectual disabilities. A disorder which is strongly correlated with both of these disabilities are seizures and epilepsy. The purpose of this review was to provide an overview of available research on seizures and epilepsy in the ASD population…
ERIC Educational Resources Information Center
Barnhart, Ramona
2017-01-01
Autism continues to be an intriguing condition, and perhaps the most efficiently researched of all child psychiatric disorders (Wolff, 2004). Autism spectrum disorders (ASD) are multifaceted neurodevelopmental disorders that entail vital social focused deficiency and behavioral obstinacy. Autism is the ultimate form of ASD and includes substantial…
ERIC Educational Resources Information Center
Clinton, Elias
2016-01-01
An emotional/behavioral disorder is a mental health disability characterized by intensive internalized behaviors (e.g., anxiety, depression) and/or externalized behaviors (e.g., physical aggression, verbal aggression). Autism is a neurodevelopmental disorder characterized by deficits in social communication and repetitive behaviors (i.e., stereo…
ERIC Educational Resources Information Center
Reeves, Matthew Jonathan; Bailey, Richard P.
2016-01-01
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental psychiatric disorder among children. Despite the noted positive aspects of the disorder, it is often associated with a range of negative outcomes for that are detrimental to children's education and wider well-being. This comprehensive scoping review examined…
NMDA receptor activation regulates sociability by its effect on mTOR signaling activity.
Burket, Jessica A; Benson, Andrew D; Tang, Amy H; Deutsch, Stephen I
2015-07-03
Tuberous Sclerosis Complex is one example of a syndromic form of autism spectrum disorder associated with disinhibited activity of mTORC1 in neurons (e.g., cerebellar Purkinje cells). mTORC1 is a complex protein possessing serine/threonine kinase activity and a key downstream molecule in a signaling cascade beginning at the cell surface with the transduction of neurotransmitters (e.g., glutamate and acetylcholine) and nerve growth factors (e.g., Brain-Derived Neurotrophic Factor). Interestingly, the severity of the intellectual disability in Tuberous Sclerosis Complex may relate more to this metabolic disturbance (i.e., overactivity of mTOR signaling) than the density of cortical tubers. Several recent reports showed that rapamycin, an inhibitor of mTORC1, improved sociability and other symptoms in mouse models of Tuberous Sclerosis Complex and autism spectrum disorder, consistent with mTORC1 overactivity playing an important pathogenic role. NMDA receptor activation may also dampen mTORC1 activity by at least two possible mechanisms: regulating intraneuronal accumulation of arginine and the phosphorylation status of a specific extracellular signal regulating kinase (i.e., ERK1/2), both of which are "drivers" of mTORC1 activity. Conceivably, the prosocial effects of targeting the NMDA receptor with agonists in mouse models of autism spectrum disorders result from their ability to dampen mTORC1 activity in neurons. Strategies for dampening mTORC1 overactivity by NMDA receptor activation may be preferred to its direct inhibition in chronic neurodevelopmental disorders, such as autism spectrum disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Primary Health Care as a guide for assistance to infants at risk of neurodevelopmental disorders.
Molini-Avejonas, Daniela Regina; Rondon-Melo, Silmara; Batista, Estela Ramos; Souza, Amanda Calsolari de; Dias, Daniela Cardilli; Samelli, Alessandra Gianella
2018-01-01
Purpose Characterize infants at risk of neurodevelopmental disorders according to sociodemographic and health profiles and describe their monitoring in Basic Health Units (UBS) under different management models. Methods Data were collected from medical records of infants at risk of neurodevelopmental disorders in the west region of the city of Sao Paulo from August 2013 to February 2014 (phase 1 - characterization; phase 2 - monitoring). Results Of the 225 individuals assessed in the first phase of the study, 51.1% were female and 7.11% were twins. Adolescent (45.2%), brown (50.56%), single (46.09%), complete primary education (47.60%) mothers were predominant. The mean number of prenatal visits was 7.12. Most mothers had vaginal delivery (62.22%) at mean gestational age of 37.05 weeks. Mean Apgar scores at the 1st and 5th minutes were 7.13 and 8.80, respectively. Mean weight at birth was 2597.21g., with 50.22% of newborns weighting ≤2500g. In its second phase, the study describes and compares the follow-up of 55 infants according to the UBS management model: 28 in UBS/"Estratégia Saúde da Família" (UBS/ESF) and 27 in traditional UBS (UBS/T). UBS/ESF presented higher mean of consultations (p=0.006). Longer interval between consultations was observed at UBS/T. No records of development milestones were found in 56% of the sample. Growth measures were better registered at UBS/ESF. In both management models, the number of consultations was smaller and the interval between them was shorter than those recommended by the Brazilian Ministry of Health. Conclusion According to the recommended guidelines of the "Rede Cegonha" public policy, gaps in the monitoring of infants at risk of neurodevelopmental disorders are still observed.
International telemedicine consultations for neurodevelopmental disabilities.
Pearl, Phillip L; Sable, Craig; Evans, Sarah; Knight, Joseph; Cunningham, Parker; Lotrecchiano, Gaetano R; Gropman, Andrea; Stuart, Sheela; Glass, Penny; Conway, Anne; Ramadan, Issam; Paiva, Tania; Batshaw, Mark L; Packer, Roger J
2014-06-01
A telemedicine program was developed between the Children's National Medical Center (CNMC) in Washington, DC, and the Sheikh Khalifa Bin Zayed Foundation in the United Arab Emirates (UAE). A needs assessment and a curriculum of on-site training conferences were devised preparatory to an ongoing telemedicine consultation program for children with neurodevelopmental disabilities in the underserved eastern region of the UAE. Weekly telemedicine consultations are provided by a multidisciplinary faculty. Patients are presented in the UAE with their therapists and families. Real-time (video over Internet protocol; average connection, 768 kilobits/s) telemedicine conferences are held weekly following previews of medical records. A full consultation report follows each telemedicine session. Between February 29, 2012 and June 26, 2013, 48 weekly 1-h live interactive telemedicine consultations were conducted on 48 patients (28 males, 20 females; age range, 8 months-22 years; median age, 5.4 years). The primary diagnoses were cerebral palsy, neurogenetic disorders, autism, neuromuscular disorders, congenital anomalies, global developmental delay, systemic disease, and epilepsy. Common comorbidities were cognitive impairment, communication disorders, and behavioral disorders. Specific recommendations included imaging and DNA studies, antiseizure management, spasticity management including botulinum toxin protocols, and specific therapy modalities including taping techniques, customized body vests, and speech/language and behavioral therapy. Improved outcomes reported were in clinician satisfaction, achievement of therapy goals for patients, and requests for ongoing sessions. Weekly telemedicine sessions coupled with triannual training conferences were successfully implemented in a clinical program dedicated to patients with neurodevelopmental disabilities by the Center for Neuroscience at CNMC and the UAE government. International consultations in neurodevelopmental disabilities utilizing telemedicine services offer a reliable and productive method for joint clinical programs.
Mitchell, Michelle M.; Woods, Rima; Chi, Lai-Har; Schmidt, Rebecca J.; Pessah, Isaac N.; Kostyniak, Paul J.; LaSalle, Janine M.
2013-01-01
Persistent organic pollutants (POPs), including polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) that bioaccumulate in lipid-rich tissues are of concern as developmental neurotoxicants. Epigenetic mechanisms such as DNA methylation act at the interface of genetic and environmental factors implicated in autism-spectrum disorders. The relationship between POP levels and DNA methylation patterns in individuals with and without neurodevelopmental disorders has not been previously investigated. In this study, a total of 107 human frozen post-mortem brain samples were analyzed for 8 PCBs and 7 PBDEs by GC-micro electron capture detector and GC/MS using negative chemical ionization. Human brain samples were grouped as neurotypical controls (n=43), neurodevelopmental disorders with known genetic basis (n=32, including Down, Rett, Prader-Willi, Angelman, and 15q11-q13 duplication syndromes), and autism of unknown etiology (n=32). Unexpectedly, PCB 95 was significantly higher in the genetic neurodevelopmental group, but not idiopathic autism, as compared to neurotypical controls. Interestingly, samples with detectable PCB 95 levels were almost exclusively those with maternal 15q11-q13 duplication (Dup15q) or deletion in Prader-Willi syndrome. When sorted by birth year, Dup15q samples represented five out of six of genetic neurodevelopmental samples born after the 1976 PCB ban exhibiting detectable PCB 95 levels. Dup15q was the strongest predictor of PCB 95 exposure over age, gender, or year of birth. Dup15q brain showed lower levels of repetitive DNA methylation measured by LINE-1 pyrosequencing, but methylation levels were confounded by year of birth. These results demonstrate a novel paradigm by which specific POPs may predispose to genetic copy number variation of 15q11-q13. PMID:22930557
Emerging Synaptic Molecules as Candidates in the Etiology of Neurological Disorders
Torres, Viviana I.; Vallejo, Daniela
2017-01-01
Synapses are complex structures that allow communication between neurons in the central nervous system. Studies conducted in vertebrate and invertebrate models have contributed to the knowledge of the function of synaptic proteins. The functional synapse requires numerous protein complexes with specialized functions that are regulated in space and time to allow synaptic plasticity. However, their interplay during neuronal development, learning, and memory is poorly understood. Accumulating evidence links synapse proteins to neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. In this review, we describe the way in which several proteins that participate in cell adhesion, scaffolding, exocytosis, and neurotransmitter reception from presynaptic and postsynaptic compartments, mainly from excitatory synapses, have been associated with several synaptopathies, and we relate their functions to the disease phenotype. PMID:28331639
Identification of the TFII-I family target genes in the vertebrate genome.
Chimge, Nyam-Osor; Makeyev, Aleksandr V; Ruddle, Frank H; Bayarsaihan, Dashzeveg
2008-07-01
GTF2I and GTF2IRD1 encode members of the TFII-I transcription factor family and are prime candidates in the Williams syndrome, a complex neurodevelopmental disorder. Our previous expression microarray studies implicated TFII-I proteins in the regulation of a number of genes critical in various aspects of cell physiology. Here, we combined bioinformatics and microarray results to identify TFII-I downstream targets in the vertebrate genome. These results were validated by chromatin immunoprecipitation and siRNA analysis. The collected evidence revealed the complexity of TFII-I-mediated processes that involve distinct regulatory networks. Altogether, these results lead to a better understanding of specific molecular events, some of which may be responsible for the Williams syndrome phenotype.
Picinelli, Chiara; Lintas, Carla; Piras, Ignazio Stefano; Gabriele, Stefano; Sacco, Roberto; Brogna, Claudia; Persico, Antonio Maria
2016-12-01
Rare and common CNVs can contribute to the etiology of neurodevelopmental disorders. One of the recurrent genomic aberrations associated with these phenotypes and proposed as a susceptibility locus is the 15q11.2 BP1-BP2 CNV encompassing TUBGCP5, CYFIP1, NIPA2, and NIPA1. Characterizing by array-CGH a cohort of 243 families with various neurodevelopmental disorders, we identified five patients carrying the 15q11.2 duplication and one carrying the deletion. All CNVs were confirmed by qPCR and were inherited, except for one duplication where parents were not available. The phenotypic spectrum of CNV carriers was broad but mainly neurodevelopmental, in line with all four genes being implicated in axonal growth and neural connectivity. Phenotypically normal and mildly affected carriers complicate the interpretation of this aberration. This variability may be due to reduced penetrance or altered gene dosage on a particular genetic background. We evaluated the expression levels of the four genes in peripheral blood RNA and found the expected reduction in the deleted case, while duplicated carriers displayed high interindividual variability. These data suggest that differential expression of these genes could partially account for differences in clinical phenotypes, especially among duplication carriers. Furthermore, urinary Mg 2+ levels appear negatively correlated with NIPA2 gene copy number, suggesting they could potentially represent a useful biomarker, whose reliability will need replication in larger samples. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Tao, Weiyuan; Lu, Zuneng; Wen, Fang
2016-11-01
Neurodevelopmental treatment is an advanced therapeutic approach for the neural rehabilitation of children with cerebral palsy. Cerebral palsy represents a spectrum of neurological disorders primarily affecting gross motor function. The authors investigated the effects of neurodevelopmental treatment on serum levels of transforming growth factor-β1 (TGF-β1), a neuroprotective cytokine, and improvements to motor skills. Serum TGF-β1 levels and total score of the Gross Motor Function Measure-88 (GMFM-88) were significantly higher in children with cerebral palsy who underwent neurodevelopmental treatment compared to untreated patients (P < .01). Furthermore, the improved GMFM-88 total scores after neurodevelopmental treatment were significantly higher in children under the age of 3 with cerebral palsy than in older patients (P < .01). The authors demonstrate that the integration of TGF-β1 levels and GMFM-88 total score could be used to assess the efficacy of neurodevelopmental treatment. Moreover, the findings provide further scientific support for the early intervention and neurological rehabilitation of young children with cerebral palsy. © The Author(s) 2016.
McClain, Maryellen Brunson; Hasty Mills, Amber M; Murphy, Laura E
2017-11-01
Attention-Deficit/Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), and Intellectual Disability (ID) are common co-occurring neurodevelopmental disorders; however, limited research exists regarding the presentation and severity of overlapping symptomology, particularly inattention and hyperactivity/impulsivity, when a child is diagnosed with one of more of these neurodevelopmental disorders. As difficulties with inattention and hyperactivity/impulsivity are symptoms frequently associated with these disorders, the current study aims to determine the differences in the severity of inattention and hyperactivity/impulsivity in children diagnosed with ADHD, ASD, ID, and co-occurring diagnosis of ADHD/ID, ASD/ADHD, and ASD/ID. Participants in the current study included 113 children between the ages of 6 and 11 who were diagnosed with ADHD, ASD, ID, ADHD/ID, ASD/ADHD, or ASD/ID. Two MANOVA analyses were used to compare these groups witih respsect to symptom (i.e., inattention, hyperactivity/impulsivity) severity. Results indicated that the majority of diagnostic groups experienced elevated levels of both inattention and hyperactivity/impulsivity. However, results yielded differences in inattention and hyperactivity/impulsivity severity. In addition, differences in measure sensitivity across behavioral instruments was found. Children with neurodevelopmental disorders often exhibit inattention and hyperactivity/impulsivity, particularly those with ADHD, ASD, ASD/ADHD, and ADHD/ID; therefore, differential diagnosis may be complicated due to similarities in ADHD symptom severity. However, intellectual abilities may be an important consideration for practitioners in the differential diagnosis process as children with ID and ASD/ID exhibited significantly less inattention and hyperactive/impulsive behaviors. Additionally, the use of multiple behavior rating measures in conjunction with other assessment procedures may help practitioners determine the most appropriate diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Baribeau, Danielle A; Doyle-Thomas, Krissy A R; Dupuis, Annie; Iaboni, Alana; Crosbie, Jennifer; McGinn, Holly; Arnold, Paul D; Brian, Jessica; Kushki, Azadeh; Nicolson, Rob; Schachar, Russell J; Soreni, Noam; Szatmari, Peter; Anagnostou, Evdokia
2015-06-01
Several neurodevelopmental disorders are associated with social processing deficits. The objective of this study was to compare patterns of social perception abilities across obsessive-compulsive disorder (OCD), attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and control participants. A total of 265 children completed the Reading the Mind in the Eyes Test-Child Version (RMET). Parents or caregivers completed established trait/symptom scales. The predicted percentage of accuracy on the RMET was compared across disorders and by item difficulty and item valence (i.e., positive/negative/neutral mental states), then analyzed for associations with trait/symptom scores. The percentage of correct RMET scores varied significantly between diagnostic groups (p < .0001). On pairwise group comparisons controlling for age and sex, children with ADHD and ASD scored lower than the other groups (p < .0001). When IQ was also controlled for in the model, participants with OCD performed better than controls (p < .001), although differences between other groups were less pronounced. Participants with ASD scored lowest on easy items. Those with ASD and ADHD scored significantly lower than other groups on items with positive valence (p < .01). Greater social communication impairment and hyperactivity/impulsivity, but not OCD traits/symptoms, were associated with lower scores on the RMET, irrespective of diagnosis. Social perception abilities in neurodevelopmental disorders exist along a continuum. Children with ASD have the greatest deficits, whereas children with OCD may be hypersensitive to social information. Social communication deficits and hyperactive/impulsive traits are associated with impaired social perception abilities; these findings highlight overlapping cognitive and behavioral manifestations across disorders. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Are circadian rhythms new pathways to understand Autism Spectrum Disorder?
Geoffray, M-M; Nicolas, A; Speranza, M; Georgieff, N
2016-11-01
Autism Spectrum Disorder (ASD) is a frequent neurodevelopmental disorder. ASD is probably the result of intricate interactions between genes and environment altering progressively the development of brain structures and functions. Circadian rhythms are a complex intrinsic timing system composed of almost as many clocks as there are body cells. They regulate a variety of physiological and behavioral processes such as the sleep-wake rhythm. ASD is often associated with sleep disorders and low levels of melatonin. This first point raises the hypothesis that circadian rhythms could have an implication in ASD etiology. Moreover, circadian rhythms are generated by auto-regulatory genetic feedback loops, driven by transcription factors CLOCK and BMAL1, who drive transcription daily patterns of a wide number of clock-controlled genes (CCGs) in different cellular contexts across tissues. Among these, are some CCGs coding for synapses molecules associated to ASD susceptibility. Furthermore, evidence emerges about circadian rhythms control of time brain development processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Requirement for Mena, an Actin Regulator, in Local mRNA Translation in Developing Neurons.
Vidaki, Marina; Drees, Frauke; Saxena, Tanvi; Lanslots, Erwin; Taliaferro, Matthew J; Tatarakis, Antonios; Burge, Christopher B; Wang, Eric T; Gertler, Frank B
2017-08-02
During neuronal development, local mRNA translation is required for axon guidance and synaptogenesis, and dysregulation of this process contributes to multiple neurodevelopmental and cognitive disorders. However, regulation of local protein synthesis in developing axons remains poorly understood. Here, we uncover a novel role for the actin-regulatory protein Mena in the formation of a ribonucleoprotein complex that involves the RNA-binding proteins HnrnpK and PCBP1 and regulates local translation of specific mRNAs in developing axons. We find that translation of dyrk1a, a Down syndrome- and autism spectrum disorders-related gene, is dependent on Mena, both in steady-state conditions and upon BDNF stimulation. We identify hundreds of additional mRNAs that associate with the Mena complex, suggesting that it plays broader role(s) in post-transcriptional gene regulation. Our work establishes a dual role for Mena in neurons, providing a potential link between regulation of actin dynamics and local translation. Copyright © 2017 Elsevier Inc. All rights reserved.
Kleiber, Morgan L; Diehl, Eric J; Laufer, Benjamin I; Mantha, Katarzyna; Chokroborty-Hoque, Aniruddho; Alberry, Bonnie; Singh, Shiva M
2014-01-01
There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term "footprint" of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder.
Kleiber, Morgan L.; Diehl, Eric J.; Laufer, Benjamin I.; Mantha, Katarzyna; Chokroborty-Hoque, Aniruddho; Alberry, Bonnie; Singh, Shiva M.
2014-01-01
There is abundant evidence that prenatal alcohol exposure leads to a range of behavioral and cognitive impairments, categorized under the term fetal alcohol spectrum disorders (FASDs). These disorders are pervasive in Western cultures and represent the most common preventable source of neurodevelopmental disabilities. The genetic and epigenetic etiology of these phenotypes, including those factors that may maintain these phenotypes throughout the lifetime of an affected individual, has become a recent topic of investigation. This review integrates recent data that has progressed our understanding FASD as a continuum of molecular events, beginning with cellular stress response and ending with a long-term “footprint” of epigenetic dysregulation across the genome. It reports on data from multiple ethanol-treatment paradigms in mouse models that identify changes in gene expression that occur with respect to neurodevelopmental timing of exposure and ethanol dose. These studies have identified patterns of genomic alteration that are dependent on the biological processes occurring at the time of ethanol exposure. This review also adds to evidence that epigenetic processes such as DNA methylation, histone modifications, and non-coding RNA regulation may underlie long-term changes to gene expression patterns. These may be initiated by ethanol-induced alterations to DNA and histone methylation, particularly in imprinted regions of the genome, affecting transcription which is further fine-tuned by altered microRNA expression. These processes are likely complex, genome-wide, and interrelated. The proposed model suggests a potential for intervention, given that epigenetic changes are malleable and may be altered by postnatal environment. This review accentuates the value of mouse models in deciphering the molecular etiology of FASD, including those processes that may provide a target for the ammelioration of this common yet entirely preventable disorder. PMID:24917881
Ouimet, Tia; Foster, Nicholas E V; Tryfon, Ana; Hyde, Krista L
2012-04-01
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by atypical social and communication skills, repetitive behaviors, and atypical visual and auditory perception. Studies in vision have reported enhanced detailed ("local") processing but diminished holistic ("global") processing of visual features in ASD. Individuals with ASD also show enhanced processing of simple visual stimuli but diminished processing of complex visual stimuli. Relative to the visual domain, auditory global-local distinctions, and the effects of stimulus complexity on auditory processing in ASD, are less clear. However, one remarkable finding is that many individuals with ASD have enhanced musical abilities, such as superior pitch processing. This review provides a critical evaluation of behavioral and brain imaging studies of auditory processing with respect to current theories in ASD. We have focused on auditory-musical processing in terms of global versus local processing and simple versus complex sound processing. This review contributes to a better understanding of auditory processing differences in ASD. A deeper comprehension of sensory perception in ASD is key to better defining ASD phenotypes and, in turn, may lead to better interventions. © 2012 New York Academy of Sciences.
Actin Out: Regulation of the Synaptic Cytoskeleton
Spence, Erin F.; Soderling, Scott H.
2015-01-01
The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304
D'Souza, Dean; D'Souza, Hana; Karmiloff-Smith, Annette
2017-05-01
In order to understand how language abilities emerge in typically and atypically developing infants and toddlers, it is important to embrace complexity in development. In this paper, we describe evidence that early language development is an experience-dependent process, shaped by diverse, interconnected, interdependent developmental mechanisms, processes, and abilities (e.g. statistical learning, sampling, functional specialization, visual attention, social interaction, motor ability). We also present evidence from our studies on neurodevelopmental disorders (e.g. Down syndrome, fragile X syndrome, Williams syndrome) that variations in these factors significantly contribute to language delay. Finally, we discuss how embracing complexity, which involves integrating data from different domains and levels of description across developmental time, may lead to a better understanding of language development and, critically, lead to more effective interventions for cases when language develops atypically.
Marques, Andrea Horvath; Bjørke-Monsen, Anne-Lise; Teixeira, Antônio L; Silverman, Marni N
2015-08-18
Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying mechanisms of protection. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Increased nuchal translucency thickness and risk of neurodevelopmental disorders.
Hellmuth, S G; Pedersen, L H; Miltoft, C B; Petersen, O B; Kjaergaard, S; Ekelund, C; Tabor, A
2017-05-01
To investigate the association between fetal nuchal translucency (NT) thickness and neurodevelopmental disorders in euploid children. This study included 222 505 euploid children who had undergone routine first-trimester screening during fetal life. Children were divided according to prenatal NT into three groups: NT < 95 th percentile (n = 217 103 (97.6%)); NT 95 th -99 th percentile (n = 4760 (2.1%)); and NT > 99 th percentile (n = 642 (0.3%)). All children were followed-up to a mean age of 4.4 years. Information on diagnoses of intellectual disability, autism spectrum disorders (ASD), cerebral palsy, epilepsy and febrile seizures was obtained from national patient registries. There was no excess risk of neurodevelopmental disorders among euploid children with first-trimester NT 95 th -99 th percentile. For children with NT > 99 th percentile, there were increased risks of intellectual disability (odds ratio (OR), 6.16 (95% CI, 1.51-25.0), 0.31%) and ASD (OR, 2.48 (95% CI, 1.02-5.99), 0.78%) compared with children with NT < 95 th percentile (incidence of 0.05% for intellectual disability and 0.32% for ASD), however, there was no detected increase in the risk of cerebral palsy (OR, 1.91 (95% CI, 0.61-5.95), 0.47%), epilepsy (OR, 1.51 (95% CI, 0.63-3.66), 0.78%) or febrile seizures (OR, 0.72 (95% CI, 0.44-1.16), 2.65%). In a large unselected cohort of euploid children, there was no increased risk of neurodevelopmental disorders among those with a first-trimester NT 95 th -99 th percentile. Among euploid children with first-trimester NT > 99 th percentile, there were increased risks of intellectual disability and ASD, but the absolute risk was reassuringly low (< 1%). Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.
Glutamate receptor mutations in psychiatric and neurodevelopmental disorders
Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Àlex
2014-01-01
Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications. PMID:24605182
Glutamate receptor mutations in psychiatric and neurodevelopmental disorders.
