Science.gov

Sample records for complex neurological diseases

  1. [Depression and neurological diseases].

    PubMed

    Piber, D; Hinkelmann, K; Gold, S M; Heesen, C; Spitzer, C; Endres, M; Otte, C

    2012-11-01

    In many neurological diseases a depressive syndrome is a characteristic sign of the primary disease or is an important comorbidity. Post-stroke depression, for example, is a common and relevant complication following ischemic brain infarction. Approximately 4 out of every 10 stroke patients develop depressive disorders in the course of the disease which have a disadvantageous effect on the course and the prognosis. On the other hand depression is also a risk factor for certain neurological diseases as was recently demonstrated in a meta-analysis of prospective cohort studies which revealed a much higher stroke risk for depressive patients. Furthermore, depression plays an important role in other neurological diseases with respect to the course and quality of life, such as Parkinson's disease, multiple sclerosis and epilepsy. This article gives a review of the most important epidemiological, pathophysiological and therapeutic aspects of depressive disorders as a comorbidity of neurological diseases and as a risk factor for neurological diseases.

  2. Neurological diseases and pain

    PubMed Central

    2012-01-01

    Chronic pain is a frequent component of many neurological disorders, affecting 20–40% of patients for many primary neurological diseases. These diseases result from a wide range of pathophysiologies including traumatic injury to the central nervous system, neurodegeneration and neuroinflammation, and exploring the aetiology of pain in these disorders is an opportunity to achieve new insight into pain processing. Whether pain originates in the central or peripheral nervous system, it frequently becomes centralized through maladaptive responses within the central nervous system that can profoundly alter brain systems and thereby behaviour (e.g. depression). Chronic pain should thus be considered a brain disease in which alterations in neural networks affect multiple aspects of brain function, structure and chemistry. The study and treatment of this disease is greatly complicated by the lack of objective measures for either the symptoms or the underlying mechanisms of chronic pain. In pain associated with neurological disease, it is sometimes difficult to obtain even a subjective evaluation of pain, as is the case for patients in a vegetative state or end-stage Alzheimer's disease. It is critical that neurologists become more involved in chronic pain treatment and research (already significant in the fields of migraine and peripheral neuropathies). To achieve this goal, greater efforts are needed to enhance training for neurologists in pain treatment and promote greater interest in the field. This review describes examples of pain in different neurological diseases including primary neurological pain conditions, discusses the therapeutic potential of brain-targeted therapies and highlights the need for objective measures of pain. PMID:22067541

  3. Neurological diseases in famous painters.

    PubMed

    Piechowski-Jozwiak, Bartlomiej; Bogousslavsky, Julien

    2013-01-01

    Visual art production involves multiple processes including basic motor skills, such as coordination of movements, visual-spatial processing, emotional output, sociocultural context, and creativity. Thus, the relationship between artistic output and brain diseases is particularly complex, and brain disorders may lead to impairment of artistic production in multiple domains. Neurological conditions may also occasionally modify artistic style and lead to surprisingly innovative features in people with an initial loss of creativity. This chapter focuses on anecdotal reports of various neurological disorders and their potential consequences on works produced by famous or well-established artists, including Carl Frederik Reutersward, Giorgio de Chirico, Krystyna Habura, Leo Schnug, Ignatius Brennan, and many others.

  4. Genomic medicine and neurological disease.

    PubMed

    Boone, Philip M; Wiszniewski, Wojciech; Lupski, James R

    2011-07-01

    "Genomic medicine" refers to the diagnosis, optimized management, and treatment of disease--as well as screening, counseling, and disease gene identification--in the context of information provided by an individual patient's personal genome. Genomic medicine, to some extent synonymous with "personalized medicine," has been made possible by recent advances in genome technologies. Genomic medicine represents a new approach to health care and disease management that attempts to optimize the care of a patient based upon information gleaned from his or her personal genome sequence. In this review, we describe recent progress in genomic medicine as it relates to neurological disease. Many neurological disorders either segregate as Mendelian phenotypes or occur sporadically in association with a new mutation in a single gene. Heritability also contributes to other neurological conditions that appear to exhibit more complex genetics. In addition to discussing current knowledge in this field, we offer suggestions for maximizing the utility of genomic information in clinical practice as the field of genomic medicine unfolds.

  5. Complex I deficiencies in neurological disorders.

    PubMed

    Papa, Sergio; De Rasmo, Domenico

    2013-01-01

    Complex I is the point of entry in the mitochondrial electron transport chain for NADH reducing equivalents, and it behaves as a regulatable pacemaker of respiratory ATP production in human cells. Defects in complex I are associated with several human neurological disorders, including primary mitochondrial diseases, Parkinson disease (PD), and Down syndrome, and understanding the activity and regulation of complex I may reveal aspects of the underlying pathogenic mechanisms. Complex I is regulated by cyclic AMP (cAMP) and the protein kinase A (PKA) signal transduction pathway, and elucidating the role of the cAMP/PKA system in regulating complex I and oxygen free radical production provides new perspectives for devising therapeutic strategies for neurological diseases.

  6. Neurological complications of coeliac disease

    PubMed Central

    Pengiran, T; Wills, A; Holmes, G

    2002-01-01

    A variety of neurological disorders have been reported in association with coeliac disease including epilepsy, ataxia, neuropathy, and myelopathy. The nature of this association is unclear and whether a specific neurological complication occurs in coeliac disease remains unproved. Malabsorption may lead to vitamin and trace element deficiencies. Therefore, patients who develop neurological dysfunction should be carefully screened for these. However, malabsorption does not satisfactorily explain the pathophysiology and clinical course of many of the associated neurological disorders. Other mechanisms proposed include altered autoimmunity, heredity, and gluten toxicity. This review attempts to summarise the literature and suggests directions for future research. PMID:12151653

  7. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein–dynactin–cargo adaptor complexes

    PubMed Central

    Hoang, Ha Thi; Schlager, Max A.; Carter, Andrew P.

    2017-01-01

    Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein’s core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein–dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo–motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility. PMID:28196890

  8. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein-dynactin-cargo adaptor complexes.

    PubMed

    Hoang, Ha Thi; Schlager, Max A; Carter, Andrew P; Bullock, Simon L

    2017-02-28

    Mutations in the human DYNC1H1 gene are associated with neurological diseases. DYNC1H1 encodes the heavy chain of cytoplasmic dynein-1, a 1.4-MDa motor complex that traffics organelles, vesicles, and macromolecules toward microtubule minus ends. The effects of the DYNC1H1 mutations on dynein motility, and consequently their links to neuropathology, are not understood. Here, we address this issue using a recombinant expression system for human dynein coupled to single-molecule resolution in vitro motility assays. We functionally characterize 14 DYNC1H1 mutations identified in humans diagnosed with malformations in cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMALED), as well as three mutations that cause motor and sensory defects in mice. Two of the human mutations, R1962C and H3822P, strongly interfere with dynein's core mechanochemical properties. The remaining mutations selectively compromise the processive mode of dynein movement that is activated by binding to the accessory complex dynactin and the cargo adaptor Bicaudal-D2 (BICD2). Mutations with the strongest effects on dynein motility in vitro are associated with MCD. The vast majority of mutations do not affect binding of dynein to dynactin and BICD2 and are therefore expected to result in linkage of cargos to dynein-dynactin complexes that have defective long-range motility. This observation offers an explanation for the dominant effects of DYNC1H1 mutations in vivo. Collectively, our results suggest that compromised processivity of cargo-motor assemblies contributes to human neurological disease and provide insight into the influence of different regions of the heavy chain on dynein motility.

  9. Toward precision medicine in neurological diseases.

    PubMed

    Tan, Lin; Jiang, Teng; Tan, Lan; Yu, Jin-Tai

    2016-03-01

    Technological development has paved the way for accelerated genomic discovery and is bringing precision medicine into view. The goal of precision medicine is to deliver optimally targeted and timed interventions tailored to an individual's molecular drivers of disease. Neurological diseases are promisingly suited models for precision medicine because of the rapidly expanding genetic knowledge base, phenotypic classification, the development of biomarkers and the potential modifying treatments. Moving forward, it is crucial that through these integrated research platforms to provide analysis both for accurate personal genome analysis and gene and drug discovery. Here we describe our vision of how precision medicine can bring greater clarity to the clinical and biological complexity of neurological diseases.

  10. Toward precision medicine in neurological diseases

    PubMed Central

    Tan, Lin; Jiang, Teng

    2016-01-01

    Technological development has paved the way for accelerated genomic discovery and is bringing precision medicine into view. The goal of precision medicine is to deliver optimally targeted and timed interventions tailored to an individual’s molecular drivers of disease. Neurological diseases are promisingly suited models for precision medicine because of the rapidly expanding genetic knowledge base, phenotypic classification, the development of biomarkers and the potential modifying treatments. Moving forward, it is crucial that through these integrated research platforms to provide analysis both for accurate personal genome analysis and gene and drug discovery. Here we describe our vision of how precision medicine can bring greater clarity to the clinical and biological complexity of neurological diseases. PMID:27127757

  11. Neurologic Diseases in Special Care Patients.

    PubMed

    Robbins, Miriam R

    2016-07-01

    Neurologic diseases can have a major impact on functional capacity. Patients with neurologic disease require individualized management considerations depending on the extent of impairment and impact on functional capacity. This article reviews 4 of the more common and significant neurologic diseases (Alzheimer disease, cerebrovascular accident/stroke, multiple sclerosis, and Parkinson disease) that are likely to present to a dental office and provides suggestions on the dental management of patients with these conditions.

  12. Dysexecutive syndromes in neurologic disease.

    PubMed

    Hanna-Pladdy, B

    2007-09-01

    Damage to the frontal structures may lead to a diverse set of changes in cognitive, behavioral, or emotional domains. While lesion studies have demonstrated distinct impairments related to pathology in different frontal regions, it is clear that the frontal lobe syndrome is not restricted to damage to frontal regions. Therefore, the broad range of impairments in executive functioning evident in neurologic disease is often referred to as the dysexecutive syndrome. This review provides an overview of how executive functioning has been traditionally defined and measured. The components of executive function such as planning, cognitive flexibility and set-shifting, initiation and self-generation, response inhibition, serial ordering and sequencing, are discussed with respect to traditional measures and neural substrates. This is followed by profiles of frontal-executive dysfunction in aging, traumatic brain injury, frontotemporal dementia, and Parkinson's disease. Since no one specific neurologic disorder has a predilection to damage isolated to the frontal lobes, profiles of the dysexecutive syndrome are related to damage to several regions in addition to the frontal lobes. Finally, there is a discussion of ecological validity and the impact of executive deficits on everyday functioning. The recent development of executive tests with greater ecological validity is reviewed and discussed, and suggestions for future directions for research are provided.

  13. Mouse models for neurological disease.

    PubMed

    Hafezparast, Majid; Ahmad-Annuar, Azlina; Wood, Nicholas W; Tabrizi, Sarah J; Fisher, Elizabeth M C

    2002-08-01

    The mouse has many advantages over human beings for the study of genetics, including the unique property that genetic manipulation can be routinely carried out in the mouse genome. Most importantly, mice and human beings share the same mammalian genes, have many similar biochemical pathways, and have the same diseases. In the minority of cases where these features do not apply, we can still often gain new insights into mouse and human biology. In addition to existing mouse models, several major programmes have been set up to generate new mouse models of disease. Alongside these efforts are new initiatives for the clinical, behavioural, and physiological testing of mice. Molecular genetics has had a major influence on our understanding of the causes of neurological disorders in human beings, and much of this has come from work in mice.

  14. [Neurological disease and facial recognition].

    PubMed

    Kawamura, Mitsuru; Sugimoto, Azusa; Kobayakawa, Mutsutaka; Tsuruya, Natsuko

    2012-07-01

    To discuss the neurological basis of facial recognition, we present our case reports of impaired recognition and a review of previous literature. First, we present a case of infarction and discuss prosopagnosia, which has had a large impact on face recognition research. From a study of patient symptoms, we assume that prosopagnosia may be caused by unilateral right occipitotemporal lesion and right cerebral dominance of facial recognition. Further, circumscribed lesion and degenerative disease may also cause progressive prosopagnosia. Apperceptive prosopagnosia is observed in patients with posterior cortical atrophy (PCA), pathologically considered as Alzheimer's disease, and associative prosopagnosia in frontotemporal lobar degeneration (FTLD). Second, we discuss face recognition as part of communication. Patients with Parkinson disease show social cognitive impairments, such as difficulty in facial expression recognition and deficits in theory of mind as detected by the reading the mind in the eyes test. Pathological and functional imaging studies indicate that social cognitive impairment in Parkinson disease is possibly related to damages in the amygdalae and surrounding limbic system. The social cognitive deficits can be observed in the early stages of Parkinson disease, and even in the prodromal stage, for example, patients with rapid eye movement (REM) sleep behavior disorder (RBD) show impairment in facial expression recognition. Further, patients with myotonic dystrophy type 1 (DM 1), which is a multisystem disease that mainly affects the muscles, show social cognitive impairment similar to that of Parkinson disease. Our previous study showed that facial expression recognition impairment of DM 1 patients is associated with lesion in the amygdalae and insulae. Our study results indicate that behaviors and personality traits in DM 1 patients, which are revealed by social cognitive impairment, are attributable to dysfunction of the limbic system.

  15. Trends in Mitochondrial Therapeutics for Neurological Disease.

    PubMed

    Leitão-Rocha, Ana; Guedes-Dias, Pedro; Pinho, Brígida R; Oliveira, Jorge M A

    2015-01-01

    Neuronal homeostasis is critically dependent on healthy mitochondria. Mutations in mitochondrial DNA (mtDNA), in nuclear-encoded mitochondrial components, and age-dependent mitochondrial damage, have all been connected with neurological disorders. These include not only typical mitochondrial syndromes with neurological features such as encephalomyopathy, myoclonic epilepsy, neuropathy and ataxia; but also secondary mitochondrial involvement in neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's disease. Unravelling the molecular aetiology of mitochondrial dysfunction opens new therapeutic prospects for diseases thus far lacking effective treatments. In this review we address recent advances on preventive strategies, such as pronuclear, spindle-chromosome complex, or polar body genome transfer to replace mtDNA and avoid disease transmission to newborns; we also address experimental mitochondrial therapeutics aiming to benefit symptomatic patients and prevent disease manifestation in those at risk. Specifically, we focus on: (1) gene therapy to reduce mutant mtDNA, such as anti-replicative therapies and mitochondriatargeted nucleases allowing favourable heteroplasmic shifts; (2) allotopic expression of recoded wild-type mitochondrial genes, including targeted tRNAs and xenotopic expression of cognate genes to compensate for pathogenic mutations; (3) mitochondria targeted-peptides and lipophilic cations for in vivo delivery of antioxidants or other putative therapeutics; and (4) modulation of mitochondrial dynamics at the level of biogenesis, fission, fusion, movement and mitophagy. Further advances in therapeutic development are hindered by scarce in vivo models for mitochondrial disease, with the bulk of available data coming from cellular models. Nevertheless, wherever available, we also address data from in vivo experiments and clinical trials, focusing on neurological disease models.

  16. Mitochondrial Biology and Neurological Diseases

    PubMed Central

    Arun, Siddharth; Liu, Lei; Donmez, Gizem

    2016-01-01

    Mitochondria are extremely active organelles that perform a variety of roles in the cell including energy production, regulation of calcium homeostasis, apoptosis, and population maintenance through fission and fusion. Mitochondrial dysfunction in the form of oxidative stress and mutations can contribute to the pathogenesis of various neurodegenerative diseases such as Parkinson’s (PD), Alzheimer’s (AD), and Huntington’s diseases (HD). Abnormalities of Complex I function in the electron transport chain have been implicated in some neurodegenerative diseases, inhibiting ATP production and generating reactive oxygen species that can cause major damage to mitochondria Mutations in both nuclear and mitochondrial DNA can contribute to neurodegenerative disease, although the pathogenesis of these conditions tends to focus on nuclear mutations. In PD, nuclear genome mutations in the PINK1 and parkin genes have been implicated in neurodegeneration [1], while mutations in APP, PSEN1 and PSEN2 have been implicated in a variety of clinical symptoms of AD [5]. Mutant htt protein is known to cause HD [2]. Much progress has been made to determine some causes of these neurodegenerative diseases, though permanent treatments have yet to be developed. In this review, we discuss the roles of mitochondrial dysfunction in the pathogenesis of these diseases. PMID:26903445

  17. [Gene therapy of neurological diseases].

    PubMed

    Kahn, A; Haase, G; Akli, S; Guidotti, J E

    1996-01-01

    In hereditary neurological diseases, gene transfer into neurons is made difficult by: the nature of the cells (postmitotic cells, that cannot be cultured, genetically modified ex vivo, then retransplanted), sometimes, their widespread localization, the blood-brain barrier. However, three viral vectors derived from adenovirus, Herpes simplex virus and adeno-associated virus have been shown to be very efficient in transferring DNA into brain cells. All of these vectors can infect resting cells, especially neurons, and are efficient in vivo. Retroviral vectors which can infect dividing cells only are mainly used for ex vivo genetic modification of cells (neural progenitor cells, myoblasts, fibroblasts) followed by intracerebral transplantation. Alternatively, genetically modified cells can be transplanted in a peripheral site if the transgene product is able to cross the blood-brain barrier or to be transported retrogradely from the nerve terminals. We have especially investigated the potential interest of adenoviral vectors to transfer foreign genes into brain cells and to treat animal models of neurological diseases. These vectors allowed us to transfer the lacZ gene into any neural cell type, including neurons, glia, photoreceptors and olfactory receptors, ex vivo, in cell culture, and in vivo, by stereotactic administration. In addition, axonal transport of adenoviral vectors has been demonstrated, e.g. in the substantia nigra after injection into the striatum, in the olfactory bulb after intranasal instillation and in spinal motor neurons after intramuscular injection. After intracerebroventricular injection, ependymal cells are massively infected and express the transgene for several months, as this is also observed in neurons. Through the spinal canal and cerebrospinal fluid, the vector can diffuse to a considerable distance from the injection point, e.g. to the lumbar spinal cord after injection in the suboccipital region. To test the biological function of

  18. [Neurological diseases in the aged].

    PubMed

    Kameyama, M

    1990-12-01

    In this paper, I described clinical and basic problems on neurology of the aged patients. These studies have been done in various institutions with many co-workers. 1) A PET study revealed some age differences on CBF, CMRO2, or CMRgl. But these results are not so rigid in which much of individual variations should be considered in interpretation. Calendar age is not always compatible to biological age. 2) Saccular aneurysms in the brain artery were found in 7.3% of 1200 routine autopsy series of the aged subjects. Aneurysms with external diameter exceeding 6 mm had been fatally ruptured in 14 (78%) of 18 subjects. 3) Variations of the pyramidal crossing are found responsible for bizarre clinical manifestations. Non-crossing component was more prominent in the right pyramidal tract; consequently, right pyramidal tracts including ventral and lateral one seemed to have more extensive representation in the spinal cord level. 4) I123-IMP SPECT study showed a reduced uptake in the area 4 or area 4-6 of the ALS patients. 5) I introduced a new simplified Wartenberg's maneuver, which is useful for detection of subtle pyramidal dysfunctions. 6) Cases with central pontine myelinolysis and those of paraneoplastic syndrome were presented with an emphasis on their patho-chemical mechanisms. 7) Lewis-Sumner syndrome showing multifocal persistent conduction block is not rare in the aged, in which we have already had some useful therapeutic methods. 8) Dementia complicated with neurodegenerative disease was discussed on its clinical and chemical features of mental disturbances. In ALS-dementia, CSF-homovanilic acid reduced significantly than in the control and L-dopa was effective in some patients. 9) Vascular and Alzheimer-type dementias were presented and discussed on their pathogenetic mechanism according to our recent studies with review of literature.

  19. The neurogenomics view of neurological diseases.

    PubMed

    Tsuji, Shoji

    2013-06-01

    The availability of high-throughput genome sequencing technologies is expected to revolutionize our understanding of not only hereditary neurological diseases but also sporadic neurological diseases. The molecular bases of sporadic diseases, particularly those of sporadic neurodegenerative diseases, largely remain unknown. As potential molecular bases, various mechanisms can be considered, which include those underlying apparently sporadic neurological diseases with low-penetrant mutations in the gene for hereditary diseases, sporadic diseases with de novo mutations, and sporadic diseases with variations in disease-susceptible genes. With unprecedentedly robust power, high-throughput genome sequencing technologies will enable us to explore all of these possibilities. These new technologies will soon be applied in clinical practice. It will be a new era of datacentric clinical practice.

  20. Fertility treatment in spinal cord injury and other neurologic disease

    PubMed Central

    Trofimenko, Vera

    2016-01-01

    Infertility in individuals with neurologic disorders is complex in etiology and manifestation. Its management therefore often requires a multimodal approach. This review addresses the implications of spinal cord injury (SCI) and other neurologic disease on fertility, including the high prevalence of sexual dysfunction, ejaculation disorders and compromised semen parameters. Available treatment approaches discussed include assisted ejaculation techniques and assisted reproductive technology including surgical sperm retrieval and intracytoplasmic sperm injection (ICSI). PMID:26904416

  1. Fertility treatment in spinal cord injury and other neurologic disease.

    PubMed

    Trofimenko, Vera; Hotaling, James M

    2016-02-01

    Infertility in individuals with neurologic disorders is complex in etiology and manifestation. Its management therefore often requires a multimodal approach. This review addresses the implications of spinal cord injury (SCI) and other neurologic disease on fertility, including the high prevalence of sexual dysfunction, ejaculation disorders and compromised semen parameters. Available treatment approaches discussed include assisted ejaculation techniques and assisted reproductive technology including surgical sperm retrieval and intracytoplasmic sperm injection (ICSI).

  2. Metabolic Disturbances in Diseases with Neurological Involvement

    PubMed Central

    Duarte, João M. N.; Schuck, Patrícia F.; Wenk, Gary L.; Ferreira, Gustavo C.

    2014-01-01

    Degeneration of specific neuronal populations and progressive nervous system dysfunction characterize neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. These findings are also reported in inherited diseases such as phenylketonuria and glutaric aciduria type I. The involvement of mitochondrial dysfunction in these diseases was reported, elicited by genetic alterations, exogenous toxins or buildup of toxic metabolites. In this review we shall discuss some metabolic alterations related to the pathophysiology of diseases with neurological involvement and aging process. These findings may help identifying early disease biomarkers and lead to more effective therapies to improve the quality of life of the patients affected by these devastating illnesses. PMID:25110608

  3. Neurological Complications of Lyme Disease

    MedlinePlus

    ... after a tick bite, include decreased concentration, irritability, memory and sleep disorders, and nerve damage in the arms and legs. × Definition Lyme disease is caused by a bacterial organism that is transmitted to humans via the bite of an infected tick. Most ...

  4. Neurological complications in chronic kidney disease

    PubMed Central

    Arnold, Ria; Issar, Tushar; Krishnan, Arun V

    2016-01-01

    Patients with chronic kidney disease (CKD) are frequently afflicted with neurological complications. These complications can potentially affect both the central and peripheral nervous systems. Common neurological complications in CKD include stroke, cognitive dysfunction, encephalopathy, peripheral and autonomic neuropathies. These conditions have significant impact not only on patient morbidity but also on mortality risk through a variety of mechanisms. Understanding the pathophysiological mechanisms of these conditions can provide insights into effective management strategies for neurological complications. This review describes clinical management of neurological complications in CKD with reference to the contributing physiological and pathological derangements. Stroke, cognitive dysfunction and dementia share several pathological mechanisms that may contribute to vascular impairment and neurodegeneration. Cognitive dysfunction and dementia may be differentiated from encephalopathy which has similar contributing factors but presents in an acute and rapidly progressive manner and may be accompanied by tremor and asterixis. Recent evidence suggests that dietary potassium restriction may be a useful preventative measure for peripheral neuropathy. Management of painful neuropathic symptoms can be achieved by pharmacological means with careful dosing and side effect considerations for reduced renal function. Patients with autonomic neuropathy may respond to sildenafil for impotence. Neurological complications often become clinically apparent at end-stage disease, however early detection and management of these conditions in mild CKD may reduce their impact at later stages. PMID:27867500

  5. The Neurologic Manifestations of Mitochondrial Disease

    ERIC Educational Resources Information Center

    Parikh, Sumit

    2010-01-01

    The nervous system contains some of the body's most metabolically demanding cells that are highly dependent on ATP produced via mitochondrial oxidative phosphorylation. Thus, the neurological system is consistently involved in patients with mitochondrial disease. Symptoms differ depending on the part of the nervous system affected. Although almost…

  6. Astrocytes: The missing link in neurological disease?

    PubMed Central

    Lin, Chia-Ching John; Deneen, Benjamin

    2013-01-01

    The central nervous system (CNS) is comprised of numerous cell types that work in concert to facilitate proper function and homeostasis. Disruption of these carefully orchestrated networks results in neuronal dysfunction, manifesting itself in a variety of neurological disorders. While neuronal dysregulation is causative of symptoms manifest in the clinic, the etiology of these disorders is often more complex than simply a loss of neurons or intrinsic dysregulation of their function. In the adult brain, astrocytes comprise the most abundant cell type and play key roles in CNS physiology, therefore it stands to reason that dysregulation of normal astrocyte function contributes to the etiology and progression of varied neurological disorders. We review here some neurological disorders associated with an astrocyte factor and discuss how the related astrocyte dysfunction contributes to the etiology and/or progression of these disorders. PMID:24365571

  7. Sleep disorders in children with neurologic diseases.

    PubMed

    Zucconi, M; Bruni, O

    2001-12-01

    Pediatric neurologic diseases are often associated with different kinds of sleep disruption (mainly insomnia, less frequently hypersomnia or parasomnias). Due to the key-role of sleep for development, the effort to ameliorate sleep patterns in these children could have important prognostic benefits. Study of sleep architecture and organization in neurologic disorders could lead to a better comprehension of the pathogenesis and a better treatment of the disorders. This article focuses on the following specific neurologic diseases: nocturnal frontal lobe epilepsy and abnormal motor behaviors of epileptic origin, evaluating differential diagnosis with parasomnias; achondroplasia, confirming the crucial role of craniofacial deformity in determining sleep-disordered breathing; neuromuscular diseases, mainly Duchenne's muscular dystrophy and myotonic dystrophy; cerebral palsy, evaluating either the features of sleep architecture and the importance of the respiratory problems associated; headaches, confirming the strict relationships with sleep in terms of neurochemical and neurobehavioral substrates; and finally a review on the effectiveness of melatonin for sleep problems in children with neurologic syndromes and mental retardation, blindness, and epilepsy.

  8. Management of oral secretions in neurological disease.

    PubMed

    McGeachan, Alexander J; Mcdermott, Christopher J

    2017-04-01

    Sialorrhoea is a common and problematic symptom that arises from a range of neurological conditions associated with bulbar or facial muscle dysfunction. Drooling can significantly affect quality of life due to both physical complications such as oral chapping, and psychological complications such as embarrassment and social isolation. Thicker, tenacious oral and pharyngeal secretions may result from the drying management approach to sialorrhoea. The management of sialorrhoea in neurological diseases depends on the underlying pathology and severity of symptoms. Interventions include anticholinergic drugs, salivary gland-targeted radiotherapy, salivary gland botulinum toxin and surgical approaches. The management of thick secretions involves mainly conservative measures such as pineapple juice as a lytic agent, cough assist, saline nebulisers and suctioning or mucolytic drugs like carbocisteine. Despite a current lack of evidence and variable practice, management of sialorrhoea should form a part of the multidisciplinary approach needed for long-term neurological conditions.

  9. Neurological disorders and inflammatory bowel diseases

    PubMed Central

    Casella, Giovanni; Tontini, Gian Eugenio; Bassotti, Gabrio; Pastorelli, Luca; Villanacci, Vincenzo; Spina, Luisa; Baldini, Vittorio; Vecchi, Maurizio

    2014-01-01

    Extraintestinal manifestations occur in about one-third of patients living with inflammatory bowel disease (IBD) and may precede the onset of gastrointestinal symptoms by many years. Neurologic disorders associated with IBD are not frequent, being reported in 3% of patients, but they often represent an important cause of morbidity and a relevant diagnostic issue. In addition, the increasing use of immunosuppressant and biological therapies for IBD may also play a pivotal role in the development of neurological disorders of different type and pathogenesis. Hence, we provide a complete and profound review of the main features of neurological complications associated with IBD, with particular reference to those related to drugs and with a specific focus on their clinical presentation and possible pathophysiological mechanisms. PMID:25083051

  10. [Nutritional and metabolic aspects of neurological diseases].

    PubMed

    Planas Vilà, Mercè

    2014-01-01

    The central nervous system regulates food intake, homoeostasis of glucose and electrolytes, and starts the sensations of hunger and satiety. Different nutritional factors are involved in the pathogenesis of several neurological diseases. Patients with acute neurological diseases (traumatic brain injury, cerebral vascular accident hemorrhagic or ischemic, spinal cord injuries, and cancer) and chronic neurological diseases (Alzheimer's Disease and other dementias, amyotrophic lateral sclerosis, Parkinson's Disease) increase the risk of malnutrition by multiple factors related to nutrient ingestion, abnormalities in the energy expenditure, changes in eating behavior, gastrointestinal changes, and by side effects of drugs administered. Patients with acute neurological diseases have in common the presence of hyper metabolism and hyper catabolism both associated to a period of prolonged fasting mainly for the frequent gastrointestinal complications, many times as a side effect of drugs administered. During the acute phase, spinal cord injuries presented a reduction in the energy expenditure but an increase in the nitrogen elimination. In order to correct the negative nitrogen balance increase intakes is performed with the result of a hyper alimentation that should be avoided due to the complications resulting. In patients with chronic neurological diseases and in the acute phase of cerebrovascular accident, dysphagia could be present which also affects intakes. Several chronic neurological diseases have also dementia, which lead to alterations in the eating behavior. The presence of malnutrition complicates the clinical evolution, increases muscular atrophy with higher incidence of respiratory failure and less capacity to disphagia recuperation, alters the immune response with higher rate of infections, increases the likelihood of fractures and of pressure ulcers, increases the incapacity degree and is an independent factor to increase mortality. The periodic nutritional

  11. Epigenetic mechanisms in neurological and neurodegenerative diseases

    PubMed Central

    Landgrave-Gómez, Jorge; Mercado-Gómez, Octavio; Guevara-Guzmán, Rosalinda

    2015-01-01

    The role of epigenetic mechanisms in the function and homeostasis of the central nervous system (CNS) and its regulation in diseases is one of the most interesting processes of contemporary neuroscience. In the last decade, a growing body of literature suggests that long-term changes in gene transcription associated with CNS’s regulation and neurological disorders are mediated via modulation of chromatin structure. “Epigenetics”, introduced for the first time by Waddington in the early 1940s, has been traditionally referred to a variety of mechanisms that allow heritable changes in gene expression even in the absence of DNA mutation. However, new definitions acknowledge that many of these mechanisms used to perpetuate epigenetic traits in dividing cells are used by neurons to control a variety of functions dependent on gene expression. Indeed, in the recent years these mechanisms have shown their importance in the maintenance of a healthy CNS. Moreover, environmental inputs that have shown effects in CNS diseases, such as nutrition, that can modulate the concentration of a variety of metabolites such as acetyl-coenzyme A (acetyl-coA), nicotinamide adenine dinucleotide (NAD+) and beta hydroxybutyrate (β-HB), regulates some of these epigenetic modifications, linking in a precise way environment with gene expression. This manuscript will portray what is currently understood about the role of epigenetic mechanisms in the function and homeostasis of the CNS and their participation in a variety of neurological disorders. We will discuss how the machinery that controls these modifications plays an important role in processes involved in neurological disorders such as neurogenesis and cell growth. Moreover, we will discuss how environmental inputs modulate these modifications producing metabolic and physiological alterations that could exert beneficial effects on neurological diseases. Finally, we will highlight possible future directions in the field of epigenetics

  12. Wilson's disease and other neurological copper disorders.

    PubMed

    Bandmann, Oliver; Weiss, Karl Heinz; Kaler, Stephen G

    2015-01-01

    The copper metabolism disorder Wilson's disease was first defined in 1912. Wilson's disease can present with hepatic and neurological deficits, including dystonia and parkinsonism. Early-onset presentations in infancy and late-onset manifestations in adults older than 70 years of age are now well recognised. Direct genetic testing for ATP7B mutations are increasingly available to confirm the clinical diagnosis of Wilson's disease, and results from biochemical and genetic prevalence studies suggest that Wilson's disease might be much more common than previously estimated. Early diagnosis of Wilson's disease is crucial to ensure that patients can be started on adequate treatment, but uncertainty remains about the best possible choice of medication. Furthermore, Wilson's disease needs to be differentiated from other conditions that also present clinically with hepatolenticular degeneration or share biochemical abnormalities with Wilson's disease, such as reduced serum ceruloplasmin concentrations. Disordered copper metabolism is also associated with other neurological conditions, including a subtype of axonal neuropathy due to ATP7A mutations and the late-onset neurodegenerative disorders Alzheimer's disease and Parkinson's disease.

  13. Neurologic complications of valvular heart disease.

    PubMed

    Cruz-Flores, Salvador

    2014-01-01

    Valvular heart disease (VHD) is frequently associated with neurologic complications; cerebral embolism is the most common of these since thrombus formation results from the abnormalities in the valvular surfaces or from the anatomic and physiologic changes associated with valve dysfunction, such as atrial or ventricular enlargement, intracardiac thrombi, and cardiac dysrhythmias. Prosthetic heart valves, particularly mechanical valves, are very thrombogenic, which explains the high risk of thromboembolism and the need for anticoagulation for the prevention of embolism. Infective endocarditis is a disease process with protean manifestations that include not only cerebral embolism but also intracranial hemorrhage, mycotic aneurysms, and systemic manifestations such as fever and encephalopathy. Other neurologic complications include nonbacterial thrombotic endocarditis, a process associated with systemic diseases such as cancer and systemic lupus erythematosus. For many of these conditions, anticoagulation is the mainstay of treatment to prevent cerebral embolism, therefore it is the potential complications of anticoagulation that can explain other neurologic complications in patients with VHD. The prevention and management of these complications requires an understanding of their natural history in order to balance the risks posed by valvular disease itself against the risks and benefits associated with treatment.

  14. Brain biopsy in benign neurological disease.

    PubMed

    Gilkes, C E; Love, S; Hardie, R J; Edwards, R J; Scolding, N J; Rice, C M

    2012-05-01

    Brain biopsy is well established in clinical practice when there is suspicion of CNS malignancy. However, there is little consensus regarding the indications for brain biopsy in non-malignant neurological disease. This is due in no small part to limitations in the available literature pertaining to diagnostic brain biopsies. The published evidence largely comprises small, retrospective, single-centre analyses performed over long time periods, including non-homogeneous patient groups with considerable variation in reported outcomes. Here we present pragmatic guidance for those clinicians considering diagnostic brain biopsy in a patient with non-neoplastic neurological disease and highlight practice points with the aim of maximising the probability of gaining clinically useful information from the procedure.

  15. Therapies for neurological disease in the mucopolysaccharidoses.

    PubMed

    Anson, Donald S; McIntyre, Chantelle; Byers, Sharon

    2011-04-01

    Intravenous enzyme replacement therapy has been developed as a viable treatment for most of the somatic pathologies associated with the mucopolysaccharide storage disorders. However, approximately two thirds of individuals affected by a mucopolysaccharide storage disorder also display neurological disease, in these instances intravenous enzyme replacement therapy is not viable as the blood-brain barrier severely limits enzyme distribution from the peripheral circulation into the central nervous system. Accordingly, much research is now focussed on developing therapies that specifically address neurological disease, or somatic and neurological disease in combination. Therapies designed to address the underlying cause of central nervous system pathology, that is the lysosomal storage itself, can be broadly divided into two groups, those that continue the rationale of enzyme replacement, and those that address the supply side of the storage equation; that is the production of storage material. Enzyme replacement can be further divided by technology (principally direct enzyme replacement, gene replacement and cell transplantation). Here we review the current state of the art for these strategies and suggest possible future directions for research in this field. In particular, we suggest that any one approach in itself is unlikely to be as efficacious as a carefully considered combination therapy, be it a combination of some sort of enzyme replacement with substrate deprivation, or a combination of two different replacement technologies or strategies.

  16. MicroRNA therapeutics in neurological disease.

    PubMed

    Greenberg, David S; Soreq, Hermona

    2014-01-01

    Developing microRNA therapeutics for neurological diseases is both a promising opportunity and an extremely challenging topic for several reasons. The promise stems from the very small size of microRNAs, which makes them amenable for manipulation via short synthetic oligonucleotides or engineered viruses. Also, the fact that each microRNA may regulate numerous target transcripts of the same pathway predicts that such manipulations may affect an entire pathway rather than a single gene and gives reason to hope that low dose therapeutic targeting of the top microRNA in such a hierarchic pyramid would suffice to induce a focused change in the entire pyramid. However, these same features, which make microRNAs such promising targets for therapeutic manipulations also present great challenges. Thus the plethora of functional targets for each microRNA in specific cell types is yet far from being elucidated, which implies that the targets to be affected may not be those planned to be manipulated (a risk of 'off-target' effects). Also, the hierarchic order of microRNA regulation is yet unknown, which predicts a risk of complex, multi-leveled consequences following the manipulation of a single microRNA; and the delivery of oligonucleotide therapeutics into the brain is a challenge due to the blood-brain barrier. In this chapter, we briefly outline the current state of knowledge regarding microRNA regulation in different neuropathologies and sketch the emerging principles for the development of microRNA therapeutics for these diseases.We address issues such as modes of delivery and consideration of the inherited and acquired variability between individuals in the susceptibility to such treatments. We further refer in a somewhat more in-depth manner to the issue of manipulating microRNA functioning in the parasympathetic system and the pathway of cholinergic signaling. Beyond the brain and within it, cholinergic signaling controls inflammatory reactions, and microRNA changes

  17. Managing Pain Caused By Neurological Disease

    PubMed Central

    Tunks, Eldon

    1985-01-01

    Stabbing paroxysmal pain due to neurological disease can often be controlled by anticonvulsants, whereas steady burning pain is often responsive to tricyclic antidepressants, and to neuroleptics. Overuse of opiates may actually aggravate the pain, necessitating detoxification. Transcutaneous electrical nerve stimulation is helpful for conditions in which pain is localized, especially if there is a ‘trigger area’ or neuroma, or if paresthesias can be stimulated within the painful area. Local anesthetic injection, possibly with corticosteroid, relieves painful scars and neuromas, neuritis, and tender trigger points. Sympathetic blocks are used for post-herpetic neuralgia and sympathetic dystrophies. Relaxation therapy is a very useful psychological treatment. PMID:21274032

  18. Neurologic complications of sickle cell disease.

    PubMed

    Venkataraman, Akila; Adams, Robert J

    2014-01-01

    Sickle cell disease (SCD) is a group of genetic blood disorders that vary in severity, but the most severe forms, primarily homozygous sickle cell anemia, are associated with neurologic complications. Over the last 90 years it has become established that some patients will develop severe arterial disease of the intracranial brain arteries and suffer brain infarction. Smaller infarctions and brain atrophy may also be seen and over time there appear to be negative cognitive effects in some patients, with or without abnormal brain imaging. Focal mononeuropathies and pneumococcal meningitis are also more common in these patients. Brain infarction in children can largely be prevented screening children beginning at age 2 years and instituting regular blood transfusion when the Doppler indicates high stroke risk (>200cm/sec). Iron overload and the uncertain duration of transfusion are disadvantages but overall this approach, tested in a randomized clinical trial, reduced first stroke by over 90%. Secondary stroke prevention has not been subjected to a randomized controlled trial except for one recently stopped comparison of regular transfusions compared to hydroxuyrea (results favored transfusion). The usual stroke prevention agents (such as aspirin or warfarin) have not been rigorously tested. Magnetic resonance imaging and positron emission tomography give evidence of subtle and sometimes overt brain injury due to stroke in many adults, but a preventive strategy for adults with SCD has not been developed. Bone marrow transplantation is the only cure, but some non-neurologic symptoms can be controlled in adults with hydroxuyrea.

  19. Neurological disorders in complex humanitarian emergencies and natural disasters.

    PubMed

    Mateen, Farrah J

    2010-09-01

    Complex humanitarian emergencies include the relatively acute, severe, and overwhelming health consequences of armed conflict, food scarcity, mass displacement, and political strife. Neurological manifestations of complex humanitarian emergencies are important and underappreciated consequences of emergencies in populations worldwide. This review critically assesses the existing knowledge of the range of neurological disorders that accompany complex humanitarian emergencies and natural disasters in both the acute phase of crisis and the "long shadow" that follows.

  20. Dysfunctional HCN ion channels in neurological diseases.

    PubMed

    DiFrancesco, Jacopo C; DiFrancesco, Dario

    2015-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current) in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation, and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials, and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson's disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic, and physiopathological

  1. Wilson's disease and other neurological copper disorders.

    PubMed Central

    Bandmann, Oliver; Weiss, Karl Heinz; Kaler, Stephen G.

    2015-01-01

    Summary The classic copper metabolism disorder, Wilson disease (WD), was first defined in 1912. Both early onset presentations in infancy and late onset manifestations in adults > 70 years are now well recognized. Modern biochemical and genetic prevalence studies suggest that WD may be considerably more common than previously appreciated. Early diagnosis of WD is crucial to ensure that patients can be started on adequate treatment but uncertainty remains about the best possible choice of medication. Direct genetic testing for ATP7B mutations is increasingly available to confirm the clinical diagnosis of WD. WD needs to be differentiated from other conditions that present clinically with hepatolenticular degeneration or share biochemical abnormalities with WD, such as reduced serum cerulo plasmin levels. Disordered copper metabolism is also implied in an increasing number of other neurological conditions, including a subtype of axonal neuropathy due to ATP7A mutations, and the common late-onset neurodegenerative disorders Alzheimer’s disease and Parkinson’s disease. PMID:25496901

  2. The mitochondrial permeability transition in neurologic disease.

    PubMed

    Norenberg, M D; Rao, K V Rama

    2007-06-01

    Mitochondria, being the principal source of cellular energy, are vital for cell life. Yet, ironically, they are also major mediators of cell death, either by necrosis or apoptosis. One means by which these adverse effects occur is through the mitochondrial permeability transition (mPT) whereby the inner mitochondrial membrane suddenly becomes excessively permeable to ions and other solutes, resulting in a collapse of the inner membrane potential, ultimately leading to energy failure and cell necrosis. The mPT may also bring about the release of various factors known to cause apoptotic cell death. The principal factors leading to the mPT are elevated levels of intracellular Ca2+ and oxidative stress. Characteristically, the mPT is inhibited by cyclosporin A. This article will briefly discuss the concept of the mPT, its molecular composition, its inducers and regulators, agents that influence its activity and describe the consequences of its induction. Lastly, we will review its potential contribution to acute neurological disorders, including ischemia, trauma, and toxic-metabolic conditions, as well as its role in chronic neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.

  3. Dynamic diseases in neurology and psychiatry

    NASA Astrophysics Data System (ADS)

    Milton, John; Black, Deborah

    1995-03-01

    Thirty-two (32) periodic diseases of the nervous system are identified in which symptoms and/or signs recur. In 10/32, the recurrence of a symptom complex is one of the defining features of the illness, whereas in 22/32 oscillatory signs occur in the setting of an ongoing nervous system disorder. We discuss the possibility that these disorders may be dynamic diseases.

  4. BKCa channel dysfunction in neurological diseases

    PubMed Central

    N'Gouemo, Prosper

    2014-01-01

    The large conductance, Ca2+-activated K+ channels (BKCa, KCa1.1) are expressed in various brain neurons where they play important roles in regulating action potential duration, firing frequency and neurotransmitter release. Membrane potential depolarization and rising levels of intracellular Ca2+ gated BKCa channels, which in turn results in an outward K+ flux that re/hyperpolarizes the membrane. The sensitivity of BKCa channels to Ca2+ provides an important negative-feedback system for Ca2+ entry into brain neurons and suppresses repetitive firing. Thus, BKCa channel loss-of-function gives rise to neuronal hyperexcitability, which can lead to seizures. Evidence also indicates that BKCa channels can facilitate high-frequency firing (gain-of-function) in some brain neurons. Interestingly, both gain-of-function and loss-of-function mutations of genes encoding for various BKCa channel subunits have been associated with the development of neuronal excitability disorders, such as seizure disorders. The role of BKCa channels in the etiology of some neurological diseases raises the possibility that these channels can be used as molecular targets to prevent and suppress disease phenotypes. PMID:25324781

  5. Emerging links between homeostatic synaptic plasticity and neurological disease.

    PubMed

    Wondolowski, Joyce; Dickman, Dion

    2013-11-21

    Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.

  6. NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies

    PubMed Central

    Song, Limin; Pei, Lei; Yao, Shanglong; Wu, Yan; Shang, You

    2017-01-01

    Neuroinflammation has been identified as a causative factor of multiple neurological diseases. The nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome, a subcellular multiprotein complex that is abundantly expressed in the central nervous system (CNS), can sense and be activated by a wide range of exogenous and endogenous stimuli such as microbes, aggregated and misfolded proteins, and adenosine triphosphate, which results in activation of caspase-1. Activated caspase-1 subsequently leads to the processing of interleukin-1β (IL-1β) and interleukin-18 (IL-18) pro-inflammatory cytokines and mediates rapid cell death. IL-1β and IL-18 drive inflammatory responses through diverse downstream signaling pathways, leading to neuronal damage. Thus, the NLRP3 inflammasome is considered a key contributor to the development of neuroinflammation. In this review article, we briefly discuss the structure and activation the NLRP3 inflammasome and address the involvement of the NLRP3 inflammasome in several neurological disorders, such as brain infection, acute brain injury and neurodegenerative diseases. In addition, we review a series of promising therapeutic approaches that target the NLRP3 inflammasome signaling including anti-IL-1 therapy, small molecule NLRP3 inhibitors and other compounds, however, these approaches are still experimental in neurological diseases. At present, it is plausible to generate cell-specific conditional NLRP3 knockout (KO) mice via the Cre system to investigate the role of the NLRP3 inflammasome, which may be instrumental in the development of novel pharmacologic investigations for neuroinflammation-associated diseases. PMID:28337127

  7. Neurological Manifestations of Renal Diseases in Children in Qazvin/ Iran

    PubMed Central

    DALIRANI, Reza; MAHYAR, Abolfazl; AYAZI, Parviz; AHMADI, Ghazaleh

    2016-01-01

    Objective Renal diseases are one of the most common causes of referrals and admissions of children, hence it is important to know their neurological presentations. This study aimed to determine neurological presentations of renal diseases in children. Material & Methods A total of 634 children with renal diseases, admitted to Qazvin Pediatric Hospital, Qazvin, central Iran from 2011 to 2013 were studied. Neurological presentations of patients were established and the results were analyzed using statistical tests. Results Neurological presentations were found in 18 (2.8%) out of 634 patients, of whom 15 had febrile seizures, two thromboembolism, and one encephalopathy. Among patients with urinary tract infection (UTI), 2.6% had febrile seizures, 11.1% of those with glomerulonephritis had encephalopathy, and 3.7% of those with nephrotic syndrome had cerebral thromboembolism. Conclusion Results showed neurological presentations in 2.8% of children with renal diseases, and febrile seizure as the most common presentation. PMID:27375752

  8. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  9. Molecular imaging in traditional Chinese medicine therapy for neurological diseases.

    PubMed

    Wang, Zefeng; Wan, Haitong; Li, Jinhui; Zhang, Hong; Tian, Mei

    2013-01-01

    With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer's disease, Parkinson's disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM.

  10. Molecular Imaging in Traditional Chinese Medicine Therapy for Neurological Diseases

    PubMed Central

    Wan, Haitong; Li, Jinhui; Zhang, Hong; Tian, Mei

    2013-01-01

    With the speeding tendency of aging society, human neurological disorders have posed an ever increasing threat to public health care. Human neurological diseases include ischemic brain injury, Alzheimer's disease, Parkinson's disease, and spinal cord injury, which are induced by impairment or specific degeneration of different types of neurons in central nervous system. Currently, there are no more effective treatments against these diseases. Traditional Chinese medicine (TCM) is focused on, which can provide new strategies for the therapy in neurological disorders. TCM, including Chinese herb medicine, acupuncture, and other nonmedication therapies, has its unique therapies in treating neurological diseases. In order to improve the treatment of these disorders by optimizing strategies using TCM and evaluate the therapeutic effects, we have summarized molecular imaging, a new promising technology, to assess noninvasively disease specific in cellular and molecular levels of living models in vivo, that was applied in TCM therapy for neurological diseases. In this review, we mainly focus on applying diverse molecular imaging methodologies in different TCM therapies and monitoring neurological disease, and unveiling the mysteries of TCM. PMID:24222911

  11. Bovine diseases causing neurological signs and death in Mexican feedlots.

    PubMed

    Ramírez-Romero, Rafael; Ramírez-Hernández, Cecilia; García-Márquez, Luis Jorge; Macedo-Barragán, Rafael Julio; Martínez-Burnes, Julio; López-Mayagoitia, Alfonso

    2014-06-01

    The number of large feedlot operations, similar to that of USA and Canada, has notably increased in Mexico in the last three decades. Clinical and laboratory diagnoses of neurological diseases in feedlot cattle are crucial in Mexico and Central America because of the high incidence of bovine paralytic rabies (BPR). Because of its zoonotic potential, BPR must be promptly diagnosed and differentiated from other bovine neurological diseases such as thrombotic meningoencephalitis (TME), polioencephalomalacia (PEM) and botulism. More recently, BPR and botulism have been diagnosed with increasing frequency in Mexican feedlots. Neither BPR nor botulism has relevant gross lesions, thus post-mortem diagnosis without laboratory support is impossible. Herein, we describe five outbreaks of neurological diseases in Mexican feedlots in which BPR, botulism and PEM were diagnosed either independently or in combination. A diagram illustrating the most conspicuous pathologic findings and ancillary laboratory test required to confirm the diagnoses of these neurological diseases in feedlot cattle is proposed.

  12. Therapeutic Apheresis in Immunologic Renal and Neurological Diseases.

    PubMed

    Bambauer, Rolf; Latza, Reinhard; Burgard, Daniel; Schiel, Ralf

    2017-02-01

    Since the mid 1970s, when membrane modules became available, plasma separation techniques have gained in importance especially in the past few years. The advantages of this method are a complete separation of the corpuscular components from the plasma and due to increased blood flow rate and higher efficacy. Systemic autoimmune diseases based on an immune pathogenesis produce autoantibodies and circulating immune complexes, which cause inflammation in the tissues of various organs. In most cases, these diseases have a poor prognosis without treatment. Therapeutic apheresis (TA) in combination with immunosuppressive therapies has led to a steady increase in survival rates over the last 40 years. The updated information on immunology and molecular biology of different immunologic diseases are discussed in relation to the rationale for apheresis therapy and its place in combination with other modern treatments. The different diseases can be treated by various apheresis methods such as therapeutic plasma exchange (TPE) with substitution solution, or with online plasma or blood purification using adsorption columns, which contain biological or non-biological agents. Here, the authors provide an overview of the most important pathogenic aspects indicating that TA can be a supportive therapy in systemic autoimmune diseases such as renal and neurological disorders. For the immunological diseases that can be treated with TA, the guidelines of the German Working Group of Clinical Nephrology and of the Apheresis Committee of the American Society for Apheresis are cited.

  13. Therapeutic translation of iPSCs for treating neurological disease.

    PubMed

    Yu, Diana X; Marchetto, Maria C; Gage, Fred H

    2013-06-06

    Somatic cellular reprogramming is a fast-paced and evolving field that is changing the way scientists approach neurological diseases. For the first time in the history of neuroscience, it is feasible to study the behavior of live neurons from patients with neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, and neuropsychiatric diseases, such as autism and schizophrenia. In this Perspective, we will discuss reprogramming technology in the context of its potential use for modeling and treating neurological and psychiatric diseases and will highlight areas of caution and opportunities for improvement.

  14. Inflammatory bowel disease: An increased risk factor for neurologic complications

    PubMed Central

    Morís, Germán

    2014-01-01

    Only a very few systematic studies have investigated the frequency of neurologic disorders in patients with Crohn’s disease (CD) and ulcerative colitis (UC), which are the two main types of inflammatory bowel disease (IBD). Results have been inconsistent and variable, owing to differences in case-finding methods and evaluated outcomes in different studies. The most frequent neurologic manifestations reported in CD and UC populations are cerebrovascular disease (with either arterial or venous events), demyelinating central nervous system disease, and peripheral neuropathy (whether axonal or demyelinating); however, the literature describes numerous nervous system disorders as being associated with IBD. The pathogenesis of nervous system tissue involvement in IBD has yet to be elucidated, although it seems to be related to immune mechanisms or prothrombotic states. The recently-introduced tumor necrosis factor (TNF) inhibitors have proven successful in controlling moderate to severe IBD activity. However, severe neurologic disorders associated with TNF inhibitors have been reported, which therefore raises concerns regarding the effect of anti-TNF-α antibodies on the nervous system. Although neurological involvement associated with IBD is rarely reported, gastroenterologists should be aware of the neurologic manifestations of IBD in order to provide early treatment, which is crucial for preventing major neurologic morbidity. PMID:24574797

  15. Psychiatric manifestations of neurologic disease: where are we headed?

    PubMed Central

    Lyketsos, Constantin G.; Kozauer, Nicholas; Rabins, Peter V.

    2007-01-01

    Neuropsychiatry represents a field of medicine situated at the crossroads of neurology and psychiatry, and deals with the interface of behavioral phenomena driven by brain dysfunction. Psychiatric symptoms are highly prevalent in these conditions, are a major source of disability and diminished quality of life, and potentially represent the target of treatment interventions that stand to significantly decrease the suffering they generate. In this article, the disease paradigm is explained, with particular attention to its role as an organizing principle for the field. Specific diseases including traumatic brain injury, stroke, Parkinson's disease, Alzheimer's disease, multiple sclerosis, and epilepsy are explored in relation to the presentation of multiple psychiatric phenotypes in each, associations with underlying brain pathology, and existing treatment approaches. Finally, the afticle explores the inherent complexities in this area of research and proposes a framework for future work based on the understanding of phenomenology and associated risk factors, the involvement of the rapidly advancing field of neuroscience, and targeted treatment development to serve as a road map for advancement in the field. PMID:17726911

  16. Recent advances in metabolomics in neurological disease, and future perspectives.

    PubMed

    Zhang, Ai-hua; Sun, Hui; Wang, Xi-jun

    2013-10-01

    Discovery of clinically relevant biomarkers for diseases has revealed metabolomics has potential advantages that classical diagnostic approaches do not. The great asset of metabolomics is that it enables assessment of global metabolic profiles of biofluids and discovery of biomarkers distinguishing disease status, with the possibility of enhancing clinical diagnostics. Most current clinical chemistry tests rely on old technology, and are neither sensitive nor specific for a particular disease. Clinical diagnosis of major neurological disorders, for example Alzheimer's disease and Parkinson's disease, on the basis of current clinical criteria is unsatisfactory. Emerging metabolomics is a powerful technique for discovering novel biomarkers and biochemical pathways to improve diagnosis, and for determination of prognosis and therapy. Identifying multiple novel biomarkers for neurological diseases has been greatly enhanced with recent advances in metabolomics that are more accurate than routine clinical practice. Cerebrospinal fluid (CSF), which is known to be a rich source of small-molecule biomarkers for neurological and neurodegenerative diseases, and is in close contact with diseased areas in neurological disorders, could potentially be used for disease diagnosis. Metabolomics will drive CSF analysis, facilitate and improve the development of disease treatment, and result in great benefits to public health in the long-term. This review covers different aspects of CSF metabolomics and discusses their significance in the postgenomic era, emphasizing the potential importance of endogenous small-molecule metabolites in this emerging field.

  17. Childhood organic neurological disease presenting as psychiatric disorder.

    PubMed Central

    Rivinus, T M; Jamison, D L; Graham, P J

    1975-01-01

    Over a period of one year 12 children with complaints which had been diagnosed as due to a psychiatric disorder presented to a paediatric neurological unit where neurological disease was diagnosed. The group was characterized by behavioural symptoms such as deteriorating school performance, visual loss, and postural disturbance, which are unusual in children attending child psychiatric departments. It is suggested that where there is diagnostic uncertainty the presence of these physical symptoms calls for periodic neurological reassessment, and attention is drawn to the rare but serious disorders which may thus be diagnosed. Making an organic diagnosis, however, should not preclude psychosocial management of emotional reactions in these families. PMID:1130816

  18. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases

    PubMed Central

    Wu, Haijian; Niu, Huanjiang; Shao, Anwen; Wu, Cheng; Dixon, Brandon J.; Zhang, Jianmin; Yang, Shuxu; Wang, Yirong

    2015-01-01

    Neurological diseases, which consist of acute injuries and chronic neurodegeneration, are the leading causes of human death and disability. However, the pathophysiology of these diseases have not been fully elucidated, and effective treatments are still lacking. Astaxanthin, a member of the xanthophyll group, is a red-orange carotenoid with unique cell membrane actions and diverse biological activities. More importantly, there is evidence demonstrating that astaxanthin confers neuroprotective effects in experimental models of acute injuries, chronic neurodegenerative disorders, and neurological diseases. The beneficial effects of astaxanthin are linked to its oxidative, anti-inflammatory, and anti-apoptotic characteristics. In this review, we will focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms in the setting of neurological diseases. PMID:26378548

  19. Molecular mimicry in autoimmune neurological disease after viral infection.

    PubMed

    Roep, Bart O

    2003-10-01

    Viral infections have been associated with the development of several neurological and neuroendocrine autoimmune diseases. Structural similarities between environmental proteins and self-proteins have long been proposed to be targets for immune cross reactivity associated with initiation of autoimmune diseases. This mechanism called molecular mimicry has also been put forward for immune mediated neurological diseases associated with viral infection. Although many potential candidates for cross reactivity have been put forward, only few have been substantiated on the molecular level. For the definition of cellular immune cross-reactivity, it proved critical to appreciate that recognition patterns of T-cells are not linear. Subsequent microarray studies unequivocally demonstrated functional mimicry of seemingly disparate amino acid sequences. This review summarises the present evidence for molecular mimicry in neurological autoimmune diseases and virus

  20. Parkinson's disease between internal medicine and neurology.

    PubMed

    Csoti, Ilona; Jost, Wolfgang H; Reichmann, Heinz

    2016-01-01

    General medical problems and complications have a major impact on the quality of life in all stages of Parkinson's disease. To introduce an effective treatment, a comprehensive analysis of the various clinical symptoms must be undertaken. One must distinguish between (1) diseases which arise independently of Parkinson's disease, and (2) diseases which are a direct or indirect consequence of Parkinson's disease. Medical comorbidity may induce additional limitations to physical strength and coping strategies, and may thus restrict the efficacy of the physical therapy which is essential for treating hypokinetic-rigid symptoms. In selecting the appropriate medication for the treatment of any additional medical symptoms, which may arise, its limitations, contraindications and interactions with dopaminergic substances have to be taken into consideration. General medical symptoms and organ manifestations may also arise as a direct consequence of the autonomic dysfunction associated with Parkinson's disease. As the disease progresses, additional non-parkinsonian symptoms can be of concern. Furthermore, the side effects of Parkinson medications may necessitate the involvement of other medical specialists. In this review, we will discuss the various general medical aspects of Parkinson's disease.

  1. Ketogenic diets, mitochondria, and neurological diseases

    PubMed Central

    Gano, Lindsey B.; Patel, Manisha; Rho, Jong M.

    2014-01-01

    The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate “classic KD”, as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD. PMID:24847102

  2. Ketogenic diets, mitochondria, and neurological diseases.

    PubMed

    Gano, Lindsey B; Patel, Manisha; Rho, Jong M

    2014-11-01

    The ketogenic diet (KD) is a broad-spectrum therapy for medically intractable epilepsy and is receiving growing attention as a potential treatment for neurological disorders arising in part from bioenergetic dysregulation. The high-fat/low-carbohydrate "classic KD", as well as dietary variations such as the medium-chain triglyceride diet, the modified Atkins diet, the low-glycemic index treatment, and caloric restriction, enhance cellular metabolic and mitochondrial function. Hence, the broad neuroprotective properties of such therapies may stem from improved cellular metabolism. Data from clinical and preclinical studies indicate that these diets restrict glycolysis and increase fatty acid oxidation, actions which result in ketosis, replenishment of the TCA cycle (i.e., anaplerosis), restoration of neurotransmitter and ion channel function, and enhanced mitochondrial respiration. Further, there is mounting evidence that the KD and its variants can impact key signaling pathways that evolved to sense the energetic state of the cell, and that help maintain cellular homeostasis. These pathways, which include PPARs, AMP-activated kinase, mammalian target of rapamycin, and the sirtuins, have all been recently implicated in the neuroprotective effects of the KD. Further research in this area may lead to future therapeutic strategies aimed at mimicking the pleiotropic neuroprotective effects of the KD.

  3. The role of cannabinoids and leptin in neurological diseases.

    PubMed

    Agar, E

    2015-12-01

    Cannabinoids exert a neuroprotective influence on some neurological diseases, including Alzheimer's, Parkinson's, Huntington's, multiple sclerosis and epilepsy. Synthetic cannabinoid receptor agonists/antagonists or compounds can provide symptom relief or control the progression of neurological diseases. However, the molecular mechanism and the effectiveness of these agents in controlling the progression of most of these diseases remain unclear. Cannabinoids may exert effects via a number of mechanisms and interactions with neurotransmitters, neurotropic factors and neuropeptides. Leptin is a peptide hormone involved in the regulation of food intake and energy balance via its actions on specific hypothalamic nuclei. Leptin receptors are widely expressed throughout the brain, especially in the hippocampus, basal ganglia, cortex and cerebellum. Leptin has also shown neuroprotective properties in a number of neurological disorders, such as Parkinson's and Alzheimer's. Therefore, cannabinoid and leptin hold therapeutic potential for neurological diseases. Further elucidation of the molecular mechanisms underlying the effects on these agents may lead to the development of new therapeutic strategies for the treatment of neurological disorders.

  4. Systems biological approach on neurological disorders: a novel molecular connectivity to aging and psychiatric diseases

    PubMed Central

    2011-01-01

    Background Systems biological approach of molecular connectivity map has reached to a great interest to understand the gene functional similarities between the diseases. In this study, we developed a computational framework to build molecular connectivity maps by integrating mutated and differentially expressed genes of neurological and psychiatric diseases to determine its relationship with aging. Results The systematic large-scale analyses of 124 human diseases create three classes of molecular connectivity maps. First, molecular interaction of disease protein network generates 3632 proteins with 6172 interactions, which determines the common genes/proteins between diseases. Second, Disease-disease network includes 4845 positively scored disease-disease relationships. The comparison of these disease-disease pairs with Medical Subject Headings (MeSH) classification tree suggests 25% of the disease-disease pairs were in same disease area. The remaining can be a novel disease-disease relationship based on gene/protein similarity. Inclusion of aging genes set showed 79 neurological and 20 psychiatric diseases have the strong association with aging. Third and lastly, a curated disease biomarker network was created by relating the proteins/genes in specific disease contexts, such analysis showed 73 markers for 24 diseases. Further, the overall quality of the results was achieved by a series of statistical methods, to avoid insignificant data in biological networks. Conclusions This study improves the understanding of the complex interactions that occur between neurological and psychiatric diseases with aging, which lead to determine the diagnostic markers. Also, the disease-disease association results could be helpful to determine the symptom relationships between neurological and psychiatric diseases. Together, our study presents many research opportunities in post-genomic biomarkers development. PMID:21226925

  5. Epigenetics and Triplet-Repeat Neurological Diseases.

    PubMed

    Nageshwaran, Sathiji; Festenstein, Richard

    2015-01-01

    The term "junk DNA" has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy's disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases.

  6. Lyme disease: neurology, neurobiology, and behavior.

    PubMed

    Halperin, John J

    2014-05-01

    The Lyme disease controversy can be largely linked to the misconception that neurobehavioral effects of illness constitute evidence of nervous system infection. Appropriate differentiation between neuroborreliosis (nervous system Borrelia burgdorferi infection) and Lyme encephalopathy (altered nervous system function in individuals with systemic but not nervous system infection)-or encephalopathies of other etiologies-would lessen the controversy considerably, as the attribution of nonspecific symptoms to supposed ongoing central nervous system infection is a major factor perpetuating the debate. Epidemiologic considerations suggest that the entities referred to as "posttreatment Lyme disease" and "chronic Lyme disease" may not actually exist but rather reflect anchoring bias, linking common, nonspecific symptoms to an antecedent medical event. On the other hand, there are data suggesting possible mechanisms by which posttreatment Lyme disease could occur.