Soto, David; Altafaj, Xavier; Sindreu, Carlos; Bayés, Alex
2014-01-01
Alterations in glutamatergic neurotransmission have long been associated with psychiatric and neurodevelopmental disorders (PNDD), but only recent advances in high-throughput DNA sequencing have allowed interrogation of the prevalence of mutations in glutamate receptors (GluR) among afflicted individuals. In this review we discuss recent work describing GluR mutations in the context of PNDDs. Although there are no strict relationships between receptor subunit or type and disease, some interesting preliminary conclusions have arisen. Mutations in genes coding for ionotropic glutamate receptor subunits, which are central to synaptic transmission and plasticity, are mostly associated with intellectual disability and autism spectrum disorders. In contrast, mutations of metabotropic GluRs, having a role on modulating neural transmission, are preferentially associated with psychiatric disorders. Also, the prevalence of mutations among GluRs is highly heterogeneous, suggesting a critical role of certain subunits in PNDD pathophysiology. The emerging bias between GluR subtypes and specific PNDDs may have clinical implications.
Boronat, S; Sánchez-Montañez, A; Gómez-Barros, N; Jacas, C; Martínez-Ribot, L; Vázquez, E; Del Campo, M
2017-01-01
Fetal alcohol spectrum disorders (FASD) include physical and neurodevelopmental abnormalities related to prenatal alcohol exposure. Some neuroimaging findings have been clearly related to FASD, including corpus callosum and cerebellar anomalies. However, detailed studies correlating with specific FASD categories, that is, the fetal alcohol syndrome (FAS), partial FAS (pFAS) and alcohol related neurodevelopmental disorders (ARND), are lacking. We prospectively performed clinical assessment and brain MR imaging to 72 patients with suspected FASD, and diagnosis was confirmed in 62. The most frequent findings were hypoplasia of the corpus callosum and/or of the cerebellar vermis. Additional findings were vascular anomalies, gliosis, prominent perivascular spaces, occipito-cervical junction and cervical vertebral anomalies, pituitary hypoplasia, arachnoid cysts, and cavum septum pellucidum. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Intellectual Profiles in the Autism Spectrum and Other Neurodevelopmental Disorders.
Mouga, Susana; Café, Cátia; Almeida, Joana; Marques, Carla; Duque, Frederico; Oliveira, Guiomar
2016-09-01
The influence of specific autism spectrum disorder (ASD) deficits in Intelligence Quotients (IQ), Indexes and subtests from the Wechsler Intelligence Scale for Children-III was investigated in 445 school-aged children: ASD (N = 224) and other neurodevelopmental disorders (N = 221), matched by Full-Scale IQ and chronological age. ASD have lower scores in the VIQ than PIQ. The core distinctive scores between groups are Processing Speed Index and "Comprehension" and "Coding" subtests with lower results in ASD. ASD group with normal/high IQ showed highest score on "Similarities" subtest whereas the lower IQ group performed better on "Object Assembly". The results replicated our previous work on adaptive behaviour, showing that adaptive functioning is positively correlated with intellectual profile, especially with the Communication domain in ASD.
Developmental origins of brain disorders: roles for dopamine
Money, Kelli M.; Stanwood, Gregg D.
2013-01-01
Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders. PMID:24391541
Developmental neurotoxicity of industrial chemicals.
Grandjean, P; Landrigan, P J
2006-12-16
Neurodevelopmental disorders such as autism, attention deficit disorder, mental retardation, and cerebral palsy are common, costly, and can cause lifelong disability. Their causes are mostly unknown. A few industrial chemicals (eg, lead, methylmercury, polychlorinated biphenyls [PCBs], arsenic, and toluene) are recognised causes of neurodevelopmental disorders and subclinical brain dysfunction. Exposure to these chemicals during early fetal development can cause brain injury at doses much lower than those affecting adult brain function. Recognition of these risks has led to evidence-based programmes of prevention, such as elimination of lead additives in petrol. Although these prevention campaigns are highly successful, most were initiated only after substantial delays. Another 200 chemicals are known to cause clinical neurotoxic effects in adults. Despite an absence of systematic testing, many additional chemicals have been shown to be neurotoxic in laboratory models. The toxic effects of such chemicals in the developing human brain are not known and they are not regulated to protect children. The two main impediments to prevention of neurodevelopmental deficits of chemical origin are the great gaps in testing chemicals for developmental neurotoxicity and the high level of proof required for regulation. New, precautionary approaches that recognise the unique vulnerability of the developing brain are needed for testing and control of chemicals.
The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders
Kundakovic, Marija; Jaric, Ivana
2017-01-01
Prenatal adverse environments, such as maternal stress, toxicological exposures, and viral infections, can disrupt normal brain development and contribute to neurodevelopmental disorders, including schizophrenia, depression, and autism. Increasing evidence shows that these short- and long-term effects of prenatal exposures on brain structure and function are mediated by epigenetic mechanisms. Animal studies demonstrate that prenatal exposure to stress, toxins, viral mimetics, and drugs induces lasting epigenetic changes in the brain, including genes encoding glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf). These epigenetic changes have been linked to changes in brain gene expression, stress reactivity, and behavior, and often times, these effects are shown to be dependent on the gestational window of exposure, sex, and exposure level. Although evidence from human studies is more limited, gestational exposure to environmental risks in humans is associated with epigenetic changes in peripheral tissues, and future studies are required to understand whether we can use peripheral biomarkers to predict neurobehavioral outcomes. An extensive research effort combining well-designed human and animal studies, with comprehensive epigenomic analyses of peripheral and brain tissues over time, will be necessary to improve our understanding of the epigenetic basis of neurodevelopmental disorders. PMID:28335457
The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders
Costales, Jesse; Kolevzon, Alexander
2016-01-01
Central nervous system (CNS) development is a finely tuned process that relies on multiple factors and intricate pathways to ensure proper neuronal differentiation, maturation, and connectivity. Disruption of this process can cause significant impairments in CNS functioning and lead to debilitating disorders that impact motor and language skills, behavior, and cognitive functioning. Recent studies focused on understanding the underlying cellular mechanisms of neurodevelopmental disorders have identified a crucial role for insulin-like growth factor-1 (IGF-1) in normal CNS development. Work in model systems has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 is administered, and several clinical studies have shown promise of efficacy in disorders of the CNS, including autism spectrum disorder (ASD). In this review, we explore the molecular pathways and downstream effects of IGF-1 and summarize the results of completed and ongoing pre-clinical and clinical trials using IGF-1 as a pharmacologic intervention in various CNS disorders. This aim of this review is to provide evidence for the potential of IGF-1 as a treatment for neurodevelopmental disorders and ASD. PMID:26780584
ERIC Educational Resources Information Center
Losh, Molly; Gordon, Peter C.
2014-01-01
Autism is a neurodevelopmental disorder characterized by serious difficulties with the social use of language, along with impaired social functioning and ritualistic/repetitive behaviors (American Psychiatric Association in "Diagnostic and statistical manual of mental disorders: DSM-5," 5th edn. American Psychiatric Association,…
ERIC Educational Resources Information Center
Sanders, Jane; Johnson, Katherine A.; Garavan, Hugh; Gill, Michael; Gallagher, Louise
2008-01-01
Autistic spectrum disorders (ASD) are devastating neurodevelopmental disorders of unknown aetiology with characteristic deficits in social interaction, communication and behaviour. Individuals with ASD show deficits in executive function (EF), which are hypothesised to underlie core repetitive, stereotyped behaviours of autism. Neuroimaging…
Neurodiversity in Education. Trends Shaping Education Spotlight 12
ERIC Educational Resources Information Center
OECD Publishing, 2017
2017-01-01
Diversity in the classroom includes differences in the way students' brains learn, or neurodiversity. Neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit hyperactive disorder (ADHD) affect increasingly large numbers of students. Education systems must work to meet the needs of these students and ensure that…
Mc Devitt, Niamh; Gallagher, Louise; Reilly, Richard B.
2015-01-01
Autism Spectrum Disorder (ASD) and Fragile X syndrome (FXS) are neurodevelopmental disorders with different but potentially related neurobiological underpinnings, which exhibit significant overlap in their behavioural symptoms. FXS is a neurogenetic disorder of known cause whereas ASD is a complex genetic disorder, with both rare and common genetic risk factors and likely genetic and environmental interaction effects. A comparison of the phenotypic presentation of the two disorders may highlight those symptoms that are more likely to be under direct genetic control, for example in FXS as opposed to shared symptoms that are likely to be under the control of multiple mechanisms. This review is focused on the application and analysis of electroencephalography data (EEG) in ASD and FXS. Specifically, Event Related Potentials (ERP) and resting state studies (rEEG) studies investigating ASD and FXS cohorts are compared. This review explores the electrophysiological similarities and differences between the two disorders in addition to the potentially associated neurobiological mechanisms at play. A series of pertinent research questions which are suggested in the literature are also posed within the review. PMID:25826237
ERIC Educational Resources Information Center
Hu, Valerie W.
2013-01-01
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that affect an estimated 1 in 110 individuals. Although there is a strong genetic component associated with these disorders, this review focuses on the multifactorial nature of ASD and how different genome-wide (genomic) approaches contribute to our understanding of autism.…
ERIC Educational Resources Information Center
Erdodi, Laszlo; Lajiness-O'Neill, Renee; Schmitt, Thomas A.
2013-01-01
Visual and auditory verbal learning using a selective reminding format was studied in a mixed clinical sample of children with autism spectrum disorder (ASD) (n = 42), attention-deficit hyperactivity disorder (n = 83), velocardiofacial syndrome (n = 17) and neurotypicals (n = 38) using the Test of Memory and Learning to (1) more thoroughly…
Sharpe, Kimberly; Di Pietro, Nina; Illes, Judy
2016-02-01
Stem cell research has generated considerable attention for its potential to remediate many disorders of the central nervous system including neurodevelopmental disorders such as autism spectrum disorder (ASD) and cerebral palsy (CP) that place a high burden on individual children, families and society. Here we characterized messaging about the use of stem cells for ASD and CP in news media articles and concurrent dissemination of discoveries through conventional science discourse. We searched LexisNexis and Canadian Newsstand for news articles from the US, UK, Canada and Australia in the period between 2000 and 2014, and PubMed for peer reviewed articles for the same 10 years. Using in-depth content analysis methods, we found less cautionary messaging about stem cells for ASD and CP in the resulting sample of 73 media articles than in the sample of 87 science papers, and a privileging of benefits over risk. News media also present stem cells as ready for clinical application to treat these neurodevelopmental disorders, even while the science literature calls for further research. Investigative news reports that explicitly quote researchers, however, provide the most accurate information to actual science news. The hope, hype, and promise of stem cell interventions for neurodevelopmental disorders, combined with the extreme vulnerability of these children and their families, creates a perfect storm in which journalists and stem cell scientists must commit to a continued, if not even more robust, partnership to promote balanced and accurate messaging.
Wang, I-Ting Judy; Allen, Megan; Goffin, Darren; Zhu, Xinjian; Fairless, Andrew H; Brodkin, Edward S; Siegel, Steve J; Marsh, Eric D; Blendy, Julie A; Zhou, Zhaolan
2012-12-26
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in neurodevelopmental disorders including atypical Rett syndrome (RTT), autism spectrum disorders (ASDs), and early infantile epileptic encephalopathy. The biological function of CDKL5 and its role in the etiology of these disorders, however, remain unclear. Here we report the development of a unique knockout mouse model of CDKL5-related disorders and demonstrate that mice lacking CDKL5 show autistic-like deficits in social interaction, as well as impairments in motor control and fear memory. Neurophysiological recordings reveal alterations in event-related potentials (ERPs) similar to those observed in RTT and ASDs. Moreover, kinome profiling uncovers disruption of multiple signal transduction pathways, including the AKT-mammalian target of rapamycin (mTOR) cascade, upon Cdkl5 loss-of-function. These data demonstrate that CDKL5 regulates signal transduction pathways and mediates autistic-like phenotypes and together establish a causal role for Cdkl5 loss-of-function in neurodevelopmental disorders.
Goriely, Anne; McGrath, John J.; Hultman, Christina M.; Wilkie, Andrew O.M.; Malaspina, Dolores
2014-01-01
Objectives There is robust evidence from epidemiological studies that the offspring of older fathers have an increased risk of neurodevelopmental disorders such as schizophrenia and autism. Here we present a novel mechanism that may contribute to this association. Methods Narrative review. Results Because the male germ cell undergoes many more cell divisions across the reproductive age range, copy-errors taking place in the paternal germline are associated with de novo mutations in the offspring of older men. Recently it has been recognized that somatic mutations in male germ cells that modify proliferation via dysregulation of the RAS pathway can lead to within-testis expansion of mutant clonal lines. First identified in association with rare paternal age-effect disorders (e.g. Apert syndrome, achondroplasia), this process is known as ‘selfish spermatogonial selection’. This mechanism will (a) favor propagation of germ cells carrying pathogenic mutations, (b) increasingly skew the mutational profile of sperm as men age, and (c) result in an enrichment of de novo mutations in the offspring of older fathers that preferentially impact on specific cellular signaling pathways. This mechanism offers a parsimonious explanation not only for the association between advanced paternal age and various neurodevelopmental disorders, but also provides insights into the genetic architecture (role of de novo mutations), neurobiological correlates (altered cell cycle) and some epidemiological features of these disorders. We outline hypotheses to test this model. Conclusions In light of our current understanding of the genetic networks involved in neurocognitive disorders and the principles of selfish spermatogonial selection, we speculate that some pathogenic mutations associated with these disorders are the consequence of a selfish mechanism originating in the aging testis. Given the secular changes for delayed parenthood in most societies, this hypothesis has important public health implications. PMID:23639989
CDKL5 deficiency entails sleep apneas in mice.
Lo Martire, Viviana; Alvente, Sara; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Valli, Alice; Viggiano, Rocchina; Ciani, Elisabetta; Zoccoli, Giovanna
2017-08-01
A recently discovered neurodevelopmental disorder caused by the mutation of the cyclin-dependent kinase-like 5 gene (CDKL5) entails complex autistic-like behaviours similar to Rett syndrome, but its impact upon physiological functions remains largely unexplored. Sleep-disordered breathing is common and potentially life-threatening in patients with Rett syndrome; however, evidence is limited in children with CDKL5 disorder, and is lacking altogether in adults. The aim of this study was to test whether the breathing pattern during sleep differs between adult Cdkl5 knockout (Cdkl5-KO) and wild-type (WT) mice. Using whole-body plethysmography, sleep and breathing were recorded non-invasively for 8 h during the light period. Sleep apneas occurred more frequently in Cdkl5-KO than in WT mice. A receiver operating characteristic (ROC) analysis discriminated Cdkl5-KO significantly from WT mice based on sleep apnea occurrence. These data demonstrate that sleep apneas are a core feature of CDKL5 disorder and a respiratory biomarker of CDKL5 deficiency in mice, and suggest that sleep-disordered breathing should be evaluated routinely in CDKL5 patients. © 2017 European Sleep Research Society.
[Motor disorders in neurodevelopmental disorders. Tics and stereotypies].
Eirís-Puñal, Jesús
2014-02-24
Tics are repetitive, sharp, rapid, non-rhythmic movements or utterances that are the result of sudden, abrupt and involuntary muscular contractions. Stereotypies are repetitive, apparently impulsive, rhythmic, purposeless movements that follow an individual repertoire that is specific to each individual and that occur under a variable time pattern, which may be either transient or persistent. Both are included in the Diagnostic and statistical manual of mental disorders, fifth edition (DSM-5), among the neurodevelopmental disorders, and together with coordination development disorder go to make up the group of motor disorders. For tics, the categories of 'Tourette's disorder', 'chronic motor or vocal tic disorder' and 'unspecified tic disorder' have been maintained, whereas the category 'transient tics' has disappeared and 'provisional tic disorder' and 'other specified tic disorders' have been incorporated. Within stereotypic movement disorder, the DSM-5 replaces 'non-functional' by 'apparently purposeless'; the thresholds of the need for medical care are withdrawn and replaced with the manual's standard involvement criterion; mental retardation is no longer mentioned and emphasis is placed on the severity of the stereotypic movement; and a criterion concerning the onset of symptoms and specifiers of the existence or not of self-injurious behaviours have been added, together with the association with genetic or general medical diseases or extrinsic factors. Moreover, a categorisation depending on severity has also been included.
Ecker, Christine; Marquand, Andre; Mourão-Miranda, Janaina; Johnston, Patrick; Daly, Eileen M; Brammer, Michael J; Maltezos, Stefanos; Murphy, Clodagh M; Robertson, Dene; Williams, Steven C; Murphy, Declan G M
2010-08-11
Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.
Reinhard, Sarah M.; Razak, Khaleel; Ethell, Iryna M.
2015-01-01
The extracellular matrix (ECM) is a critical regulator of neural network development and plasticity. As neuronal circuits develop, the ECM stabilizes synaptic contacts, while its cleavage has both permissive and active roles in the regulation of plasticity. Matrix metalloproteinase 9 (MMP-9) is a member of a large family of zinc-dependent endopeptidases that can cleave ECM and several cell surface receptors allowing for synaptic and circuit level reorganization. It is becoming increasingly clear that the regulated activity of MMP-9 is critical for central nervous system (CNS) development. In particular, MMP-9 has a role in the development of sensory circuits during early postnatal periods, called ‘critical periods.’ MMP-9 can regulate sensory-mediated, local circuit reorganization through its ability to control synaptogenesis, axonal pathfinding and myelination. Although activity-dependent activation of MMP-9 at specific synapses plays an important role in multiple plasticity mechanisms throughout the CNS, misregulated activation of the enzyme is implicated in a number of neurodegenerative disorders, including traumatic brain injury, multiple sclerosis, and Alzheimer’s disease. Growing evidence also suggests a role for MMP-9 in the pathophysiology of neurodevelopmental disorders including Fragile X Syndrome. This review outlines the various actions of MMP-9 during postnatal brain development, critical for future studies exploring novel therapeutic strategies for neurodevelopmental disorders. PMID:26283917
A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3.
Chao, Hsiao-Tuan; Davids, Mariska; Burke, Elizabeth; Pappas, John G; Rosenfeld, Jill A; McCarty, Alexandra J; Davis, Taylor; Wolfe, Lynne; Toro, Camilo; Tifft, Cynthia; Xia, Fan; Stong, Nicholas; Johnson, Travis K; Warr, Coral G; Yamamoto, Shinya; Adams, David R; Markello, Thomas C; Gahl, William A; Bellen, Hugo J; Wangler, Michael F; Malicdan, May Christine V
2017-01-05
Early B cell factor 3 (EBF3) is a member of the highly evolutionarily conserved Collier/Olf/EBF (COE) family of transcription factors. Prior studies on invertebrate and vertebrate animals have shown that EBF3 homologs are essential for survival and that loss-of-function mutations are associated with a range of nervous system developmental defects, including perturbation of neuronal development and migration. Interestingly, aristaless-related homeobox (ARX), a homeobox-containing transcription factor critical for the regulation of nervous system development, transcriptionally represses EBF3 expression. However, human neurodevelopmental disorders related to EBF3 have not been reported. Here, we describe three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural CNS malformations, ataxia, and genitourinary abnormalities. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Our findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by ARX-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Salvador-Carulla, Luis; Bertelli, Marco; Martinez-Leal, Rafael
2018-03-01
To increase the expert knowledge-base on intellectual developmental disorders (IDDs) by investigating the typology trajectories of consensus formation in the classification systems up to the 11th edition of the International Classification of Diseases (ICD-11). This expert review combines an analysis of key recent literature and the revision of the consensus formation and contestation in the expert committees contributing to the classification systems since the 1950s. Historically two main approaches have contributed to the development of this knowledge-base: a neurodevelopmental-clinical approach and a psychoeducational-social approach. These approaches show a complex interaction throughout the history of IDD and have had a diverse influence on its classification. Although in theory Diagnostic and Statistical Manual (DSM)-5 and ICD adhere to the neurodevelopmental-clinical model, the new definition in the ICD-11 follows a restrictive normality approach to intellectual quotient and to the measurement of adaptive behaviour. On the contrary DSM-5 is closer to the recommendations made by the WHO 'Working Group on Mental Retardation' for ICD-11 for an integrative approach. A cyclical pattern of consensus formation has been identified in IDD. The revision of the three major classification systems in the last decade has increased the terminological and conceptual variability and the overall scientific contestation on IDD.
The “Neuro” of Neuroblastoma: Neuroblastoma as a Neurodevelopmental Disorder
Ratner, Nancy; Brodeur, Garrett M.; Dale, Russell C.; Schor, Nina F.
2017-01-01
Neuroblastoma is a childhood cancer derived from cells of neural crest origin. The hallmarks of its enigmatic character include its propensity for spontaneous regression under some circumstances and its association with paraneoplastic opsoclonus, myoclonus, and ataxia. The neurodevelopmental underpinnings of its origins may provide important clues for development of novel therapeutic and preventive agents for this frequently fatal malignancy and for the associated paraneoplastic syndromes. PMID:27043043
Longstaff, Holly; Khramova, Vera; Portales-Casamar, Elodie; Illes, Judy
2015-01-01
Research on complex health conditions such as neurodevelopmental disorders increasingly relies on large-scale research and clinical studies that would benefit from data sharing initiatives. Organizations that share data stand to maximize the efficiency of invested research dollars, expedite research findings, minimize the burden on the patient community, and increase citation rates of publications associated with the data. This study examined ethics and governance information on websites of databases involving neurodevelopmental disorders to determine the availability of information on key factors crucial for comprehension of, and trust and participation in such initiatives. We identified relevant databases identified using online keyword searches. Two researchers reviewed each of the websites and identified thematic content using principles from grounded theory. The content for each organization was interrogated using the gap analysis method. Sixteen websites from data sharing organizations met our inclusion criteria. Information about types of data and tissues stored, data access requirements and procedures, and protections for confidentiality were significantly addressed by data sharing organizations. However, special considerations for minors (absent from 63%), controls to check if data and tissues are being submitted (absent from 81%), disaster recovery plans (absent from 81%), and discussions of incidental findings (absent from 88%) emerged as major gaps in thematic website content. When present, content pertaining to special considerations for youth, along with other ethics guidelines and requirements, were scattered throughout the websites or available only from associated documents accessed through live links. The complexities of sharing data acquired from children and adolescents will only increase with advances in genomic and neuro science. Our findings suggest that there is a need to improve the consistency, depth and accessibility of governance and policies on which these collaborations can lean specifically for vulnerable young populations.
The protective effect of character maturity in child aggressive antisocial behavior.
Kerekes, Nóra; Falk, Örjan; Brändström, Sven; Anckarsäter, Henrik; Råstam, Maria; Hofvander, Björn
2017-07-01
Childhood aggressive antisocial behavior (CD) is one of the strongest predictors of mental health problems and criminal behavior in adulthood. The aims of this study were to describe personality profiles in children with CD, and to determine the strength of association between defined neurodevelopmental symptoms, dimensions of character maturity and CD. A sample of 1886 children with a close to equal distribution of age (9 or 12) and gender, enriched for neurodevelopmental and psychiatric problems were selected from the nationwide Child and Adolescent Twin Study in Sweden. Their parents rated them according to the Junior Temperament and Character Inventory following a telephone interview during which information about the children's development and mental health was assessed with the Autism-Tics, AD/HD and other Comorbidities inventory. Scores on the CD module significantly and positively correlated with scores on the Novelty Seeking temperament dimension and negatively with scores on character maturity (Self-Directedness and Cooperativeness). In the group of children with either neurodevelopmental or behavioral problems, the prevalence of low or very low character maturity was 50%, while when these two problems coexisted the prevalence of low or very low character maturity increased to 70%. Neurodevelopmental problems (such as: oppositional defiant disorder, symptoms of attention deficit/hyperactivity disorder and autism spectrum disorder) and low scores on character maturity emerged as independently significant predictors of CD; in a multivariable model, only oppositional defiant symptoms and impulsivity significantly increased the risk for coexisting CD while a mature self-agency in a child (Self-Directedness) remained a significant protective factor. These results suggest that children's willpower, the capacity to achieve personally chosen goals may be an important protective factor - even in the presence of neurodevelopmental and psychiatric problems - against progressing into persistent negative outcomes, such as aggressive antisocial behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
Brahmbhatt, Khyati; Hilty, Donald M.; Hah, Mina; Han, Jaesu; Angkustsiri, Kathy; Schweitzer, Julie
2017-01-01
Introduction Attention deficit hyperactivity disorder (ADHD) is a chronic neurodevelopmental disorder with a worldwide prevalence of about 5% in school age children. Objective The goal of this review is to assist primary care providers (PCPs) in diagnosing and treating ADHD in adolescents. Methods PubMed, PsychInfo and Science Citation Index databases were searched from March 1990–2015 with the key words: attention deficit hyperactivity disorder, primary care/pediatrics and children/adolescents, abstracts addressing diagnosis and/or treatment with 105 citations identified including supplementary treatment guidelines/books. Results Adolescent ADHD presents with significant disturbances in attention, academic performance and family relationships with unique issues associated with this developmental period. Diagnostic challenges include the variable symptom presentation during adolescence, complex differential diagnosis and limited training and time for PCPs to conduct thorough evaluations. The evidence-base for treatments in adolescence in comparison to those in children or adults with ADHD is relatively weak. Providers should be cognizant of prevention, early identification and treatment of conditions associated with ADHD that emerge during adolescence as substance use disorders. Conclusions Adolescent ADHD management for the PCP is complex, requires further research, and perhaps new primary care-psychiatric models, to assist in determining the optimal care for patients at this critical period. PMID:27209327
Reijnders, Margot R F; Miller, Kerry A; Alvi, Mohsan; Goos, Jacqueline A C; Lees, Melissa M; de Burca, Anna; Henderson, Alex; Kraus, Alison; Mikat, Barbara; de Vries, Bert B A; Isidor, Bertrand; Kerr, Bronwyn; Marcelis, Carlo; Schluth-Bolard, Caroline; Deshpande, Charu; Ruivenkamp, Claudia A L; Wieczorek, Dagmar; Baralle, Diana; Blair, Edward M; Engels, Hartmut; Lüdecke, Hermann-Josef; Eason, Jacqueline; Santen, Gijs W E; Clayton-Smith, Jill; Chandler, Kate; Tatton-Brown, Katrina; Payne, Katelyn; Helbig, Katherine; Radtke, Kelly; Nugent, Kimberly M; Cremer, Kirsten; Strom, Tim M; Bird, Lynne M; Sinnema, Margje; Bitner-Glindzicz, Maria; van Dooren, Marieke F; Alders, Marielle; Koopmans, Marije; Brick, Lauren; Kozenko, Mariya; Harline, Megan L; Klaassens, Merel; Steinraths, Michelle; Cooper, Nicola S; Edery, Patrick; Yap, Patrick; Terhal, Paulien A; van der Spek, Peter J; Lakeman, Phillis; Taylor, Rachel L; Littlejohn, Rebecca O; Pfundt, Rolph; Mercimek-Andrews, Saadet; Stegmann, Alexander P A; Kant, Sarina G; McLean, Scott; Joss, Shelagh; Swagemakers, Sigrid M A; Douzgou, Sofia; Wall, Steven A; Küry, Sébastien; Calpena, Eduardo; Koelling, Nils; McGowan, Simon J; Twigg, Stephen R F; Mathijssen, Irene M J; Nellaker, Christoffer; Brunner, Han G; Wilkie, Andrew O M
2018-06-07
Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Shaping dendritic spines in autism spectrum disorder: mTORC1-dependent macroautophagy.
Bowling, Heather; Klann, Eric
2014-09-03
In this issue of Neuron, Tang et al. (2014) explore the relationship between developmental dendritic pruning, elevated mTORC1 signaling, macroautophagy, and autism spectrum disorder. The study provides valuable new insight into mTORC1-dependent cellular dysfunction and neurodevelopmental disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
The Contribution of Epigenetics to Understanding Genetic Factors in Autism
ERIC Educational Resources Information Center
Hall, Layla; Kelley, Elizabeth
2014-01-01
Autism spectrum disorder is a grouping of neurodevelopmental disorders characterized by deficits in social communication and language, as well as by repetitive and stereotyped behaviors. While the environment is believed to play a role in the development of autism spectrum disorder, there is now strong evidence for a genetic link to autism.…
Increasing Communication Skills: A Case Study of a Man with Autism Spectrum Disorder and Vision Loss
ERIC Educational Resources Information Center
Kee, S. Brian; Casey, Laura Baylot; Cea, Clayton R.; Bicard, David F.; Bicard, Sara E.
2012-01-01
According to the "Diagnostic and Statistical Manual of Mental Disorders" (DSM-IV-TR; American Psychiatric Association, APA, 2000), autism is a neurodevelopmental disorder that is characterized by impairments in social and communicative behaviors with great variations in ability, depending on developmental level, intelligence, and chronological…
ERIC Educational Resources Information Center
Atladóttir, H. Ó.; Schendel, D. E.; Parner, E. T.; Henriksen, T. B.
2015-01-01
The aim of this study was to describe the profile of specific neonatal morbidities in children later diagnosed with autism spectrum disorder (ASD), and to compare this profile with the profile of children with hyperkinetic disorder, cerebral palsy, epilepsy or intellectual disability. This is a Danish population based cohort study, including all…
The possible interplay of synaptic and clock genes in autism spectrum disorders.
Bourgeron, T
2007-01-01
Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by deficits in social communication, absence or delay in language, and stereotyped and repetitive behaviors. Results from genetic studies reveal one pathway associated with susceptibility to ASD, which includes the synaptic cell adhesion molecules NLGN3, NLGN4, and NRXN1 and a postsynaptic scaffolding protein SHANK3. This protein complex is crucial for the maintenance of functional synapses as well as the adequate balance between neuronal excitation and inhibition. Among the factors that could modulate this pathway are the genes controlling circadian rhythms. Indeed, sleep disorders and low melatonin levels are frequently observed in ASD. In this context, an alteration of both this synaptic pathway and the setting of the clock would greatly increase the risk of ASD. In this chapter, I report genetic and neurobiological findings that highlight the major role of synaptic and clock genes in the susceptibility to ASD. On the basis of these lines of evidence, I propose that future studies of ASD should investigate the circadian modulation of synaptic function as a focus for functional analyses and the development of new therapeutic strategies.
TARGETED TREATMENTS IN AUTISM AND FRAGILE X SYNDROME
Gürkan, C. Kağan; Hagerman, Randi J.
2012-01-01
Autism is a neurodevelopmental disorder consisting of a constellation of symptoms that sometimes occur as part of a complex disorder characterized by impairments in social interaction, communication and behavioral domains. It is a highly disabling disorder and there is a need for treatment targeting the core symptoms. Although autism is accepted as highly heritable, there is no genetic cure at this time. Autism is shown to be linked to several genes and is a feature of some complex genetic disorders, including fragile X syndrome (FXS), fragile X premutation involvement, tuberous sclerosis and Rett syndrome. The term autism spectrum disorders (ASDs) covers autism, Asperger syndrome and pervasive developmental disorders (PDD-NOS) and the etiologies are heterogeneous. In recent years, targeted treatments have been developed for several disorders that have a known specific genetic cause leading to autism. Since there are significant molecular and neurobiological overlaps among disorders, targeted treatments developed for a specific disorder may be helpful in ASD of unknown etiology. Examples of this are two drug classes developed to treat FXS, Arbaclofen, a GABAB agonist, and mGluR5 antagonists, and both may be helpful in autism without FXS. The mGluR5 antagonists are also likely to have a benefit in the aging problems of fragile X premutation carriers, the fragile X –associated tremor ataxia syndrome (FXTAS) and the Parkinsonism that can occur in aging patients with fragile X syndrome. Targeted treatments in FXS which has a well known genetic etiology may lead to new targeted treatments in autism. PMID:23162607
[Examining the developing brain in Dutch child and adolescent psychiatry].
Popma, A
2015-01-01
Research on the developing brain in children and adolescents is delivering new insights into the underlying mechanisms of childhood psychiatric disorders. To provide important information about the role that departments of Dutch child and adolescent psychiatry are playing in this international field that is expanding rapidly. This article provides an overview of recent, mainly Dutch neuro-imaging studies on the developing brain. A large number of studies from Dutch research centers have greatly increased our knowledge about normal and abnormal brain development in relation to the development of psychiatric disorders. Neuro-developmental research can help us to understand the underlying mechanisms of developing psychiatric disorders. This is likely to lead to new preventive measures and to more effective treatment in the future. Policy-makers should therefore commit a larger proportion of their neuroscience research budgets to neurodevelopmental studies in children.
Epigenetics studies of fetal alcohol spectrum disorder: where are we now?
Lussier, Alexandre A; Weinberg, Joanne; Kobor, Michael S
2017-03-01
Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field.
Autism: A “Critical Period” Disorder?
LeBlanc, Jocelyn J.; Fagiolini, Michela
2011-01-01
Cortical circuits in the brain are refined by experience during critical periods early in postnatal life. Critical periods are regulated by the balance of excitatory and inhibitory (E/I) neurotransmission in the brain during development. There is now increasing evidence of E/I imbalance in autism, a complex genetic neurodevelopmental disorder diagnosed by abnormal socialization, impaired communication, and repetitive behaviors or restricted interests. The underlying cause is still largely unknown and there is no fully effective treatment or cure. We propose that alteration of the expression and/or timing of critical period circuit refinement in primary sensory brain areas may significantly contribute to autistic phenotypes, including cognitive and behavioral impairments. Dissection of the cellular and molecular mechanisms governing well-established critical periods represents a powerful tool to identify new potential therapeutic targets to restore normal plasticity and function in affected neuronal circuits. PMID:21826280
Lee, Yeunkum; Kang, Hyojin; Lee, Bokyoung; Zhang, Yinhua; Kim, Yoonhee; Kim, Shinhyun; Kim, Won-Ki; Han, Kihoon
2017-01-01
Recent molecular genetic studies have identified 100s of risk genes for various neurodevelopmental and neuropsychiatric disorders. As the number of risk genes increases, it is becoming clear that different mutations of a single gene could cause different types of disorders. One of the best examples of such a gene is SHANK3, which encodes a core scaffold protein of the neuronal excitatory post-synapse. Deletions, duplications, and point mutations of SHANK3 are associated with autism spectrum disorders, intellectual disability, schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Nevertheless, how the different mutations of SHANK3 can lead to such phenotypic diversity remains largely unknown. In this study, we investigated whether Shank3 could form protein complexes in a brain region-specific manner, which might contribute to the heterogeneity of neuronal pathophysiology caused by SHANK3 mutations. To test this, we generated a medial prefrontal cortex (mPFC) Shank3 in vivo interactome consisting of 211 proteins, and compared this protein list with a Shank3 interactome previously generated from mixed hippocampal and striatal (HP+STR) tissues. Unexpectedly, we found that only 47 proteins (about 20%) were common between the two interactomes, while 164 and 208 proteins were specifically identified in the mPFC and HP+STR interactomes, respectively. Each of the mPFC- and HP+STR-specific Shank3 interactomes represents a highly interconnected network. Upon comparing the brain region-enriched proteomes, we found that the large difference between the mPFC and HP+STR Shank3 interactomes could not be explained by differential protein expression profiles among the brain regions. Importantly, bioinformatic pathway analysis revealed that the representative biological functions of the mPFC- and HP+STR-specific Shank3 interactomes were different, suggesting that these interactors could mediate the brain region-specific functions of Shank3. Meanwhile, the same analysis on the common Shank3 interactors, including Homer and GKAP/SAPAP proteins, suggested that they could mainly function as scaffolding proteins at the post-synaptic density. Lastly, we found that the mPFC- and HP+STR-specific Shank3 interactomes contained a significant number of proteins associated with neurodevelopmental and neuropsychiatric disorders. These results suggest that Shank3 can form protein complexes in a brain region-specific manner, which might contribute to the pathophysiological and phenotypic diversity of disorders related to SHANK3 mutations. PMID:28469556
Calahorro, Fernando; Ruiz-Rubio, Manuel
2011-12-01
The nematode Caenorhabditis elegans has a very well-defined and genetically tractable nervous system which offers an effective model to explore basic mechanistic pathways that might be underpin complex human neurological diseases. Here, the role C. elegans is playing in understanding two neurodegenerative conditions, Parkinson's and Alzheimer's disease (AD), and a complex neurological condition, autism, is used as an exemplar of the utility of this model system. C. elegans is an imperfect model of Parkinson's disease because it lacks orthologues of the human disease-related genes PARK1 and LRRK2 which are linked to the autosomal dominant form of this disease. Despite this fact, the nematode is a good model because it allows transgenic expression of these human genes and the study of the impact on dopaminergic neurons in several genetic backgrounds and environmental conditions. For AD, C. elegans has orthologues of the amyloid precursor protein and both human presenilins, PS1 and PS2. In addition, many of the neurotoxic properties linked with Aβ amyloid and tau peptides can be studied in the nematode. Autism spectrum disorder is a complex neurodevelopmental disorder characterised by impairments in human social interaction, difficulties in communication, and restrictive and repetitive behaviours. Establishing C. elegans as a model for this complex behavioural disorder is difficult; however, abnormalities in neuronal synaptic communication are implicated in the aetiology of the disorder. Numerous studies have associated autism with mutations in several genes involved in excitatory and inhibitory synapses in the mammalian brain, including neuroligin, neurexin and shank, for which there are C. elegans orthologues. Thus, several molecular pathways and behavioural phenotypes in C. elegans have been related to autism. In general, the nematode offers a series of advantages that combined with knowledge from other animal models and human research, provides a powerful complementary experimental approach for understanding the molecular mechanisms and underlying aetiology of complex neurological diseases.
Maltreatment-associated neurodevelopmental disorders: a co-twin control analysis.
Dinkler, Lisa; Lundström, Sebastian; Gajwani, Ruchika; Lichtenstein, Paul; Gillberg, Christopher; Minnis, Helen
2017-06-01
Childhood maltreatment (CM) is strongly associated with psychiatric disorders in childhood and adulthood. Previous findings suggest that the association between CM and psychiatric disorders is partly causal and partly due to familial confounding, but few studies have investigated the mechanisms behind the association between CM and neurodevelopmental disorders (NDDs). Our objective was to determine whether maltreated children have an elevated number of NDDs and whether CM is a risk factor for an increased NDD 'load' and increased NDD symptoms when controlling for familial effects. We used a cross-sectional sample from a population-representative Swedish twin study, comprising 8,192 nine-year-old twins born in Sweden between 1997 and 2005. CM was defined as parent-reported exposure to emotional abuse/neglect, physical neglect, physical abuse, and/or sexual abuse. Four NDDs were measured with the Autism-Tics, AD/HD, and other comorbidities inventory. Maltreated children had a greater mean number of NDDs than nonmaltreated children. In a co-twin control design, CM-discordant monozygotic twins did not differ significantly for their number of NDDs, suggesting that CM is not associated with an increased load of NDDs when genetic and shared environmental factors are taken into account. However, CM was associated with a small increase in symptoms of attention-deficit/hyperactivity disorder and autism spectrum disorder in CM-discordant MZ twins, although most of the covariance of CM with NDD symptoms was explained by common genetic effects. Maltreated children are at higher risk of having multiple NDDs. Our findings are, however, not consistent with the notion that CM causes the increased NDD load in maltreated children. Maltreated children should receive a full neurodevelopmental assessment, and clinicians should be aware that children with multiple NDDs are at higher risk of maltreatment. © 2017 Association for Child and Adolescent Mental Health.
Moffitt, Terrie E.; Houts, Renate; Asherson, Philip; Belsky, Daniel W; Corcoran, David L; Hammerle, Maggie; Harrington, Honalee; Hogan, Sean; Meier, Madeline; Polanczyk, Guilherme V.; Poulton, Richie; Ramrakha, Sandhya; Sugden, Karen; Williams, Benjamin; Rohde, Luis Augusto; Caspi, Avshalom
2015-01-01
Objective Despite a prevailing assumption that adult ADHD is a childhood-onset neurodevelopmental disorder, no prospective-longitudinal study has described the childhoods of the adult-ADHD population. We report follow-back analyses of ADHD cases diagnosed in adulthood, alongside follow-forward analyses of ADHD cases diagnosed in childhood, in one cohort. Method Participants belonged to a representative birth cohort of 1,037 individuals born in Dunedin, New Zealand in 1972-73 and followed to age 38, with 95% retention. Symptoms of ADHD, associated clinical features, comorbid disorders, neuropsychological deficits, GWAS-derived polygenic risk, and life impairment indicators were assessed. Data sources were participants, parents, teachers, informants, neuropsychological testing, and administrative records. Adult ADHD diagnoses used DSM5 criteria, apart from onset-age and cross-setting corroboration, which were study outcomes. Results As expected, the childhood-ADHD group showed 6% prevalence, male excess, childhood comorbid disorders, neurocognitive deficits, polygenic risk, and, despite having outgrown their ADHD diagnosis, residual adult life impairment. As expected, the adult-ADHD group showed 3% prevalence, gender balance, adult substance dependence, adult life impairment, and treatment contact. Unexpectedly, the childhood-ADHD and adult-ADHD groups comprised virtually non-overlapping sets; 90% of adult-ADHD cases lacked a history of childhood ADHD. Also unexpectedly, the adult-ADHD group did not show tested neuropsychological deficits in childhood or adulthood, nor did they show polygenic risk for childhood ADHD. Conclusion Findings raise the possibility that adults presenting with the ADHD symptom picture may not have a childhood-onset neurodevelopmental disorder. If this finding is replicated, then the disorder's place in the classification system must be reconsidered, and research must investigate the etiology of adult ADHD. PMID:25998281
Age level vs grade level for the diagnosis of ADHD and neurodevelopmental disorders.
Bonati, Maurizio; Cartabia, Massimo; Zanetti, Michele; Reale, Laura; Didoni, Anna; Costantino, Maria Antonella
2018-06-06
A number of worldwide studies have demonstrated that children born later in the school year are more likely to receive an ADHD diagnosis than their same school-year peers. There is, however, variation in findings between countries. We aimed to confirm whether relative age is associated with ADHD diagnosis, with or without comorbidities, and to investigate whether relative age is associated with ADHD type and severity, and if this age relationship is in common with other neurodevelopmental disorder. We used the Lombardy Region's ADHD registry. Data on children aged 6 years and older from September 1, 2011 to December 31, 2017 were considered. We calculated incidence ratios to assess the inter-relations between relative age within the school year, using age at diagnosis of ADHD or of other psychiatric disorder, year of diagnosis, and total number of children born in Lombardy during the corresponding timeframe. Data on ADHD type, severity of diagnosed disorder clinical global impressions-severity scale, and repetition of a school-grade were also considered. 4081 children, 2856 of whom with ADHD, were identified. We confirmed that the cumulative incidence of ADHD diagnosis was greatest for younger children, in particular for boys, for whom the prevalence is greater. The relative age effect was not accounted for by ADHD comorbid disorders, ADHD of combined type or severity. The relative age effect was also observed for children with other neurodevelopmental disorders (without ADHD), with a similar profile as ADHD children: the incidence ratio was 1.78 (95% CI 1.07-2.97; p < 0.0247) for boys diagnosed before age ten. The findings have a potential implication for diagnostic and therapeutic practice, educational advice, and policies, besides to better plan and organize service systems and appropriately inform parents, children, and citizens.
Munir, Kerim M.
2016-01-01
Purpose of review The study summarizes supportive epidemiological data regarding the true co-occurrence (comorbidity) and course of mental disorders in children with intellectual disability/intellectual developmental disorders (ID/IDD) across the lifespan. Recent findings Published studies involving representative populations of children and adolescents with ID/IDD have demonstrated a three to four-fold increase in prevalence of co-occurring mental disorders. The effect of age, sex, and severity (mild, moderate, severe, and profound) and socioeconomic status on prevalence is currently not clearly understood. To date there are no prevalence estimates of co-occurring mental disorders in youth identified using the new DSM-5 (and proposed ICD-11) definition of ID/IDD using measures of intellectual functions and deficits in adaptive functioning with various severity levels defined on the basis of adaptive functioning, and not intellectual quotient scores. Summary The true relationship between two forms of morbidity remains complex and causal relationships that may be true for one disorder may not apply to another. The new conceptualization of ID/IDD offers a developmentally better informed psychobiological approach that can help distinguish co-occurrence of mental disorders within the neurodevelopmental section with onset during the developmental period as well as the later onset of other mental disorders. PMID:26779862
Munir, Kerim M
2016-03-01
The study summarizes supportive epidemiological data regarding the true co-occurrence (comorbidity) and course of mental disorders in children with intellectual disability/intellectual developmental disorders (ID/IDD) across the lifespan. Published studies involving representative populations of children and adolescents with ID/IDD have demonstrated a three to four-fold increase in prevalence of co-occurring mental disorders. The effect of age, sex, and severity (mild, moderate, severe, and profound) and socioeconomic status on prevalence is currently not clearly understood. To date there are no prevalence estimates of co-occurring mental disorders in youth identified using the new DSM-5 (and proposed ICD-11) definition of ID/IDD using measures of intellectual functions and deficits in adaptive functioning with various severity levels defined on the basis of adaptive functioning, and not intellectual quotient scores. The true relationship between two forms of morbidity remains complex and causal relationships that may be true for one disorder may not apply to another. The new conceptualization of ID/IDD offers a developmentally better informed psychobiological approach that can help distinguish co-occurrence of mental disorders within the neurodevelopmental section with onset during the developmental period as well as the later onset of other mental disorders.
Atypical Pupillary Light Reflex in Individuals with Autism
2014-09-01
latency has the potential to track neurodevelopmental trajectory in children; Our results suggest autonomic dysfunctions associated with autism ; We...different HRV in a large group of children with autism . We found that PLR latency has a potential to be used as a biomarker for normal neurodevelopmental ...USA e-mail: YaoG@missouri.edu J. H. Miles S. E. Christ D. Q. Beversdorf T. N. Takahashi Thompson Center for Autism & Neurodevelopmental Disorders
Burns, Thomas G; King, Tricia Z; Spencer, Katherine S
2013-01-01
A group of 47 patients diagnosed with neurodevelopmental disorders were compared to 47 age-, gender-, and racially matched typically developing children to examine the frequency of impairment across domains of the Mullen Scales of Early Learning (MSEL). The MSEL is a comprehensive measure of cognitive functioning designed to assess infants and preschool children between the ages of birth to 68 months. In the neurodevelopmental group, the sample was composed of children 2 to 4 years of age who were diagnosed with autism spectrum disorders (ASD; n = 19), cerebral palsy (CP; n = 14), and epilepsy (EPI; n = 14). A sample of 47 matched controls, taken from the normative sample of the MSEL, was used as a comparison group. Each one of the clinical groups comprising the neurodevelopmental sample demonstrated statistically significant delays across domains relative to the respective matched control group (p < .001). Children failed to demonstrate a "signature" profile for a diagnosis of ASD, CP, or EPI. The clinical sensitivity of the MSEL and the need for obtaining specific intervention services for children diagnosed with these conditions are presented. Finally, these results are discussed within the context of the clinical sensitivity of the MSEL in working with these clinical populations.
Lazar, Steven M; Evans, David W; Myers, Scott M; Moreno-De Luca, Andres; Moore, Gregory J
2014-04-15
Social cognition is an important aspect of social behavior in humans. Social cognitive deficits are associated with neurodevelopmental and neuropsychiatric disorders. In this study we examine the neural substrates of social cognition and face processing in a group of healthy young adults to examine the neural substrates of social cognition. Fifty-seven undergraduates completed a battery of social cognition tasks and were assessed with electroencephalography (EEG) during a face-perception task. A subset (N=22) were administered a face-perception task during functional magnetic resonance imaging. Variance in the N170 EEG was predicted by social attribution performance and by a quantitative measure of empathy. Neurally, face processing was more bilateral in females than in males. Variance in fMRI voxel count in the face-sensitive fusiform gyrus was predicted by quantitative measures of social behavior, including the Social Responsiveness Scale (SRS) and the Empathizing Quotient. When measured as a quantitative trait, social behaviors in typical and pathological populations share common neural pathways. The results highlight the importance of viewing neurodevelopmental and neuropsychiatric disorders as spectrum phenomena that may be informed by studies of the normal distribution of relevant traits in the general population. Copyright © 2014 Elsevier B.V. All rights reserved.