  7. The Unstable Repeats - Three Evolving Faces of Neurological Disease

    PubMed Central

    Nelson, David L.; Orr, Harry T.; Warren, Stephen T.

    2013-01-01

    Disorders characterized by expansion of an unstable nucleotide repeat account for a number of inherited neurological diseases. Here, we review examples of unstable repeat disorders that nicely illustrate the three of the major pathogenic mechanisms associated with these diseases: loss-of-function typically by disrupting transcription of the mutated gene, RNA toxic gain-of-function, and protein toxic gain-of-function. In addition to providing insight into the mechanisms underlying these devastating neurological disorders, the study of these unstable microsatellite repeat disorders has provided insight into very basic aspects of neuroscience. PMID:23473314

  8. Bullous pemphigoid and neurological disease: statistics from a dermatology service*

    PubMed Central

    Tarazona, Monica Jidid Mateus; Mota, Amanda Nascimento Cavalleiro de Macedo; Gripp, Alexandre Carlos; Unterstell, Natasha; Bressan, Aline Lopes

    2015-01-01

    Bullous pemphigoid (BP) is an autoimmune, acquired, cutaneous disease caused by the production of autoantibodies against hemidesmosomes' components in the basement membrane. The estimated incidence in Europe ranges from 7 to 43 cases per million inhabitants per year. Several studies have reported an association between BP and neurological disorders (ND). Our cohort of Bullous pemphigoid and ND is the first in Brazil and showed a significantly high prevalence of neurological and/or psychiatric diseases, especially cerebrovascular accident (CVA) and dementia, in agreement with the prevalence reported in several studies published in the medical literature in recent years. PMID:25831008

  9. Node of Ranvier disruption as a cause of neurological diseases

    PubMed Central

    Susuki, Keiichiro

    2013-01-01

    Dysfunction and/or disruption of nodes of Ranvier are now recognized as key contributors to the pathophysiology of various neurological diseases. One reason is that the excitable nodal axolemma contains a high density of Nav (voltage-gated Na+ channels) that are required for the rapid and efficient saltatory conduction of action potentials. Nodal physiology is disturbed by altered function, localization, and expression of voltage-gated ion channels clustered at nodes and juxtaparanodes, and by disrupted axon–glial interactions at paranodes. This paper reviews recent discoveries in molecular/cellular neuroscience, genetics, immunology, and neurology that highlight the critical roles of nodes of Ranvier in health and disease. PMID:23834220

  10. Induced pluripotent stem cells in the study of neurological diseases

    PubMed Central

    2011-01-01

    Five years after their initial derivation from mouse somatic cells, induced pluripotent stem (iPS) cells are an important tool for the study of neurological diseases. By offering an unlimited source of patient-specific disease-relevant neuronal and glial cells, iPS cell-based disease models hold enormous promise for identification of disease mechanisms, discovery of molecular targets and development of phenotypic screens for drug discovery. The present review focuses on the recent advancements in modeling neurological disorders, including the demonstration of disease-specific phenotypes in iPS cell-derived neurons generated from patients with spinal muscular atrophy, familial dysautonomia, Rett syndrome, schizophrenia and Parkinson disease. The ability of this approach to detect treatment effects from known therapeutic compounds has also been demonstrated, providing proof of principle for the use of iPS cell-derived cells in drug discovery. PMID:21936964

  11. Epigenetics and Triplet-Repeat Neurological Diseases

    PubMed Central

    Nageshwaran, Sathiji; Festenstein, Richard

    2015-01-01

    The term “junk DNA” has been reconsidered following the delineation of the functional significance of repetitive DNA regions. Typically associated with centromeres and telomeres, DNA repeats are found in nearly all organisms throughout their genomes. Repetitive regions are frequently heterochromatinized resulting in silencing of intrinsic and nearby genes. However, this is not a uniform rule, with several genes known to require such an environment to permit transcription. Repetitive regions frequently exist as dinucleotide, trinucleotide, and tetranucleotide repeats. The association between repetitive regions and disease was emphasized following the discovery of abnormal trinucleotide repeats underlying spinal and bulbar muscular atrophy (Kennedy’s disease) and fragile X syndrome of mental retardation (FRAXA) in 1991. In this review, we provide a brief overview of epigenetic mechanisms and then focus on several diseases caused by DNA triplet-repeat expansions, which exhibit diverse epigenetic effects. It is clear that the emerging field of epigenetics is already generating novel potential therapeutic avenues for this group of largely incurable diseases. PMID:26733936

  12. Neurological aspects of neglected tropical diseases: an unrecognized burden.

    PubMed

    Jannin, Jean; Gabrielli, Albis Francesco

    2013-01-01

    Neglected tropical diseases are a group of mostly infectious diseases that thrive among poor populations in tropical countries. A significant proportion of the conditions affecting the neurological system in such countries can be attributed to neglected tropical diseases of helminth, protozoan, bacterial, or viral origin. The neurological burden of neglected tropical diseases has not been thoroughly investigated yet, but is expected to be significant; its full appreciation, estimation, and recognition present significant challenges, as shown by the case of the "silent epidemic" of epilepsy. While tropical infections involving the nervous system are today largely preventable or treatable, as vaccines or chemotherapeutic agents are available to kill or neutralize the responsible agents, associated morbidity - when established - cannot be cured. In resource-poor settings it is likely that many infections will not be treated and will therefore progress into their advanced and severe stages, thus being increasingly associated with irreversible morbidity; this is also the case for neurological morbidity, which often entails permanent disability. Public health should aim at reducing the burden of tropical neurological diseases through interventions addressing the infection, the associated morbidity, and the disability deriving from it.

  13. Complex Neurological and Oto-Neurological Remote Care: From Space Station to Clinic

    NASA Astrophysics Data System (ADS)

    Marchbanks, Robert J.; Good, Edward F.

    2013-02-01

    The main aim of this paper is to highlight the synergy between the remote care requirements for NASA and community/rural based medicine. It demonstrates the appropriateness of applying similar health-care models for space-based medicine, as for ‘2020 vision’ community-based medicine, and the common use of screening devices with telemedicine capabilities. There is a requirement to diagnose and manage complex cases remotely and the need to empower on-site medically trained personnel to undertake the physiological measurements and decision-making. For space exploration at greater distances, the telemedicine systems will require additional sophistication to support autonomous crew medical diagnosis and interventions.1 Non-invasive intracranial pressure measurement is a priority both for terrestrial and space medicine. Arguably it is the most important neurological physiological measurement yet to be mastered and to be routinely used.

  14. Neurological diseases associated with viral and Mycoplasma pneumoniae infections

    PubMed Central

    Assaad, F.; Gispen, R.; Kleemola, M.; Syrůček, L.; Esteves, K.

    1980-01-01

    In 1963 the World Health Organization established a system for the collection and dissemination of information on viral infections and by 1976, laboratories in 49 countries were participating in this scheme. The present study is in two parts: part 1 is an analysis of almost 60 000 reports on neurological disease associated with viral and Mycoplasma pneumoniae infections reported during the 10-year period 1967-76. This analysis showed a steady increase in the yearly number of reports of viral neurological diseases, which closely followed the general increase in the overall reporting of virus diseases. Likewise, the seasonal pattern was similar to that seen in general for any given virus. Over 75% of the cases were in children. Over half of all viral neurological diseases were associated with enteroviruses, while the myxoviruses accounted for almost 30%. Among the myxoviruses, mumps virus was by far the most frequently reported. The polioviruses were the agents most commonly detected in cases of paralytic disease. The other enteroviruses, mumps virus, and the herpesviruses were the most frequently reported viruses in cases of aseptic meningitis or encephalitis. On the other hand, one-third to over one-half of the reports on the myxoviruses (excluding mumps and measles) related to ill-defined clinical conditions. Part 2 of the study deals in particular with viruses whose role in neurological disease is less well documented. One laboratory reported an outbreak of adenoviral aseptic meningitis in Czechoslovakia, while another described neurological disease associated with M. pneumoniae infection in Finland. Part 2 also includes a detailed appraisal of viral infections diagnosed in the Netherlands during the period 1973-76. The results are very similar to those routinely reported. PMID:6249511

  15. Olfaction in Neurologic and Neurodegenerative Diseases: A Literature Review

    PubMed Central

    Godoy, Maria Dantas Costa Lima; Voegels, Richard Louis; Pinna, Fábio de Rezende; Imamura, Rui; Farfel, José Marcelo

    2014-01-01

    Introduction Loss of smell is involved in various neurologic and neurodegenerative diseases, such as Parkinson disease and Alzheimer disease. However, the olfactory test is usually neglected by physicians at large. Objective The aim of this study was to review the current literature about the relationship between olfactory dysfunction and neurologic and neurodegenerative diseases. Data Synthesis Twenty-seven studies were selected for analysis, and the olfactory system, olfaction, and the association between the olfactory dysfunction and dementias were reviewed. Furthermore, is described an up to date in olfaction. Conclusion Otolaryngologist should remember the importance of olfaction evaluation in daily practice. Furthermore, neurologists and physicians in general should include olfactory tests in the screening of those at higher risk of dementia. PMID:25992176

  16. Insomnia in central neurologic diseases--occurrence and management.

    PubMed

    Mayer, Geert; Jennum, Poul; Riemann, Dieter; Dauvilliers, Yves

    2011-12-01

    The objective of this review is to highlight the impact of insomnia in central neurological disorders by providing information on its prevalence and give recommendations for diagnosis and treatment. Insomnia in neurological disorders is a frequent, but underestimated symptom. Its occurrence may be a direct consequence of the disease itself or may be secondary to pain, depression, other sleep disorders or the effects of medications. Insomnia can have a significant impact on the patient's cognitive and physical function and may be associated with psychological distress and depression. Diagnosis of insomnia is primarily based on medical history and validated questionnaires. Actigraphy is a helpful diagnostic tool for assessing the circadian sleep-wake rhythm. For differential diagnosis and to measure the duration of sleep full polysomnography may be recommended. Prior to initiating treatment the cause of insomnia must be clearly identified. First line treatment aims at the underlying neurologic disease. The few high quality treatment studies show that short term treatment with hypnotics may be recommended in most disorders after having ruled out high risk for adverse effects. Sedating antidepressants may be an effective treatment for insomnia in stroke and Parkinson's disease (PD) patients. Melatonin and light treatment can stabilize the sleep-wake circadian rhythm and shorten sleep latency in dementias and PD. Cognitive behavioral therapy (CBT) can be effective in treating insomnia symptoms associated with most of the central neurological diseases. The prevalence and treatment of insomnia in neurological diseases still need to be studied in larger patient groups with randomized clinical trials to a) better understand their impact and causal relationship and b) to develop and improve specific evidence-based treatment strategies.

  17. Dysprosody nonassociated with neurological diseases--a case report.

    PubMed

    Pinto, José Antonio; Corso, Renato José; Guilherme, Ana Cláudia Rocha; Pinho, Sílvia Rebelo; Nóbrega, Monica de Oliveira

    2004-03-01

    Dysprosody also known as pseudo-foreign dialect, is the rarest neurological speech disorder. It is characterized by alterations in intensity, in the timing of utterance segments, and in rhythm, cadency, and intonation of words. The terms refers to changes as to duration, fundamental frequency, and intensity of tonic and atonic syllables of the sentences spoken, which deprive an individual's particular speech of its characteristics. The cause of this disease is usually associated with neurological pathologies such as brain vascular accidents, cranioencephalic traumatisms, and brain tumors. The authors report a case of dysprosody attended to at the Núcleo de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço de São Paulo (NOSP). It is about a female patient with bilateral III degree Reinke's edema and normal neurological examinations that started presenting characteristics of the German dialect following a larynx microsurgery.

  18. The role of RNA metabolism in neurological diseases

    PubMed Central

    Abou Al-Shaar, H; Shariff, RK; Albakr, A

    2015-01-01

    Abstract Neurodegenerative disorders are commonly encountered in medical practices. Such diseases can lead to major morbidity and mortality among the affected individuals. The molecular pathogenesis of these disorders is not yet clear. Recent literature has revealed that mutations in RNA-binding proteins are a key cause of several human neuronal-based diseases. This review discusses the role of RNA metabolism in neurological diseases with specific emphasis on roles of RNA translation and microRNAs in neurodegeneration, RNA-mediated toxicity, repeat expansion diseases and RNA metabolism, molecular pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia, and neurobiology of survival motor neuron (SMN) and spinal muscular atrophy. PMID:27785391

  19. Ultrasound treatment of neurological diseases--current and emerging applications.

    PubMed

    Leinenga, Gerhard; Langton, Christian; Nisbet, Rebecca; Götz, Jürgen

    2016-03-01

    Like cardiovascular disease and cancer, neurological disorders present an increasing challenge for an ageing population. Whereas nonpharmacological procedures are routine for eliminating cancer tissue or opening a blocked artery, the focus in neurological disease remains on pharmacological interventions. Setbacks in clinical trials and the obstacle of access to the brain for drug delivery and surgery have highlighted the potential for therapeutic use of ultrasound in neurological diseases, and the technology has proved useful for inducing focused lesions, clearing protein aggregates, facilitating drug uptake, and modulating neuronal function. In this Review, we discuss milestones in the development of therapeutic ultrasound, from the first steps in the 1950s to recent improvements in technology. We provide an overview of the principles of diagnostic and therapeutic ultrasound, for surgery and transient opening of the blood-brain barrier, and its application in clinical trials of stroke, Parkinson disease and chronic pain. We discuss the promising outcomes of safety and feasibility studies in preclinical models, including rodents, pigs and macaques, and efficacy studies in models of Alzheimer disease. We also consider the challenges faced on the road to clinical translation.

  20. Neurologic and psychiatric manifestations of celiac disease and gluten sensitivity.

    PubMed

    Jackson, Jessica R; Eaton, William W; Cascella, Nicola G; Fasano, Alessio; Kelly, Deanna L

    2012-03-01

    Celiac Disease (CD) is an immune-mediated disease dependent on gluten (a protein present in wheat, rye or barley) that occurs in about 1% of the population and is generally characterized by gastrointestinal complaints. More recently the understanding and knowledge of gluten sensitivity (GS), has emerged as an illness distinct from celiac disease with an estimated prevalence 6 times that of CD. Gluten sensitive people do not have villous atrophy or antibodies that are present in celiac disease, but rather they can test positive for antibodies to gliadin. Both CD and GS may present with a variety of neurologic and psychiatric co-morbidities, however, extraintestinal symptoms may be the prime presentation in those with GS. However, gluten sensitivity remains undertreated and underrecognized as a contributing factor to psychiatric and neurologic manifestations. This review focuses on neurologic and psychiatric manifestations implicated with gluten sensitivity, reviews the emergence of gluten sensitivity distinct from celiac disease, and summarizes the potential mechanisms related to this immune reaction.

  1. Neurologic involvement in patients with atypical Chediak-Higashi disease

    PubMed Central

    Westbroek, Wendy; Cullinane, Andrew R.; Groden, Catherine A.; Bhambhani, Vikas; Golas, Gretchen A.; Baker, Eva H.; Lehky, Tanya J.; Snow, Joseph; Ziegler, Shira G.; Adams, David R.; Dorward, Heidi M.; Hess, Richard A.; Huizing, Marjan; Gahl, William A.; Toro, Camilo

    2016-01-01

    Objective: To delineate the developmental and progressive neurodegenerative features in 9 young adults with the atypical form of Chediak-Higashi disease (CHD) enrolled in a natural history study. Methods: Patients with atypical clinical features, but diagnostically confirmed CHD by standard evaluation of blood smears and molecular genotyping, underwent complete neurologic evaluation, MRI of the brain, electrophysiologic examination, and neuropsychological testing. Fibroblasts were collected to investigate the cellular phenotype and correlation with the clinical presentation. Results: In 9 mildly affected patients with CHD, we documented learning and behavioral difficulties along with developmental structural abnormalities of the cerebellum and posterior fossa, which are apparent early in childhood. A range of progressive neurologic problems emerge in early adulthood, including cerebellar deficits, polyneuropathies, spasticity, cognitive decline, and parkinsonism. Conclusions: Patients with undiagnosed atypical CHD manifesting some of these wide-ranging yet nonspecific neurologic complaints may reside in general and specialty neurology clinics. The absence of the typical bleeding or infectious diathesis in mildly affected patients with CHD renders them difficult to diagnose. Identification of these individuals is important not only for close surveillance of potential CHD-related systemic complications but also for a full understanding of the natural history of CHD and the potential role of the disease-causing protein, LYST, to the pathophysiology of other neurodevelopmental and neurodegenerative disorders. PMID:26944273

  2. K-Cl cotransporters, cell volume homeostasis, and neurological disease

    PubMed Central

    Kahle, Kristopher T.; Khanna, Arjun R.; Alper, Seth L.; Adragna, Norma C.; Lauf, Peter K.; Sun, Dandan; Delpire, Eric

    2016-01-01

    K+-Cl− cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. PMID:26142773

  3. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases

    PubMed Central

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A.; Jenkins, Andrew

    2015-01-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases. PMID:25904555

  4. Nutritional Alterations Associated with Neurological and Neurosurgical Diseases

    PubMed Central

    Dionyssiotis, Yannis; Papachristos, Aris; Petropoulou, Konstantina; Papathanasiou, Jannis; Papagelopoulos, Panayiotis

    2016-01-01

    Neurological and neurosurgical diseases lead to complications producing malnutrition increasing pathology and mortality. In order to avoid complications because of malnutrition or overcome deficiencies in nutrients supplements are often used for these subjects. The physiopathological mechanisms of malnutrition, methods of nutritional assessment and the supplemental support are reviewed in this paper based on the assumption that patients need to receive adequate nutrition to promote optimal recovery, placing nutrition as a first line treatment and not an afterthought in the rehabilitation. PMID:27563361

  5. Unintended Effects of Orphan Product Designation for Rare Neurological Diseases

    PubMed Central

    Murphy, Sinéad M; Puwanant, Araya; Griggs, Robert C.

    2012-01-01

    Since the introduction of the Orphan Drug Act in 1983, designed to promote development of treatments for rare diseases, at least 378 orphan drugs have been approved. Incentives include financial support, tax credits and, perhaps most importantly, extended market exclusivity. These incentives have encouraged industry interest and accelerated research on rare diseases, allowing patients with orphan diseases access to treatments. However, extended market exclusivity has been associated with unacceptably high drug costs; both for newly developed drugs and even for drugs which were previously widely available. We suggest that a paradoxical effect of orphan product exclusivity can be reduced patient access to existing drugs. In addition, the costs of each new drug are arguably unsustainable for patients and for the American health care system. Of all the specialties, neurology has the third highest number of orphan product designations, and neurological diseases account for at least one fifth of rare diseases. Citing the use of tetrabenazine for chorea in Huntington’s disease, adrenocorticotropic hormone for infantile spasms and enzyme replacement therapy with alglucosidase alpha for Pompe’s disease we highlight these paradoxical effects. PMID:23109143

  6. Unintended effects of orphan product designation for rare neurological diseases.

    PubMed

    Murphy, Sinéad M; Puwanant, Araya; Griggs, Robert C

    2012-10-01

    Since the introduction of the Orphan Drug Act in 1983, designed to promote development of treatments for rare diseases, at least 378 orphan drugs have been approved. Incentives include financial support, tax credits, and perhaps most importantly, extended market exclusivity. These incentives have encouraged industry interest and accelerated research on rare diseases, allowing patients with orphan diseases access to treatments. However, extended market exclusivity has been associated with unacceptably high drug costs, both for newly developed drugs and for drugs that were previously widely available. We suggest that a paradoxical effect of orphan product exclusivity can be reduced patient access to existing drugs. In addition, the costs of each new drug are arguably unsustainable for patients and for the American health care system. Of all the specialties, neurology has the third highest number of orphan product designations, and neurological diseases account for at least one-fifth of rare diseases. Citing the use of tetrabenazine for chorea in Huntington disease, adrenocorticotropic hormone for infantile spasms, and enzyme replacement therapy with alglucosidase alpha for Pompe disease, we highlight these paradoxical effects.

  7. Cell therapy: the final frontier for treatment of neurological diseases.

    PubMed

    Dutta, Susmita; Singh, Gurbind; Sreejith, Sailaja; Mamidi, Murali Krishna; Husin, Juani Mazmin; Datta, Indrani; Pal, Rajarshi; Das, Anjan Kumar

    2013-01-01

    Neurodegenerative diseases are devastating because they cause increasing loss of cognitive and physical functions and affect an estimated 1 billion individuals worldwide. Unfortunately, no drugs are currently available to halt their progression, except a few that are largely inadequate. This mandates the search of new treatments for these progressively degenerative diseases. Neural stem cells (NSCs) have been successfully isolated, propagated, and characterized from the adult brains of mammals, including humans. The confirmation that neurogenesis occurs in the adult brain via NSCs opens up fresh avenues for treating neurological problems. The proof-of-concept studies demonstrating the neural differentiation capacity of stem cells both in vitro and in vivo have raised widespread enthusiasm toward cell-based interventions. It is anticipated that cell-based neurogenic drugs may reverse or compensate for deficits associated with neurological diseases. The increasing interest of the private sector in using human stem cells in therapeutics is evidenced by launching of several collaborative clinical research activities between Pharma giants and research institutions or small start-up companies. In this review, we discuss the major developments that have taken place in this field to position stem cells as a prospective candidate drug for the treatment of neurological disorders.

  8. Toxicities of Immunosuppressive Treatment of Autoimmune Neurologic Diseases

    PubMed Central

    Lallana, Enrico C; Fadul, Camilo E

    2011-01-01

    In parallel to our better understanding of the role of the immune system in neurologic diseases, there has been an increased availability in therapeutic options for autoimmune neurologic diseases such as multiple sclerosis, myasthenia gravis, polyneuropathies, central nervous system vasculitides and neurosarcoidosis. In many cases, the purported benefits of this class of therapy are anecdotal and not the result of good controlled clinical trials. Nonetheless, their potential efficacy is better known than their adverse event profile. A rationale therapeutic decision by the clinician will depend on a comprehensive understanding of the ratio between efficacy and toxicity. In this review, we outline the most commonly used immune suppressive medications in neurologic disease: cytotoxic chemotherapy, nucleoside analogues, calcineurin inhibitors, monoclonal antibodies and miscellaneous immune suppressants. A discussion of their mechanisms of action and related toxicity is highlighted, with the goal that the reader will be able to recognize the most commonly associated toxicities and identify strategies to prevent and manage problems that are expected to arise with their use. PMID:22379461

  9. Understanding neurological disease mechanisms in the era of epigenetics.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2013-06-01

    The burgeoning field of epigenetics is making a significant impact on our understanding of brain evolution, development, and function. In fact, it is now clear that epigenetic mechanisms promote seminal neurobiological processes, ranging from neural stem cell maintenance and differentiation to learning and memory. At the molecular level, epigenetic mechanisms regulate the structure and activity of the genome in response to intracellular and environmental cues, including the deployment of cell type-specific gene networks and those underlying synaptic plasticity. Pharmacological and genetic manipulation of epigenetic factors can, in turn, induce remarkable changes in neural cell identity and cognitive and behavioral phenotypes. Not surprisingly, it is also becoming apparent that epigenetics is intimately involved in neurological disease pathogenesis. Herein, we highlight emerging paradigms for linking epigenetic machinery and processes with neurological disease states, including how (1) mutations in genes encoding epigenetic factors cause disease, (2) genetic variation in genes encoding epigenetic factors modify disease risk, (3) abnormalities in epigenetic factor expression, localization, or function are involved in disease pathophysiology, (4) epigenetic mechanisms regulate disease-associated genomic loci, gene products, and cellular pathways, and (5) differential epigenetic profiles are present in patient-derived central and peripheral tissues.

  10. Could a neurological disease be a part of Mozart's pathography?

    PubMed

    Ivkić, Goran; Erdeljić, Viktorija

    2011-01-01

    As expected, since we recently celebrated the 250th anniversary of birth of Wolfgang Amadeus Mozart, there has been again a renewal of interest in his short but intensive life, as well as in the true reason of his untimely dead. Mozart lived and died in time when the medical knowledge was based mostly on subjective observations, without the established basics of standardized medical terminology and methodology. This leaves a great space for hypothesizing about his health problems, as well as about the cause of his death. The medical academic community attributed to Mozart approximately 150 different medical diagnoses. There is much speculation on the possible causes of Mozart's death: uremia, infection, rheumatic fever, trichinellosis, etc. Recently some authors have raised the question about a possible concomitant neurological disease. According to available records, Mozart has shown some elements of cyclotimic disorder, epilepsy and Gilles de la Tourette syndrome. Furthermore, the finding of a temporal fracture on (allegedly) Mozart's skull, gives a way to speculations about the possibility of a chronic subdural hematoma and its compressive effect on the temporal lobe. Despite numerous theories on Mozart's pathography that also include a concomitant neurological disorder, the medical and history records about Mozart's health status indicate that he probably had suffered from an infective illness, followed most likely by the reactivation of rheumatic fever, which was followed by strong immunologic reaction in the last days of his life. Taking all the above into consideration, it is reasonably to conclude that Mozart's neurological disturbances were caused by the intensity of the infective disease, and not primarily by a neurological disease.

  11. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases.

    PubMed

    Tumani, Hayrettin; Teunissen, Charlotte; Süssmuth, Sigurd; Otto, Markus; Ludolph, Albert C; Brettschneider, Johannes

    2008-07-01

    Chronic neurological diseases (CND) like amyotrophic lateral sclerosis (ALS), dementia or multiple sclerosis (MS) share a chronic progressive course of disease that frequently leads to the common pathological pathway of neurodegeneration, including neuroaxonal damage, apoptosis and gliosis. There is an ongoing search for biomarkers that could support early diagnosis of CND and help to identify responders to interventions in therapeutic treatment trials. Cerebrospinal fluid (CSF) is a promising source of biomarkers in CND, since the CSF compartment is in close anatomical contact with the brain interstitial fluid, where biochemical changes related to CND are reflected. We review recent advances in CSF biomarkers research in CND and thereby focus on markers associated with neurodegeneration.

  12. Visual evoked potential findings in Behcet's disease without neurological manifestations.

    PubMed

    Anlar, Omer; Akdeniz, Necmettin; Tombul, Temel; Calka, Omer; Bilgili, Serap G

    2006-03-01

    Behçet's disease (BD) is a chronic, recurrent multisystem inflammatory disorder firstly described by Turkish dermatologist Dr. Hulusi Behçet in 1937. The classic triad consists of recurrent oral and genital ulcerations and uveitis. The article presents the value of visual evoked potential findings of a series of 44 patients with BD without neurological manifestations seen at the Medical Hospital in Neurology and Dermatology clinics over the past 8 years. The mean latency value of positive peak P100 in BD patients was significantly delayed compared to that of control subjects (patients's mean: 105.6 ms in right eye and 107.7 ms in left eye; control subject's mean: 101.4 ms in right eye and 101.7 ms in left eye).

  13. Texas Occurrence of Lyme Disease and Its Neurological Manifestations.

    PubMed

    Dandashi, Jad A; Nizamutdinov, Damir; Dayawansa, Samantha; Fonkem, Ekokobe; Huang, Jason H

    2016-06-01

    Today, Lyme disease is the most commonly reported tick-borne disease in the United States and Europe. The culprits behind Lyme disease are the Borrelia species of bacteria. In the USA, Borrelia burgdorferi causes the majority of cases, while in Europe and Asia Borrelia afzelii and Borrelia garinii carry the greatest burden of disease. The clinical manifestations of Lyme disease have been identified as early localized, early disseminated, and late chronic. The neurological effects of Lyme disease include both peripheral and central nervous systems involvement, including focal nerve abnormalities, cranial neuropathies, painful radiculoneuritis, meningitis, and/or toxic metabolic encephalopathy, known as Lyme encephalopathy. Given the geographic predominance of Lyme disease in the Northeast and Midwest of the USA, no major studies have been conducted regarding Southern states. Between 2005 and 2014, the Center for Disease Control has reported 582 confirmed cases of Lyme disease in Texas. Because of the potential for increased incidence and prevalence in Texas, it has become essential for research and clinical efforts to be diverted to the region. The Texas A&M College of Veterinary Medicine and Biomedical Sciences Lyme Lab has been investigating the ecology of Lyme disease in Texas and developing a pan-specific serological test for Lyme diagnosis. This report aimed to exposure materials and raise awareness of Lyme disease to healthcare providers.

  14. Preclinical Assessment of Stem Cell Therapies for Neurological Diseases

    PubMed Central

    Joers, Valerie L.; Emborg, Marina E.

    2010-01-01

    Stem cells, as subjects of study for use in treating neurological diseases, are envisioned as a replacement for lost neurons and glia, a means of trophic support, a therapeutic vehicle, and, more recently, a tool for in vitro modeling to understand disease and to screen and personalize treatments. In this review we analyze the requirements of stem cell–based therapy for clinical translation, advances in stem cell research toward clinical application for neurological disorders, and different animal models used for analysis of these potential therapies. We focus on Parkinson’s disease (typically defined by the progressive loss of dopaminergic nigral neurons), stroke (neurodegeneration associated with decreased blood perfusion in the brain), and multiple sclerosis (an autoimmune disorder that generates demyelination, axonal damage, astrocytic scarring, and neurodegeneration in the brain and spinal cord). We chose these disorders for their diversity and the number of people affected by them. An additional important consideration was the availability of multiple animal models in which to test stem cell applications for these diseases. We also discuss the relationship between the limited number of systematic stem cell studies performed in animals, in particular nonhuman primates and the delayed progress in advancing stem cell therapies to clinical success. PMID:20075496

  15. Genomic Discoveries and Personalized Medicine in Neurological Diseases.

    PubMed

    Zhang, Li; Hong, Huixiao

    2015-12-07

    In the past decades, we have witnessed dramatic changes in clinical diagnoses and treatments due to the revolutions of genomics and personalized medicine. Undoubtedly we also met many challenges when we use those advanced technologies in drug discovery and development. In this review, we describe when genomic information is applied in personal healthcare in general. We illustrate some case examples of genomic discoveries and promising personalized medicine applications in the area of neurological disease particular. Available data suggest that individual genomics can be applied to better treat patients in the near future.

  16. Immune aging, dysmetabolism, and inflammation in neurological diseases

    PubMed Central

    Deleidi, Michela; Jäggle, Madeline; Rubino, Graziella

    2015-01-01

    As we age, the immune system undergoes a process of senescence accompanied by the increased production of proinflammatory cytokines, a chronic subclinical condition named as “inflammaging”. Emerging evidence from human and experimental models suggest that immune senescence also affects the central nervous system and promotes neuronal dysfunction, especially within susceptible neuronal populations. In this review we discuss the potential role of immune aging, inflammation and metabolic derangement in neurological diseases. The discovery of novel therapeutic strategies targeting age-linked inflammation may promote healthy brain aging and the treatment of neurodegenerative as well as neuropsychiatric disorders. PMID:26089771

  17. RNA structures as mediators of neurological diseases and as drug targets

    PubMed Central

    Bernat, Viachaslau; Disney, Matthew D.

    2015-01-01

    RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics. PMID:26139368

  18. RNA Structures as Mediators of Neurological Diseases and as Drug Targets.

    PubMed

    Bernat, Viachaslau; Disney, Matthew D

    2015-07-01

    RNAs adopt diverse folded structures that are essential for function and thus play critical roles in cellular biology. A striking example of this is the ribosome, a complex, three-dimensionally folded macromolecular machine that orchestrates protein synthesis. Advances in RNA biochemistry, structural and molecular biology, and bioinformatics have revealed other non-coding RNAs whose functions are dictated by their structure. It is not surprising that aberrantly folded RNA structures contribute to disease. In this Review, we provide a brief introduction into RNA structural biology and then describe how RNA structures function in cells and cause or contribute to neurological disease. Finally, we highlight successful applications of rational design principles to provide chemical probes and lead compounds targeting structured RNAs. Based on several examples of well-characterized RNA-driven neurological disorders, we demonstrate how designed small molecules can facilitate the study of RNA dysfunction, elucidating previously unknown roles for RNA in disease, and provide lead therapeutics.

  19. Human gene therapy and imaging in neurological diseases

    PubMed Central

    Jacobs, Andreas H.; Winkler, Alexandra; Castro, Maria G.; Lowenstein, Pedro

    2010-01-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and “phenotyping” of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy’s experimental knowledge into clinical applications and the way in which this process is being promoted through the use

  20. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    PubMed Central

    Cao, Dan-Dan; Li, Lu; Chan, Wai-Yee

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS) development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases. PMID:27240359

  1. Accelerating discovery for complex neurological and behavioral disorders through systems genetics and integrative genomics in the laboratory mouse.

    PubMed

    Bubier, Jason A; Chesler, Elissa J

    2012-04-01

    Recent advances in systems genetics and integrative functional genomics have greatly improved the study of complex neurological and behavioral traits. The methods developed for the integrated characterization of new, high-resolution mouse genetic reference populations and systems genetics enable behavioral geneticists an unprecedented opportunity to address questions of the molecular basis of neurological and psychiatric disorders and their comorbidities. Integrative genomics augment these strategies by enabling rapid informatics-assisted candidate gene prioritization, cross-species translation, and mechanistic comparison across related disorders from a wealth of existing data in mouse and other model organisms. Ultimately, through these complementary approaches, finding the mechanisms and sources of genetic variation underlying complex neurobehavioral disease related traits is becoming tractable. Furthermore, these methods enable categorization of neurobehavioral disorders through their underlying biological basis. Together, these model organism-based approaches can lead to a refinement of diagnostic categories and targeted treatment of neurological and psychiatric disease.

  2. Ethical considerations in paediatric neurology: neuromuscular disease and epilepsy.

    PubMed

    Bodensteiner, John B; Ng, Yu-Tze

    2011-09-01

    The pace of developing technology with respect to many diagnostic tests, as well as available treatments including artificial ventilation, may have progressed at a faster rate than our ethical, humane ability to decide on the optimal choices for our patients. In fact, who should make these choices; physicians or patients and families? Certain ethical aspects of neuromuscular disorders and epilepsy are reviewed. For neuromuscular disease, the example of Duchenne muscular dystrophy (DMD) with regards to genetic testing, relatively early wheelchair placement and individualised invasive ventilation is discussed. In epilepsy, performing neurosurgery in severely impaired children is probably appropriate in some cases if desired by the family. Financial and human costs restrict therapies and testing for epilepsy as well as other neurological and medical diseases. Whether it is ethical to consider costs in medical treatment or not, it is certainly a reality.

  3. Polynucleotide Kinase-Phosphatase (PNKP) Mutations and Neurologic Disease

    PubMed Central

    Dumitrache, Lavinia C.; McKinnon, Peter J.

    2016-01-01

    A variety of human neurologic diseases are caused by inherited defects in DNA repair. In many cases, these syndromes almost exclusively impact the nervous system, underscoring the critical requirement for genome stability in this tissue. A striking example of this is defective enzymatic activity of polynucleotide kinase-phosphatase (PNKP), leading to microcephaly or neurodegeneration. Notably, the broad neural impact of mutations in PNKP can result in markedly different disease entities, even when the inherited mutation is the same. For example microcephaly with seizures (MCSZ) results from various hypomorphic PNKP mutations, as does ataxia with oculomotor apraxia 4 (AOA4). Thus, other contributing factors influence the neural phenotype when PNKP is disabled. Here we consider the role for PNKP in maintaining brain function and how perturbation in its activity can account for the varied pathology of neurodegeneration or microcephaly present in MCSZ and AOA4 respectively. PMID:27125728

  4. Induced pluripotent stem cells and neurological disease models.

    PubMed

    Cai, Sa; Chan, Ying-Shing; Shum, Daisy Kwok-Yan

    2014-02-25

    The availability of human stem cells heralds a new era for in vitro cell-based modeling of neurodevelopmental and neurodegenerative diseases. Adding to the excitement is the discovery that somatic cells of patients can be reprogrammed to a pluripotent state from which neural lineage cells that carry the disease genotype can be derived. These in vitro cell-based models of neurological diseases hold promise for monitoring of disease initiation and progression, and for testing of new drug treatments on the patient-derived cells. In this review, we focus on the prospective applications of different stem cell types for disease modeling and drug screening. We also highlight how the availability of patient-specific induced pluripotent stem cells (iPS cells) offers a unique opportunity for studying and modeling human neurodevelopmental and neurodegenerative diseases in vitro and for testing small molecules or other potential therapies for these disorders. Finally, the limitations of this technology from the standpoint of reprogramming efficiency and therapeutic safety are discussed.

  5. PPAR agonists as therapeutics for CNS trauma and neurological diseases

    PubMed Central

    Mandrekar-Colucci, Shweta; Sauerbeck, Andrew; Popovich, Phillip G.; McTigue, Dana M.

    2013-01-01

    Traumatic injury or disease of the spinal cord and brain elicits multiple cellular and biochemical reactions that together cause or are associated with neuropathology. Specifically, injury or disease elicits acute infiltration and activation of immune cells, death of neurons and glia, mitochondrial dysfunction, and the secretion of substrates that inhibit axon regeneration. In some diseases, inflammation is chronic or non-resolving. Ligands that target PPARs (peroxisome proliferator-activated receptors), a group of ligand-activated transcription factors, are promising therapeutics for neurologic disease and CNS injury because their activation affects many, if not all, of these interrelated pathologic mechanisms. PPAR activation can simultaneously weaken or reprogram the immune response, stimulate metabolic and mitochondrial function, promote axon growth and induce progenitor cells to differentiate into myelinating oligodendrocytes. PPAR activation has beneficial effects in many pre-clinical models of neurodegenerative diseases and CNS injury; however, the mechanisms through which PPARs exert these effects have yet to be fully elucidated. In this review we discuss current literature supporting the role of PPAR activation as a therapeutic target for treating traumatic injury and degenerative diseases of the CNS. PMID:24215544

  6. Novel test of motor and other dysfunctions in mouse neurological disease models

    PubMed Central

    Barth, Albert M.I.; Mody, Istvan

    2013-01-01

    Background Just like human neurological disorders, corresponding mouse models present multiple deficiencies. Estimating disease progression or potential treatment effectiveness in such models necessitates the use of time consuming and multiple tests usually requiring a large number of scarcely available genetically modified animals. New method Here we present a novel and simple single camera arrangement and analysis software for detailed motor function evaluation in mice walking on a wire mesh that provides complex 3D information (instantaneous position, speed, distance traveled, foot fault depth, duration, location, relationship to speed of movement, etc.). Results We investigated 3 groups of mice with various neurological deficits: 1) unilateral motor cortical stroke; 2) effects of moderate ethanol doses; and 3) aging (96–99 weeks old). We show that post stroke recovery can be divided into separate stages based on strikingly different characteristics of motor function deficits, some resembling the human motor neglect syndrome. Mice treated with moderate dose of alcohol and aged mice showed specific motor and exploratory deficits. Comparison with Existing Methods Other tests rely either partially or entirely on manual video analysis introducing a significant subjective component into the analysis, and analyze a single aspect of motor function. Conclusions Our novel experimental approach provides qualitatively new, complex information about motor impairments and locomotor/exploratory activity. It should be useful for the detailed characterization of a broad range of human neurological disease models in mice, and for the more accurate assessment of disease progression or treatment effectiveness. PMID:24140423

  7. Neurological images and the predictors for neurological sequelae of epidemic herpangina/hand-foot-mouth disease with encephalomyelitis.

    PubMed

    Tsai, Jeng-Dau; Kuo, Hung-Tsung; Chen, Shan-Ming; Lue, Ko-Huang; Sheu, Ji-Nan

    2014-04-01

    Since 1998 in Taiwan, enterovirus (EV) 71 epidemics have caused encephalomyelitis and placed a significant burden on parents and physicians. In this study, we present clinical manifestations, magnetic resonance (MR) imaging findings, and neurological sequelae on epidemic EV-infected patients with encephalomyelitis. Of the 46 patients, 14 patients presented with neurological sequelae; of them, 3 patients suffered from complications of mental regression. Predictors of unfavorable neurological sequelae were myoclonic jerks (> 4 times/night) and pleocytosis (167/μL) of the cerebrospinal fluid (CSF). Results from viral culture and MR imaging indicated that positive identification of EV71 infection was associated significantly with lesions on MR imaging. Our results show that hand-foot-mouth disease carries a higher risk of encephalomyelitis and that frequent myoclonic jerks and pleocytosis of the CSF are risk factors for subsequent neurological sequelae. Positive identification of EV71 might be useful as a predictor of lesions in MR imaging.

  8. [Neurological diseases after lightning strike : Lightning strikes twice].

    PubMed

    Gruhn, K M; Knossalla, Frauke; Schwenkreis, Peter; Hamsen, Uwe; Schildhauer, Thomas A; Tegenthoff, Martin; Sczesny-Kaiser, Matthias

    2016-06-01

    Lightning strikes rarely occur but 85 % of patients have lightning-related neurological complications. This report provides an overview about different modes of energy transfer and neurological conditions related to lightning strikes. Moreover, two case reports demonstrate the importance of interdisciplinary treatment and the spectrum of neurological complications after lightning strikes.

  9. Samuel Alexander Kinnier Wilson. Wilson's disease, Queen Square and neurology.

    PubMed

    Broussolle, E; Trocello, J-M; Woimant, F; Lachaux, A; Quinn, N

    2013-12-01

    This historical article describes the life and work of the British physician Samuel Alexander Kinnier Wilson (1878-1937), who was one of the world's greatest neurologists of the first half of the 20th century. Early in his career, Wilson spent one year in Paris in 1903 where he learned from Pierre-Marie at Bicêtre Hospital. He subsequently retained uninterrupted links with French neurology. He also visited in Leipzig the German anatomist Paul Flechsig. In 1904, Wilson returned to London, where he worked for the rest of his life at the National Hospital for the Paralysed and Epileptic (later the National Hospital for Nervous Diseases, and today the National Hospital for Neurology and Neurosurgery) in Queen Square, and also at Kings' College Hospital. He wrote on 'the old motor system and the new', on disorders of motility and muscle tone, on the epilepsies, on aphasia, apraxia, tics, and pathologic laughing and crying, and most importantly on Wilson's disease. The other objective of our paper is to commemorate the centenary of Wilson's most important work published in 1912 in Brain, and also in Revue Neurologique, on an illness newly recognized and characterized by him entitled "Progressive lenticular degeneration, a familial nervous disease associated with liver cirrhosis". He analyzed 12 clinical cases, four of whom he followed himself, but also four cases previously published by others and a further two that he considered in retrospect had the same disease as he was describing. The pathological profile combined necrotic damage in the lenticular nuclei of the brain and hepatic cirrhosis. This major original work is summarized and discussed in the present paper. Wilson not only delineated what was later called hepato-lenticular degeneration and Wilson's disease, but also introduced for the first time the terms extrapyramidal syndrome and extrapyramidal system, stressing the role of the basal ganglia in motility. The present historical work emphasizes the special

  10. Focused Ultrasound: An Emerging Therapeutic Modality for Neurologic Disease.

    PubMed

    Fishman, Paul S; Frenkel, Victor

    2017-02-27

    Therapeutic ultrasound is only beginning to be applied to neurologic conditions, but the potential of this modality for a wide spectrum of brain applications is high. Engineering advances now allow sound waves to be targeted through the skull to a brain region selected with real time magnetic resonance imaging and thermography, using a commercial array of focused emitters. High intensities of sonic energy can create a coagulation lesion similar to that of older radiofrequency stereotactic methods, but without opening the skull. This has led to the recent Food and Drug Administration approval of focused ultrasound (FUS) thalamotomy for unilateral treatment of essential tremor. Clinical studies of stereotactic FUS for aspects of Parkinson's disease, chronic pain, and refractory psychiatric indications are underway, with promising results. Moderate-intensity FUS has the potential to safely open the blood-brain barrier for localized delivery of therapeutics, while low levels of sonic energy can be used as a form of neuromodulation.

  11. Neurological Complications Following Endoluminal Repair of Thoracic Aortic Disease

    SciTech Connect

    Morales, J. P.; Taylor, P. R.; Bell, R. E.; Chan, Y. C.; Sabharwal, T.; Carrell, T. W. G.; Reidy, J. F.

    2007-09-15

    Open surgery for thoracic aortic disease is associated with significant morbidity and the reported rates for paraplegia and stroke are 3%-19% and 6%-11%, respectively. Spinal cord ischemia and stroke have also been reported following endoluminal repair. This study reviews the incidence of paraplegia and stroke in a series of 186 patients treated with thoracic stent grafts. From July 1997 to September 2006, 186 patients (125 men) underwent endoluminal repair of thoracic aortic pathology. Mean age was 71 years (range, 17-90 years). One hundred twenty-eight patients were treated electively and 58 patients had urgent procedures. Anesthesia was epidural in 131, general in 50, and local in 5 patients. Seven patients developed paraplegia (3.8%; two urgent and five elective). All occurred in-hospital apart from one associated with severe hypotension after a myocardial infarction at 3 weeks. Four of these recovered with cerebrospinal fluid (CSF) drainage. One patient with paraplegia died and two had permanent neurological deficit. The rate of permanent paraplegia and death was 1.6%. There were seven strokes (3.8%; four urgent and three elective). Three patients made a complete recovery, one had permanent expressive dysphasia, and three died. The rate of permanent stroke and death was 2.1%. Endoluminal treatment of thoracic aortic disease is an attractive alternative to open surgery; however, there is still a risk of paraplegia and stroke. Permanent neurological deficits and death occurred in 3.7% of the patients in this series. We conclude that prompt recognition of paraplegia and immediate insertion of a CSF drain can be an effective way of recovering spinal cord function and improving the prognosis.

  12. Yellow fever vaccine-associated neurological disease, a suspicious case.

    PubMed

    Beirão, Pedro; Pereira, Patrícia; Nunes, Andreia; Antunes, Pedro

    2017-03-02

    A 70-year-old man with known cardiovascular risk factors, presented with acute onset expression aphasia, agraphia, dyscalculia, right-left disorientation and finger agnosia, without fever or meningeal signs. Stroke was thought to be the cause, but cerebrovascular disease investigation was negative. Interviewing the family revealed he had undergone yellow fever vaccination 18 days before. Lumbar puncture revealed mild protein elevation. Cultural examinations, Coxiella burnetti, and neurotropic virus serologies were negative. Regarding the yellow fever virus, IgG was identified in serum and cerebrospinal fluid (CSF), with negative IgM and virus PCR in CSF. EEG showed an encephalopathic pattern. The patient improved gradually and a week after discharge was his usual self. Only criteria for suspect neurotropic disease were met, but it's possible the time spent between symptom onset and lumbar puncture prevented a definite diagnosis of yellow fever vaccine-associated neurological disease. This gap would have been smaller if the vaccination history had been collected earlier.

  13. CD133-Positive Membrane Particles in Cerebrospinal Fluid of Patients with Inflammatory and Degenerative Neurological Diseases

    PubMed Central

    Bobinger, Tobias; May, Lisa; Lücking, Hannes; Kloska, Stephan P.; Burkardt, Petra; Spitzer, Philipp; Maler, Juan M.; Corbeil, Denis; Huttner, Hagen B.

    2017-01-01

    Background: Analysis of cerebrospinal fluid (CSF) is a frequently used diagnostic tool in a variety of neurological diseases. Recent studies suggested that investigating membrane particles enriched with the stem cell marker CD133 may offer new avenues for studying neurological disease. In this study, we evaluated the amount of membrane particle-associated CD133 in human CSF in neuroinflammatory and degenerative diseases. Methods: We compared the amount of membrane particle-associated CD133 in CSF samples collected from 45 patients with normal pressure hydrocephalus, parkinsonism, dementia, and cognitive impairment, chronic inflammatory diseases and 10 healthy adult individuals as controls. After ultracentrifugation of CSF, gel electrophoresis and immunoblotting using anti-CD133 monoclonal antibody 80B258 were performed. Antigen-antibody complexes were detected using chemiluminescence. Results: The amount of membrane particle-associated CD133 was significantly increased in patients with normal pressure hydrocephalus (p < 0.001), parkinsonism (p = 0.011) as well as in patients with chronic inflammatory disease (p = 0.008). Analysis of CSF of patients with dementia and cognitive impairment revealed no significant change compared with healthy individuals. Furthermore, subgroup analysis of patients with chronic inflammatory diseases demonstrated significantly elevated levels in individuals with relapsing-remitting multiple sclerosis (p = 0.023) and secondary progressive multiple sclerosis (SPMS; p = 0.010). Conclusion: Collectively, our study revealed elevated levels of membrane particle-associated CD133 in patients with normal pressure hydrocephalus, parkinsonism as well as relapsing-remitting and SPMS. Membrane glycoprotein CD133 may be of clinical value for several neurological diseases.

  14. Systems biology and its application to the understanding of neurological diseases.

    PubMed

    Villoslada, Pablo; Steinman, Lawrence; Baranzini, Sergio E

    2009-02-01

    Recent advances in molecular biology, neurobiology, genetics, and imaging have demonstrated important insights about the nature of neurological diseases. However, a comprehensive understanding of their pathogenesis is still lacking. Although reductionism has been successful in enumerating and characterizing the components of most living organisms, it has failed to generate knowledge on how these components interact in complex arrangements to allow and sustain two of the most fundamental properties of the organism as a whole: its fitness, also termed its robustness, and its capacity to evolve. Systems biology complements the classic reductionist approaches in the biomedical sciences by enabling integration of available molecular, physiological, and clinical information in the context of a quantitative framework typically used by engineers. Systems biology employs tools developed in physics and mathematics such as nonlinear dynamics, control theory, and modeling of dynamic systems. The main goal of a systems approach to biology is to solve questions related to the complexity of living systems such as the brain, which cannot be reconciled solely with the currently available tools of molecular biology and genomics. As an example of the utility of this systems biological approach, network-based analyses of genes involved in hereditary ataxias have demonstrated a set of pathways related to RNA splicing, a novel pathogenic mechanism for these diseases. Network-based analysis is also challenging the current nosology of neurological diseases. This new knowledge will contribute to the development of patient-specific therapeutic approaches, bringing the paradigm of personalized medicine one step closer to reality.

  15. Focal neurological disease in patients with acquired immunodeficiency syndrome.

    PubMed

    Skiest, Daniel J

    2002-01-01

    Focal neurological disease in patients with acquired immunodeficiency syndrome may be caused by various opportunistic pathogens and malignancies, including Toxoplasma gondii, progressive multifocal leukoencephalopathy (PML), cytomegalovirus (CMV), and Epstein-Barr virus-related primary central nervous system (CNS) lymphoma. Diagnosis may be difficult, because the findings of lumbar puncture, computed tomography (CT), and magnetic resonance imaging are relatively nonspecific. Newer techniques have led to improved diagnostic accuracy of these conditions. Polymerase chain reaction (PCR) of cerebrospinal fluid specimens is useful for diagnosis of PML, CNS lymphoma, and CMV encephalitis. Recent studies have indicated the diagnostic utility of new neuroimaging techniques, such as single-photon emission CT and positron emission tomography. The combination of PCR and neuroimaging techniques may obviate the need for brain biopsy in selected cases. However, stereotactic brain biopsy, which is associated with relatively low morbidity rates, remains the reference standard for diagnosis. Highly active antiretroviral therapy has improved the prognosis of several focal CNS processes, most notably toxoplasmosis, PML, and CMV encephalitis.

  16. Chloride extrusion enhancers as novel therapeutics for neurological diseases.

    PubMed

    Gagnon, Martin; Bergeron, Marc J; Lavertu, Guillaume; Castonguay, Annie; Tripathy, Sasmita; Bonin, Robert P; Perez-Sanchez, Jimena; Boudreau, Dominic; Wang, Bin; Dumas, Lionel; Valade, Isabelle; Bachand, Karine; Jacob-Wagner, Mariève; Tardif, Christian; Kianicka, Irenej; Isenring, Paul; Attardo, Giorgio; Coull, Jeffrey A M; De Koninck, Yves

    2013-11-01

    The K(+)-Cl(-) cotransporter KCC2 is responsible for maintaining low Cl(-) concentration in neurons of the central nervous system (CNS), which is essential for postsynaptic inhibition through GABA(A) and glycine receptors. Although no CNS disorders have been associated with KCC2 mutations, loss of activity of this transporter has emerged as a key mechanism underlying several neurological and psychiatric disorders, including epilepsy, motor spasticity, stress, anxiety, schizophrenia, morphine-induced hyperalgesia and chronic pain. Recent reports indicate that enhancing KCC2 activity may be the favored therapeutic strategy to restore inhibition and normal function in pathological conditions involving impaired Cl(-) transport. We designed an assay for high-throughput screening that led to the identification of KCC2 activators that reduce intracellular chloride concentration ([Cl(-)]i). Optimization of a first-in-class arylmethylidine family of compounds resulted in a KCC2-selective analog (CLP257) that lowers [Cl(-)]i. CLP257 restored impaired Cl(-) transport in neurons with diminished KCC2 activity. The compound rescued KCC2 plasma membrane expression, renormalized stimulus-evoked responses in spinal nociceptive pathways sensitized after nerve injury and alleviated hypersensitivity in a rat model of neuropathic pain. Oral efficacy for analgesia equivalent to that of pregabalin but without motor impairment was achievable with a CLP257 prodrug. These results validate KCC2 as a druggable target for CNS diseases.

  17. [Cortical spreading depolarization: a new pathophysiological mechanism in neurological diseases].

    PubMed

    Sánchez-Porras, Renán; Robles-Cabrera, Adriana; Santos, Edgar

    2014-05-20

    Cortical spreading depolarization is a wave of almost complete depolarization of the neuronal and glial cells that occurs in different neurological diseases such as migraine with aura, subarachnoid hemorrhage, intracerebral hemorrhage, head trauma and stroke. These depolarization waves are characterized by a change in the negative potential with an amplitude between -10 and -30mV, duration of ∼1min and changes in the ion homeostasis between the intra- and extracellular space. This results in neuronal edema and dendritic distortion. Under pathologic states of hypoperfusion, cortical spreading depolarization can produce oxidative stress, worsen hypoxia and induce neuronal death. This is due to intense arterial vasoconstriction produced by an inverse response called spreading ischemia. Only in the last years there has been an electrophysiological confirmation of cortical spreading depolarization in human brains. Occurrence of cortical spreading depolarization has been associated with worse outcome in patients. Currently, increased knowledge regarding the pathophysiologic mechanisms supports the hypothetical correlation of cortical spreading depolarization with brain damage in humans. There are diverse therapeutic alternatives that promise inhibition of cortical spreading depolarization and subsequent better outcomes.

  18. Sindbis and Middelburg Old World Alphaviruses Associated with Neurologic Disease in Horses, South Africa

    PubMed Central

    van Niekerk, Stephanie; Human, Stacey; Williams, June; van Wilpe, Erna; Pretorius, Marthi; Swanepoel, Robert

    2015-01-01

    Old World alphaviruses were identified in 52 of 623 horses with febrile or neurologic disease in South Africa. Five of 8 Sindbis virus infections were mild; 2 of 3 fatal cases involved co-infections. Of 44 Middelburg virus infections, 28 caused neurologic disease; 12 were fatal. Middelburg virus likely has zoonotic potential. PMID:26583836

  19. Neurological Diseases, Disorders and Injuries in Canada: Highlights of a National Study.

    PubMed

    Bray, Garth M; Huggett, Deanna L

    2016-01-01

    The National Population Health Study of Neurological Conditions, a partnership between Neurological Health Charities Canada and the Government of Canada, was the largest study of neurological diseases, disorders, and injuries ever conducted in Canada. Undertaken between 2009 and 2013, the expansive program of research addressed the epidemiology, impacts, health services, and risk factors of 18 neurological conditions and estimated the health outcomes and costs of these conditions in Canada through 2031. This review summarizes highlights from the component projects of the study as presented in the synthesis report, Mapping Connections: An Understanding of Neurological Conditions in Canada. The key findings included new prevalence and incidence estimates, documentation of the diverse and often debilitating effects of neurological conditions, and identification of the utilization, economic costs, and current limitations of related health services. The study findings will support health charities, governments, and other stakeholders to reduce the impact of neurological conditions in Canada.

  20. Ultrasonic investigations of brain in infants with some neurological diseases

    NASA Astrophysics Data System (ADS)

    Ulezko, E. A.; Shan'ko, G. G.

    1996-05-01

    The authors have studied 197 infants (1-12 months old) with normal psychomotor development and with various neurological disturbances. Neurosonography and dopplerometry were used to investigate the blood flow pattern and structural changes in the brain.

  1. The mTOR signalling cascade: paving new roads to cure neurological disease.

    PubMed

    Crino, Peter B

    2016-07-01

    Defining the multiple roles of the mechanistic (formerly 'mammalian') target of rapamycin (mTOR) signalling pathway in neurological diseases has been an exciting and rapidly evolving story of bench-to-bedside translational research that has spanned gene mutation discovery, functional experimental validation of mutations, pharmacological pathway manipulation, and clinical trials. Alterations in the dual contributions of mTOR - regulation of cell growth and proliferation, as well as autophagy and cell death - have been found in developmental brain malformations, epilepsy, autism and intellectual disability, hypoxic-ischaemic and traumatic brain injuries, brain tumours, and neurodegenerative disorders. mTOR integrates a variety of cues, such as growth factor levels, oxygen levels, and nutrient and energy availability, to regulate protein synthesis and cell growth. In line with the positioning of mTOR as a pivotal cell signalling node, altered mTOR activation has been associated with a group of phenotypically diverse neurological disorders. To understand how altered mTOR signalling leads to such divergent phenotypes, we need insight into the differential effects of enhanced or diminished mTOR activation, the developmental context of these changes, and the cell type affected by altered signalling. A particularly exciting feature of the tale of mTOR discovery is that pharmacological mTOR inhibitors have shown clinical benefits in some neurological disorders, such as tuberous sclerosis complex, and are being considered for clinical trials in epilepsy, autism, dementia, traumatic brain injury, and stroke.

  2. Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice.

    PubMed Central

    Norflus, F; Tifft, C J; McDonald, M P; Goldstein, G; Crawley, J N; Hoffmann, A; Sandhoff, K; Suzuki, K; Proia, R L

    1998-01-01

    The GM2 gangliosidoses are a group of severe, neurodegenerative conditions that include Tay-Sachs disease, Sandhoff disease, and the GM2 activator deficiency. Bone marrow transplantation (BMT) was examined as a potential treatment for these disorders using a Sandhoff disease mouse model. BMT extended the life span of these mice from approximately 4.5 mo to up to 8 mo and slowed their neurologic deterioration. BMT also corrected biochemical deficiencies in somatic tissues as indicated by decreased excretion of urinary oligosaccharides, and lower glycolipid storage and increased levels of beta-hexosaminidase activity in visceral organs. Even with neurologic improvement, neither clear reduction of brain glycolipid storage nor improvement in neuronal pathology could be detected, suggesting a complex pathogenic mechanism. Histological analysis revealed beta-hexosaminidase-positive cells in the central nervous system and visceral organs with a concomitant reduction of colloidal iron-positive macrophages. These results may be important for the design of treatment approaches for the GM2 gangliosidoses. PMID:9576752

  3. The neurotechnological revolution: unlocking the brain's secrets to develop innovative technologies as well as treatments for neurological diseases.

    PubMed

    Banks, Jim

    2015-01-01

    The brain contains all that makes us human, but its complexity is the source of both inspiration and frailty. Aging population is increasingly in need of effective care and therapies for brain diseases, including stroke, Parkinson's disease and Alzheimer's disease. The world's scientific community working hard to unravel the secrets of the brain's computing power and to devise technologies that can heal it when it fails and restore critical functions to patients with neurological conditions. Neurotechnology is the emerging field that brings together the development of technologies to study the brain and devices that improve and repair brain function. What is certain is the momentum behind neurotechnological research is building, and whether through implants, BCIs, or innovative computational systems inspired by the human brain, more light will be shed on our most complex and most precious organ, which will no doubt lead to effective treatment for many neurological conditions.

  4. Acute aseptic meningitis and diffuse myelitis as the presenting features of neurological Behcet disease.

    PubMed

    Mullins, G M; Elamin, M; Saidha, S; Ali, E; Jennings, L; Counihan, T J; Hennessy, M

    2009-12-01

    We report an explosive presentation of neurological Behcet disease, in an Irish male patient. We present the clinical and radiological findings in our patient and discuss a novel and effective therapeutic approach. We review other treatment modalities of patients with neurological involvement.

  5. Brain Dynamics: Methodological Issues and Applications in Psychiatric and Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Pezard, Laurent

    The human brain is a complex dynamical system generating the EEG signal. Numerical methods developed to study complex physical dynamics have been used to characterize EEG since the mid-eighties. This endeavor raised several issues related to the specificity of EEG. Firstly, theoretical and methodological studies should address the major differences between the dynamics of the human brain and physical systems. Secondly, this approach of EEG signal should prove to be relevant for dealing with physiological or clinical problems. A set of studies performed in our group is presented here within the context of these two problematic aspects. After the discussion of methodological drawbacks, we review numerical simulations related to the high dimension and spatial extension of brain dynamics. Experimental studies in neurologic and psychiatric disease are then presented. We conclude that if it is now clear that brain dynamics changes in relation with clinical situations, methodological problems remain largely unsolved.

  6. The Protective and Therapeutic Function of Small Heat Shock Proteins in Neurological Diseases

    PubMed Central

    Brownell, Sara E.; Becker, Rachel A.; Steinman, Lawrence

    2012-01-01

    Historically, small heat shock proteins (sHSPs) have been extensively studied in the context of being intracellular molecular chaperones. However, recent studies looking at the role of sHSPs in neurological diseases have demonstrated a near universal upregulation of certain sHSPs in damaged and diseased brains. Initially, it was thought that sHSPs are pathological in these disease states because they are found in the areas of damage. However, transgenic overexpression and exogenous administration of sHSPs in various experimental disease paradigms have shown just the contrary – that sHSPs are protective, not pathological. This review examines sHSPs in neurological diseases and highlights the potential for using these neuroprotective sHSPs as novel therapeutics. It first addresses the endogenous expression of sHSPs in a variety of neurological disorders. Although many studies have examined the expression of sHSPs in neurological diseases, there are no review articles summarizing these data. Furthermore, it focuses on recent studies that have investigated the therapeutic potential of sHSPs for neurological diseases. Finally, it will explain what we think is the function of endogenous sHSPs in neurological diseases. PMID:22566955

  7. Intravenous immunoglobulin in neurological disease: a specialist review

    PubMed Central

    Wiles, C; Brown, P; Chapel, H; Guerrini, R; Hughes, R; Martin, T; McCrone, P; Newsom-Davis, J; Palace, J; Rees, J; Rose, M; Scolding, N; Webster, A

    2002-01-01

    Treatment of neurological disorders with intravenous immunoglobulin (IVIg) is an increasing feature of our practice for an expanding range of indications. For some there is evidence of benefit from randomised controlled trials, whereas for others evidence is anecdotal. The relative rarity of some of the disorders means that good randomised control trials will be difficult to deliver. Meanwhile, the treatment is costly and pressure to "do something" in often distressing disorders considerable. This review follows a 1 day meeting of the authors in November 2000 and examines current evidence for the use of IVIg in neurological conditions and comments on mechanisms of action, delivery, safety and tolerability, and health economic issues. Evidence of efficacy has been classified into levels for healthcare interventions (tables 1 and 2). PMID:11909900

  8. Neurological manifestations of connective tissue diseases mimicking multiple sclerosis.

    PubMed

    Pelidou, Sigliti-Henrietta; Giannopoulos, Sotiris; Tzavidi, Sotiria; Tsifetaki, Niki; Kitsos, Georgios; Stefanou, Dimitrios; Kostadima, Vassiliki; Drosos, Alexandros A; Kyritsis, Athanassios P

    2007-11-01

    The objective of the study was to analyze retrospectively the clinical, laboratory and imaging findings of multiple sclerosis (MS), such as the manifestations in a cohort of 132 patients referred to the neurology in and outpatient clinic. The proposed clinical and laboratory diagnostic criteria for MS and connective tissue disorders were systematically assessed in 132 consecutive patients. Cerebrospinal fluid serology and brain or spinal cord MRI were studied in all cases. In patients suspected for connective tissue disorder, schirmer test, rose bengal staining and biopsy of minor salivary glands were performed. A total of 115 (87%) patients were diagnosed to have definite MS, while 17 (13%) were diagnosed to have connective tissue disorder. Positive neurological and MRI findings were observed in both groups. The majority of patients with connective tissue disorder demonstrated extra-neurological manifestations like Raynaud's phenomenon, arthritis, livedo reticularis, purpura and presence of multiple autoantibodies in their sera. All patients with MS should be screened systematically for connective tissue disorder. In the absence of pathognomonic clinical and laboratory findings, the diagnosis of MS is a diagnosis of exclusion.