Mapping autism risk loci using genetic linkage and chromosomal rearrangements
Szatmari, Peter; Paterson, Andrew; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John; Skaug, Jennifer; Thompson, Ann; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan; Jones, Marshall; Marshall, Christian; Scherer, Stephen; Vieland, Veronica; Bartlett, Christopher; Mangin, La Vonne; Goedken, Rhinda; Segre, Alberto; Pericak-Vance, Margaret; Cuccaro, Michael; Gilbert, John; Wright, Harry; Abramson, Ruth; Betancur, Catalina; Bourgeron, Thomas; Gillberg, Christopher; Leboyer, Marion; Buxbaum, Joseph; Davis, Kenneth; Hollander, Eric; Silverman, Jeremy; Hallmayer, Joachim; Lotspeich, Linda; Sutcliffe, James; Haines, Jonathan; Folstein, Susan; Piven, Joseph; Wassink, Thomas; Sheffield, Val; Geschwind, Daniel; Bucan, Maja; Brown, Ted; Cantor, Rita; Constantino, John; Gilliam, Conrad; Herbert, Martha; Lajonchere, Clara; Ledbetter, David; Lese-Martin, Christa; Miller, Janet; Nelson, Stan; Samango-Sprouse, Carol; Spence, Sarah; State, Matthew; Tanzi, Rudolph; Coon, Hilary; Dawson, Geraldine; Devlin, Bernie; Estes, Annette; Flodman, Pamela; Klei, Lambertus; Mcmahon, William; Minshew, Nancy; Munson, Jeff; Korvatska, Elena; Rodier, Patricia; Schellenberg, Gerard; Smith, Moyra; Spence, Anne; Stodgell, Chris; Tepper, Ping Guo; Wijsman, Ellen; Yu, Chang-En; Rogé, Bernadette; Mantoulan, Carine; Wittemeyer, Kerstin; Poustka, Annemarie; Felder, Bärbel; Klauck, Sabine; Schuster, Claudia; Poustka, Fritz; Bölte, Sven; Feineis-Matthews, Sabine; Herbrecht, Evelyn; Schmötzer, Gabi; Tsiantis, John; Papanikolaou, Katerina; Maestrini, Elena; Bacchelli, Elena; Blasi, Francesca; Carone, Simona; Toma, Claudio; Van Engeland, Herman; De Jonge, Maretha; Kemner, Chantal; Koop, Frederieke; Langemeijer, Marjolein; Hijmans, Channa; Staal, Wouter; Baird, Gillian; Bolton, Patrick; Rutter, Michael; Weisblatt, Emma; Green, Jonathan; Aldred, Catherine; Wilkinson, Julie-Anne; Pickles, Andrew; Le Couteur, Ann; Berney, Tom; Mcconachie, Helen; Bailey, Anthony; Francis, Kostas; Honeyman, Gemma; Hutchinson, Aislinn; Parr, Jeremy; Wallace, Simon; Monaco, Anthony; Barnby, Gabrielle; Kobayashi, Kazuhiro; Lamb, Janine; Sousa, Ines; Sykes, Nuala; Cook, Edwin; Guter, Stephen; Leventhal, Bennett; Salt, Jeff; Lord, Catherine; Corsello, Christina; Hus, Vanessa; Weeks, Daniel; Volkmar, Fred; Tauber, Maïté; Fombonne, Eric; Shih, Andy; Meyer, Kacie
2007-01-01
Autism spectrum disorders (ASD) are common, heritable neurodevelopmental conditions. The genetic architecture of ASD is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASD by using Affymetrix 10K single nucleotide polymorphism (SNP) arrays and 1168 families with ≥ 2 affected individuals to perform the largest linkage scan to date, while also analyzing copy number variation (CNV) in these families. Linkage and CNV analyses implicate chromosome 11p12-p13 and neurexins, respectively, amongst other candidate loci. Neurexins team with previously-implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for ASD. PMID:17322880
Molecular mechanisms underlying neurodevelopmental disorders, ADHD and autism.
Bădescu, George Mihai; Fîlfan, Mădălina; Sandu, Raluca Elena; Surugiu, Roxana; Ciobanu, Ovidiu; Popa-Wagner, Aurel
2016-01-01
Neurodevelopmental disorders such as attention deficit hyperactivity disorder and autism represent a significant economic burden, which justify vigorous research to uncover its genetics and developmental clinics for a diagnostic workup. The urgency of addressing attention deficit hyperactivity disorder comorbidities is seen in the chilling fact that attention deficit hyperactivity disorder (ADHD), mood disorders, substance use disorders and obesity each increase the risk for mortality. However, data about comorbidity is mainly descriptive, with mechanistic studies limited to genetic epidemiological studies that document shared genetic risk factors among these conditions. Autism and intellectual disability affects 1.5 to 2% of the population in Western countries with many individuals displaying social-emotional agnosia and having difficulty in forming attachments and relationships. Underlying mechanisms include: (i) dysfunctions of neuronal miRNAs; (ii) deletions in the chromosome 21, subtelomeric deletions, duplications and a maternally inherited duplication of the chromosomal region 15q11-q13; (iii) microdeletions in on the long (q) arm of the chromosome in a region designated q21.1 increases the risk of delayed development, intellectual disability, physical abnormalities, and neurological and psychiatric problems associated with autism, schizophrenia, and epilepsy and weak muscle tone (hypotonia); (iv) interstitial duplications encompassing 16p13.11.
Parenting stress among parents of children with Neurodevelopmental Disorders.
Craig, Francesco; Operto, Francesca Felicia; De Giacomo, Andrea; Margari, Lucia; Frolli, Alessandro; Conson, Massimiliano; Ivagnes, Sara; Monaco, Marianna; Margari, Francesco
2016-08-30
In recent years, studies have shown that parents of children with Neurodevelopmental Disorders (NDDs) experience more parenting stress than parents of typically developing children, but the relation between the type of disorders and parenting stress is far from clear. The purpose of this study was to compare the parenting stress experienced by parents of 239 children with Specific Learning Disorders (SpLD), Language Disorders (LD), Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), and typical development (TD). Parents of children with NDDs experience more parenting stress than those of children who have TD. Although, parents of children with ASD or ADHD report the most high scores of parenting stress, also the parents of children with SpLD or LD report higher parental stress compared with parent of children without NDDs. Another interesting finding was that IQ level or emotional and behavioral problems are associated with the higher levels of parenting stress. This study suggest that parent, both mothers and fathers, of children with different type of NDDs should be provided with interventions and resources to empower them with the knowledge and skills to reduce their stress and to enhance their quality of life. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Genomic and Epigenomic Insights into Nutrition and Brain Disorders
Dauncey, Margaret Joy
2013-01-01
Considerable evidence links many neuropsychiatric, neurodevelopmental and neurodegenerative disorders with multiple complex interactions between genetics and environmental factors such as nutrition. Mental health problems, autism, eating disorders, Alzheimer’s disease, schizophrenia, Parkinson’s disease and brain tumours are related to individual variability in numerous protein-coding and non-coding regions of the genome. However, genotype does not necessarily determine neurological phenotype because the epigenome modulates gene expression in response to endogenous and exogenous regulators, throughout the life-cycle. Studies using both genome-wide analysis of multiple genes and comprehensive analysis of specific genes are providing new insights into genetic and epigenetic mechanisms underlying nutrition and neuroscience. This review provides a critical evaluation of the following related areas: (1) recent advances in genomic and epigenomic technologies, and their relevance to brain disorders; (2) the emerging role of non-coding RNAs as key regulators of transcription, epigenetic processes and gene silencing; (3) novel approaches to nutrition, epigenetics and neuroscience; (4) gene-environment interactions, especially in the serotonergic system, as a paradigm of the multiple signalling pathways affected in neuropsychiatric and neurological disorders. Current and future advances in these four areas should contribute significantly to the prevention, amelioration and treatment of multiple devastating brain disorders. PMID:23503168
Maternal Brain-Reactive Antibodies and Autism Spectrum Disorder
2015-10-01
Autism spectrum disorder (ASD) occurs in 1 in 68 births, preferentially affecting males. It encompasses a group of neurodevelopmental ...AWARD NUMBER: W81XWH-14-1-0369 TITLE: Maternal Brain-Reactive Antibodies and Autism Spectrum Disorder PRINCIPAL INVESTIGATOR: Betty Diamond...Sep 2015 4. TITLE AND SUBTITLE Maternal Brain-Reactive Antibodies and Autism Spectrum 5a. CONTRACT NUMBER Disorder 5b. GRANT NUMBER W81XWH-14-1
ERIC Educational Resources Information Center
Cairney, John; Hay, John; Veldhuizen, Scott; Faught, Brent
2011-01-01
Developmental coordination disorder (DCD) is a neuro-developmental disorder characterized by poor fine and/or gross motor coordination. Children with DCD are hypothesized to be at increased risk for overweight and obesity from inactivity due to their motor coordination problems. Although previous studies have found evidence to support this…
ERIC Educational Resources Information Center
Merker, Sören; Reif, Andreas; Ziegler, Georg C.; Weber, Heike; Mayer, Ute; Ehlis, Ann-Christine; Conzelmann, Annette; Johansson, Stefan; Müller-Reible, Clemens; Nanda, Indrajit; Haaf, Thomas; Ullmann, Reinhard; Romanos, Marcel; Fallgatter, Andreas J.; Pauli, Paul; Strekalova, Tatyana; Jansch, Charline; Vasquez, Alejandro Arias; Haavik, Jan; Ribasés, Marta; Ramos-Quiroga, Josep Antoni; Buitelaar, Jan K.; Franke, Barbara; Lesch, Klaus-Peter
2017-01-01
Background: Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder with profound cognitive, behavioral, and psychosocial impairments with persistence across the life cycle. Our initial genome-wide screening approach for copy number variants (CNVs) in ADHD implicated a duplication of…
ERIC Educational Resources Information Center
Lundstrom, Sebastian; Haworth, Claire M. A.; Carlstrom, Eva; Gillberg, Christopher; Mill, Jonathan; Rastam, Maria; Hultman, Christina M.; Ronald, Angelica; Anckarsater, Henrik; Plomin, Robert; Lichtenstein, Paul; Reichenberg, Abraham
2010-01-01
Background: Despite extensive efforts, the causes of autism remain unknown. Advancing paternal age has been associated with various neurodevelopmental disorders. We aim to investigate three unresolved questions: (a) What is the association between paternal age and autism spectrum disorders (ASD)?; (b) Does paternal age moderate the genetic and…
ERIC Educational Resources Information Center
Brukner-Wertman, Yael; Laor, Nathaniel; Golan, Ofer
2016-01-01
DSM-5 introduced two diagnoses describing neurodevelopmental deficits in social communication (SC); Autism Spectrum Disorder (ASD) and Social (Pragmatic) Communication Disorder (SPCD). These diagnoses are differentiated by Repetitive and Restricted Behaviors (RRB), required for an ASD diagnosis and absent in SPCD. We highlight the gaps between the…
ERIC Educational Resources Information Center
Siniscalco, Dario; Sapone, Anna; Giordano, Catia; Cirillo, Alessandra; de Magistris, Laura; Rossi, Francesco; Fasano, Alessio; Bradstreet, James Jeffrey; Maione, Sabatino; Antonucci, Nicola
2013-01-01
Autistic disorders (ADs) are heterogeneous neurodevelopmental disorders arised by the interaction of genes and environmental factors. Dysfunctions in social interaction and communication skills, repetitive and stereotypic verbal and non-verbal behaviours are common features of ADs. There are no defined mechanisms of pathogenesis, rendering…
ERIC Educational Resources Information Center
Miniscalco, Carmela; Hagberg, Bibbi; Kadesjo, Bjorn; Westerlund, Monica; Gillberg, Christopher
2007-01-01
Background: A community-representative sample of screened and clinically examined children with language delay at 2.5 years of age was followed up at school age when their language development was again examined and the occurrence of neuropsychiatric/neurodevelopmental disorder (attention deficit/hyperactivity disorder (ADHD) and/or autism…
ERIC Educational Resources Information Center
McIntyre, Laura Lee; Zemantic, Patricia K.
2017-01-01
Autism spectrum disorder (ASD) is the fastest growing group of neurodevelopmental disorders in childhood. Earlier detection means an increased need for early intervention and other educational services. This study examined what services a sample of young children with ASD received, what variables predicted service utilization, and how satisfied…
ERIC Educational Resources Information Center
Santos, Maria Isabel; Breda, Ana; Almeida, Ana Margarida
2017-01-01
Learning environment on mathematics for autistic children is a prototype of a digital environment with dynamic adaptation features designed to offer activities towards the development of mathematical reasoning in children aged 6-12 years, diagnosed with autism spectrum disorders (ASD), a neurodevelopmental disorder characterized by deficits in…
Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity
Gilbert, James; Man, Heng-Ye
2017-01-01
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. Highlights Autism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States.ASDs are highly heterogeneous in their genetic basis.ASDs share common features at the cellular and molecular levels in the brain.Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function. PMID:29209173
Zika Virus-associated Ocular and Neurologic Disorders: The Emergence of New Evidence.
Şahiner, Fatih; Siğ, Ali Korhan; Savaşçi, Ümit; Tekin, Kemal; Akay, Fahrettin
2017-12-01
It has been approximately 70 years since the discovery of the Zika virus (ZIKV). It had been established that the virus causes mild infections and is confined to Africa and Asia; however, major changes in the clinical and epidemiologic patterns of ZIKV infection have occurred in recent years. The virus has attracted intense interest because of the possible association of several autoimmune and neurodevelopmental disorders. We present a summary of the articles that attempt to explain the ZIKV unknowns and strengthen the association with some disorders that are thought to be related to ZIKV, by describing the discovery milestones from the initial identification of the virus to the present day. New evidence strengthens the association between ZIKV infections and Guillain-Barré syndrome (GBS), microcephaly and various neurodevelopmental and ophthalmologic disorders as a result of numerous new clinical and experimental studies. The World Health Organization declared the end of the "Public Health Emergency of International Concern" in December 2016, but ZIKV and associated consequences remain a significant enduring public health challenge.
Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders
Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.
2015-01-01
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674
Nicotinic ACh receptors as therapeutic targets in CNS disorders.
Dineley, Kelly T; Pandya, Anshul A; Yakel, Jerrel L
2015-02-01
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. Published by Elsevier Ltd.
De Novo Coding Variants Are Strongly Associated with Tourette Disorder
Willsey, A. Jeremy; Fernandez, Thomas V.; Yu, Dongmei; King, Robert A.; Dietrich, Andrea; Xing, Jinchuan; Sanders, Stephan J.; Mandell, Jeffrey D.; Huang, Alden Y.; Richer, Petra; Smith, Louw; Dong, Shan; Samocha, Kaitlin E.; Neale, Benjamin M.; Coppola, Giovanni; Mathews, Carol A.; Tischfield, Jay A.; Scharf, Jeremiah M.; State, Matthew W.; Heiman, Gary A.
2017-01-01
SUMMARY Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. PMID:28472652
Ben Said, Mohamed; Robel, Laurence; Golse, Bernard; Jais, Jean Philippe
2017-01-01
Autism spectrum disorders (ASD) are complex neuro-developmental disorders affecting children in early age. Diagnosis relies on multidisciplinary investigations, in psychiatry, neurology, genetics, electrophysiology, neuro-imagery, audiology, and ophthalmology. To support clinicians, researchers, and public health decision makers, we developed an information system dedicated to ASD, called TEDIS. It was designed to manage systematic, exhaustive and continuous multi-centric patient data collection via secured internet connections. TEDIS will be deployed in nine ASD expert assessment centers in Ile-DeFrance district. We present security policy and infrastructure developed in context of TEDIS to protect patient privacy and clinical information. TEDIS security policy was organized around governance, ethical and organisational chart-agreement, patients consents, controlled user access, patients' privacy protection, constrained patients' data access. Security infrastructure was enriched by further technical solutions to reinforce ASD patients' privacy protection. Solutions were tested on local secured intranet environment and showed fluid functionality with consistent, transparent and safe encrypting-decrypting results.
Wang, I-Ting Judy; Allen, Megan; Goffin, Darren; Zhu, Xinjian; Fairless, Andrew H.; Brodkin, Edward S.; Siegel, Steve J.; Marsh, Eric D.; Blendy, Julie A.; Zhou, Zhaolan
2012-01-01
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in neurodevelopmental disorders including atypical Rett syndrome (RTT), autism spectrum disorders (ASDs), and early infantile epileptic encephalopathy. The biological function of CDKL5 and its role in the etiology of these disorders, however, remain unclear. Here we report the development of a unique knockout mouse model of CDKL5-related disorders and demonstrate that mice lacking CDKL5 show autistic-like deficits in social interaction, as well as impairments in motor control and fear memory. Neurophysiological recordings reveal alterations in event-related potentials (ERPs) similar to those observed in RTT and ASDs. Moreover, kinome profiling uncovers disruption of multiple signal transduction pathways, including the AKT-mammalian target of rapamycin (mTOR) cascade, upon Cdkl5 loss-of-function. These data demonstrate that CDKL5 regulates signal transduction pathways and mediates autistic-like phenotypes and together establish a causal role for Cdkl5 loss-of-function in neurodevelopmental disorders. PMID:23236174
Uzunova, Genoveva; Hollander, Eric; Shepherd, Jason
2014-01-01
Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are relatively common childhood neurodevelopmental disorders with increasing incidence in recent years. They are currently accepted as disorders of the synapse with alterations in different forms of synaptic communication and neuronal network connectivity. The major excitatory neurotransmitter system in brain, the glutamatergic system, is implicated in learning and memory, synaptic plasticity, neuronal development. While much attention is attributed to the role of metabotropic glutamate receptors in ASD and FXS, studies indicate that the ionotropic glutamate receptors (iGluRs) and their regulatory proteins are also altered in several brain regions. Role of iGluRs in the neurobiology of ASD and FXS is supported by a weight of evidence that ranges from human genetics to in vitro cultured neurons. In this review we will discuss clinical, molecular, cellular and functional changes in NMDA, AMPA and kainate receptors and the synaptic proteins that regulate them in the context of ASD and FXS. We will also discuss the significance for the development of translational biomarkers and treatments for the core symptoms of ASD and FXS.
Neural Signature of DCD: A Critical Review of MRI Neuroimaging Studies
Biotteau, Maëlle; Chaix, Yves; Blais, Mélody; Tallet, Jessica; Péran, Patrice; Albaret, Jean-Michel
2016-01-01
The most common neurodevelopmental disorders (e.g., developmental dyslexia (DD), autism, attention-deficit hyperactivity disorder (ADHD)) have been the subject of numerous neuroimaging studies, leading to certain brain regions being identified as neural correlates of these conditions, referring to a neural signature of disorders. Developmental coordination disorder (DCD), however, remains one of the least understood and studied neurodevelopmental disorders. Given the acknowledged link between motor difficulties and brain features, it is surprising that so few research studies have systematically explored the brains of children with DCD. The aim of the present review was to ascertain whether it is currently possible to identify a neural signature for DCD, based on the 14 magnetic resonance imaging neuroimaging studies that have been conducted in DCD to date. Our results indicate that several brain areas are unquestionably linked to DCD: cerebellum, basal ganglia, parietal lobe, and parts of the frontal lobe (medial orbitofrontal cortex and dorsolateral prefrontal cortex). However, research has been too sparse and studies have suffered from several limitations that constitute a serious obstacle to address the question of a well-established neural signature for DCD. PMID:28018285
Lesch, Klaus-Peter; Araragi, Naozumi; Waider, Jonas; van den Hove, Daniel; Gutknecht, Lise
2012-09-05
Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.
Young children who screen positive for autism: Stability, change and "comorbidity" over two years.
Kantzer, Anne-Katrin; Fernell, Elisabeth; Westerlund, Joakim; Hagberg, Bibbi; Gillberg, Christopher; Miniscalco, Carmela
2018-01-01
Autism spectrum disorder (ASD) is a developmental disorder with a wide variety of clinical phenotypes and co-occurrences with other neurodevelopmental conditions. Symptoms may change over time. The aim of the present study was to prospectively follow 96 children, initially assessed for suspected ASD at an average age of 2.9 years. All children had been identified with autistic symptoms in a general population child health screening program, and had been referred to the Child Neuropsychiatry Clinic in Gothenburg, Sweden for further assessment by a multi-professional team at Time 1 (T1). This assessment included a broad neurodevelopmental examination, structured interviews, a cognitive test and evaluations of the child́s adaptive and global functioning. Two years later, at Time 2 (T2), the children and their parents were invited for a follow-up assessment by the same team using the same methods. Of the 96 children, 76 had met and 20 had not met full criteria for ASD at T1. Of the same 96 children, 79 met full ASD criteria at T2. The vast majority of children with ASD also had other neurodevelopmental symptoms or diagnoses. Hyperactivity was observed in 42% of children with ASD at T2, and Intellectual Developmental Disorder in 30%. Borderline Intellectual Functioning was found in 25%, and severe speech and language disorder in 20%. The children who did not meet criteria for ASD at T2 had symptoms of or met criteria for other neurodevelopmental/neuropsychiatric disorders in combination with marked autistic traits. Changes in developmental profiles between T1 and T2 were common in this group of young children with ASD. The main effect of Cognitive level at T1 explained more than twice as much of the variance in Vineland scores as did the ASD subtype; children with IDD had significantly lower scores than children in the BIF and AIF group. Co-existence with other conditions was the rule. Reassessments covering the whole range of these conditions are necessary for an optimized intervention-adapted to the individual child's needs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sukoff Rizzo, Stacey J; Crawley, Jacqueline N
2017-02-08
Animal models offer heuristic research tools to understand the causes of human diseases and to identify potential treatments. With rapidly evolving genetic engineering technologies, mutations identified in a human disorder can be generated in the mouse genome. Phenotypic outcomes of the mutation are then explicated to confirm hypotheses about causes and to discover effective therapeutics. Most neurodevelopmental, neurodegenerative, and psychiatric disorders are diagnosed primarily by their prominent behavioral symptoms. Mouse behavioral assays analogous to the human symptoms have been developed to analyze the consequences of mutations and to evaluate proposed therapeutics preclinically. Here we describe the range of mouse behavioral tests available in the established behavioral neuroscience literature, along with examples of their translational applications. Concepts presented have been successfully used in other species, including flies, worms, fish, rats, pigs, and nonhuman primates. Identical strategies can be employed to test hypotheses about environmental causes and gene × environment interactions.
Epigenetics studies of fetal alcohol spectrum disorder: where are we now?
Lussier, Alexandre A; Weinberg, Joanne; Kobor, Michael S
2017-01-01
Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field. PMID:28234026
Infant health and neurodevelopmental outcomes following prenatal exposure to duloxetine.
Bellantuono, Cesario; Marini, Alessandra; Lucarelli, Chiara
2013-09-01
Maternal psychiatric disorders can have negative consequences on the fetus and newborn. Thus, the risks of untreated mental disorders in pregnancy should be balanced against the potential risks of a psychopharmacological treatment. The aim of the present report is to provide information on the infant safety of duloxetine exposure, an antidepressant drug belonging to the serotonin-norepinephrine reuptake inhibitors, during pregnancy. Despite duloxetine being routinely prescribed as a treatment for major depression and anxiety disorders, there is a paucity of literature evaluating both the short- and long-term effects of duloxetine exposure in utero. This paper provides data on infant health and neurodevelopmental outcomes, up to 9 months of age, in a newborn exposed to duloxetine throughout pregnancy. Although the present report suggests that duloxetine was not associated with major malformations or neurobehavioural problems, the drug should be used with caution until further information is available on its safety profile in pregnancy.
Alaimo, Joseph T; Barton, Laura V; Mullegama, Sureni V; Wills, Rachel D; Foster, Rebecca H; Elsea, Sarah H
2015-12-01
Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder associated with intellectual disability, sleep disturbances, early onset obesity and vast behavioral deficits. We used the Behavior Problems Inventory-01 to categorize the frequency and severity of behavioral abnormalities in a SMS cohort relative to individuals with intellectual disability of heterogeneous etiology. Self-injurious, stereotyped, and aggressive/destructive behavioral scores indicated that both frequency and severity were significantly higher among individuals with SMS relative to those with intellectual disability. Next, we categorized food behaviors in our SMS cohort across age using the Food Related Problems Questionnaire (FRPQ) and found that problems began to occur in SMS children as early as 5-11 years old, but children 12-18 years old and adults manifested the most severe problems. Furthermore, we evaluated the similarities of SMS adult food-related behaviors to those with intellectual disability and found that SMS adults had more severe behavioral problems. Many neurodevelopmental disorders exhibit syndromic obesity including SMS. Prader-Willi syndrome (PWS) is the most frequent neurodevelopmental disorder with syndromic obesity and has a well-established management and treatment plan. Using the FRPQ we found that SMS adults had similar scores relative to PWS adults. Both syndromes manifest weight gain early in development, and the FRPQ scores highlight specific areas in which behavioral similarities exist, including preoccupation with food, impaired satiety, and negative behavioral responses. SMS food-related behavior treatment paradigms are not as refined as PWS, suggesting that current PWS treatments for prevention of obesity may be beneficial for individuals with SMS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prenatal maternal immune activation causes epigenetic differences in adolescent mouse brain
Basil, P; Li, Q; Dempster, E L; Mill, J; Sham, P-C; Wong, C C Y; McAlonan, G M
2014-01-01
Epigenetic processes such as DNA methylation have been implicated in the pathophysiology of neurodevelopmental disorders including schizophrenia and autism. Epigenetic changes can be induced by environmental exposures such as inflammation. Here we tested the hypothesis that prenatal inflammation, a recognized risk factor for schizophrenia and related neurodevelopmental conditions, alters DNA methylation in key brain regions linked to schizophrenia, namely the dopamine rich striatum and endocrine regulatory centre, the hypothalamus. DNA methylation across highly repetitive elements (long interspersed element 1 (LINE1) and intracisternal A-particles (IAPs)) were used to proxy global DNA methylation. We also investigated the Mecp2 gene because it regulates transcription of LINE1 and has a known association with neurodevelopmental disorders. Brain tissue was harvested from 6 week old offspring of mice exposed to the viral analog PolyI:C or saline on gestation day 9. We used Sequenom EpiTYPER assay to quantitatively analyze differences in DNA methylation at IAPs, LINE1 elements and the promoter region of Mecp2. In the hypothalamus, prenatal exposure to PolyI:C caused significant global DNA hypomethylation (t=2.44, P=0.019, PolyI:C mean 69.67%, saline mean 70.19%), especially in females, and significant hypomethylation of the promoter region of Mecp2, (t=3.32, P=0.002; PolyI:C mean 26.57%, saline mean 34.63%). IAP methylation was unaltered. DNA methylation in the striatum was not significantly altered. This study provides the first experimental evidence that exposure to inflammation during prenatal life is associated with epigenetic changes, including Mecp2 promoter hypomethylation. This suggests that environmental and genetic risk factors associated with neurodevelopmental disorders may act upon similar pathways. This is important because epigenetic changes are potentially modifiable and their investigation may open new avenues for treatment. PMID:25180573
Behavioral health in young adults with epilepsy: Implications for transition of care.