  9. Acute neurologic disease in Porcine rubulavirus experimentally infected piglets.

    PubMed

    Herrera, Jenifer; Gómez-Núñez, Luis; Lara-Romero, Rocío; Diosdado, Fernando; Martínez-Lara, Atalo; Jasso, Miguel; Ramírez-Mendoza, Humberto; Pérez-Torres, Armando; Rivera-Benítez, José Francisco

    2017-02-15

    The objective of this study was to evaluate the clinical disease, humoral response and viral distribution of recent Porcine rubulavirus (PorPV) isolates in experimentally infected pigs. Four, 6-piglet (5-days old) groups were employed (G1-84, G2-93, G3-147, and G4-T). Three viral strains were used for the experimental infection: the reference strain LPMV-1984 (Michoacán 1984) and two other strains isolated in 2013, one in Queretaro (Qro/93/2013) and the other in Michoacán (Mich/147/2013). Each strain was genetically characterized by amplification and sequencing of the gene encoding hemagglutinin-neuroamidase (HN). The inoculation was performed through the oronasal and ocular routes, at a dose of 1×10(6)TCID50/ml. Subsequently, the signs were evaluated daily and necropsies were performed on 3 different days post infection (dpi). We recorded all micro- and macroscopic lesions. Organs from the nervous, lymphatic, and respiratory system were analyzed by quantifying the viral RNA load and the presence of the infectious virus. The presence of the viral antigen in organs was evidenced through immunohistochemistry. Seroconversion was evaluated through the use of a hemagglutination inhibition test. In the characterization of gene HN, only three substitutions were identified in strain Mich/147/2013, two in strain LPMV/1984 (fourth passage) and one in strain Qro/93/2013, with respect to reference strain LPMV-84, these changes had not been identified as virulence factors in previously reported strains. Neurological alterations associated with the infection were found in all three experimental groups starting from 3dpi. Groups G1-84 and G3-147 presented the most exacerbated nervous signs. Group G2-93 only presented milder signs including slight motor incoordination, and an increased rectal temperature starting from day 5 post infection (PI). The main histopathological findings were the presence of a mononuclear inflammatory infiltrate (lymphocytic/monocytic) surrounding the

  10. New Insights into the Crosstalk between NMDARs and Iron: Implications for Understanding Pathology of Neurological Diseases

    PubMed Central

    Xu, Huamin; Jiang, Hong; Xie, Junxia

    2017-01-01

    Both iron dyshomeostasis and N-methyl-D-aspartate receptors (NMDARs)-mediated neurotoxicity have been shown to have an important role in neurological diseases such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Evidence proved that activation of NMDARs could promote iron overload and iron-induced neurotoxicity by enhancing iron importer divalent metal transporter 1 (DMT1)-mediated iron uptake and iron releasing from lysosome. Also, iron overload could regulate NMDARs-mediated synaptic transmission. This indicates that there might be a possible relationship between iron and activation of NMDARs in neurological diseases. Understanding this interaction between iron and activation of NMDARs may provide new therapeutic avenues for a more targeted neurotherapeutic strategy for these diseases. Therefore, in this review article, we will describe the dysfunction of iron metabolism and NMDARs in neurological diseases including PD and AD, and summarize the new insight into the mechanisms underlying the interaction between iron and activation of NMDARs. PMID:28360837

  11. Shiga Toxin Mediated Neurologic Changes in Murine Model of Disease

    PubMed Central

    Pradhan, Suman; Pellino, Christine; MacMaster, Kayleigh; Coyle, Dennis; Weiss, Alison A.

    2016-01-01

    Seizures and neurologic involvement have been reported in patients infected with Shiga toxin (Stx) producing E. coli, and hemolytic uremic syndrome (HUS) with neurologic involvement is associated with more severe outcome. We investigated the extent of renal and neurologic damage in mice following injection of the highly potent form of Stx, Stx2a, and less potent Stx1. As observed in previous studies, Stx2a brought about moderate to acute tubular necrosis of proximal and distal tubules in the kidneys. Brain sections stained with hematoxylin and eosin (H&E) appeared normal, although some red blood cell congestion was observed. Microglial cell responses to neural injury include up-regulation of surface-marker expression (e.g., Iba1) and stereotypical morphological changes. Mice injected with Stx2a showed increased Iba1 staining, mild morphological changes associated with microglial activation (thickening of processes), and increased microglial staining per unit area. Microglial changes were observed in the cortex, hippocampus, and amygdala regions, but not the nucleus. Magnetic resonance imaging (MRI) of Stx2a-treated mice revealed no hyper-intensities in the brain, although magnetic resonance spectroscopy (MRS) revealed significantly decreased levels of phosphocreatine in the thalamus. Less dramatic changes were observed following Stx1 challenge. Neither immortalized microvascular endothelial cells from the cerebral cortex of mice (bEnd.3) nor primary human brain microvascular endothelial cells were found to be susceptible to Stx1 or Stx2a. The lack of susceptibility to Stx for both cell types correlated with an absence of receptor expression. These studies indicate Stx causes subtle, but identifiable changes in the mouse brain. PMID:27747196

  12. Neurological Disease Produced by Varicella Zoster Virus Reactivation Without Rash

    PubMed Central

    Gilden, Don; Cohrs, Randall J.; Mahalingam, Ravi; Nagel, Maria A.

    2010-01-01

    Reactivation of varicella zoster virus (VZV) from latently infected human ganglia usually produces herpes zoster (shingles), characterized by dermatomal distribution pain and rash. Zoster is often followed by chronic pain (postherpetic neuralgia or PHN) as well as meningitis or meningoencephalitis, cerebellitts, isolated cranial nerve palsies that produce ophthalmoplegia or the Ramsay Hunt syndrome, multiple cranial nerve palsies (polyneuritis cranialis), vasculopathy. myelopathy, and various inflammatory disorders of the eye. Importantly, VZV reactivation can produce chronic radicular pain without rash (zoster sine herpete), as well as all the neurological disorders listed above without rash. The protean neurological and ocular disorders produced by VZV in the absence of rash are a challenge to the practicing clinician. The presentation of these conditions vanes from acute to subacute to chronic. Virological confirmation requires the demonstration of amplifiable VZV DNA in cerebrospinal fluid (CSF) or in blood mononuclear cells, or the presence of anti-VZV IgG antibody in CSF or of anti-VZV IgM antibody in CSF or serum. PMID:20186614

  13. Reaction time of patients with Parkinson's disease, with reference to asymmetry of neurological signs.

    PubMed

    Yokochi, F; Nakamura, R; Narabayashi, H

    1985-07-01

    Electromyographic reaction times of the left and the right finger extensor muscles in extension movement of the wrist were examined in 42 patients with Parkinson's disease, and 20 normal subjects. Compared to the normal subjects and the patients with neurological signs confined to the right side, the patients with neurological signs on the left side or on both sides showed slowing of reaction times regardless of the side of responding hand. The patients with asymmetry of bilateral neurological signs showed slower RTs on the more affected side.

  14. Iatrogenic neurology.

    PubMed

    Sposato, Luciano A; Fustinoni, Osvaldo

    2014-01-01

    Iatrogenic disease is one of the most frequent causes of hospital admissions and constitutes a growing public health problem. The most common type of iatrogenic neurologic disease is pharmacologic, and the central and peripheral nervous systems are particularly vulnerable. Despite this, iatrogenic disease is generally overlooked as a differential diagnosis among neurologic patients. The clinical picture of pharmacologically mediated iatrogenic neurologic disease can range from mild to fatal. Common and uncommon forms of drug toxicity are comprehensively addressed in this chapter. While the majority of neurologic adverse effects are listed and referenced in the tables, the most relevant issues are further discussed in the text.

  15. Current neurology

    SciTech Connect

    Appel, S.H. )

    1988-01-01

    The topics covered in this book include: Duchenne muscular dystrophy: DNA diagnosis in practice; Central nervous system magnetic resonance imaging; and Magnetic resonance spectroscopy of neurologic diseases.

  16. [Biotidinase deficiency: a disease with neurologic and cutaneous expression susceptible to biotin].

    PubMed

    de Parscau, L; Beaufrère, B; Vianey-Liaud, C; Rolland, M O; Langue, J; Divry, P; Guibaud, P

    1989-01-01

    The authors report 2 familial cases of biotin deficiency. The first neurological signs appeared at the age of 2 years in a boy. The diagnosis was established in his sister in the neonatal period. A review of 41 published cases summarizes the neurologic signs (seizures, ataxia, hypotonia and later, developmental delay and deafness) and the cutaneous signs (rash, alopecia). An early treatment with biotin cures or prevents the clinical signs of the disease in most cases.

  17. Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases.

    PubMed

    Curtis, Chad; Zhang, Mengying; Liao, Rick; Wood, Thomas; Nance, Elizabeth

    2017-03-01

    Neurological diseases account for 13% of the global burden of disease. As a result, treating these diseases costs $750 billion a year. Nanotechnology, which consists of small (~1-100 nm) but highly tailorable platforms, can provide significant opportunities for improving therapeutic delivery to the brain. Nanoparticles can increase drug solubility, overcome the blood-brain and brain penetration barriers, and provide timed release of a drug at a site of interest. Many researchers have successfully used nanotechnology to overcome individual barriers to therapeutic delivery to the brain, yet no platform has translated into a standard of care for any neurological disease. The challenge in translating nanotechnology platforms into clinical use for patients with neurological disease necessitates a new approach to: (1) collect information from the fields associated with understanding and treating brain diseases and (2) apply that information using scalable technologies in a clinically-relevant way. This approach requires systems-level thinking to integrate an understanding of biological barriers to therapeutic intervention in the brain with the engineering of nanoparticle material properties to overcome those barriers. To demonstrate how a systems perspective can tackle the challenge of treating neurological diseases using nanotechnology, this review will first present physiological barriers to drug delivery in the brain and common neurological disease hallmarks that influence these barriers. We will then analyze the design of nanotechnology platforms in preclinical in vivo efficacy studies for treatment of neurological disease, and map concepts for the interaction of nanoparticle physicochemical properties and pathophysiological hallmarks in the brain. WIREs Nanomed Nanobiotechnol 2017, 9:e1422. doi: 10.1002/wnan.1422 For further resources related to this article, please visit the WIREs website.

  18. Infection of immunodeficient horses with Sarcocystis neurona does not result in neurologic disease.

    PubMed

    Sellon, Debra C; Knowles, Donald P; Greiner, Ellis C; Long, Maureen T; Hines, Melissa T; Hochstatter, Tressa; Tibary, Ahmed; Dame, John B

    2004-11-01

    Equine protozoal myeloencephalitis is a progressive neurologic disease of horses most commonly caused by infection with the apicomplexan parasite Sarcocystis neurona. Factors affecting neuroinvasion and neurovirulence have not been determined. We investigated the pathogenesis of infection with S. neurona in horses with severe combined immune deficiency (SCID). Two immunocompetent (IC) Arabian horses and two Arabian horses with SCID were infected orally with 5 x 10(5) sporocysts of S. neurona. Four IC horses and one SCID horse were infected intravenously (i.v.) with 5 x 10(8) merozoites of the WSU-1 isolate of S. neurona. Despite prolonged parasitemia and persistent infection of visceral tissues (skeletal muscle, cardiac muscle, lung, liver, and spleen) as demonstrated by PCR and culture, SCID horses did not develop neurologic signs after oral or i.v. infection. S. neurona was undetectable in the neuronal tissues of SCID horses by either PCR, immunohistochemistry, or culture. In contrast, although parasitemia was undetectable in orally infected IC horses and of only short duration in i.v. infected IC horses, four of six IC horses developed neurologic signs. S. neurona was detectable by PCR and/or culture of neural tissue but not visceral tissue of IC horses with neurologic disease. Infected SCID horses are unable to clear S. neurona from visceral tissues, but the infection does not result in neurologic signs; in contrast, IC horses rapidly control parasitemia and infection of visceral tissues but frequently experience neuroinvasion and exhibit clinical signs of neurologic disease.

  19. Neurology and neurologic practice in China.

    PubMed

    Shi, Fu-Dong; Jia, Jian-Ping

    2011-11-29

    In the wake of dramatic economic success during the past 2 decades, the specialized field of neurology has undergone a significant transformation in China. With an increase in life expectancy, the problems of aging and cognition have grown. Lifestyle alterations have been associated with an epidemiologic transition both in the incidence and etiology of stroke. These changes, together with an array of social issues and institution of health care reform, are creating challenges for practicing neurologists throughout China. Notable problems include overcrowded, decrepit facilities, overloaded physician schedules, deteriorating physician-patient relationships, and an insufficient infrastructure to accommodate patients who need specialized neurologic care. Conversely, with the creation of large and sophisticated neurology centers in many cities across the country, tremendous opportunities exist. Developments in neurologic subspecialties enable delivery of high-quality care. Clinical and translational research based on large patient populations as well as highly sophisticated technologies are emerging in many neurologic centers and pharmaceutical companies. Child neurology and neurorehabilitation will be fast-developing subdisciplines. Given China's extensive population, the growth and progress of its neurology complex, and its ever-improving quality control, it is reasonable to anticipate that Chinese neurologists will contribute notably to unraveling the pathogenic factors causing neurologic diseases and to providing new therapeutic solutions.

  20. Recent achievements in restorative neurology: Progressive neuromuscular diseases

    SciTech Connect

    Dimitrijevic, M.R.; Kakulas, B.A.; Vrbova, G.

    1986-01-01

    This book contains 27 chapters. Some of the chapter titles are: Computed Tomography of Muscles in Neuromuscular Disease; Mapping the Genes for Muscular Dystrophy; Trophic Factors and Motor Neuron Development; Size of Motor Units and Firing Rate in Muscular Dystrophy; Restorative Possibilities in Relation to the Pathology of Progressive Neuromuscular Disease; and An Approach to the Pathogenesis of some Congenital Myopathies.

  1. Mitochondrial dysfunction in psychiatric and neurological diseases: cause(s), consequence(s), and implications of antioxidant therapy.

    PubMed

    Kasote, Deepak M; Hegde, Mahabaleshwar V; Katyare, Surendra S

    2013-01-01

    Mitochondrial dysfunction is at the base of development and progression of several psychiatric and neurologic diseases with different etiologies. MtDNA/nDNA mutational damage, failure of endogenous antioxidant defenses, hormonal malfunction, altered membrane permeability, metabolic dysregulation, disruption of calcium buffering capacity and ageing have been found to be the root causes of mitochondrial dysfunction in psychatric and neurodegenerative diseases. However, the overall consequences of mitochondrial dysfunction are only limited to increase in oxidative/nitrosative stress and cellular energy crises. Thus far, extensive efforts have been made to improve mitochondrial function through specific cause-dependent antioxidant therapy. However, owing to complex genetic and interlinked causes of mitochondrial dysfunction, it has not been possible to achieve any common, unique supportive antioxidant therapeutic strategy for the treatment of psychiatric and neurologic diseases. Hence, we propose an antioxidant therapeutic strategy for management of consequences of mitochondrial dysfunction in psychiatric and neurologic diseases. It is expected that this will not only reduces oxidative stress, but also promote anaerobic energy production.

  2. Genome-Wide Approaches to Dissect the Roles of RNA Binding Proteins in Translational Control: Implications for Neurological Diseases

    PubMed Central

    Kapeli, Katannya; Yeo, Gene W.

    2012-01-01

    Translational control of messenger RNAs (mRNAs) is a key aspect of neurobiology, defects of which can lead to neurological diseases. In response to stimuli, local translation of mRNAs is activated at synapses to facilitate long-lasting forms of synaptic plasticity, the cellular basis for learning, and memory formation. Translation, as well as all other aspects of RNA metabolism, is controlled in part by RNA binding proteins (RBPs) that directly interact with mRNAs to form mRNA-protein complexes. Disruption of RBP function is becoming widely recognized as a major cause of neurological diseases. Thus understanding the mechanisms that govern the interplay between translation control and RBP regulation in both normal and diseased neurons will provide new opportunities for novel diagnostics and therapeutic intervention. As a means of studying translational control, genome-wide methods are emerging as powerful tools that have already begun to unveil mechanisms that are missed by single-gene studies. Here, we describe the roles of RBPs in translational control, review genome-wide approaches to examine translational control, and discuss how the application of these approaches may provide mechanistic insight into the pathogenic underpinnings of RBPs in neurological diseases. PMID:23060744

  3. The Social Context Network Model in Psychiatric and Neurological Diseases.

    PubMed

    Baez, Sandra; García, Adolfo M; Ibanez, Agustín

    2017-01-01

    The role of contextual modulations has been extensively studied in basic sensory and cognitive processes. However, little is known about their impact on social cognition, let alone their disruption in disorders compromising such a domain. In this chapter, we flesh out the social context network model (SCNM), a neuroscientific proposal devised to address the issue. In SCNM terms, social context effects rely on a fronto-temporo-insular network in charge of (a) updating context cues to make predictions, (b) consolidating context-target associative learning, and (c) coordinating internal and external milieus. First, we characterize various social cognition domains as context-dependent phenomena. Then, we review behavioral and neural evidence of social context impairments in behavioral variant frontotemporal dementia (bvFTD) and autism spectrum disorder (ASD), highlighting their relation with key SCNM hubs. Next, we show that other psychiatric and neurological conditions involve context-processing impairments following damage to the brain regions included in the model. Finally, we call for an ecological approach to social cognition assessment, moving beyond widespread abstract and decontextualized methods.

  4. Blood-brain interfaces and bilirubin-induced neurological diseases.

    PubMed

    Ghersi-Egea, J F; Gazzin, S; Strazielle, N

    2009-01-01

    The endothelium of the brain microvessels and the choroid plexus epithelium form highly specialized cellular barriers referred to as blood-brain interfaces through which molecular exchanges take place between the blood and the neuropil or the cerebrospinal fluid, respectively. Within the brain, the ependyma and the pia-glia limitans modulate exchanges between the neuropil and the cerebrospinal fluid. All these interfaces are key elements of neuroprotection and fulfill trophic functions; both properties are critical to harmonious brain development and maturation. By analogy to hepatic bilirubin detoxification pathways, we review the transport and metabolic mechanisms which in all these interfaces may participate in the regulation of bilirubin cerebral bioavailability in physiologic conditions, both in adult and in developing brain. We specifically address the role of ABC and OATP transporters, glutathione-S-transferases, and the potential involvement of glucuronoconjugation and oxidative metabolic pathways. Regulatory mechanisms are explored which are involved in the induction of these pathways and represent potential pharmacological targets to prevent bilirubin accumulation into the brain. We then review the possible alteration of the neuroprotective and trophic barrier functions in the course of bilirubin-induced neurological dysfunctions resulting from hyperbilirubinemia. Finally, we highlight the role of the blood-brain and blood-CSF barriers in regulating the brain biodisposition of candidate drugs for the treatment or prevention of bilirubin-induced brain injury.

  5. Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies

    PubMed Central

    Samsel, Anthony; Seneff, Stephanie

    2015-01-01

    Manganese (Mn) is an often overlooked but important nutrient, required in small amounts for multiple essential functions in the body. A recent study on cows fed genetically modified Roundup®-Ready feed revealed a severe depletion of serum Mn. Glyphosate, the active ingredient in Roundup®, has also been shown to severely deplete Mn levels in plants. Here, we investigate the impact of Mn on physiology, and its association with gut dysbiosis as well as neuropathologies such as autism, Alzheimer's disease (AD), depression, anxiety syndrome, Parkinson's disease (PD), and prion diseases. Glutamate overexpression in the brain in association with autism, AD, and other neurological diseases can be explained by Mn deficiency. Mn superoxide dismutase protects mitochondria from oxidative damage, and mitochondrial dysfunction is a key feature of autism and Alzheimer’s. Chondroitin sulfate synthesis depends on Mn, and its deficiency leads to osteoporosis and osteomalacia. Lactobacillus, depleted in autism, depend critically on Mn for antioxidant protection. Lactobacillus probiotics can treat anxiety, which is a comorbidity of autism and chronic fatigue syndrome. Reduced gut Lactobacillus leads to overgrowth of the pathogen, Salmonella, which is resistant to glyphosate toxicity, and Mn plays a role here as well. Sperm motility depends on Mn, and this may partially explain increased rates of infertility and birth defects. We further reason that, under conditions of adequate Mn in the diet, glyphosate, through its disruption of bile acid homeostasis, ironically promotes toxic accumulation of Mn in the brainstem, leading to conditions such as PD and prion diseases. PMID:25883837

  6. Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies.

    PubMed

    Samsel, Anthony; Seneff, Stephanie

    2015-01-01

    Manganese (Mn) is an often overlooked but important nutrient, required in small amounts for multiple essential functions in the body. A recent study on cows fed genetically modified Roundup(®)-Ready feed revealed a severe depletion of serum Mn. Glyphosate, the active ingredient in Roundup(®), has also been shown to severely deplete Mn levels in plants. Here, we investigate the impact of Mn on physiology, and its association with gut dysbiosis as well as neuropathologies such as autism, Alzheimer's disease (AD), depression, anxiety syndrome, Parkinson's disease (PD), and prion diseases. Glutamate overexpression in the brain in association with autism, AD, and other neurological diseases can be explained by Mn deficiency. Mn superoxide dismutase protects mitochondria from oxidative damage, and mitochondrial dysfunction is a key feature of autism and Alzheimer's. Chondroitin sulfate synthesis depends on Mn, and its deficiency leads to osteoporosis and osteomalacia. Lactobacillus, depleted in autism, depend critically on Mn for antioxidant protection. Lactobacillus probiotics can treat anxiety, which is a comorbidity of autism and chronic fatigue syndrome. Reduced gut Lactobacillus leads to overgrowth of the pathogen, Salmonella, which is resistant to glyphosate toxicity, and Mn plays a role here as well. Sperm motility depends on Mn, and this may partially explain increased rates of infertility and birth defects. We further reason that, under conditions of adequate Mn in the diet, glyphosate, through its disruption of bile acid homeostasis, ironically promotes toxic accumulation of Mn in the brainstem, leading to conditions such as PD and prion diseases.

  7. Iron as a risk factor in neurological diseases

    NASA Astrophysics Data System (ADS)

    Galazka-Friedman, Jolanta

    2008-02-01

    In this review the properties of iron in various human brain structures (e.g. Substantia nigra, globus pallidus, hippocampus) were analyzed to assess the possibility of initiation of oxidative stress leading to such diseases as Parkinson’s and Alzheimer’s disease, and progressive supranuclear palsy. Our own studies with the use of Mössbauer spectroscopy, electron microscopy and enzyme-linked immuno-absorbent assay (ELISA) were confronted with other methods used in other laboratories. Our results suggest that hippocampus is the most fragile for oxidative stress structure in human brain (the death of nervous cells in hippocampus leads to Alzheimer’s disease). Changes in iron metabolism were also found in substantia nigra (the death of nervous cells of this structure produces Parkinson’s disease) and in globus pallidus (neurodegeneration of this structure causes progressive supranuclear palsy).

  8. Next generation sequencing for neurological diseases: New hope or new hype?

    PubMed Central

    Keogh, M.J.; Chinnery, P.F.

    2013-01-01

    Over the past year huge advances have been made in our ability to determine the genetic aetiology of many neurological diseases through the utilisation of next generation sequencing platforms. This technology is, on a daily basis, providing new breakthroughs in neurological disease. The aim of this article is to clearly describe the technological platforms, methods of data analysis, established breakthroughs, and potential future clinical and research applications of this innovative and exciting technique which has relevance to all those working within clinical neuroscience. PMID:23200550

  9. Disregard of neurological impairments associated with neglected tropical diseases in Africa.

    PubMed

    Quansah, Emmanuel; Sarpong, Esther; Karikari, Thomas K

    2016-06-01

    Neglected tropical diseases (NTDs) affect people in the bottom billion poorest in the world. These diseases are concentrated in rural areas, conflict zones and urban slums in Africa and other tropical areas. While the World Health Organization recognizes seventeen priority NTDs, the list of conditions present in Africa and elsewhere that are eligible to be classified as NTDs is much longer. Although NTDs are generally marginalized, their associated neurological burden has been almost completely disregarded. However, reports indicate that trichuriasis, schistosomiasis and hookworm infection, among others, cause impairments in memory and cognition, negatively affecting school attendance rates and educational performance particularly among children, as well as agricultural productivity among adults. Consequently, the neurological impairments have substantial influence on education and economic productivity, thus aggravating and perpetuating poverty in affected societies. However, inadequate research, policy and public health attention has been paid to the neurological burdens associated with NTDs. In order to appropriately address these burdens, we recommend the development of policy interventions that focus on the following areas: (i) the introduction of training programs to develop the capacity of scientists and clinicians in research, diagnostic and treatment approaches (ii) the establishment of competitive research grant schemes to fund cutting-edge research into these neurological impairments, and (iii) the development of public health interventions to improve community awareness of the NTD-associated neurological problems, possibly enhancing disease prevention and expediting treatment.

  10. Looks can be deceiving: three cases of neurological diseases mimicking Guillain-Barrè syndrome.

    PubMed

    Sciacca, G; Nicoletti, A; Fermo, S Lo; Mostile, G; Giliberto, C; Zappia, Mario

    2016-04-01

    Guillain-Barrè syndrome (GBS) is an acute, paralyzing, inflammatory peripheral nerve disease, featured by monophasic disease course, symmetrical limb weakness and areflexia. Several pathologies can mimic the clinical presentation of GBS, making hard the differential diagnosis for patients complaining of acute flaccid paralysis. In this paper we describe three cases of different neurological diseases presenting with acute motor symptoms mimicking GBS, reviewing the relevant literature on misdiagnosis of GBS.

  11. Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises

    PubMed Central

    Marchetto, Maria C.; Brennand, Kristen J.; Boyer, Leah F.; Gage, Fred H.

    2011-01-01

    The systematic generation of neurons from patients with neurological disorders can provide important insights into disease pathology, progression and mechanism. This review will discuss recent progress in modeling neurodegenerative and neurodevelopmental diseases using induced pluripotent stem cells (iPSCs) and highlight some of the current challenges in the field. Combined with other technologies previously used to study brain disease, iPSC modeling has the promise to influence modern medicine on several fronts: early diagnosis, drug development and effective treatment. PMID:21828073

  12. Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease.

    PubMed

    Mehler, Mark F; Mattick, John S

    2007-07-01

    The progressive maturation and functional plasticity of the nervous system in health and disease involve a dynamic interplay between the transcriptome and the environment. There is a growing awareness that the previously unexplored molecular and functional interface mediating these complex gene-environmental interactions, particularly in brain, may encompass a sophisticated RNA regulatory network involving the twin processes of RNA editing and multifaceted actions of numerous subclasses of non-protein-coding RNAs. The mature nervous system encompasses a wide range of cell types and interconnections. Long-term changes in the strength of synaptic connections are thought to underlie memory retrieval, formation, stabilization, and effector functions. The evolving nervous system involves numerous developmental transitions, such as neurulation, neural tube patterning, neural stem cell expansion and maintenance, lineage elaboration, differentiation, axonal path finding, and synaptogenesis. Although the molecular bases for these processes are largely unknown, RNA-based epigenetic mechanisms appear to be essential for orchestrating these precise and versatile biological phenomena and in defining the etiology of a spectrum of neurological diseases. The concerted modulation of RNA editing and the selective expression of non-protein-coding RNAs during seminal as well as continuous state transitions may comprise the plastic molecular code needed to couple the intrinsic malleability of neural network connections to evolving environmental influences to establish diverse forms of short- and long-term memory, context-specific behavioral responses, and sophisticated cognitive capacities.

  13. Seizure control and improvement of neurological dysfunction in Lafora disease with perampanel

    PubMed Central

    Dirani, Maya; Nasreddine, Wassim; Abdulla, Fatima; Beydoun, Ahmad

    2014-01-01

    Lafora disease is a rare and fatal disease characterized by seizures, progressive cognitive and behavioral deterioration, as well as cerebellar dysfunction. Currently, there is no efficacious treatment that will control the seizures and improve the cognitive decline in this disease. We report a patient with Lafora disease who experienced a dramatic amelioration in her seizure frequency as well as the associated neurological and cognitive dysfunction following initiation of treatment with perampanel administered as monotherapy. Perampanel is the first potentially efficacious treatment for Lafora disease. We discuss a potential mechanism for the efficacy of perampanel in this disease. PMID:25667898

  14. Developing retinal biomarkers of neurological disease: an analytical perspective.

    PubMed

    MacCormick, Ian J C; Czanner, Gabriela; Faragher, Brian

    2015-01-01

    The inaccessibility of the brain poses a problem for neuroscience. Scientists have traditionally responded by developing biomarkers for brain physiology and disease. The retina is an attractive source of biomarkers since it shares many features with the brain. Some even describe the retina as a 'window' to the brain, implying that retinal signs are analogous to brain disease features. However, new analytical methods are needed to show whether or not retinal signs really are equivalent to brain abnormalities, since this requires greater evidence than direct associations between retina and brain. We, therefore propose a new way to think about, and test, how clearly one might see the brain through the retinal window, using cerebral malaria as a case study.

  15. Developing retinal biomarkers of neurological disease: an analytical perspective

    PubMed Central

    MacCormick, Ian JC; Czanner, Gabriela; Faragher, Brian

    2015-01-01

    The inaccessibility of the brain poses a problem for neuroscience. Scientists have traditionally responded by developing biomarkers for brain physiology and disease. The retina is an attractive source of biomarkers since it shares many features with the brain. Some even describe the retina as a ‘window’ to the brain, implying that retinal signs are analogous to brain disease features. However, new analytical methods are needed to show whether or not retinal signs really are equivalent to brain abnormalities, since this requires greater evidence than direct associations between retina and brain. We, therefore propose a new way to think about, and test, how clearly one might see the brain through the retinal window, using cerebral malaria as a case study. PMID:26174843

  16. Systemic oxidative stress associated with the neurological diseases of aging.

    PubMed

    Serra, Jorge A; Domínguez, Raúl O; Marschoff, Enrique R; Guareschi, Eduardo M; Famulari, Arturo L; Boveris, Alberto

    2009-12-01

    Markers of oxidative stress were measured in blood samples of 338 subjects (965 observations): Alzheimer's, vascular dementia, diabetes (type II) superimposed to dementias, Parkinson's disease and controls. Patients showed increased thiobarbituric acid reactive substances (+21%; P < 0.05), copper-zinc superoxide dismutase (+64%; P < 0.001) and decreased antioxidant capacity (-28%; P < 0.001); pairs of variables resulted linearly related across groups (P < 0.001). Catalase and glutathione peroxidase, involved in discrimination between diseases, resulted non-significant. When diabetes is superimposed with dementias, changes resulted less marked but significant. Also, superoxide dismutase resulted not linearly correlated with any other variable or age-related (pure Alzheimer's peaks at 70 years, P < 0.001). Systemic oxidative stress was significantly associated (P < 0.001) with all diseases indicating a disbalance in peripheral/adaptive responses to oxidative disorders through different free radical metabolic pathways. While other changes - methionine cycle, insulin correlation - are also associated with dementias, the responses presented here show a simple linear relation between prooxidants and antioxidant defenses.

  17. Transcriptome sequencing of neurologic diseases associated genes in HHV-6A infected human astrocyte

    PubMed Central

    Tang, Junwei; Lu, Shuai; Feng, Dongju; Cheng, Ci; Qing, Lanqun; Yao, Kun; Chen, Yun

    2016-01-01

    Human Herpesvirus 6 (HHV-6) has been involved in the development of several central nervous system (CNS) diseases, such as Alzheimer's disease, multiple sclerosis and glioma. In order to identify the pathogenic mechanism of HHV-6A infection, we carried out mRNA-seq study of human astrocyte HA1800 cell with HHV-6A GS infection. Using mRNA-seq analysis of HA1800-control cells with HA1800-HHV-6A GS cells, we identified 249 differentially expressed genes. After investigating these candidate genes, we found seven genes associated with two or more CNS diseases: CTSS, PTX3, CHI3L1, Mx1, CXCL16, BIRC3, and BST2. This is the first transcriptome sequencing study which showed the significant association of these genes between HHV-6A infection and neurologic diseases. We believe that our findings can provide a new perspective to understand the pathogenic mechanism of HHV-6A infection and neurologic diseases. PMID:27344170

  18. Translational neurophysiology in sheep: measuring sleep and neurological dysfunction in CLN5 Batten disease affected sheep

    PubMed Central

    Perentos, Nicholas; Martins, Amadeu Q.; Watson, Thomas C.; Bartsch, Ullrich; Mitchell, Nadia L.; Palmer, David N.; Jones, Matthew W.

    2015-01-01

    Creating valid mouse models of slowly progressing human neurological diseases is challenging, not least because the short lifespan of rodents confounds realistic modelling of disease time course. With their large brains and long lives, sheep offer significant advantages for translational studies of human disease. Here we used normal and CLN5 Batten disease affected sheep to demonstrate the use of the species for studying neurological function in a model of human disease. We show that electroencephalography can be used in sheep, and that longitudinal recordings spanning many months are possible. This is the first time such an electroencephalography study has been performed in sheep. We characterized sleep in sheep, quantifying characteristic vigilance states and neurophysiological hallmarks such as sleep spindles. Mild sleep abnormalities and abnormal epileptiform waveforms were found in the electroencephalographies of Batten disease affected sheep. These abnormalities resemble the epileptiform activity seen in children with Batten disease and demonstrate the translational relevance of both the technique and the model. Given that both spontaneous and engineered sheep models of human neurodegenerative diseases already exist, sheep constitute a powerful species in which longitudinal in vivo studies can be conducted. This will advance our understanding of normal brain function and improve our capacity for translational research into neurological disorders. PMID:25724202

  19. Stem cell transplantation in neurological diseases: improving effectiveness in animal models

    PubMed Central

    Adami, Raffaella; Scesa, Giuseppe; Bottai, Daniele

    2014-01-01

    Neurological diseases afflict a growing proportion of the human population. There are two reasons for this: first, the average age of the population (especially in the industrialized world) is increasing, and second, the diagnostic tools to detect these pathologies are now more sophisticated and can be used on a higher percentage of the population. In many cases, neurological disease has a pharmacological treatment which, as in the case of Alzheimer's disease, Parkinson's disease, Epilepsy, and Multiple Sclerosis can reduce the symptoms and slow down the course of the disease but cannot reverse its effects or heal the patient. In the last two decades the transplantation approach, by means of stem cells of different origin, has been suggested for the treatment of neurological diseases. The choice of slightly different animal models and the differences in methods of stem cell preparation make it difficult to compare the results of transplantation experiments. Moreover, the translation of these results into clinical trials with human subjects is difficult and has so far met with little success. This review seeks to discuss the reasons for these difficulties by considering the differences between human and animal cells (including isolation, handling and transplantation) and between the human disease model and the animal disease model. PMID:25364724

  20. The use of complementary and alternative medicine in children with common neurologic diseases

    PubMed Central

    Yeon, Gyu-Min

    2016-01-01

    Complementary and alternative medicine (CAM) is a phrase used to describe additional health care methods such as mind/body practices and natural products not regarded as treatments by conventional medicine. The use of CAM in children with common neurologic diseases is more frequent than its use in healthy children (24%–78% vs. 12%). However, less than half of patients report such use to their physicians. The preferred modalities of CAM vary in different countries due to their different cultures and traditions. The most common factor significantly associated with the use of CAM is parental CAM use in most studies. The frequency of the use of CAM in children and adults with neurologic diseases is similar, and both rates are higher than the rates in those without these conditions. The preferred modalities of CAM in adults are diverse, and megavitamins and mind/body therapy (prayer and chiropractic care) are included. The most common factor significantly associated with the use of CAM in adults with neurologic diseases is high educational level. Physicians need to be concerned with patients' use of CAM and provide correct information about CAM so that patients may make the right decisions. Further study is needed to determine the evidence-based efficacy of CAM use in children with common neurologic diseases. PMID:27610179

  1. The genetics of Parkinson disease: Implications for neurological care.

    PubMed

    Klein, Christine; Schlossmacher, Michael G

    2006-03-01

    The identification of single genes linked to heritable forms of Parkinson disease (PD) has challenged the previously held view of a nongenetic etiology for this progressive movement disorder. Detailed analyses of individuals with mutations in SNCA, Parkin, PINK1, DJ1 or LRRK2 have greatly advanced our knowledge of preclinical and clinical, morphological, and pathological changes in PD. These genetic breakthroughs have had profound implications for scientists, neurologists and patients alike. Such advances have provided unique opportunities to pursue the mechanisms of neuronal degeneration in models of PD pathogenesis, thereby reinforcing the significance of oxidative stress and mitochondrial dysfunction. With emerging clues from familial variants, researchers have begun to explore factors that lead to the expression of the more common, sporadic disease phenotype (idiopathic PD), including interactions between various genes, modifying effects of susceptibility alleles and epigenetic factors, and the influence of environmental agents and aging on the expression of PD-linked genes. These genetic leads have added to the urgency of developing translational drug treatments, and neurologists and their patients are confronting considerations relating to DNA testing. In this article, we summarize recent progress in establishing a neurogenetic component of PD, emphasize the need for developing PD biomarkers to improve diagnostic accuracy (in both clinical practice and therapeutic trials), and discuss scenarios in which specific DNA tests might be considered for diagnostic purposes. In the absence of consensus guidelines for DNA testing in PD and of any neuroprotective treatment for this nonfatal disorder, we remind ourselves of the omnipresent mandate, 'Primum nil nocere!' ('First, do no harm!').

  2. Predicting targets of compounds against neurological diseases using cheminformatic methodology

    NASA Astrophysics Data System (ADS)

    Nikolic, Katarina; Mavridis, Lazaros; Bautista-Aguilera, Oscar M.; Marco-Contelles, José; Stark, Holger; do Carmo Carreiras, Maria; Rossi, Ilaria; Massarelli, Paola; Agbaba, Danica; Ramsay, Rona R.; Mitchell, John B. O.

    2015-02-01

    Recently developed multi-targeted ligands are novel drug candidates able to interact with monoamine oxidase A and B; acetylcholinesterase and butyrylcholinesterase; or with histamine N-methyltransferase and histamine H3-receptor (H3R). These proteins are drug targets in the treatment of depression, Alzheimer's disease, obsessive disorders, and Parkinson's disease. A probabilistic method, the Parzen-Rosenblatt window approach, was used to build a "predictor" model using data collected from the ChEMBL database. The model can be used to predict both the primary pharmaceutical target and off-targets of a compound based on its structure. Molecular structures were represented based on the circular fingerprint methodology. The same approach was used to build a "predictor" model from the DrugBank dataset to determine the main pharmacological groups of the compound. The study of off-target interactions is now recognised as crucial to the understanding of both drug action and toxicology. Primary pharmaceutical targets and off-targets for the novel multi-target ligands were examined by use of the developed cheminformatic method. Several multi-target ligands were selected for further study, as compounds with possible additional beneficial pharmacological activities. The cheminformatic targets identifications were in agreement with four 3D-QSAR (H3R/D1R/D2R/5-HT2aR) models and by in vitro assays for serotonin 5-HT1a and 5-HT2a receptor binding of the most promising ligand ( 71/MBA-VEG8).

  3. 123I-Meta-iodobenzylguanidine Sympathetic Imaging: Standardization and Application to Neurological Diseases

    PubMed Central

    Yamada, Masahito

    2016-01-01

    123I-meta-iodobenzylguanidine (MIBG) has become widely applied in Japan since its introduction to clinical cardiology and neurology practice in the 1990s. Neurological studies found decreased cardiac uptake of 123I-MIBG in Lewy-body diseases including Parkinson's disease and dementia with Lewy bodies. Thus, cardiac MIBG uptake is now considered a biomarker of Lewy body diseases. Although scintigraphic images of 123I-MIBG can be visually interpreted, an average count ratio of heart-to-mediastinum (H/M) has commonly served as a semi-quantitative marker of sympathetic activity. Since H/M ratios significantly vary according to acquisition and processing conditions, quality control should be appropriate, and quantitation should be standardized. The threshold H/M ratio for differentiating Lewy-body disease is 2.0-2.1, and was based on standardized H/M ratios to comparable values of medium-energy collimators. Parkinson's disease can be separated from various types of parkinsonian syndromes using cardiac 123I-MIBG, whereas activity is decreased on images of Lewy-body diseases using both 123I-ioflupane for the striatum and 123I-MIBG. Despite being a simple index, the H/M ratio of 123I-MIBG uptake is reproducible and can serve as an effective tool to support a diagnosis of Lewy-body diseases in neurological practice. PMID:27689024

  4. Antibodies to chondroitin sulfates A, B, and C: clinico-pathological correlates in neurological diseases.

    PubMed

    Briani, C; Santoro, M; Latov, N

    2000-08-01

    Anti-chondroitin sulfates (ChSs) antibodies have been reported in neuropathy and neurodegenerative diseases. Differences in specificities may account for their association with different diseases. Sera from 303 neurological patients were tested for antibodies to ChSs A, B, C. Titers >/=51,200 were found in 16 patients (eight peripheral neuropathy, three motor neuron disease, four multiple sclerosis, one myelitis). Three patients also had anti-sulfatides antibodies, which in two cases cross-reacted with ChSs. By indirect immunofluorescence, positive sera stained nuclei on normal human peripheral nerve sections. These findings indicate that human anti-ChSs antibodies are broadly reactive and not specific to any neurological disease.

  5. Measles, mumps, rubella, and human parvovirus B19 infections and neurologic disease.

    PubMed

    Bale, James F

    2014-01-01

    While the systemic disorders associated with measles, mumps, and rubella viruses and human parvovirus B19 tend to be mild, each virus can produce potentially life-threatening neurologic disease in human hosts, especially when these viruses infect young children. Two of the viruses, rubella and parvovirus B19, can be vertically transmitted to fetuses during maternal infection and cause congenital infection. Neurologic complications are common after intrauterine infection with the rubella virus, a condition known as the congenital rubella syndrome. Two, measles and rubella viruses, can induce "slow viral" infections, serious, disorders that can occur several years after the initial exposure to the virus and typically have fatal outcomes.

  6. Adhesive arachnoiditis in mixed connective tissue disease: a rare neurological manifestation.

    PubMed

    Khan, Maria Usman; Devlin, James Anthony Joseph; Fraser, Alexander

    2016-12-16

    The overall incidence of neurological manifestations is relatively low among patients with mixed connective tissue disease (MCTD). We recently encountered a case of autoimmune adhesive arachnoiditis in a young woman with 7 years history of MCTD who presented with severe back pain and myeloradiculopathic symptoms of lower limbs. To the best of our knowledge, adhesive arachnoiditis in an MCTD patient has never been previously reported. We report here this rare case, with the clinical picture and supportive ancillary data, including serology, cerebral spinal fluid analysis, electrophysiological evaluation and spinal neuroimaging, that is, MRI and CT (CT scan) of thoracic and lumbar spine. Her neurological deficit improved after augmenting her immunosuppressant therapy. Our case suggests that adhesive arachnoiditis can contribute to significant neurological deficits in MCTD and therefore requires ongoing surveillance.

  7. Adhesive arachnoiditis in mixed connective tissue disease: a rare neurological manifestation

    PubMed Central

    Devlin, James Anthony Joseph; Fraser, Alexander

    2016-01-01

    The overall incidence of neurological manifestations is relatively low among patients with mixed connective tissue disease (MCTD). We recently encountered a case of autoimmune adhesive arachnoiditis in a young woman with 7 years history of MCTD who presented with severe back pain and myeloradiculopathic symptoms of lower limbs. To the best of our knowledge, adhesive arachnoiditis in an MCTD patient has never been previously reported. We report here this rare case, with the clinical picture and supportive ancillary data, including serology, cerebral spinal fluid analysis, electrophysiological evaluation and spinal neuroimaging, that is, MRI and CT (CT scan) of thoracic and lumbar spine. Her neurological deficit improved after augmenting her immunosuppressant therapy. Our case suggests that adhesive arachnoiditis can contribute to significant neurological deficits in MCTD and therefore requires ongoing surveillance. PMID:27986694

  8. Clinical and immunological relevance of anti-neuronal antibodies in celiac disease with neurological manifestations

    PubMed Central

    Caio, Giacomo; Giorgio, Roberto De; Venturi, Alessandro; Giancola, Fiorella; Latorre, Rocco; Boschetti, Elisa; Serra, Mauro; Ruggeri, Eugenio; Volta, Umberto

    2015-01-01

    Aim: To assess anti-neuronal antibodies (NA) prevalence and their correlation with neurological disorders and bowel habits in celiac disease (CD) patients. Background: Neurological manifestations are estimated to occur in about 10% of celiac disease patients and NA to central nervous system (CNS) and enteric nervous system (ENS) are found in a significant proportion of them. Little is known about the clinical and immunological features in CD patients with neurological manifestations. Patients and methods: NA to CNS and ENS were investigated in 106 CD patients and in 60 controls with autoimmune disorders by indirect immunofluorescence on rat / primate cerebellar cortex and intestinal (small and large bowel) sections. Results: IgG NA to CNS (titer 1:50 - 1:400) were positive in 23 celiacs (21%), being more frequently detected in those with neurological disorders that in those without neurological dysfunction (49% vs. 8%, P< 0.0001). Of the 26 celiacs (24%) with IgG NA to ENS, 11 out of 12 with an antibody titer > 1:200 had severe constipation. Only one patient with cerebellar ataxia and intestinal sub-occlusion was positive for NA to CNS and ENS. NA to CNS and ENS were found in 7% and 5% of controls, respectively. Conclusion: In CD the positivity of NA to CNS can be regarded as a marker of neurological manifestations. High titer NA to ENS are associated with severe constipation. The demonstration of NA to CNS and ENS suggests an immune-mediated pathogenesis leading to central neural impairment as well as gut dysfunction (hence constipation), respectively. PMID:25926940

  9. Frontiers in therapeutic development of allopregnanolone for Alzheimer’s disease and other neurological disorders

    PubMed Central

    Irwin, Ronald W.; Solinsky, Christine M.; Brinton, Roberta Diaz

    2014-01-01

    Allopregnanolone (Allo), a neurosteroid, has emerged as a promising promoter of endogenous regeneration in brain. In a mouse model of Alzheimer’s disease, Allo induced neurogenesis, oligodendrogenesis, white matter generation and cholesterol homeostasis while simultaneously reducing β-amyloid and neuroinflammatory burden. Allo activates signaling pathways and gene expression required for regeneration of neural stem cells and their differentiation into neurons. In parallel, Allo activates systems to sustain cholesterol homeostasis and reduce β-amyloid generation. To advance Allo into studies for chronic human neurological conditions, we examined translational and clinical parameters: dose, regimen, route, formulation, outcome measures, and safety regulations. A treatment regimen of once per week at sub-sedative doses of Allo was optimal for regeneration and reduction in Alzheimer’s pathology. This regimen had a high safety profile following chronic exposure in aged normal and Alzheimer’s mice. Formulation of Allo for multiple routes of administration has been developed for both preclinical and clinical testing. Preclinical evidence for therapeutic efficacy of Allo spans multiple neurological diseases including Alzheimer’s, Parkinson’s, multiple sclerosis, Niemann-Pick, diabetic neuropathy, status epilepticus, and traumatic brain injury. To successfully translate Allo as a therapeutic for multiple neurological disorders, it will be necessary to tailor dose and regimen to the targeted therapeutic mechanisms and disease etiology. Treatment paradigms conducted in accelerated disease models in young animals have a low probability of successful translation to chronic diseases in adult and aged humans. Gender, genetic risks, stage and burden of disease are critical determinants of efficacy. This review focuses on recent advances in development of Allo for Alzheimer’s disease (AD) that have the potential to accelerate therapeutic translation for multiple unmet

  10. Stem and progenitor cell-derived astroglia therapies for neurological diseases

    PubMed Central

    Chen, Chen; Chan, Albert; Wen, Han; Chung, Seung-Hyuk; Deng, Wenbin; Jiang, Peng

    2015-01-01

    Astroglia are a major cellular constituent of the central nervous system (CNS) and play crucial roles in brain development, function and integrity. Increasing evidence demonstrates that astroglia dysfunction occurs in a variety of neurological disorders ranging from CNS injuries to genetic diseases and chronic degenerative conditions. These new insights herald the concept that transplantation of astroglia could be of therapeutic value in treating the injured or diseased CNS. Recent technological advances in the generation of human astroglia from stem and progenitor cells have been prominent. We propose that a better understanding of the suitability of astroglial cells in transplantation, as well as of their therapeutic effects in animal models may lead to the establishment of astroglia-based therapies to treat neurological diseases. PMID:26443123

  11. An update of neurological manifestations of vasculitides and connective tissue diseases: a literature review

    PubMed Central

    Bougea, Anastasia; Anagnostou, Evangelos; Spandideas, Nikolaos; Triantafyllou, Nikolaos; Kararizou, Evangelia

    2015-01-01

    Vasculitides comprise a heterogeneous group of autoimmune disorders, occurring as primary or secondary to a broad variety of systemic infectious, malignant or connective tissue diseases. The latter occur more often but their pathogenic mechanisms have not been fully established. Frequent and varied central and peripheral nervous system complications occur in vasculitides and connective tissue diseases. In many cases, the neurological disorders have an atypical clinical course or even an early onset, and the healthcare professionals should be aware of them. The purpose of this brief review was to give an update of the main neurological disorders of common vasculitis and connective tissue diseases, aiming at accurate diagnosis and management, with an emphasis on pathophysiologic mechanisms. PMID:26313435

  12. Genomics in neurological disorders.

    PubMed

    Han, Guangchun; Sun, Jiya; Wang, Jiajia; Bai, Zhouxian; Song, Fuhai; Lei, Hongxing

    2014-08-01

    Neurological disorders comprise a variety of complex diseases in the central nervous system, which can be roughly classified as neurodegenerative diseases and psychiatric disorders. The basic and translational research of neurological disorders has been hindered by the difficulty in accessing the pathological center (i.e., the brain) in live patients. The rapid advancement of sequencing and array technologies has made it possible to investigate the disease mechanism and biomarkers from a systems perspective. In this review, recent progresses in the discovery of novel risk genes, treatment targets and peripheral biomarkers employing genomic technologies will be discussed. Our major focus will be on two of the most heavily investigated neurological disorders, namely Alzheimer's disease and autism spectrum disorder.

  13. tDCS-enhanced motor and cognitive function in neurological diseases.

    PubMed

    Flöel, Agnes

    2014-01-15

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tool that is now being widely used in neuroscientific and clinical research in humans. While initial studies focused on modulation of cortical excitability, the technique quickly progressed to studies on motor and cognitive functions in healthy humans and in patients with neurological diseases. In the present review we will first provide the reader with a brief background on the basic principles of tDCS. In the main part, we will outline recent studies with tDCS that aimed at enhancing behavioral outcome or disease-specific symptoms in patients suffering from mild cognitive impairment, Alzheimer's disease, movement disorders, and epilepsy, or persistent deficits after stroke. The review will close with a summary statement on the present use of tDCS in the treatment of neurological disorders, and an outlook to further developments in this realm. tDCS may be an ideal tool to be administered in parallel to intensive cognitive or motor training in neurological disease, but efficacy for the areas of activities and participation still needs to be established in controlled randomized trials. Its use in reducing disease-specific symptoms like dystonia or epileptic seizures is still unclear.

  14. AMPA receptors as drug targets in neurological disease--advantages, caveats, and future outlook.

    PubMed

    Chang, Philip K-Y; Verbich, David; McKinney, R Anne

    2012-06-01

    Most excitatory transmission in the brain is mediated by the AMPA receptor subtype of the ionotropic glutamate receptors. In many neurological diseases, synapse structure and AMPA receptor function are altered, thus making AMPA receptors potential therapeutic targets for clinical intervention. The work summarized in this review suggests a link between AMPA receptor function and debilitating neuropathologies, and discusses the current state of therapies targeting AMPA receptors in four diseases. In amyotrophic lateral sclerosis, AMPA receptors allow cytotoxic levels of calcium into neurons, leading to motor neuron death. Likewise, in some epilepsies, overactivation of AMPA receptors leads to neuron damage. The same is true for ischemia, where oxygen deprivation leads to excitotoxicity. Conversely, Alzheimer's disease is characterized by decreased AMPA activation and synapse loss. Unfortunately, many clinical studies have had limited success by directly targeting AMPA receptors in these diseases. We also discuss how the use of AMPA receptor modulators, commonly known as ampakines, in neurological diseases initially seemed promising in animal studies, but mostly ineffective in clinical trials. We propose that indirectly affecting AMPA receptors, such as by modulating transmembrane AMPA receptor regulatory proteins or, more generally, by regulating glutamatergic transmission, may provide new therapeutic potential for neurological disorders.

  15. Education requirements for nurses working with people with complex neurological conditions: nurses' perceptions.

    PubMed

    Baker, Mark

    2012-01-01

    Following a service evaluation methodology, this paper reports on registered nurses' (RNs) and healthcare assistants' (HCAs) perceptions about education and training requirements in order to work with people with complex neurological disabilities. A service evaluation was undertaken to meet the study aim using a non-probability, convenience method of sampling 368 nurses (n=110 RNs, n=258 HCAs) employed between October and November 2008 at one specialist hospital in south-west London in the U.K. The main results show that respondents were clear about the need to develop an education and training programme for RNs and HCAs working in this speciality area (91% of RNs and 94% of HCAs). A variety of topics were identified to be included within a work-based education and training programme, such as positively managing challenging behaviour, moving and handling, working with families. Adults with complex neurological needs have diverse needs and thus nurses working with this patient group require diverse education and training in order to deliver quality patient-focused nursing care.

  16. Drosophila couch potato Mutants Exhibit Complex Neurological Abnormalities Including Epilepsy Phenotypes

    PubMed Central

    Glasscock, Edward; Tanouye, Mark A.

    2005-01-01

    RNA-binding proteins play critical roles in regulation of gene expression, and impairment can have severe phenotypic consequences on nervous system function. We report here the discovery of several complex neurological phenotypes associated with mutations of couch potato (cpo), which encodes a Drosophila RNA-binding protein. We show that mutation of cpo leads to bang-sensitive paralysis, seizure susceptibility, and synaptic transmission defects. A new cpo allele called cpoEG1 was identified on the basis of a bang-sensitive paralytic mutant phenotype in a sensitized genetic background (sda/+). In heteroallelic combinations with other cpo alleles, cpoEG1 shows an incompletely penetrant bang-sensitive phenotype with ∼30% of flies becoming paralyzed. In response to electroconvulsive shock, heteroallelic combinations with cpoEG1 exhibit seizure thresholds less than half that of wild-type flies. Finally, cpo flies display several neurocircuit abnormalities in the giant fiber (GF) system. The TTM muscles of cpo mutants exhibit long latency responses coupled with decreased following frequency. DLM muscles in cpo mutants show drastic reductions in following frequency despite exhibiting normal latency relationships. The labile sites appear to be the electrochemical GF-TTMn synapse and the chemical PSI-DLMn synapses. These complex neurological phenotypes of cpo mutants support an important role for cpo in regulating proper nervous system function, including seizure susceptibility. PMID:15687283

  17. Traumatic brain injury is associated with subsequent neurologic and psychiatric disease: a meta-analysis

    PubMed Central

    Perry, David C.; Sturm, Virginia E.; Peterson, Matthew J.; Pieper, Carl F.; Bullock, Thomas; Boeve, Bradley F.; Miller, Bruce L.; Guskiewicz, Kevin M.; Berger, Mitchel S.; Kramer, Joel H.; Welsh-Bohmer, Kathleen A.

    2016-01-01

    Object Mild traumatic brain injury (TBI) has been proposed as a risk factor for development of Alzheimer’s disease, Parkinson’s disease, depression, and other illnesses. This study’s objective was to determine the association of prior mild TBI with subsequent diagnosis (i.e., at least one year post-injury) of neurologic or psychiatric disease. Methods All studies from 1995–2012 reporting TBI as a risk factor for diagnoses of interest were identified by searching PubMed, study references, and review articles. Reviewers abstracted the data and assessed study design and characteristics. Results 57 studies met inclusion criteria. A random effects meta-analysis revealed a significant association of prior TBI with subsequent neurologic and psychiatric diagnosis. The pooled odds ratio (OR) for TBI on development of any illness was 1.67 (95% CI 1.44–1.93, p<.001). Prior TBI was independently associated with both neurologic [OR 1.55 (95% CI 1.31–1.83, p<.001)] and psychiatric [OR 2.00 (95% CI 1.50–2.66, p<.001)] outcomes. Analyses of individual diagnoses found higher odds of Alzheimer’s disease, Parkinson’s disease, mild cognitive impairment, depression, mixed affective disorders, and bipolar disorder in individuals with previous TBI compared to those without TBI. This association was present when examining only studies of mild TBI and when considering the influence of study design and characteristics. Analysis of a subset of studies found no evidence that multiple TBIs were associated with higher odds of disease than a single TBI. Conclusions History of TBI, including mild TBI, is associated with the development of neurologic and psychiatric illness. This indicates that either TBI is a risk factor for heterogeneous pathologic processes or that TBI may contribute to a common pathologic mechanism. PMID:26315003

  18. Pulling complexes out of complex diseases

    PubMed Central

    Mohan, Ryan D; Abmayr, Susan M; Workman, Jerry L

    2014-01-01

    Spinocerebellar ataxia 7 (SCA7) is an incurable disease caused by expansion of CAG trinucleotide sequences within the Ataxin-7 gene. This elongated CAG tract results in an Ataxin-7 protein bearing an expanded polyglutamine (PolyQ) repeat. SCA7 disease is characterized by progressive neural and retinal degeneration leading to ataxia and blindness. Evidence gathered from investigating SCA7 and other PolyQ diseases strongly suggest that misregulation of gene expression contributes to neurodegeneration. In fact, Ataxin-7 is a subunit of the essential Spt-Ada-Gcn5-Acetltransferase (SAGA) chromatin modifying complex that regulates expression of a large number of genes. Here we discuss recent insights into Ataxin-7 function and, considering these findings, propose a model for how polyglutamine expansion of Ataxin-7 may affect Ataxin-7 function to alter chromatin modifications and gene expression. PMID:25054097

  19. Transgenic Monkey Model of the Polyglutamine Diseases Recapitulating Progressive Neurological Symptoms

    PubMed Central

    Ishibashi, Hidetoshi; Minakawa, Eiko N.; Motohashi, Hideyuki H.; Takayama, Osamu; Popiel, H. Akiko; Puentes, Sandra; Owari, Kensuke; Nakatani, Terumi; Nogami, Naotake; Yamamoto, Kazuhiro; Yonekawa, Takahiro; Tanaka, Yoko; Fujita, Naoko; Suzuki, Hikaru; Aizawa, Shu; Nagano, Seiichi; Yamada, Daisuke; Wada, Keiji; Kohsaka, Shinichi

    2017-01-01

    Abstract Age-associated neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and the polyglutamine (polyQ) diseases, are becoming prevalent as a consequence of elongation of the human lifespan. Although various rodent models have been developed to study and overcome these diseases, they have limitations in their translational research utility owing to differences from humans in brain structure and function and in drug metabolism. Here, we generated a transgenic marmoset model of the polyQ diseases, showing progressive neurological symptoms including motor impairment. Seven transgenic marmosets were produced by lentiviral introduction of the human ataxin 3 gene with 120 CAG repeats encoding an expanded polyQ stretch. Although all offspring showed no neurological symptoms at birth, three marmosets with higher transgene expression developed neurological symptoms of varying degrees at 3–4 months after birth, followed by gradual decreases in body weight gain, spontaneous activity, and grip strength, indicating time-dependent disease progression. Pathological examinations revealed neurodegeneration and intranuclear polyQ protein inclusions accompanied by gliosis, which recapitulate the neuropathological features of polyQ disease patients. Consistent with neuronal loss in the cerebellum, brain MRI analyses in one living symptomatic marmoset detected enlargement of the fourth ventricle, which suggests cerebellar atrophy. Notably, successful germline transgene transmission was confirmed in the second-generation offspring derived from the symptomatic transgenic marmoset gamete. Because the accumulation of abnormal proteins is a shared pathomechanism among various neurodegenerative diseases, we suggest that this new marmoset model will contribute toward elucidating the pathomechanisms of and developing clinically applicable therapies for neurodegenerative diseases. PMID:28374014

  20. Neurologic Diseases

    MedlinePlus

    ... brain, spinal cord, and nerves make up the nervous system. Together they control all the workings of the ... something goes wrong with a part of your nervous system, you can have trouble moving, speaking, swallowing, breathing, ...

  1. Depressive symptoms in Parkinson’s disease and in non-neurological medical illnesses

    PubMed Central

    Assogna, Francesca; Fagioli, Sabrina; Cravello, Luca; Meco, Giuseppe; Pierantozzi, Mariangela; Stefani, Alessandro; Imperiale, Francesca; Caltagirone, Carlo; Pontieri, Francesco E; Spalletta, Gianfranco

    2013-01-01

    Background Patients with neurological and non-neurological medical illnesses very often complain of depressive symptoms that are associated with cognitive and functional impairments. We compared the profile of depressive symptoms in Parkinson’s disease (PD) patients with that of control subjects (CS) suffering from non-neurological medical illnesses. Methods One-hundred PD patients and 100 CS were submitted to a structured clinical interview for identification of major depressive disorder (MDD) and minor depressive disorder (MIND), according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, text revision (DSM-IV-TR), criteria. The Hamilton Depression Rating Scale (HDRS) and the Beck Depression Inventory (BDI) were also administered to measure depression severity. Results When considering the whole groups, there were no differences in depressive symptom frequency between PD and CS apart from worthlessness/guilt, and changes in appetite reduced rates in PD. Further, total scores and psychic and somatic subscores of HDRS and BDI did not differ between PD and CS. After we separated PD and CS in those with MDD, MIND, and no depression (NODEP), comparing total scores and psychic/somatic subscores of HDRS and BDI, we found increased total depression severity in NODEP PD and reduced severity of the psychic symptoms of depression in MDD PD, with no differences in MIND. However, the severity of individual symptom frequency of depression was not different between PD and CS in MDD, MIND, and NODEP groups. Conclusion Although MDD and MIND phenomenology in PD may be very similar to that of CS with non-neurological medical illnesses, neurological symptoms of PD may worsen (or confound) depression severity in patients with no formal/structured DSM-IV-TR, diagnosis of depressive mood disorders. Thus, a thorough assessment of depression in PD should take into consideration the different impacts of neurological manifestations on MDD, MIND, and NODEP. PMID

  2. Barriers to care for patients with neurologic disease in rural Zambia.

    PubMed

    Birbeck, G L

    2000-03-01

    The awesome burden of treatable yet untreated neurologic disease in the developing world presents a humanitarian crisis to those of us with neurologic expertise from more privileged situations. Although increased economic resources are critically needed, a shortage of personnel to care for these patients is as great a problem. It is neither feasible nor desirable to propose training neurologists to work in these regions. However, COs could be selected to receive additional training and return to their home regions to serve as resources for referrals and as community educators. Such a training program would not require massive financial commitments. A handful of dedicated neurologists could conceivably accomplish this in 6- to 8-week training sessions. Ideally, educational materials, such as posters and pamphlets in both English and the native language of the various regions, would be provided at no cost. Existing textbooks in neurology are written for physicians and often focus on diagnostic evaluations and therapies far beyond the services available in developing countries. A text for practical use by COs and community health workers that discusses the application of available medicines and therapies for common neurologic problems would be invaluable. Similar books exist that address general medical and obstetrical problems (for example, Where There Is No Doctor: A Village Health Care Handbook). Where There Is No Neurologist could be developed as a primary teaching tool and a valuable reference for COs with neurologic expertise. Neuroscience researchers, clinical neurologists, and neurology residents from industrialized countries have much to offer and to gain by working in the Third World. Research to monitor the incidence and resource utilization of emerging problems such as stroke is needed to influence public policy. The economic burden and lost productivity caused by neurologic disease in this part of the world has not been appreciated or explored. Disease

  3. Combination therapeutics in complex diseases.

    PubMed

    He, Bing; Lu, Cheng; Zheng, Guang; He, Xiaojuan; Wang, Maolin; Chen, Gao; Zhang, Ge; Lu, Aiping

    2016-12-01

    The biological redundancies in molecular networks of complex diseases limit the efficacy of many single drug therapies. Combination therapeutics, as a common therapeutic method, involve pharmacological intervention using several drugs that interact with multiple targets in the molecular networks of diseases and may achieve better efficacy and/or less toxicity than monotherapy in practice. The development of combination therapeutics is complicated by several critical issues, including identifying multiple targets, targeting strategies and the drug combination. This review summarizes the current achievements in combination therapeutics, with a particular emphasis on the efforts to develop combination therapeutics for complex diseases.

  4. Overstimulation of the inhibitory nervous system plays a role in the pathogenesis of neuromuscular and neurological diseases: a novel hypothesis

    PubMed Central

    Tuk, Bert

    2016-01-01

    Based upon a thorough review of published clinical observations regarding the inhibitory system, I hypothesize that this system may play a key role in the pathogenesis of a variety of neuromuscular and neurological diseases. Specifically, excitatory overstimulation, which is commonly reported in neuromuscular and neurological diseases, may be a homeostatic response to inhibitory overstimulation. Involvement of the inhibitory system in disease pathogenesis is highly relevant, given that most approaches currently being developed for treating neuromuscular and neurological diseases focus on reducing excitatory activity rather than reducing inhibitory activity. PMID:27547379

  5. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6.

    PubMed Central

    Campbell, I L; Abraham, C R; Masliah, E; Kemper, P; Inglis, J D; Oldstone, M B; Mucke, L

    1993-01-01

    Cytokines are thought to be important mediators in physiologic and pathophysiologic processes affecting the central nervous system (CNS). To explore this hypothesis, transgenic mice were generated in which the cytokine interleukin 6 (IL-6), under the regulatory control of the glial fibrillary acidic protein gene promoter, was overexpressed in the CNS. A number of transgenic founder mice and their offspring exhibited a neurologic syndrome the severity of which correlated with the levels of cerebral IL-6 expression. Transgenic mice with high levels of IL-6 expression developed severe neurologic disease characterized by runting, tremor, ataxia, and seizure. Neuropathologic manifestations included neuro-degeneration, astrocytosis, angiogenesis, and induction of acute-phase-protein production. These findings indicate that cytokines such as IL-6 can have a direct pathogenic role in inflammatory, infectious, and neurodegenerative CNS diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7694279

  6. Zebrafish: An in vivo model for the study of neurological diseases

    PubMed Central

    Best, J D; Alderton, Wendy K

    2008-01-01

    As the population ages, there is a growing need for effective therapies for the treatment of neurological diseases. A limited number of therapeutics are currently available to improve cognitive function and research is limited by the need for in vivo models. Zebrafish have recently become a focus of neurobehavioral studies since larvae display neuropathological and behavioral phenotypes that are quantifiable and relate to those seen in man. Due to the small size of Zebrafish larvae, assays can be undertaken in 96 well plates and as the larvae can live in as little as 200 μl of fluid, only a few milligrams of compound are needed for screening. Thus in vivo analysis of the effects of compounds can be undertaken at much earlier stages in the drug discovery process. This review will look at the utility of the zebrafish in the study of neurological diseases and its role in improving the throughput of candidate compounds in in vivo screens. PMID:18830398

  7. Newer insights to the neurological diseases among biblical characters of old testament

    PubMed Central

    Mathew, Stephen K.; Pandian, Jeyaraj D.

    2010-01-01

    Many people over the years have studied the Bible from a medical point of view offering diagnoses for the symptoms and signs that appear to have afflicted numerous individuals in the Bible. We review the biblical characters in the Old Testament and offer newer insights to their neurological diseases. We first look at the battle between Goliath and David. Interestingly, Goliath probably suffered from acromegaly. We propose autism as a diagnosis for Samson which would precede the first known case of autism by centuries. Isaac was a diabetic, and he probably had autonomic neuropathy. Few verses from the books of I Samuel, Psalms, and Ezekiel reveal symptoms suggestive of stroke. Jacob suffered from sciatica, and the child of the Shunnamite woman in II Kings had a subarachnoid hemorrhage. These instances among others found in the Old Testament of the Bible offer newer insights on the history of current neurological diseases. PMID:21085524

  8. Stem Cells in Large Animal Models of Retinal and Neurological Disease

    DTIC Science & Technology

    2012-01-01

    papers that focus on stem and progenitor cells from the central nervous system (both brain and retina ) of nonrodent mammals, or cells modified to resemble...FEB 2012 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Stem cells in large animal models of retinal and neurological disease...Prescribed by ANSI Std Z39-18 Hindawi Publishing Corporation Stem Cells International Volume 2012, Article ID 460504, 2 pages doi:10.1155/2012/460504

  9. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases.

    PubMed

    Lovelace, Michael D; Varney, Bianca; Sundaram, Gayathri; Lennon, Matthew J; Lim, Chai K; Jacobs, Kelly; Guillemin, Gilles J; Brew, Bruce J

    2017-01-01

    The kynurenine pathway (KP) of tryptophan metabolism has emerged in recent years as a key regulator of the production of both neuroprotective (e.g. kynurenic and picolinic acid, and the essential cofactor NAD+) and neurotoxic metabolites (e.g. quinolinic acid, 3-hydroxykynurenine). The balance between the production of the two types of metabolites is controlled by key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO-1), and in turn, molecular signals such as interferon-γ (IFN-γ), which activate the KP metabolism of tryptophan by this enzyme, as opposed to alternative pathways for serotonin and melatonin production. Dysregulated KP metabolism has been strongly associated with neurological diseases in recent years, and is the subject of increasing efforts to understand how the metabolites are causative of disease pathology. Concurrent with these endeavours are drug development initiatives to use inhibitors to block certain enzymes in the pathway, resulting in reduced levels of neurotoxic metabolites (e.g. quinolinic acid, an excitotoxin and N-Methyl-d-Aspartate (NMDA) receptor agonist), while in turn enhancing the bioavailability of the neuroprotective metabolites such as kynurenic acid. Neurodegenerative diseases often have a substantial autoimmune or inflammatory component; hence a greater understanding of how KP metabolites influence the inflammatory cascade is required. Additionally, challenges exist in diseases like multiple sclerosis (MS) and motor neurone disease (MND), which do not have reliable biomarkers. Clinical diagnosis can often be prolonged in order to exclude other diseases, and often diagnosis occurs at an advanced state of disease pathology, which does not allow a lengthy time for patient assessment and intervention therapies. This review considers the current evidence for involvement of the KP in several neurological diseases, in biomarkers of disease and also the parallels that exist in KP metabolism with what is known in other

  10. Management of disease-modifying treatments in neurological autoimmune diseases of the central nervous system

    PubMed Central

    Salmen, A; Gold, R; Chan, A

    2014-01-01

    The therapeutic armamentarium for autoimmune diseases of the central nervous system, specifically multiple sclerosis and neuromyelitis optica, is steadily increasing, with a large spectrum of immunomodulatory and immunosuppressive agents targeting different mechanisms of the immune system. However, increasingly efficacious treatment options also entail higher potential for severe adverse drug reactions. Especially in cases failing first-line treatment, thorough evaluation of the risk–benefit profile of treatment alternatives is necessary. This argues for the need of algorithms to identify patients more likely to benefit from a specific treatment. Moreover, paradigms to stratify the risk for severe adverse drug reactions need to be established. In addition to clinical/paraclinical measures, biomarkers may aid in individualized risk–benefit assessment. A recent example is the routine testing for anti-John Cunningham virus antibodies in natalizumab-treated multiple sclerosis patients to assess the risk for the development of progressive multi-focal leucoencephalopathy. Refined algorithms for individualized risk assessment may also facilitate early initiation of induction treatment schemes in patient groups with high disease activity rather than classical escalation concepts. In this review, we will discuss approaches for individiualized risk–benefit assessment both for newly introduced agents as well as medications with established side-effect profiles. In addition to clinical parameters, we will also focus on biomarkers that may assist in patient selection. Other Articles published in this series Paraneoplastic neurological syndromes. Clinical and Experimental Immunology 2014, 175: 336–48. Disease-modifying therapy in multiple sclerosis and chronic inflammatory demyelinating polyradiculoneuropathy: common and divergent current and future strategies. Clinical and Experimental Immunology 2014, 175: 359–72. Monoclonal antibodies in treatment of multiple

  11. HTLV-I/II seroindeterminate Western blot reactivity in a cohort of patients with neurological disease.

    PubMed

    Soldan, S S; Graf, M D; Waziri, A; Flerlage, A N; Robinson, S M; Kawanishi, T; Leist, T P; Lehky, T J; Levin, M C; Jacobson, S

    1999-09-01

    The human T-cell lymphotropic virus type I (HTLV-I) is associated with a chronic, progressive neurological disease known as HTLV-I-associated myelopathy/tropical spastic paraparesis. Screening for HTLV-I involves the detection of virus-specific serum antibodies by EIA and confirmation by Western blot. HTLV-I/II seroindeterminate Western blot patterns have been described worldwide. However, the significance of this blot pattern is unclear. We identified 8 patients with neurological disease and an HTLV-I/II seroindeterminate Western blot pattern, none of whom demonstrated increased spontaneous proliferation and HTLV-I-specific cytotoxic T lymphocyte activity. However, HTLV-I tax sequence was amplified from the peripheral blood lymphocytes of 4 of them. These data suggest that patients with chronic progressive neurological disease and HTLV-I/II Western blot seroindeterminate reactivity may harbor either defective HTLV-I, novel retrovirus with partial homology to HTLV-I, or HTLV-I in low copy number.

  12. [Swiss scrapie surveillance. I. Clinical aspects of neurological diseases in sheep and goats].

    PubMed

    Maurer, E; Botteron, C; Ehrensperger, F; Fatzer, R; Jaggy, A; Kolly, C; Meylan, M; Zurbriggen, A; Doherr, M G

    2005-10-01

    Small ruminants infected with scrapie show a large range of often unspecific clinical symptoms. The most-often described signs, locomotion, sensibility and behavioural disorders and emaciation, rarely occur together, and cases have been described in which only one of those signs was detectable.Thus, formulating a well-circumscribed definition of a clinical suspect case is difficult. Most animals with CNS-effecting diseases such as listeriosis, polioencephalomacia, cerebrospinal nematidiasis and enterotoxemia will, in a thorough neurological examination, show at least some scrapie-like symptoms. Among the 22 neurological field cases examined in this study, a goat with cerebral gliomatosis and hair lice showed the closest similarity to clinical scrapie. The unilateral deficiency of the cerebral nerves has potential as an clinical exclusion criterion for scrapie. However, the laboratory confirmation--or exclusion--of scrapie remains important. It thus needs to be realized that a consistent and thorough examination of neurologically diseased small ruminants (including fallen stock) is the backbone of a good surveillance system for these diseases. This should be a motivation for submitting adult sheep and goats for neuropathological examination.

  13. Approach to Neurometabolic Diseases from a Pediatric Neurological Point of View

    PubMed Central

    KARIMZADEH, Parvaneh

    2015-01-01

    Objective Neurometabolic disorders are an important group of diseases that mostly are presented in newborns and infants. Neurological manifestations are the prominent signs and symptoms in this group of diseases. Seizures are a common sign and are often refractory to antiepileptic drugs in untreated neurometabolic patients. The onset of symptoms for neurometabolic disorders appears after an interval of normal or near normal growth and development.Additionally, affected children may fare well until a catabolic crisis occurs. Patients with neurometabolic disorders during metabolic decompensation have severe clinical presentation, which include poor feeding, vomiting, lethargy, seizures, and loss of consciousness. This symptom is often fatal but severe neurological insult and regression in neurodevelopmental milestones can result as a prominent sign in patients who survived. Acute symptoms should be immediately treated regardless of the cause. A number of patients with neurometabolic disorders respond favorably and, in some instances, dramatically respond to treatment. Early detection and early intervention is invaluable in some patients to prevent catabolism and normal or near normal neurodevelopmental milestones. This paper discusses neurometabolic disorders, approaches to this group of diseases (from the view of a pediatric neurologist), clinical and neurological manifestations, neuroimaging and electroencephalography findings, early detection, and early treatment. PMID:25767534

  14. Error awareness and the insula: links to neurological and psychiatric diseases

    PubMed Central

    Klein, Tilmann A.; Ullsperger, Markus; Danielmeier, Claudia

    2013-01-01

    Becoming aware of errors that one has committed might be crucial for strategic behavioral and neuronal adjustments to avoid similar errors in the future. This review addresses conscious error perception (“error awareness”) in healthy subjects as well as the relationship between error awareness and neurological and psychiatric diseases. We first discuss the main findings on error awareness in healthy subjects. A brain region, that appears consistently involved in error awareness processes, is the insula, which also provides a link to the clinical conditions reviewed here. Then we focus on a neurological condition whose core element is an impaired awareness for neurological consequences of a disease: anosognosia for hemiplegia (AHP). The insular cortex has been implicated in both error awareness and AHP, with anterior insular regions being involved in conscious error processing and more posterior areas being related to AHP. In addition to cytoarchitectonic and connectivity data, this reflects a functional and structural gradient within the insula from anterior to posterior. Furthermore, studies dealing with error awareness and lack of insight in a number of psychiatric diseases are reported. Especially in schizophrenia, attention-deficit hyperactivity disorder, (ADHD) and autism spectrum disorders (ASD) the performance monitoring system seems impaired, thus conscious error perception might be altered. PMID:23382714

  15. Neurological complications of sickle cell disease in Africa: protocol for a systematic review

    PubMed Central

    Mengnjo, Michel K; Kamtchum-Tatuene, Joseph; Nicastro, Nicolas; Noubiap, Jean Jacques N

    2016-01-01

    Introduction Sickle cell disease (SCD) is highly prevalent in Africa. Considered as a public health problem, it is associated with high morbidity and mortality. Neurological complications of SCD can cause significant disability with important socioeconomic and psychological impact on the patients and their families, and can even lead to death if not properly managed. There are important knowledge gaps regarding the burden of neurological complications of SCD in African populations. We propose to conduct the first systematic review to summarise the epidemiological data available on neurological complications of SCD in Africa. Methods and analysis We will search PubMed, MEDLINE, EMBASE and the African Index Medicus from 1 January 1950 to 31 May 2016 for studies of neurological complications of SCD in Africa. After study selection, full-text paper acquisition, data extraction and synthesis, we will assess all studies for quality, risk of bias and heterogeneity. Appropriate methods of meta-analysis will be used to pool prevalence estimates from studies with similar features, globally and in major subgroups. This protocol complies with the 2015 Preferred Reporting Items for Systematic reviews and Meta-Analysis protocols (PRISMA-P) guidelines. Ethics and dissemination The proposed study will use published data. Therefore, there is no requirement for ethical approval. This review is expected to provide relevant data to help quantify the burden of neurological complications of SCD in African populations, inform policymakers and identify further research topics. The final report of the systematic review will be published in a peer-reviewed journal and presented at conferences. Review registration number CRD42016039574. PMID:27798028

  16. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases.

    PubMed

    Zeliger, Harold I

    2013-09-01

    Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases.

  17. Exposure to lipophilic chemicals as a cause of neurological impairments, neurodevelopmental disorders and neurodegenerative diseases

    PubMed Central

    2013-01-01

    Many studies have associated environmental exposure to chemicals with neurological impairments (NIs) including neuropathies, cognitive, motor and sensory impairments; neurodevelopmental disorders (NDDs) including autism and attention deficit hyperactivity disorder (ADHD); neurodegenerative diseases (NDGs) including Alzheimer′s disease, Parkinson's disease and amyotrophic lateral sclerosis (ALS). The environmental chemicals shown to induce all these diseases include persistent organic pollutants (POPs), the plastic exudates bisphenol A and phthalates, low molecular weight hydrocarbons (LMWHCs) and polynuclear aromatic hydrocarbons (PAHs). It is reported here that though these chemicals differ widely in their chemical properties, reactivities and known points of attack in humans, a common link does exist between them. All are lipophilic species found in serum and they promote the sequential absorption of otherwise non-absorbed toxic hydrophilic species causing these diseases. PMID:24678247

  18. Rescue of Adult Hippocampal Neurogenesis in a Mouse Model of HIV Neurologic Disease

    PubMed Central

    Lee, Myoung-Hwa; Wang, Tongguang; Jang, Mi-Hyeon; Steiner, Joseph; Haughey, Norman; Ming, Guo-li; Song, Hongjun; Nath, Avindra; Venkatesan, Arun

    2011-01-01

    The prevalence of central nervous system (CNS) neurologic dysfunction associated with human immunodeficiency virus (HIV) infection continues to increase, despite the use of antiretroviral therapy. Previous work has focused on the deleterious effects of HIV on mature neurons and on development of neuroprotective strategies, which have consistently failed to show a meaningful clinical benefit. It is now well established that new neurons are continuously generated in discrete regions in the adult mammalian brain, and accumulating evidence supports important roles for these neurons in specific cognitive functions. In a transgenic mouse model of HIV neurologic disease with glial expression of the HIV envelope protein gp120, we demonstrate a significant reduction in proliferation of hippocampal neural progenitors in the dentate gyrus of adult animals, resulting in a dramatic decrease in the number of newborn neurons in the adult brain. We identify amplifying neural progenitor cells (ANPs) as the first class of progenitors affected by gp120, and we also demonstrate that newly generated neurons exhibit aberrant dendritic development. Furthermore, voluntary exercise and treatment with a selective serotonin reuptake inhibitor increase the ANP population and rescue the observed deficits in gp120 transgenic mice. Thus, during HIV infection, the envelope protein gp120 may potently inhibit adult hippocampal neurogenesis, and neurorestorative approaches may be effective in ameliorating these effects. Our study has significant implications for the development of novel therapeutic approaches for HIV-infected individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired. PMID:21146610

  19. Can BACE1 Inhibition Mitigate Early Axonal Pathology in Neurological Diseases?

    PubMed Central

    Yan, Xiao-Xin; Ma, Chao; Gai, Wei-Ping; Cai, Huaibin; Luo, Xue-Gang

    2014-01-01

    β-Secretase-1 (BACE1) is the rate-limiting enzyme for the genesis of amyloid-β (Aβ) peptides, the main constituents of the amyloid plaques in the brains of Alzheimer’s disease (AD) patients. BACE1 is being evaluated as an anti-Aβ target for AD therapy. Recent studies indicate that BACE1 elevation is associated with axonal and presynaptic pathology during plaque development. Evidence also points to a biological role for BACE1 in axonal outgrowth and synapse formation during development. Axonal, including presynaptic, pathology exists in AD as well as many other neurological disorders such as Parkinson’s disease, epilepsy, stroke, and trauma. In this review, we discuss pharmaceutical BACE1 inhibition as a therapeutic option for axonal pathogenesis, in addition to amyloid pathology. We first introduce the amyloidogenic processing of amyloid-β protein precursor and describe the normal expression pattern of the amyloidogenic proteins in the brain, with an emphasis on BACE1. We then address BACE1 elevation relative to amyloid plaque development, followed by updating recent understanding of a neurotrophic role of BACE1 in axon and synapse development. We further elaborate the occurrence of axonal pathology in some other neurological conditions. Finally, we propose pharmacological inhibition of excessive BACE1 activity as an option to mitigate early axonal pathology occurring in AD and other neurological disorders. PMID:24081378

  20. Risk of neurological diseases among survivors of electric shocks: a nationwide cohort study, Denmark, 1968-2008.

    PubMed

    Grell, Kathrine; Meersohn, Andrea; Schüz, Joachim; Johansen, Christoffer

    2012-09-01

    Several studies suggest a link between electric injuries and neurological diseases, where electric shocks may explain elevated risks for neuronal degeneration and, subsequently, neurological diseases. We conducted a retrospective cohort study on the risk of neurological diseases among people in Denmark who had survived an electric accident in 1968-2008. The cohort included 3,133 people and occurrences of neurological diseases were determined by linkage to the nationwide population-based Danish National Register of Patients. The numbers of cases observed at first hospital contact in the cohort were compared with the respective rates of first hospital contacts for neurological diseases in the general population. We observed significantly increased risks for peripheral nerve diseases (standardized hospitalization ratio (SHR), 1.66; 95% confidence interval (CI), 1.22-2.22), for migraine (SHR, 1.80; 95% CI, 1.23-2.54), for vertigo (SHR, 1.60; 95% CI, 1.22-2.05), and for epilepsy (SHR, 1.45; 95% CI, 1.11-1.85). Only small numbers of cases of other neurological diseases were found, making the risk estimates unstable. These findings suggest an association between a single electric shock and increased risks for peripheral nerve diseases, migraines, vertigo, and epilepsy, but confirmation of these observations is needed.

  1. Cerebrospinal fluid arginine vasopressin in degenerative disorders and other neurological diseases.

    PubMed Central

    Sundquist, J; Forsling, M L; Olsson, J E; Akerlund, M

    1983-01-01

    Arginine vasopressin (AVP) was determined in plasma and lumbar CSF from 46 patients with Parkinson's disease, dementia, cerebrovascular disease, multiple sclerosis and other, mostly peripheral neurological disorders. The mean plasma concentration of AVP was 1.62 microU/ml, the CSF concentration 1.14 microU/ml and the gradient CSF/plasma 0.72. There was a good correlation between the plasma and the CSF values in most patients. No sex difference could be found. A slight decrease of the CSF values could be found with increasing age. Significantly higher CSF-AVP values were found in patients with cerebrovascular disease, whereas lower CSF values were found in patients with dementia and Parkinson's disease. However there were decreased CSF/plasma gradients in patients with dementia and Parkinson's disease to about 0.30 compared to 0.98 in patients with peripheral neurological disorders. Patients with multiple sclerosis had an increased IgG index indicating an intrathecal IgG production but there was no obvious correlation between this and the AVP concentrations in plasma and CSF, nor with the total CSF protein content, nor with the albumin and IgG concentrations in plasma and CSF. PMID:6842195

  2. Neurologic features of chronic minamata disease (organic mercury poisoning) and incidence of complications with aging.

    PubMed

    Uchino, M; Tanaka, Y; Ando, Y; Yonehara, T; Hara, A; Mishima, I; Okajima, T; Ando, M

    1995-09-01

    To elucidate the neurologic features of chronic Minamata disease, and the incidence of complications with aging, we studied 80 patients with documented Minamata disease (organic mercury poisoning) from 1986 to 1994 (mean age: 63 years). Of the cardinal neurologic findings, sensory impairment was seen with highest frequency in 98.8% of patients limited to the extremities in 86.3%. Impairment of lower extremity coordination was observed in 60%, constriction of the visual field in 51.9%, and retrocochlear hearing loss in 41%. To assess age-related complications, patients were separated into three groups by age: Group I (10 to 39 years); Group II (40 to 69 years); Group III (> or = 70 years). The incidences of hypertension and cerebrovascular diseases, organic ophthalmologic disorders (including cataracts), presbyacusis, and cervical spondylosis deformans increased significantly with age. Compared with a preceding survey (1981 to 1985, 171 patients, mean age: 63.5 years), the incidences of complicated hypertension and cataracts had decreased, whereas those of cerebrovascular disease and retinitis pigmentosa remained unchanged. The incidences of abnormal brain computed tomography (CT), presbyacusis, cervical spondylosis deformans, and positive tests for urine sugar also increased. The incidences of these complications other than retinitis pigmentosa were similar to those in the general population. These results accurately reflect the recent epidemiological disease tendencies in Japan toward a decreased incidence of hypertension and an increased incidence of diabetes.

  3. Retrospective study of the clinical effects of acupuncture on cervical neurological diseases in dogs

    PubMed Central

    Liu, Ching Ming; Chang, Fang Chia

    2016-01-01

    This study was conducted to evaluate new acupuncture protocols for the clinical treatment of cervical spinal cord diseases in 19 dogs. Three treatment options containing Jing-jiaji (cervical jiaji) were developed to treat neck pain, hemiparesis, and tetraparesis depending on the severity. The interval between the neurological disease onset and treatment (duration of signs), time to improvement after treatment, and recovery time were compared in dogs by body weight, age, and dry needle acupuncture (AP) with or without electro-AP (EAP). The duration of signs was longer in dogs weighing greater than 10 kg than in those weighing less than 10 kg (p < 0.05). Improvement and recovery times did not vary by body weight. Additionally, improvement and recovery times did not vary by age. The improvement and recovery times were longer in the AP+EAP group than the AP group (p < 0.05). Acupuncture with Jing-jiaji was effective in cervical spinal cord diseases in different sized dogs and in middle-aged and senior dogs. This report standardized AP treatment containing Jing-jiaji for canine cervical problems and evaluated its effects. The newly standardized AP methodology offers clinical practitioners an effective way to improve the outcomes of cervical neurological diseases in dogs. PMID:26645331

  4. The Application of Human iPSCs in Neurological Diseases: From Bench to Bedside

    PubMed Central

    Xie, Nina; Tang, Beisha

    2016-01-01

    In principle, induced pluripotent stem cells (iPSCs) are generated from somatic cells by reprogramming and gaining the capacity to self-renew indefinitely as well as the ability to differentiate into cells of different lineages. Human iPSCs have absolute advantages over human embryonic stem cells (ESCs) and animal models in disease modeling, drug screening, and cell replacement therapy. Since Takahashi and Yamanaka first described in 2007 that iPSCs can be generated from human adult somatic cells by retroviral transduction of the four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc, disease specific iPSC lines have sprung up worldwide like bamboo shoots after a spring rain, making iPSC one of the hottest and fastest moving topics in modern science. The craze for iPSCs has spread throughout main branches of clinical medicine, covering neurology, hematology, cardiology, endocrinology, hepatology, ophthalmology, and so on. Here in this paper, we will focus on the clinical application of human iPSCs in disease modeling, drug screening, and cell replacement therapy for neurological diseases. PMID:26880979

  5. Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling

    PubMed Central

    Matsumoto, Takuya; Fujimori, Koki; Andoh-Noda, Tomoko; Ando, Takayuki; Kuzumaki, Naoko; Toyoshima, Manabu; Tada, Hirobumi; Imaizumi, Kent; Ishikawa, Mitsuru; Yamaguchi, Ryo; Isoda, Miho; Zhou, Zhi; Sato, Shigeto; Kobayashi, Tetsuro; Ohtaka, Manami; Nishimura, Ken; Kurosawa, Hiroshi; Yoshikawa, Takeo; Takahashi, Takuya; Nakanishi, Mahito; Ohyama, Manabu; Hattori, Nobutaka; Akamatsu, Wado; Okano, Hideyuki

    2016-01-01

    Summary Modeling of neurological diseases using induced pluripotent stem cells (iPSCs) derived from the somatic cells of patients has provided a means of elucidating pathogenic mechanisms and performing drug screening. T cells are an ideal source of patient-specific iPSCs because they can be easily obtained from samples. Recent studies indicated that iPSCs retain an epigenetic memory relating to their cell of origin that restricts their differentiation potential. The classical method of differentiation via embryoid body formation was not suitable for T cell-derived iPSCs (TiPSCs). We developed a neurosphere-based robust differentiation protocol, which enabled TiPSCs to differentiate into functional neurons, despite differences in global gene expression between TiPSCs and adult human dermal fibroblast-derived iPSCs. Furthermore, neurons derived from TiPSCs generated from a juvenile patient with Parkinson's disease exhibited several Parkinson's disease phenotypes. Therefore, we conclude that TiPSCs are a useful tool for modeling neurological diseases. PMID:26905201

  6. Bullous pemphigoid in a leg affected with hemiparesia: a possible relation of neurological diseases with bullous pemphigoid?

    PubMed

    Foureur, N; Descamps, V; Lebrun-Vignes, B; Picard-Dahan, C; Grossin, M; Belaich, S; Crickx, B

    2001-01-01

    We report a typical case of bullous pemphigoid (BP) associated with a neurological disorder and study a possible link between neurological disorders and BP. An 84-year-old hemiplegic woman presented with unilateral BP on the hemiparetic side. BP was confirmed by histological and immunofluorescence data. The medical records of the previous 46 consecutive patients with BP were retrospectively analyzed (average age: 79; median age: 85). Thirty of the 46 patients with BP had neurological disorders. These disorders included dementia, epilepsy, multiple sclerosis, cerebral stroke, Parkinson's disease, gonadotropic adenoma, trembling, dyskinesia, lumbar spinal stenosis. In a control group of the 46 consecutive oldest patients (older than 71; average age: 82,5; median age: 80) with another skin disease referred during the previous two-year-period to our one-day-unit only, 13 patients had a neurological disorder. This study demonstrates that there is a high prevalence of neurological disorders in patients with BP (p = 0.0004). A prospective case control study with neurological examination and psychometrical evaluation is warranted to confirm these data. We speculate that neuroautoimmunity associated with the aging process or neurological disorders may be involved in pemphigoid development via an autoimmune response against dystonin which shares homology with bullous pemphigoid antigen 1. Bullous pemphigoid could be considered to be a marker of neurological disorder.

  7. Neurological Disease Rises from Ocean to Bring Model for Human Epilepsy to Life

    PubMed Central

    Ramsdell, John S.

    2010-01-01

    Domoic acid of macroalgal origin was used for traditional and medicinal purposes in Japan and largely forgotten until its rediscovery in diatoms that poisoned 107 people after consumption of contaminated mussels. The more severely poisoned victims had seizures and/or amnesia and four died; however, one survivor unexpectedly developed temporal lobe epilepsy (TLE) a year after the event. Nearly a decade later, several thousand sea lions have stranded on California beaches with neurological symptoms. Analysis of the animals stranded over an eight year period indicated five clusters of acute neurological poisoning; however, nearly a quarter have stranded individually outside these events with clinical signs of a chronic neurological syndrome similar to TLE. These poisonings are not limited to sea lions, which serve as readily observed sentinels for other marine animals that strand during domoic acid poisoning events, including several species of dolphin and whales. Acute domoic acid poisoning is five-times more prominent in adult female sea lions as a result of the proximity of their year-round breeding grounds to major domoic acid bloom events. The chronic neurological syndrome, on the other hand, is more prevalent in young animals, with many potentially poisoned in utero. The sea lion rookeries of the Channel Islands are at the crossroads of domoic acid producing harmful algal blooms and a huge industrial discharge site for dichlorodiphenyltrichloroethane (DDTs). Studies in experimental animals suggest that chronic poisoning observed in immature sea lions may result from a spatial and temporal coincidence of DDTs and domoic acid during early life stages. Emergence of an epilepsy syndrome from the ocean brings a human epilepsy model to life and provides unexpected insights into interaction with legacy contaminants and expression of disease at different life stages. PMID:22069654

  8. Neurological disease rises from ocean to bring model for human epilepsy to life.

    PubMed

    Ramsdell, John S

    2010-07-01

    Domoic acid of macroalgal origin was used for traditional and medicinal purposes in Japan and largely forgotten until its rediscovery in diatoms that poisoned 107 people after consumption of contaminated mussels. The more severely poisoned victims had seizures and/or amnesia and four died; however, one survivor unexpectedly developed temporal lobe epilepsy (TLE) a year after the event. Nearly a decade later, several thousand sea lions have stranded on California beaches with neurological symptoms. Analysis of the animals stranded over an eight year period indicated five clusters of acute neurological poisoning; however, nearly a quarter have stranded individually outside these events with clinical signs of a chronic neurological syndrome similar to TLE. These poisonings are not limited to sea lions, which serve as readily observed sentinels for other marine animals that strand during domoic acid poisoning events, including several species of dolphin and whales. Acute domoic acid poisoning is five-times more prominent in adult female sea lions as a result of the proximity of their year-round breeding grounds to major domoic acid bloom events. The chronic neurological syndrome, on the other hand, is more prevalent in young animals, with many potentially poisoned in utero. The sea lion rookeries of the Channel Islands are at the crossroads of domoic acid producing harmful algal blooms and a huge industrial discharge site for dichlorodiphenyltrichloroethane (DDTs). Studies in experimental animals suggest that chronic poisoning observed in immature sea lions may result from a spatial and temporal coincidence of DDTs and domoic acid during early life stages. Emergence of an epilepsy syndrome from the ocean brings a human epilepsy model to life and provides unexpected insights into interaction with legacy contaminants and expression of disease at different life stages.

  9. Replication Validity of Initial Association Studies: A Comparison between Psychiatry, Neurology and Four Somatic Diseases

    PubMed Central

    Dumas-Mallet, Estelle; Button, Katherine; Boraud, Thomas; Munafo, Marcus; Gonon, François

    2016-01-01

    Context There are growing concerns about effect size inflation and replication validity of association studies, but few observational investigations have explored the extent of these problems. Objective Using meta-analyses to measure the reliability of initial studies and explore whether this varies across biomedical domains and study types (cognitive/behavioral, brain imaging, genetic and “others”). Methods We analyzed 663 meta-analyses describing associations between markers or risk factors and 12 pathologies within three biomedical domains (psychiatry, neurology and four somatic diseases). We collected the effect size, sample size, publication year and Impact Factor of initial studies, largest studies (i.e., with the largest sample size) and the corresponding meta-analyses. Initial studies were considered as replicated if they were in nominal agreement with meta-analyses and if their effect size inflation was below 100%. Results Nominal agreement between initial studies and meta-analyses regarding the presence of a significant effect was not better than chance in psychiatry, whereas it was somewhat better in neurology and somatic diseases. Whereas effect sizes reported by largest studies and meta-analyses were similar, most of those reported by initial studies were inflated. Among the 256 initial studies reporting a significant effect (p<0.05) and paired with significant meta-analyses, 97 effect sizes were inflated by more than 100%. Nominal agreement and effect size inflation varied with the biomedical domain and study type. Indeed, the replication rate of initial studies reporting a significant effect ranged from 6.3% for genetic studies in psychiatry to 86.4% for cognitive/behavioral studies. Comparison between eight subgroups shows that replication rate decreases with sample size and “true” effect size. We observed no evidence of association between replication rate and publication year or Impact Factor. Conclusion The differences in reliability

  10. Respiratory and neurological disease in rabbits experimentally infected with equid herpesvirus 1.

    PubMed

    Kanitz, Fábio A; Cargnelutti, Juliana F; Anziliero, Deniz; Gonçalves, Kelley V; Masuda, Eduardo K; Weiblen, Rudi; Flores, Eduardo F

    2015-10-01

    Equid herpesvirus type 1 (EHV-1) is an important pathogen of horses worldwide, associated with respiratory, reproductive and/or neurological disease. A mouse model for EHV-1 infection has been established but fails to reproduce some important aspects of the viral pathogenesis. Then, we investigated the susceptibility of rabbits to EHV-1 aiming at proposing this species as an alternative model for EHV-1 infection. Weanling rabbits inoculated intranasal with EHV-1 Kentucky D (10(7) TCID50/animal) shed virus in nasal secretions up to day 8-10 post-inoculation (pi), presented viremia up to day 14 pi and seroconverted to EHV-1 (virus neutralizing titers 4 to 64). Most rabbits (75%) developed respiratory disease, characterized by serous to hemorrhagic nasal discharge and mild to severe dyspnea. Some animals (20%) presented neurological signs as circling, bruxism and opisthotonus. Six animals died during acute disease (days 3-6); infectious virus and/or viral DNA were detected in the lungs, trigeminal ganglia (TG), olfactory bulbs (OBs) and cerebral cortex/brain (CC). Histological examination showed necrohemorrhagic, multifocal to coalescent bronchointerstitial pneumonia and diffuse alveolar edema. In two rabbits euthanized at day 50 pi, latent EHV-1 DNA was detected in the OBs. Dexamethasone administration at day 50 pi resulted in virus reactivation, demonstrated by virus shedding, viremia, clinical signs, and increase in VN titers and/or by detection of virus DNA in lungs, OBs, TGs and/or CC. These results demonstrate that rabbits are susceptible to EHV-1 infection and develop respiratory and neurological signs upon experimental inoculation. Thus, rabbits may be used to study selected aspects of EHV-1 biology and pathogenesis, extending and complementing the mouse model.

  11. Bronchiectasis: Phenotyping a Complex Disease.

    PubMed

    Chalmers, James D

    2017-03-15

    Bronchiectasis is a long-neglected disease currently experiencing a surge in interest. It is a highly complex condition with numerous aetiologies, co-morbidities and a heterogeneous disease presentation and clinical course. The past few years have seen major advances in our understanding of the disease, primarily through large real-life cohort studies. The main outcomes of interest in bronchiectasis are symptoms, exacerbations, treatment response, disease progression and death. We are now more able to identify clearly the radiological, clinical, microbiological and inflammatory contributors to these outcomes. Over the past couple of years, multidimensional scoring systems such as the Bronchiectasis Severity Index have been introduced to predict disease severity and mortality. Although there are currently no licensed therapies for bronchiectasis, an increasing number of clinical trials are planned or ongoing. While this emerging evidence is awaited, bronchiectasis guidelines will continue to be informed largely by real-life evidence from observational studies and patient registries. Key developments in the bronchiectasis field include the establishment of international disease registries and characterisation of disease phenotypes using cluster analysis and biological data.

  12. DISC1 and Huntington's Disease – Overlapping Pathways of Vulnerability to Neurological Disorder?

    PubMed Central

    Boxall, Ruth; Porteous, David J.; Thomson, Pippa A.

    2011-01-01

    We re-annotated the interacting partners of the neuronal scaffold protein DISC1 using a knowledge-based approach that incorporated recent protein interaction data and published literature to. This revealed two highly connected networks. These networks feature cellular function and maintenance, and cell signaling. Of potentially greatest interest was the novel finding of a high degree of connectivity between the DISC1 scaffold protein, linked to psychiatric illness, and huntingtin, the protein which is mutated in Huntington's disease. The potential link between DISC1, huntingtin and their interacting partners may open new areas of research into the effects of pathway dysregulation in severe neurological disorders. PMID:21298101

  13. Pattern of neurological disease seen among patients admitted in tertiary care hospital

    PubMed Central

    2014-01-01

    Background Neurologic disorders are not uncommon at in patient departments of different hospitals. We have conducted the study to see the pattern and burden of neurologic disorders at different inpatient departments of a tertiary care centre. Methodology This retrospective observational study was carried out from the records and referral notes of neurology department of Dhaka Medical College Hospital (DMCH) from July 2011 to June 2012. A total 335 patients were evaluated by consultant neurologists during this period. Result Majority of the patients (59.7%) presented after the age of forty years. The mean age at presentation was 45.11 ± 17.3 years with a male predominance (63.3%). Stroke was the most common condition (47.5%) observed at referral, followed by seizure (9.3%), disease of spinal cord (7.8%) and encephalopathy (6.3%). Even after consultation, 30 patients remained undiagnosed and 6 were diagnosed as functional disorder. Department of Medicine (231, 69%) and Cardiology (61, 18.2%) made most of the calls. More than half (56%) of the stroke patients were referred from medicine and one third (35.2%) from cardiology. Seizure (67.7%), problem in spinal cord (92.3%), coma (50%), encephalopathy (57.1%), motor neuron disease (MND) (72.7%) were common reasons for referral from department of Medicine. Whereas patients with cord disease (7.3%), CNS tumor (40%), seizure disorder (6.5%) and stroke (3.8%) were referred from surgery. Department of Obstetrics and Gynecology sought help for stroke (2.5%), seizure (12.9%), MND (27.3%), coma (16.7%) and encephalopathy (9.5%). Hypertension, diabetes, ischemic heart disease, dyslipidaemia and respiratory problem were significantly associated co-morbid conditions in stroke patients (at 95% CI, p value is <0.001, <0.01, <0.001, <0.05, <0.05 respectively). Hematological disorders were common association among patients with cord problem (<0.05). Conclusion Wide ranges of neurological problems are often managed by physicians

  14. Selenium in the Therapy of Neurological Diseases. Where is it Going?

    PubMed Central

    Dominiak, Agnieszka; Wilkaniec, Anna; Wroczyńsk, Piotr; Adamczyk, Agata

    2016-01-01

    Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income. PMID:26549649

  15. Using phosphate supplementation to reverse hypophosphatemia and phosphate depletion in neurological disease and disturbance.

    PubMed

    Håglin, Lena

    2016-06-01

    Hypophosphatemia (HP) with or without intracellular depletion of inorganic phosphate (Pi) and adenosine triphosphate has been associated with central and peripheral nervous system complications and can be observed in various diseases and conditions related to respiratory alkalosis, alcoholism (alcohol withdrawal), diabetic ketoacidosis, malnutrition, obesity, and parenteral and enteral nutrition. In addition, HP may explain serious muscular, neurological, and haematological disorders and may cause peripheral neuropathy with paresthesias and metabolic encephalopathy, resulting in confusion and seizures. The neuropathy may be improved quickly after proper phosphate replacement. Phosphate depletion has been corrected using potassium-phosphate infusion, a treatment that can restore consciousness. In severe ataxia and tetra paresis, complete recovery can occur after adequate replacement of phosphate. Patients with multiple risk factors, often with a chronic disease and severe HP that contribute to phosphate depletion, are at risk for neurologic alterations. To predict both risk and optimal phosphate replenishment requires assessing the nutritional status and risk for re-feeding hypophosphatemia. The strategy for correcting HP depends on the severity of the underlying disease and the goal for re-establishing a phosphate balance to limit the consequences of phosphate depletion.

  16. Involuntary emotional expression disorder - new/old disease in psychiatry and neurology.

    PubMed

    Presecki, Paola; Mimica, Ninoslav

    2007-09-01

    Involuntary emotional expression disorder (IEED) is underrecognized by clinicians, misdiagnosed as depression or bipolar disorder and undertreated, because clinicians are unfamiliar with the disorder. An important clinical consideration for IEED is that of distinguishing mood from affect. IEED describes a syndrome of relatively stereotypical episodes of uncontrollable crying and/or laughing, resulting from lesions of multiple types, in multiple brain regions, without an apparent stimulus to trigger such responses. This syndrome is common among a number of neurological diseases like patients with a stroke or traumatic brain injury (TBI), patients with amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), as well as dementias such as Alzheimer;s disease (AD), and motor disorders such as Parkinson;s disease (PD). The neuropathological cause and neurochemistry of the disorder remains unclear. There is general agreement that IEED is the result of an injury to the neurological pathways that control the expression of emotions. Adequate treatment can reduce the frequency and improve the quality of life of patients and caregivers.

  17. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    NASA Astrophysics Data System (ADS)

    Kaper, Tasso J.; Kramer, Mark A.; Rotstein, Horacio G.

    2013-12-01

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.

  18. Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment

    SciTech Connect

    Kaper, Tasso J. Kramer, Mark A.; Rotstein, Horacio G.

    2013-12-15

    Rhythmic neuronal oscillations across a broad range of frequencies, as well as spatiotemporal phenomena, such as waves and bumps, have been observed in various areas of the brain and proposed as critical to brain function. While there is a long and distinguished history of studying rhythms in nerve cells and neuronal networks in healthy organisms, the association and analysis of rhythms to diseases are more recent developments. Indeed, it is now thought that certain aspects of diseases of the nervous system, such as epilepsy, schizophrenia, Parkinson's, and sleep disorders, are associated with transitions or disruptions of neurological rhythms. This focus issue brings together articles presenting modeling, computational, analytical, and experimental perspectives about rhythms and dynamic transitions between them that are associated to various diseases.

  19. Neurologic disease in range goats associated with Oxytropis sericea (Locoweed) poisoning and water deprivation.

    PubMed

    Stegelmeier, B L; James, L F; Hall, J O; Mattix, M T

    2001-10-01

    About 200/2500 Spanish goats foraging on mountain rangelands of western Montana developed neurologic disease with severe rear limb weakness, knuckling of the rear fetlocks, and a hopping gait. Sick goats were of all ages and in good flesh, though they often had dull, shaggy coats. Some mildly affected animals recovered after being moved to feed lots, but others progressed to recumbency, seizures and death. At necropsy both moribund and clinically affected animals had few gross lesions; 1 animal had contusions and puncture wounds on rear legs and perineum, suggestive of predator bites. Histologic lesions included mild vacuolation of neurons and visceral epithelial cells, mild diffuse cerebral edema with minimal neuronal pyknosis, and random, multifocal Wallarian degeneration of spinal cord axons. Affected animals had elevated serum sodium, potassium and chloride levels; other mineral analyses and serum biochemistries were within normal limits. Locoweed-induced depression and inhibition of neuromuscular function coupled with water deprivation due to predation pressure allowed development of neurologic disease and hypernatremia.

  20. Clinical NMR imaging of the brain in children: normal and neurologic disease

    SciTech Connect

    Johnson, M.A,; Pennock, J.M.; Bydder, G.M.; Steiner, R.E.; Thomas, D.J.; Hayward, R.; Bryant, D.R.T.; Payne, J.A.; Levene, M.I.; Whitelaw, A.; Dubowitz, L.M.S.; Dubowitz, V.

    1983-11-01

    The results of initial clinical nuclear magnetic resonance imaging of the brain in eight normal and 52 children with a wide variety of neurologic diseases were reviewed. The high level of gray-white matter contrast available with inversion-recovery sequences provided a basis for visualizing normal myelination as well as delays or deficits in this process. The appearances seen in cases of parenchymal hemorrhage, cerebral infarction, and proencephalic cysts are described. Ventricular enlargement was readily identified and marginal edema was demonstrated with spin-echo sequences. Abnormalities were seen in cerebral palsy, congenital malformations, Hallervorden-Spatz disease, aminoaciduria, and meningitis. Space-occupying lesions were identified by virtue of their increased relaxation times and mass effects. Nuclear magnetic resonance imaging has considerable potential in pediatric neuroradiologic practice, in some conditions supplying information not available by computed tomography or sonography.

  1. In vivo Expression of Inducible Nitric Oxide Synthase in Experimentally Induced Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Koprowski, Hilary; Zheng, Yong Mu; Heber-Katz, Ellen; Fraser, Nigel; Rorke, Lucy; Fu, Zhen Fang; Hanlon, Cathleen; Dietzschold, Bernhard

    1993-04-01

    The purpose of this study was to investigate the induction of inducible nitric oxide synthase (iNOS) mRNA in the brain tissue of rats and mice under the following experimental conditions: in rats infected with borna disease virus and rabies virus, in mice infected with herpes simplex virus, and in rats after the induction of experimental allergic encephalitis. The results showed that iNOS mRNA, normally nondetectable in the brain, was present in animals after viral infection or after induction of experimental allergic encephalitis. The induction of iNOS mRNA coincided with the severity of clinical signs and in some cases with the presence of inflammatory cells in the brain. The results indicate that nitric oxide produced by cells induced by iNOS may be the toxic factor accounting for cell damage and this may open the door to approaches to the study of the pathogenesis of neurological diseases.

  2. Studies of generalized elemental imbalances in neurological disease patients using INAA (instrumental neutron activation analysis)

    SciTech Connect

    Ehmann, W.D.; Vance, D.E.; Khare, S.S.; Kasarskis, E.J.; Markesbery, W.R.

    1988-01-01

    Evidence has been presented in the literature to implicate trace elements in the etiology of several age-related neurological diseases. Most of these studies are based on brain analyses. Using instrumental neutron activation analysis (INAA), we have observed trace element imbalances in brains of patients with Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and Picks's disease. The most prevalent elemental imbalances found in the brain were for bromine, mercury, and the alkali metals. In this study the authors report INAA studies of trace elements in nonneural tissues from Alzheimer's disease and ALS patients. Samples from household relatives were collected for use as controls wherever possible. Hair samples were washed according to the International Atomic Energy Agency recommended procedure. Fingernail samples were scraped with a quartz knife prior to washing by the same procedure. For ALS patients, blood samples were also collected. These data indicate that elemental imbalances in Alzheimer's disease and ALS are not restricted to the brain. Many elements perturbed in the brain are also altered in the several nonneural tissues examined to date. The imbalances in different tissues, however, are not always in the same direction. The changes observed may represent causes, effects, or simply epiphenomena. Longitudinal studies of nonneural tissues and blood, as well as tissue microprobe analyses at the cellular and subcellular level, will be required in order to better assess the role of trace elements in the etiology of these diseases.

  3. A novel porcine model of ataxia telangiectasia reproduces neurological features and motor deficits of human disease

    PubMed Central

    Beraldi, Rosanna; Chan, Chun-Hung; Rogers, Christopher S.; Kovács, Attila D.; Meyerholz, David K.; Trantzas, Constantin; Lambertz, Allyn M.; Darbro, Benjamin W.; Weber, Krystal L.; White, Katherine A.M.; Rheeden, Richard V.; Kruer, Michael C.; Dacken, Brian A.; Wang, Xiao-Jun; Davis, Bryan T.; Rohret, Judy A.; Struzynski, Jason T.; Rohret, Frank A.; Weimer, Jill M.; Pearce, David A.

    2015-01-01

    Ataxia telangiectasia (AT) is a progressive multisystem disorder caused by mutations in the AT-mutated (ATM) gene. AT is a neurodegenerative disease primarily characterized by cerebellar degeneration in children leading to motor impairment. The disease progresses with other clinical manifestations including oculocutaneous telangiectasia, immune disorders, increased susceptibly to cancer and respiratory infections. Although genetic investigations and physiological models have established the linkage of ATM with AT onset, the mechanisms linking ATM to neurodegeneration remain undetermined, hindering therapeutic development. Several murine models of AT have been successfully generated showing some of the clinical manifestations of the disease, however they do not fully recapitulate the hallmark neurological phenotype, thus highlighting the need for a more suitable animal model. We engineered a novel porcine model of AT to better phenocopy the disease and bridge the gap between human and current animal models. The initial characterization of AT pigs revealed early cerebellar lesions including loss of Purkinje cells (PCs) and altered cytoarchitecture suggesting a developmental etiology for AT and could advocate for early therapies for AT patients. In addition, similar to patients, AT pigs show growth retardation and develop motor deficit phenotypes. By using the porcine system to model human AT, we established the first animal model showing PC loss and motor features of the human disease. The novel AT pig provides new opportunities to unmask functions and roles of ATM in AT disease and in physiological conditions. PMID:26374845

  4. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring.

    PubMed

    Zucchi, Fabiola C R; Yao, Youli; Ward, Isaac D; Ilnytskyy, Yaroslav; Olson, David M; Benzies, Karen; Kovalchuk, Igor; Kovalchuk, Olga; Metz, Gerlinde A S

    2013-01-01

    The gestational state is a period of particular vulnerability to diseases that affect maternal and fetal health. Stress during gestation may represent a powerful influence on maternal mental health and offspring brain plasticity and development. Here we show that the fetal transcriptome, through microRNA (miRNA) regulation, responds to prenatal stress in association with epigenetic signatures of psychiatric and neurological diseases. Pregnant Long-Evans rats were assigned to stress from gestational days 12 to 18 while others served as handled controls. Gestational stress in the dam disrupted parturient maternal behaviour and was accompanied by characteristic brain miRNA profiles in the mother and her offspring, and altered transcriptomic brain profiles in the offspring. In the offspring brains, prenatal stress upregulated miR-103, which is involved in brain pathologies, and downregulated its potential gene target Ptplb. Prenatal stress downregulated miR-145, a marker of multiple sclerosis in humans. Prenatal stress also upregulated miR-323 and miR-98, which may alter inflammatory responses in the brain. Furthermore, prenatal stress upregulated miR-219, which targets the gene Dazap1. Both miR-219 and Dazap1 are putative markers of schizophrenia and bipolar affective disorder in humans. Offspring transcriptomic changes included genes related to development, axonal guidance and neuropathology. These findings indicate that prenatal stress modifies epigenetic signatures linked to disease during critical periods of fetal brain development. These observations provide a new mechanistic association between environmental and genetic risk factors in psychiatric and neurological disease.

  5. Maternal Stress Induces Epigenetic Signatures of Psychiatric and Neurological Diseases in the Offspring

    PubMed Central

    Zucchi, Fabiola C. R.; Yao, Youli; Ward, Isaac D.; Ilnytskyy, Yaroslav; Olson, David M.; Benzies, Karen; Kovalchuk, Igor; Kovalchuk, Olga; Metz, Gerlinde A. S.

    2013-01-01

    The gestational state is a period of particular vulnerability to diseases that affect maternal and fetal health. Stress during gestation may represent a powerful influence on maternal mental health and offspring brain plasticity and development. Here we show that the fetal transcriptome, through microRNA (miRNA) regulation, responds to prenatal stress in association with epigenetic signatures of psychiatric and neurological diseases. Pregnant Long-Evans rats were assigned to stress from gestational days 12 to 18 while others served as handled controls. Gestational stress in the dam disrupted parturient maternal behaviour and was accompanied by characteristic brain miRNA profiles in the mother and her offspring, and altered transcriptomic brain profiles in the offspring. In the offspring brains, prenatal stress upregulated miR-103, which is involved in brain pathologies, and downregulated its potential gene target Ptplb. Prenatal stress downregulated miR-145, a marker of multiple sclerosis in humans. Prenatal stress also upregulated miR-323 and miR-98, which may alter inflammatory responses in the brain. Furthermore, prenatal stress upregulated miR-219, which targets the gene Dazap1. Both miR-219 and Dazap1 are putative markers of schizophrenia and bipolar affective disorder in humans. Offspring transcriptomic changes included genes related to development, axonal guidance and neuropathology. These findings indicate that prenatal stress modifies epigenetic signatures linked to disease during critical periods of fetal brain development. These observations provide a new mechanistic association between environmental and genetic risk factors in psychiatric and neurological disease. PMID:23451123

  6. [Neurological sleep disorders].

    PubMed

    Khatami, Ramin

    2014-11-01

    Neurological sleep disorders are common in the general population and may have a strong impact on quality of life. General practitioners play a key role in recognizing and managing sleep disorders in the general population. They should therefore be familiar with the most important neurological sleep disorders. This review provides a comprehensive overview of the most prevalent and important neurological sleep disorders, including Restless legs syndrome (with and without periodic limb movements in sleep), narcolepsy, NREM- and REM-sleep parasomnias and the complex relationship between sleep and epilepsies. Although narcolepsy is considered as a rare disease, recent discoveries in narcolepsy research provided insight in the function of brain circuitries involved in sleep wake regulation. REM sleep behavioral parasomnia (RBD) is increasingly recognized to represent an early manifestation of neurodegenerative disorders, in particular evolving synucleinopathies. Early diagnosis may thus open new perspectives for developing novel treatment options by targeting neuroprotective substances.

  7. Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease?

    PubMed

    Wyss, Markus; Schulze, Andreas

    2002-01-01

    Major achievements made over the last several years have highlighted the important roles of creatine and the creatine kinase reaction in health and disease. Inborn errors of metabolism have been identified in the three main steps involved in creatine metabolism: arginine:glycine amidinotransferase (AGAT), S-adenosyl-L-methionine:N-guanidinoacetate methyltransferase (GAMT), and the creatine transporter. All these diseases are characterized by a lack of creatine and phosphorylcreatine in the brain, and by (severe) mental retardation. Similarly, knockout mice lacking the brain cytosolic and mitochondrial isoenzymes of creatine kinase displayed a slightly increased creatine concentration, but no phosphorylcreatine in the brain. These mice revealed decreased weight gain and reduced life expectancy, disturbed fat metabolism, behavioral abnormalities and impaired learning capacity. Oral creatine supplementation improved the clinical symptoms in both AGAT and GAMT deficiency, but not in creatine transporter deficiency. In addition, creatine supplementation displayed neuroprotective effects in several animal models of neurological disease, such as Huntington's disease, Parkinson's disease, or amyotrophic lateral sclerosis. All these findings pinpoint to a close correlation between the functional capacity of the creatine kinase/phosphorylcreatine/creatine system and proper brain function. They also offer a starting-point for novel means of delaying neurodegenerative disease, and/or for strengthening memory function and intellectual capabilities.Finally, creatine biosynthesis has been postulated as a major effector of homocysteine concentration in the plasma, which has been identified as an independent graded risk factor for atherosclerotic disease. By decreasing homocysteine production, oral creatine supplementation may, thus, also lower the risk for developing, e.g., coronary heart disease or cerebrovascular disease. Although compelling, these results require further

  8. Brain-Delivery of Zinc-Ions as Potential Treatment for Neurological Diseases: Mini Review

    PubMed Central

    Grabrucker, Andreas M.; Rowan, Magali; Garner, Craig C.

    2011-01-01

    Homeostasis of metal ions such as Zn2+ is essential for proper brain function. Moreover, the list of psychiatric and neurodegenerative disorders involving a dysregulation of brain Zn2+-levels is long and steadily growing, including Parkinson’s and Alzheimer’s disease as well as schizophrenia, attention deficit and hyperactivity disorder, depression, amyotrophic lateral sclerosis, Down's syndrome, multiple sclerosis, Wilson’s disease and Pick’s disease. Furthermore, alterations in Zn2+-levels are seen in transient forebrain ischemia, seizures, traumatic brain injury and alcoholism. Thus, the possibility of altering Zn2+-levels within the brain is emerging as a new target for the prevention and treatment of psychiatric and neurological diseases. Although the role of Zn2+ in the brain has been extensively studied over the past decades, methods for controlled regulation and manipulation of Zn2+ concentrations within the brain are still in their infancy. Since the use of dietary Zn2+ supplementation and restriction has major limitations, new methods and alternative approaches are currently under investigation, such as the use of intracranial infusion of Zn2+ chelators or nanoparticle technologies to elevate or decrease intracellular Zn2+ levels. Therefore, this review briefly summarizes the role of Zn2+ in psychiatric and neurodegenerative diseases and highlights key findings and impediments of brain Zn2+-level manipulation. Furthermore, some methods and compounds, such as metal ion chelation, redistribution and supplementation that are used to control brain Zn2+-levels in order to treat brain disorders are evaluated. PMID:22102982

  9. Scavenger receptor b2 as a receptor for hand, foot, and mouth disease and severe neurological diseases.

    PubMed

    Yamayoshi, Seiya; Fujii, Ken; Koike, Satoshi

    2012-01-01

    Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD). Infection with EV71 is occasionally associated with severe neurological diseases such as acute encephalitis, acute flaccid paralysis, and cardiopulmonary failure. Because cellular receptors for viruses play an important role in cell, tissue, and species tropism, it is important to identify and characterize the receptor molecule. Recently, cellular receptors and host factors that stimulate EV71 infection have been identified. Several lines of evidence suggest that scavenger receptor class B, member 2 (SCARB2) plays critical roles in efficient EV71 infection and the development of disease in humans. In this review, we will summarize the findings of recent studies on EV71 infection and on the roles of SCARB2.

  10. Parental quality of life in complex paediatric neurologic disorders of unknown aetiology.

    PubMed

    van Nimwegen, K J M; Kievit, W; van der Wilt, G J; Schieving, J H; Willemsen, M A A P; Donders, A R T; Verhaak, C M; Grutters, J P C

    2016-09-01

    Complex paediatric neurology (CPN) patients generally present with non-specific symptoms, such as developmental delay, impaired movement and epilepsy. The diagnostic trajectory in these disorders is usually complicated and long-lasting, and may be burdensome to the patients and their parents. Additionally, as caring for a chronically ill child can be stressful and demanding, parents of these patients may experience impaired health-related quality of life (HRQoL). This study aims to assess parental HRQoL and factors related to it in CPN. Physical and mental HRQoL of 120 parents was measured and compared to the general population using the SF-12 questionnaire. Parents also completed this questionnaire for the measurement of patient HRQoL. Additional questionnaires were used to measure parental uncertainty (Visual Analogue Scale) and worry phenomena (Penn State Worry Questionnaire), and to obtain socio-demographic data. A linear mixed model with random effect was used to investigate which of these variables were associated with parental HRQoL. As compared to the general population, HRQoL of these parents appeared diminished. Fathers showed both lowered physical (51.76, p < 0.05) and mental (49.41, p < 0.01) HRQoL, whereas mothers only showed diminished mental (46.46, p < 0.01) HRQoL. Patient HRQoL and parental worry phenomena were significantly correlated with overall and mental parental HRQoL. The reduction in parental mental HRQoL is alarming, also because children strongly rely on their parents and parental mental health is known to influence children's health. Awareness of these problems among clinicians, and supportive care if needed are important to prevent exacerbation of the problems.

  11. Dialectics and Implications of Natural Neurotropic Autoantibodies in Neurological Disease and Rehabilitation

    PubMed Central

    Poletaev, A. B.; Abrosimova, A. A.; Sokolov, M. A.; Gekht, A. B.; Alferova, V. V.; Gusev, E. I.; Nikolaeva, T. Ya.; Selmi, C.

    2004-01-01

    The role of natural idiotypic (Id-Abs) and anti-idiotypic (AId-Abs) autoantibodies against neuro-antigens observed in different neurological disorders is not fully understood. In particular, limited experimental evidence has been provided concerning the qualitative and quantitative serological response after acute injuries of the central nervous system or during chronic mental diseases. In this study, we analyzed the specific Id-Abs and AId-Abs serological reactivities against 4 neuro-antigens in a large population of patients with ischemic stroke, schizophrenia, as well as healthy individuals. Patients with ischemic stroke were tested at different time points following the acute stroke episode and a correlation was attempted between autoantibodies response and different patterns of functional recovery. Results showed variable and detectable Id-Abs and AId-Abs in different proportions of all three populations of subjects. Among patients with different functional recovery after ischemic stroke, a difference in time-related trends of Id-Abs and AId-Abs was encountered. Our observations suggest that changes in the production of natural neurotropic Abs may engender a positive homeostatic, beside a possible pathogenic effect, in specific neurological disorders. PMID:15330451

  12. Neurologic Complications Associated with Sjögren's Disease: Case Reports and Modern Pathogenic Dilemma

    PubMed Central

    Colaci, Michele; Cassone, Giulia; Manfredi, Andreina; Sebastiani, Marco; Giuggioli, Dilia; Ferri, Clodoveo

    2014-01-01

    Objectives. Sjögren's syndrome (SS) may be complicated by some neurological manifestations, generally sensory polyneuropathy. Furthermore, involvement of cranial nerves was described as rare complications of SS. Methods. We reported 2 cases: the first one was a 40-year-old woman who developed neuritis of the left optic nerve as presenting symptom few years before the diagnosis of SS; the second was a 54-year-old woman who presented a paralysis of the right phrenic nerve 7 years after the SS onset. An exhaustive review of the literature on patients with cranial or phrenic nerve involvements was also carried out. Results. To the best of our knowledge, our second case represents the first observation of SS-associated phrenic nerve mononeuritis, while optic neuritis represents the most frequent cranial nerve involvement detectable in this connective tissue disease. Trigeminal neuropathy is also frequently reported, whereas neuritis involving the other cranial nerves is quite rare. Conclusions. Cranial nerve injury is a harmful complication of SS, even if less commonly recorded compared to peripheral neuropathy. Neurological manifestations may precede the clinical onset of SS; therefore, in patients with apparently isolated cranial nerve involvement, a correct diagnosis of the underlying SS is often delayed or overlooked entirely; in these instances, standard clinicoserological assessment is recommendable. PMID:25161786

  13. [Results and outlooks of using cell technologies in the treatment of neurological diseases].

    PubMed

    Ugriumov, M V; Konovalov, A N; Gusev, E I

    2004-01-01

    An attempt was undertaken in the last decade of the 20th century to use a principally new approach to the treatment of neurological diseases--cell therapy. Main efforts were focused on developing a method related with replacement of neurons dying in neurodegenerative pathology, primarily, in Parkinson disease (PD). Outlined below are the key elements of the technology:--ensuring, in experiment, of a prolonged therapeutic effect in transplantation, to the affected part, first of embryonic neurons of the animal of the same species (allografting) and then of homologous embryonic neurons of man (heterografting);--obtaining, standardization and preparation (for transplantation) of embryonic nervous tissue of man; transplantation of embryonic nervous tissue of man to the brain of patient and evaluation, in situ, of the functional activity of its neurons; and evaluation of the therapeutic effect of grafting. Cell suspension of meseencephalon of 6-9 week human fetus containing around 10% of differentiating dopaminergic neurons was used for grafting in PD. Embryonic dopaminergic neurons, administered stereotactically into the striatum of patient, established synaptic links with neurons of the recipient, which was accompanied by the onset of synthesis and reverse uptake of dopamine (DA) as well as by the onset of spontaneous and stimulated release of DA. Neurografting ensured a temporary improvement of the condition in a part of PD patients but did not cure them. Moreover, such positive therapeutic effect was registered only in patients with the akineticorigid but not trembling variation of the disease. Hence, although there was a certain progress in clinical neurografting, the approach cannot be now recommended for introduction in neurology and neurosurgery. The limited therapeutic effect of the treatment method is primarily explained by a low rate of survival of transplanted dopaminergic neurons and, consequently, by the persisting DA deficit in patient's body. Therefore

  14. Identification of a Common Epitope between Enterovirus 71 and Human MED25 Proteins Which May Explain Virus-Associated Neurological Disease

    PubMed Central

    Fan, Peihu; Li, Xiaojun; Sun, Shiyang; Su, Weiheng; An, Dong; Gao, Feng; Kong, Wei; Jiang, Chunlai

    2015-01-01

    Enterovirus 71 (EV71) is a major causative pathogen of hand, foot and mouth disease with especially severe neurologic complications, which mainly account for fatalities from this disease. To date, the pathogenesis of EV71 in the central neurons system has remained unclear. Cytokine-mediated immunopathogenesis and nervous tissue damage by virus proliferation are two widely speculated causes of the neurological disease. To further study the pathogenesis, we identified a common epitope (co-epitope) between EV71 VP1 and human mediator complex subunit 25 (MED25) highly expressed in brain stem. A monoclonal antibody (2H2) against the co-epitope was prepared, and its interaction with MED25 was examined by ELISA, immunofluorescence assay and Western blot in vitro and by live small animal imaging in vivo. Additionally, 2H2 could bind to both VP1 and MED25 with the affinity constant (Kd) of 10−7 M as determined by the ForteBio Octet System. Intravenously injected 2H2 was distributed in brain stem of mice after seven days of EV71 infection. Interestingly, 2H2-like antibodies were detected in the serum of EV71-infected patients. These findings suggest that EV71 infection induces the production of antibodies that can bind to autoantigens expressed in nervous tissue and maybe further trigger autoimmune reactions resulting in neurological disease. PMID:25826188

  15. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review.