Wagner, Janelle L; Wilson, Dulaney A; Kellermann, Tanja; Smith, Gigi; Malek, Angela M; Wannamaker, Braxton; Selassie, Anbesaw W
2016-12-01
Neurodevelopmental and behavioral health disorders commonly occur with epilepsy, yet risk for young adults is unknown. The aim of this study was to determine the distribution and risk characteristics of neurodevelopmental and behavior health comorbidities among young adults with epilepsy compared with those among young adults with migraine and healthy controls. A case-control study examining hospital admission, outpatient, and emergency department (ED) visits for young adults with an ICD-9-CM diagnosis of epilepsy, migraine, or lower extremity fracture (LEF) was conducted. The association of epilepsy, migraine, or LEF with comorbidities was evaluated with univariate and multivariate polytomous logistic regression. From 2000 to 2013, 29,139 young adults ages 19 to 25years were seen in hospitals and EDs for epilepsy (5666), migraine (17,507), or LEF (5966). Young adults with epilepsy had higher proportions of behavioral health comorbidities (51.8%) compared with controls with migraine (37.6%) or LEF (21.6%). In young adults with epilepsy compared with migraine, the increased risk of having any behavioral health comorbidity was 76%, and neurodevelopmental comorbidity was 297%. After adjustment, young adults with epilepsy showed significantly higher odds of each behavioral health comorbidity compared with controls with migraine and LEF. Young adults with epilepsy are particularly susceptible to behavioral health and neurodevelopmental disorders. Results are discussed within the context of transition to adult care. Copyright © 2016 Elsevier Inc. All rights reserved.
A Review of the Role of Female Gender in Autism Spectrum Disorders
ERIC Educational Resources Information Center
Kirkovski, Melissa; Enticott, Peter G.; Fitzgerald, Paul B.
2013-01-01
This paper reviews the literature exploring gender differences associated with the clinical presentation of autism spectrum disorders (ASD). The potentially mediating effect of comorbid psychopathology, biological and neurodevelopmental implications on these gender differences is also discussed. A vastly heterogeneous condition, while females on…
Siniscalco, Dario; Mijatovic, Tatjana; Bosmans, Eugene; Cirillo, Alessandra; Kruzliak, Peter; Lombardi, Vincent C; De Meirleir, Kenny; Antonucci, Nicola
2016-01-01
Autism spectrum disorders (ASD) are complex, and severe heterogeneous neurodevelopmental pathologies with accepted but complex immune system abnormalities. Additional knowledge regarding potential immune dysfunctions may provide a greater understanding of this malady. The aim of this study was to evaluate the CD57(+)CD3(-) mature lymphocyte subpopulation of natural killer cells as a marker of immune dysfunction in ASD. Three-color flow cytometry-based analysis of fresh peripheral blood samples from children with autism was utilized to measure CD57(+)CD3(-) lymphocytes. A reduction of CD57(+)CD3(-) lymphocyte count was recorded in a significant number of patients with autism. We demonstrated that the number of peripheral CD57(+)CD3(-) cells in children with autism often falls below the clinically accepted normal range. This implies that a defect in the counter-regulatory functions necessary for balancing pro-inflammatory cytokines exists, thus opening the way to chronic inflammatory conditions associated with ASD. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases.
Trulioff, Andrey; Ermakov, Alexander; Malashichev, Yegor
2017-01-25
Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry.
Primary Cilia as a Possible Link between Left-Right Asymmetry and Neurodevelopmental Diseases
Trulioff, Andrey; Ermakov, Alexander; Malashichev, Yegor
2017-01-01
Cilia have multiple functions in the development of the entire organism, and participate in the development and functioning of the central nervous system. In the last decade, studies have shown that they are implicated in the development of the visceral left-right asymmetry in different vertebrates. At the same time, some neuropsychiatric disorders, such as schizophrenia, autism, bipolar disorder, and dyslexia, are known to be associated with lateralization failure. In this review, we consider possible links in the mechanisms of determination of visceral asymmetry and brain lateralization, through cilia. We review the functions of seven genes associated with both cilia, and with neurodevelopmental diseases, keeping in mind their possible role in the establishment of the left-right brain asymmetry. PMID:28125008
Stessman, Holly A. F.; Xiong, Bo; Coe, Bradley P.; Wang, Tianyun; Hoekzema, Kendra; Fenckova, Michaela; Kvarnung, Malin; Gerdts, Jennifer; Trinh, Sandy; Cosemans, Nele; Vives, Laura; Lin, Janice; Turner, Tychele N.; Santen, Gijs; Ruivenkamp, Claudia; Kriek, Marjolein; van Haeringen, Arie; Aten, Emmelien; Friend, Kathryn; Liebelt, Jan; Barnett, Christopher; Haan, Eric; Shaw, Marie; Gecz, Jozef; Anderlid, Britt-Marie; Nordgren, Ann; Lindstrand, Anna; Schwartz, Charles; Kooy, R. Frank; Vandeweyer, Geert; Helsmoortel, Celine; Romano, Corrado; Alberti, Antonino; Vinci, Mirella; Avola, Emanuela; Giusto, Stefania; Courchesne, Eric; Pramparo, Tiziano; Pierce, Karen; Nalabolu, Srinivasa; Amaral, David; Scheffer, Ingrid E.; Delatycki, Martin B.; Lockhart, Paul J.; Hormozdiari, Fereydoun; Harich, Benjamin; Castells-Nobau, Anna; Xia, Kun; Peeters, Hilde; Nordenskjöld, Magnus; Schenck, Annette; Bernier, Raphael A.; Eichler, Evan E.
2017-01-01
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 patients and >2,867 controls. We report 91 genes with an excess of de novo mutations or private disruptive mutations in 5.7% of patients, including 38 novel NDD genes. Drosophila functional assays of a subset bolster their involvement in NDDs. We identify 25 genes that show a bias for autism versus intellectual disability and highlight a network associated with high-functioning autism (FSIQ>100). Clinical follow-up for NAA15, KMT5B, and ASH1L reveals novel syndromic and non-syndromic forms of disease. PMID:28191889
Simacek, Jessica; Dimian, Adele F; McComas, Jennifer J
2017-03-01
Young children with neurodevelopmental disorders such as autism spectrum disorders (ASD) and Rett syndrome often experience severe communication impairments. This study examined the efficacy of parent-implemented communication assessment and intervention with remote coaching via telehealth on the acquisition of early communication skills of three young children with ASD (2) and Rett syndrome (1). Efficacy of the intervention was evaluated using single-case experimental designs. First, functional assessment was used to identify idiosyncratic/potentially communicative responses and contexts for each child. Next, parents implemented functional communication training (FCT). All of the children acquired the targeted communication responses. The findings support the efficacy of telehealth as a service delivery model to coach parents on intervention strategies for their children's early communication skills.
ERIC Educational Resources Information Center
Bilder, Deborah A.; Bakian, Amanda V.; Stevenson, David A.; Carbone, Paul S.; Cunniff, Christopher; Goodman, Alyson B.; McMahon, William M.; Fisher, Nicole P.; Viskochil, David
2016-01-01
Neurofibromatosis type 1 (NF1) is an inherited neurocutaneous disorder associated with neurodevelopmental disorders including autism spectrum disorder (ASD). The frequency of ASD/NF1 co-occurrence has been subject to debate since the 1980s. This relationship was investigated in a large population-based sample of 8-year-old children identified with…
Kane, Michael J; Angoa-Peréz, Mariana; Briggs, Denise I; Sykes, Catherine E; Francescutti, Dina M; Rosenberg, David R; Kuhn, Donald M
2012-01-01
Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2)) for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/-) showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.
ERIC Educational Resources Information Center
Clarkson, Jessica
2014-01-01
This paper presents the development process and framework used to construct a transportation app that uses situated learning, augmented reality, and communities of practice. Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can cause social impairments as well as the limit the potential for the individual to achieve independence…
ERIC Educational Resources Information Center
Zwi, Morris; Jones, Hannah; Thorgaard, Camilla; York, Ann; Dennis, Jane A.
2011-01-01
Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder characterised by high levels of inattention, hyperactivity and impulsivity that are present before the age of seven years, seen in a range of situations, inconsistent with the child's developmental level and causing social or academic impairment. Parent training…
Assessment of time management skills: psychometric properties of the Swedish version.
Janeslätt, Gunnel Kristina; Holmqvist, Kajsa Lidström; White, Suzanne; Holmefur, Marie
2018-05-01
Persons with impaired time management skills are often in need of occupational therapy. Valid and reliable instruments to assess time management and organizational skills are needed for the evaluation of intervention. The purpose of this study was to evaluate the psychometric properties of a Swedish version of the Assessment of Time Management Skills (ATMS-S) for persons with and without impaired time management skills. A total of 238 persons participated in the study, of whom 94 had self-reported impaired time management skills due to mental disorders such as schizophrenic spectrum or neurodevelopmental disorders such as attention deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD) and mild intellectual disabilities, and 144 persons had no reported impaired time management skills. Rasch analysis was used to analyze data. Three subscales were detected: the time management subscale with 11 items, the organization & planning subscale with 11 items, and the subscale of regulation of emotions with 5 items, with excellent to acceptable psychometric properties. The conclusions were that: ATMS-S is a valid instrument for self-rating of time management, organization & planning and for the regulation of emotions. ATMS-S can be useful for persons with mental disorders including mild neurodevelopmental disorders.
Mismatch Negativity (MMN) as an Index of Cognitive Dysfunction
Näätänen, Risto; Sussman, Elyse S.; Salisbury, Dean; Shafer, Valerie L.
2014-01-01
Cognition is often affected in a variety of neuropsychiatric, neurological, and neurodevelopmental disorders. The neural discriminative response, reflected in mismatch negativity (MMN) and its magnetoencephalographic equivalent (MMNm), has been used as a tool to study a variety of disorders involving auditory cognition. MMN/MMNm is an involuntary brain response to auditory change or, more generally, to pattern regularity violation. For a number of disorders, MMN/MMNm amplitude to sound deviance has been shown to be attenuated or the peak-latency of the component prolonged compared to controls. This general finding suggests that while not serving as a specific marker to any particular disorder, MMN may be useful for understanding factors of cognition in various disorders, and has potential to serve as an indicator of risk. This review presents a brief history of the MMN, followed by a description of how MMN has been used to index auditory processing capability in a range of neuropsychiatric, neurological, and neurodevelopmental disorders. Finally, we suggest future directions for research to further enhance our understanding of the neural substrate of deviance detection that could lead to improvements in the use of MMN as a clinical tool. PMID:24838819
McPartland, James; Volkmar, Fred R.
2012-01-01
The Pervasive Developmental Disorders are a group of neurodevelopmental disorders that include Autistic Disorder, Asperger’s Disorder, Pervasive Developmental Disorder - Not Otherwise Specified (PDD-NOS), Childhood Disintegrative Disorder (CDD), and Rett’s Disorder. All feature childhood onset with a constellation of symptoms spanning social interaction and communication and including atypical behavior patterns. The first three disorders (Autistic Disorder, Asperger’s Disorder, and PDD-NOS) are currently referred to as Autism Spectrum Disorders, reflecting divergent phenotypic and etiologic characteristics compared to Rett’s Disorder and CDD. This chapter reviews relevant research and clinical information relevant to appropriate medical diagnosis and treatment. PMID:22608634
Viewing It Differently: Social Scene Perception in Williams Syndrome and Autism
ERIC Educational Resources Information Center
Riby, Deborah M.; Hancock, Peter J. B.
2008-01-01
The genetic disorder Williams syndrome (WS) is associated with a propulsion towards social stimuli and interactions with people. In contrast, the neuro-developmental disorder autism is characterised by social withdrawal and lack of interest in socially relevant information. Using eye-tracking techniques we investigate how individuals with these…
Focus on the Social Aspect of Autism
ERIC Educational Resources Information Center
Kaluzna-Czaplinska, Joanna; Zurawicz, Ewa; Józwik-Pruska, Jagoda
2018-01-01
Autism spectrum disorder (ASD) describes a set of neurodevelopmental disorders. Despite extensive ASD research lasting more than 60 years, its causes are still unknown. Without indicating the etiology, its development cannot be stopped. Over the years, both the definition and diagnostic criteria have developed. The number of ASD incidence is…
What Parents Should Know about ADHD
ERIC Educational Resources Information Center
Mullet, Dianna R.; Rinn, Anne N.
2016-01-01
Some gifted children suffer from Attention Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder that impairs a child's functioning. For a diagnosis of ADHD, children under the age of 17 must display at least six symptoms of inattention or hyperactivity/impulsivity in at least two different settings (school and home, for example),…
ERIC Educational Resources Information Center
Sperduti, Marco; Pieron, Marie; Leboyer, Marion; Zalla, Tiziana
2014-01-01
Autism spectrum disorders (ASDs) are neurodevelopmental conditions that severely affect social interaction, communication and several behavioural and cognitive functions, such as planning and monitoring motor actions. A renewed interest in intrapersonal cognition has recently emerged suggesting a putative dissociation between impaired declarative…
A Developmental and Genetic Classification for Malformations of Cortical Development: Update 2012
ERIC Educational Resources Information Center
Barkovich, A. James; Guerrini, Renzo; Kuzniecky, Ruben I.; Jackson, Graeme D.; Dobyns, William B.
2012-01-01
Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics…
Sleep Patterns and Daytime Sleepiness in Adolescents and Young Adults with Williams Syndrome
ERIC Educational Resources Information Center
Goldman, S. E.; Malow, B. A.; Newman, K. D.; Roof, E.; Dykens, E. M.
2009-01-01
Background: Sleep disorders are common in individuals with neurodevelopmental disorders and may adversely affect daytime functioning. Children with Williams syndrome have been reported to have disturbed sleep; however, no studies have been performed to determine if these problems continue into adolescence and adulthood. Methods: This study…
Adaptive Behaviour in Angelman Syndrome: Its Profile and Relationship to Age
ERIC Educational Resources Information Center
Gasca, C. Brun; Obiols, J. E.; Bonillo, A.; Artigas, J.; Lorente, I.; Gabau, E.; Guitart, M.; Turk, J.
2010-01-01
Background: Angelman syndrome (AS) is a neurodevelopmental disorder usually caused by an anomaly in the maternally inherited chromosome 15. The main features are severe intellectual disability, speech impairment, ataxia, epilepsy, sleep disorder and a behavioural phenotype that reportedly includes happy disposition, attraction to/fascination with…
Unwanted Sexual Contact: Students with Autism and Other Disabilities at Greater Risk
ERIC Educational Resources Information Center
Brown, Kirsten R.; Peña, Edlyn Vallejo; Rankin, Susan
2017-01-01
Ten percent of college students identify as having a disability, and a subsample of this population, students with autism spectrum disorders (ASDs), are increasingly participating in higher education. Autism spectrum disorders represent a spectrum of neurodevelopmental differences that can contribute to difficulties in communication and social…
Treating Adaptive Living Skills of Persons with Autism Using Applied Behavior Analysis: A Review
ERIC Educational Resources Information Center
Matson, Johnny L.; Hattier, Megan A.; Belva, Brian
2012-01-01
Work, self-help, leisure, and hygiene skill deficits are often associated with Autistic Disorder, a neurodevelopmental disorder characterized by pervasive impairments in socialization, communication, and repetitive and restricted behaviors or interests. A number of interventions have been established to assist individuals with these impairments.…
Blood-Based Gene Expression Signatures of Infants and Toddlers with Autism
ERIC Educational Resources Information Center
Glatt, Stephen J.; Tsuang, Ming T.; Winn, Mary; Chandler, Sharon D.; Collins, Melanie; Lopez, Linda; Weinfeld, Melanie; Carter, Cindy; Schork, Nicholas; Pierce, Karen; Courchesne, Eric
2012-01-01
Objective: Autism spectrum disorders (ASDs) are highly heritable neurodevelopmental disorders that onset clinically during the first years of life. ASD risk biomarkers expressed early in life could significantly impact diagnosis and treatment, but no transcriptome-wide biomarker classifiers derived from fresh blood samples from children with…
Early Communication Development and Intervention for Children with Autism
ERIC Educational Resources Information Center
Landa, Rebecca
2007-01-01
Autism is a neurodevelopmental disorder defined by impairments in social and communication development, accompanied by stereotyped patterns of behavior and interest. The focus of this paper is on the early development of communication in autism, and early intervention for impairments in communication associated with this disorder. An overview of…
Regulation of cerebral cortical neurogenesis by the Pax6 transcription factor
Manuel, Martine N.; Mi, Da; Mason, John O.; Price, David J.
2015-01-01
Understanding brain development remains a major challenge at the heart of understanding what makes us human. The neocortex, in evolutionary terms the newest part of the cerebral cortex, is the seat of higher cognitive functions. Its normal development requires the production, positioning, and appropriate interconnection of very large numbers of both excitatory and inhibitory neurons. Pax6 is one of a relatively small group of transcription factors that exert high-level control of cortical development, and whose mutation or deletion from developing embryos causes major brain defects and a wide range of neurodevelopmental disorders. Pax6 is very highly conserved between primate and non-primate species, is expressed in a gradient throughout the developing cortex and is essential for normal corticogenesis. Our understanding of Pax6’s functions and the cellular processes that it regulates during mammalian cortical development has significantly advanced in the last decade, owing to the combined application of genetic and biochemical analyses. Here, we review the functional importance of Pax6 in regulating cortical progenitor proliferation, neurogenesis, and formation of cortical layers and highlight important differences between rodents and primates. We also review the pathological effects of PAX6 mutations in human neurodevelopmental disorders. We discuss some aspects of Pax6’s molecular actions including its own complex transcriptional regulation, the distinct molecular functions of its splice variants and some of Pax6’s known direct targets which mediate its actions during cortical development. PMID:25805971
Fine motor skills in children with prenatal alcohol exposure or fetal alcohol spectrum disorder.
Doney, Robyn; Lucas, Barbara R; Jones, Taryn; Howat, Peter; Sauer, Kay; Elliott, Elizabeth J
2014-01-01
Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD) and associated neurodevelopmental impairments. It is uncertain which types of fine motor skills are most likely to be affected after PAE or which assessment tools are most appropriate to use in FASD diagnostic assessments. This systematic review examined which types of fine motor skills are impaired in children with PAE or FASD; which fine motor assessments are appropriate for FASD diagnosis; and whether fine motor impairments are evident at both "low" and "high" PAE levels. A systematic review of relevant databases was undertaken using key terms. Relevant studies were extracted using a standardized form, and methodological quality was rated using a critical appraisal tool. Twenty-four studies met inclusion criteria. Complex fine motor skills, such as visual-motor integration, were more frequently impaired than basic fine motor skills, such as grip strength. Assessment tools that specifically assessed fine motor skills more consistently identified impairments than those which assessed fine motor skills as part of a generalized neurodevelopmental assessment. Fine motor impairments were associated with "moderate" to "high" PAE levels. Few studies reported fine motor skills of children with "low" PAE levels, so the effect of lower PAE levels on fine motor skills remains uncertain. Comprehensive assessment of a range of fine motor skills in children with PAE is important to ensure an accurate FASD diagnosis and develop appropriate therapeutic interventions for children with PAE-related fine motor impairments.
Conceição, Inês C; Rama, Maria M; Oliveira, Bárbara; Café, Cátia; Almeida, Joana; Mouga, Susana; Duque, Frederico; Oliveira, Guiomar; Vicente, Astrid M
2017-04-01
The PARK2 gene encodes Parkin, a component of a multiprotein E3 ubiquitin ligase complex that targets substrate proteins for proteasomal degradation. PARK2 mutations are frequently associated with Parkinson's disease, but structural alterations have also been described in patients with neurodevelopmental disorders (NDD), suggesting a pathological effect ubiquitous to neurodevelopmental and neurodegenerative brain processes. The present study aimed to define the critical regions for NDD within PARK2. To clarify PARK2 involvement in NDDs, we examined the frequency and location of copy number variants (CNVs) identified in patients from our sample and reported in the literature and relevant databases, and compared with control populations. Overall, the frequency of PARK2 CNVs was higher in controls than in NDD cases. However, closer inspection of the CNV location in PARK2 showed that the frequency of CNVs targeting the Parkin C-terminal, corresponding to the ring-between-ring (RBR) domain responsible for Parkin activity, is significantly higher in NDD cases than in controls. In contrast, CNVs targeting the N-terminal of Parkin, including domains that regulate ubiquitination activity, are very common both in cases and in controls. Although PARK2 may be a pathological factor for NDDs, likely not all variants are pathogenic, and a conclusive assessment of PARK2 variant pathogenicity requires an accurate analysis of their location within the coding region and encoded functional domains.
HTR1B and HTR2C in autism spectrum disorders in Brazilian families.
Orabona, G M; Griesi-Oliveira, K; Vadasz, E; Bulcão, V L S; Takahashi, V N V O; Moreira, E S; Furia-Silva, M; Ros-Melo, A M S; Dourado, F; Matioli, S R; Matioli, R; Otto, P; Passos-Bueno, M R
2009-01-23
Autism spectrum disorders (ASD) is a group of behaviorally defined neurodevelopmental disabilities characterized by multiple genetic etiologies and a complex presentation. Several studies suggest the involvement of the serotonin system in the development of ASD, but only few have investigated serotonin receptors. We have performed a case-control and a family-based study with 9 polymorphisms mapped to two serotonin receptor genes (HTR1B and HTR2C) in 252 Brazilian male ASD patients of European ancestry. These analyses showed evidence of undertransmission of the HTR1B haplotypes containing alleles -161G and -261A at HTR1B gene to ASD (P=0.003), but no involvement of HTR2C to the predisposition to this disease. Considering the relatively low level of statistical significance and the power of our sample, further studies are required to confirm the association of these serotonin-related genes and ASD.