    PubMed

    Orrù, Graziella; Pettersson-Yeo, William; Marquand, Andre F; Sartori, Giuseppe; Mechelli, Andrea

    2012-04-01

    Standard univariate analysis of neuroimaging data has revealed a host of neuroanatomical and functional differences between healthy individuals and patients suffering a wide range of neurological and psychiatric disorders. Significant only at group level however these findings have had limited clinical translation, and recent attention has turned toward alternative forms of analysis, including Support-Vector-Machine (SVM). A type of machine learning, SVM allows categorisation of an individual's previously unseen data into a predefined group using a classification algorithm, developed on a training data set. In recent years, SVM has been successfully applied in the context of disease diagnosis, transition prediction and treatment prognosis, using both structural and functional neuroimaging data. Here we provide a brief overview of the method and review those studies that applied it to the investigation of Alzheimer's disease, schizophrenia, major depression, bipolar disorder, presymptomatic Huntington's disease, Parkinson's disease and autistic spectrum disorder. We conclude by discussing the main theoretical and practical challenges associated with the implementation of this method into the clinic and possible future directions.

  16. Histone turnover and chromatin accessibility: Critical mediators of neurological development, plasticity, and disease

    PubMed Central

    Wenderski, Wendy; Maze, Ian

    2016-01-01

    In postmitotic neurons, nucleosomal turnover was long considered to be a static process that is inconsequential to transcription. However, our recent studies in human and rodent brain indicate that replication-independent (RI) nucleosomal turnover, which requires the histone variant H3.3, is dynamic throughout life and is necessary for activity-dependent gene expression, synaptic connectivity, and cognition. H3.3 turnover also facilitates cellular lineage specification and plays a role in suppressing the expression of heterochromatic repetitive elements, including mutagenic transposable sequences, in mouse embryonic stem cells. In this essay, we review mechanisms and functions for RI nucleosomal turnover in brain and present the hypothesis that defects in histone dynamics may represent a common mechanism underlying neurological aging and disease. PMID:26990528

  17. Adaptive preconditioning in neurological diseases – therapeutic insights from proteostatic perturbations

    PubMed Central

    Mollereau, B.; Rzechorzek, N.M.; Roussel, B.D.; Sedru, M.; Van den Brink, D.M.; Bailly-Maitre, B.; Palladino, F.; Medinas, D.B.; Domingos, P.M.; Hunot, S.; Chandran, S.; Birman, S.; Baron, T.; Vivien, D.; Duarte, C.B.; Ryoo, H.D.; Steller, H.; Urano, F.; Chevet, E.; Kroemer, G.; Ciechanover, A.; Calabrese, E.J.; Kaufman, R.J.; Hetz, C.

    2016-01-01

    In neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a ‘proteostasis network’ and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge – the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson’s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses and the molecular pathways they recruit might be exploited for therapeutic gain. PMID:26923166

  18. Aicardi-Goutieres syndrome, a rare neurological disease in children: a new autoimmune disorder?

    PubMed

    Fazzi, Elisa; Cattalini, Marco; Orcesi, Simona; Tincani, Angela; Andreoli, L; Balottin, U; De Simone, M; Fredi, M; Facchetti, F; Galli, J; Giliani, S; Izzotti, A; Meini, A; Olivieri, I; Plebani, A

    2013-02-01

    Aicardi-Goutieres syndrome (AGS), described by J. Aicardi and F. Goutieres in 1984, is a rare neurological disease with onset in infancy. It is often misdiagnosed as a sequela of congenital infection or recognized later. Nowadays almost 200 cases are reported all over the world, most of them collected by the International Aicardi-Goutieres Syndrome Association (IAGSA), founded in Pavia (Italy) in 2000. AGS (MIM 225750) is a genetically-determined encephalopathy characterized by severe neurological dysfunction, acquired microcephaly associated with severe prognosis quoad valetudinem, and less frequently also quoad vitam. Some AGS children also develop some symptoms overlapping with systemic lupus erythematosus (SLE). Intracranial calcification, white matter involvement and brain atrophy revealed on MRI, lymphocytosis and elevated levels of interferon alpha (IFN-α) in the cerebrospinal fluid (CSF) are features of both AGS and congenital viral infection. No evidence of congenital infection at serological exams has ever been found. A genetic etiology was hypothesized since the first descriptions, because of the recurrence in families, and demonstrated some years ago. Nowadays five genes (AGS1-5), if mutated, can be responsible for 90% of the cases. The transmission is autosomal recessive but there are also rare "de novo" autosomal dominant cases. Even if pathogenesis is still almost unknown, it seems that responsible genes are involved in nucleic acid reparation mechanisms and consequently in a secondary activation of innate autoimmunity. The relative lack of precise information on pathogenesis and on the evolution of the disease over time has not yet allowed the creation of codified diagnostic and therapeutic models and programs.

  19. [Delivery of medical care to the neurological intractable diseases at home].

    PubMed

    Ogino, Mieko

    2009-11-01

    It is the case of the great difficulties for patients living with neurological intractable diseases to visit outpatient when the diseases are in the progressive stage. The national nursing care insurance was matured and the revised medical insurance system led to open the local supportive clinic for home care in 2006. It has set easier access to medical care at home. This is encouraging for patients who wish to continue to live with their families at their long time home. The medical care at home is where the attending physician has to demonstrate the expertise of how to assemble in- and out- interdisciplinary medical team. Moving a hospital room simply into at home does not made a medical care at home. You have to begin recognizing what gaps needed to fill in between a hospital room and at home. This is the area beyond what a family doctor single-handedly deals with due to the nature of the diseases. The dual attending physician set-up is desirable including a family doctor and a specialist.

  20. The development of encapsulated cell technologies as therapies for neurological and sensory diseases.

    PubMed

    Zanin, M P; Pettingill, L N; Harvey, A R; Emerich, D F; Thanos, C G; Shepherd, R K

    2012-05-30

    Cell encapsulation therapies involve the implantation of cells that secrete a therapeutic factor to provide clinical benefits. The transplanted cells are protected from immunorejection via encapsulation in a semipermeable membrane. This treatment strategy was originally investigated as a method for protecting pancreatic islets from immunorejection, thus allowing them to secrete insulin as a chronic treatment for diabetes. Since then a significant body of work has been conducted in developing cell encapsulation therapies to treat a variety of different diseases. Many of these conditions involve neurodegeneration, such as Alzheimer's and Parkinson's disease, as cell encapsulation therapies have proven to be particularly suitable for delivering therapeutics to the central nervous system. This is mainly because they offer chronic delivery of a therapeutic and can be implanted proximal to the affected tissue, bypassing the blood brain barrier, which is impermeable to many agents. Whilst these therapies are not yet widely available in the clinic, promising results have been obtained in several advanced clinical trials and further developmental work is currently underway. This review specifically examines the development of encapsulated cell therapies as treatments for neurological and sensory diseases and evaluates the challenges that are yet to be overcome before they can be made available for clinical use.

  1. Translational research on cognitive and behavioural disorders in neurological and psychiatric diseases.

    PubMed

    Corvol, Jean-Christophe; Goni, Sylvia; Bordet, Régis

    2016-02-01

    The important medical and social burden of nervous system diseases contrasts with the currently limited therapeutic armamentarium and with the difficulty encountered in developing new therapeutic options. These failures can be explained by the conjunction of various phenomena related to the limitations of animal models, the narrow focus of research on precise pathophysiological mechanisms, and methodological issues in clinical trials. It is perhaps the paradigm itself of the way research is conducted that may be the real reason for our incapacity to find effective strategies. The purpose of this workshop was to define overall lines of research that could lead to the development of effective novel therapeutic solutions. Research has long focused on diseases per se rather than on cognitive and behavioural dimensions common to several diseases. Their expression is often partial and variable, but can today be well-characterised using neurophysiological or imaging methods. This dimensional or syndromic vision should enable a new insight to the question, taking a transnosographic approach to re-position research and to propose: translational models exploring the same functions in animal models and in humans; identification of homogeneous groups of patients defined according to the clinical, anatomico-functional and molecular characteristics; and preclinical and clinical developments enriched by the use of cognitive-behavioural, biological neurological, and imaging biomarkers. For this mutation to be successful, it must be accompanied by synchronised action from the public authorities and by ad hoc measures from the regulatory agencies.

  2. Sustained normalization of neurological disease after intracranial gene therapy in a feline model**

    PubMed Central

    McCurdy, Victoria J.; Johnson, Aime K.; Gray-Edwards, Heather; Randle, Ashley N.; Brunson, Brandon L.; Morrison, Nancy E.; Salibi, Nouha; Johnson, Jacob A.; Hwang, Misako; Beyers, Ronald J.; Leroy, Stanley G.; Maitland, Stacy; Denney, Thomas S.; Cox, Nancy R.; Baker, Henry J.; Sena-Esteves, Miguel; Martin, Douglas R.

    2015-01-01

    Progressive debilitating neurological defects characterize feline GM1 gangliosidosis, a lysosomal storage disease caused by deficiency of lysosomal β-galactosidase. No effective therapy exists for affected children, who often die before age 5. In the current study, an adeno-associated viral vector carrying the therapeutic gene was injected bilaterally into two brain targets (thalamus and deep cerebellar nuclei) of a feline model of GM1 gangliosidosis. Gene therapy normalized β-galactosidase activity and storage throughout the brain and spinal cord. The mean survival of 12 treated GM1 animals was >38 months compared to 8 months for untreated animals. Seven of the 8 treated animals remaining alive demonstrated normalization of disease, with abrogation of many symptoms including gait deficits and postural imbalance. Sustained correction of the GM1 gangliosidosis disease phenotype after limited intracranial targeting by gene therapy in a large animal model suggests that this approach may be useful for treating the human version of this lysosomal storage disorder. PMID:24718858

  3. The Spanish school of neurology and the first American cases of Alzheimer's disease.

    PubMed

    García-Albea, E; Pérez Trullen, J M

    2003-12-01

    The object of this review is to recapitulate historical events tied to the discovery of Alzheimer's disease and to narrate the contribution by two graduates of the Spanish School of Neurology, N. Achúcarro and G. Lafora, who went on to describe the first cases in North America. Both Achúcarro and Lafora had studied with Alois Alzheimer at his Nervenklinik in Munich, Germany. Subsequently, their scientific skills were put to work at the neuropathology laboratory at the Government Hospital for the Insane in Washington, D.C. Achúcarro described the first American case of this disease in a 77-year-old patients in 1910. All the descriptions were accompanied by new findings, such as granular degeneration. This was the sixth case recorded in the literature worldwide. One year later, in 1911, Lafora presented a third case, a 62-year-old Civil War veteran, and subsequently a fifth case, a 50-year-old woman, in 1914. In this case Lafora observed histological structures similar to Lewy bodies. These original contributions have not been sufficiently mentioned in writings dealing with the history of Alzheimer's disease.

  4. The Preoperative Neurological Evaluation

    PubMed Central

    Probasco, John; Sahin, Bogachan; Tran, Tung; Chung, Tae Hwan; Rosenthal, Liana Shapiro; Mari, Zoltan; Levy, Michael

    2013-01-01

    Neurological diseases are prevalent in the general population, and the neurohospitalist has an important role to play in the preoperative planning for patients with and at risk for developing neurological disease. The neurohospitalist can provide patients and their families as well as anesthesiologists, surgeons, hospitalists, and other providers guidance in particular to the patient’s neurological disease and those he or she is at risk for. Here we present considerations and guidance for the neurohospitalist providing preoperative consultation for the neurological patient with or at risk of disturbances of consciousness, cerebrovascular and carotid disease, epilepsy, neuromuscular disease, and Parkinson disease. PMID:24198903

  5. Recurrent headaches: a case of neurological Behçet's disease.

    PubMed

    Ismail, Alaa M; Dubrey, Simon W; Patel, Maneesh C

    2013-10-01

    A 48-year-old black male, of Nigerian heritage, presented with a 24-hour history of frontal headache of gradual onset. The headache characteristic was migranous, being described as throbbing in nature and located to the right frontal area with associated blurring of vision. Although similar to prior frequent headaches, there was now increasing unsteadiness on walking. Diagnosed 10 years earlier with Behçet's disease, the initial presentation was with oral and genital ulceration. Recurrent episodes of headache caused by neurological flare-ups resulted in a stroke at the age of 46 years. This previous stroke was ischaemic in character with involvement of the brainstem, pons, midbrain and right cerebral peduncle with extension into the right internal capsule. Surveillance brain imaging (computed tomographic and magnetic resonance imaging with venography) 10 months earlier showed brainstem disease activity (Figure 1a) with disease quiescence a month later (Figure 1b) following an escalation of immunosuppressant therapy. Regular medications comprised prednisolone 10 mg (however, regular recurrences had resulted in him taking doses of between 20 and 30 mg/day of prednisolone for most of the past 24 months) and azathioprine 150 mg daily, aspirin 75 mg daily, one adcal D3 twice daily with weekly alendronic acid, and omeprazole 20 mg daily. For headache he took topiramate 25 mg daily and for depression mirtazepine 15 mg daily. The patient was also addicted to a high level of cannabis use which he was reluctant to stop as he felt it helped his symptoms. On examination he was apyrexial and cardiovascularly stable. Neurological examination revealed a residual horizontal nystagmus to the right on lateral gaze, mild left hemiparesis with moderate spasticity, in addition to dysarthria and dysphonia from his prior stroke. A new feature was an exacerbation of gait unsteadiness. Blood tests were unremarkable and specifically the erythrocyte sedimentation rate was normal at 2 mm

  6. Role of the Retromer Complex in Neurodegenerative Diseases.

    PubMed

    Li, Chaosi; Shah, Syed Zahid Ali; Zhao, Deming; Yang, Lifeng

    2016-01-01

    The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases.

  7. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?

    PubMed

    Lopes, Carla; Rego, A Cristina

    2017-04-01

    Pluripotent stem cells (PSCs) are powerful cellular tools that can generate all the different cell types of the body, and thus overcome the often limited access to human disease tissues; this becomes highly relevant when aiming to investigate cellular (dys)function in diseases affecting the central nervous system. Recent studies have demonstrated that PSC and differentiated cells show altered mitochondrial function and metabolic profiles and production of reactive oxygen species. This raises an emerging paradigm about the role of mitochondria in stem cell biology and urges the need to identify mitochondrial pathways involved in these processes. In this respect, this review focuses on the metabolic profile of PSC and how mitochondrial function can influence the reprogramming and differentiation processes. Indeed, both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) favor the glycolytic pathway as a major source of energy production over oxidative phosphorylation. PSC mitochondria are characterized by a spherical shape, low copy number of mitochondrial DNA, and a hyperpolarized state. Indeed, mitochondria appear to have a crucial role in reprogramming iPSC, in the maintenance of a pluripotent state, and in differentiation. Moreover, an increase in mitochondrial oxidative phosphorylation has to occur for differentiation to succeed. Therefore, in vitro differentiation of neural stem cells (NSCs) into neurons can be compromised if those mechanisms are impaired. Future research should shed light on how mitochondrial impairment occurring in pre differentiation neural stages (e.g., in NSC or premature neurons) may contribute for the etiopathogenesis of neurodevelopmental and neurological disorders.

  8. α-Synuclein in the colon and premotor markers of Parkinson disease in neurologically normal subjects.

    PubMed

    Kim, Joong-Seok; Park, In-Seok; Park, Hyung-Eun; Kim, Su-Young; Yun, Jung A; Jung, Chan Kwon; Sung, Hye-Young; Lee, Jin-Kwon; Kang, Won-Kyung

    2017-01-01

    Extranigral non-motor signs precede the first motor manifestations of Parkinson's disease by many years in some patients. The presence of α-synuclein deposition within colon tissues in patients with Parkinson's disease can aid in identifying early neuropathological changes prior to disease onset. In the present study, we evaluated the roles of non-motor symptoms and signs and imaging biomarkers of nigral neuronal changes and α-synuclein accumulation in the colon. Twelve subjects undergoing colectomy for primary colon cancer were recruited for this study. Immunohistochemical staining for α-synuclein in normal and phosphorylated forms was performed in normally appearing colonic tissue. We evaluated 16 candidate premotor risk factors in this study cohort. Among them, ten subjects showed positive immunostaining with normal- and phosphorylated-α-synuclein. An accumulation of premotor markers in each subject was accompanied with positive normal- and phosphorylated-α-synuclein immunostaining, ranging from 2 to 7 markers per subject, whereas the absence of Lewy bodies in the colon was associated with relative low numbers of premotor signs. A principal component analysis and a cluster analysis of these premotor markers suggest that urinary symptoms were commonly clustered with deposition of peripheral phosphorylated-α-synuclein. Among other premotor marker, color vision abnormalities were related to non-smoking. This mathematical approach confirmed the clustering of premotor markers in preclinical stage of Parkinson's disease. This is the first report showing that α-synuclein in the colon and other premotor markers are related to each other in neurologically normal subjects.

  9. [Neurologic diseases in a rural tropical area: experience at a primary health care center in the Boeny region of Madagascar].

    PubMed

    Gaud, S; Sauvée, M; Debouverie, M

    2014-01-01

    There is, to our knowledge, no study reporting the demand for health care related to neurological diseases in rural tropical areas of developing countries. Neurology is nonetheless more or less closely related to the priority health issues in these countries. Over a 6-week period, 626 patients were seen at the primary health center in the town of Madirovalo, Madagascar. Neurological disorders accounted for 11.1% of the consultations. The neurological disorders most frequently leading to consultations were headaches (42.7%), with primary headaches accounting for 16%; next came leprosy neuropathy (14.7%), with a worrisome total of 8 new cases; other peripheral neuropathies (13.3%), and epilepsy (12%). The relatively low share of the latter seems likely related to families' frequent use of traditional healers rather than Western medicine. Neurological diseases appears to represent a significant part of the health-care demand of people living in rural tropical areas of developing countries, and specific support in this specialization is essential.

  10. Consensus Statement on medication use in multiple sclerosis by the Spanish Society of Neurology's study group for demyelinating diseases.

    PubMed

    García-Merino, A; Fernández, O; Montalbán, X; de Andrés, C; Oreja-Guevara, C; Rodríguez-Antigüedad, A; Arbizu, T

    2013-01-01

    Treatments for multiple sclerosis therapy are rapidly evolving. It is believed that new drugs will be approved in the near future, thereby changing current indications for treatment. In this context, the Spanish Society of Neurology's study group on demyelinating diseases, which evaluates medication use in MS, has decided to draw up a consensus statement on the current indications and guidelines for multiple sclerosis treatment.

  11. Epilepsy and Other Neurological Diseases in the Parents of Children with Infantile Autism. A Case Control Study

    ERIC Educational Resources Information Center

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2008-01-01

    In order to study the broader phenotype of infantile autism (IA) we compared the rates and types of epilepsy and other neurological diseases in the parents of 111 consecutively admitted patients with IA with a matched control group of parents of 330 children from the general population. All participants were screened through the nationwide Danish…

  12. Genetically-modified human pluripotent stem cells: new hopes for the understanding and the treatment of neurological diseases?

    PubMed

    Nedelec, Stéphane; Onteniente, Brigitte; Peschanski, Marc; Martinat, Cécile

    2013-04-01

    The fundamental inaccessibility of the human neural cell types affected by neurological disorders prevents their isolation for in vitro studies of disease mechanisms or for drug screening efforts. Pluripotent stem cells represent a new interesting way to generate models of human neurological disorders, explore the physiopathological mechanisms and develop new therapeutic strategies. Disease-specific human embryonic stem cells were the first source of material to be used to study certain disease states. The recent demonstration that human somatic cells, such as fibroblasts or blood cells, can be genetically converted to induced pluripotent stem cells (hiPSCs) together with the continuous improvement of methods to differentiate these cells into disease-affected neuronal subtypes opens new perspectives to model and understand a large number of human pathologies. This review focuses on the opportunities concerning the use disease-specific human pluripotent stem cells as well as the different challenges that still need to be overcome. We also discuss the recent improvements in the genetic manipulation of human pluripotent stem cells and the consequences of these on disease modeling and drug screening for neurological diseases.

  13. Dihydrofolate Reductase Deficiency Due to a Homozygous DHFR Mutation Causes Megaloblastic Anemia and Cerebral Folate Deficiency Leading to Severe Neurologic Disease

    PubMed Central

    Cario, Holger; Smith, Desirée E.C.; Blom, Henk; Blau, Nenad; Bode, Harald; Holzmann, Karlheinz; Pannicke, Ulrich; Hopfner, Karl-Peter; Rump, Eva-Maria; Ayric, Zuleya; Kohne, Elisabeth; Debatin, Klaus-Michael; Smulders, Yvo; Schwarz, Klaus

    2011-01-01

    The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate. PMID:21310277

  14. Dihydrofolate reductase deficiency due to a homozygous DHFR mutation causes megaloblastic anemia and cerebral folate deficiency leading to severe neurologic disease.

    PubMed

    Cario, Holger; Smith, Desirée E C; Blom, Henk; Blau, Nenad; Bode, Harald; Holzmann, Karlheinz; Pannicke, Ulrich; Hopfner, Karl-Peter; Rump, Eva-Maria; Ayric, Zuleya; Kohne, Elisabeth; Debatin, Klaus-Michael; Smulders, Yvo; Schwarz, Klaus

    2011-02-11

    The importance of intracellular folate metabolism is illustrated by the severity of symptoms and complications caused by inborn disorders of folate metabolism or by folate deficiency. We examined three children of healthy, distantly related parents presenting with megaloblastic anemia and cerebral folate deficiency causing neurologic disease with atypical childhood absence epilepsy. Genome-wide homozygosity mapping revealed a candidate region on chromosome 5 including the dihydrofolate reductase (DHFR) locus. DHFR sequencing revealed a homozygous DHFR mutation, c.458A>T (p.Asp153Val), in all siblings. The patients' folate profile in red blood cells (RBC), plasma, and cerebrospinal fluid (CSF), analyzed by liquid chromatography tandem mass spectrometry, was compatible with DHFR deficiency. DHFR activity and fluorescein-labeled methotrexate (FMTX) binding were severely reduced in EBV-immortalized lymphoblastoid cells of all patients. Heterozygous cells displayed intermediate DHFR activity and FMTX binding. RT-PCR of DHFR mRNA revealed no differences between wild-type and DHFR mutation-carrying cells, whereas protein expression was reduced in cells with the DHFR mutation. Treatment with folinic acid resulted in the resolution of hematological abnormalities, normalization of CSF folate levels, and improvement of neurological symptoms. In conclusion, the homozygous DHFR mutation p.Asp153Val causes DHFR deficiency and leads to a complex hematological and neurological disease that can be successfully treated with folinic acid. DHFR is necessary for maintaining sufficient CSF and RBC folate levels, even in the presence of adequate nutritional folate supply and normal plasma folate.

  15. ABCA7 loss-of-function variants, expression, and neurologic disease risk

    PubMed Central

    Allen, Mariet; Lincoln, Sarah J.; Corda, Morgane; Watzlawik, Jens O.; Carrasquillo, Minerva M.; Reddy, Joseph S.; Burgess, Jeremy D.; Nguyen, Thuy; Malphrus, Kimberly; Petersen, Ronald C.; Graff-Radford, Neill R.; Dickson, Dennis W.

    2017-01-01

    Objective: To investigate and characterize putative “loss-of-function” (LOF) adenosine triphosphate–binding cassette, subfamily A member 7 (ABCA7) mutations reported to associate with Alzheimer disease (AD) risk. Methods: We genotyped 6 previously reported ABCA7 putative LOF variants in 1,465 participants with AD, 381 participants with other neuropathologies (non-AD), and 1,043 controls and assessed the overall mutational burden for association with different diagnosis groups. We measured brain ABCA7 protein and messenger RNA (mRNA) levels using Western blot and quantitative PCR, respectively, in 11 carriers of the 3 most common variants, and sequenced all 47 ABCA7 exons in these participants to screen for other coding variants. Results: At least one of the investigated variants was identified in 45 participants with late-onset Alzheimer disease, 12 participants with other neuropathologies, and 11 elderly controls. Association analysis revealed a significantly higher burden of these variants in participants with AD (p = 5.00E-04) and those with other neuropathologies (p = 8.60E-03) when compared with controls. Concurrent analysis of brain ABCA7 mRNA and protein revealed lower protein but not mRNA in p.L1403fs carriers, lower mRNA but not protein in p.E709fs carriers, and additional deleterious mutations in some c.5570+5G>C carriers. Conclusions: Our results suggest that LOF may not be a common mechanism for these ABCA7 variants and expand the list of neurologic diseases enriched for them. PMID:28097223

  16. [Current status of the predictive genetic testing for hereditary neurological diseases in Shinshu University Hospital].

    PubMed

    Tanaka, Keiko; Sekijima, Yoshiki; Yoshida, Kunihiro; Mizuuchi, Asako; Yamashita, Hiromi; Tamai, Mariko; Ikeda, Shu-ichi; Fukushima, Yoshimitsu

    2013-01-01

    The current status of predictive genetic testing for late-onset hereditary neurological diseases in Japan is largely unknown. In this study, we analyzed data from 73 clients who visited the Division of Clinical and Molecular Genetics, Shinshu University Hospital, for the purpose of predictive genetic testing. The clients consisted of individuals with family histories of familial amyloid polyneuropathy (FAP; n=30), Huntington's disease (HD; n=16), spinocerebellar degeneration (SCD; n=14), myotonic dystrophy type 1 (DM1; n=9), familial amyotrophic lateral sclerosis type 1 (ALS1; n=3), and Alzheimer's disease (AD; n=1). Forty-nine of the 73 (67.1%) clients were in their twenties or thirties. Twenty-seven of the 73 (37.0%) clients visited a medical institution within 3 months after becoming aware of predictive genetic testing. The most common reason for requesting predictive genetic testing was a need for certainty or to reduce uncertainty and anxiety. The decision-making about marriage and having a child was also a main reason in clients in the twenties and thirties. The numbers of clients who actually underwent predictive genetic testing was 22 of 30 (73.3%) in FAP, 3 of 16 (18.8%) in HD, 6 of 10 (60.0%) in SCD, 7 of 9 (77.8%) in DM1, and 0 of 3 (0%) in ALS1 (responsible gene of the disease was unknown in 4 SCD patients and an AD patient). The percentage of test usage was lower in untreatable diseases such as HD and SCD than that in FAP, suggesting that many clients changed their way of thinking on the significance of testing through multiple genetic counseling sessions. In addition, it was obvious that existence of disease-modifying therapy promoted usage of predictive genetic testing in FAP. Improvement of genetic counseling system to manage predictive genetic testing is necessary, as consultation concerning predictive genetic testing is the main motivation to visit genetic counseling clinic in many at-risk clients.

  17. Acid-sensing ion channels (ASICs): therapeutic targets for neurological diseases and their regulation.

    PubMed

    Kweon, Hae-Jin; Suh, Byung-Chang

    2013-06-01

    Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn(2+), and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel's large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated.

  18. The Effect of tDCS on Cognition and Neurologic Recovery of Rats with Alzheimer's Disease.

    PubMed

    Yu, Seong Hun; Park, Seong Doo; Sim, Ki Chel

    2014-02-01

    [Purpose] This study examined the effect of the application of transcranial direct current stimulation (tDCS) on neurologic recovery and cognitive function of rats with Alzheimer-like dementia induced by scopolamine injections. [Subjects] To create a cognition dysfunction model, intraperitoneal injection of scopolamine was given to Sprague-Dawley rats that subsequently received tDCS for 4 weeks. [Methods] Changes in motor behavior were evaluated by conducting an open field test. Acetylcholine content in the cerebral cortex and hippocampus was examined for a biochemical assessment. [Results] With respect to changes in motor behavior, group II showed the most meaningful difference after scopolamine injection, followed by group III. In the biochemical assessment, the results of the examination of acetylcholine content in the tissue of the cerebral cortex and the hippocampus on the 14th and 28th days, respectively, showed the most significant increase in group II, followed by group III. [Conclusion] The above findings confirm that tDCS application after the onset of cognitive dysfunction caused by Alzheimer's disease leads to a positive effect on motor behavior and biochemical changes, and this effect is maintained over a specific period of time.

  19. Analysis of venous access for therapeutic plasma exchange in patients with neurological disease.

    PubMed

    Grishaber, J E; Cunningham, M C; Rohret, P A; Strauss, R G

    1992-01-01

    We retrospectively analyzed our 2-year experience with venous access for 363 therapeutic plasma exchanges in 46 patients with neurological disease, including acute Guillain-Barré syndrome (N = 20), myasthenia gravis (N = 17), and chronic inflammatory demyelinating polyneuropathy (N = 9). Twenty-three patients (50%) completed the planned course of therapy using only peripheral venous access, and 28 central venous catheters were placed in the remaining 23 patients. Patients utilizing central venous access did not undergo a greater number of procedures, but they were more likely to have acute Guillain-Barré syndrome (P < 0.02) or to be hospitalized in a medical intensive care unit (P < 0.01). Three types of central catheters were used, and although our experience was predominantly with 1 type, differences were noted. Only 3% of procedures (3 of 96) done with a Quinton-Mahurkar catheter were associated with a catheter failure, compared to 27% (4 of 15, P < 0.01) with a Hickman catheter and 67% (2 of 3) with a triple-lumen catheter. Life-threatening complications occurred with 3 of 28 (11%) central catheters. To optimize the success of therapeutic plasma exchange using central access, it is critical that hemapheresis personnel advise each patient's primary physician regarding the type of central venous catheter required. Currently, we recommend use of a Quinton-Mahurkar or other dual-lumen hemodialysis catheter.

  20. Epigenetics and migraine; complex mitochondrial interactions contributing to disease susceptibility.

    PubMed

    Roos-Araujo, Deidré; Stuart, Shani; Lea, Rod A; Haupt, Larisa M; Griffiths, Lyn R

    2014-06-10

    Migraine is a common neurological disorder classified by the World Health Organisation (WHO) as one of the top twenty most debilitating diseases in the developed world. Current therapies are only effective for a proportion of sufferers and new therapeutic targets are desperately needed to alleviate this burden. Recently the role of epigenetics in the development of many complex diseases including migraine has become an emerging topic. By understanding the importance of acetylation, methylation and other epigenetic modifications, it then follows that this modification process is a potential target to manipulate epigenetic status with the goal of treating disease. Bisulphite sequencing and methylated DNA immunoprecipitation have been used to demonstrate the presence of methylated cytosines in the human D-loop of mitochondrial DNA (mtDNA), proving that the mitochondrial genome is methylated. For the first time, it has been shown that there is a difference in mtDNA epigenetic status between healthy controls and those with disease, especially for neurodegenerative and age related conditions. Given co-morbidities with migraine and the suggestive link between mitochondrial dysfunction and the lowered threshold for triggering a migraine attack, mitochondrial methylation may be a new avenue to pursue. Creative thinking and new approaches are needed to solve complex problems and a systems biology approach, where multiple layers of information are integrated is becoming more important in complex disease modelling.

  1. Neurological, psychological, and cognitive disorders in patients with chronic kidney disease on conservative and replacement therapy

    PubMed Central

    Lai, Silvia; Mecarelli, Oriano; Pulitano, Patrizia; Romanello, Roberto; Davi, Leonardo; Zarabla, Alessia; Mariotti, Amalia; Carta, Maria; Tasso, Giorgia; Poli, Luca; Mitterhofer, Anna Paola; Testorio, Massimo; Frassetti, Nicla; Aceto, Paola; Galani, Alessandro; Lai, Carlo

    2016-01-01

    Abstract Chronic kidney disease (CKD) is a highly prevalent condition in the world. Neurological, psychological, and cognitive disorders, related to CKD, could contribute to the morbidity, mortality, and poor quality of life of these patients. The aim of this study was to assess the neurological, psychological, and cognitive imbalance in patients with CKD on conservative and replacement therapy. Seventy-four clinically stable patients affected by CKD on conservative therapy, replacement therapy (hemodialysis (HD), peritoneal dialysis (PD)), or with kidney transplantation (KT) and 25 healthy controls (HC), matched for age and sex were enrolled. Clinical, laboratory, and instrumental examinations, as renal function, inflammation and mineral metabolism indexes, electroencephalogram (EEG), psychological (MMPI-2, Sat P), and cognitive tests (neuropsychological tests, NPZ5) were carried out. The results showed a significant differences in the absolute and relative power of delta band and relative power of theta band of EEG (P = 0.008, P < 0.001, P = 0.051), a positive correlation between relative power of delta band and C-reactive protein (CRP) (P < 0.001) and a negative correlation between estimated glomerular filtration rate (eGFR) (P < 0.001) and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) (P < 0.001), in all the samples. Qualitative analysis of EEG showed alterations of Grade 2 (according to Parsons–Smith classification) in patients on conservative therapy, and Grade 2–3 in KT patients. The scales of MMPI-2 hysteria and paranoia, are significantly correlated with creatinine, eGFR, serum nitrogen, CRP, 1,25-(OH)2D3, intact parathyroid hormone (iPTH), phosphorus, and cynical and hysterical personality, are correlated with higher relative power of delta (P = 0.016) and theta band (P = 0.016). Moreover, all NPZ5 scores showed a significant difference between the means of nephropathic patients and the means of the HC, and a positive

  2. Neurological, psychological, and cognitive disorders in patients with chronic kidney disease on conservative and replacement therapy.

    PubMed

    Lai, Silvia; Mecarelli, Oriano; Pulitano, Patrizia; Romanello, Roberto; Davi, Leonardo; Zarabla, Alessia; Mariotti, Amalia; Carta, Maria; Tasso, Giorgia; Poli, Luca; Mitterhofer, Anna Paola; Testorio, Massimo; Frassetti, Nicla; Aceto, Paola; Galani, Alessandro; Lai, Carlo

    2016-11-01

    Chronic kidney disease (CKD) is a highly prevalent condition in the world. Neurological, psychological, and cognitive disorders, related to CKD, could contribute to the morbidity, mortality, and poor quality of life of these patients. The aim of this study was to assess the neurological, psychological, and cognitive imbalance in patients with CKD on conservative and replacement therapy.Seventy-four clinically stable patients affected by CKD on conservative therapy, replacement therapy (hemodialysis (HD), peritoneal dialysis (PD)), or with kidney transplantation (KT) and 25 healthy controls (HC), matched for age and sex were enrolled. Clinical, laboratory, and instrumental examinations, as renal function, inflammation and mineral metabolism indexes, electroencephalogram (EEG), psychological (MMPI-2, Sat P), and cognitive tests (neuropsychological tests, NPZ5) were carried out.The results showed a significant differences in the absolute and relative power of delta band and relative power of theta band of EEG (P = 0.008, P < 0.001, P = 0.051), a positive correlation between relative power of delta band and C-reactive protein (CRP) (P < 0.001) and a negative correlation between estimated glomerular filtration rate (eGFR) (P < 0.001) and 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) (P < 0.001), in all the samples. Qualitative analysis of EEG showed alterations of Grade 2 (according to Parsons-Smith classification) in patients on conservative therapy, and Grade 2-3 in KT patients. The scales of MMPI-2 hysteria and paranoia, are significantly correlated with creatinine, eGFR, serum nitrogen, CRP, 1,25-(OH)2D3, intact parathyroid hormone (iPTH), phosphorus, and cynical and hysterical personality, are correlated with higher relative power of delta (P = 0.016) and theta band (P = 0.016). Moreover, all NPZ5 scores showed a significant difference between the means of nephropathic patients and the means of the HC, and a positive correlation with e

  3. The psychological and neurological bases of leader self-complexity and effects on adaptive decision-making.

    PubMed

    Hannah, Sean T; Balthazard, Pierre A; Waldman, David A; Jennings, Peter L; Thatcher, Robert W

    2013-05-01

    Complex contexts and environments require leaders to be highly adaptive and to adjust their behavioral responses to meet diverse role demands. Such adaptability may be contingent upon leaders having requisite complexity to facilitate effectiveness across a range of roles. However, there exists little empirical understanding of the etiology or basis of leader complexity. To this end, we conceptualized a model of leader self-complexity that is inclusive of both the mind (the complexity of leaders' self-concepts) and the brain (the neuroscientific basis for complex leadership). We derived psychometric and neurologically based measures, the latter based on quantitative electroencephalogram (qEEG) profiles of leader self-complexity, and tested their separate effects on the adaptive decision-making of 103 military leaders. Results demonstrated that both measures accounted for unique variance in external ratings of adaptive decision-making. We discuss how these findings provide a deeper understanding of the latent and dynamic mechanisms that underpin leaders' self-complexity and their adaptability.

  4. Age-Dependent Myeloid Dendritic Cell Responses Mediate Resistance to La Crosse Virus-Induced Neurological Disease

    PubMed Central

    Taylor, Katherine G.; Woods, Tyson A.; Winkler, Clayton W.; Carmody, Aaron B.

    2014-01-01

    ABSTRACT La Crosse virus (LACV) is the major cause of pediatric viral encephalitis in the United States; however, the mechanisms responsible for age-related susceptibility in the pediatric population are not well understood. Our current studies in a mouse model of LACV infection indicated that differences in myeloid dendritic cell (mDC) responses between weanling and adult mice accounted for susceptibility to LACV-induced neurological disease. We found that type I interferon (IFN) responses were significantly stronger in adult than in weanling mice. Production of these IFNs required both endosomal Toll-like receptors (TLRs) and cytoplasmic RIG-I-like receptors (RLRs). Surprisingly, IFN expression was not dependent on plasmacytoid DCs (pDCs) but rather was dependent on mDCs, which were found in greater number and induced stronger IFN responses in adults than in weanlings. Inhibition of these IFN responses in adults resulted in susceptibility to LACV-induced neurological disease, whereas postinfection treatment with type I IFN provided protection in young mice. These studies provide a definitive mechanism for age-related susceptibility to LACV encephalitis, where mDCs in young mice are insufficiently activated to control peripheral virus replication, thereby allowing virus to persist and eventually cause central nervous system (CNS) disease. IMPORTANCE La Crosse virus (LACV) is the primary cause of pediatric viral encephalitis in the United States. Although the virus infects both adults and children, over 80% of the reported neurological disease cases are in children. To understand why LACV causes neurological disease primarily in young animals, we used a mouse model where weanling mice, but not adult mice, develop neurological disease following virus infection. We found that an early immune response cell type, myeloid dendritic cells, was critical for protection in adult animals and that these cells were reduced in young animals. Activation of these cells during

  5. A Parent's Journey: Incorporating Principles of Palliative Care into Practice for Children with Chronic Neurologic Diseases.

    PubMed

    Brown, Allyson; Clark, Jonna D

    2015-09-01

    Rather than in conflict or in competition with the curative model of care, pediatric palliative care is a complementary and transdisciplinary approach used to optimize medical care for children with complex medical conditions. It provides care to the whole child, including physical, mental, and spiritual dimensions, in addition to support for the family. Through the voice of a parent, the following case-based discussion demonstrates how the fundamentals of palliative care medicine, when instituted early in the course of disease, can assist parents and families with shared medical decision making, ultimately improving the quality of life for children with life-limiting illnesses. Pediatric neurologists, as subspecialists who provide medical care for children with chronic and complex conditions, should consider invoking the principles of palliative care early in the course of a disease process, either through applying general facets or, if available, through consultation with a specialty palliative care service.

  6. Bravo! Neurology at the opera.

    PubMed

    Matthews, Brandy R

    2010-01-01

    Opera is a complex musical form that reflects the complexity of the human condition and the human brain. This article presents an introduction to the portrayal of medical professionals in opera, including one neurologist, as well as two characters in whom neurological disease contributes to the action of the musical drama. Consideration is also given to the neuroanatomy and neuropathology of opera singers with further speculation regarding the neural underpinnings of the passion of opera's audience.

  7. Enhancing CNS repair in neurological disease: challenges arising from neurodegeneration and rewiring of the network.

    PubMed

    Xu, Xiaohua; Warrington, Arthur E; Bieber, Allan J; Rodriguez, Moses

    2011-07-01

    Repair of the central nervous system (CNS) constitutes an integral part of treating neurological disease and plays a crucial role in restoring CNS architecture and function. Distinct strategies have been developed to reconstruct the damaged neural tissue, with many tested preclinically in animal models. We review cell replacement-based repair strategies. By taking spinal cord injury, cerebral ischaemia and degenerative CNS disorders as examples for CNS repair, we discuss progress and potential problems in utilizing embryonic stem cells and adult neural/non-neural stem cells to repair cell loss in the CNS. Nevertheless, CNS repair is not simply a matter of cell transplantation. The major challenge is to induce regenerating neural cells to integrate into the neural network and compensate for damaged neural function. The neural cells confront an environment very different from that of the developmental stage in which these cells differentiate to form interwoven networks. During the repair process, one of the challenges is neurodegeneration, which can develop from interrupted innervations to/from the targets, chronic inflammation, ischaemia, aging or idiopathic neural toxicity. Neurodegeneration, which occurs on the basis of a characteristic vascular and neural web, usually presents as a chronically progressive process with unknown aetiology. Currently, there is no effective treatment to stop or slow down neurodegeneration. Pathological changes from patients with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis indicate a broken homeostasis in the CNS. We discuss how the blood-brain barrier and neural networks are formed to maintain CNS homeostasis and their contribution to neurodegeneration in diseased conditions. Another challenge is that some inhibitors produced by CNS injury do not facilitate the regenerating neural cells to incorporate into a pre-existing network. We review glial responses to CNS injury. Of note, the reactive astrocytes

  8. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    PubMed Central

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  9. Congenital and inherited neurologic diseases in dogs and cats: Legislation and its effect on purchase in Italy.

    PubMed

    Passantino, Annamaria; Masucci, Marisa

    2016-05-01

    Many of the congenital neurologic diseases can result in incapacity or death of the animal. Some of them, such as idiopathic epilepsy and hydrocephalus, exhibit breed or familial predisposition and a genetic basis was proved or suggested. Some diseases can be presumptively diagnosed after a detailed signalment (breed predisposition), history (e.g. family history because many of these defects have familial tendencies), and through physical exam; other diagnostic methods (radiography, computed tomography, magnetic resonance, electrophysiologic tests, etc.) can provide supportive evidence for the congenital defect and help to confirm the diagnosis. Some cases can lead to civil law-suits when the lesions are congenital, but not easily recognizable, or when the lesions are hereditary but tend to became manifest only after some time (more than 12 months after the date of purchase, e.g., after the vice-free guarantee period has expired). Moreover, quite frequently an early diagnosis is not made because there are delays in consulting the veterinarian or the general practitioner veterinarian does not perceive subtle signs. This study was designed to focus on the medico-legal aspects concerning the buying and selling in Italy of dogs and cats affected by congenital and hereditary neurologic diseases that could constitute vice in these animals. While adequate provisions to regulate in detail the various aspects of pet sale have still to be drawn up by legislators, it may be helpful to involve breeders, by obliging them by contract to extend guarantees in the case of hereditary lesions, including neurologic diseases.

  10. Living longer living happier: My journey from clinical neurology to complexities of brain

    PubMed Central

    Panagariya, Ashok

    2011-01-01

    The present article is a treatise on the illuminating voyage of a Neurophysician along the fascinating horizons and frontiers of neurosciences. During the career as a clinical neurologist, some very interesting and intriguing cases and issues were dealt with and documented scientifically. The working of the brain and its operational architectonics came up for critical analysis, opening up new vistas in the appreciation and management of various neurological disorders. Issues regarding the working of the mind and the guidelines for health and happiness became apparent, and some very interesting generalizations with far-reaching consequences on the general well-being and health have been formulated and put forward for a healthy and happy future for mankind. A paradigm shift is warranted for a closer and better appreciation of neural dynamics at all levels of the brain, namely microscopic, mesoscopic and macroscopic levels! PMID:22346008

  11. Complex and differential glial responses in Alzheimer's disease and ageing.

    PubMed

    Rodríguez, José J; Butt, Arthur M; Gardenal, Emanuela; Parpura, Vladimir; Verkhratsky, Alexei

    2016-01-01

    Glial cells and their association with neurones are fundamental for brain function. The emergence of complex neurone-glial networks assures rapid information transfer, creating a sophisticated circuitry where both types of neural cells work in concert, serving different activities. All glial cells, represented by astrocytes, oligodendrocytes, microglia and NG2-glia, are essential for brain homeostasis and defence. Thus, glia are key not only for normal central nervous system (CNS) function, but also to its dysfunction, being directly associated with all forms of neuropathological processes. Therefore, the progression and outcome of neurological and neurodegenerative diseases depend on glial reactions. In this review, we provide a concise account of recent data obtained from both human material and animal models demonstrating the pathological involvement of glia in neurodegenerative processes, including Alzheimer's disease (AD), as well as physiological ageing.

  12. Analysis of Preplate Splitting and Early Cortical Development Illuminates the Biology of Neurological Disease

    PubMed Central

    Olson, Eric C.

    2014-01-01

    The development of the layered cerebral cortex starts with a process called preplate splitting. Preplate splitting involves the establishment of prospective cortical layer 6 (L6) neurons within a plexus of pioneer neurons called the preplate. The forming layer 6 splits the preplate into a superficial layer of pioneer neurons called the marginal zone and a deeper layer of pioneer neurons called the subplate. Disruptions of this early developmental event by toxin exposure or mutation are associated with neurological disease including severe intellectual disability. This review explores recent findings that reveal the dynamism of gene expression and morphological differentiation during this early developmental period. Over 1000 genes show expression increases of ≥2-fold during this period in differentiating mouse L6 neurons. Surprisingly, 88% of previously identified non-syndromic intellectual-disability (NS-ID) genes are expressed at this time and show an average expression increase of 1.6-fold in these differentiating L6 neurons. This changing genetic program must, in part, support the dramatic cellular reorganizations that occur during preplate splitting. While different models have been proposed for the formation of a layer of L6 cortical neurons within the preplate, original histological studies and more recent work exploiting transgenic mice suggest that the process is largely driven by the coordinated polarization and coalescence of L6 neurons rather than by cellular translocation or migration. The observation that genes associated with forms of NS-ID are expressed during very early cortical development raises the possibility of studying the relevant biological events at a time point when the cortex is small, contains relatively few cell types, and few functional circuits. This review then outlines how explant models may prove particularly useful in studying the consequence of toxin and mutation on the etiology of some forms of NS-ID. PMID:25426475

  13. Neurologic Disease in Captive Lions (Panthera leo) with Low-Titer Lion Lentivirus Infection▿

    PubMed Central

    Brennan, Greg; Podell, Michael D.; Wack, Raymund; Kraft, Susan; Troyer, Jennifer L.; Bielefeldt-Ohmann, Helle; VandeWoude, Sue

    2006-01-01

    Lion lentivirus (LLV; also known as feline immunodeficiency virus of lion, Panthera leo [FIVPle]) is present in free-ranging and captive lion populations at a seroprevalence of up to 100%; however, clinical signs are rarely reported. LLV displays up to 25% interclade sequence diversity, suggesting that it has been in the lion population for some time and may be significantly host adapted. Three captive lions diagnosed with LLV infection displayed lymphocyte subset alterations and progressive behavioral, locomotor, and neuroanatomic abnormalities. No evidence of infection with other potential neuropathogens was found. Antemortem electrodiagnostics and radiologic imaging indicated a diagnosis consistent with lentiviral neuropathy. PCR was used to determine a partial lentiviral genomic sequence and to quantify the proviral burden in eight postmortem tissue specimens. Phylogenetic analysis demonstrated that the virus was consistent with the LLV detected in other captive and free-ranging lions. Despite progressive neurologic signs, the proviral load in tissues, including several regions of the brain, was low; furthermore, gross and histopathologic changes in the brain were minimal. These findings suggest that the symptoms in these animals resulted from nonspecific encephalopathy, similar to human immunodeficiency virus, FIV, and simian immunodeficiency virus (SIV) neuropathies, rather than a direct effect of active viral replication. The association of neuropathy and lymphocyte subset alterations with chronic LLV infection suggests that long-term LLV infection can have detrimental effects for the host, including death. This is similar to reports of aged sootey mangabeys dying from diseases typically associated with end-stage SIV infection and indicates areas for further research of lentiviral infections of seemingly adapted natural hosts, including mechanisms of host control and viral adaptation. PMID:17005739

  14. Neurologic disease in captive lions (Panthera leo) with low-titer lion lentivirus infection.

    PubMed

    Brennan, Greg; Podell, Michael D; Wack, Raymund; Kraft, Susan; Troyer, Jennifer L; Bielefeldt-Ohmann, Helle; VandeWoude, Sue

    2006-12-01

    Lion lentivirus (LLV; also known as feline immunodeficiency virus of lion, Panthera leo [FIVPle]) is present in free-ranging and captive lion populations at a seroprevalence of up to 100%; however, clinical signs are rarely reported. LLV displays up to 25% interclade sequence diversity, suggesting that it has been in the lion population for some time and may be significantly host adapted. Three captive lions diagnosed with LLV infection displayed lymphocyte subset alterations and progressive behavioral, locomotor, and neuroanatomic abnormalities. No evidence of infection with other potential neuropathogens was found. Antemortem electrodiagnostics and radiologic imaging indicated a diagnosis consistent with lentiviral neuropathy. PCR was used to determine a partial lentiviral genomic sequence and to quantify the proviral burden in eight postmortem tissue specimens. Phylogenetic analysis demonstrated that the virus was consistent with the LLV detected in other captive and free-ranging lions. Despite progressive neurologic signs, the proviral load in tissues, including several regions of the brain, was low; furthermore, gross and histopathologic changes in the brain were minimal. These findings suggest that the symptoms in these animals resulted from nonspecific encephalopathy, similar to human immunodeficiency virus, FIV, and simian immunodeficiency virus (SIV) neuropathies, rather than a direct effect of active viral replication. The association of neuropathy and lymphocyte subset alterations with chronic LLV infection suggests that long-term LLV infection can have detrimental effects for the host, including death. This is similar to reports of aged sootey mangabeys dying from diseases typically associated with end-stage SIV infection and indicates areas for further research of lentiviral infections of seemingly adapted natural hosts, including mechanisms of host control and viral adaptation.

  15. Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma

    PubMed Central

    Bahmad, Hisham; Hadadeh, Ola; Chamaa, Farah; Cheaito, Katia; Darwish, Batoul; Makkawi, Ahmad-Kareem; Abou-Kheir, Wassim

    2017-01-01

    With the help of several inducing factors, somatic cells can be reprogrammed to become induced pluripotent stem cell (iPSCs) lines. The success is in obtaining iPSCs almost identical to embryonic stem cells (ESCs), therefore various approaches have been tested and ultimately several ones have succeeded. The importance of these cells is in how they serve as models to unveil the molecular pathways and mechanisms underlying several human diseases, and also in its potential roles in the development of regenerative medicine. They further aid in the development of regenerative medicine, autologous cell therapy and drug or toxicity screening. Here, we provide a comprehensive overview of the recent development in the field of iPSCs research, specifically for modeling human neurological and neurodegenerative diseases, and its applications in neurotrauma. These are mainly characterized by progressive functional or structural neuronal loss rendering them extremely challenging to manage. Many of these diseases, including Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) have been explored in vitro. The main purpose is to generate patient-specific iPS cell lines from the somatic cells that carry mutations or genetic instabilities for the aim of studying their differentiation potential and behavior. This new technology will pave the way for future development in the field of stem cell research anticipating its use in clinical settings and in regenerative medicine in order to treat various human diseases, including neurological and neurodegenerative diseases. PMID:28293168

  16. Distilling pathophysiology from complex disease genetics.

    PubMed

    Chakravarti, Aravinda; Clark, Andrew G; Mootha, Vamsi K

    2013-09-26

    Technologies for genome-wide sequence interrogation have dramatically improved our ability to identify loci associated with complex human disease. However, a chasm remains between correlations and causality that stems, in part, from a limiting theoretical framework derived from Mendelian genetics and an incomplete understanding of disease physiology. Here we propose a set of criteria, akin to Koch's postulates for infectious disease, for assigning causality between genetic variants and human disease phenotypes.

  17. Social support associated with quality of life in home care patients with intractable neurological disease in Japan.

    PubMed

    Nishida, Tomoko; Ando, Eriko; Sakakibara, Hisataka

    2012-01-01

    The aim of the present study was to investigate what kinds of social supports contribute to the higher quality of life (QOL) of home care patients with intractable neurological disease. We investigated the World Health Organization Quality of Life-BREF (WHOQOL-BREF) and social supports to 74 patients with intractable neurological disease in a city of the Aichi prefecture, Japan. Association between WHOQOL and social supports was examined using multiple logistic regression analyses adjusting activities of daily living (ADL). High WHOQOL scores were associated with "attending patient gatherings held by the public health center," "having someone who will listen empathically to anxieties or troubles," and ADL. Physical health was associated with ADL, while psychological well-being was related to "having a hobby," "having someone who will listen," and "having a hospital for admission in emergencies." Patients not having someone who will listen were more likely to participate in the gatherings. The present findings suggest that having someone who will provide emotional support is important for home care patients with neurological diseases. Patient gatherings held by the public health center were expected to provide patients with emotional support.

  18. Age-related brain atrophy may be mitigated by internal jugular vein enlargement in male individuals without neurologic disease.

    PubMed

    Belov, Pavel; Magnano, Christopher; Krawiecki, Jacqueline; Hagemeier, Jesper; Bergsland, Niels; Beggs, Clive; Zivadinov, Robert

    2017-03-01

    Objectives To assess the relationship between cross-sectional area of internal jugular veins and brain volumes in healthy individuals without neurologic disease. Methods A total of 193 healthy individuals without neurologic disease (63 male and 130 female; age > 20 to < 70 years) received magnetic resonance venography and structural brain magnetic resonance imaging at 3T. The internal jugular vein cross-sectional area was assessed at C2-C3, C4, C5-C6, and C7-T1. Normalized whole brain volume was assessed. Partial correlation analyses were used to determine associations. Results There was an inverse relationship between normalized whole brain volume and total internal jugular vein cross-sectional area (C7-T1: males r = -0.346, p = 0.029; females r = -0.301, p = 0.002). After age adjustment, association of normalized whole brain volume and normalized gray matter volume with internal jugular vein cross-sectional area became positive in males (normalized whole brain volume and right internal jugular vein cross-sectional area (C2-C3) changed from r = -0.163 to r = 0.384, p = 0.002), but not in the females. Conclusion Sex differences exist in the relationship between brain volume and internal jugular vein cross-sectional area in healthy individuals without neurologic disease.

  19. Early Diagnosis of Cerebral X-linked Adrenoleukodystrophy in Boys with Addison’s Disease Improves Survival and Neurological Outcomes

    PubMed Central

    Polgreen, LE; Chahla, S; Miller, W; Rothman, S.; Tolar, J; Kivisto, T; Nascene, D.; Orchard, PJ; Petryk, A

    2011-01-01

    Approximately one-third of boys with X-linked adrenoleukodystophy (X-ALD) develop an acute, progressive inflammatory process of the central nervous system, resulting in rapid neurologic deterioration and death. Hematopoietic cell transplantation (HCT) can halt the progression of neurologic disease if performed early in the course of the cerebral form of X-ALD. We describe a retrospective cohort study of 90 boys with X-ALD evaluated at our institution between 2000 and 2009, to determine if early diagnosis of X-ALD following the diagnosis of unexplained adrenal insufficiency (AI) improves outcomes. We describe 7 cases with a delay in the diagnosis of X-ALD, and compare their outcomes to 10 controls with the diagnosis of ALD made within 12 months following diagnosis of AI. At the time of evaluation for HCT, boys with a delay in the diagnosis of X-ALD had more extensive cerebral involvement and more limited functioning. These boys also were 3.9 times more likely to die, and had significant advancement of cerebral disease after HCT, compared to boys with a timely diagnosis of X-ALD. Conclusion Early diagnosis of cerebral X-ALD following the diagnosis of unexplained AI, and subsequent treatment with HCT, improves both neurological outcomes and survival in boys with cerebral X-ALD. PMID:21279382

  20. [Service portfolio in neurology].

    PubMed

    Jiménez, M D

    2003-12-01

    The specialist health assistance service book (SB) is the development of a clinical health product directed to the general population. The main objectives are: the offer of a clinical health product or to look for new offers, the evaluation or accreditation of neurological departments, the management of neurological departments, the SB presentation to main skateholder (patients, doctors, managers) and finally to inform patients of the neurological products through health resources map, that allowed them to use it. The SB includes emergency, inpatient and outpatient neurological services, and also specific diagnostic and treatment neurological procedures. In a few departments there will be also clinical units directed to specific neurological diseases or processes. It is important to develop the neurological SB in every department because it can satisfy the patients needs, and allow us to adapt quickly to our changing health reality.

  1. Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders

    PubMed Central

    Barral, Serena; Kurian, Manju A.

    2016-01-01

    The study of neurological disorders often presents with significant challenges due to the inaccessibility of human neuronal cells for further investigation. Advances in cellular reprogramming techniques, have however provided a new source of human cells for laboratory-based research. Patient-derived induced pluripotent stem cells (iPSCs) can now be robustly differentiated into specific neural subtypes, including dopaminergic, inhibitory GABAergic, motorneurons and cortical neurons. These neurons can then be utilized for in vitro studies to elucidate molecular causes underpinning neurological disease. Although human iPSC-derived neuronal models are increasingly regarded as a useful tool in cell biology, there are a number of limitations, including the relatively early, fetal stage of differentiated cells and the mainly two dimensional, simple nature of the in vitro system. Furthermore, clonal variation is a well-described phenomenon in iPSC lines. In order to account for this, robust baseline data from multiple control lines is necessary to determine whether a particular gene defect leads to a specific cellular phenotype. Over the last few years patient-derived neural cells have proven very useful in addressing several mechanistic questions related to central nervous system diseases, including early-onset neurological disorders of childhood. Many studies report the clinical utility of human-derived neural cells for testing known drugs with repurposing potential, novel compounds and gene therapies, which then can be translated to clinical reality. iPSCs derived neural cells, therefore provide great promise and potential to gain insight into, and treat early-onset neurological disorders. PMID:27656126

  2. Risk of psychiatric and neurological diseases in patients with workplace mobbing experience in Germany: a retrospective database analysis

    PubMed Central

    Kostev, Karel; Rex, Juliana; Waehlert, Lilia; Hog, Daniela; Heilmaier, Christina

    2014-01-01

    Introduction: The number of mobbing experiences recorded has increased during recent years and it has now been established as global phenomenon among the working population. The goal of our study was to analyze the incidence of certain neurologic and psychiatric diseases as a consequence of mobbing as compared with a control group and to examine the possible influence of previous diseases that occurred within one year before the first mobbing documentation on the incidence of mobbing. Material & methods: We used a large database (IMS® Disease Analyzer, Germany) to collect data from general practitioners in Germany from 01/2003 until 12/2012. Based on age, gender, and health insurance, patients with experience of mobbing were matched with a control group of patients who had not reported workplace mobbing and who were being treated by the same physicians. At first, diseases that occurred within one year before the bullying experience took place (“index date”) were noted and compared to a control group of similar composition in terms of gender, age, and health insurance. Subsequently, the prevalence of depression, anxiety, somatoform disorders, and sleep disorders following experiences of mobbing were determined. After adjustment to take into account the odds of bullying, the ratios of these diseases were assessed using a logistic regression model. Results: The study population consisted of n=2,625 patients and n=2,625 controls, of which 33% were men. The number of cases of bullying documented rose continuously from 2003 to 2011 and remained high in 2012. Those who would later become victims of mobbing demonstrated a considerably higher prevalence of diseases in general – these diseases were not confined to the neurologic-psychiatric spectrum. Following experiences of bullying, depression, anxiety, somatoform disorders, and sleep disorders were significantly more prevalent than in the control group (for all, p<0.05). Similarly, odds ratios (OR) representing the

  3. Effects of miglustat on stabilization of neurological disorder in niemann-pick disease type C: Iranian pediatric case series.

    PubMed

    Karimzadeh, Parvaneh; Tonekaboni, Seyed Hassan; Ashrafi, Mahmoud Reza; Shafeghati, Yousef; Rezayi, Alireza; Salehpour, Shadab; Ghofrani, Mohammad; Taghdiri, Mohammad Mehdi; Rahmanifar, Ali; Zaman, Talieh; Aryani, Omid; Shoar, Babak Najaf; Shiva, Farideh; Tavasoli, Alireza; Houshmand, Massoud

    2013-12-01

    Niemann-Pick disease type C is a rare neurodegenerative disorder with autosomal recessive inheritance that can be broadly categorized into different forms dependent on age at disease onset: pre-/perinatal, early infantile, late infantile, juvenile, and adolescent/adult. This study was conducted to define the age at onset, clinical manifestations, neuroimaging findings and response to treatment in 21 patients diagnosed with Niemann-Pick disease type C and managed in the neurology departments of hospitals in Tehran, Iran. The effects of miglustat on patient ambulation, fine and gross motor function, swallowing, hearing, speech, seizures, psychomotor development, and ocular movements were evaluated for up to 26 months of treatment. Ambulation, fine and gross motor movements, swallowing, speech, and supranuclear gaze palsy were generally stabilized during therapy, and psychomotor delay appeared to be improved in early- and late-infantile onset patients. However, miglustat had no effect on organomegaly or other systemic manifestations of the disease. Miglustat was well tolerated.

  4. Congenital and inherited neurologic diseases in dogs and cats: Legislation and its effect on purchase in Italy

    PubMed Central

    Passantino, Annamaria; Masucci, Marisa

    2016-01-01

    Many of the congenital neurologic diseases can result in incapacity or death of the animal. Some of them, such as idiopathic epilepsy and hydrocephalus, exhibit breed or familial predisposition and a genetic basis was proved or suggested. Some diseases can be presumptively diagnosed after a detailed signalment (breed predisposition), history (e.g. family history because many of these defects have familial tendencies), and through physical exam; other diagnostic methods (radiography, computed tomography, magnetic resonance, electrophysiologic tests, etc.) can provide supportive evidence for the congenital defect and help to confirm the diagnosis. Some cases can lead to civil law-suits when the lesions are congenital, but not easily recognizable, or when the lesions are hereditary but tend to became manifest only after some time (more than 12 months after the date of purchase, e.g., after the vice-free guarantee period has expired). Moreover, quite frequently an early diagnosis is not made because there are delays in consulting the veterinarian or the general practitioner veterinarian does not perceive subtle signs. This study was designed to focus on the medico-legal aspects concerning the buying and selling in Italy of dogs and cats affected by congenital and hereditary neurologic diseases that could constitute vice in these animals. While adequate provisions to regulate in detail the various aspects of pet sale have still to be drawn up by legislators, it may be helpful to involve breeders, by obliging them by contract to extend guarantees in the case of hereditary lesions, including neurologic diseases. PMID:27284217

  5. Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal

    SciTech Connect

    Skinner, F. K.; Ferguson, K. A.