Boland, Michael J; Nazor, Kristopher L; Tran, Ha T; Szücs, Attila; Lynch, Candace L; Paredes, Ryder; Tassone, Flora; Sanna, Pietro Paolo; Hagerman, Randi J; Loring, Jeanne F
2017-03-01
New research suggests that common pathways are altered in many neurodevelopmental disorders including autism spectrum disorder; however, little is known about early molecular events that contribute to the pathology of these diseases. The study of monogenic, neurodevelopmental disorders with a high incidence of autistic behaviours, such as fragile X syndrome, has the potential to identify genes and pathways that are dysregulated in autism spectrum disorder as well as fragile X syndrome. In vitro generation of human disease-relevant cell types provides the ability to investigate aspects of disease that are impossible to study in patients or animal models. Differentiation of human pluripotent stem cells recapitulates development of the neocortex, an area affected in both fragile X syndrome and autism spectrum disorder. We have generated induced human pluripotent stem cells from several individuals clinically diagnosed with fragile X syndrome and autism spectrum disorder. When differentiated to dorsal forebrain cell fates, our fragile X syndrome human pluripotent stem cell lines exhibited reproducible aberrant neurogenic phenotypes. Using global gene expression and DNA methylation profiling, we have analysed the early stages of neurogenesis in fragile X syndrome human pluripotent stem cells. We discovered aberrant DNA methylation patterns at specific genomic regions in fragile X syndrome cells, and identified dysregulated gene- and network-level correlates of fragile X syndrome that are associated with developmental signalling, cell migration, and neuronal maturation. Integration of our gene expression and epigenetic analysis identified altered epigenetic-mediated transcriptional regulation of a distinct set of genes in fragile X syndrome. These fragile X syndrome-aberrant networks are significantly enriched for genes associated with autism spectrum disorder, giving support to the idea that underlying similarities exist among these neurodevelopmental diseases. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Brahmbhatt, Khyati; Hilty, Donald M; Hah, Mina; Han, Jaesu; Angkustsiri, Kathy; Schweitzer, Julie B
2016-08-01
Attention deficit hyperactivity disorder (ADHD) is a chronic neurodevelopmental disorder with a worldwide prevalence of about 5% in school-age children. This review is intended to assist primary care providers (PCPs) in diagnosing and treating ADHD in adolescents. PubMed, PsychInfo, and Science Citation Index databases were searched from March 1990 to 2015 with the keywords: ADHD, primary care/pediatrics, and children/adolescents. Abstracts addressing diagnosis and/or treatment with 105 citations were identified including supplementary treatment guidelines/books. Adolescent ADHD presents with significant disturbances in attention, academic performance, and family relationships with unique issues associated with this developmental period. Diagnostic challenges include the variable symptom presentation during adolescence, complex differential diagnosis, and limited training and time for PCPs to conduct thorough evaluations. The evidence base for treatments in adolescence in comparison to those in children or adults with ADHD is relatively weak. Providers should be cognizant of prevention, early identification, and treatment of conditions associated with ADHD that emerge during adolescence such as substance use disorders. Adolescent ADHD management for the PCP is complex, requires further research, and perhaps new primary care psychiatric models, to assist in determining the optimal care for patients at this critical period. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Therapeutic Role of Hematopoietic Stem Cells in Autism Spectrum Disorder-Related Inflammation
Siniscalco, Dario; Bradstreet, James Jeffrey; Antonucci, Nicola
2013-01-01
Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neuro-developmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive – stereotypic verbal and non-verbal behaviors. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of HSCs for ASD-related immunological disorders. PMID:23772227
Gallo, Eduardo F; Posner, Jonathan
2016-01-01
Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by developmentally inappropriate levels of inattention and hyperactivity or impulsivity. The heterogeneity of its clinical manifestations and the differential responses to treatment and varied prognoses have long suggested myriad underlying causes. Over the past decade, clinical and basic research efforts have uncovered many behavioural and neurobiological alterations associated with ADHD, from genes to higher order neural networks. Here, we review the neurobiology of ADHD by focusing on neural circuits implicated in the disorder and discuss how abnormalities in circuitry relate to symptom presentation and treatment. We summarise the literature on genetic variants that are potentially related to the development of ADHD, and how these, in turn, might affect circuit function and relevant behaviours. Whether these underlying neurobiological factors are causally related to symptom presentation remains unresolved. Therefore, we assess efforts aimed at disentangling issues of causality, and showcase the shifting research landscape towards endophenotype refinement in clinical and preclinical settings. Furthermore, we review approaches being developed to understand the neurobiological underpinnings of this complex disorder including the use of animal models, neuromodulation, and pharmaco-imaging studies. PMID:27183902
2016-09-01
with previous in vitro studies suggesting that subsets of 5- HT autoreceptors expressed either on dorsal raphe 5- HT neuron cell bodies or axons...saline (Figure 1B). This effect was blocked by the co-injection of pCPA. The overall 5- HT + axon density over the entire rostro-caudal axis was also...brain. There, 5- HT modulates critical neurodevelopmental processes. We investigated the effects of maternal inflammation triggered in mid- pregnancy in
de Verdier, Kim; Ulla, Ek; Löfgren, Stefan; Fernell, Elisabeth
2018-05-01
The aim was to describe the population of children with congenital or early infancy blindness in Sweden, with regard to causes of blindness and prevalence of neurodevelopmental impairments. Medical, psychological and pedagogical records of Swedish children with congenital or early infancy blindness (total blindness or light perception at the most) born in 1988-2008 were analysed regarding year of birth, gender, cause of blindness, gestational age, associated neurological disorders/syndromes, associated neurodevelopmental impairments, cognitive level and type of school placement. A total of 150 individuals, 80 girls and 70 boys, were identified, corresponding to a prevalence of 7/100 000. Five causes of blindness dominated, constituting 76% of all represented aetiologies: retinopathy of prematurity (ROP), optic nerve hypoplasia (ONH), Leber congenital amaurosis (LCA), optic nerve atrophy (ONA) and microphthalmia/anophthalmia. Nearly three of four children in the study population had at least one additional disability besides blindness; the most common being intellectual disability (ID) and autism spectrum disorder (ASD). More than half of the population had more than one additional disability. Autism spectrum disorder (ASD) was most common in children with ONH, ROP, LCA and microphthalmia/anophthalmia. In children born within the last decades, isolated blindness is uncommon and the rate of multidisabilities is high. Autism spectrum disorder (ASD) seems to be more strongly associated with specific aetiological subgroups. Further development of the support to families and schools should be based on knowledge about the considerable heterogeneity of the population of children with blindness, and the common occurrence of coexisting neurodevelopmental disorders, especially ID and ASD. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Serum Antibody Biomarkers for ASD
2015-10-01
autism blood biomarker. In addition, we have identified two new proteins that are linked to ASD. 15. SUBJECT TERMS ASD, autism spectrum disorders . TD...4 8. Appendices…………………………………………………………. 5 3 Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder ...immune responses in young children with autism spectrum disorders : their relationship to gastrointestinal symptoms and dietary intervention
Palumbo, Orazio; Palumbo, Pietro; Leone, Maria P; Stallone, Raffaella; Palladino, Teresa; Vendemiale, Marcella; Palladino, Stefano; Papadia, Francesco; Carella, Massimo; Fischetto, Rira
2016-10-01
We report on a patient with psychomotor deficits, language delay, dyspraxia, skeletal anomalies, and facial dysmorphisms (hirsutism, right palpebral ptosis, a bulbous nasal tip with enlarged and anteverted nares, and a mild prominent antihelix stem). Using high-resolution SNP array analysis, we identified a 0.49-Mb microduplication in chromosome 6q26 inherited from the mother involving the PARK2 gene: arr[hg19] 6q26(162,672,821-163,163,143)×3 mat. To the best of our knowledge, this is the third patient to date described in whom a 6q26 microduplication encompassing only the PARK2 gene has been reported in medical literature. The PARK2 gene is a neurodevelopmental gene that was initially discovered as one of the causes of autosomal recessive juvenile Parkinson disease and subsequently reported to be linked to autism spectrum disorders and attention-deficit hyperactivity disorders. We provide an overview of the literature on PARK2 microduplications and further delineate the associated phenotype. Taken together, our findings confirm the involvement of this gene in neurodevelopmental disorders and are useful to strengthen the hypothesis that, although with variable expressivity and incomplete penetrance, the PARK2 microduplication is associated with a new emerging neurodevelopmental delay syndrome. However, clinical and molecular evaluations of more patients with the microduplication are needed for full delineation of this syndrome.
Palumbo, Orazio; Palumbo, Pietro; Leone, Maria P.; Stallone, Raffaella; Palladino, Teresa; Vendemiale, Marcella; Palladino, Stefano; Papadia, Francesco; Carella, Massimo; Fischetto, Rira
2016-01-01
We report on a patient with psychomotor deficits, language delay, dyspraxia, skeletal anomalies, and facial dysmorphisms (hirsutism, right palpebral ptosis, a bulbous nasal tip with enlarged and anteverted nares, and a mild prominent antihelix stem). Using high-resolution SNP array analysis, we identified a 0.49-Mb microduplication in chromosome 6q26 inherited from the mother involving the PARK2 gene: arr[hg19] 6q26(162,672,821-163,163,143)×3 mat. To the best of our knowledge, this is the third patient to date described in whom a 6q26 microduplication encompassing only the PARK2 gene has been reported in medical literature. The PARK2 gene is a neurodevelopmental gene that was initially discovered as one of the causes of autosomal recessive juvenile Parkinson disease and subsequently reported to be linked to autism spectrum disorders and attention-deficit hyperactivity disorders. We provide an overview of the literature on PARK2 microduplications and further delineate the associated phenotype. Taken together, our findings confirm the involvement of this gene in neurodevelopmental disorders and are useful to strengthen the hypothesis that, although with variable expressivity and incomplete penetrance, the PARK2 microduplication is associated with a new emerging neurodevelopmental delay syndrome. However, clinical and molecular evaluations of more patients with the microduplication are needed for full delineation of this syndrome. PMID:27867343
Sturm, Alexandra; Rozenman, Michelle; Chang, Susanna; McGough, James J; McCracken, James T; Piacentini, John C
2018-06-01
Deficits in social communication are a core feature of autism spectrum disorder (ASD), yet significant social problems have been observed in youth with many neurodevelopmental disorders. In this preliminary investigation, we aimed to explore whether domains of social reciprocity (i.e., social communication, social cognition, social awareness, social motivation, and restricted and repetitive behaviors) represent transdiagnostic traits. These domains were compared across youth ages 7-17 with obsessive-compulsive disorder (OCD; N = 32), tic disorders (TD; N = 20), severe mood dysregulation (N = 33) and autism spectrum disorder (N = 35). While the ASD group was rated by parents as exhibiting the greatest social reciprocity deficits across domains, a high proportion of youth with severe mood dysregulation also exhibited pronounced deficits in social communication, cognition, and awareness. The ASD and severe mood dysregulation groups demonstrated comparable scores on the social awareness domain. In contrast, social motivation and restricted and repetitive behaviors did not appear to be transdiagnostic domains in severe mood dysregulation, OCD, or TD groups. The present work provides preliminary support that social awareness, and to a lesser extent social communication and cognition, may represent features of social reciprocity that are transdiagnostic across ASD and severe mood dysregulation. Copyright © 2018 Elsevier B.V. All rights reserved.
Kido, Jun; Matsumoto, Shirou; Momosaki, Ken; Sakamoto, Rieko; Mitsubuchi, Hiroshi; Endo, Fumio; Nakamura, Kimitoshi
2017-09-01
UCDs are among the most common inherited metabolic diseases in Japan. We investigated the clinical manifestations, treatment, and prognoses of 177 patients with UCDs who were evaluated and treated from January 1999 to March 2009 in Japan, using a questionnaire survey. Among these 177 patients, 42 (seven with carbamoyl phosphate synthetase 1 deficiency, 27 with ornithine transcarbamylase deficiency, seven with argininosuccinate synthetase deficiency, and one with arginase 1 deficiency) underwent living-donor LT. Although this study was retrospective and included limited neurodevelopmental information before and after LT, we evaluated whether LT could improve neurodevelopmental outcomes in patients with UCDs. The neurodevelopmental outcomes of patients with a MAC of <300 μmol/L at the time of onset were not significantly different between the LT and non-LT groups (P=.222). LT may have prevented further neurodevelopmental complications in children with MAC ≥300 μmol/L (P=.008) compared with non-transplant management. Therefore, Liver transplant should be considered in patients with UCD with a MAC of ≥300 μmol/L at the time of disease onset. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Epigenetics in Developmental Disorder: ADHD and Endophenotypes
Archer, Trevor; Oscar-Berman, Marlene; Blum, Kenneth
2011-01-01
Heterogeneity in attention-deficit/hyperactivity disorder (ADHD), with complex interactive operations of genetic and environmental factors, is expressed in a variety of disorder manifestations: severity, co-morbidities of symptoms, and the effects of genes on phenotypes. Neurodevelopmental influences of genomic imprinting have set the stage for the structural-physiological variations that modulate the cognitive, affective, and pathophysiological domains of ADHD. The relative contributions of genetic and environmental factors provide rapidly proliferating insights into the developmental trajectory of the condition, both structurally and functionally. Parent-of-origin effects seem to support the notion that genetic risks for disease process debut often interact with the social environment, i.e., the parental environment in infants and young children. The notion of endophenotypes, markers of an underlying liability to the disorder, may facilitate detection of genetic risks relative to a complex clinical disorder. Simple genetic association has proven insufficient to explain the spectrum of ADHD. At a primary level of analysis, the consideration of epigenetic regulation of brain signalling mechanisms, dopamine, serotonin, and noradrenaline is examined. Neurotrophic factors that participate in the neurogenesis, survival, and functional maintenance of brain systems, are involved in neuroplasticity alterations underlying brain disorders, and are implicated in the genetic predisposition to ADHD, but not obviously, nor in a simple or straightforward fashion. In the context of intervention, genetic linkage studies of ADHD pharmacological intervention have demonstrated that associations have fitted the “drug response phenotype,” rather than the disorder diagnosis. Despite conflicting evidence for the existence, or not, of genetic associations between disorder diagnosis and genes regulating the structure and function of neurotransmitters and brain-derived neurotrophic factor (BDNF), associations between symptoms-profiles endophenotypes and single nucleotide polymorphisms appear reassuring. PMID:22224195
ERIC Educational Resources Information Center
Thompson, Kerry
2017-01-01
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is expressed quite differently from person to person due to the spectrum of symptoms an individual may experience. Developmentally, children who have ASD manage issues with communication and restricted or repetitive behaviors that impact their activities of daily living and/or…
ERIC Educational Resources Information Center
Lo, Yu-Chun; Chen, Yu-Jen; Hsu, Yung-Chin; Tseng, Wen-Yih Isaac; Gau, Susan Shur-Fen
2017-01-01
Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with social communication deficits as one of the core symptoms. Recently, a five-level model for the social communication has been proposed in which white matter tracts corresponding to each level of the model are identified. Given that the model for social communication…
Allen, J. L.; Oberdorster, G.; Morris-Schafer, K.; Wong, C.; Klocke, C.; Sobolewski, M.; Conrad, K.; Mayer-Proschel, M.; Cory-Slechta, D. A.
2016-01-01
Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia. PMID:26721665
Comstra, Heather S; McArthy, Jacob; Rudin-Rush, Samantha; Hartwig, Cortnie; Gokhale, Avanti; Zlatic, Stephanie A; Blackburn, Jessica B; Werner, Erica; Petris, Michael; D’Souza, Priya; Panuwet, Parinya; Barr, Dana Boyd; Lupashin, Vladimir; Vrailas-Mortimer, Alysia; Faundez, Victor
2017-01-01
Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival. DOI: http://dx.doi.org/10.7554/eLife.24722.001 PMID:28355134
Abnormal Sensory Experiences, Synaesthesia, and Neurodevelopmental Disorders
ERIC Educational Resources Information Center
Fluegge, Keith
2017-01-01
Preliminary evidence suggests that sensory processing may be affected in autism spectrum disorders (ASD). The purpose of this letter is to highlight a few recent studies on the topic and tie the findings to a recently identified epidemiological risk factor for ASD, principally environmental exposure to the air pollutant, nitrous oxide (N[subscript…
Atypical Pupillary Light Reflex and Heart Rate Variability in Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Daluwatte, Chathuri; Miles, Judith H.; Christ, Shawn E.; Beversdorf, David Q.; Takahashi, T. Nicole; Yao, Gang
2013-01-01
We investigated pupillary light reflex (PLR) in 152 children with ASD, 116 typically developing (TD) children, and 36 children with non-ASD neurodevelopmental disorders (NDDs). Heart rate variability (HRV) was measured simultaneously to study potential impairments in the autonomic nervous system (ANS) associated with ASD. The results showed that…
Visuospatial and Verbal Short-Term Memory Correlates of Vocabulary Ability in Preschool Children
ERIC Educational Resources Information Center
Stokes, Stephanie F.; Klee, Thomas; Kornisch, Myriam; Furlong, Lisa
2017-01-01
Background: Recent studies indicate that school-age children's patterns of performance on measures of verbal and visuospatial short-term memory (STM) and working memory (WM) differ across types of neurodevelopmental disorders. Because these disorders are often characterized by early language delay, administering STM and WM tests to toddlers could…
Rett'S syndrome : a case report.
Gupta, V
2001-01-01
Rett's syndrome is a rare condition affecting only the girl child. It presents as a pervasive developmental disorder with a remarkable behavioural phenotype. The cause for this remains unknown but genetic factors and brain dysfunction have been implicated. This case report emphasises the importance of being aware of rare yet significant disorders of interest to neuro-developmental psychiatrists.
First-Degree Relatives of Young Children with Autism Spectrum Disorders: Some Gender Aspects
ERIC Educational Resources Information Center
Eriksson, Mats Anders; Westerlund, Joakim; Anderlid, Britt Marie; Gillberg, Christopher; Fernell, Elisabeth
2012-01-01
Prenatal risk factors, with special focus on gender distribution of neurodevelopmental and psychiatric conditions were analysed in first-degree relatives in a population-based group of young children with autism spectrum disorders (ASD). Multiple information sources were combined. This group was contrasted with the general population regarding…
Autism and 15q11-q13 Disorders: Behavioral, Genetic, and Pathophysiological Issues
ERIC Educational Resources Information Center
Dykens, Elisabeth M.; Sutcliffe, James S.; Levitt, Pat
2004-01-01
New insights into biological factors that underlie autism may be gained by comparing autism to other neurodevelopmental disorders that have autistic features and relatively well-delineated genetic etiologies or neurobiological findings. This review moves beyond global diagnoses of autism and instead uses an endophenotypic approach to compare…
Baroreflex Sensitivity Is Reduced in Adolescents with Probable Developmental Coordination Disorder
ERIC Educational Resources Information Center
Coverdale, Nicole S.; O'Leary, Deborah D.; Faught, Brent E.; Chirico, Daniele; Hay, John; Cairney, John
2012-01-01
Developmental coordination disorder (DCD) is a neurodevelopmental condition characterized by poor motor skills leading to a significant impairment in activities of daily living. Compared to typically developing children, those with DCD are less fit and physically active, and have increased body fat. This is an important consequence as both…
Risk Factors Associated with Language in Autism Spectrum Disorder: Clues to Underlying Mechanisms
ERIC Educational Resources Information Center
Tager-Flusberg, Helen
2016-01-01
Purpose: Identifying risk factors associated with neurodevelopmental disorders is an important line of research, as it will lead to earlier identification of children who could benefit from interventions that support optimal developmental outcomes. The primary goal of this review was to summarize research on risk factors associated with autism…
Tangled Webs: Tracing the Connections between Genes and Cognition
ERIC Educational Resources Information Center
Fisher, Simon E.
2006-01-01
The rise of molecular genetics is having a pervasive influence in a wide variety of fields, including research into neurodevelopmental disorders like dyslexia, speech and language impairments, and autism. There are many studies underway which are attempting to determine the roles of genetic factors in the aetiology of these disorders. Beyond the…
ERIC Educational Resources Information Center
Redmond, Sean M.
2016-01-01
Purpose: The empirical record regarding the expected co-occurrence of attention-deficit/hyperactivity disorder (ADHD) and specific language impairment is confusing and contradictory. A research plan is presented that has the potential to untangle links between these 2 common neurodevelopmental disorders. Method: Data from completed and ongoing…
ERIC Educational Resources Information Center
Dimitropoulos, Anastasia; Ho, Alan; Feldman, Benjamin
2013-01-01
Prader-Willi syndrome (PWS), a neurodevelopmental disorder primarily characterized by hyperphagia and food preoccupations, is caused by the absence of expression of the paternally active genes in the proximal arm of chromosome 15. Although maladaptive behavior and the cognitive profile in PWS have been well characterized, social functioning has…
ERIC Educational Resources Information Center
Rivilis, Irina; Hay, John; Cairney, John; Klentrou, Panagiota; Liu, Jian; Faught, Brent E.
2011-01-01
Developmental coordination disorder (DCD) is a neurodevelopmental condition characterized by poor motor proficiency that interferes with a child's activities of daily living. Activities that most young children engage in such as running, walking, and jumping are important for the proper development of fitness and overall health. However, children…
Opinion: Sex, Gender and the Diagnosis of Autism--A Biosocial View of the Male Preponderance
ERIC Educational Resources Information Center
Goldman, Sylvie
2013-01-01
Autism Spectrum Disorders (ASD) are behaviorally defined neurodevelopmental disorders. The best known yet less understood characteristic of autism is its unexplained male preponderance. Using a biosocial perspective, the goal of this article is to draw attention to the role of gender-based socialization practices and behavioral expectations during…
Comorbidity of Physical and Motor Problems in Children with Autism
ERIC Educational Resources Information Center
Matson, Michael L.; Matson, Johnny L.; Beighley, Jennifer S.
2011-01-01
Autism and the related pervasive developmental disorders are a heavily researched group of neurodevelopmental conditions. In addition to core symptoms, there are a number of other physical and motor conditions that co-occur at high rates. This paper provides a review of factors and behaviors that correlate highly with disorders on the autism…
ERIC Educational Resources Information Center
Rubenstein, John L. R.
2011-01-01
The cerebral cortex has a central role in cognitive and emotional processing. As such, understanding the mechanisms that govern its development and function will be central to understanding the bases of severe neuropsychiatric disorders, particularly those that first appear in childhood. In this review, I highlight recent progress in elucidating…
Zieminska, Elzbieta; Lenart, Jacek; Lazarewicz, Jerzy W
2016-08-31
A presynaptic protein SNAP-25 belonging to SNARE complex which is instrumental in intracellular vesicular trafficking and exocytosis, has been implicated in hyperactivity and cognitive abilities in some neuropsychiatric disorders. The unclear etiology of the behavior disrupting neurodevelopmental disabilities in addition to genetic causes most likely involves environmental factors. The aim of this in vitro study was to test if various suspected developmental neurotoxins can alter SNAP-25 mRNA and protein expression in neurons. Real-time PCR and Western blotting analyses were used to assess SNAP-25 mRNA and protein levels in primary cultures of rat cerebellar granule cells (CGCs). The test substances: tetrabromobisphenol-A (TBBPA), thimerosal (TH), silver nanoparticles (NAg), valproic acid (VPA) and thalidomide (THAL), were administered to CGC cultures at subtoxic concentrations for 24h. The results demonstrated that SNAP-25 mRNA levels were increased by 49 and 66% by TBBPA and THAL, respectively, whereas VPA and NAg reduced these levels to 48 and 64% of the control, respectively. The SNAP-25 protein content in CGCs was increased by 79% by TBBPA, 25% by THAL and 21% by NAg; VPA and TH reduced these levels to 73 and 69% of the control, respectively. The variety of changes in SNAP-25 expression on mRNA and protein level suggests the diversity of the mechanism of action of the test substances. This initial study provided no data on concentration-effect relations and on functional changes in CGCs. However it is the first to demonstrate the effect of different compounds that are suspected of causing neurodevelopmental disabilities on SNAP-25 expression. These results suggest that this protein may be a common target for not only inherited but also environmental modifications linked to behavioral deficits in neurodevelopmental disabilities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder.
Bjørklund, Geir; Skalny, Anatoly V; Rahman, Md Mostafizur; Dadar, Maryam; Yassa, Heba A; Aaseth, Jan; Chirumbolo, Salvatore; Skalnaya, Margarita G; Tinkov, Alexey A
2018-06-11
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies. Copyright © 2018 Elsevier Inc. All rights reserved.
Marcello, Elena; Borroni, Barbara; Pelucchi, Silvia; Gardoni, Fabrizio; Di Luca, Monica
2017-11-01
In the central nervous system a disintegrin and metalloproteinase 10 (ADAM10) controls several functions such as neurodevelopment, synaptic plasticity and dendritic spine morphology thanks to its activity towards a high number of substrates, including the synaptic cell adhesion molecules as the Amyloid Precursor Protein, N-cadherin, Notch and Ephrins. In particular, ADAM10 plays a key role in the modulation of the molecular mechanisms responsible for dendritic spine formation, maturation and stabilization and in the regulation of the molecular organization of the glutamatergic synapse. Consequently, an alteration of ADAM10 activity is strictly correlated to the onset of different types of synaptopathies, ranging from neurodevelopmental disorders, i.e. autism spectrum disorders, to neurodegenerative diseases, i.e. Alzheimer's Disease. Areas covered: We describe the most recent discoveries in understanding of the role of ADAM10 activity at the glutamatergic excitatory synapse and its involvement in the onset of neurodevelopmental and neurodegenerative disorders. Expert opinion: A progress in the understanding of the molecular mechanisms driving ADAM10 activity at synapses and its alterations in brain disorders is the first step before designing a specific drug able to modulate ADAM10 activity.
Uzunova, Genoveva; Hollander, Eric; Shepherd, Jason
2014-01-01
Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are relatively common childhood neurodevelopmental disorders with increasing incidence in recent years. They are currently accepted as disorders of the synapse with alterations in different forms of synaptic communication and neuronal network connectivity. The major excitatory neurotransmitter system in brain, the glutamatergic system, is implicated in learning and memory, synaptic plasticity, neuronal development. While much attention is attributed to the role of metabotropic glutamate receptors in ASD and FXS, studies indicate that the ionotropic glutamate receptors (iGluRs) and their regulatory proteins are also altered in several brain regions. Role of iGluRs in the neurobiology of ASD and FXS is supported by a weight of evidence that ranges from human genetics to in vitro cultured neurons. In this review we will discuss clinical, molecular, cellular and functional changes in NMDA, AMPA and kainate receptors and the synaptic proteins that regulate them in the context of ASD and FXS. We will also discuss the significance for the development of translational biomarkers and treatments for the core symptoms of ASD and FXS. PMID:24533017
EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy.