    2013-12-15

    There is an undisputed need and requirement for theoretical and computational studies in Neuroscience today. Furthermore, it is clear that oscillatory dynamical output from brain networks is representative of various behavioural states, and it is becoming clear that one could consider these outputs as measures of normal and pathological brain states. Although mathematical modeling of oscillatory dynamics in the context of neurological disease exists, it is a highly challenging endeavour because of the many levels of organization in the nervous system. This challenge is coupled with the increasing knowledge of cellular specificity and network dysfunction that is associated with disease. Recently, whole hippocampus in vitro preparations from control animals have been shown to spontaneously express oscillatory activities. In addition, when using preparations derived from animal models of disease, these activities show particular alterations. These preparations present an opportunity to address challenges involved with using models to gain insight because of easier access to simultaneous cellular and network measurements, and pharmacological modulations. We propose that by developing and using models with direct links to experiment at multiple levels, which at least include cellular and microcircuit, a cycling can be set up and used to help us determine critical mechanisms underlying neurological disease. We illustrate our proposal using our previously developed inhibitory network models in the context of these whole hippocampus preparations and show the importance of having direct links at multiple levels.

  6. Neurological complications and risk factors of cardiopulmonary failure of EV-A71-related hand, foot and mouth disease.

    PubMed

    Long, Lili; Xu, Lin; Xiao, Zhenghui; Hu, Shixiong; Luo, Ruping; Wang, Hua; Lu, Xiulan; Xu, Zhiyue; Yao, Xu; Zhou, Luo; Long, Hongyu; Gong, Jiaoe; Song, Yanmin; Zhao, Li; Luo, Kaiwei; Zhang, Mengqi; Feng, Li; Yang, Liming; Sheng, Xiaoqi; Fan, Xuegong; Xiao, Bo

    2016-03-22

    From 2010 to 2012, large outbreaks of EV-A71-related- hand foot and mouth disease (HFMD) occurred annually in China. Some cases had neurological complications and were closely associated with fatal cardiopulmonary collapse, but not all children with central nervous system (CNS) involvement demonstrated a poor prognosis. To identify which patients and which neurological complications are more likely to progress to cardiopulmonary failure, we retrospectively studied 1,125 paediatric inpatients diagnosed with EV-A71-related HFMD in Hunan province, including 1,017 cases with CNS involvement. These patients were divided into cardiopulmonary failure (976 people) group and group without cardiopulmonary failure (149 people). A logistic regression analysis was used to compare the clinical symptoms, laboratory test results, and neurological complications between these two groups. The most significant risk factors included young age, fever duration ≥3 days, coma, limb weakness, drowsiness and ANS involvement. Patients with brainstem encephalitis and more CNS-involved regions were more likely to progress to cardiopulmonary failure. These findings can help front-line clinicians rapidly and accurately determine patient prognosis, thus rationally distributing the limited medical resources and implementing interventions as early as possible.

  7. Neurological complications and risk factors of cardiopulmonary failure of EV-A71-related hand, foot and mouth disease

    PubMed Central

    Long, Lili; Xu, Lin; Xiao, Zhenghui; Hu, Shixiong; Luo, Ruping; Wang, Hua; Lu, Xiulan; Xu, Zhiyue; Yao, Xu; Zhou, Luo; Long, Hongyu; Gong, Jiaoe; Song, Yanmin; Zhao, Li; Luo, Kaiwei; Zhang, Mengqi; Feng, Li; Yang, Liming; Sheng, Xiaoqi; Fan, Xuegong; Xiao, Bo

    2016-01-01

    From 2010 to 2012, large outbreaks of EV-A71-related- hand foot and mouth disease (HFMD) occurred annually in China. Some cases had neurological complications and were closely associated with fatal cardiopulmonary collapse, but not all children with central nervous system (CNS) involvement demonstrated a poor prognosis. To identify which patients and which neurological complications are more likely to progress to cardiopulmonary failure, we retrospectively studied 1,125 paediatric inpatients diagnosed with EV-A71-related HFMD in Hunan province, including 1,017 cases with CNS involvement. These patients were divided into cardiopulmonary failure (976 people) group and group without cardiopulmonary failure (149 people). A logistic regression analysis was used to compare the clinical symptoms, laboratory test results, and neurological complications between these two groups. The most significant risk factors included young age, fever duration ≥3 days, coma, limb weakness, drowsiness and ANS involvement. Patients with brainstem encephalitis and more CNS-involved regions were more likely to progress to cardiopulmonary failure. These findings can help front-line clinicians rapidly and accurately determine patient prognosis, thus rationally distributing the limited medical resources and implementing interventions as early as possible. PMID:27001010

  8. Follow-up nationwide survey on predictive genetic testing for late-onset hereditary neurological diseases in Japan.

    PubMed

    Tanaka, Keiko; Sekijima, Yoshiki; Yoshida, Kunihiro; Tamai, Mariko; Kosho, Tomoki; Sakurai, Akihiro; Wakui, Keiko; Ikeda, Shu-ichi; Fukushima, Yoshimitsu

    2013-08-01

    A follow-up nationwide survey on predictive genetic testing for late-onset neurological diseases in Japan was conducted. A questionnaire was sent to 89 institutional members of the Japan's National Liaison Council for Clinical Sections of Medical Genetics, and was returned by 60 (67.4%). A total of 301 clients with an interest in predictive testing were accumulated from April 2006 to March 2011. The greatest interest was shown for spinocerebellar degeneration (SCD, n=110), followed by myotonic dystrophy type 1 (DM1, n=69), Huntington's disease (HD, n=52) and familial amyloid polyneuropathy (FAP, n=35). The ratios of clients who actually underwent predictive testing were: SCD, 21.8%; DM1, 39.1%; HD, 26.9%; and FAP, 74.3%, indicating that predictive testing was conducted very cautiously for untreatable neurological diseases in Japan. Clinical geneticists were predominantly involved in genetic counseling, whereas the participation of non-medical doctor (non-MD) staff, including nurses, clinical psychologists and genetic counselors, was not common. Lack of non-MD counseling staff was one of the most serious issues in conducting predictive testing, which has not been improved since the previous survey performed in 2006. Institutional arrangements, such as revision of medical insurance system regarding genetic testing and counseling, might be necessary to resolve this issue.

  9. [Role of psychosocial stress in complex diseases].

    PubMed

    Scantamburlo, G; Scheen, A J

    2012-01-01

    Complex diseases are chronic diseases where the interrelations between genetic predisposition and environmental factors play an essential role in the arisen and the maintenance of the pathology. Upon psychological stress, the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system are activated resulting in release of glucocorticoids and catecholamines. Chronic stress may induce complex diseases where alterations of nervous, endocrine and immune systems are involved. Thus, chronic stress is more likely to induce a range of effects, depending on the capacity of the subject to cope with stress. CRH ("Corticotropin Releasing Hormone") is a key factor in the stress-immunity relationship. In this article, we propose an overview of the interrelations between central nervous, endocrine and immune systems and implications for health and diseases. The objective for the clinician is to propose therapeutic strategies targeting changes in human behaviour to cope with a potentially stressful environment.

  10. Complexity, fractals, disease time, and cancer.

    PubMed

    Spillman, W B; Robertson, J L; Huckle, W R; Govindan, B S; Meissner, K E

    2004-12-01

    Despite many years of research, a method to precisely and quantitatively determine cancer disease state remains elusive. Current practice for characterizing solid tumors involves the use of varying systems of tumor grading and staging and thus leaves diagnosis and clinical staging dependent on the experience and skill of the physicians involved. Although numerous disease markers have been identified, no combination of them has yet been found that produces a quantifiable and reliable measure of disease state. Newly developed genomic markers and other measures based on the developing sciences of complexity offer promise that this situation may soon be changed for the better. In this paper, we examine the potential of two measures of complexity, fractal dimension and percolation, for use as components of a yet to be determined "disease time" vector that more accurately quantifies disease state. The measures are applied to a set of micrographs of progressive rat hepatoma and analyzed in terms of their correlation with cell differentiation, ratio of tumor weight to rat body weight and tumor growth time. The results provide some support for the idea that measures of complexity could be important elements of any future cancer "disease time" vector.

  11. A new clinical tool for assessing numerical abilities in neurological diseases: numerical activities of daily living

    PubMed Central

    Semenza, Carlo; Meneghello, Francesca; Arcara, Giorgio; Burgio, Francesca; Gnoato, Francesca; Facchini, Silvia; Benavides-Varela, Silvia; Clementi, Maurizio; Butterworth, Brian

    2014-01-01

    The aim of this study was to build an instrument, the numerical activities of daily living (NADL), designed to identify the specific impairments in numerical functions that may cause problems in everyday life. These impairments go beyond what can be inferred from the available scales evaluating activities of daily living in general, and are not adequately captured by measures of the general deterioration of cognitive functions as assessed by standard clinical instruments like the MMSE and MoCA. We assessed a control group (n = 148) and a patient group affected by a wide variety of neurological conditions (n = 175), with NADL along with IADL, MMSE, and MoCA. The NADL battery was found to have satisfactory construct validity and reliability, across a wide age range. This enabled us to calculate appropriate criteria for impairment that took into account age and education. It was found that neurological patients tended to overestimate their abilities as compared to the judgment made by their caregivers, assessed with objective tests of numerical abilities. PMID:25126077

  12. An eye-tracking controlled neuropsychological battery for cognitive assessment in neurological diseases.

    PubMed

    Poletti, Barbara; Carelli, Laura; Solca, Federica; Lafronza, Annalisa; Pedroli, Elisa; Faini, Andrea; Zago, Stefano; Ticozzi, Nicola; Ciammola, Andrea; Morelli, Claudia; Meriggi, Paolo; Cipresso, Pietro; Lulé, Dorothée; Ludolph, Albert C; Riva, Giuseppe; Silani, Vincenzo

    2017-04-01

    Traditional cognitive assessment in neurological conditions involving physical disability is often prevented by the presence of verbal-motor impairment; to date, an extensive motor-verbal-free neuropsychological battery is not available for such purposes. We adapted a set of neuropsychological tests, assessing language, attentional abilities, executive functions and social cognition, for eye-tracking (ET) control, and explored its feasibility in a sample of healthy participants. Thirty healthy subjects performed a neuropsychological assessment, using an ET-based neuropsychological battery, together with standard "paper and pencil" cognitive measures for frontal (Frontal Assessment Battery-FAB) and working memory abilities (Digit Sequencing Task) and for global cognitive efficiency (Montreal Cognitive Assessment-MoCA). Psychological measures of anxiety (State-Trait Anxiety Inventory-Y-STAI-Y) and depression (Beck Depression Inventory-BDI) were also collected, and a usability questionnaire was administered. Significant correlations were observed between the "paper and pencil" screening of working memory abilities and the ET-based neuropsychological measures. The ET-based battery also correlated with the MoCA, while poor correlations were observed with the FAB. Usability aspects were found to be influenced by both working memory abilities and psychological components. The ET-based neuropsychological battery developed could provide an extensive assessment of cognitive functions, allowing participants to perform tasks independently from the integrity of motor or verbal channels. Further studies will be aimed at investigating validity and usability components in neurological populations with motor-verbal impairments.

  13. Simultaneous expression of Borrelia OspA and OspC and IgM response in cerebrospinal fluid in early neurologic Lyme disease.

    PubMed Central

    Schutzer, S E; Coyle, P K; Krupp, L B; Deng, Z; Belman, A L; Dattwyler, R; Luft, B J

    1997-01-01

    Lyme disease is the major tick-borne disease, caused by Borrelia burgdorferi (Bb). Neurological involvement is common in all stages. In vivo expression of Bb antigens (Ags) and the immune response to them has not been well investigated in the cerebrospinal fluid (CSF). Upregulation of outer surface protein (Osp) C and concomitant downregulation of OspA before tick inoculation of the spirochete has been reported in skin and blood in animals. CSF OspA Ag in early disease suggests otherwise in CSF. Early Ag expression and IgM response in human CSF was investigated here. Paired CSF and serum was collected from 16 early, predominantly erythema migrans Lyme disease patients with neurologic problems, 13 late Lyme disease patients, and 19 other neurologic disease (OND) controls. Samples were examined for IgM reactivity to recombinant Bb-specific Osps using ELISA and immunoblot. Of 12 early Lyme disease patients with neurologic involvement with both CSF and serum IgM against OspC, 7 (58%) had IgM to OspA (n = 5) or OspB (n = 2) that was restricted to the CSF, not serum. Overall, 12 of 16 (75%) of these early Lyme disease patients with neurologic involvement had CSF and serum IgM against OspC. Only 3 of 13 (23%) late Lyme disease patients and none of 19 OND controls had CSF IgM directed against OspC. In conclusion, in CSF, OspC and OspA can be coexpressed, and IgM response to them occurs in early Lyme disease patients with neurologic involvement. This biologic finding may also provide a discriminating marker for CNS infection in Lyme disease. PMID:9259573

  14. [Palliative care in neurology].

    PubMed

    Provinciali, Leandro; Tarquini, Daniela; De Falco, Fabrizio A; Carlini, Giulia; Zappia, Mario; Toni, Danilo

    2015-07-01

    Palliative care in neurology is characterized by the need of taking into account some distinguishing features which supplement and often differ from the general palliative approach to cancer or to severe organ failures. Such position is emphasized by a new concept of palliative assistance which is not limited to the "end of life" stage, as it was the traditional one, but is applied along the entire course of progressive, life-limiting, and disabling conditions. There are various reasons accounting for a differentiation of palliative care in neurology and for the development of specific expertise; the long duration of the advanced stages of many neurological diseases and the distinguishing features of some clinical problems (cognitive disorders, psychic disorders, etc.), in addition to the deterioration of some general aspects (nutrition, etc.), make the general criteria adopted for cancer, severe respiratory, hepatic or renal failures and heart failure inadequate. The neurological diseases which could benefit from the development of a specific palliative approach are dementia, cerebrovascular diseases, movement disorders, neuromuscular diseases, severe traumatic brain injury, brain cancers and multiple sclerosis, as well as less frequent conditions. The growing literature on palliative care in neurology provides evidence of the neurological community's increasing interest in taking care of the advanced and terminal stages of nervous system diseases, thus encouraging research, training and updating in such direction. This document aims to underline the specific neurological requirements concerning the palliative assistance.

  15. Neurologic complications of vaccinations.

    PubMed

    Miravalle, Augusto A; Schreiner, Teri

    2014-01-01

    This chapter reviews the most common neurologic disorders associated with common vaccines, evaluates the data linking the disorder with the vaccine, and discusses the potential mechanism of disease. A literature search was conducted in PubMed using a combination of the following terms: vaccines, vaccination, immunization, and neurologic complications. Data were also gathered from publications of the American Academy of Pediatrics Committee on Infectious Diseases, the World Health Organization, the US Centers for Disease Control and Prevention, and the Vaccine Adverse Event Reporting System. Neurologic complications of vaccination are rare. Many associations have been asserted without objective data to support a causal relationship. Rarely, patients with a neurologic complication will have a poor outcome. However, most patients recover fully from the neurologic complication. Vaccinations have altered the landscape of infectious disease. However, perception of risk associated with vaccinations has limited the success of disease eradication measures. Neurologic complications can be severe, and can provoke fear in potential vaccines. Evaluating whether there is causal link between neurologic disorders and vaccinations, not just temporal association, is critical to addressing public misperception of risk of vaccination. Among the vaccines available today, the cost-benefit analysis of vaccinations and complications strongly argues in favor of vaccination.

  16. The neuronal porosome complex in health and disease

    PubMed Central

    Naik, Akshata R; Lewis, Kenneth T

    2015-01-01

    Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins, compared to the 120 nm nuclear pore complex composed of >500 protein molecules. Membrane proteins compose the porosome complex, making it practically impossible to solve its atomic structure. However, atomic force microscopy and small-angle X-ray solution scattering studies have provided three-dimensional structural details of the native neuronal porosome at sub-nanometer resolution, providing insights into the molecular mechanism of its function. The participation of several porosome proteins previously implicated in neurotransmission and neurological disorders, further attest to the crosstalk between porosome proteins and their coordinated involvement in release of neurotransmitter at the synapse. PMID:26264442

  17. Vanishing bone disease of chest wall and spine with kyphoscoliosis and neurological deficit: A case report and review of literature

    PubMed Central

    Srivastava, Sudhir Kumar; Aggarwal, Rishi Anil; Nemade, Pradip Sharad; Bhoale, Sunil Krishna

    2017-01-01

    Vanishing bone disease is an extremely rare disorder of unknown etiology characterized by idiopathic osteolysis of bone. We describe a case of vanishing bone disease of chest wall and spine with kyphoscoliosis and neurological deficit. A 17-year-old male presented with gradually progressive deformity of back and dorsal compressive myelopathy with nonambulatory power in lower limbs. Radiographs revealed absent 4th–7th ribs on the right side with dorsal kyphoscoliosis and severe canal narrowing at the apex. The patient was given localized radiotherapy and started on a monthly infusion of 4 mg zoledronic acid. Posterior instrumented fusion with anterior reconstruction via posterolateral approach was performed. The patient had a complete neurological recovery at 5 weeks following surgery. At 1 year, anterior nonunion was noted for which transthoracic tricortical bone grafting was done. Bone graft from the patient's mother was used both times. At 7 months following anterior grafting, the alignment was maintained and the patient was asymptomatic; however, fusion at graft-host interface was not achieved. Bisphosphonates and radiotherapy were successful in halting the progress of osteolysis. PMID:28216760

  18. Recent imaging advances in neurology.

    PubMed

    Rocchi, Lorenzo; Niccolini, Flavia; Politis, Marios

    2015-09-01

    Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients.

  19. Persistent neurological damage associated with spontaneous recurrent seizures and atypical aggressive behavior of domoic acid epileptic disease.

    PubMed

    Tiedeken, Jessica A; Ramsdell, John S

    2013-05-01

    The harmful alga Pseudo-nitzschia sp. is the cause of human amnesic shellfish poisoning and the stranding of thousands of sea lions with seizures as a hallmark symptom. A human case study and epidemiological report of hundreds of stranded sea lions found individuals presenting months after recovery with a neurological disease similar to temporal lobe epilepsy. A rat model developed to establish and better predict how epileptic disease results from domoic acid poisoning demonstrated that a single episode of status epilepticus (SE), after a latent period, leads to a progressive state of spontaneous recurrent seizure (SRS) and expression of atypical aggressive behaviors. Structural damage associated with domoic acid-induced SE is prominent in olfactory pathways. Here, we examine structural damage in seven rats that progressed to epileptic disease. Diseased animals show progressive neuronal loss in the piriform cortex and degeneration of terminal fields in these layers and the posteromedial cortical amygdaloid nucleus. Animals that display aggressive behavior had additional neuronal damage to the anterior olfactory cortex. This study provides insight into the structural basis for the progression of domoic acid epileptic disease and relates to the California sea lion, where poisoned animals progress to a disease characterized by SRS and aggressive behaviors.

  20. Physical activity behavior change in persons with neurologic disorders: overview and examples from Parkinson disease and multiple sclerosis.

    PubMed

    Ellis, Terry; Motl, Robert W

    2013-06-01

    Persons with chronic progressive neurologic diseases such as Parkinson disease (PD) and multiple sclerosis (MS) face significant declines in mobility and activities of daily living, resulting in a loss of independence and compromised health-related quality of life over the course of the disease. Such undesirable outcomes can be attenuated through participation in exercise and physical activity, yet there is profound and prevalent physical inactivity in persons with PD and MS that may initiate a cycle of deconditioning and worsening of disease consequences, independent of latent disease processes. This Special Interest article highlights the accruing evidence revealing the largely sedentary behaviors common among persons living with physically disabling conditions and summarizes the evidence on the benefits of physical activity in persons with PD and MS. We then examine the social cognitive theory as an approach to identifying the primary active ingredients for behavioral change and, hence, the targets of interventions for increasing physical activity levels. The design and efficacies of interventions based on the social cognitive theory for increasing physical activity in persons with PD and MS are discussed. Finally, a rationale for adopting a secondary prevention approach to delivering physical therapy services is presented, with an emphasis on the integration of physical activity behavior change interventions into the care of persons with chronic, progressive disabilities over the course of the disease.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A42) for more insights from the authors.

  1. Asymptomatic carotid disease--a new tool for assessing neurological risk.

    PubMed

    Pedro, Luís M; Sanches, J Miguel; Seabra, José; Suri, Jasjit S; Fernandes E Fernandes, José

    2014-03-01

    Active carotid plaques are associated with atheroembolism and neurological events; its identification is crucial for stroke prevention. High-definition ultrasound (HDU) can be used to recognize plaque structure in carotid bifurcation stenosis associated with plaque vulnerability and occurrence of brain ischemic events. A new computer-assisted HDU method to study the echomorphology of the carotid plaque and to determine a risk score for developing appropriate symptoms is proposed in this study. Plaque echomorphology characteristics such as presence of ulceration at the plaque surface, juxta-luminal location of echolucent areas, echoheterogeneity were obtained from B-mode ultrasound scans using several image processing algorithms and were combined with measurement of severity of stenosis to obtain a clinical score--enhanced activity index (EAI)--which was correlated with the presence or absence of ipsilateral appropriate ischemic symptoms. An optimal cutoff value of EAI was determined to obtain the best separation between symptomatic (active) from asymptomatic (inactive) plaques and its diagnostic yield was compared to other 2 reference methods by means of receiver-operating characteristic (ROC) analysis. Classification performance was evaluated by leave-one-patient-out cross-validation applied to a cohort of 146 carotid plaques from 99 patients. The proposed method was benchmarked against (a) degree of stenosis criteria and (b) earlier proposed activity index (AI) and demonstrated that EAI yielded the highest accuracy up to an accuracy of 77% to predict asymptomatic plaques that developed symptoms in a prospective cross-sectional study. Enhanced activity index is a noninvasive, easy to obtain parameter, which provided accurate estimation of neurological risk of carotid plaques.

  2. Causal Drift, Robust Signaling, and Complex Disease

    PubMed Central

    Wagner, Andreas

    2015-01-01

    The phenotype of many regulatory circuits in which mutations can cause complex, polygenic diseases is to some extent robust to DNA mutations that affect circuit components. Here I demonstrate how such mutational robustness can prevent the discovery of genetic disease determinants. To make my case, I use a mathematical model of the insulin signaling pathway implicated in type 2 diabetes, whose signaling output is governed by 15 genetically determined parameters. Using multiple complementary measures of a parameter’s importance for this phenotype, I show that any one disease determinant that is crucial in one genetic background will be virtually irrelevant in other backgrounds. In an evolving population that drifts through the parameter space of this or other robust circuits through DNA mutations, the genetic changes that can cause disease will vary randomly over time. I call this phenomenon causal drift. It means that mutations causing disease in one (human or non-human) population may have no effect in another population, and vice versa. Causal drift casts doubt on our ability to infer the molecular mechanisms of complex diseases from non-human model organisms. PMID:25774510

  3. Cardiomyopathy in neurological disorders.

    PubMed

    Finsterer, Josef; Stöllberger, Claudia; Wahbi, Karim

    2013-01-01

    According to the American Heart Association, cardiomyopathies are classified as primary (solely or predominantly confined to heart muscle), secondary (those showing pathological myocardial involvement as part of a neuromuscular disorder) and those in which cardiomyopathy is the first/predominant manifestation of a neuromuscular disorder. Cardiomyopathies may be further classified as hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, or unclassified cardiomyopathy (noncompaction, Takotsubo-cardiomyopathy). This review focuses on secondary cardiomyopathies and those in which cardiomyopathy is the predominant manifestation of a myopathy. Any of them may cause neurological disease, and any of them may be a manifestation of a neurological disorder. Neurological disease most frequently caused by cardiomyopathies is ischemic stroke, followed by transitory ischemic attack, syncope, or vertigo. Neurological disease, which most frequently manifests with cardiomyopathies are the neuromuscular disorders. Most commonly associated with cardiomyopathies are muscular dystrophies, myofibrillar myopathies, congenital myopathies and metabolic myopathies. Management of neurological disease caused by cardiomyopathies is not at variance from the same neurological disorders due to other causes. Management of secondary cardiomyopathies is not different from that of cardiomyopathies due to other causes either. Patients with neuromuscular disorders require early cardiologic investigations and close follow-ups, patients with cardiomyopathies require neurological investigation and avoidance of muscle toxic medication if a neuromuscular disorder is diagnosed. Which patients with cardiomyopathy profit most from primary stroke prevention is unsolved and requires further investigations.

  4. [The role of the neuropsychologist in neurology services: a descriptive study of the users of the specialised neurological assessment unit of the Hospital Complex of Navarra during its first year in service].

    PubMed

    Luna-Lario, Pilar; Seijas-Gómez, Raquel; Carnés-Vendrell, Anna

    2014-12-16

    INTRODUCTION. A large number of neurological diseases course with impairment of higher cognitive functions, their evaluation being important for diagnostic, prognostic and therapeutic purposes. The main purpose of neuropsychological assessment is to identify behavioral, emotional and cognitive consequences of brain dysfunction. The neuropsychologist's figure was included in Navarra's Hospital Neurology Service in February 2013 through a specialized practice in neuropsychological assessment. AIM. To describe the sociodemographic and clinical profile of all patients referred to the same from March 2013 to March 2014. PATIENTS AND METHODS. A total of 511 people have been treated in this practice. RESULTS. 73.2% are more than 55 years old and the most frequent reason of referral is to characterize the neuropsychological profile to detect and discriminate mild cognitive impairment and dementia, as well as the type of dementia. In younger adults (< 55 years old) the most prevalent cognitive deficit is memory impairment. CONCLUSIONS. The expert neuropsychologist performs thorough neuropsychological evaluations from an interpretative approach. The results of this study suggest the importance of this figures role in neurology services and point out future aims.

  5. Circulating immune complexes and disease activity in Crohn's disease.

    PubMed Central

    Fiasse, R; Lurhuma, A Z; Cambiaso, C L; Masson, P L; Dive, C

    1978-01-01

    Circulating immune complexes were determined in 59 consecutive patients with Crohn's disease and 100 blood donors by a double method based on the inhibition of the agglutinating activity of CIq and/or rheumatoid factor on the IgG-coated polystyrene particles. In patients, the incidence of positive immune complexes was 63% and 61% at first testing, 85% and 78% at subsequent determinations; there was a good correlation between the inhibition titres of CIq and those of rheumatoid factor (p less than 0.001). In blood donors, the incidence was 22% and 14% at low titre. The incidence of immune complexes was the lowest (36%) in the group of resected patients without signs of relapse; repeat determinations showed absence of immune complexes three months postoperatively. In patients medically treated for primary disease or relapse, rheumatoid factor titre higher than 1/1 was less frequent than in medically untreated patients with active disease (p less than 0.01). A significantly higher concentration of serum alpha-1-antitrypsin and orosomucoid, and a significantly lower level of serum iron were found in patients with an IC titre exceeding 1/1; longitudinal studies showed in most cases a concordance between the evolution of immune complex titres, inflammatory parameters and clinical status. PMID:308030

  6. Determination of immune complexes in sera from dogs with various diseases by mastocytoma cell assay.

    PubMed Central

    Targowski, S

    1982-01-01

    Canine immunoglobulin G complexed with particulate or soluble antigen can bind to the Fc receptors on the mastocytoma cells. Attachment of immune complexes composed of immunoglobulin G and soluble antigen (ovalbumin) to mastocytoma cells was detected by an inhibition of rosette formation with indicator cells (sensitized sheep erythrocytes). Therefore, canine circulating immune complexes may also attach to mastocytoma cells and inhibit rosette formation (mastocytoma cell assay). Sera from 326 dogs with various diseases and from 50 clinically normal dogs were assayed for immune complexes. The incidence of immune complexes in sera from normal dogs was 6% as compared with 25% in dogs with various diseases. The immune complexes were demonstrated in 37% of sera from dogs with various neoplastic diseases, 40% of sera from dogs with diabetes, 24% of sera from dogs with hypothyroidism, 50% of sera from dogs with mycotic disease, 75% of sera from dogs with arthritis, 38% of sera from dogs with kidney disorders, 40% of sera from dogs with neurological diseases, 45% of sera from dogs with various parasitic diseases, and 27% of sera from dogs with liver disorders. Only 19% of sera from dogs admitted to the hospital for various surgeries gave positive results. The incidence of the positive sera from dogs with various diseases is discussed in regard to their counterparts of human diseases. PMID:6226676

  7. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases.

    PubMed

    Maxeiner, Horst-Guenter; Marion Schneider, E; Kurfiss, Sina-Tatjana; Brettschneider, Johannes; Tumani, Hayrettin; Bechter, Karl

    2014-09-01

    The present study aimed at profiling inflammatory cytokines for neurological and psychiatric diseases. A total of 86 patients with meningitis, multiple sclerosis, tension-type headache, idiopathic facial nerve palsy (IFNP), affective and schizophrenic disorders were tested for both, serum and cerebrospinal fluid (CSF) using a multiplexed cytokine ELISA for IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-5, IL-8/CXCL8, IL-10, IL12p70, IL-13 and IL-17. Cases with viral and bacterial meningitis had unequivocally higher cytokine concentrations in the CSF when compared with serum. Bacterial meningitis was unique by extremely elevated IL-17, TNF-α and IL-1β, indicating a plethora of inflammatory pathways, selectively activated in the CSF. In relapsing multiple sclerosis, IFN-γ and IL-10 were elevated in both, serum and CSF, but IL-12p70, IL-5, IL-13, and TNF-α were more prominent in serum than in CSF. Qualitatively similar biomarker patterns were detected in patients with idiopathic facial nerve palsy and tension-type cephalgia. Affective and schizophrenic disorders clearly present with an inflammatory phenotype in the CSF and also serum, the cytokines determined were in general higher in schizophrenia. Except IFN-γ, schizophrenic patients had higher IL-12p70 and a trend of higher IL-10 and IL-13 in serum suggesting a more prominent TH2-type counter regulatory immune response than in affective disorders. These differences were also mirrored in the CSF. Elevated IL-8 appears to be the most sensitive marker for inflammation in the CSF of all diseases studied, whereas TNF-α was restricted to peripheral blood. With the exception of IL-8, all but viral and bacterial meningitis, studied, displayed higher means of elevated lymphokine concentrations in the serum than in the CSF. This observation supports the concept of immunological crosstalk between periphery and intrathecal immunity in neurological and psychiatric diseases.

  8. The role of nanotechnology and nano and micro-electronics in monitoring and control of cardiovascular diseases and neurological disorders

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2007-04-01

    Nanotechnology has been broadly defined as the one for not only the creation of functional materials and devices as well as systems through control of matter at the scale of 1-100 nm, but also the exploitation of novel properties and phenomena at the same scale. Growing needs in the point-of-care (POC) that is an increasing market for improving patient's quality of life, are driving the development of nanotechnologies for diagnosis and treatment of various life threatening diseases. This paper addresses the recent development of nanodiagnostic sensors and nanotherapeutic devices with functionalized carbon nanotube and/or nanowire on a flexible organic thin film electronics to monitor and control of the three leading diseases namely 1) neurodegenerative diseases, 2) cardiovascular diseases, and 3) diabetes and metabolic diseases. The sensors developed include implantable and biocompatible devices, light weight wearable devices in wrist-watches, hats, shoes and clothes. The nanotherapeutics devices include nanobased drug delivery system. Many of these sensors are integrated with the wireless systems for the remote physiological monitoring. The author's research team has also developed a wireless neural probe using nanowires and nanotubes for monitoring and control of Parkinson's disease. Light weight and compact EEG, EOG and EMG monitoring system in a hat developed is capable of monitoring real time epileptic patients and patients with neurological and movement disorders using the Internet and cellular network. Physicians could be able to monitor these signals in realtime using portable computers or cell phones and will give early warning signal if these signals cross a pre-determined threshold level. In addition the potential impact of nanotechnology for applications in medicine is that, the devices can be designed to interact with cells and tissues at the molecular level, which allows high degree of functionality. Devices engineered at nanometer scale imply a

  9. REM Sleep Behavior Disorder and REM Sleep Without Atonia as an Early Manifestation of Degenerative Neurological Disease

    PubMed Central

    McCarter, Stuart J.; St Louis, Erik K.

    2013-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by repeated episodes of dream enactment behavior and REM sleep without atonia (RSWA) during polysomnography recording. RSWA is characterized by increased phasic or tonic muscle activity seen on polysomnographic electromyogram channels. RSWA is a requisite diagnostic feature of RBD, but may also be seen in patients without clinical symptoms or signs of dream enactment as an incidental finding in neurologically normal individuals, especially in patients receiving antidepressant therapy. RBD may be idiopathic or symptomatic. Patients with idiopathic RBD often later develop other neurological features including parkinsonism, orthostatic hypotension, anosmia, or cognitive impairment. RSWA without clinical symptoms as well as clinically overt RBD also often occurs concomitantly with the α-synucleinopathy family of neurodegenerative disorders, which includes idiopathic Parkinson disease, Lewy body dementia, and multiple system atrophy. This review article considers the epidemiology of RBD, clinical and polysomnographic diagnostic standards for both RBD and RSWA, previously reported associations of RSWA and RBD with neurodegenerative disorders and other potential causes, the pathophysiology of which brain structures and networks mediate dysregulation of REM sleep muscle atonia, and considerations for the effective and safe management of RBD. PMID:22328094

  10. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases.

    PubMed

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-04-15

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.

  11. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases

    PubMed Central

    Gatica-Rojas, Valeska; Méndez-Rebolledo, Guillermo

    2014-01-01

    Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual reality interface devices such as the Nintendo® Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addition, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients’ brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies. PMID:25206907

  12. REM sleep behavior disorder and REM sleep without atonia as an early manifestation of degenerative neurological disease.

    PubMed

    McCarter, Stuart J; St Louis, Erik K; Boeve, Bradley F

    2012-04-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by repeated episodes of dream enactment behavior and REM sleep without atonia (RSWA) during polysomnography recording. RSWA is characterized by increased phasic or tonic muscle activity seen on polysomnographic electromyogram channels. RSWA is a requisite diagnostic feature of RBD, but may also be seen in patients without clinical symptoms or signs of dream enactment as an incidental finding in neurologically normal individuals, especially in patients receiving antidepressant therapy. RBD may be idiopathic or symptomatic. Patients with idiopathic RBD often later develop other neurological features including parkinsonism, orthostatic hypotension, anosmia, or cognitive impairment. RSWA without clinical symptoms as well as clinically overt RBD also often occurs concomitantly with the α-synucleinopathy family of neurodegenerative disorders, which includes idiopathic Parkinson disease, Lewy body dementia, and multiple system atrophy. This review article considers the epidemiology of RBD, clinical and polysomnographic diagnostic standards for both RBD and RSWA, previously reported associations of RSWA and RBD with neurodegenerative disorders and other potential causes, the pathophysiology of which brain structures and networks mediate dysregulation of REM sleep muscle atonia, and considerations for the effective and safe management of RBD.

  13. An Acoustic Study of the Relationships among Neurologic Disease, Dysarthria Type, and Severity of Dysarthria

    ERIC Educational Resources Information Center

    Kim, Yunjung; Kent, Raymond D.; Weismer, Gary

    2011-01-01

    Purpose: This study examined acoustic predictors of speech intelligibility in speakers with several types of dysarthria secondary to different diseases and conducted classification analysis solely by acoustic measures according to 3 variables (disease, speech severity, and dysarthria type). Method: Speech recordings from 107 speakers with…

  14. Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in S. cerevisiae.

    PubMed

    Gillespie, Abby; Gabunilas, Jason; Jen, Joanna C; Chanfreau, Guillaume F

    2017-04-01

    The RNA exosome is a conserved multiprotein complex that achieves a large number of processive and degradative functions in eukaryotic cells. Recently, mutations have been mapped to the gene encoding one of the subunits of the exosome, EXOSC3 (yeast Rrp40p), which results in pontocerebellar hypoplasia with motor neuron degeneration in human patients. However, the molecular impact of these mutations in the pathology of these diseases is not well understood. To investigate the molecular consequences of mutations in EXOSC3 that lead to neurological diseases, we analyzed the effect of three of the mutations that affect conserved residues of EXOSC3/Rrp40p (G31A, G191C, and W238R; G8A, G148C, and W195R, respectively, in human and yeast) in S. cerevisiae We show that the severity of the phenotypes of these mutations in yeast correlate with that of the disease in human patients, with the W195R mutant showing the strongest growth and RNA processing phenotypes. Furthermore, we show that these mutations affect more severely pre-ribosomal RNA processing functions of the exosome rather than other nuclear processing or surveillance functions. These results suggest that delayed or defective pre-rRNA processing might be the primary defect responsible for the pathologies detected in patients with mutations affecting EXOSC3 function in residues conserved throughout eukaryotes.

  15. Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in S. cerevisiae

    PubMed Central

    Gillespie, Abby; Gabunilas, Jason; Jen, Joanna C.; Chanfreau, Guillaume F.

    2017-01-01

    The RNA exosome is a conserved multiprotein complex that achieves a large number of processive and degradative functions in eukaryotic cells. Recently, mutations have been mapped to the gene encoding one of the subunits of the exosome, EXOSC3 (yeast Rrp40p), which results in pontocerebellar hypoplasia with motor neuron degeneration in human patients. However, the molecular impact of these mutations in the pathology of these diseases is not well understood. To investigate the molecular consequences of mutations in EXOSC3 that lead to neurological diseases, we analyzed the effect of three of the mutations that affect conserved residues of EXOSC3/Rrp40p (G31A, G191C, and W238R; G8A, G148C, and W195R, respectively, in human and yeast) in S. cerevisiae. We show that the severity of the phenotypes of these mutations in yeast correlate with that of the disease in human patients, with the W195R mutant showing the strongest growth and RNA processing phenotypes. Furthermore, we show that these mutations affect more severely pre-ribosomal RNA processing functions of the exosome rather than other nuclear processing or surveillance functions. These results suggest that delayed or defective pre-rRNA processing might be the primary defect responsible for the pathologies detected in patients with mutations affecting EXOSC3 function in residues conserved throughout eukaryotes. PMID:28053271

  16. Molecular underpinnings of Aprataxin RNA/DNA deadenylase function and dysfunction in neurological disease.

    PubMed

    Schellenberg, Matthew J; Tumbale, Percy P; Williams, R Scott

    2015-03-01

    Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions act as molecular checkpoint for DNA damage and create 5'-adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA single strand break repair (SSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase "proofreader" to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1.

  17. Molecular Underpinnings of Aprataxin RNA/DNA Deadenylase Function and Dysfunction in Neurological Disease

    PubMed Central

    Williams, R. Scott

    2015-01-01

    Eukaryotic DNA ligases seal DNA breaks in the final step of DNA replication and repair transactions via a three-step reaction mechanism that can abort if DNA ligases encounter modified DNA termini, such as the products and repair intermediates of DNA oxidation, alkylation, or the aberrant incorporation of ribonucleotides into genomic DNA. Such abortive DNA ligation reactions create 5’–adenylated nucleic acid termini in the context of DNA and RNA-DNA substrates in DNA base excision repair (BER), double strand break repair (DSBR) and ribonucleotide excision repair (RER). Aprataxin (APTX), a protein altered in the heritable neurological disorder Ataxia with Oculomotor Apraxia 1 (AOA1), acts as a DNA ligase “proofreader” to directly reverse AMP-modified nucleic acid termini in DNA- and RNA-DNA damage responses. Herein, we survey APTX function and the emerging cell biological, structural and biochemical data that has established a molecular foundation for understanding the APTX mediated deadenylation reaction, and is providing insights into the molecular bases of APTX deficiency in AOA1. PMID:25637650

  18. Do all of the neurologic diseases in patients with DNA repair gene mutations result from the accumulation of DNA damage?

    PubMed

    Brooks, P J; Cheng, Tsu-Fan; Cooper, Lori

    2008-06-01

    The classic model for neurodegeneration due to mutations in DNA repair genes holds that DNA damage accumulates in the absence of repair, resulting in the death of neurons. This model was originally put forth to explain the dramatic loss of neurons observed in patients with xeroderma pigmentosum neurologic disease, and is likely to be valid for other neurodegenerative diseases due to mutations in DNA repair genes. However, in trichiothiodystrophy (TTD), Aicardi-Goutières syndrome (AGS), and Cockayne syndrome (CS), abnormal myelin is the most prominent neuropathological feature. Myelin is synthesized by specific types of glial cells called oligodendrocytes. In this review, we focus on new studies that illustrate two disease mechanisms for myelin defects resulting from mutations in DNA repair genes, both of which are fundamentally different than the classic model described above. First, studies using the TTD mouse model indicate that TFIIH acts as a co-activator for thyroid hormone-dependent gene expression in the brain, and that a causative XPD mutation in TTD results in reduction of this co-activator function and a dysregulation of myelin-related gene expression. Second, in AGS, which is caused by mutations in either TREX1 or RNASEH2, recent evidence indicates that failure to degrade nucleic acids produced during S-phase triggers activation of the innate immune system, resulting in myelin defects and calcification of the brain. Strikingly, both myelin defects and brain calcification are both prominent features of CS neurologic disease. The similar neuropathology in CS and AGS seems unlikely to be due to the loss of a common DNA repair function, and based on the evidence in the literature, we propose that vascular abnormalities may be part of the mechanism that is common to both diseases. In summary, while the classic DNA damage accumulation model is applicable to the neuronal death due to defective DNA repair, the myelination defects and brain calcification seem to

  19. New Perspectives on Oxidized Genome Damage and Repair Inhibition by Pro-Oxidant Metals in Neurological Diseases

    PubMed Central

    Mitra, Joy; Guerrero, Erika N.; Hegde, Pavana M.; Wang, Haibo; Boldogh, Istvan; Rao, Kosagi Sharaf; Mitra, Sankar; Hegde, Muralidhar L.

    2014-01-01

    The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases. PMID:25036887

  20. Progress in pediatrics in 2013: choices in allergology, endocrinology, gastroenterology, hypertension, infectious diseases, neonatology, neurology, nutrition and respiratory tract illnesses.

    PubMed

    Caffarelli, Carlo; Santamaria, Francesca; Vottero, Alessandra; Dascola, Carlotta Povesi; Mirra, Virginia; Sperli, Francesco; Bernasconi, Sergio

    2014-07-12

    This review will provide new information related to pathophysiology and management of specific diseases that have been addressed by selected articles published in the Italian Journal of Pediatrics in 2013, focusing on allergology, endocrinology, gastroenterology, hypertension, infectious diseases, neonatology, neurology, nutrition and respiratory tract illnesses in children. Recommendations for interpretation of skin prick test to foods in atopic eczema, management of allergic conjunctivitis, hypertension and breastfeeding in women treated with antiepileptic drugs and healthy breakfast have been reported. Epidemiological studies have given emphasis to high incidence of autoimmune disorders in patients with Turner syndrome, increasing prevalence of celiac disease, frequency of hypertension in adolescents, incidence and risk factor for retinopathy of prematurity. Advances in prevention include elucidation of the role of probiotics in reducing occurrence of allergies and feeding intolerance, and events of foetal life that influence later onset of diseases. Mechanistic studies suggested a role for vitamin D deficiency in asthma and type 1 diabetes and for reactivation of Varicella-Zoster virus in aseptic meningitis. Regarding diagnosis, a new mean for the diagnosis of hyperbilirubinaemia in newborns, a score for recognition of impaired nutritional status and growth and criteria for early Dyke-Davidoff-Masson Syndrome have been suggested. New therapeutic approaches consist of use of etanercept for reducing insulin dose in type 1 diabetes, probiotics in atopic eczema, and melatonin in viral infections.

  1. A critical appraisal of the mild axonal peripheral neuropathy of late neurologic Lyme disease.

    PubMed

    Wormser, Gary P; Strle, Franc; Shapiro, Eugene D; Dattwyler, Raymond J; Auwaerter, Paul G

    2017-02-01

    In older studies, a chronic distal symmetric sensory neuropathy was reported as a relatively common manifestation of late Lyme disease in the United States. However, the original papers describing this entity had notable inconsistencies and certain inexplicable findings, such as reports that this condition developed in patients despite prior antibiotic treatment known to be highly effective for other manifestations of Lyme disease. More recent literature suggests that this entity is seen rarely, if at all. A chronic distal symmetric sensory neuropathy as a manifestation of late Lyme disease in North America should be regarded as controversial and in need of rigorous validation studies before acceptance as a documented clinical entity.

  2. Thermography in Neurologic Practice

    PubMed Central

    Neves, Eduardo Borba; Vilaça-Alves, José; Rosa, Claudio; Reis, Victor Machado

    2015-01-01

    One kind of medical images that has been developed in the last decades is thermal images. These images are assessed by infrared cameras and have shown an exponential development in recent years. In this sense, the aim of this study was to describe possibilities of thermography usage in the neurologic practice. It was performed a systematic review in Web of Knowledge (Thompson Reuters), set in all databases which used two combination of keywords as “topic”: “thermography” and “neurology”; and “thermography” and “neurologic”. The chronological period was defined from 2000 to 2014 (the least 15 years). Among the studies included in this review, only seven were with experimental design. It is few to bring thermography as a daily tool in clinical practice. However, these studies have suggested good results. The studies of review and an analyzed patent showed that the authors consider the thermography as a diagnostic tool and they recommend its usage. It can be concluded that thermography is already used as a diagnostic and monitoring tool of patients with neuropathies, particularly in complex regional pain syndrome, and stroke. And yet, this tool has great potential for future research about its application in diagnosis of other diseases of neurological origin. PMID:26191090

  3. The Exocyst Complex in Health and Disease

    PubMed Central

    Martin-Urdiroz, Magdalena; Deeks, Michael J.; Horton, Connor G.; Dawe, Helen R.; Jourdain, Isabelle

    2016-01-01

    Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease. PMID:27148529

  4. Sarcopenia or muscle modifications in neurologic diseases: a lexical or patophysiological difference?

    PubMed

    Carda, S; Cisari, C; Invernizzi, M

    2013-02-01

    Sarcopenia is a condition characterized by a decrease in muscle mass and function (strength and mobility) that is frequently observed in the elderly. In people with paresis and altered mobility due to central nervous system (CNS) diseases, this definition then may not be applicable. In CNS diseases, mainly stroke and spinal cord injury, different and specific patterns of muscle loss and muscle changes have been described, due to denervation, disuse atrophy, spasticity and myosteatosis. The main observations available about these phenomena in CNS diseases are reviewed, and a broad view on the specific physiopathological mechanisms is also described. Moreover, a description of the potential pharmacological targets and treatment strategies (physical and nutritional) is provided. Since sarcopenia of the elderly and muscle modifications and muscle atrophy in CNS diseases have different mechanisms, it is probable that they do not respond equally to the same treatments.

  5. Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis.

    PubMed

    Liao, Fuyuan; Wang, Jue; He, Ping

    2008-04-01

    Gait rhythm of patients with Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS) has been studied focusing on the fractal and correlation properties of stride time fluctuations. In this study, we investigated gait asymmetry in these diseases using the multi-resolution entropy analysis of stance time fluctuations. Since stance time is likely to exhibit fluctuations across multiple spatial and temporal scales, the data series were decomposed into appropriate levels by applying stationary wavelet transform. The similarity between two corresponding wavelet coefficient series in terms of their regularities at each level was quantified based on a modified sample entropy method and a weighted sum was then used as gait symmetry index. We found that gait symmetry in subjects with PD and HD, especially with ALS is significantly disturbed. This method may be useful in characterizing certain pathologies of motor control and, possibly, in monitoring disease progression and evaluating the effect of an individual treatment.

  6. Neurological lesions in chickens experimentally infected with virulent Newcastle disease virus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Neuropil reaction was evaluated in chickens inoculated with four different Newcastle disease virus (NDV) isolates, including Texas GB, Turkey North Dakota, Nevada Cormorant (velogenic neurotropic) and Anhinga (mesogenic). Tissues for this study included archived formalin-fixed, paraffin embedded br...

  7. Genetic and environmental pathways to complex diseases

    PubMed Central

    Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J

    2009-01-01

    Background Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Results Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Conclusion Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions. PMID:19416532

  8. [Complex hereditary diseases with psychiatric symptoms].

    PubMed

    Wetterberg, L

    1999-02-28

    Family and adoption studies indicate that genetic factors play a role in the development of many psychiatric disorders. A variable number of possible interacting genes giving a predisposition to the diseases is likely. The genetic dissection has been hampered by genetic complexity as well as by difficulties in defining the phenotypes. Genetic mapping efforts using sib pairs, twins and individual large families have revealed preliminary or tentative evidence of susceptibility loci for a number of psychiatric disorders. Illnesses described in this article include the prion disease familial fatal insomnia (FFI), alcoholism, anorexia nervosa, autism, bipolar affective disorder, dyslexia, enuresis nocturna, epilepsia, obsessive-compulsive disorders (OCD), schizophrenia, and the dementias, Alzheimer's disease and frontal lobe dementia. The genes and proteins related to the newly discovered transmitter in the central nervous system, nitric oxide (NO), and its genes and proteins are also reviewed. The number of mapped human genes now exceeds 30,000 of the estimated total number of 60,000 to 100,000 genes. This rapid development will facilitate gene mapping and efforts to isolate and identify the genes responsible for symptom susceptibility in many of the aetiologically unclear psychiatric diseases with complex genetic origin.

  9. Development of a patient reported outcome measure for fatigue in motor neurone disease: the Neurological Fatigue Index (NFI-MND)

    PubMed Central

    2011-01-01

    Background The objective of this research was to develop a disease-specific measure for fatigue in patients with motor neurone disease (MND) by generating data that would fit the Rasch measurement model. Fatigue was defined as reversible motor weakness and whole-body tiredness that was predominantly brought on by muscular exertion and was partially relieved by rest. Methods Qualitative interviews were undertaken to confirm the suitability of a previously identified set of 52 neurological fatigue items as relevant to patients with MND. Patients were recruited from five U.K. MND clinics. Questionnaires were administered during clinic or by post. A sub-sample of patients completed the questionnaire again after 2-4 weeks to assess test-retest validity. Exploratory factor analyses and Rasch analysis were conducted on the item set. Results Qualitative interviews with ten MND patients confirmed the suitability of 52 previously identified neurological fatigue items as relevant to patients with MND. 298 patients consented to completing the initial questionnaire including this item set, with an additional 78 patients completing the questionnaire a second time after 4-6 weeks. Exploratory Factor Analysis identified five potential subscales that could be conceptualised as representing: 'Energy', 'Reversible muscular weakness' (shortened to 'Weakness'), 'Concentration', 'Effects of heat' and 'Rest'. Of the original five factors, two factors 'Energy' and 'Weakness' met the expectations of the Rasch model. A higher order fatigue summary scale, consisting of items from the 'Energy' and 'Weakness' subscales, was found to fit the Rasch model and have acceptable unidimensionality. The two scales and the higher order summary scale were shown to fulfil model expectations, including assumptions of unidimensionality, local independency and an absence of differential item functioning. Conclusions The Neurological Fatigue Index for MND (NFI-MND) is a simple, easy-to-administer fatigue

  10. Neurological disease mutations of α3 Na(+),K(+)-ATPase: Structural and functional perspectives and rescue of compromised function.

    PubMed

    Holm, Rikke; Toustrup-Jensen, Mads S; Einholm, Anja P; Schack, Vivien R; Andersen, Jens P; Vilsen, Bente

    2016-11-01

    Na(+),K(+)-ATPase creates transmembrane ion gradients crucial to the function of the central nervous system. The α-subunit of Na(+),K(+)-ATPase exists as four isoforms (α1-α4). Several neurological phenotypes derive from α3 mutations. The effects of some of these mutations on Na(+),K(+)-ATPase function have been studied in vitro. Here we discuss the α3 disease mutations as well as information derived from studies of corresponding mutations of α1 in the light of the high-resolution crystal structures of the Na(+),K(+)-ATPase. A high proportion of the α3 disease mutations occur in the transmembrane sector and nearby regions essential to Na(+) and K(+) binding. In several cases the compromised function can be traced to disturbance of the Na(+) specific binding site III. Recently, a secondary mutation was found to rescue the defective Na(+) binding caused by a disease mutation. A perspective is that it may be possible to develop an efficient pharmaceutical mimicking the rescuing effect.

  11. Towards Therapeutic Applications of Arthropod Venom K+-Channel Blockers in CNS Neurologic Diseases Involving Memory Acquisition and Storage

    PubMed Central

    Gati, Christiano D. C.; Mortari, Márcia R.; Schwartz, Elisabeth F.

    2012-01-01

    Potassium channels are the most heterogeneous and widely distributed group of ion channels and play important functions in all cells, in both normal and pathological mechanisms, including learning and memory processes. Being fundamental for many diverse physiological processes, K+-channels are recognized as potential therapeutic targets in the treatment of several Central Nervous System (CNS) diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, schizophrenia, HIV-1-associated dementia, and epilepsy. Blockers of these channels are therefore potential candidates for the symptomatic treatment of these neuropathies, through their neurological effects. Venomous animals have evolved a wide set of toxins for prey capture and defense. These compounds, mainly peptides, act on various pharmacological targets, making them an innumerable source of ligands for answering experimental paradigms, as well as for therapeutic application. This paper provides an overview of CNS K+-channels involved in memory acquisition and storage and aims at evaluating the use of highly selective K+-channel blockers derived from arthropod venoms as potential therapeutic agents for CNS diseases involving learning and memory mechanisms. PMID:22701481

  12. William Shakespeare's neurology.

    PubMed

    Paciaroni, Maurizio; Bogousslavsky, Julien

    2013-01-01

    Many of Shakespeare's plays contain characters who appear to be afflicted by neurological or psychiatric disorders. Shakespeare, in his descriptive analysis of his protagonists, was contributing to the understanding of these disorders. In fact, Charcot frequently used Shakespearean references in his neurological teaching sessions, stressing how acute objective insight is essential to achieving expert clinical diagnosis. Charcot found in Shakespeare the same rigorous observational techniques for which he himself became famous. This chapter describes many of Shakespearean characters suffering from varied neurological disorders, including Parkinsonism, epilepsy, sleeping disturbances, dementia, headache, prion disease, and paralyses.

  13. Motor unit number estimation in human neurological diseases and animal models.

    PubMed

    Shefner, J M

    2001-06-01

    Motor unit number estimation (MUNE) was introduced in 1971 as a way of providing an objective and meaningful estimate of axon loss in diseases affecting the motor system. Over the last 30 years, different methods of MUNE have been proposed, with each having specific strengths and limitations. The goal of this paper is to review the available methods, and to present data generated using MUNE in a variety of disease entities. The incremental, multiple point stimulation, spike-triggered averaging, F-wave, and statistical methods of MUNE are reviewed, along with data obtained using these methods in patients with neuropathy, motor neuron disorders, and muscle disease. All methods reviewed have theoretical concerns associated with them. However, with the exception of the spike-triggered averaging method, all give results in normal subjects that are quite similar. MUNE has been of great value in assessing progression of motor neuron disease, and has also shown promise in the assessment of generalized neuropathy. Despite the lack of a perfect method for performing MUNE, it has great clinical value in the assessment of progressive motor axon loss. Further refinements in the method will likely increase its utility in the future.

  14. Neurological lesions in chickens experimentally infected with virulent Newcastle disease virus isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Distribution, character, and severity of lesions were evaluated in tissues from the central nervous system of chickens inoculated with 10 different Newcastle disease virus (NDV) isolates: CA 1083, Korea 97-147, Australia (all velogenic viscerotropic); Texas GB and Turkey North Dakota (both velogenic...

  15. The chemokine receptor CXCR2 and coronavirus-induced neurologic disease

    PubMed Central

    Weinger, Jason G.; Marro, Brett S.; Hosking, Martin P.; Lane, Thomas E.

    2012-01-01

    Inoculation of the neurotropic JHM strain of mouse hepatitis virus (MHV) into the central nervous system (CNS) of susceptible strains of mice results in an acute encephalomyelitis in which virus preferentially replicates within glial cells while excluding neurons. Control of viral replication during acute disease is mediated by infiltrating virus-specific T cells via cytokine secretion and cytolytic activity, however sterile immunity is not achieved and virus persists resulting in chronic neuroinflammation associated with demyelination. CXCR2 is a chemokine receptor that upon binding to specific ligands promotes host defense through recruitment of myeloid cells to the CNS as well as protecting oligodendroglia from cytokine-mediated death in response to MHV infection. These findings highlight growing evidence of the diverse and important role of CXCR2 in regulating neuroinflammatory diseases. PMID:23217621

  16. The Role of TREM2 in Alzheimer’s Disease and Other Neurological Disorders

    PubMed Central

    Yaghmoor, Faris; Noorsaeed, Ahmed; Alsaggaf, Samar; Aljohani, Waleed; Scholtzova, Henrieta; Boutajangout, Allal; Wisniewski, Thomas

    2015-01-01

    Alzheimer’s disease (AD) is the leading cause of dementia worldwide. Late-onset AD (LOAD), is the most common form of Alzheimer’s disease, representing about >95% of cases and early-onset AD represents <5% of cases. Several risk factors have been discovered that are associated with AD, with advancing age being the most prominent. Other environmental risk factors include diabetes mellitus, level of physical activity, educational status, hypertension and head injury. The most well known genetic risk factor for LOAD is inheritance of the apolipoprotein (apo) E4 allele. Recently, rare variants of TREM2 have been reported as a significant risk factor for LOAD, comparable to inheritance of apoE4. In this review we will focus on the role(s) of TREM2 in AD as well as in other neurodegenerative disorders. PMID:25664220

  17. Disseminated necrotizing myeloencephalitis: a herpes-associated neurological disease of horses.

    PubMed

    Little, P B; Thorsen, J

    1976-01-01

    Equine viral rhinopneumonitis type I virus was isolated from spinal cord and brain of a paraparetic horse with disseminated necrotizing myeloencephalitis. Necrotic arteriolitis,nonsuppurative necrotizing myeloencephalitis and Gasserian ganglioneuritis were present. On record were 12 more cases of horses with similar lesions. The horses had been ataxic or paretic for up to several weeks. A field survey indicated that 14 of 24 horses with acute myelitic signs developed them after recent exposure to respiratory disease.

  18. Altered manifestations of skin disease at sites affected by neurological deficit

    PubMed Central

    Azimi, E.; Lerner, E.A.; Elmariah, S.B.

    2014-01-01

    The contribution of the nervous system to inflammation in general and inflammatory skin disease in particular has been underappreciated. It is now apparent that the conventional clinical manifestations of many inflammatory skin diseases require an intact neural component. We reviewed the literature and identified 23 cases of alterations in the appearance or distribution of skin disorders in patients with acquired central or peripheral neural damage or dysfunction. In 19 cases, near or complete resolution of pre-existing skin lesions occurred in areas directly or indirectly supplied by a subsequently injured nervous system. Exacerbation or new onset of skin lesions occurred in only 4 cases. The neural deficits described included damage within the peripheral or central nervous system resulting in pure sensory, pure motor, or combined sensory and motor deficits. These cases highlight the importance of neural innervation and neurogenic inflammation in the development of inflammatory skin disease and prompt further examination of the use of neural blockade as an adjunctive therapy in the treatment of inflammatory dermatoses. PMID:25132518

  19. The severity of Minamata disease declined in 25 years: temporal profile of the neurological findings analyzed by multiple logistic regression model.

    PubMed

    Uchino, Makoto; Hirano, Teruyuki; Satoh, Hiroshi; Arimura, Kimiyoshi; Nakagawa, Masanori; Wakamiya, Jyunji

    2005-01-01

    Minamata disease (MD) was caused by ingestion of seafood from the methylmercury-contaminated areas. Although 50 years have passed since the discovery of MD, there have been only a few studies on the temporal profile of neurological findings in certified MD patients. Thus, we evaluated changes in neurological symptoms and signs of MD using discriminants by multiple logistic regression analysis. The severity of predictive index declined in 25 years in most of the patients. Only a few patients showed aggravation of neurological findings, which was due to complications such as spino-cerebellar degeneration. Patients with chronic MD aged over 45 years had several concomitant diseases so that their clinical pictures were complicated. It was difficult to differentiate chronic MD using statistically established discriminants based on sensory disturbance alone. In conclusion, the severity of MD declined in 25 years along with the modification by age-related concomitant disorders.

  20. Wikipedia and neurological disorders.

    PubMed

    Brigo, Francesco; Igwe, Stanley C; Nardone, Raffaele; Lochner, Piergiorgio; Tezzon, Frediano; Otte, Willem M

    2015-07-01

    Our aim was to evaluate Wikipedia page visits in relation to the most common neurological disorders by determining which factors are related to peaks in Wikipedia searches for these conditions. Millions of people worldwide use the internet daily as a source of health information. Wikipedia is a popular free online encyclopedia used by patients and physicians to search for health-related information. The following Wikipedia articles were considered: Alzheimer's disease; Amyotrophic lateral sclerosis; Dementia; Epilepsy; Epileptic seizure; Migraine; Multiple sclerosis; Parkinson's disease; Stroke; Traumatic brain injury. We analyzed information regarding the total article views for 90 days and the rank of these articles among all those available in Wikipedia. We determined the highest search volume peaks to identify possible relation with online news headlines. No relation between incidence or prevalence of neurological disorders and the search volume for the related articles was found. Seven out of 10 neurological conditions showed relations in search volume peaks and news headlines. Six out of these seven peaks were related to news about famous people suffering from neurological disorders, especially those from showbusiness. Identification of discrepancies between disease burden and health seeking behavior on Wikipedia is useful in the planning of public health campaigns. Celebrities who publicly announce their neurological diagnosis might effectively promote awareness programs, increase public knowledge and reduce stigma related to diagnoses of neurological disorders.

  1. Bridging epigenomics and complex disease: the basics.

    PubMed

    Teperino, Raffaele; Lempradl, Adelheid; Pospisilik, J Andrew

    2013-05-01

    The DNA sequence largely defines gene expression and phenotype. However, it is becoming increasingly clear that an additional chromatin-based regulatory network imparts both stability and plasticity to genome output, modifying phenotype independently of the genetic blueprint. Indeed, alterations in this "epigenetic" control layer underlie, at least in part, the reason for monozygotic twins being discordant for disease. Functionally, this regulatory layer comprises post-translational modifications of DNA and histones, as well as small and large noncoding RNAs. Together these regulate gene expression by changing chromatin organization and DNA accessibility. Successive technological advances over the past decade have enabled researchers to map the chromatin state with increasing accuracy and comprehensiveness, catapulting genetic research into a genome-wide era. Here, aiming particularly at the genomics/epigenomics newcomer, we review the epigenetic basis that has helped drive the technological shift and how this progress is shaping our understanding of complex disease.

  2. Anti-NMDA receptor encephalitis: a neurological disease in psychiatric disguise.

    PubMed

    Sharma, Bhawna; Handa, Rahul; Prakash, Swayam; Nagpal, Kadam; Gupta, Pankaj

    2014-02-01

    Anti-NMDA receptor encephalitis was first described in 2005 when psychiatric features, memory loss and altered consciousness were found in four women with ovarian teratoma. We report a case of anti-NMDA receptor encephalitis in a 16-year-old female who presented with psychiatric features followed by autonomic dysfunction and orofacial dyskinesias that showed drastic improvement to intravenous immunoglobulin. As many patients of anti-NMDAR encephalitis initially present with psychiatric features, it is important for psychiatrists to have high index of suspicion for this disease and thus avoid the delay in diagnosing this treatable condition which may be otherwise fatal.

  3. Bioactivation of cyanide to cyanate in sulfur amino acid deficiency: relevance to neurological disease in humans subsisting on cassava.

    PubMed

    Tor-Agbidye, J; Palmer, V S; Lasarev, M R; Craig, A M; Blythe, L L; Sabri, M I; Spencer, P S

    1999-08-01

    Neurological disorders have been reported from parts of Africa with protein-deficient populations and attributed to cyanide (CN-) exposure from prolonged dietary use of cassava, a cyanophoric plant. Cyanide is normally metabolized to thiocyanate (SCN-) by the sulfur-dependent enzyme rhodanese. However, in protein-deficient subjects where sulfur amino acids (SAA) are low, CN may conceivably be converted to cyanate (OCN-), which is known to cause neurodegenerative disease in humans and animals. This study investigates the fate of potassium cyanide administered orally to rats maintained for up to 4 weeks on either a balanced diet (BD) or a diet lacking the SAAs, L-cystine and L-methionine. In both groups, there was a time-dependent increase in plasma cyanate, with exponential OCN- increases in SAA-deficient rats. A strongly positive linear relationship between blood CN- and plasma OCN- concentrations was observed in these animals. These data are consistent with the hypothesis that cyanate is an important mediator of chronic cyanide neurotoxicity during protein-calorie deficiency. The potential role of thiocyanate in cassava-associated konzo is discussed in relationship to the etiology of the comparable pattern of motor-system disease (spastic paraparesis) seen in lathyrism.

  4. Neurological assessment.

    PubMed

    Maher, Ann Butler

    2016-08-01

    Neurological system assessment is an important skill for the orthopaedic nurse because the nervous system has such an overlap with the musculoskeletal system. Nurses whose scope of practice includes such advanced evaluation, e.g. nurse practitioners, may conduct the examination described here but the information will also be useful for nurses caring for patients who have abnormal neurological assessment findings. Within the context of orthopaedic physical assessment, possible neurological findings are evaluated as they complement the patient's history and the examiner's findings. Specific neurological assessment is integral to diagnosis of some orthopaedic conditions such as carpal tunnel syndrome. In other situations such as crushing injury to the extremities, there is high risk of associated neurological or neurovascular injury. These patients need anticipatory examination and monitoring to prevent complications. This article describes a basic neurological assessment; emphasis is on sensory and motor findings that may overlap with an orthopaedic presentation. The orthopaedic nurse may incorporate all the testing covered here or choose those parts that further elucidate specific diagnostic questions suggested by the patient's history, general evaluation and focused musculoskeletal examination. Abnormal findings help to suggest further testing, consultation with colleagues or referral to a specialist.

  5. A next step in adeno-associated virus-mediated gene therapy for neurological diseases: regulation and targeting

    PubMed Central

    Chtarto, Abdelwahed; Bockstael, Olivier; Tshibangu, Terence; Dewitte, Olivier; Levivier, Marc; Tenenbaum, Liliane

    2013-01-01

    Recombinant adeno-associated virus (rAAV) vectors mediating long term transgene expression are excellent gene therapy tools for chronic neurological diseases. While rAAV2 was the first serotype tested in the clinics, more efficient vectors derived from the rh10 serotype are currently being evaluated and other serotypes are likely to be tested in the near future. In addition, aside from the currently used stereotaxy-guided intraparenchymal delivery, new techniques for global brain transduction (by intravenous or intra-cerebrospinal injections) are very promising. Various strategies for therapeutic gene delivery to the central nervous system have been explored in human clinical trials in the past decade. Canavan disease, a genetic disease caused by an enzymatic deficiency, was the first to be approved. Three gene transfer paradigms for Parkinson's disease have been explored: converting L-dopa into dopamine through AADC gene delivery in the putamen; synthesizing GABA through GAD gene delivery in the overactive subthalamic nucleus and providing neurotrophic support through neurturin gene delivery in the nigro-striatal pathway. These pioneer clinical trials demonstrated the safety and tolerability of rAAV delivery in the human brain at moderate doses. Therapeutic effects however, were modest, emphasizing the need for higher doses of the therapeutic transgene product which could be achieved using more efficient vectors or expression cassettes. This will require re-addressing pharmacological aspects, with attention to which cases require either localized and cell-type specific expression or efficient brain-wide transgene expression, and when it is necessary to modulate or terminate the administration of transgene product. The ongoing development of targeted and regulated rAAV vectors is described. PMID:23331189

  6. Impulse Control Disorders in Parkinson’s Disease: Crossroads between Neurology, Psychiatry and Neuroscience

    PubMed Central

    Bugalho, Paulo; Oliveira-Maia, Albino J.

    2013-01-01

    Non-motor symptoms contribute significantly to Parkinson’s disease (PD) related disability. Impulse control disorders (ICDs) have been recently added to the behavioural spectrum of PD-related non-motor symptoms. Such behaviours are characterized by an inappropriate drive to conduct repetitive behaviours that are usually socially inadequate or result in harmful consequences. Parkinson disease impulse control disorders (PD-ICDs) have raised significant interest in the scientific and medical community, not only because of their incapacitating nature, but also because they may represent a valid model of ICDs beyond PD and a means to study the physiology of drive, impulse control and compulsive actions in the normal brain. In this review, we discuss some unresolved issues regarding PD-ICDs, including the association with psychiatric co-morbidities such as obsessive-compulsive disorder and with dopamine related side effects, such as hallucinations and dyskinesias; the relationship with executive cognitive dysfunction; and the neural underpinnings of ICDs in PD. We also discuss the contribution of neuroscience studies based on animal-models towards a mechanistic explanation of the development of PD-ICDs, specifically regarding corticostriatal control of goal directed and habitual actions. PMID:23242359

  7. Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases.

    PubMed

    Weinreb, Orly; Mandel, Silvia; Amit, Tamar; Youdim, Moussa B H

    2004-09-01

    Tea consumption is varying its status from a mere ancient beverage and a lifestyle habit, to a nutrient endowed with possible prospective neurobiological-pharmacological actions beneficial to human health. Accumulating evidence suggest that oxidative stress resulting in reactive oxygen species generation and inflammation play a pivotal role in neurodegenerative diseases, supporting the implementation of radical scavengers, transition metal (e.g., iron and copper) chelators, and nonvitamin natural antioxidant polyphenols in the clinic. These observations are in line with the current view that polyphenolic dietary supplementation may have an impact on cognitive deficits in individuals of advanced age. As a consequence, green tea polyphenols are now being considered as therapeutic agents in well controlled epidemiological studies, aimed to alter brain aging processes and to serve as possible neuroprotective agents in progressive neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. In particular, literature on the putative novel neuroprotective mechanism of the major green tea polyphenol, (-)-epigallocatechin-3-gallate, are examined and discussed in this review.

  8. Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases.

    PubMed

    Lee, Moonhee; Cho, Taesup; Jantaratnotai, Nattinee; Wang, Yu Tian; McGeer, Edith; McGeer, Patrick L

    2010-07-01

    Oxidative stress induced by inhibition of glutathione (GSH) biosynthesis with D,L-buthionine-S,R-sulfoximine (BSO) causes human microglia, human astrocytes, THP-1 cells, and U373 cells to secrete materials toxic to human neuroblastoma SH-SY5Y cells and stimulates them to release TNF-alpha, IL-6, and nitrite ions. The effect is correlated with activation of the inflammatory pathways P38 MAP- kinase, Jun-N-terminal kinase, and NF-kappaB. The effect is reduced by adding to the medium GSH or clotrimazole (CTM), an inhibitor of Ca(2+)-influx through TRPM2 channels. It is also produced by inhibiting TRPM2 protein expression in microglia and astrocytes through introduction of its small inhibitory RNA (siRNA). TRPM2 mRNA is expressed by glial cells but not by SH-SY5Y cells. BSO in the culture medium causes an almost 3-fold increase in [Ca(2+)](i) in microglia and astrocytes over a 24-h period, which is reduced to half by the addition of CTM. The data strongly suggest that inhibiting intracellular GSH synthesis induces a neuroinflammatory response in human microglia and astrocytes, which is linked to Ca(2+) influx through TRPM2 channels. It represents a new model for inducing neuroinflammation and suggests that increasing GSH levels in glial cells may confer neuroprotection in neurodegenerative diseases, such as Alzheimer disease, which have a prominent neuroinflammatory component.

  9. Distinguishing the cerebrospinal fluid cytokine profile in neuropsychiatric systemic lupus erythematosus from other autoimmune neurological diseases.

    PubMed

    Ichinose, Kunihiro; Arima, Kazuhiko; Ushigusa, Takeshi; Nishino, Ayako; Nakashima, Yoshikazu; Suzuki, Takahisa; Horai, Yoshiro; Nakajima, Hideki; Kawashiri, Shin-Ya; Iwamoto, Naoki; Tamai, Mami; Nakamura, Hideki; Origuchi, Tomoki; Motomura, Masakatsu; Kawakami, Atsushi

    2015-04-01

    Neuropsychiatric systemic lupus erythematosus (NPSLE) is a serious complication in SLE. Although the mechanism of NPSLE remains unclear, cytokines and chemokines are considered to be involved in their pathogenesis. Here we used Bio-Plex Pro assays to examine 27 types of cytokines and chemokines in the cerebrospinal fluid (CSF) of 32 NPSLE patients. We used the CSF of 20 patients with multiple sclerosis (MS) and 22 patients with neuromyelitis optica (NMO) as a disease control group. Fourteen of 27 cytokines/chemokines were significantly higher in the NPSLE patients compared to the MS/NMO patients. We could identify six "minimum predictive markers" by using a weighted-voting algorithm that could distinguish NPSLE from MS and NMO: interleukin (IL)-17, IL-2, interferon (IFN)-γ, IL-5, basic fibroblast growth factor (FGF)-basic and IL-15. The determination of various types of CSF cytokine profiles may contribute to the diagnosis of NPSLE and may help elucidate the mechanisms underlying this disease.

  10. Progressive neurologic and somatic disease in a novel mouse model of human mucopolysaccharidosis type IIIC

    PubMed Central

    Marcó, Sara; Pujol, Anna; Roca, Carles; Motas, Sandra; Ribera, Albert; Garcia, Miguel; Molas, Maria; Villacampa, Pilar; Melia, Cristian S.; Sánchez, Víctor; Sánchez, Xavier; Bertolin, Joan; Ruberte, Jesús; Haurigot, Virginia

    2016-01-01

    ABSTRACT Mucopolysaccharidosis type IIIC (MPSIIIC) is a severe lysosomal storage disease caused by deficiency in activity of the transmembrane enzyme heparan-α-glucosaminide N-acetyltransferase (HGSNAT) that catalyses the N-acetylation of α-glucosamine residues of heparan sulfate. Enzyme deficiency causes abnormal substrate accumulation in lysosomes, leading to progressive and severe neurodegeneration, somatic pathology and early death. There is no cure for MPSIIIC, and development of new therapies is challenging because of the unfeasibility of cross-correction. In this study, we generated a new mouse model of MPSIIIC by targeted disruption of the Hgsnat gene. Successful targeting left LacZ expression under control of the Hgsnat promoter, allowing investigation into sites of endogenous expression, which was particularly prominent in the CNS, but was also detectable in peripheral organs. Signs of CNS storage pathology, including glycosaminoglycan accumulation, lysosomal distension, lysosomal dysfunction and neuroinflammation were detected in 2-month-old animals and progressed with age. Glycosaminoglycan accumulation and ultrastructural changes were also observed in most somatic organs, but lysosomal pathology seemed most severe in liver. Furthermore, HGSNAT-deficient mice had altered locomotor and exploratory activity and shortened lifespan. Hence, this animal model recapitulates human MPSIIIC and provides a useful tool for the study of disease physiopathology and the development of new therapeutic approaches. PMID:27491071

  11. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease.

    PubMed

    Roberts, Thomas C; Morris, Kevin V; Wood, Matthew J A

    2014-09-26

    Long non-coding RNAs (lncRNAs) are transcripts with low protein-coding potential that represent a large proportion of the transcriptional output of the cell. Many lncRNAs exhibit features indicative of functionality including tissue-restricted expression, localization to distinct subcellular structures, regulated expression and evolutionary conservation. Some lncRNAs have been shown to associate with chromatin-modifying activities and transcription factors, suggesting that a common mode of action may be to guide protein complexes to target genomic loci. However, the functions (if any) of the vast majority of lncRNA transcripts are currently unknown, and the subject of investigation. Here, we consider the putative role(s) of lncRNAs in neurodevelopment and brain function with an emphasis on the epigenetic regulation of gene expression. Associations of lncRNAs with neurodevelopmental/neuropsychiatric disorders, neurodegeneration and brain cancers are also discussed.

  12. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease

    PubMed Central

    Roberts, Thomas C.; Morris, Kevin V.; Wood, Matthew J. A.

    2014-01-01

    Long non-coding RNAs (lncRNAs) are transcripts with low protein-coding potential that represent a large proportion of the transcriptional output of the cell. Many lncRNAs exhibit features indicative of functionality including tissue-restricted expression, localization to distinct subcellular structures, regulated expression and evolutionary conservation. Some lncRNAs have been shown to associate with chromatin-modifying activities and transcription factors, suggesting that a common mode of action may be to guide protein complexes to target genomic loci. However, the functions (if any) of the vast majority of lncRNA transcripts are currently unknown, and the subject of investigation. Here, we consider the putative role(s) of lncRNAs in neurodevelopment and brain function with an emphasis on the epigenetic regulation of gene expression. Associations of lncRNAs with neurodevelopmental/neuropsychiatric disorders, neurodegeneration and brain cancers are also discussed. PMID:25135968

  13. MOG cell-based assay detects non-MS patients with inflammatory neurologic disease

    PubMed Central

    Woodhall, Mark; O'Connor, Kevin C.; Reindl, Markus; Lang, Bethan; Sato, Douglas K.; Juryńczyk, Maciej; Tackley, George; Rocha, Joao; Takahashi, Toshiyuki; Misu, Tatsuro; Nakashima, Ichiro; Palace, Jacqueline; Fujihara, Kazuo; Leite, M. Isabel; Vincent, Angela

    2015-01-01

    Objective: To optimize sensitivity and disease specificity of a myelin oligodendrocyte glycoprotein (MOG) antibody assay. Methods: Consecutive sera (n = 1,109) sent for aquaporin-4 (AQP4) antibody testing were screened for MOG antibodies (Abs) by cell-based assays using either full-length human MOG (FL-MOG) or the short-length form (SL-MOG). The Abs were initially detected by Alexa Fluor goat anti-human IgG (H + L) and subsequently by Alexa Fluor mouse antibodies to human IgG1. Results: When tested at 1:20 dilution, 40/1,109 sera were positive for AQP4-Abs, 21 for SL-MOG, and 180 for FL-MOG. Only one of the 40 AQP4-Ab–positive sera was positive for SL-MOG-Abs, but 10 (25%) were positive for FL-MOG-Abs (p = 0.0069). Of equal concern, 48% (42/88) of sera from controls (patients with epilepsy) were positive by FL-MOG assay. However, using an IgG1-specific secondary antibody, only 65/1,109 (5.8%) sera were positive on FL-MOG, and AQP4-Ab– positive and control sera were negative. IgM reactivity accounted for the remaining anti-human IgG (H + L) positivity toward FL-MOG. The clinical diagnoses were obtained in 33 FL-MOG–positive patients, blinded to the antibody data. IgG1-Abs to FL-MOG were associated with optic neuritis (n = 11), AQP4-seronegative neuromyelitis optica spectrum disorder (n = 4), and acute disseminated encephalomyelitis (n = 1). All 7 patients with probable multiple sclerosis (MS) were MOG-IgG1 negative. Conclusions: The limited disease specificity of FL-MOG-Abs identified using Alexa Fluor goat anti-human IgG (H + L) is due in part to detection of IgM-Abs. Use of the FL-MOG and restricting to IgG1-Abs substantially improves specificity for non-MS demyelinating diseases. Classification of evidence: This study provides Class II evidence that the presence of serum IgG1- MOG-Abs in AQP4-Ab–negative patients distinguishes non-MS CNS demyelinating disorders from MS (sensitivity 24%, 95% confidence interval [CI] 9%–45%; specificity 100%, 95% CI 88%

  14. Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson's disease.

    PubMed

    Moretto, A; Colosio, C

    2011-08-01

    Parkinson's disease (PD) is frequently reported to be associated with pesticide exposure but the issue has not yet been solved because the data are inconsistent and the studies suffer from several biases and limitations. The aim of this article is to summarise available biochemical and toxicological data on some pesticides, particularly on paraquat, that might help in the evaluation of epidemiological data. The nigrostriatal system appears to be particularly sensitive to oxidative damage caused by different mechanisms and agents, thus supporting the epidemiological evidence that Parkinson's disease is in fact an environmental disease. In available experimental studies, animals have been treated with a high single or a few doses of pesticide, and have been followed up for a few days or weeks after treatment. Moreover, experimental data indicate additive/synergistic effects of different pesticides that act on different targets within the dopaminergic system. In these conditions and to a different extent, pesticides such as paraquat, maneb and other dithiocarbamates, pyrethroids, rotenone, and dieldrin cause neurotoxic effects that may suggest a possible role in the development of a PD-like syndrome in animals. Although, all the characteristics of PD cannot be reproduced by any single chemical, these data can be of help for understanding the role of pesticide exposure in human PD development. On the other hand farmers are exposed for days or weeks during several years to much lower doses than those used in experimental studies. Therefore, a firm conclusion on the role of pesticide exposure on the increased risk of developing PD cannot be drawn. However, it is suggested that close follow up of survivors of acute poisonings by these pesticides, or identification in epidemiological studies of such subjects or of those reporting episodes of accidentally high exposure will certainly provide information useful for the understanding of the relevance of actual human exposure

  15. The neurological effects of ghrelin in brain diseases: Beyond metabolic functions.

    PubMed

    Jiao, Qian; Du, Xixun; Li, Yong; Gong, Bing; Shi, Limin; Tang, Tingting; Jiang, Hong

    2017-02-01

    Ghrelin, a peptide released by the stomach that plays a major role in regulating energy metabolism, has recently been shown to have effects on neurobiological behaviors. Ghrelin enhances neuronal survival by reducing apoptosis, alleviating inflammation and oxidative stress, and accordingly improving mitochondrial function. Ghrelin also stimulates the proliferation, differentiation and migration of neural stem/progenitor cells (NS/PCs). Additionally, the ghrelin is benefit for the recovery of memory, mood and cognitive dysfunction after stroke or traumatic brain injury. Because of its neuroprotective and neurogenic roles, ghrelin may be used as a therapeutic agent in the brain to combat neurodegenerative disease. In this review, we highlight the pre-clinical evidence and the proposed mechanisms underlying the role of ghrelin in physiological and pathological brain function.

  16. Coping with chronic neurological impairment: a contrastive analysis of Parkinson's disease and stroke.

    PubMed

    Herrmann, M; Freyholdt, U; Fuchs, G; Wallesch, C W

    1997-01-01

    This study aimed at a contrastive analysis of coping strategies and psychosocial alterations in patients with Parkinson's disease (PD) and stroke (CVA) and their relatives. Fifty-four PD and 50 CVA patients were investigated with a standardized semistructured interview to assess the severity of psychosocial changes following illness, the Freiburg Questionnaire on Coping with Illness, the Cornell Depression Scale and instruments to assess motor impairment. Psychosocial alterations were most prominent in the professional and emotional-cognitive domains. Degree of depression correlated with familial and emotional-cognitive alterations in both patient groups. Active problem-oriented coping and distraction predominated as coping styles. Religious relief and quest for sense were significantly more important for the PD patients. Coping styles did not correlate with degrees of depression, motor impairment or psychosocial alterations.

  17. The Crossroads of Synaptic Growth Signaling, Membrane Traffic and Neurological Disease: Insights from Drosophila.

    PubMed

    Deshpande, Mugdha; Rodal, Avital A

    2016-02-01

    Neurons require target-derived autocrine and paracrine growth factors to maintain proper identity, innervation, homeostasis and survival. Neuronal growth factor signaling is highly dependent on membrane traffic, both for the packaging and release of the growth factors themselves, and for regulation of intracellular signaling by their transmembrane receptors. Here, we review recent findings from the Drosophila larval neuromuscular junction (NMJ) that illustrate how specific steps of intracellular traffic and inter-organelle interactions impinge on signaling, particularly in the bone morphogenic protein, Wingless and c-Jun-activated kinase pathways, regulating elaboration and stability of NMJ arbors, construction of synapses and synaptic transmission and homeostasis. These membrane trafficking and signaling pathways have been implicated in human motor neuron diseases including amyotrophic lateral sclerosis and hereditary spastic paraplegia, highlighting their importance for neuronal health and survival.

  18. Identification of avian bornavirus in a Himalayan monal (Lophophorus impejanus) with neurological disease.

    PubMed

    Bourque, Laura; Laniesse, Delphine; Beaufrère, Hugues; Pastor, Adriana; Ojkic, Davor; Smith, Dale A

    2015-01-01

    A one-year-old male Himalayan monal (Lophophorus impejanus) was presented for veterinary attention with a history of chronic wasting, weakness and ataxia. The bird died, and post-mortem findings included mild non-suppurative encephalitis and degenerative encephalopathy, lymphoplasmacytic myenteric ganglioneuritis (particularly of the proventriculus), and Wallerian degeneration of the sciatic nerves. Avian bornavirus (ABV) was identified in the brain by immunohistochemistry and reverse-transcriptase polymerase chain reaction. Sequencing of the reverse-transcriptase polymerase chain reaction product indicated the presence of ABV genotype 4, which is generally associated with disease in psittacine birds. Subsequent to the death of the pheasant, ABV genotype 4 was identified at autopsy from a juvenile white-bellied caique (Pionites leucogaster) in the same collection. We hypothesize that the pheasant became infected through contact with psittacine birds with which it shared an aviary. We believe this to be the first reported case of natural ABV infection in a bird in the Order Galliformes.

  19. The LINC complex and human disease.

    PubMed

    Meinke, Peter; Nguyen, Thuy Duong; Wehnert, Manfred S

    2011-12-01

    The LINC (linker of nucleoskeleton and cytoskeleton) complex is a proposed mechanical link tethering the nucleo- and cyto-skeleton via the NE (nuclear envelope). The LINC components emerin, lamin A/C, SUN1, SUN2, nesprin-1 and nesprin-2 interact with each other at the NE and also with other binding partners including actin filaments and B-type lamins. Besides the mechanostructural functions, the LINC complex is also involved in signalling pathways and gene regulation. Emerin was the first LINC component associated with a human disease, namely EDMD (Emery-Dreifuss muscular dystrophy). Later on, other components of the LINC complex, such as lamins A/C and small isoforms of nesprin-1 and nesprin-2, were found to be associated with EDMD, reflecting a genetic heterogeneity that has not been resolved so far. Only approximately 46% of the EDMD patients can be linked to genes of LINC and non-LINC components, pointing to further genes involved in the pathology of EDMD. Obvious candidates are the LINC proteins SUN1 and SUN2. Recently, screening of binding partners of LINC components as candidates identified LUMA (TMEM43), encoding a binding partner of emerin and lamins, as a gene involved in atypical EDMD. Nevertheless, such mutations contribute only to a very small fraction of EDMD patients. EDMD-causing mutations in STA/EMD (encoding emerin) that disrupt emerin binding to Btf (Bcl-2-associated transcription factor), GCL (germ cell-less) and BAF (barrier to autointegration factor) provide the first glimpses into LINC being involved in gene regulation and thus opening new avenues for functional studies. Thus the association of LINC with human disease provides tools for understanding its functions within the cell.

  20. Neurology in Asia.

    PubMed

    Tan, Chong-Tin

    2015-02-10

    Asia is important as it accounts for more than half of the world population. The majority of Asian countries fall into the middle income category. As for cultural traditions, Asia is highly varied, with many languages spoken. The pattern of neurologic diseases in Asia is largely similar to the West, with some disease features being specific to Asia. Whereas Asia constitutes 60% of the world's population, it contains only 20% of the world's neurologists. This disparity is particularly evident in South and South East Asia. As for neurologic care, it is highly variable depending on whether it is an urban or rural setting, the level of economic development, and the system of health care financing. To help remedy the shortage of neurologists, most counties with larger populations have established training programs in neurology. These programs are diverse, with many areas of concern. There are regional organizations serving as a vehicle for networking in neurology and various subspecialties, as well as an official journal (Neurology Asia). The Asian Epilepsy Academy, with its emphasis on workshops in various locations, EEG certification examination, and fellowships, may provide a template of effective regional networking for improving neurology care in the region.

  1. Neurologic complications of immunizations.

    PubMed

    Rutledge, S L; Snead, O C

    1986-12-01

    Although there does appear to be at least a temporal relationship between pertussis immunization and serious acute neurologic illness, data to suggest that children with stable preexisting neurologic disease or positive family history of neurologic disease are at increased risk for complications of pertussis immunizations are inconclusive. Furthermore, there are no firm statistical data concerning the incidence of pertussis vaccine-related encephalopathy. Rather, the literature on pertussis vaccine complications is replete with anecdotal reports and retrospective studies with a number of questionable conclusions drawn from this inadequate data base. Unfortunately, these conclusions have been sensationalized and exploited with litigious fervor to the point that the practice of pertussis immunization is being questioned in the United States. A number of points should be reiterated: pertussis is a dangerous and deadly disease, as seen in the epidemic in Great Britain; pertussis immunization is effective in protecting against the disease; and there is no conclusive proof that the incidence of complications from pertussis vaccination of children with seizure disorders or other preexisting stable neurologic abnormalities is higher, because appropriate studies have not been done to define such a risk. We would do well to keep these facts in mind in order to avoid a disaster similar to the pertussis epidemic in Great Britain. Pertussis vaccination should be given to all children except those with allergic hypersensitivity, a progressive neurologic disorder, or an adverse reaction to a previous pertussis dose.

  2. Aluminum-Induced Entropy in Biological Systems: Implications for Neurological Disease

    PubMed Central

    Shaw, Christopher A.; Seneff, Stephanie; Kette, Stephen D.; Tomljenovic, Lucija; Oller, John W.; Davidson, Robert M.

    2014-01-01

    Over the last 200 years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earth's crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins). It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed. PMID:25349607

  3. “Curcumin, the King of Spices”: Epigenetic Regulatory Mechanisms in the Prevention of Cancer, Neurological, and Inflammatory Diseases

    PubMed Central

    Boyanapalli, Sarandeep S. S.

    2015-01-01

    Curcumin (diferuloylmethane), a polyphenolic compound, is a component of Curcuma longa, commonly known as turmeric. It is a well-known anti-inflammatory, anti-oxidative, and anti-lipidemic agent and has recently been shown to modulate several diseases via epigenetic regulation. Many recent studies have demonstrated the role of epigenetic inactivation of pivotal genes that regulate human pathologies, such as neurocognitive disorders, inflammation, obesity, and cancers. Epigenetic changes involve changes in DNA methylation, histone modifications, or altered microRNA expression patterns which are known to be interconnected and play a key role in tumor progression and failure of conventional chemotherapy. The majority of epigenetic changes are influenced by lifestyle and diets. In this regard, dietary phytochemicals as dietary supplements have emerged as a promising source that are able to reverse these epigenetic alterations, to actively regulate gene expression and molecular targets that are known to promote tumorigenesis, and also to prevent age-related diseases through epigenetic modifications. There have been several studies which reported the role of curcumin as an epigenetic regulator in neurological disorders, inflammation, and in diabetes apart from cancers. The epigenetic regulatory roles of curcumin include (1) inhibition of DNA methyltransferases (DNMTs), which has been well defined from the recent studies on its function as a DNA hypomethylating agent; (2) regulation of histone modifications via regulation of histone acetyltransferases (HATs) and histone deacetylases (HDACs); and (3) regulation of micro RNAs (miRNA). This review summarizes the current knowledge on the effect of curcumin in the treatment and/or prevention of inflammation, neurodegenerative diseases, and cancers by regulating histone deacetylases, histone acetyltransferases, and DNA methyltransferases. PMID:26457241

  4. The PRRT2 knockout mouse recapitulates the neurological diseases associated with PRRT2 mutations.

    PubMed

    Michetti, Caterina; Castroflorio, Enrico; Marchionni, Ivan; Forte, Nicola; Sterlini, Bruno; Binda, Francesca; Fruscione, Floriana; Baldelli, Pietro; Valtorta, Flavia; Zara, Federico; Corradi, Anna; Benfenati, Fabio

    2017-03-01

    Heterozygous and rare homozygous mutations in PRoline-Rich Transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders including epilepsy, kinesigenic dyskinesia episodic ataxia and migraine. Most of the mutations lead to impaired PRRT2 expression and/or function. Recently, an important role for PRTT2 in the neurotransmitter release machinery, brain development and synapse formation has been uncovered. In this work, we have characterized the phenotype of a mouse in which the PRRT2 gene has been constitutively inactivated (PRRT2 KO). β-galactosidase staining allowed to map the regional expression of PRRT2 that was more intense in the cerebellum, hindbrain and spinal cord, while it was localized to restricted areas in the forebrain. PRRT2 KO mice are normal at birth, but display paroxysmal movements at the onset of locomotion that persist in the adulthood. In addition, adult PRRT2 KO mice present abnormal motor behaviors characterized by wild running and jumping in response to audiogenic stimuli that are ineffective in wild type mice and an increased sensitivity to the convulsive effects of pentylentetrazol. Patch-clamp electrophysiology in hippocampal and cerebellar slices revealed specific effects in the cerebellum, where PRRT2 is highly expressed, consisting in a higher excitatory strength at parallel fiber-Purkinje cell synapses during high frequency stimulation. The results show that the PRRT2 KO mouse reproduces the motor paroxysms present in the human PRRT2-linked pathology and can be proposed as an experimental model for the study of the pathogenesis of the disease as well as for testing personalized therapeutic approaches.

  5. A Stochastic Multiscale Model That Explains the Segregation of Axonal Microtubules and Neurofilaments in Neurological Diseases

    PubMed Central

    Xue, Chuan; Shtylla, Blerta; Brown, Anthony

    2015-01-01

    The organization of the axonal cytoskeleton is a key determinant of the normal function of an axon, which is a long thin projection of a neuron. Under normal conditions two axonal cytoskeletal polymers, microtubules and neurofilaments, align longitudinally in axons and are interspersed in axonal cross-sections. However, in many neurotoxic and neurodegenerative disorders, microtubules and neurofilaments segregate apart from each other, with microtubules and membranous organelles clustered centrally and neurofilaments displaced to the periphery. This striking segregation precedes the abnormal and excessive neurofilament accumulation in these diseases, which in turn leads to focal axonal swellings. While neurofilament accumulation suggests an impairment of neurofilament transport along axons, the underlying mechanism of their segregation from microtubules remains poorly understood for over 30 years. To address this question, we developed a stochastic multiscale model for the cross-sectional distribution of microtubules and neurofilaments in axons. The model describes microtubules, neurofilaments and organelles as interacting particles in a 2D cross-section, and is built upon molecular processes that occur on a time scale of seconds or shorter. It incorporates the longitudinal transport of neurofilaments and organelles through this domain by allowing stochastic arrival and departure of these cargoes, and integrates the dynamic interactions of these cargoes with microtubules mediated by molecular motors. Simulations of the model demonstrate that organelles can pull nearby microtubules together, and in the absence of neurofilament transport, this mechanism gradually segregates microtubules from neurofilaments on a time scale of hours, similar to that observed in toxic neuropathies. This suggests that the microtubule-neurofilament segregation can be a consequence of the selective impairment of neurofilament transport. The model generates the experimentally testable

  6. Avian vacuolar myelinopathy: a newly recognized fatal neurologic disease of eagles, waterfowl, and other birds

    USGS Publications Warehouse

    Fischer, John R.; Lewis, L.A.; Augspurger, T.; Rocke, T.E.

    2002-01-01

    Wildlife biologists and health specialists have been frustrated by a long list of negative findings in their AVM investigations, however studies continue to provide pieces of information to aid the determination of the cause and its source. Available data indicated that AVM may have been present since at least 1990, occurs in at least five states, has been documented during October through April at sites of wintering populations of birds where the exposure apparently occurs, and has killed at least 90 bald eagles. Birds with AVM have difficulty or inability to fly, swim, walk, or perch, but there has been resolution of clinical signs in some affected coots. The list of affected species continues to grow, but remains confined to wild avians, including bald eagle, American coot, great horned owl, killdeer, Canada goose, mallard, ring-necked duck and bufflehead. The effects of the AVM agent on mammals, including human beings, are unknown. A neurotoxicant of manmade or natural origin is the suspected cause of AVM because no infectious disease agents, such as viruses, bacteria, parasites and prions, have been found, and the lesion and epizootiology of AVM resemble those of toxicoses. Additionally it is documented, experimentally, that exposure to raptors can occur through ingestion of infected coots. Collaborative studies will continue in the effort to identify the cause of AVM, its geographic distribution, and the range of species susceptibility. Hopefully, this information can be used to identify measures that might be taken to reduce the impact of AVM on the wildlife resource. Multiple agencies, institutions, and individuals must rely on each other's expertise in the multidisciplinary approach to this problem, persevere in their efforts and take advantage of serendipity that presents itself during investigations of this newly recognized cause of wild bird mortality.

  7. Disease Surveillance on Complex Social Networks

    PubMed Central

    Herrera, Jose L.; Srinivasan, Ravi; Brownstein, John S.; Galvani, Alison P.; Meyers, Lauren Ancel

    2016-01-01

    As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors—sampling the most connected, random, and friends of random individuals—in three complex social networks—a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals—early and accurate detection of epidemic emergence and peak, and general situational awareness—we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information. PMID:27415615

  8. [Neurological disorders associated with gluten sensitivity].

    PubMed

    Hernandez-Lahoz, C; Mauri-Capdevila, G; Vega-Villar, J; Rodrigo, L

    2011-09-01

    Gluten sensitivity is a systemic autoimmune disease that occurs in genetically susceptible individuals on ingesting gluten. It can appear at any age, then becoming a permanent condition. It is more frequent in women, as happens with other autoimmune diseases. Celiac disease is the intestinal form and the most important manifestation among a set of gluten-induced autoimmune pathologies that affect different systems. Neurological manifestations of gluten sensitivity, with or without enteropathy, are also frequent, their pathogenesis including an immunological attack on the central and peripheral nervous tissue accompanied by neurodegenerative changes. The clinical manifestations are varied, but the most common syndromes are cerebellar ataxia and peripheral neuropathy. Finally, gluten sensitivity is associated to a varying degree, with other complex diseases and could influence their evolution. The early detection of cases of gluten sensitivity with neurological manifestations and subsequent treatment with the gluten-free diet could provide remarkable benefits to the patients.

  9. Adult neurology training during child neurology residency.

    PubMed

    Schor, Nina F

    2012-08-21

    As it is currently configured, completion of child neurology residency requires performance of 12 months of training in adult neurology. Exploration of whether or not this duration of training in adult neurology is appropriate for what child neurology is today must take into account the initial reasons for this requirement and the goals of adult neurology training during child neurology residency.

  10. Neurologic manifestations of von Hippel-Lindau disease. Grand Rounds at the Clinical Center of the National Institutes of Health

    PubMed Central

    Butman, John A.; Linehan, W. Marston; Lonser, Russell R.

    2012-01-01

    von Hippel-Lindau disease (VHL) is an autosomal dominant neoplasia syndrome that is the result of a germline mutation of the VHL tumor suppressor gene on the short arm of chromosome 3. VHL patients are predisposed to develop lesions of the central nervous system (CNS) and viscera. CNS lesions include hemangioblastomas (the most common tumor in VHL) and endolymphatic sac tumors (ELSTs). Visceral manifestations include renal carcinomas and cysts, pancreatic neuroendocrine tumors and cysts, pheochromocytomas and cystadenomas of the reproductive adnexal organs. Despite their benign pathology, hemangioblastomas and ELSTs are a frequent cause of morbidity and mortality in VHL patients. Recent molecular biologic investigations into these VHL-associated CNS lesions provide new insight into their origin and development. Emerging data from serial imaging and clinical surveillance protocols provide insight into the natural history of these lesions. Because of the dissimilar pathobiology and clinical course between hemangioblastomas and ELSTs, the optimal management strategies for these neurologic manifestations of VHL are very different. PMID:18799446

  11. Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features

    PubMed Central

    Ouyang, Qing; Nakayama, Tojo; Baytas, Ozan; Davidson, Shawn M.; Yang, Chendong; Schmidt, Michael; Lizarraga, Sofia B.; Mishra, Sasmita; EI-Quessny, Malak; Niaz, Saima; Gul Butt, Mirrat; Imran Murtaza, Syed; Javed, Afzal; Chaudhry, Haroon Rashid; Vaughan, Dylan J.; Hill, R. Sean; Partlow, Jennifer N.; Yoo, Seung-Yun; Lam, Anh-Thu N.; Nasir, Ramzi; Al-Saffar, Muna; Barkovich, A. James; Schwede, Matthew; Nagpal, Shailender; Rajab, Anna; DeBerardinis, Ralph J.; Housman, David E.; Mochida, Ganeshwaran H.; Morrow, Eric M.

    2016-01-01

    Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms. PMID:27601654

  12. An Eye-Blinking-Based Beamforming Control Protocol for Hearing Aid Users With Neurological Motor Disease or Limb Amputation.

    PubMed

    Yoon, Jungmin; Nam, Kyoung Won; Lee, Jun Chang; Jang, Dong Pyo; Kim, In Young

    2017-02-01

    For hearing-impaired individuals with neurological motor deficits or finger/arm amputation due to accident or disease, hearing aid adjustment using a conventional finger manipulation-based remote controller is unavailable, and a more dedicated, hands-free alternative is required. In this study, we propose an eye-blinking-based beamforming control scheme for hearing aid users. Three electroencephalogram signals measured around the ears were utilized to detect eye-blinking patterns based on a three-layer artificial neural network. The performance of the proposed control scheme was evaluated by both subjective experiments and objective index comparison tests in simulated situations. Experimental results from the subjective test demonstrated that without the pretraining phase, the accuracy and latency time were 68.57 ± 18.50% and 10.06 ± 0.94 s, respectively; in contrast, after the pretraining phase, both the accuracy and latency time were improved to 91.00 ± 4.69% and 8.60 ± 1.05 s, respectively. In index comparison tests, the proposed control scheme exhibited improvements in the signal-to-noise ratio (SNR) as well as the segmental SNR in all tested situations, as compared to a conventional forward-focusing beamforming algorithm. We believe that the proposed control scheme provides a novel, hands-free way in which to control the operation of hearing aids for hearing-impaired patients with additional motor deficits or amputation.

  13. Progress in Pediatrics in 2012: choices in allergy, endocrinology, gastroenterology, hematology, infectious diseases, neurology, nutrition and respiratory tract illnesses.

    PubMed

    Caffarelli, Carlo; Santamaria, Francesca; Vottero, Alessandra; Bernasconi, Sergio

    2013-05-08

    In this review, we summarize the progresses in allergy, endocrinology, gastroenterology, hematology, infectious diseases, neurology, nutrition and respiratory tract illnesses that have been published in The Italian Journal of Pediatrics in 2012. The induction of Treg activity by probiotics might be effective for promoting tolerance towards food allergens. Nasal cytology is useful in patients with rhinitis for diagnosing chronic non-allergic non-infectious diseases. Atopic eczema is associated both with an aberrant skin matrix and impaired systemic immune response. Therefore, isolated topical treatment may have suboptimal effect. Diagnostic work-up of exercise-induced anaphylaxis, including exercise challenge test, is necessary to reach a diagnosis. Studies may support a role for nutrition on prevention of asthma and cardiovascular diseases. Clinicians need to early identify adolescent menstrual abnormalities to minimize sequelae, and to promote health information. In Multiple Endocrine Neoplasia type 2B investigations include acetylcholinesterase study of rectal mucosa followed by the molecular analysis of RET mutation. Low adherence to gluten-free diet and osteopenia are common problems in children with diabetes mellitus type 1 and celiac disease. In infantile colic, laboratory tests are usually unnecessary and the treatment is based on reassurance. Prevalence of obesity and stunting is elucidated by several studies. Evidences are growing that dietetic measures are needed to prevent obesity in children with acute leukemia. Treatment studies for infectious diseases show promise for probiotics along with standard triple therapy in children with Helicobacter pilori infection, while zinc has no effect on pneumonia. Educational programs about the proper management of the febrile child are warranted. A new hour-specific total serum bilirubin nomogram has been shown to be able to predict newborns without hyperbilirubinemia after 48 to 72 hours of life. Newborns with

  14. Progress in Pediatrics in 2012: choices in allergy, endocrinology, gastroenterology, hematology, infectious diseases, neurology, nutrition and respiratory tract illnesses

    PubMed Central

    2013-01-01

    In this review, we summarize the progresses in allergy, endocrinology, gastroenterology, hematology, infectious diseases, neurology, nutrition and respiratory tract illnesses that have been published in The Italian Journal of Pediatrics in 2012. The induction of Treg activity by probiotics might be effective for promoting tolerance towards food allergens. Nasal cytology is useful in patients with rhinitis for diagnosing chronic non-allergic non-infectious diseases. Atopic eczema is associated both with an aberrant skin matrix and impaired systemic immune response. Therefore, isolated topical treatment may have suboptimal effect. Diagnostic work-up of exercise-induced anaphylaxis, including exercise challenge test, is necessary to reach a diagnosis. Studies may support a role for nutrition on prevention of asthma and cardiovascular diseases. Clinicians need to early identify adolescent menstrual abnormalities to minimize sequelae, and to promote health information. In Multiple Endocrine Neoplasia type 2B investigations include acetylcholinesterase study of rectal mucosa followed by the molecular analysis of RET mutation. Low adherence to gluten-free diet and osteopenia are common problems in children with diabetes mellitus type 1 and celiac disease. In infantile colic, laboratory tests are usually unnecessary and the treatment is based on reassurance. Prevalence of obesity and stunting is elucidated by several studies. Evidences are growing that dietetic measures are needed to prevent obesity in children with acute leukemia. Treatment studies for infectious diseases show promise for probiotics along with standard triple therapy in children with Helicobacter pilori infection, while zinc has no effect on pneumonia. Educational programs about the proper management of the febrile child are warranted. A new hour-specific total serum bilirubin nomogram has been shown to be able to predict newborns without hyperbilirubinemia after 48 to 72 hours of life. Newborns with

  15. Consanguinity, human evolution, and complex diseases

    PubMed Central

    Bittles, A. H.; Black, M. L.

    2010-01-01

    There is little information on inbreeding during the critical early years of human existence. However, given the small founding group sizes and restricted mate choices it seems inevitable that intrafamilial reproduction occurred and the resultant levels of inbreeding would have been substantial. Currently, couples related as second cousins or closer (F ≥ 0.0156) and their progeny account for an estimated 10.4% of the global population. The highest rates of consanguineous marriage occur in north and sub-Saharan Africa, the Middle East, and west, central, and south Asia. In these regions even couples who regard themselves as unrelated may exhibit high levels of homozygosity, because marriage within clan, tribe, caste, or biraderi boundaries has been a long-established tradition. Mortality in first-cousin progeny is ≈3.5% higher than in nonconsanguineous offspring, although demographic, social, and economic factors can significantly influence the outcome. Improving socioeconomic conditions and better access to health care will impact the effects of consanguinity, with a shift from infant and childhood mortality to extended morbidity. At the same time, a range of primarily social factors, including urbanization, improved female education, and smaller family sizes indicate that the global prevalence of consanguineous unions will decline. This shift in marriage patterns will initially result in decreased homozygosity, accompanied by a reduction in the expression of recessive single-gene disorders. Although the roles of common and rare gene variants in the etiology of complex disease remain contentious, it would be expected that declining consanguinity would also be reflected in reduced prevalence of complex diseases, especially in population isolates. PMID:19805052

  16. Franklin Delano Roosevelt's (FDR's) (1882-1945) 1921 neurological disease revisited; the most likely diagnosis remains Guillain-Barré syndrome.

    PubMed

    Goldman, Armond S; Schmalstieg, Elisabeth J; Dreyer, Charles F; Schmalstieg, Frank C; Goldman, Daniel A

    2016-11-01

    In 2003, we published evidence that the most likely cause of FDR's 1921 neurological disease was Guillain-Barré syndrome. Afterwards, several historians and neurologists stated in their publications that FDR had paralytic poliomyelitis. However, significant criticism of our article or new support for that diagnosis was not revealed. One critic claimed that FDR's cerebrospinal fluid indicated poliomyelitis, but we did not find evidence that a lumbar puncture was performed. The diagnosis of FDR's neurological disease still depends upon documented clinical abnormalities. His age, prolonged symmetric ascending paralysis, transient numbness, protracted dysaesthesia (pain on slight touch), facial paralysis, bladder and bowel dysfunction, and absence of meningismus are typical of Guillain-Barré syndrome and are inconsistent with paralytic poliomyelitis. FDR's prolonged fever was atypical for both diseases. Finally, permanent paralysis, though commoner in paralytic poliomyelitis, is frequent in Guillain-Barré syndrome. Thus, the clinical findings indicate the most likely diagnosis in FDR's case remains Guillain-Barré syndrome.

  17. Neurologic emergencies.

    PubMed

    Piecuch, J F; Lieblich, S E

    1995-07-01

    Neurologic emergencies are rare, and they usually occur in easily identifiable patients, provided that a thorough medical history has been previously obtained. Rare as these may be, however, they occur without warning and are potentially life threatening. Consequently, the dentist should be prepared by virtue of knowledge of the pathophysiology and therapy and by formal training and certification in basic life support.

  18. N-methyl-D-aspartate receptor antibody-mediated neurological disease: results of a UK-based surveillance study in children

    PubMed Central

    Wright, Sukhvir; Hacohen, Yael; Jacobson, Leslie; Agrawal, Shakti; Gupta, Rajat; Philip, Sunny; Smith, Martin; Lim, Ming; Wassmer, Evangeline; Vincent, Angela

    2015-01-01

    Objective N-methyl-D-aspartate receptor antibody (NMDAR-Ab) encephalitis is a well-recognised clinico-immunological syndrome that presents with neuropsychiatric symptoms cognitive decline, movement disorder and seizures. This study reports the clinical features, management and neurological outcomes of paediatric NMDAR-Ab-mediated neurological disease in the UK. Design A prospective surveillance study. Children with NMDAR-Ab-mediated neurological diseases were voluntarily reported to the British Neurological Surveillance Unit (BPNSU) from November 2010 to December 2011. Initial and follow-up questionnaires were sent out to physicians. Results Thirty-one children fulfilled the criteria for the study. Eight presented during the study period giving an incidence of 0.85 per million children per year (95% CI 0.64 to 1.06); 23 cases were historical. Behavioural change and neuropsychiatric features were present in 90% of patients, and seizures and movement disorders both in 67%. Typical NMDAR-Ab encephalitis was reported in 24 children and partial phenotype without encephalopathy in seven, including predominantly psychiatric (four) and movement disorder (three). All patients received steroids, 22 (71%) received intravenous immunoglobulin, 9 (29%) received plasma exchange,and 10 (32%) received second-line immunotherapy. Of the 23 patients who were diagnosed early, 18 (78%) made a full recovery compared with only 1 of 8 (13%) of the late diagnosed patients (p=0.002, Fisher's exact test). Seven patients relapsed, with four needing additional second-line immunotherapy. Conclusions Paediatric NMDAR-Ab-mediated neurological disease appears to be similar to adult NMDAR-Ab encephalitis, but some presented with a partial phenotype. Early treatment was associated with a quick and often full recovery. PMID:25637141

  19. Individuals with neurological diseases are at increased risk of fractures within 180 days of admission to long-term care in Ontario

    PubMed Central

    Jantzi, Micaela; Maher, Amy C.; Ioannidis, George; Hirdes, John P.; Giangregorio, Lora M.; Papaioannou, Alexandra

    2016-01-01

    Background individuals residing in long-term care (LTC) are more likely to have a fragility fracture than community-dwelling seniors. The purpose of this study was to determine whether the presence of neurological diseases was associated with an increased risk of fracture within 180 days of admission to LTC. Methods this retrospective cohort study used data collected in the LTC setting using the Resident Assessment Instrument (RAI) 2.0 during the period from 2006 to 2011 (N = 42,089). Multivariable logistic regression analyses were conducted to determine the associations between the presence of neurological conditions and incident fractures, with and without adjustment for clinical variables. Results the incident fracture rate for all LTC residents was 2.6% (N = 1,094). Neurological condition group size ranged from n = 21,015 for Alzheimer’s disease or related dementias (ADRD) to n = 21 for muscular dystrophy (MD). The incidence of fracture among residents with specific neurological diseases was as follows: ADRD, 3.2% (n = 672), MD, 4.8% (n = 1), Parkinson’s disease, 2.5% (n = 57), stroke, 2.3% (n = 166), epilepsy, 2.5% (n = 38), Huntington’s disease, 1.4% (n = 1), multiple sclerosis, 0.3% (n = 1) and traumatic brain injury, 3.8% (n = 11); among the comparison group with no neurological conditions, the fracture rate was 2.0% (n = 366). The neurological diseases that were associated with a significantly greater odds of having an incident fracture in the first 180 days of LTC admission were as follows: ADRD (1.3; 95% CI: 1.1–1.5), epilepsy (1.5; 95% CI: 1.0–2.1) and traumatic brain injury (2.7; 95% CI: 1.4–5.0). Conclusion LTC residents with ADRD, epilepsy and traumatic brain injury are at a higher risk for sustaining an incident fracture in the first 180 days of admission and should be considered for fracture prevention strategies. PMID:25398885

  20. [Diagnosis of Alzheimer's disease in Brazil: cognitive and functional evaluation. Recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology].

    PubMed

    Nitrini, Ricardo; Caramelli, Paulo; Bottino, Cássio Machado de Campos; Damasceno, Benito Pereira; Brucki, Sonia Maria Dozzi; Anghinah, Renato

    2005-09-01

    The educational and cultural heterogeneity of the Brazilian population leads to peculiar characteristics regarding the diagnosis of Alzheimer's disease (AD). This consensus had the objective of recommending evidence-based guidelines for the clinical diagnosis of AD in Brazil. Studies on the diagnosis of AD published in Brazil were systematically evaluated in a thorough research of PUBMED and LILACS databases. For global cognitive evaluation, the Mini-Mental State Examination was recommended; for memory evaluation: delayed recall subtest of CERAD or of objects presented as drawings; attention: trail-making or digit-span; language: Boston naming, naming test from ADAS-Cog or NEUROPSI; executive functions: verbal fluency or clock-drawing; conceptualization and abstraction: similarities from CAMDEX or NEUROPSI; construction: drawings from CERAD. For functional evaluation, IQCODE, or Pfeffer Questionnaire or Bayer Scale for Activities of Daily Living was recommended. The panel concluded that the combined use of cognitive and functional evaluation based on interview with informant is recommended.

  1. Frequency and Pathological Phenotype of Bovine Astrovirus CH13/NeuroS1 Infection in Neurologically-Diseased Cattle: Towards Assessment of Causality

    PubMed Central

    Selimovic-Hamza, Senija; Boujon, Céline L.; Hilbe, Monika; Oevermann, Anna; Seuberlich, Torsten

    2017-01-01

    Next-generation sequencing (NGS) has opened up the possibility of detecting new viruses in unresolved diseases. Recently, astrovirus brain infections have been identified in neurologically diseased humans and animals by NGS, among them bovine astrovirus (BoAstV) CH13/NeuroS1, which has been found in brain tissues of cattle with non-suppurative encephalitis. Only a few studies are available on neurotropic astroviruses and a causal relationship between BoAstV CH13/NeuroS1 infections and neurological disease has been postulated, but remains unproven. Aiming at making a step forward towards assessing the causality, we collected brain samples of 97 cases of cattle diagnosed with unresolved non-suppurative encephalitis, and analyzed them by in situ hybridization and immunohistochemistry, to determine the frequency and neuropathological distribution of the BoAstV CH13/NeuroS1 and its topographical correlation to the pathology. We detected BoAstV CH13/NeuroS1 RNA or proteins in neurons throughout all parts of the central nervous system (CNS) in 34% of all cases, but none were detected in cattle of the control group. In general, brain lesions had a high correlation with the presence of the virus. These findings show that a substantial proportion of cattle with non-suppurative encephalitis are infected with BoAstV CH13/NeuroS1 and further substantiate the causal relationship between neurological disease and astrovirus infections. PMID:28106800

  2. HTLV-1 Associated Neurological Disorders.

    PubMed

    Khan, Muhammad Yasir; Khan, Ishaq Nasib; Farman, Muhammad; Al Karim, Saleh; Qadri, Ishtiaq; Kamal, Muhammad Amjad; Al Ghamdi, Khalid; Harakeh, Steve

    2016-12-22

    Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus which is endemic to certain regions of the world and infects around 10-20 million people. HTLV-1 is the etiologic agent of Adult T cell leukemia/lymphoma and HTLV-1 associated neurological disorders including mainly HTLV-1 associated myelopathy/Tropical spastic paraparesis. The involvement of the central nervous diseases occurs among: HTLV-1 infected patients from endemic areas, HIV positive individuals and drug users. The ability of HTLV-1 to cause associated neuropathies starts with the virus crossing the blood brain barrier (BBB), then entering and infecting the cells of the central nervous system. As a consequence, to the viral attack, HTLV-1 infected lymphocytes produce pro-inflammatory cytokines like tumor necrosis factor alpha, Interleukin 1 beta and interleukin 6 which further disrupts the BBB. Different serological tests have been used in the diagnosis of HTLV-1. These include: ELISA and Western Blotting (WB), Immunofluorescence, Particle Agglutination and Polymerase Chain Reaction which is used as a confirmatory test. Danazol, pentoxifylline, azathioprine and vitamin C have been used in the treatment of the HTLV-1 associated neurological disorders. Other antiviral drugs (lamivudine, zidovudine), monoclonal antibodies (Daclizumab) and therapeutic agents (valporic acid, interferons) have also been evaluated. No known drug, so far, has been shown to be efficacious. The aim of this review is to present the complexities of HTLV-1 associated neurological disorders and their current ongoing treatment. In addition to discussing future possible therapeutic strategies, by targeting HTVL-1 viral components and gene/s products, for the treatment of those neurological conditions.

  3. Rare diseases: matching wheelchair users with rare metabolic, neuromuscular or neurological disorders to electric powered indoor/outdoor wheelchairs (EPIOCs)

    PubMed Central

    De Souza, Lorraine H.; Frank, Andrew O.

    2016-01-01

    Abstract Purpose: To describe the clinical features of electric powered indoor/outdoor wheelchair (EPIOC) users with rare diseases (RD) impacting on EPIOC provision and seating. Method: Retrospective review by a consultant in rehabilitation medicine of electronic and case note records of EPIOC recipients with RDs attending a specialist wheelchair service between June 2007 and September 2008. Data were systematically extracted, entered into a database and analysed under three themes; demographic, diagnostic/clinical (including comorbidity and associated clinical features (ACFs) of the illness/disability) and wheelchair factors. Results: Fifty-four (27 male) EPIOC users, mean age 37.3 (SD 18.6, range 11–70) with RDs were identified and reviewed a mean of 64 (range 0–131) months after receiving their wheelchair. Diagnoses included 27 types of RDs including Friedreich’s ataxia, motor neurone disease, osteogenesis imperfecta, arthrogryposis, cerebellar syndromes and others. Nineteen users had between them 36 comorbidities and 30 users had 44 ACFs likely to influence the prescription. Tilt-in-space was provided to 34 (63%) users and specialised seating to 17 (31%). Four users had between them complex control or interfacing issues. Conclusions: The complex and diverse clinical problems of those with RDs present unique challenges to the multiprofessional wheelchair team to maintain successful independent mobility and community living.Implications for RehabilitationPowered mobility is a major therapeutic tool for those with rare diseases enhancing independence, participation, reducing pain and other clinical features.The challenge for rehabilitation professionals is reconciling the physical disabilities with the individual’s need for function and participation whilst allowing for disease progression and/or growth.Powered wheelchair users with rare diseases with a (kypho) scoliosis require a wheelchair system that balances spine stability and movement to maximise

  4. Complex Disease Endotypes and Implications for GWAS and Exposomics***

    EPA Science Inventory

    Presentation Type: Symposia Symposium Title: Human Exposome Discovery and Disease Investigation Abstract Title: Complex Disease Endotypes and Implications for GWAS and Exposomics Authors: Stephen W. Edwards1, David M. Reif, Elaine Cohen Hubaf, ClarLynda Williams-DeVa...

  5. Sarcocystis neurona infections in raccoons (Procyon lotor): evidence for natural infection with sarcocysts, transmission of infection to opossums (Didelphis virginiana), and experimental induction of neurologic disease in raccoons.

    PubMed

    Dubey, J P; Saville, W J; Stanek, J F; Lindsay, D S; Rosenthal, B M; Oglesbee, M J; Rosypal, A C; Njoku, C J; Stich, R W; Kwok, O C; Shen, S K; Hamir, A N; Reed, S M

    2001-10-24

    Equine protozoal myeloencephalitis (EPM) is a serious neurologic disease of horses in the Americas and Sarcocystis neurona is the most common etiologic agent. The distribution of S. neurona infections follows the geographical distributions of its definitive hosts, opossums (Didelphis virginiana, Didelphis albiventris). Recently, cats and skunks were reported as experimental and armadillos as natural intermediate hosts of S. neurona. In the present report, raccoons (Procyon lotor) were identified as a natural intermediate host of S. neurona. Two laboratory-raised opossums were found to shed S. neurona-like sporocysts after ingesting tongues of naturally-infected raccoons. Interferon-gamma gene knockout (KO) mice fed raccoon-opossum-derived sporocysts developed neurologic signs. S. neurona was identified immunohistochemically in tissues of KO mice fed sporocysts and the parasite was isolated in cell cultures inoculated with infected KO mouse tissues. The DNA obtained from the tongue of a naturally-infected raccoon, brains of KO mice that had neurological signs, and from the organisms recovered in cell cultures inoculated with brains of neurologic KO mice, corresponded to that of S. neurona. Two raccoons fed mature S. neurona sarcocysts did not shed sporocysts in their feces, indicating raccoons are not likely to be its definitive host. Two raccoons fed sporocysts from opossum feces developed clinical illness and S. neurona-associated encephalomyelitis was found in raccoons killed 14 and 22 days after feeding sporocysts; schizonts and merozoites were seen in encephalitic lesions.

  6. History of neurologic examination books.

    PubMed

    Boes, Christopher J

    2015-04-01

    The objective of this study was to create an annotated list of textbooks dedicated to teaching the neurologic examination. Monographs focused primarily on the complete neurologic examination published prior to 1960 were reviewed. This analysis was limited to books with the word "examination" in the title, with exceptions for the texts of Robert Wartenberg and Gordon Holmes. Ten manuals met the criteria. Works dedicated primarily to the neurologic examination without a major emphasis on disease description or treatment first appeared in the early 1900s. Georg Monrad-Krohn's "Blue Book of Neurology" ("Blue Bible") was the earliest success. These treatises served the important purpose of educating trainees on proper neurologic examination technique. They could make a reputation and be profitable for the author (Monrad-Krohn), highlight how neurology was practiced at individual institutions (McKendree, Denny-Brown, Holmes, DeJong, Mayo Clinic authors), and honor retiring mentors (Mayo Clinic authors).

  7. Child neurology services in Africa.

    PubMed

    Wilmshurst, Jo M; Badoe, Eben; Wammanda, Robinson D; Mallewa, Macpherson; Kakooza-Mwesige, Angelina; Venter, Andre; Newton, Charles R

    2011-12-01

    The first African Child Neurology Association meeting identified key challenges that the continent faces to improve the health of children with neurology disorders. The capacity to diagnose common neurologic conditions and rare disorders is lacking. The burden of neurologic disease on the continent is not known, and this lack of knowledge limits the ability to lobby for better health care provision. Inability to practice in resource-limited settings has led to the migration of skilled professionals away from Africa. Referral systems from primary to tertiary are often unpredictable and chaotic. There is a lack of access to reliable supplies of basic neurology treatments such as antiepileptic drugs. Few countries have nationally accepted guidelines either for the management of epilepsy or status epilepticus. There is a great need to develop better training capacity across Africa in the recognition and management of neurologic conditions in children, from primary health care to the subspecialist level.

  8. Genetic analysis in neurology: the next 10 years.

    PubMed

    Pittman, Alan; Hardy, John

    2013-06-01

    In recent years, neurogenetics research had made some remarkable advances owing to the advent of genotyping arrays and next-generation sequencing. These improvements to the technology have allowed us to determine the whole-genome structure and its variation and to examine its effect on phenotype in an unprecedented manner. The identification of rare disease-causing mutations has led to the identification of new biochemical pathways and has facilitated a greater understanding of the etiology of many neurological diseases. Furthermore, genome-wide association studies have provided information on how common genetic variability impacts on the risk for the development of various complex neurological diseases. Herein, we review how these technological advances have changed the approaches being used to study the genetic basis of neurological disease and how the research findings will be translated into clinical utility.

  9. Epilepsy, psychiatry, and neurology.

    PubMed

    Reynolds, Edward H; Trimble, Michael R

    2009-03-01

    This article reviews the relationship between the psychiatry and neurology of epilepsy, especially in the last 100 years. Throughout most of its recorded history of 3 to 4 millennia epilepsy has been viewed as a supernatural or mental disorder. Although first suggested by Hippocrates in the 5th century B.C., the concept of epilepsy as a brain disorder only began to take root in the 17th and 18th centuries. The discipline of neurology emerged from "nervous disorders" or neuropsychiatry in the late 19th century, when vascular theories of epilepsy predominated. By the turn of the 19th century psychiatry and neurology were diverging and epilepsy remained to some extent in both disciplines. It was only in the middle of the 20th century with the development of electromagnetic theories of epilepsy that the concept of epilepsy per se as a neurological disorder was finally adopted in international classifications of disease. This was associated with a refined definition of the ictal, pre-, post-, and interictal psychological disorders of epilepsy, which have contributed to a renaissance of neuropsychiatry. At the beginning of the 21st century and the centenary of the ILAE psychiatry and neurology have been converging again, led in some respects by epilepsy, which has provided several useful models of mental illness and a bridge between the two disciplines.

  10. Complex movement disorders at disease onset in childhood narcolepsy with cataplexy

    PubMed Central

    Pizza, Fabio; Palaia, Vincenzo; Franceschini, Christian; Poli, Francesca; Moghadam, Keivan K.; Cortelli, Pietro; Nobili, Lino; Bruni, Oliviero; Dauvilliers, Yves; Lin, Ling; Edwards, Mark J.; Mignot, Emmanuel; Bhatia, Kailash P.

    2011-01-01

    Narcolepsy with cataplexy is characterized by daytime sleepiness, cataplexy (sudden loss of bilateral muscle tone triggered by emotions), sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. Narcolepsy with cataplexy is most often associated with human leucocyte antigen-DQB1*0602 and is caused by the loss of hypocretin-producing neurons in the hypothalamus of likely autoimmune aetiology. Noting that children with narcolepsy often display complex abnormal motor behaviours close to disease onset that do not meet the classical definition of cataplexy, we systematically analysed motor features in 39 children with narcolepsy with cataplexy in comparison with 25 age- and sex-matched healthy controls. We found that patients with narcolepsy with cataplexy displayed a complex array of ‘negative’ (hypotonia) and ‘active’ (ranging from perioral movements to dyskinetic–dystonic movements or stereotypies) motor disturbances. ‘Active’ and ‘negative’ motor scores correlated positively with the presence of hypotonic features at neurological examination and negatively with disease duration, whereas ‘negative’ motor scores also correlated negatively with age at disease onset. These observations suggest that paediatric narcolepsy with cataplexy often co-occurs with a complex movement disorder at disease onset, a phenomenon that may vanish later in the course of the disease. Further studies are warranted to assess clinical course and whether the associated movement disorder is also caused by hypocretin deficiency or by additional neurochemical abnormalities. PMID:21930661

  11. [History of neurology and education on neurology in Japan].

    PubMed

    Kuzuhara, Shigeki

    2009-11-01

    The first medical society of Japanese neurologists and psychiatrists was founded in 1902, but psychiatrists gradually dominated in number. New "Japanese Society of Neurology" (JSN) was founded in 1960. The number of members was only 643 in 1960, while it rose up to 8,555 in 2009, including regular, junior, senior and associate members. JSN contributed much to solve the causes and treatment of the medicosocial and iatrogenic diseases such as Minamata disease and SMON (subacute myelopticoneuropathy) at its early period. In undergraduate education at medical school neurology is one of the core subjects in the curriculum, and almost all the 80 medical schools have at least one faculty neurologist. The Board of neurology of JSN was started in 1975, as the third earliest of the Japanese Medical Associations. It takes at least 6 years' clinical training after graduating from the medical school to take the neurology Board examinations. By 2009, 4,000 members passed the Board examinations. In 2002 JSN published evidence-based "Treatment Guidelines 2002" of 6 diseases: Parkinson's disease, stroke, chronic headache, dementia and ALS. As to the international issues, JSN hosted the 12th World Congress of Neurology in 1981, and international activities markedly increased after that. The first informal meeting with JSN and Korean Neurological Association (KNA) was held at the 48th JSN Annual Meeting in Nagoya in May 2007. In May 2008 the KNA-JSN 1st Joint symposium was held at the 49th Annual Meeting of JSN in Yokohama on "International comparison of neurological disorders: focusing on spinocerebellar atrophies (SCA) and epilepsies". In May 2009, KNA-JNS 2 nd Joint Symposium was held at the 50th JSN Annual Meeting in Sendai, inviting a speaker from Taiwan Neurological Society, on the subject "History and Education of Neurology in Japan, Korea and Taiwan". In this symposium, a strategy to make up the Northeast Asian Neurological Association was discussed.

  12. NEURON SPECIFIC α-ADRENERGIC RECEPTOR EXPRESSION IN HUMAN CEREBELLUM: IMPLICATIONS FOR EMERGING CEREBELLAR ROLES IN NEUROLOGIC DISEASE

    PubMed Central

    SCHAMBRA, U. B.; MACKENSEN, G. B.; STAFFORD-SMITH, M.; HAINES, D. E.; SCHWINN, D. A.