Byrne, Susan; Jansen, Lara; U-King-Im, Jean-Marie; Siddiqui, Ata; Lidov, Hart G W; Bodi, Istvan; Smith, Luke; Mein, Rachael; Cullup, Thomas; Dionisi-Vici, Carlo; Al-Gazali, Lihadh; Al-Owain, Mohammed; Bruwer, Zandre; Al Thihli, Khalid; El-Garhy, Rana; Flanigan, Kevin M; Manickam, Kandamurugu; Zmuda, Erik; Banks, Wesley; Gershoni-Baruch, Ruth; Mandel, Hanna; Dagan, Efrat; Raas-Rothschild, Annick; Barash, Hila; Filloux, Francis; Creel, Donnell; Harris, Michael; Hamosh, Ada; Kölker, Stefan; Ebrahimi-Fakhari, Darius; Hoffmann, Georg F; Manchester, David; Boyer, Philip J; Manzur, Adnan Y; Lourenco, Charles Marques; Pilz, Daniela T; Kamath, Arveen; Prabhakar, Prab; Rao, Vamshi K; Rogers, R Curtis; Ryan, Monique M; Brown, Natasha J; McLean, Catriona A; Said, Edith; Schara, Ulrike; Stein, Anja; Sewry, Caroline; Travan, Laura; Wijburg, Frits A; Zenker, Martin; Mohammed, Shehla; Fanto, Manolis; Gautel, Mathias; Jungbluth, Heinz
2016-03-01
Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs*5, p.Arg417*, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0-49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy
Byrne, Susan; Jansen, Lara; U-King-Im, Jean-Marie; Siddiqui, Ata; Lidov, Hart G. W.; Bodi, Istvan; Smith, Luke; Mein, Rachael; Cullup, Thomas; Dionisi-Vici, Carlo; Al-Gazali, Lihadh; Al-Owain, Mohammed; Bruwer, Zandre; Al Thihli, Khalid; El-Garhy, Rana; Flanigan, Kevin M.; Manickam, Kandamurugu; Zmuda, Erik; Banks, Wesley; Gershoni-Baruch, Ruth; Mandel, Hanna; Dagan, Efrat; Raas-Rothschild, Annick; Barash, Hila; Filloux, Francis; Creel, Donnell; Harris, Michael; Hamosh, Ada; Kölker, Stefan; Ebrahimi-Fakhari, Darius; Hoffmann, Georg F.; Manchester, David; Boyer, Philip J.; Manzur, Adnan Y.; Lourenco, Charles Marques; Pilz, Daniela T.; Kamath, Arveen; Prabhakar, Prab; Rao, Vamshi K.; Rogers, R. Curtis; Ryan, Monique M.; Brown, Natasha J.; McLean, Catriona A.; Said, Edith; Schara, Ulrike; Stein, Anja; Sewry, Caroline; Travan, Laura; Wijburg, Frits A.; Zenker, Martin; Mohammed, Shehla; Fanto, Manolis; Gautel, Mathias
2016-01-01
Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs*5, p.Arg417*, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0–49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease. PMID:26917586
Translational potential of astrocytes in brain disorders
Verkhratsky, Alexei; Steardo, Luca; Montana, Vedrana
2015-01-01
Fundamentally, all brain disorders can be broadly defined as the homeostatic failure of this organ. As the brain is composed of many different cells types, including but not limited to neurons and glia, it is only logical that all the cell types/constituents could play a role in health and disease. Yet, for a long time the sole conceptualization of brain pathology was focused on the well-being of neurons. Here, we challenge this neuron-centric view and present neuroglia as a key element in neuropathology, a process that has a toll on astrocytes, which undergo complex morpho-functional changes that can in turn affect the course of the disorder. Such changes can be grossly identified as reactivity, atrophy with loss of function and pathological remodeling. We outline the pathogenic potential of astrocytes in variety of disorders, ranging from neurotrauma, infection, toxic damage, stroke, epilepsy, neurodevelopmental, neurodegenerative and psychiatric disorders, Alexander disease to neoplastic changes seen in gliomas. We hope that in near future we would witness glial-based translational medicine with generation of deliverables for the containment and cure of disorders. We point out that such as a task will require a holistic and multi-disciplinary approach that will take in consideration the concerted operation of all the cell types in the brain. PMID:26386136
Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder.
Rommelse, Nanda N J; Franke, Barbara; Geurts, Hilde M; Hartman, Catharina A; Buitelaar, Jan K
2010-03-01
Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are both highly heritable neurodevelopmental disorders. Evidence indicates both disorders co-occur with a high frequency, in 20-50% of children with ADHD meeting criteria for ASD and in 30-80% of ASD children meeting criteria for ADHD. This review will provide an overview on all available studies [family based, twin, candidate gene, linkage, and genome wide association (GWA) studies] shedding light on the role of shared genetic underpinnings of ADHD and ASD. It is concluded that family and twin studies do provide support for the hypothesis that ADHD and ASD originate from partly similar familial/genetic factors. Only a few candidate gene studies, linkage studies and GWA studies have specifically addressed this co-occurrence, pinpointing to some promising pleiotropic genes, loci and single nucleotide polymorphisms (SNPs), but the research field is in urgent need for better designed and powered studies to tackle this complex issue. We propose that future studies examining shared familial etiological factors for ADHD and ASD use a family-based design in which the same phenotypic (ADHD and ASD), candidate endophenotypic, and environmental measurements are obtained from all family members. Multivariate multi-level models are probably best suited for the statistical analysis.
Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse model of autism.
Angelakos, Christopher C; Watson, Adam J; O'Brien, W Timothy; Krainock, Kyle S; Nickl-Jockschat, Thomas; Abel, Ted
2017-04-01
Sleep disturbances and hyperactivity are prevalent in several neurodevelopmental disorders, including autism spectrum disorders (ASDs) and attention deficit-hyperactivity disorder (ADHD). Evidence from genome-wide association studies indicates that chromosomal copy number variations (CNVs) are associated with increased prevalence of these neurodevelopmental disorders. In particular, CNVs in chromosomal region 16p11.2 profoundly increase the risk for ASD and ADHD, disorders that are more common in males than females. We hypothesized that mice hemizygous for the 16p11.2 deletion (16p11.2 del/+) would exhibit sex-specific sleep and activity alterations. To test this hypothesis, we recorded activity patterns using infrared beam breaks in the home-cage of adult male and female 16p11.2 del/+ and wildtype (WT) littermates. In comparison to controls, we found that both male and female 16p11.2 del/+ mice exhibited robust home-cage hyperactivity. In additional experiments, sleep was assessed by polysomnography over a 24-hr period. 16p11.2 del/+ male, but not female mice, exhibited significantly more time awake and significantly less time in non-rapid-eye-movement (NREM) sleep during the 24-hr period than wildtype littermates. Analysis of bouts of sleep and wakefulness revealed that 16p11.2 del/+ males, but not females, spent a significantly greater proportion of wake time in long bouts of consolidated wakefulness (greater than 42 min in duration) compared to controls. These changes in hyperactivity, wake time, and wake time distribution in the males resemble sleep disturbances observed in human ASD and ADHD patients, suggesting that the 16p11.2 del/+ mouse model may be a useful genetic model for studying sleep and activity problems in human neurodevelopmental disorders. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 572-584. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders.
Tabouy, Laure; Getselter, Dimitry; Ziv, Oren; Karpuj, Marcela; Tabouy, Timothée; Lukic, Iva; Maayouf, Rasha; Werbner, Nir; Ben-Amram, Hila; Nuriel-Ohayon, Meital; Koren, Omry; Elliott, Evan
2018-05-19
Recent studies have determined that the microbiome has direct effects on behavior, and may be dysregulated in neurodevelopmental conditions. Considering that neurodevelopmental conditions, such as autism, have a strong genetic etiology, it is necessary to understand if genes associated with neurodevelopmental disorders, such as Shank3, can influence the gut microbiome, and if probiotics can be a therapeutic tool. In this study, we have identified dysregulation of several genera and species of bacteria in the gut and colon of both male and female Shank3 KO mice. L. reuteri, a species with decreased relative abundance in the Shank3 KO mice, positively correlated with the expression of gamma-Aminobutyric acid (GABA) receptor subunits in the brain. Treatment of Shank3 KO mice with L. reuteri induced an attenuation of unsocial behavior specifically in male Shank3 mice, and a decrease in repetitive behaviors in both male and female Shank3 KO mice. In addition, L. reuteri treatment affected GABA receptor gene expression and protein levels in multiple brain regions. This study identifies bacterial species that are sensitive to an autism-related mutation, and further suggests a therapeutic potential for probiotic treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Cross Talk: The Microbiota and Neurodevelopmental Disorders
Kelly, John R.; Minuto, Chiara; Cryan, John F.; Clarke, Gerard; Dinan, Timothy G.
2017-01-01
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance. PMID:28966571
Genomic insights into the etiology and classification of the cerebral palsies
Moreno-De-Luca, Andres; Ledbetter, David H.; Martin, Christa L.
2012-01-01
Cerebral palsy (CP), the most common physical disability of childhood, is a clinical diagnosis that encompasses a highly heterogeneous group of neurodevelopmental disorders resulting in movement and posture impairments that persist throughout life. Despite being commonly attributed to a variety of environmental factors, particularly to birth asphyxia, the specific cause remains unknown in the majority of individuals. Conversely, a growing body of evidence suggests that CP is likely caused by multiple genetic factors, similar to other neurodevelopmental disorders, such as autism and intellectual disability. Due to recent advances in next-generation sequencing technologies, it is now possible to sequence the entire human genome in a rapid and cost-effective way. It is likely that novel CP genes will be identified as more researchers and clinicians use this approach to study individuals with undiagnosed neurological disorders. As our knowledge of the underlying pathophysiologic mechanisms increases, so does the possibility of developing genomically-guided therapeutic interventions for CP. PMID:22261432
Hicks, Steven D; Ignacio, Cherry; Gentile, Karen; Middleton, Frank A
2016-04-22
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder that lacks adequate screening tools, often delaying diagnosis and therapeutic interventions. Despite a substantial genetic component, no single gene variant accounts for >1 % of ASD incidence. Epigenetic mechanisms that include microRNAs (miRNAs) may contribute to the ASD phenotype by altering networks of neurodevelopmental genes. The extracellular availability of miRNAs allows for painless, noninvasive collection from biofluids. In this study, we investigated the potential for saliva-based miRNAs to serve as diagnostic screening tools and evaluated their potential functional importance. Salivary miRNA was purified from 24 ASD subjects and 21 age- and gender-matched control subjects. The ASD group included individuals with mild ASD (DSM-5 criteria and Autism Diagnostic Observation Schedule) and no history of neurologic disorder, pre-term birth, or known chromosomal abnormality. All subjects completed a thorough neurodevelopmental assessment with the Vineland Adaptive Behavior Scales at the time of saliva collection. A total of 246 miRNAs were detected and quantified in at least half the samples by RNA-Seq and used to perform between-group comparisons with non-parametric testing, multivariate logistic regression and classification analyses, as well as Monte-Carlo Cross-Validation (MCCV). The top miRNAs were examined for correlations with measures of adaptive behavior. Functional enrichment analysis of the highest confidence mRNA targets of the top differentially expressed miRNAs was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), as well as the Simons Foundation Autism Database (AutDB) of ASD candidate genes. Fourteen miRNAs were differentially expressed in ASD subjects compared to controls (p <0.05; FDR <0.15) and showed more than 95 % accuracy at distinguishing subject groups in the best-fit logistic regression model. MCCV revealed an average ROC-AUC value of 0.92 across 100 simulations, further supporting the robustness of the findings. Most of the 14 miRNAs showed significant correlations with Vineland neurodevelopmental scores. Functional enrichment analysis detected significant over-representation of target gene clusters related to transcriptional activation, neuronal development, and AutDB genes. Measurement of salivary miRNA in this pilot study of subjects with mild ASD demonstrated differential expression of 14 miRNAs that are expressed in the developing brain, impact mRNAs related to brain development, and correlate with neurodevelopmental measures of adaptive behavior. These miRNAs have high specificity and cross-validated utility as a potential screening tool for ASD.
Mullen, Brian R; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly; Carpenter, Ellen M
2016-06-01
Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors-reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon-gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. © The Author(s) 2016.
Yu, Dongmei; Mathews, Carol A.; Scharf, Jeremiah M.; Neale, Benjamin M.; Davis, Lea K.; Gamazon, Eric R.; Derks, Eske M.; Evans, Patrick; Edlund, Christopher K.; Crane, Jacquelyn; Fagerness, Jesen A.; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M.; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O. Joseph; Black, Donald; Bloch, Michael H.; Brentani, Helena; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond D.; Cappi, Carolina; Cardona Silgado, Julio C.; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Cook, Edwin H.; Cookson, M. R.; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A.; Hemmings, Sian M.J.; Herrera, Luis D.; Hezel, Dianne M.; Hoekstra, Pieter J.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Konkashbaev, Anuar I.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T.; Mesa Restrepo, Sandra C.; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Ochoa, William Cornejo; Ophoff, Roel A.; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosário, Maria C.; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Service, Susan K.; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, Eric; Tischfield, Jay A.; Turiel, Maurizio; Valencia Duarte, Ana V.; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Walkup, John; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R.; Westenberg, Herman G.M.; Yao, Yin; Hounie, Ana G.; Miguel, Euripedes C.; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C.; McMahon, William; Posthuma, Danielle; Oostra, Ben A.; Nestadt, Gerald; Rouleau, Guy A.; Purcell, Shaun; Jenike, Michael A.; Heutink, Peter; Hanna, Gregory L.; Conti, David V.; Arnold, Paul D.; Freimer, Nelson; Stewart, S. Evelyn; Knowles, James A.; Cox, Nancy J.; Pauls, David L.
2014-01-01
Obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS) are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. Here, we report a combined genome-wide association study (GWAS) of TS and OCD in 2723 cases (1310 with OCD, 834 with TS, 579 with OCD plus TS/chronic tics (CT)), 5667 ancestry-matched controls, and 290 OCD parent-child trios. Although no individual single nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels, i.e. expression quantitative loci (eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10−4), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, TS had a smaller, non-significant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and TS/CT were included in the analysis (p=0.01). Previous work has shown that TS and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of TS and OCD. Furthermore, OCD with co-occurring TS/CT may have different underlying genetic susceptibility compared to OCD alone. PMID:25158072
Francis, Sunday M; Kistner-Griffin, Emily; Yan, Zhongyu; Guter, Stephen; Cook, Edwin H; Jacob, Suma
2016-01-01
There has been increasing interest in oxytocin (peptide: OT, gene: OXT) as a treatment pathway for neurodevelopmental disorders such as Autism Spectrum Disorder (ASD). Neurodevelopmental disorders affect functional, social, and intellectual abilities. With advances in molecular biology, research has connected multiple gene regions to the clinical presentation of ASD. Studies have also shown that the neuropeptide hormones OT and arginine vasopressin (AVP) influence mammalian social and territorial behaviors and may have treatment potential for neurodevelopmental disorders. Published data examining molecular and phenotypic variation in ASD, such as cognitive abilities, are limited. Since most studies have focused on the receptors in the OT-AVP system, we investigated genetic variation within peptide genes for association with phenotypic ASD features that help identify subgroups within the spectrum. In this study, TDT analysis was carried out utilizing FBAT in 207 probands (156 trios) and a European Ancestry (EA) subsample (108 trios).The evolutionarily related and adjacent genes of OXT and AVP were studied for associations between the tagged single nucleotide polymorphisms and ASD diagnosis, social abilities, restrictive and repetitive behaviors, and IQ for cognitive abilities. Additionally, relationships with whole blood serotonin (WB5HT) were explored because of the developmental relationships connecting plasma levels of OT and WB5HT within ASD. RESULTS indicate significant association between OXT rs6084258 (p = 0.001) and ASD. Associations with several endophenotypes were also noted: OXT rs6133010 was associated with IQ (full scale IQ, p = 0.008; nonverbal IQ, p = 0.010, verbal IQ, p = 0.006); and OXT rs4813625 and OXT rs877172 were associated with WB5HT levels (EA, p = 0.027 and p = 0.033, respectively). Additionally, we measured plasma OT (pOT) levels in a subsample (N = 54). RESULTS show the three polymorphisms, OXT rs6084258, OXT rs11697250, and OXT rs877172, have significant association with pOT (EA, p = 0.011, p = 0.010, and p = 0.002, respectively). These findings suggest that SNPs near OXT and AVP are associated with diagnosis of ASD, social behaviors, restricted and repetitive behaviors, IQ, pOT, and WB5HT. Future studies need to replicate these findings and examine gene-interactions in other neurodevelopmental disorders. Mechanisms of action may influence early social and cognitive development that may or may not be limited to ASD diagnosis.
Human structural variation: mechanisms of chromosome rearrangements
Weckselblatt, Brooke; Rudd, M. Katharine
2015-01-01
Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074
Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice
Kishi, Noriyuki; MacDonald, Jessica L.; Ye, Julia; Molyneaux, Bradley J.; Azim, Eiman; Macklis, Jeffrey D.
2016-01-01
Mutations in the transcriptional regulator Mecp2 cause the severe X-linked neurodevelopmental disorder Rett syndrome (RTT). In this study, we investigate genes that function downstream of MeCP2 in cerebral cortex circuitry, and identify upregulation of Irak1, a central component of the NF-κB pathway. We show that overexpression of Irak1 mimics the reduced dendritic complexity of Mecp2-null cortical callosal projection neurons (CPN), and that NF-κB signalling is upregulated in the cortex with Mecp2 loss-of-function. Strikingly, we find that genetically reducing NF-κB signalling in Mecp2-null mice not only ameliorates CPN dendritic complexity but also substantially extends their normally shortened lifespan, indicating broader roles for NF-κB signalling in RTT pathogenesis. These results provide new insight into both the fundamental neurobiology of RTT, and potential therapeutic strategies via NF-κB pathway modulation. PMID:26821816
Loccoh, Eméfah C; Yu, Sunkyung; Donohue, Janet; Lowery, Ray; Butcher, Jennifer; Pasquali, Sara K; Goldberg, Caren S; Uzark, Karen
2018-04-01
Neurodevelopmental impairment is increasingly recognised as a potentially disabling outcome of CHD and formal evaluation is recommended for high-risk patients. However, data are lacking regarding the proportion of eligible children who actually receive neurodevelopmental evaluation, and barriers to follow-up are unclear. We examined the prevalence and risk factors associated with failure to attend neurodevelopmental follow-up clinic after infant cardiac surgery. Survivors of infant (<1 year) cardiac surgery at our institution (4/2011-3/2014) were included. Socio-demographic and clinical characteristics were evaluated in neurodevelopmental clinic attendees and non-attendees in univariate and multivariable analyses. A total of 552 patients were included; median age at surgery was 2.4 months, 15% were premature, and 80% had moderate-severe CHD. Only 17% returned for neurodevelopmental evaluation, with a median age of 12.4 months. In univariate analysis, non-attendees were older at surgery, had lower surgical complexity, fewer non-cardiac anomalies, shorter hospital stay, and lived farther from the surgical center. Non-attendee families had lower income, and fewer were college graduates or had private insurance. In multivariable analysis, lack of private insurance remained independently associated with non-attendance (adjusted odds ratio 1.85, p=0.01), with a trend towards significance for distance from surgical center (adjusted odds ratio 2.86, p=0.054 for ⩾200 miles). The majority of infants with CHD at high risk for neurodevelopmental dysfunction evaluated in this study are not receiving important neurodevelopmental evaluation. Efforts to remove financial/insurance barriers, increase access to neurodevelopmental clinics, and better delineate other barriers to receipt of neurodevelopmental evaluation are needed.
Lozano, Reymundo; Vino, Arianna; Lozano, Cristina; Fisher, Simon E; Deriziotis, Pelagia
2015-12-01
FOXP1 (forkhead box protein P1) is a transcription factor involved in the development of several tissues, including the brain. An emerging phenotype of patients with protein-disrupting FOXP1 variants includes global developmental delay, intellectual disability and mild to severe speech/language deficits. We report on a female child with a history of severe hypotonia, autism spectrum disorder and mild intellectual disability with severe speech/language impairment. Clinical exome sequencing identified a heterozygous de novo FOXP1 variant c.1267_1268delGT (p.V423Hfs*37). Functional analyses using cellular models show that the variant disrupts multiple aspects of FOXP1 activity, including subcellular localization and transcriptional repression properties. Our findings highlight the importance of performing functional characterization to help uncover the biological significance of variants identified by genomics approaches, thereby providing insight into pathways underlying complex neurodevelopmental disorders. Moreover, our data support the hypothesis that de novo variants represent significant causal factors in severe sporadic disorders and extend the phenotype seen in individuals with FOXP1 haploinsufficiency.
Decoding the contribution of dopaminergic genes and pathways to autism spectrum disorder (ASD).
Nguyen, Michael; Roth, Andrew; Kyzar, Evan J; Poudel, Manoj K; Wong, Keith; Stewart, Adam Michael; Kalueff, Allan V
2014-01-01
Autism spectrum disorder (ASD) is a debilitating brain illness causing social deficits, delayed development and repetitive behaviors. ASD is a heritable neurodevelopmental disorder with poorly understood and complex etiology. The central dopaminergic system is strongly implicated in ASD pathogenesis. Genes encoding various elements of this system (including dopamine receptors, the dopamine transporter or enzymes of synthesis and catabolism) have been linked to ASD. Here, we comprehensively evaluate known molecular interactors of dopaminergic genes, and identify their potential molecular partners within up/down-steam signaling pathways associated with dopamine. These in silico analyses allowed us to construct a map of molecular pathways, regulated by dopamine and involved in ASD. Clustering these pathways reveals groups of genes associated with dopamine metabolism, encoding proteins that control dopamine neurotransmission, cytoskeletal processes, synaptic release, Ca(2+) signaling, as well as the adenosine, glutamatergic and gamma-aminobutyric systems. Overall, our analyses emphasize the important role of the dopaminergic system in ASD, and implicate several cellular signaling processes in its pathogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
De Novo Coding Variants Are Strongly Associated with Tourette Disorder.
Willsey, A Jeremy; Fernandez, Thomas V; Yu, Dongmei; King, Robert A; Dietrich, Andrea; Xing, Jinchuan; Sanders, Stephan J; Mandell, Jeffrey D; Huang, Alden Y; Richer, Petra; Smith, Louw; Dong, Shan; Samocha, Kaitlin E; Neale, Benjamin M; Coppola, Giovanni; Mathews, Carol A; Tischfield, Jay A; Scharf, Jeremiah M; State, Matthew W; Heiman, Gary A
2017-05-03
Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 trios from the Tourette Syndrome Association International Consortium on Genetics (511 total). We observe strong and consistent evidence for the contribution of de novo likely gene-disrupting (LGD) variants (rate ratio [RR] 2.32, p = 0.002). Additionally, de novo damaging variants (LGD and probably damaging missense) are overrepresented in probands (RR 1.37, p = 0.003). We identify four likely risk genes with multiple de novo damaging variants in unrelated probands: WWC1 (WW and C2 domain containing 1), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3), NIPBL (Nipped-B-like), and FN1 (fibronectin 1). Overall, we estimate that de novo damaging variants in approximately 400 genes contribute risk in 12% of clinical cases. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
Melatonin in Children with Autism Spectrum Disorders: How Does the Evidence Fit Together?
Veatch, Olivia J; Goldman, Suzanne E; Adkins, Karen W; Malow, Beth A
Autism spectrum disorders (ASD) are prevalent neurodevelopmental conditions, affecting 1 in 68 children in the United States alone. Sleep disturbance, particularly insomnia, is very common in children diagnosed with ASD, with evidence supporting overlapping neurobiological and genetic underpinnings. One of the most well studied mechanisms related to ASD and insomnia is dysregulation of the melatonin pathway, which has been observed in many individuals with ASD compared to typically developing controls. Furthermore, variation in genes whose products regulate endogenous melatonin modify sleep patterns in humans and have also been implicated in some cases of ASD. However, the relationship between comorbid insomnia, melatonin processing, and genes that regulate endogenous melatonin levels in ASD is complex and requires further study to fully elucidate. The aim of this review is to provide an overview of the current findings related to the effects of genetic variation in the melatonergic pathway on risk for expression of sleep disorders in children with ASD. In addition, functional findings related to endogenous levels of melatonin and pharmacokinetic profiles in this patient population are evaluated.
Filipe, Marisa G; Watson, Linda; Vicente, Selene G; Frota, Sónia
2018-01-01
Autism spectrum disorders (ASD) refer to a complex group of neurodevelopmental disorders causing difficulties with communication and interpersonal relationships, as well as restricted and repetitive behaviours and interests. As early identification, diagnosis, and intervention provide better long-term outcomes, early markers of ASD have gained increased research attention. This review examines evidence that auditory processing enhanced by social interest, in particular auditory preference of speech directed towards infants and young children (i.e. infant-directed speech - IDS), may be an early marker of risk for ASD. Although this review provides evidence for IDS preference as, indeed, a potential early marker of ASD, the explanation for differences in IDS processing among children with ASD versus other children remains unclear, as are the implications of these impairments for later social-communicative development. Therefore, it is crucial to explore atypicalities in IDS processing early on development and to understand whether preferential listening to specific types of speech sounds in the first years of life may help to predict the impairments in social and language development.
Fetal alcohol spectrum disorder: Canadian guidelines for diagnosis
Chudley, Albert E.; Conry, Julianne; Cook, Jocelynn L.; Loock, Christine; Rosales, Ted; LeBlanc, Nicole
2005-01-01
THE DIAGNOSIS OF FETAL ALCOHOL SPECTRUM DISORDER (FASD) is complex and guidelines are warranted. A subcommittee of the Public Health Agency of Canada's National Advisory Committee on Fetal Alcohol Spectrum Disorder reviewed, analysed and integrated current approaches to diagnosis to reach agreement on a standard in Canada. The purpose of this paper is to review and clarify the use of current diagnostic systems and make recommendations on their application for diagnosis of FASD-related disabilities in people of all ages. The guidelines are based on widespread consultation of expert practitioners and partners in the field. The guidelines have been organized into 7 categories: screening and referral; the physical examination and differential diagnosis; the neurobehavioural assessment; and treatment and follow-up; maternal alcohol history in pregnancy; diagnostic criteria for fetal alcohol syndrome (FAS), partial FAS and alcohol-related neurodevelopmental disorder; and harmonization of Institute of Medicine and 4-Digit Diagnostic Code approaches. The diagnosis requires a comprehensive history and physical and neurobehavioural assessments; a multidisciplinary approach is necessary. These are the first Canadian guidelines for the diagnosis of FAS and its related disabilities, developed by broad-based consultation among experts in diagnosis. PMID:15738468
Research note: exceptional absolute pitch perception for spoken words in an able adult with autism.
Heaton, Pamela; Davis, Robert E; Happé, Francesca G E
2008-01-01
Autism is a neurodevelopmental disorder, characterised by deficits in socialisation and communication, with repetitive and stereotyped behaviours [American Psychiatric Association (1994). Diagnostic and statistical manual for mental disorders (4th ed.). Washington, DC: APA]. Whilst intellectual and language impairment is observed in a significant proportion of diagnosed individuals [Gillberg, C., & Coleman, M. (2000). The biology of the autistic syndromes (3rd ed.). London: Mac Keith Press; Klinger, L., Dawson, G., & Renner, P. (2002). Autistic disorder. In E. Masn, & R. Barkley (Eds.), Child pyschopathology (2nd ed., pp. 409-454). New York: Guildford Press], the disorder is also strongly associated with the presence of highly developed, idiosyncratic, or savant skills [Heaton, P., & Wallace, G. (2004) Annotation: The savant syndrome. Journal of Child Psychology and Psychiatry, 45 (5), 899-911]. We tested identification of fundamental pitch frequencies in complex tones, sine tones and words in AC, an intellectually able man with autism and absolute pitch (AP) and a group of healthy controls with self-reported AP. The analysis showed that AC's naming of speech pitch was highly superior in comparison to controls. The results suggest that explicit access to perceptual information in speech is retained to a significantly higher degree in autism.
Pradhan, Balaram; Navaneetham, Janardhana
2016-01-01
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with deficiencies in many developmental milestones during the infantile childhood. Recent researches have shown that apart from behaviour problems, the ASD children also suffer from physiological conditions such as disturbed sleep and gastrointestinal problems that could be the contributing factors to their daytime behaviour problems. Lots of parents have expressed that, lack of sleep among the children have resulted in high levels of stress among the family members particularly among the immediate caretakers which are in most cases the mother of the child. Early behaviour intervention is a norm for ASD children which mainly affect the psychological level. Through this paper, an effort has been made to study the contributions made by yoga in order to mitigate such problems. Yoga is a non-invasive and alternative therapy that brings change in both physiological and psychological level of an individual. High levels of stress among the caretakers of these children could make them susceptible to non-communicable diseases such as hypertension, diabetes, arthritis etc. Parental based yoga intervention can be more effective for both children and parents and subsequently to the entire family. PMID:28050484
ERIC Educational Resources Information Center
Tedroff, Kristina; Eriksson, Jonna M.; Bejerot, Susanne
2013-01-01
Individuals with autism have higher rates of minor physical anomalies (MPAs) than neurotypical persons. Minor physical anomalies are slight morphological deviations typically harmless and without cosmetic or medical importance to the individual but indicative of an underlying neurodevelopmental disorder. In genetic autism research the utilization…
ERIC Educational Resources Information Center
Lacroix, Agnes; Guidetti, Michele; Roge, Bernadette; Reilly, Judy
2009-01-01
The aim of our study was to compare two neurodevelopmental disorders (Williams syndrome and autism) in terms of the ability to recognize emotional and nonemotional facial expressions. The comparison of these two disorders is particularly relevant to the investigation of face processing and should contribute to a better understanding of social…
ERIC Educational Resources Information Center
Caçola, Priscila
2014-01-01
The study of children with Developmental Coordination Disorder (DCD) has emerged as a vibrant line of inquiry over the last three decades. DCD is defined as a neurodevelopmental condition characterized by poor motor proficiency that interferes with a child's activities of daily living (sometimes also known as dyspraxia). Common symptoms include…
RETT'S SYNDROME : A CASE REPORT
Gupta, Vinay
2001-01-01
Rett's syndrome is a rare condition affecting only the girl child. It presents as a pervasive developmental disorder with a remarkable behavioural phenotype. The cause for this remains unknown but genetic factors and brain dysfunction have been implicated. This case report emphasises the importance of being aware of rare yet significant disorders of interest to neuro-developmental psychiatrists. PMID:21407847
Sickle Cell Disease as a Neurodevelopmental Disorder
ERIC Educational Resources Information Center
Schatz, Jeffrey; McClellan, Catherine B.
2006-01-01
Sickle cell disease (SCD) is a blood disorder; however, the central nervous system (CNS) is one of the organs frequently affected by the disease. Brain disease can begin early in life and often leads to neurocognitive dysfunction. Approximately one-fourth to one-third of children with SCD have some form of CNS effects from the disease, which…
ERIC Educational Resources Information Center
Addington, Anjene M.; Rapoport, Judith L.
2012-01-01
It was hoped that diagnostic guidelines for, and treatment of, child psychiatric disorders in DSM-5 would be informed by the wealth of clinical genetic research related to neurodevelopmental disorders. In spite of remarkable advances in genetic technology, this has not been the case. Candidate gene, genome-wide association, and rare copy number…
ERIC Educational Resources Information Center
Balboni, Giulia; Tasso, Alessandra; Muratori, Filippo; Cubelli, Roberto
2016-01-01
We investigated which item subsets of the Vineland-II can discriminate low-functioning preschoolers with ASD from matched peers with other neurodevelopmental disorders, using a regression analysis derived from a normative sample to account for cognitive and linguistic competencies. At variance with the typical profile, a pattern with Communication…
Small Body Size at Birth and Behavioural Symptoms of ADHD in Children Aged Five to Six Years
ERIC Educational Resources Information Center
Lahti, J.; Raikkonen, K.; Kajantie, E.; Heinonen, K.; Pesonen, A.-K.; Jarvenpaa, A.-L.; Strandberg, T.
2006-01-01
Background: Behavioural disorders with a neurodevelopmental background, such as attention deficit hyperactivity disorder (ADHD), have been associated with a non-optimal foetal environment, reflected in small body size at birth. However, the evidence stems from highly selected groups with birth outcomes biased towards the extreme low end of the…
ERIC Educational Resources Information Center
Margolis, Amy E.; Davis, Katie S.; Pao, Lisa S.; Lewis, Amy; Yang, Xiao; Tau, Gregory; Zhao, Guihu; Wang, Zhishun; Marsh, Rachel
2018-01-01
Verbal--spatial discrepancies are common in healthy individuals and in those with neurodevelopmental disorders associated with cognitive control deficits including: Autism Spectrum Disorder, Non-Verbal Learning Disability, Fragile X, 22q11 deletion, and Turner Syndrome. Previous data from healthy individuals suggest that the magnitude of the…
ERIC Educational Resources Information Center
Cohen, Ira L.; Liu, Xudong; Hudson, Melissa; Gillis, Jennifer; Cavalari, Rachel N. S.; Romanczyk, Raymond G.; Karmel, Bernard Z.; Gardner, Judith M.
2016-01-01
In order to improve discrimination accuracy between Autism Spectrum Disorder (ASD) and similar neurodevelopmental disorders, a data mining procedure, Classification and Regression Trees (CART), was used on a large multi-site sample of PDD Behavior Inventory (PDDBI) forms on children with and without ASD. Discrimination accuracy exceeded 80%,…
ERIC Educational Resources Information Center
Fairthorne, Jennifer C.; de Klerk, Nicholas H.; Leonard, Helen M.; Whitehouse, Andrew J. O.
2016-01-01
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with strong genetic components. Increasingly, research attention has focused on whether genetic factors conveying susceptibility for these conditions, also influence the risk of other health conditions, such as cancer. We examined the occurrence of…
Estimating the Burden of Disease for Autism Spectrum Disorders in Spain in 2003
ERIC Educational Resources Information Center
Sanchez-Valle, Elena; Posada, Manuel; Villaverde-Hueso, Ana; Tourino, Eva; Ferrari-Arroyo, Maria Jose; Boada, Leticia; Martin-Arribas, Maria Concepcion; Canal, Ricardo; Fuentes-Biggi, Joaquin
2008-01-01
Autism Spectrum Disorders (ASD) are lifelong neurodevelopmental disabilities. Burden of Disease is an indicator that provides important information on health status and outcomes such as premature mortality and disability. In order to estimate the burden of disease of ASD in the Spanish population during 2003, we followed the procedures used in the…
ERIC Educational Resources Information Center
Perra, Oliver; Williams, Justin H. G.; Whiten, Andrew; Fraser, Lesley; Benzie, Helen; Perrett, David I.
2008-01-01
Several studies have reported imitative deficits in autism spectrum disorder (ASD). However, it is still debated if imitative deficits are specific to ASD or shared with clinical groups with similar mental impairment and motor difficulties. We investigated whether imitative tasks can be used to discriminate ASD children from typically developing…
Trucks, Holger; Schulz, Herbert; de Kovel, Carolien G.; Kasteleijn-Nolst Trenité, Dorothée; Sonsma, Anja C. M.; Koeleman, Bobby P.; Lindhout, Dick; Weber, Yvonne G.; Lerche, Holger; Kapser, Claudia; Schankin, Christoph J.; Kunz, Wolfram S.; Surges, Rainer; Elger, Christian E.; Gaus, Verena; Schmitz, Bettina; Helbig, Ingo; Muhle, Hiltrud; Stephani, Ulrich; Klein, Karl M.; Rosenow, Felix; Neubauer, Bernd A.; Reinthaler, Eva M.; Zimprich, Fritz; Feucht, Martha; Møller, Rikke S.; Hjalgrim, Helle; De Jonghe, Peter; Suls, Arvid; Lieb, Wolfgang; Franke, Andre; Strauch, Konstantin; Gieger, Christian; Schurmann, Claudia; Schminke, Ulf; Nürnberg, Peter; Sander, Thomas
2015-01-01
Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes. PMID:25950944
Genetics Home Reference: Rett syndrome
... NC, Zappella M, Renieri A, Huppke P, Percy AK; RettSearch Consortium. Rett syndrome: revised diagnostic criteria and ... 2):118-28. Review. Citation on PubMed Percy AK, Lane JB. Rett syndrome: model of neurodevelopmental disorders. ...
Genetics Home Reference: Potocki-Lupski syndrome
... of this segment causes a related condition called Smith-Magenis syndrome .) In the remaining one-third of ... L. Neurodevelopmental Disorders Associated with Abnormal Gene Dosage: Smith-Magenis and Potocki-Lupski Syndromes. J Pediatr Genet. ...
Sekiguchi, Mari; Katayama, Syouichi; Hatano, Naoya; Shigeri, Yasushi; Sueyoshi, Noriyuki; Kameshita, Isamu
2013-07-15
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in brain and mutations of its gene are known to be associated with neurodevelopmental disorders such as X-linked West syndrome and Rett syndrome. However, the physiological substrates of CDKL5 that are directly linked to these neurodevelopmental disorders are currently unknown. In this study, we explored endogenous substrates for CDKL5 in mouse brain extracts fractionated by a liquid-phase isoelectric focusing. In conjunction with CDKL5 phosphorylation assay, this approach detected a protein band with an apparent molecular mass of 120kDa that is remarkably phosphorylated by CDKL5. This 120-kDa protein was identified as amphiphysin 1 (Amph1) by LC-MS/MS analysis, and the site of phosphorylation by CDKL5 was determined to be Ser-293. The phosphorylation mimic mutants, Amph1(S293E) and Amph1(S293D), showed significantly reduced affinity for endophilin, a protein involved in synaptic vesicle endocytosis. Introduction of point mutations in the catalytic domain of CDKL5, which are disease-causing missense mutations found in Rett patients, resulted in the impairment of kinase activity toward Amph1. These results suggest that Amph1 is the cytoplasmic substrate for CDKL5 and that its phosphorylation may play crucial roles in the neuronal development. Copyright © 2013 Elsevier Inc. All rights reserved.
Chilosi, A M; Scusa, M F; Comparini, A; Genovese, E; Forli, F; Berrettini, S; Cipriani, P
2012-04-01
Sensorineural hearing loss (SNHL) is complicated by additional disabilities in about 30% of cases, but the epidemiology of associated disorders, in terms of type, frequency and aetiology is still not clearly defined. Additional disabilities in a deaf child have important consequences in assessing and choosing a therapeutic treatment, in particular when considering cochlear implantation (CI) or hearing aids (HA). The aim of this paper was to evaluate frequency, type and severity of additional neurodevelopmental disabilities in children with profound bilateral sensorineural hearing loss and to investigate the relationship between disability and the etiology of deafness. Eighty children with profound bilateral sensorineural hearing loss (mean age 5.4 years) were investigated by means of a diagnostic protocol including clinical, neurodevelopmental, and audiological procedures together with genetic and neurometabolic tests and neuroradiological investigation by brain MRI. Fifty-five percent of the sample exhibited one or more disabilities in addition to deafness, with cognitive, behavioural-emotional and motor disorders being the most frequent. The risk of additional disabilities varied according to aetiology, with a higher incidence in hereditary syndromic deafness, in cases due to pre-perinatal pathology (in comparison to unknown and hereditary non syndromic forms) and in the presence of major brain abnormalities at MRI. Our results suggest that the aetiology of deafness may be a significant risk indicator for the presence of neuropsychiatric disorders. A multidimensional evaluation, including aetiological, neurodevelopmental and MRI investigation is needed for formulating prognosis and for planning therapeutic intervention, especially in those children candidated to cochlear implant.
Chauhan, Ved; Chauhan, Abha
2016-06-01
Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders. Published by Elsevier Ltd.
Bipolar disorder and ADHD: comorbidity and diagnostic distinctions.
Marangoni, Ciro; De Chiara, Lavinia; Faedda, Gianni L
2015-08-01
Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) are neurodevelopmental disorders with onset in childhood and early adolescence, and common persistence in adulthood. Both disorders are often undiagnosed, misdiagnosed, and sometimes over diagnosed, leading to high rates of morbidity and disability. The differentiation of these conditions is based on their clinical features, comorbidity, psychiatric family history course of illness, and response to treatment. We review recent relevant findings and highlight epidemiological, clinical, family history, course, and treatment-response differences that can aid the differential diagnosis of these conditions in an outpatient pediatric setting.
Winsper, Catherine; Marwaha, Steven; Lereya, Suzet Tanya; Thompson, Andrew; Eyden, Julie; Singh, Swaran P
2016-12-01
Contemporary theories for the aetiology of borderline personality disorder (BPD) take a lifespan approach asserting that inborn biological predisposition is potentiated across development by environmental risk factors. In this review, we present and critically evaluate evidence on the neurobiology of BPD in childhood and adolescence, compare this evidence to the adult literature, and contextualise within a neurodevelopmental framework. A systematic review was conducted to identify studies examining the neurobiological (i.e. genetic, structural neuroimaging, neurophysiological, and neuropsychological) correlates of BPD symptoms in children and adolescents aged 19 years or under. We identified, quality assessed, and narratively summarised 34 studies published between 1980 and June 2016. Similar to findings in adult populations, twin studies indicated moderate to high levels of heritability of BPD, and there was some evidence for gene-environment interactions. Also consistent with adult reports is that some adolescents with BPD demonstrated structural (grey and white matter) alterations in frontolimbic regions and neuropsychological abnormalities (i.e. reduced executive function and disturbances in social cognition). These findings suggest that neurobiological abnormalities observed in adult BPD may not solely be the consequence of chronic morbidity or prolonged medication use. They also provide tentative support for neurodevelopmental theories of BPD by demonstrating that neurobiological markers may be observed from childhood onwards and interact with environmental factors to increase risk of BPD in young populations. Prospective studies with a range of repeated measures are now required to elucidate the temporal unfurling of neurobiological features and further delineate the complex pathways to BPD.
Ahmadiantehrani, Somayeh; London, Sarah E
2017-08-29
Early life experiences can have long-lasting behavioral consequences because they are encoded when the brain is most malleable. The mechanistic target of rapamycin (mTOR) signaling cascade modulates experience-dependent synaptic plasticity, among other processes. mTOR has been almost exclusively examined in adult rodent learning models, but may be especially important in organizing neural circuits required for developmental acquisition of meaningful complex behaviors. It is among the most commonly implicated factors in neurodevelopmental autism spectrum disorders (ASD), characterized, in part, by distinct social and communication phenotypes. Here, we investigated mTOR in juvenile zebra finch songbirds. Much as children learn language, young male zebra finches need to interact socially with an adult tutor to learn a meaningful song. The memory of the tutor's song structure guides the juvenile's own song, which it uses to communicate for the rest of its life. We hypothesized that mTOR is required for juveniles to learn song. To this end, we first discovered that hearing song activates mTOR signaling in a brain area required for tutor song memorization in males old enough to copy song but not in younger males or females, who cannot sing. We then showed that both inhibition and constitutive activation of mTOR during tutor experiences significantly diminished tutor song copying. Finally, we found that constitutive mTOR activation lowered a behavioral measure of the juvenile's social engagement during tutor experiences, mirroring the relationship in humans. These studies therefore advance understanding about the effects of experience in the context of neurodevelopmental disorders and typical neural development.
Braddick, Oliver; Atkinson, Janette; Akshoomoff, Natacha; Newman, Erik; Curley, Lauren B; Gonzalez, Marybel Robledo; Brown, Timothy; Dale, Anders; Jernigan, Terry
2017-12-01
Reduced global motion sensitivity, relative to global static form sensitivity, has been found in children with many neurodevelopmental disorders, leading to the "dorsal stream vulnerability" hypothesis (Braddick et al., 2003). Individual differences in typically developing children's global motion thresholds have been shown to be associated with variations in specific parietal cortical areas (Braddick et al., 2016). Here, in 125 children aged 5-12years, we relate individual differences in global motion and form coherence thresholds to fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF), a major fibre tract communicating between parietal lobe and anterior cortical areas. We find a positive correlation between FA of the right SLF and individual children's sensitivity to global motion coherence, while FA of the left SLF shows a negative correlation. Further analysis of parietal cortical area data shows that this is also asymmetrical, showing a stronger association with global motion sensitivity in the left hemisphere. None of these associations hold for an analogous measure of global form sensitivity. We conclude that a complex pattern of structural asymmetry, including the parietal lobe and the superior longitudinal fasciculus, is specifically linked to the development of sensitivity to global visual motion. This pattern suggests that individual differences in motion sensitivity are primarily linked to parietal brain areas interacting with frontal systems in making decisions on integrated motion signals, rather than in the extra-striate visual areas that perform the initial integration. The basis of motion processing deficits in neurodevelopmental disorders may depend on these same structures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Makedonski, Kirill; Abuhatzira, Liron; Kaufman, Yotam; Razin, Aharon; Shemer, Ruth
2005-04-15
Rett syndrome (RS) is a severe and progressive neurodevelopmental disorder caused by heterozygous mutations in the X-linked methyl CpG binding protein 2 (MeCP2) gene. MeCP2 is a nuclear protein that binds specifically to methylated DNA and functions as a general transcription repressor in the context of chromatin remodeling complexes. RS shares clinical features with those of Angelman syndrome (AS), an imprinting neurodevelopmental disorder. In AS patients, the maternally expressed copy of UBE3A that codes for the ubiquitin protein ligase 3A (E6-AP) is repressed. The similar phenotype of these two syndromes led us to hypothesize that part of the RS phenotype is due to MeCP2-associated silencing of UBE3A. Indeed, UBE3A mRNA and protein are shown here to be significantly reduced in human and mouse MECP2 deficient brains. This reduced UBE3A level was associated with biallelic production of the UBE3A antisense RNA. In addition, MeCP2 deficiency resulted in elevated histone H3 acetylation and H3(K4) methylation and reduced H3(K9) methylation at the PWS/AS imprinting center, with no effect on DNA methylation or SNRPN expression. We conclude, therefore, that MeCP2 deficiency causes epigenetic aberrations at the PWS imprinting center. These changes in histone modifications result in loss of imprinting of the UBE3A antisense gene in the brain, increase in UBE3A antisense RNA level and, consequently reduction in UBE3A production.
Allen, J L; Oberdorster, G; Morris-Schaffer, K; Wong, C; Klocke, C; Sobolewski, M; Conrad, K; Mayer-Proschel, M; Cory-Slechta, D A
2017-03-01
Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia. Copyright © 2015 Elsevier B.V. All rights reserved.
Neurodevelopment in preschool idiopathic toe-walkers.
Martín-Casas, P; Ballestero-Pérez, R; Meneses-Monroy, A; Beneit-Montesinos, J V; Atín-Arratibel, M A; Portellano-Pérez, J A
2017-09-01
Idiopathic toe walking, a differential diagnosis for neurological and orthopaedic disorders, has been associated with neurodevelopmental alterations. Neurodevelopmental assessment at early ages using specific tests may improve management and follow-up of these patients. The aim of our study is to analyse the neurodevelopmental characteristics of preschool idiopathic toe-walkers (ITW) by comparing them to a control group. Our descriptive cross-sectional study compared possible risk factors, neurodevelopmental characteristics, and scores on the Child Neuropsychological Maturity Questionnaire (CUMANIN) between a group of 56 ITWs aged 3 to 6 and a control group including 40 children. The proportion of males was significantly higher in the ITW group (P=.008). The percentage of patients with a family history (P=.000) and biological risk factors during the perinatal period (P=.032) was also higher in this group. According to the parents' reports, motor coordination in ITWs was significantly poorer (59%; P=.009). ITWs scored significantly lower on CUMANIN subscales of psychomotricity (=0,001) and memory (P=.001), as well as in verbal development (P=.000), non-verbal development (P=.026), and overall development (P=.004). Foot preference was less marked in the ITW group (P=.047). The neurodevelopmental characteristics of our sample suggest that idiopathic toe walking is a marker of neurodevelopmental impairment. However, further studies are necessary to confirm these findings. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Atypical Pupillary Light Reflex in Individuals With Autism
2012-07-01
services at the University of Missouri Thompson Center for Autism and Neurodevelopmental Disorders, an interdisciplinary academic medical center...Center for Autism & Neurodevelopment Disorders, University of Missouri, Columbia, MO 65201, USA. (e-mail: MilesJH@missouri.edu) S. E. Christ is with...Department of Radiology, Department of Neurology, Department of Psychological Sciences, and Thompson Center for Autism & Neurodevelopment Disorders
An agenda for 21st century neurodevelopmental medicine: lessons from autism.
Klin, A; Jones, W
2018-03-01
The future of neurodevelopmental medicine has the potential of situating child neurology at the forefront of a broad-based public health effort to optimize neurodevelopmental outcomes of children born with high-prevalence and diverse genetic, pre- and peri-natal, and environmental burdens compromising early brain development and leading to lifetime disabilities. Building on advancements in developmental social neuroscience and in implementation science, this shift is already occurring in the case of emblematic neurodevelopmental disorders such as autism. Capitalizing on early neuroplasticity and on quantification of trajectories of social-communicative development, new technologies are emerging for high-throughput and cost-effective diagnosis and for community-viable delivery of powerful treatments, in seamless integration across previously fragmented systems of healthcare delivery. These solutions could be deployed in the case of other groups of children at greater risk for autism and communication delays, such as those born extremely premature or with congenital heart disease. The galvanizing concept in this aspirational future is a public health focus on promoting optimal conditions for early brain development, not unlike current campaigns promoting pre-natal care, nutrition or vaccination.