    2008-01-01

    Recent data suggest novel functional roles for cerebellar involvement in a number of neurologic diseases. Function of cerebellar neurons is known to be modulated by norepinephrine and adrenergic receptors. The distribution of adrenergic receptor subtypes has been described in experimental animals, but corroboration of such studies in the human cerebellum, necessary for drug treatment, is still lacking. In the present work we studied cell-specific localizations of α1 adrenergic receptor subtype mRNA (α1a, α1b, α1d), and α2 adrenergic receptor subtype mRNA (α2a, α2b, α2c) by in situ hybridization on cryostat sections of human cerebellum (cortical layers and dentate nucleus). We observed unique neuron-specific α1 adrenergic receptor and α2 adrenergic receptor subtype distribution in human cerebellum. The cerebellar cortex expresses mRNA encoding all six α adrenergic receptor subtypes, whereas dentate nucleus neurons express all subtype mRNAs, except α2a adrenergic receptor mRNA. All Purkinje cells label strongly for α2a and α2b adrenergic receptor mRNA. Additionally, Purkinje cells of the anterior lobe vermis (lobules I to V) and uvula/tonsil (lobules IX/HIX) express α1a and α2c subtypes, and Purkinje cells in the ansiform lobule (lobule HVII) and uvula/tonsil express α1b and α2c adrenergic receptor subtypes. Basket cells show a strong signal for α1a, moderate signal for α2a and light label for α2b adrenergic receptor mRNA. In stellate cells, besides a strong label of α2a adrenergic receptor mRNA in all and moderate label of α2b message in select stellate cells, the inner stellate cells are also moderately positive for α1b adrenergic receptor mRNA. Granule and Golgi cells express high levels of α2a and α2b adrenergic receptor mRNAs. These data contribute new information regarding specific location of adrenergic receptor subtypes in human cerebellar neurons. We discuss our observations in terms of possible modulatory roles of adrenergic

  13. Neurologic Music Therapy Training for Mobility and Stability Rehabilitation with Parkinson’s Disease – A Pilot Study

    PubMed Central

    Bukowska, Anna A.; Krężałek, Piotr; Mirek, Elżbieta; Bujas, Przemysław; Marchewka, Anna

    2016-01-01

    Idiopathic Parkinson’s Disease (PD) is a progressive condition with gait disturbance and balance disorder as the main symptoms. Previous research studies focused on the application of Rhythmic Auditory Stimulation (RAS) in PD gait rehabilitation. The key hypothesis of this pilot study, however, assumes the major role of the combination of all three Neurologic Music Therapy (NMT) sensorimotor techniques in improving spatio-temporal gait parameters, and postural stability in the course of PD. The 55 PD-diagnosed subjects invited to the study were divided into two groups: 30 in the experimental and 25 in the control group. Inclusion criteria included Hoehn and Yahr stages 2 or 3, the ability to walk independently without any aid and stable pharmacological treatment for the duration of the experiment. In order to evaluate the efficacy of the chosen therapy procedure the following measures were applied: Optoelectrical 3D Movement Analysis, System BTS Smart for gait, and Computerized Dynamic Posturography CQ Stab for stability and balance. All measures were conducted both before and after the therapy cycle. The subjects from the experimental group attended music therapy sessions four times a week for 4 weeks. Therapeutic Instrumental Music Performance (TIMP), Pattern Sensory Enhancement (PSE) and RAS were used in every 45-min session for practicing daily life activities, balance, pre-gait, and gait pattern. Percussion instruments, the metronome and rhythmic music were the basis for each session. The subjects from the control group were asked to stay active and perform daily life activities between the measures. The research showed that the combination of the three NMT sensorimotor techniques can be used to improve gait and other rhythmical activities in PD rehabilitation. The results demonstrated significant improvement in the majority of the spatiotemporal gait parameters in the experimental group in comparison to the control group. In the stability tests with eyes

  14. 9 CFR 381.82 - Diseases of the leukosis complex.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one...

  15. 9 CFR 381.82 - Diseases of the leukosis complex.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one...

  16. 9 CFR 381.82 - Diseases of the leukosis complex.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one...

  17. 9 CFR 381.82 - Diseases of the leukosis complex.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one...

  18. 9 CFR 381.82 - Diseases of the leukosis complex.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Diseases of the leukosis complex. 381.82 Section 381.82 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Carcasses and Parts § 381.82 Diseases of the leukosis complex. Carcasses of poultry affected with any one...

  19. Tyrosine Kinase Inhibitors as a New Therapy for Ischemic Stroke and other Neurologic Diseases: Is there any Hope for a Better Outcome?

    PubMed Central

    Gągało, Iwona; Rusiecka, Izabela; Kocić, Ivan

    2015-01-01

    The relevance of tyrosine kinase inhibitors (TKIs) in the treatment of malignancies has been already defined. Aberrant activation of tyrosine kinase signaling pathways has been causally linked not only to cancers but also to other non-oncological diseases. This review concentrates on the novel plausible usage of this group of drugs in neurological disorders, such as ischemic brain stroke, subarachnoid hemorrhage, Alzheimer’s disease, multiple sclerosis. The drugs considered here are representatives of both receptor and non-receptor TKIs. Among them imatinib and masitinib have the broadest spectrum of therapeutic usage. Both drugs are effective in ischemic brain stroke and multiple sclerosis, but only imatinib produces a therapeutic effect in subarachnoid hemorrhage. Masitinib and dasatinib reduce the symptoms of Alzheimer’s disease. In the case of multiple sclerosis several TKIs are useful, including apart from imatinib and masitinib, also sunitinib, sorafenib, lestaurtinib. Furthermore, the possible molecular targets for the drugs are described in connection with the underlying pathophysiological mechanisms in the diseases in question. The most frequent target for the TKIs is PDGFR which plays a pivotal role particularly in ischemic brain stroke and subarachnoid hemorrhage. The collected data indicates that TKIs are very promising candidates for new therapeutic interventions in neurological diseases. PMID:26630962

  20. Inebilizumab, a B Cell-Depleting Anti-CD19 Antibody for the Treatment of Autoimmune Neurological Diseases: Insights from Preclinical Studies

    PubMed Central

    Chen, Ding; Gallagher, Sandra; Monson, Nancy L.; Herbst, Ronald; Wang, Yue

    2016-01-01

    Exaggerated or inappropriate responses by B cells are an important feature in many types of autoimmune neurological diseases. The recent success of B-cell depletion in the treatment of multiple sclerosis (MS) has stimulated the development of novel B-cell-targeting therapies with the potential for improved efficacy. CD19 has emerged as a promising target for the depletion of B cells as well as CD19-positive plasmablasts and plasma cells. Inebilizumab (MEDI-551), an anti-CD19 antibody with enhanced antibody-dependent cell-mediated cytotoxicity against B cells, is currently being evaluated in MS and neuromyelitis optica. This review discusses the role of B cells in autoimmune neurological disorders, summarizes the development of inebilizumab, and analyzes the recent results for inebilizumab treatment in an autoimmune encephalitis mouse model. The novel insights obtained from these preclinical studies can potentially guide future investigation of inebilizumab in patients. PMID:27886126

  1. Mitochondrial complex I-linked disease.

    PubMed

    Rodenburg, Richard J

    2016-07-01

    Complex I deficiency is the most frequently encountered single mitochondrial single enzyme deficiency in patients with a mitochondrial disorder. Although specific genotype-phenotype correlations are very difficult to identify, the majority of patients present with symptoms caused by leukodystrophy. The poor genotype-phenotype correlations can make establishing a diagnosis a challenge. The classical way to establish a complex I deficiency in patients is by performing spectrophotometric measurements of the enzyme in a muscle biopsy or other patient-derived material (liver or heart biopsy, cultured skin fibroblasts). Complex I is encoded by both the mtDNA and nuclear DNA and pathogenic mutations have been identified in the majority of the 44 genes encoding the structural subunits of complex I. In recent years, the increasing possibilities for diagnostic molecular genetic tests of large gene panels, exomes, and even entire genomes has led to the identification of many novel genetic defects causing complex I deficiency. Complex I mutations not only result in a reduced enzyme activity but also induce secondary effects at the cellular level, such as elevated reactive oxygen species production, altered membrane potential and mitochondrial morphology. At this moment there is no cure for complex I deficiency and the treatment options for complex I patients are restricted to symptomatic treatment. Recent developments, amongst others based on the treatment of the secondary effects of complex I deficiency, have shown to be promising as new therapeutic strategies in vitro and have entered clinical trials. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  2. The evolving role of neurological imaging in neuro-oncology.

    PubMed

    Fontana, E J; Benzinger, T; Cobbs, C; Henson, J; Fouke, S J

    2014-09-01

    Neuroimaging has played a critical role in the management of patients with neurological disease, since the first ventriculogram was performed in 1918 by Walter Dandy (Mezger et al. Langenbecks Arch Surg 398(4):501-514, 2013). Over the last century, technology has evolved significantly, and within the last decade, the role of imaging in the management of patients with neuro-oncologic disease has shifted from a tool for gross identification of intracranial pathology, to an integral part of real-time neurological surgery. Current neurological imaging provides detailed information about anatomical structure, neurological function, and metabolic and metabolism-important characteristics that help clinicians and surgeons non-invasively manage patients with brain tumors. It is valuable to review the evolution of neurological imaging over the past several decades, focusing on its role in the management of patients with intracranial tumors. Novel neuro-imaging tools and developing technology with the potential to further transform clinical practice will be discussed, as will the key role neurological imaging plays in neurosurgical planning and intraoperative navigation. With increasingly complex imaging modalities creating growing amounts of raw data, validation of techniques, data analysis, and integrating various pieces of imaging data into individual patient management plans, remain significant challenges for clinicians. We thus suggest mechanisms that might ultimately allow for evidence based integration of imaging in the management of patients with neuro-oncologic disease.

  3. Antibodies as predictors of complex autoimmune diseases.

    PubMed

    Vojdani, A

    2008-01-01

    Emerging evidence has suggested environmental factors such as infections and xenobiotics and some dietary proteins and peptides in the pathogenesis of many autoimmune diseases. Considering the fact that autoantibodies can often be detected prior to the onset of a disease, in this study an enzyme immunoassay was used for measurement of antibodies against different highly purified antigens or synthetic peptides originating not only from human tissue, but also from cross-reactive epitopes of infectious agents, dietary proteins and xenobiotics. The measurement of antibodies against a panel of antigens allows for identification of patterns or antibody signatures, rather than just one or two markers of autoimmunity, thus establishing the premise for increased sensitivity and specificity of prediction, as well as positive predictive values. This panel of different autoantibodies was applied to 420 patients with different autoimmune diseases, including pernicious anemia, celiac disease, thyroiditis, lupus, rheumatoid arthritis, osteoarthritis, Addison's disease, type 1 diabetes, cardiovascular disease and autoimmunity, which are presented in this article. In all cases, the levels of these antibodies were significantly elevated in patients versus controls. Antibody patterns related to neuroautoimmune disorders, cancer, and patients with somatic hypermutation will be shown in a subsequent article. We believe that this novel 96 antigen-specific autoantibody or predictive antibody screen should be studied for its incorporation into routine medical examinations. Clinicians should be aware that the detection of antibodies should not automatically mean that a patient will definitely become ill, but would rather give a percentage of risk for autoimmune disease over subsequent months or years.

  4. [THE APPLICATION OF ANTIHOMOTOXIC DRUG PREPARATIONS IN THE COMPLEX TREATMENT IN PATIENTS WITH NEUROLOGICAL MANIFESTATIONS OF LUMBAR OSTEOCHONDROSIS].

    PubMed

    Nadkevich, A L; Babinets, L S

    2015-01-01

    The expediency of application homeosyniatry by preparations of Traumel S and Placenta Compositum after the offered chart in relation to a complex with classic acupuncture and in relation to the group of the generally accepted treatment has been proved in complex treatment patients with reflex syndromes of lumbar osteochondrosis. A similar conclusion was done after the statistically reliable (P < 0.05) dynamics of parameters of endogenous intoxication, liperoxydation and antioxydant systems of the protection (by the level of katalase, superoxyddismutase, SH-groups, ceruloplasmine).

  5. History of neurologic examination books

    PubMed Central

    2015-01-01

    The objective of this study was to create an annotated list of textbooks dedicated to teaching the neurologic examination. Monographs focused primarily on the complete neurologic examination published prior to 1960 were reviewed. This analysis was limited to books with the word “examination” in the title, with exceptions for the texts of Robert Wartenberg and Gordon Holmes. Ten manuals met the criteria. Works dedicated primarily to the neurologic examination without a major emphasis on disease description or treatment first appeared in the early 1900s. Georg Monrad-Krohn's “Blue Book of Neurology” (“Blue Bible”) was the earliest success. These treatises served the important purpose of educating trainees on proper neurologic examination technique. They could make a reputation and be profitable for the author (Monrad-Krohn), highlight how neurology was practiced at individual institutions (McKendree, Denny-Brown, Holmes, DeJong, Mayo Clinic authors), and honor retiring mentors (Mayo Clinic authors). PMID:25829645

  6. Facial Weakness, Otalgia, and Hemifacial Spasm: A Novel Neurological Syndrome in a Case-Series of 3 Patients With Rheumatic Disease.

    PubMed

    Birnbaum, Julius

    2015-10-01

    Bell palsy occurs in different rheumatic diseases, causes hemifacial weakness, and targets the motor branch of the 7th cranial nerve. Severe, persistent, and refractory otalgia having features of neuropathic pain (ie, burning and allodynic) does not characteristically occur with Bell palsy. Whereas aberrant regeneration of the 7th cranial nerve occurring after a Bell palsy may lead to a variety of clinical findings, hemifacial spasm only rarely occurs. We identified in 3 rheumatic disease patients (2 with Sjögren syndrome, 1 with rheumatoid arthritis) a previously unreported neurological syndrome of facial weakness, otalgia with neuropathic pain features, and hemifacial spasm. We characterized symptoms, examination findings, and response to therapy. All 3 patients experienced vertigo, as well as severe otalgia which persisted after mild facial weakness had completely resolved within 1 to 4 weeks. The allodynic nature of otalgia was striking. Two patients were rendered homebound, as even the barest graze of outdoor breezes caused intolerable ear pain. Patients developed hemifacial spasm either at the time of or within 3 months of facial weakness. Two patients had a polyphasic course, with recurrent episodes of facial weakness and increased otalgia. In all cases, otalgia and hemifacial spasm were unresponsive to neuropathic pain regimens, but responded in 1 case to intravenous immunoglobulin therapy. No patients had vesicles or varicella zoster virus in spinal-fluid studies. We have defined a novel neurological syndrome in 3 rheumatic disease patients, characterized by facial weakness, otalgia, and hemifacial spasm. As described in infectious disorders, the combination of otalgia, facial weakness, and 8th cranial nerve deficits suggests damage to the geniculate ganglia (ie, the sensory ganglia of the 7th cranial nerve), with contiguous involvement of other cranial nerves causing facial weakness and vertigo. However, the relapsing nature and association with

  7. Facial Weakness, Otalgia, and Hemifacial Spasm: A Novel Neurological Syndrome in a Case-Series of 3 Patients With Rheumatic Disease

    PubMed Central

    Birnbaum, Julius

    2015-01-01

    Abstract Bell palsy occurs in different rheumatic diseases, causes hemifacial weakness, and targets the motor branch of the 7th cranial nerve. Severe, persistent, and refractory otalgia having features of neuropathic pain (ie, burning and allodynic) does not characteristically occur with Bell palsy. Whereas aberrant regeneration of the 7th cranial nerve occurring after a Bell palsy may lead to a variety of clinical findings, hemifacial spasm only rarely occurs. We identified in 3 rheumatic disease patients (2 with Sjögren syndrome, 1 with rheumatoid arthritis) a previously unreported neurological syndrome of facial weakness, otalgia with neuropathic pain features, and hemifacial spasm. We characterized symptoms, examination findings, and response to therapy. All 3 patients experienced vertigo, as well as severe otalgia which persisted after mild facial weakness had completely resolved within 1 to 4 weeks. The allodynic nature of otalgia was striking. Two patients were rendered homebound, as even the barest graze of outdoor breezes caused intolerable ear pain. Patients developed hemifacial spasm either at the time of or within 3 months of facial weakness. Two patients had a polyphasic course, with recurrent episodes of facial weakness and increased otalgia. In all cases, otalgia and hemifacial spasm were unresponsive to neuropathic pain regimens, but responded in 1 case to intravenous immunoglobulin therapy. No patients had vesicles or varicella zoster virus in spinal-fluid studies. We have defined a novel neurological syndrome in 3 rheumatic disease patients, characterized by facial weakness, otalgia, and hemifacial spasm. As described in infectious disorders, the combination of otalgia, facial weakness, and 8th cranial nerve deficits suggests damage to the geniculate ganglia (ie, the sensory ganglia of the 7th cranial nerve), with contiguous involvement of other cranial nerves causing facial weakness and vertigo. However, the relapsing nature and association with

  8. Extraneuronal pathology in a canine model of CLN2 neuronal ceroid lipofuscinosis after intracerebroventricular gene therapy that delays neurological disease progression.

    PubMed

    Katz, M L; Johnson, G C; Leach, S B; Williamson, B G; Coates, J R; Whiting, R E H; Vansteenkiste, D P; Whitney, M S

    2017-02-02

    CLN2 neuronal ceroid lipofuscinosis is a hereditary lysosomal storage disease with primarily neurological signs that results from mutations in TPP1, which encodes the lysosomal enzyme tripeptidyl peptidase-1 (TPP1). Studies using a canine model for this disorder demonstrated that delivery of TPP1 enzyme to the cerebrospinal fluid (CSF) by intracerebroventricular administration of an AAV-TPP1 vector resulted in substantial delays in the onset and progression of neurological signs and prolongation of life span. We hypothesized that the treatment may not deliver therapeutic levels of this protein to tissues outside the central nervous system that also require TPP1 for normal lysosomal function. To test this hypothesis, dogs treated with CSF administration of AAV-TPP1 were evaluated for the development of non-neuronal pathology. Affected treated dogs exhibited progressive cardiac pathology reflected by elevated plasma cardiac troponin-1, impaired cardiac function and development of histopathological myocardial lesions. Progressive increases in the plasma activity levels of alanine aminotransferase and creatine kinase indicated development of pathology in the liver and muscles. The treatment also did not prevent disease-related accumulation of lysosomal storage bodies in the heart or liver. These studies indicate that optimal treatment outcomes for CLN2 disease may require delivery of TPP1 systemically as well as directly to the central nervous system.Gene Therapy advance online publication, 2 February 2017; doi:10.1038/gt.2017.4.

  9. Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases.

    PubMed

    Jerusalinsky, Diana; Baez, María Verónica; Epstein, Alberto Luis

    2012-01-01

    Somatic manipulation of the nervous system without the involvement of the germinal line appears as a powerful counterpart of the transgenic strategy. The use of viral vectors to produce specific, transient and localized knockout, knockdown, ectopic expression or overexpression of a gene, leads to the possibility of analyzing both in vitro and in vivo molecular basis of neural function. In this approach, viral particles engineered to carry transgenic sequences are delivered into discrete brain regions, to transduce cells that will express the transgenic products. Amplicons are replication-incompetent helper-dependent vectors derived from herpes simplex virus type 1 (HSV-1), with several advantages that potentiate their use in neurosciences: (1) minimal toxicity: amplicons do not encode any virus proteins, are neither toxic for the infected cells nor pathogenic for the inoculated animals and elicit low levels of adaptive immune responses; (2) extensive transgene capacity to carry up to 150-kb of foreign DNA; i.e., entire genes with regulatory sequences could be delivered; (3) widespread cellular tropism: amplicons can experimentally infect several cell types including glial cells, though naturally the virus infects mainly neurons and epithelial cells; (4) since the viral genome does not integrate into cellular chromosomes there is low probability to induce insertional mutagenesis. Recent investigations on gene transfer into the brain using these vectors, have focused on gene therapy of inherited genetic diseases affecting the nervous system, such as ataxias, or on neurodegenerative disorders using experimental models of Parkinson's or Alzheimer's disease. Another group of studies used amplicons to investigate complex neural functions such as neuroplasticity, anxiety, learning and memory. In this short review, we summarize recent data supporting the potential of HSV-1 based amplicon vector model for gene delivery and modulation of gene expression in primary cultures

  10. Application of next-generation sequencing technologies in Neurology.

    PubMed

    Jiang, Teng; Tan, Meng-Shan; Tan, Lan; Yu, Jin-Tai

    2014-12-01

    Genetic risk factors that underlie many rare and common neurological diseases remain poorly understood because of the multi-factorial and heterogeneous nature of these disorders. Although genome-wide association studies (GWAS) have successfully uncovered numerous susceptibility genes for these diseases, odds ratios associated with risk alleles are generally low and account for only a small proportion of estimated heritability. These results implicated that there are rare (present in <5% of the population) but not causative variants exist in the pathogenesis of these diseases, which usually have large effect size and cannot be captured by GWAS. With the decreasing cost of next-generation sequencing (NGS) technologies, whole-genome sequencing (WGS) and whole-exome sequencing (WES) have enabled the rapid identification of rare variants with large effect size, which made huge progress in understanding the basis of many Mendelian neurological conditions as well as complex neurological diseases. In this article, recent NGS-based studies that aimed to investigate genetic causes for neurological diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, stroke, amyotrophic lateral sclerosis and spinocerebellar ataxias, have been reviewed. In addition, we also discuss the future directions of NGS applications in this article.

  11. Application of next-generation sequencing technologies in Neurology

    PubMed Central

    Jiang, Teng; Tan, Meng-Shan

    2014-01-01

    Genetic risk factors that underlie many rare and common neurological diseases remain poorly understood because of the multi-factorial and heterogeneous nature of these disorders. Although genome-wide association studies (GWAS) have successfully uncovered numerous susceptibility genes for these diseases, odds ratios associated with risk alleles are generally low and account for only a small proportion of estimated heritability. These results implicated that there are rare (present in <5% of the population) but not causative variants exist in the pathogenesis of these diseases, which usually have large effect size and cannot be captured by GWAS. With the decreasing cost of next-generation sequencing (NGS) technologies, whole-genome sequencing (WGS) and whole-exome sequencing (WES) have enabled the rapid identification of rare variants with large effect size, which made huge progress in understanding the basis of many Mendelian neurological conditions as well as complex neurological diseases. In this article, recent NGS-based studies that aimed to investigate genetic causes for neurological diseases, including Alzheimer’s disease, Parkinson’s disease, epilepsy, multiple sclerosis, stroke, amyotrophic lateral sclerosis and spinocerebellar ataxias, have been reviewed. In addition, we also discuss the future directions of NGS applications in this article. PMID:25568878

  12. Nanotechnology: intelligent design to treat complex disease.

    PubMed

    Couvreur, Patrick; Vauthier, Christine

    2006-07-01

    The purpose of this expert review is to discuss the impact of nanotechnology in the treatment of the major health threats including cancer, infections, metabolic diseases, autoimmune diseases, and inflammations. Indeed, during the past 30 years, the explosive growth of nanotechnology has burst into challenging innovations in pharmacology, the main input being the ability to perform temporal and spatial site-specific delivery. This has led to some marketed compounds through the last decade. Although the introduction of nanotechnology obviously permitted to step over numerous milestones toward the development of the "magic bullet" proposed a century ago by the immunologist Paul Ehrlich, there are, however, unresolved delivery problems to be still addressed. These scientific and technological locks are discussed along this review together with an analysis of the current situation concerning the industrial development.

  13. Complex I, iron, and ferritin in Parkinson's disease substantia nigra.

    PubMed

    Mann, V M; Cooper, J M; Daniel, S E; Srai, K; Jenner, P; Marsden, C D; Schapira, A H

    1994-12-01

    Elevated iron levels, enhanced oxidative damage, and complex I deficiency have been identified in the substantia nigra of Parkinson's disease patients. To understand the interrelationship of these abnormalities, we analyzed iron levels, ferritin levels, and complex I activity in the substantia nigra of patients with Parkinson's disease. Total iron levels were increased significantly, ferritin levels were unchanged, and complex I activities were decreased significantly in the substantia nigra samples. The failure of ferritin levels to increase with elevated iron concentrations suggests that the amount of reactive iron may increase in the substantia nigra of Parkinson's disease patients. There was no correlation between the iron levels and complex I activity or the iron-ferritin ratio and complex I activity in the substantia nigra samples.

  14. From quantitative protein complex analysis to disease mechanism.

    PubMed

    Texier, Y; Kinkl, N; Boldt, K; Ueffing, M

    2012-12-15

    Interest in the field of cilia biology and cilia-associated diseases - ciliopathies - has strongly increased over the last few years. Proteomic technologies, especially protein complex analysis by affinity purification-based methods, have been used to decipher various basic but also disease-associated mechanisms. This review focusses on some selected recent studies using affinity purification-based protein complex analysis, thereby exemplifying the great possibilities this technology offers.

  15. Burden of neurological conditions in Canada.

    PubMed

    Gaskin, J; Gomes, J; Darshan, S; Krewski, D

    2016-05-03

    Neurological conditions are among the leading causes of disability in the Canadian population and are associated with a large public health burden. An increase in life expectancy and a declining birth rate has resulted in an aging Canadian population, and the proportion of age-adjusted mortality due to non-communicable diseases has been steadily increasing. These conditions are frequently associated with chronic disability and an increasing burden of care for patients, their families and caregivers. The National Population Health Study of Neurological Conditions (NPHSNC) aims to improve knowledge about neurological conditions and their impacts on individuals, their families, caregivers and health care system. The Systematic Review of Determinants of Neurological Conditions, a specific objective within the NPHSNC, is a compendium of systematic reviews on risk factors affecting onset and progression of the following 14 priority neurological conditions: Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), brain tumours (BT), cerebral palsy (CP), dystonia, epilepsy, Huntington's disease (HD), hydrocephalus, multiple sclerosis (MS), muscular dystrophies (MD), neurotrauma, Parkinson's disease (PD), spina bifida (SB), and Tourette's syndrome (TS). The burden of neurological disease is expected to increase as the population ages, and this trend is presented in greater detail for Alzheimer's and Parkinson's disease because the incidence of these two common neurological diseases increases significantly with age over 65 years. This article provides an overview of burden of neurological diseases in Canada to set the stage for the in-depth systematic reviews of the 14 priority neurological conditions presented in subsequent articles in this issue.

  16. Key sleep neurologic disorders

    PubMed Central

    St. Louis, Erik K.

    2014-01-01

    Summary Sleep disorders are frequent comorbidities in neurologic patients. This review focuses on clinical aspects and prognosis of 3 neurologic sleep disorders: narcolepsy, restless legs syndrome/Willis-Ekbom disease (RLS/WED), and REM sleep behavior disorder (RBD). Narcolepsy causes pervasive, enduring excessive daytime sleepiness, adversely affecting patients' daily functioning. RLS/WED is characterized by an uncomfortable urge to move the legs before sleep, often evolving toward augmentation and resulting in daylong bothersome symptoms. RBD causes potentially injurious dream enactment behaviors that often signify future evolution of overt synucleinopathy neurodegeneration in as many as 81% of patients. Timely recognition, referral for polysomnography, and longitudinal follow-up of narcolepsy, RLS/WED, and RBD patients are imperatives for neurologists in providing quality comprehensive patient care. PMID:24605270

  17. The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview.

    PubMed

    Garcia-Cazorla, Àngels; Mochel, Fanny; Lamari, Foudil; Saudubray, Jean-Marie

    2015-01-01

    Over one hundred diseases related to inherited defects of complex lipids synthesis and remodeling are now reported. Most of them were described within the last 5 years. New descriptions and phenotypes are expanding rapidly. While the associated clinical phenotype is currently difficult to outline, with only a few patients identified, it appears that all organs and systems may be affected. The main clinical presentations can be divided into (1) Diseases affecting the central and peripheral nervous system. Complex lipid synthesis disorders produce prominent motor manifestations due to upper and/or lower motoneuron degeneration. Motor signs are often complex, associated with other neurological and extra-neurological signs. Three neurological phenotypes, spastic paraparesis, neurodegeneration with brain iron accumulation and peripheral neuropathies, deserve special attention. Many apparently well clinically defined syndromes are not distinct entities, but rather clusters on a continuous spectrum, like for the PNPLA6-associated diseases, extending from Boucher-Neuhauser syndrome via Gordon Holmes syndrome to spastic ataxia and pure hereditary spastic paraplegia; (2) Muscular/cardiac presentations; (3) Skin symptoms mostly represented by syndromic (neurocutaneous) and non syndromic ichthyosis; (4) Retinal dystrophies with syndromic and non syndromic retinitis pigmentosa, Leber congenital amaurosis, cone rod dystrophy, Stargardt disease; (5) Congenital bone dysplasia and segmental overgrowth disorders with congenital lipomatosis; (6) Liver presentations characterized mainly by transient neonatal cholestatic jaundice and non alcoholic liver steatosis with hypertriglyceridemia; and (7) Renal and immune presentations. Lipidomics and molecular functional studies could help to elucidate the mechanism(s) of dominant versus recessive inheritance observed for the same gene in a growing number of these disorders.

  18. [Sir William Richard Gowers: author of the "bible of neurology"].

    PubMed

    Hirose, Genjiro

    2014-11-01

    William Richard Gowers is one of the great pioneers in neurology and the author of the well-known neurology textbook, "A Manual of Diseases of the Nervous System." His concepts of neurology are based on meticulously and carefully accumulated knowledge of history, observations, and neurological examinations of patients with various neurological diseases. He is not only a great neurologist but also a great teacher who loves teaching students and physicians through well-prepared lectures. We can glean the essence of the field of neurology through his life story and numerous writings concerning neurological diseases.

  19. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis

    PubMed Central

    Sadeghian, Mona; Mastrolia, Vincenzo; Rezaei Haddad, Ali; Mosley, Angelina; Mullali, Gizem; Schiza, Dimitra; Sajic, Marija; Hargreaves, Iain; Heales, Simon; Duchen, Michael R.; Smith, Kenneth J.

    2016-01-01

    Neuroinflammation can cause major neurological dysfunction, without demyelination, in both multiple sclerosis (MS) and a mouse model of the disease (experimental autoimmune encephalomyelitis; EAE), but the mechanisms remain obscure. Confocal in vivo imaging of the mouse EAE spinal cord reveals that impaired neurological function correlates with the depolarisation of both the axonal mitochondria and the axons themselves. Indeed, the depolarisation parallels the expression of neurological deficit at the onset of disease, and during relapse, improving during remission in conjunction with the deficit. Mitochondrial dysfunction, fragmentation and impaired trafficking were most severe in regions of extravasated perivascular inflammatory cells. The dysfunction at disease onset was accompanied by increased expression of the rate-limiting glycolytic enzyme phosphofructokinase-2 in activated astrocytes, and by selective reduction in spinal mitochondrial complex I activity. The metabolic changes preceded any demyelination or axonal degeneration. We conclude that mitochondrial dysfunction is a major cause of reversible neurological deficits in neuroinflammatory disease, such as MS. PMID:27624721

  20. Production of Complex Syntax in Normal Aging and Alzheimer's Disease.

    ERIC Educational Resources Information Center

    Bates, Elizabeth; And Others

    1995-01-01

    This study compared the production of complex syntax by 16 older adults diagnosed with probable Alzheimer's disease and 25 age-matched control subjects. It found that although individuals diagnosed with Alzheimer's disease did not produce frank lexical or grammatical errors, they did find it difficult to access the "best fit" between meaning and…

  1. Comprehension of Complex Discourse in Different Stages of Huntington's Disease

    ERIC Educational Resources Information Center

    Saldert, Charlotta; Fors, Angelika; Stroberg, Sofia; Hartelius, Lena

    2010-01-01

    Background: Huntington's disease not only affects motor speech control, but also may have an impact on the ability to produce and understand language in communication. Aims: The ability to comprehend basic and complex discourse was investigated in three different stages of Huntington's disease. Methods & Procedures: In this experimental group…

  2. Quinolinic acid/tryptophan ratios predict neurological disease in SIV-infected macaques and remain elevated in the brain under cART

    PubMed Central

    Drewes, Julia L.; Meulendyke, Kelly A.; Liao, Zhaohao; Witwer, Kenneth W.; Gama, Lucio; Ubaida-Mohien, Ceereena; Li, Ming; Notarangelo, Francesca M.; Tarwater, Patrick M.; Schwarcz, Robert; Graham, David R.; Zink, M. Christine

    2015-01-01

    Activation of the kynurenine pathway (KP) of tryptophan catabolism likely contributes to HIV-associated neurological disorders. However, KP activation in brain tissue during HIV infection has been understudied, and the effect of combination anti-retroviral therapy (cART) on KP induction in the brain is unknown. To examine these questions, tryptophan, kynurenine, 3-hydroxykynurenine, quinolinic acid, and serotonin levels were measured longitudinally during SIV infection in striatum and CSF from untreated and cART-treated pigtailed macaques. mRNA levels of KP enzymes also were measured in striatum. In untreated macaques, elevations in KP metabolites coincided with transcriptional induction of upstream enzymes in the KP. Striatal KP induction was also temporally associated - but did not directly correlate - with serotonin losses in the brain. CSF quinolinic acid/tryptophan ratios were found to be the earliest predictor of neurological disease in untreated SIV-infected macaques, outperforming other KP metabolites as well as the putative biomarkers Interleukin-6 (IL-6) and Monocyte chemoattractant protein-1 (MCP-1). Finally, cART did not restore KP metabolites to control levels in striatum despite control of virus, though CSF metabolite levels were normalized in most animals. Overall these results demonstrate that cerebral KP activation is only partially resolved with cART, and that CSF QUIN/TRP ratios are an early, predictive biomarker of CNS disease. PMID:25776527

  3. Management of complex perianal Crohn’s disease

    PubMed Central

    Aguilera-Castro, Lara; Ferre-Aracil, Carlos; Garcia-Garcia-de-Paredes, Ana; Rodriguez-de-Santiago, Enrique; Lopez-Sanroman, Antonio

    2017-01-01

    Patients with Crohn’s disease often develop perianal disease, successfully managed in most cases. However, its most aggressive form, complex perianal disease, is associated with high morbidity and a significant impairment in patients’ quality of life. The aim of this review is to provide an updated approach to this condition, reviewing aspects of its epidemiology, diagnosis and therapeutic alternatives. Emerging treatment options are also discussed. A multidisciplinary assessment of these patients with a coordinated medical and surgical approach is crucial. PMID:28042236

  4. EXpanding Treatment for Existing Neurological Disease (EXTEND): An Open-Label Phase II Clinical Trial of Hydroxyurea Treatment in Sickle Cell Anemia

    PubMed Central

    Little, Courtney R; Reid, Marvin E; Soares, Deanne P; Taylor-Bryan, Carolyn; Knight-Madden, Jennifer M; Stuber, Susan E; Badaloo, Asha V; Aldred, Karen; Wisdom-Phipps, Margaret E; Latham, Teresa; Ware, Russell E

    2016-01-01

    Background Cerebral vasculopathy in sickle cell anemia (SCA) begins in childhood and features intracranial arterial stenosis with high risk of ischemic stroke. Stroke risk can be reduced by transcranial doppler (TCD) screening and chronic transfusion therapy; however, this approach is impractical in many developing countries. Accumulating evidence supports the use of hydroxyurea for the prevention and treatment of cerebrovascular disease in children with SCA. Recently we reported that hydroxyurea significantly reduced the conversion from conditional TCD velocities to abnormal velocities; whether hydroxyurea can be used for children with newly diagnosed severe cerebrovascular disease in place of starting transfusion therapy remains unknown. Objective The primary objective of the EXpanding Treatment for Existing Neurological Disease (EXTEND) trial is to investigate the effect of open label hydroxyurea on the maximum time-averaged mean velocity (TAMV) after 18 months of treatment compared to the pre-treatment value. Secondary objectives include the effects of hydroxyurea on serial TCD velocities, the incidence of neurological and non-neurological events, quality of life (QOL), body composition and metabolism, toxicity and treatment response, changes to brain magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), genetic and serologic markers of disease severity, and cognitive and pulmonary function. Methods This prospective Phase II trial will enroll children with SCA in Jamaica, between the ages of 2 and 17 years, with either conditional (170-199 cm/sec) or abnormal (≥ 200 cm/sec) TCD velocities. Oral hydroxyurea will be administered daily and escalated to the maximum tolerated dose (MTD). Participants will be seen in the Sickle Cell Unit (SCU) in Kingston, Jamaica monthly until achieving MTD, and then every 3 months. TCD will be performed every 6 months. Results Currently, 43 participants have been enrolled out of a projected 50. There was one

  5. Neurology in the developing world.

    PubMed

    Singhal, B S; Khadilkar, Satish V

    2014-01-01

    The social and economic impact of neurologic disorders is being increasingly recognized in the developing world. Demographic transition, especially in large Asian populations, has resulted in a significant increase in the elderly population, bringing to the fore neurologic illnesses such as strokes, Alzheimer's disease, and Parkinson's disease. CNS infections such as retroviral diseases, tuberculosis, and malaria still account for high mortality and morbidity. Traumatic brain injury due to traffic accidents takes a high toll of life. Epilepsy continues to be a major health concern with large segments of the developing world's population receiving no treatment. A significant mismatch between the provision of specialized neurologic services and the requirement for them exists, especially in rural areas. Also, health insurance is not available for the majority, with patients having bear the costs themselves, thus limiting the procurement of available healthcare facilities. Neurologic training centers are few and the availability of laboratory facilities and equipment is largely limited to the metropolitan areas. Cultural practices, superstitious beliefs, ignorance, and social stigma may also impede the delivery of neurologic care. Optimizing available human resources, integrating primary, secondary, and tertiary healthcare tiers and making medical treatment more affordable will improve the neurologic care in the developing world.

  6. Inferring drug-disease associations based on known protein complexes.

    PubMed

    Yu, Liang; Huang, Jianbin; Ma, Zhixin; Zhang, Jing; Zou, Yapeng; Gao, Lin

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html.

  7. Inferring drug-disease associations based on known protein complexes

    PubMed Central

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html. PMID:26044949

  8. Identification and validation of clinical predictors for the risk of neurological involvement in children with hand, foot, and mouth disease in Sarawak

    PubMed Central

    2009-01-01

    Background Human enterovirus 71 (HEV71) can cause Hand, foot, and mouth disease (HFMD) with neurological complications, which may rapidly progress to fulminant cardiorespiratory failure, and death. Early recognition of children at risk is the key to reduce acute mortality and morbidity. Methods We examined data collected through a prospective clinical study of HFMD conducted between 2000 and 2006 that included 3 distinct outbreaks of HEV71 to identify risk factors associated with neurological involvement in children with HFMD. Results Total duration of fever ≥ 3 days, peak temperature ≥ 38.5°C and history of lethargy were identified as independent risk factors for neurological involvement (evident by CSF pleocytosis) in the analysis of 725 children admitted during the first phase of the study. When they were validated in the second phase of the study, two or more (≥ 2) risk factors were present in 162 (65%) of 250 children with CSF pleocytosis compared with 56 (30%) of 186 children with no CSF pleocytosis (OR 4.27, 95% CI2.79–6.56, p < 0.0001). The usefulness of the three risk factors in identifying children with CSF pleocytosis on hospital admission during the second phase of the study was also tested. Peak temperature ≥ 38.5°C and history of lethargy had the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 28%(48/174), 89%(125/140), 76%(48/63) and 50%(125/251), respectively in predicting CSF pleocytosis in children that were seen within the first 2 days of febrile illness. For those presented on the 3rd or later day of febrile illness, the sensitivity, specificity, PPV and NPV of ≥ 2 risk factors predictive of CSF pleocytosis were 75%(57/76), 59%(27/46), 75%(57/76) and 59%(27/46), respectively. Conclusion Three readily elicited clinical risk factors were identified to help detect children at risk of neurological involvement. These risk factors may serve as a guide to clinicians to decide the need for

  9. Complex disease and phenotype mapping in the domestic dog

    PubMed Central

    Hayward, Jessica J.; Castelhano, Marta G.; Oliveira, Kyle C.; Corey, Elizabeth; Balkman, Cheryl; Baxter, Tara L.; Casal, Margret L.; Center, Sharon A.; Fang, Meiying; Garrison, Susan J.; Kalla, Sara E.; Korniliev, Pavel; Kotlikoff, Michael I.; Moise, N. S.; Shannon, Laura M.; Simpson, Kenneth W.; Sutter, Nathan B.; Todhunter, Rory J.; Boyko, Adam R.

    2016-01-01

    The domestic dog is becoming an increasingly valuable model species in medical genetics, showing particular promise to advance our understanding of cancer and orthopaedic disease. Here we undertake the largest canine genome-wide association study to date, with a panel of over 4,200 dogs genotyped at 180,000 markers, to accelerate mapping efforts. For complex diseases, we identify loci significantly associated with hip dysplasia, elbow dysplasia, idiopathic epilepsy, lymphoma, mast cell tumour and granulomatous colitis; for morphological traits, we report three novel quantitative trait loci that influence body size and one that influences fur length and shedding. Using simulation studies, we show that modestly larger sample sizes and denser marker sets will be sufficient to identify most moderate- to large-effect complex disease loci. This proposed design will enable efficient mapping of canine complex diseases, most of which have human homologues, using far fewer samples than required in human studies. PMID:26795439

  10. Communicable diseases in complex emergencies: impact and challenges.

    PubMed

    Connolly, Máire A; Gayer, Michelle; Ryan, Michael J; Salama, Peter; Spiegel, Paul; Heymann, David L

    Communicable diseases, alone or in combination with malnutrition, account for most deaths in complex emergencies. Factors promoting disease transmission interact synergistically leading to high incidence rates of diarrhoea, respiratory infection, malaria, and measles. This excess morbidity and mortality is avoidable as effective interventions are available. Adequate shelter, water, food, and sanitation linked to effective case management, immunisation, health education, and disease surveillance are crucial. However, delivery mechanisms are often compromised by loss of health staff, damage to infrastructure, insecurity, and poor co-ordination. Although progress has been made in the control of specific communicable diseases in camp settings, complex emergencies affecting large geographical areas or entire countries pose a greater challenge. Available interventions need to be implemented more systematically in complex emergencies with higher levels of coordination between governments, UN agencies, and non-governmental organisations. In addition, further research is needed to adapt and simplify interventions, and to explore novel diagnostics, vaccines, and therapies.

  11. Physiological Dynamics in Demyelinating Diseases: Unraveling Complex Relationships through Computer Modeling

    PubMed Central

    Coggan, Jay S.; Bittner, Stefan; Stiefel, Klaus M.; Meuth, Sven G.; Prescott, Steven A.

    2015-01-01

    Despite intense research, few treatments are available for most neurological disorders. Demyelinating diseases are no exception. This is perhaps not surprising considering the multifactorial nature of these diseases, which involve complex interactions between immune system cells, glia and neurons. In the case of multiple sclerosis, for example, there is no unanimity among researchers about the cause or even which system or cell type could be ground zero. This situation precludes the development and strategic application of mechanism-based therapies. We will discuss how computational modeling applied to questions at different biological levels can help link together disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism. By making testable predictions and revealing critical gaps in existing knowledge, such models can help direct research and will provide a rigorous framework in which to integrate new data as they are collected. Nowadays, there is no shortage of data; the challenge is to make sense of it all. In that respect, computational modeling is an invaluable tool that could, ultimately, transform how we understand, diagnose, and treat demyelinating diseases. PMID:26370960

  12. Efficacy and safety of nerve growth factor for the treatment of neurological diseases: a meta-analysis of 64 randomized controlled trials involving 6,297 patients

    PubMed Central

    Zhao, Meng; Li, Xiao-yan; Xu, Chun-ying; Zou, Li-ping

    2015-01-01

    OBJECTIVE: China is the only country where nerve growth factor is approved for large-scale use as a clinical medicine. More than 10 years ago, in 2003, nerve growth factor injection was listed as a national drug. The goal of this article is to evaluate comprehensively the efficacy and safety of nerve growth factor for the treatment of neurological diseases. DATA RETRIEVAL: A computer-based retrieval was performed from six databases, including the Cochrane Library, PubMed, EMBASE, Sino Med, CNKI, and the VIP database, searching from the clinical establishment of nerve growth factor for treatment until December 31, 2013. The key words for the searches were “nerve growth factor, randomized controlled trials” in Chinese and in English. DATA SELECTION: Inclusion criteria: any study published in English or Chinese referring to randomized controlled trials of nerve growth factor; patients with neurological diseases such as peripheral nerve injury, central nerve injury, cranial neuropathy, and nervous system infections; patients older than 7 years; similar research methods and outcomes assessing symptoms; and measurement of nerve conduction velocities. The meta-analysis was conducted using Review Manager 5.2.3 software. MAIN OUTCOME MEASURES: The total effective rate, the incidence of adverse effects, and the nerve conduction velocity were recorded for each study. RESULTS: Sixty-four studies involving 6,297 patients with neurological diseases were included. The total effective rate in the group treated with nerve growth factor was significantly higher than that in the control group (P < 0.0001, RR: 1.35, 95%CI: 1.30–1.40). The average nerve conduction velocity in the nerve growth factor group was significantly higher than that in the control group (P < 0.00001, MD: 4.59 m/s, 95%CI: 4.12–5.06). The incidence of pain or scleroma at the injection site in the nerve growth factor group was also higher than that in the control group (P < 0.00001, RR: 6.30, 95%CI: 3.53

  13. Neurology in Federico Fellini?s work and life.

    PubMed

    Teive, Hélio Afonso Ghizoni; Caramelli, Paulo; Cardoso, Francisco Eduardo Costa

    2014-09-01

    The authors present a historical review of the neurological diseases related to the famous moviemaker Federico Fellini. There is an account of diseases depicted on his movies as well as his ischemic stroke and consequent neurological deficit - left spatial neglect.

  14. Ontologies of drug discovery and design for neurology, cardiology and oncology.

    PubMed

    Vázquez-Naya, José M; Martínez-Romero, Marcos; Porto-Pazos, Ana B; Novoa, Francisco; Valladares-Ayerbes, Manuel; Pereira, Javier; Munteanu, Cristian R; Dorado, Julián

    2010-01-01

    The complex diseases in the field of Neurology, Cardiology and Oncology have the most important impact on our society. The theoretical methods are fast and they involve some efficient tools aimed at discovering new active drugs specially designed for these diseases. The ontology of all the items that are linked with the molecule metabolism and the treatment of these diseases gives us the possibility to correlate information from different levels and to discover new relationships between complex diseases such as common drug targets and disease patterns. This review presents the ontologies used to process drug discovery and design in the most common complex diseases.

  15. [Neurological Disorders and Pregnancy].

    PubMed

    Berlit, P

    2016-02-01

    Neurological disorders caused by pregnancy and puerperium include the posterior reversible encephalopathy syndrome, the amniotic fluid embolism syndrome (AFES), the postpartum angiopathy due to reversible vasoconstriction syndrome, and the Sheehan syndrome. Hypertension and proteinuria are the hallmarks of preeclampsia, seizures define eclampsia. Hemolysis, elevated liver enzymes and low platelets constitute the HELLP syndrome. Vision disturbances including cortical blindness occur in the posterior reversible encephalopathy syndrome (PRES). The Sheehan syndrome presents with panhypopituitarism post partum due to apoplexia of the pituitary gland in severe peripartal blood loss leading to longstanding hypotension. Some neurological disorders occur during pregnancy and puerperium with an increased frequency. These include stroke, sinus thrombosis, the restless legs syndrome and peripheral nerve syndromes, especially the carpal tunnel syndrome. Chronic neurologic diseases need an interdisciplinary approach during pregnancy. Some anticonvulsants double the risk of birth defects. The highest risk exists for valproic acid, the lowest for lamotrigine and levetiracetam. For MS interval treatment, glatiramer acetate and interferones seem to be safe during pregnancy. All other drugs should be avoided.

  16. Neurological disorders and travel.

    PubMed

    Awada, Adnan; Kojan, Suleiman

    2003-02-01

    Travel is associated with a number of neurological disorders that can be divided into two categories: (1) Neurological infections including encephalitides, neurotuberculosis, neurobrucellosis, cysticercosis and trichinosis. Some of these disorders can be prevented by vaccinations, such as Japanese B encephalitis and rabies, some by the use of insect repellents and some by avoiding raw milk products and undercooked meat. (2) Non-infective neurological disorders, such as acute mountain sickness and high altitude cerebral oedema, problems occurring during air travel such as syncope, seizures, strokes, nerve compression, barotrauma and vertigo, motion sickness and foodborne neurotoxic disorders such as ciguatera, shellfish poisoning and intoxication by cassava. This group of diseases and disorders could be prevented if the traveller knows about them, applies simple physiological rules, takes some specific medications and knows how to avoid intoxications in certain geographical areas. Meningococcal meningitis, malaria and jet lag syndrome are extensively discussed in other articles of this issue. The discussion in this paper will be limited to the other disorders.

  17. Understanding Parkinson Disease: A Complex and Multifaceted Illness.

    PubMed

    Gopalakrishna, Apoorva; Alexander, Sheila A

    2015-12-01

    Parkinson disease is an incredibly complex and multifaceted illness affecting millions of people in the United States. Parkinson disease is characterized by progressive dopaminergic neuronal dysfunction and loss, leading to debilitating motor, cognitive, and behavioral symptoms. Parkinson disease is an enigmatic illness that is still extensively researched today to search for a better understanding of the disease, develop therapeutic interventions to halt or slow progression of the disease, and optimize patient outcomes. This article aims to examine in detail the normal function of the basal ganglia and dopaminergic neurons in the central nervous system, the etiology and pathophysiology of Parkinson disease, related signs and symptoms, current treatment, and finally, the profound impact of understanding the disease on nursing care.

  18. Advances in the genetically-complex autoinflammatory diseases

    PubMed Central

    Ombrello, Michael J.

    2015-01-01

    Monogenic diseases usually demonstrate Mendelian inheritance and are caused by highly penetrant genetic variants of a single gene. In contrast, genetically-complex diseases arise from a combination of multiple genetic and environmental factors. The concept of autoinflammation originally emerged from the identification of individual, activating lesions of the innate immune system as the molecular basis of the hereditary periodic fever syndromes. In addition to these rare, monogenic forms of autoinflammation, genetically-complex autoinflammatory diseases like the periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome, chronic recurrent multifocal osteomyelitis (CRMO), Behçet’s disease, and systemic arthritis also fulfill the definition of autoinflammatory diseases - namely the development of apparently unprovoked episodes of inflammation without identifiable exogenous triggers and in the absence of autoimmunity. Interestingly, investigations of these genetically-complex autoinflammatory diseases have implicated both innate and adaptive immune abnormalities, blurring the line between autoinflammation and autoimmunity. This reinforces the paradigm of concerted innate and adaptive immune dysfunction leading to genetically-complex autoinflammatory phenotypes. PMID:26077134

  19. Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases.

    PubMed

    Louridas, George E; Lourida, Katerina G

    2017-02-21

    Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy.

  20. Conceptual Foundations of Systems Biology Explaining Complex Cardiac Diseases

    PubMed Central

    Louridas, George E.; Lourida, Katerina G.

    2017-01-01

    Systems biology is an important concept that connects molecular biology and genomics with computing science, mathematics and engineering. An endeavor is made in this paper to associate basic conceptual ideas of systems biology with clinical medicine. Complex cardiac diseases are clinical phenotypes generated by integration of genetic, molecular and environmental factors. Basic concepts of systems biology like network construction, modular thinking, biological constraints (downward biological direction) and emergence (upward biological direction) could be applied to clinical medicine. Especially, in the field of cardiology, these concepts can be used to explain complex clinical cardiac phenotypes like chronic heart failure and coronary artery disease. Cardiac diseases are biological complex entities which like other biological phenomena can be explained by a systems biology approach. The above powerful biological tools of systems biology can explain robustness growth and stability during disease process from modulation to phenotype. The purpose of the present review paper is to implement systems biology strategy and incorporate some conceptual issues raised by this approach into the clinical field of complex cardiac diseases. Cardiac disease process and progression can be addressed by the holistic realistic approach of systems biology in order to define in better terms earlier diagnosis and more effective therapy. PMID:28230815

  1. Hippocrates: the forefather of neurology.

    PubMed

    Breitenfeld, T; Jurasic, M J; Breitenfeld, D

    2014-09-01

    Hippocrates is one of the most influential medical doctors of all times. He started observing and experimenting in times of mysticism and magic. He carried a holistic and humanitarian approach to the patient with examination as the principal approach-inspection, palpation and auscultation are still the most important tools in diagnosing algorithms of today. He had immense experience with the human body most likely due to numerous wound treatments he had performed; some even believe he performed autopsies despite the negative trend at the time. Hippocrates identified the brain as the analyst of the outside world, the interpreter of consciousness and the center of intelligence and willpower. Interestingly, Hippocrates was aware of many valid concepts in neurology; his treatise On the Sacred Disease was the most important for understanding neurology and epilepsy. His other ideas pioneered modern day neurology mentioning neurological diseases like apoplexy, spondylitis, hemiplegia, and paraplegia. Today, 10 % of neurological Pubmed and 7 % of neuroscience Scopus reviews mention Corpus Hippocraticum as one of the sources. Therefore, Hippocrates may be considered as the forefather of neurology.

  2. Depressive syndromes in neurological disorders.

    PubMed

    Hellmann-Regen, Julian; Piber, Dominique; Hinkelmann, Kim; Gold, Stefan M; Heesen, Christoph; Spitzer, Carsten; Endres, Matthias; Otte, Christian

    2013-11-01

    Depressive syndromes represent a common and often characteristic feature in a number of neurological disorders. One prominent example is the development of post-stroke depression, which can be observed in more than one-third of stroke survivors in the aftermath of an ischemic stroke. Thus, post-stroke depression represents one of the most prevalent, disabling, and potentially devastating psychiatric post-stroke complications. On the other hand, depressive syndromes may also be considered as a risk factor for certain neurological disorders, as recently revealed by a meta-analysis of prospective cohort studies, which demonstrated an increased risk for ischemic events in depressed patients. Moreover, depressive syndromes represent common comorbidities in a number of other neurological disorders such as Parkinson's disease, multiple sclerosis, or epilepsy, in which depression has a strong impact on both quality of life and outcome of the primary neurological disorder.

  3. Common vs. Rare Allele Hypotheses for Complex Diseases

    PubMed Central

    Schork, Nicholas J.; Murray, Sarah S.; Frazer, Kelly A.; Topol, Eric J.

    2010-01-01

    There has been growing debate over the nature of the genetic contribution to individual susceptibility to common complex diseases such as diabetes, osteoporosis, and cancer. The ‘Common Disease, Common Variant (CDCV)’ hypothesis argues that genetic variations with appreciable frequency in the population at large, but relatively low ‘penetrance’ (or the probability that a carrier of the relevant variants will express the disease), are the major contributors to genetic susceptibility to common diseases. The ‘Common Disease, Rare Variant (CDRV)’ hypothesis, on the other hand, argues that multiple rare DNA sequence variations, each with relatively high penetrance, are the major contributors to genetic susceptibility to common diseases. Both hypotheses have their place in current research efforts. PMID:19481926

  4. Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders

    PubMed Central

    Carter, C. J.

    2013-01-01

    Toxoplasma gondii is not only implicated in schizophrenia and related disorders, but also in Alzheimer's or Parkinson's disease, cancer, cardiac myopathies, and autoimmune disorders. During its life cycle, the pathogen interacts with ~3000 host genes or proteins. Susceptibility genes for multiple sclerosis, Alzheimer's disease, schizophrenia, bipolar disorder, depression, childhood obesity, Parkinson's disease, attention deficit hyperactivity disorder (P  from  8.01E − 05  (ADHD)  to  1.22E − 71) (multiple sclerosis), and autism (P = 0.013), but not anorexia or chronic fatigue are highly enriched in the human arm of this interactome and 18 (ADHD) to 33% (MS) of the susceptibility genes relate to it. The signalling pathways involved in the susceptibility gene/interactome overlaps are relatively specific and relevant to each disease suggesting a means whereby susceptibility genes could orient the attentions of a single pathogen towards disruption of the specific pathways that together contribute (positively or negatively) to the endophenotypes of different diseases. Conditional protein knockdown, orchestrated by T. gondii proteins or antibodies binding to those of the host (pathogen derived autoimmunity) and metabolite exchange, may contribute to this disruption. Susceptibility genes may thus be related to the causes and influencers of disease, rather than (and as well as) to the disease itself. PMID:23533776

  5. Review: quantifying mitochondrial dysfunction in complex diseases of aging.

    PubMed

    Horan, Martin P; Pichaud, Nicolas; Ballard, J William O

    2012-10-01

    There is accumulating evidence that mitochondrial respiratory malfunction is associated with aging-associated complex diseases. However, progress in our understanding of these diseases has been hampered by the sensitivity and throughput of systems employed to quantify dysfunction and inherent limitations of the biological systems studied. In this review, we describe and contrast two methodologies that have been developed for measuring mitochondrial function to address the need for improved sensitivity and increased throughput. We then consider the utility of each methodology in studying three biological systems: isolated mitochondria, cultured cells, and cell fibers and tissues. Finally, we discuss the application of each methodology in the study of mitochondrial dysfunction in Alzheimer's disease, type 2 diabetes mellitus, and aging-associated autophagy impairment and mitochondrial malfunction. We conclude that the methodologies are complementary, and researchers may need to examine multiple biological systems to unravel complex diseases of aging.

  6. Neurologic aspects of multiple organ transplantation.

    PubMed

    Zivković, Saša A

    2014-01-01

    Complex multiorgan failure may require simultaneous transplantation of several organs, including heart-lung, kidney-pancreas, or multivisceral transplantation. Solid organ transplantation can also be combined with hematopoietic stem cell transplantation to modulate immunologic response to a solid organ allograft. Combined multiorgan transplantation may offer a lower rate of allograft rejection and lower immunosuppression needs. In recent years, intestinal and multivisceral transplantations became viable as a rescue treatment for patients with irreversible intestinal failure who can no longer tolerate total parenteral nutrition with 70% survival after 5 years which is comparable to other types of solid organ allografts. Post-transplant neurologic complications were reported in up to 86% of allograft recipients and greatly overlap in intestinal and multivisceral allograft recipients, without a significant effect on the outcome of transplantation. Other common organ combinations in multiorgan transplantation include kidney-pancreas, which is mostly used for patients with renal failure and uncontrolled diabetes, and heart-lung for patients with congenital heart disease and idiopathic pulmonary arterial hypertension. Kidney-pancreas transplantation frequently results in an improvement of diabetic complications, including diabetic neuropathy. Heart-lung allograft recipients have very similar clinical course and spectrum of neurologic complications to lung transplant recipients. At this time there are no reports of an increased risk of graft-versus-host disease with combined transplantation of solid organ allograft and hematopoietic stem cells. Chronic immunosuppression and complex toxic-metabolic disturbances after multiorgan transplantation create a permissive environment for development of a wide spectrum of neurologic complications which largely resemble complications after transplantations of individual components of complex multiorgan allografts.

  7. Antennal phenotype of Mexican haplogroups of the Triatoma dimidiata complex, vectors of Chagas disease.

    PubMed

    May-Concha, Irving; Guerenstein, Pablo G; Ramsey, Janine M; Rojas, Julio C; Catalá, Silvia

    2016-06-01

    Triatoma dimidiata (Latreille) is a species complex that spans North, Central, and South America and which is a key vector of all known discrete typing units (DTU) of Trypanosoma cruzi, the etiologic agent of Chagas disease. Morphological and genetic studies indicate that T. dimidiata is a species complex with three principal haplogroups (hg) in Mexico. Different markers and traits are still inconclusive regarding if other morphological differentiation may indicate probable behavioral and vectorial divergences within this complex. In this paper we compared the antennae of three Mexican haplogroups (previously verified by molecular markers ND4 and ITS-2) and discussed possible relationships with their capacity to disperse and colonized new habitats. The abundance of each type of sensillum (bristles, basiconics, thick- and thin-walled trichoids) on the antennae of the three haplogroups, were measured under light microscopy and compared using Kruskal-Wallis non-parametric and multivariate non-parametric analyses. Discriminant analyses indicate significant differences among the antennal phenotype of haplogroups either for adults and some nymphal stages, indicating consistency of the character to analyze intraspecific variability within the complex. The present study shows that the adult antennal pedicel of the T. dimidiata complex have abundant chemosensory sensilla, according with good capacity for dispersal and invasion of different habitats also related to their high capacity to adapt to conserved as well as modified habitats. However, the numerical differences among the haplogroups are suggesting variations in that capacity. The results here presented support the evidence of T. dimidiata as a species complex but show females and males in a different way. Given the close link between the bug's sensory system and its habitat and host-seeking behavior, AP characterization could be useful to complement genetic, neurological and ethological studies of the closely

  8. Coupled disease-behavior dynamics on complex networks: A review.

    PubMed

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  9. Coupled disease-behavior dynamics on complex networks: A review

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  10. Neurologic Emergencies in the Elderly.

    PubMed

    Nentwich, Lauren M; Grimmnitz, Benjamin

    2016-08-01

    Neurologic diseases are a major cause of death and disability in elderly patients. Due to the physiologic changes and increased comorbidities that occur as people age, neurologic diseases are more common in geriatric patients and a major cause of death and disability in this population. This article discusses the elderly patient presenting to the emergency department with acute ischemic stroke, transient ischemic attack, intracerebral hemorrhage, subarachnoid hemorrhage, chronic subdural hematoma, traumatic brain injury, seizures, and central nervous system infections. This article reviews the subtle presentations, difficult workups, and complicated treatment decisions as they pertain to our older patients."

  11. The impact of the human genome project on complex disease.

    PubMed

    Bailey, Jessica N Cooke; Pericak-Vance, Margaret A; Haines, Jonathan L

    2014-07-16

    In the decade that has passed since the initial release of the Human Genome, numerous advancements in science and technology within and beyond genetics and genomics have been encouraged and enhanced by the availability of this vast and remarkable data resource. Progress in understanding three common, complex diseases: age-related macular degeneration (AMD), Alzheimer's disease (AD), and multiple sclerosis (MS), are three exemplars of the incredible impact on the elucidation of the genetic architecture of disease. The approaches used in these diseases have been successfully applied to numerous other complex diseases. For example, the heritability of AMD was confirmed upon the release of the first genome-wide association study (GWAS) along with confirmatory reports that supported the findings of that state-of-the art method, thus setting the foundation for future GWAS in other heritable diseases. Following this seminal discovery and applying it to other diseases including AD and MS, the genetic knowledge of AD expanded far beyond the well-known APOE locus and now includes more than 20 loci. MS genetics saw a similar increase beyond the HLA loci and now has more than 100 known risk loci. Ongoing and future efforts will seek to define the remaining heritability of these diseases; the next decade could very well hold the key to attaining this goal.

  12. Full genome sequence of a novel coxsackievirus B5 strain isolated from neurological hand, foot, and mouth disease patients in China.

    PubMed

    Hu, Y F; Zhao, R; Xue, Y; Yang, Fan; Jin, Q

    2012-10-01

    Coxsackievirus B5 (CVB5) belongs to the human enterovirus B species within the family Picornaviridae. We report the complete genome sequence of a novel CVB5 strain, CVB5/SD/09, that is associated with neurological hand, foot, and mouth disease in China. The complete genome consists of 7,399 nucleotides, excluding the 3' poly(A) tail, and has an open reading frame that maps between nucleotide positions 744 and 7301 and encodes a 2,185-amino-acid polyprotein. Phylogenetic analysis based on different genome region regions reveals that CVB5/SD/09 belongs to a novel CVB5 lineage, and similarity plotting and bootscanning analysis based on the whole genome of CVB5 in the present study and those available in GenBank indicate that the genome of CVB5/SD/09 has a mosaic-like structure, suggesting that recombination between different CVB5 strains may occur.

  13. Multivariate analysis of the serum-cerebrospinal fluid-protein-relation for the diagnosis of neurological diseases of the central nervous systems.

    PubMed

    Prosiegel, M; Neu, I S; Pelka, R B; Fateh-Moghadam, A

    1983-12-01

    In a population comprising 197 patients, serum and CSF proteins were assayed using the radial immunodiffusion technique devised by Mancini. Multiple discriminants analysis was applied to investigate whether the measured CSF/serum protein relations and their ratios could be regarded as an indicator of specific neurological diseases. One significant finding was that the slope angle alpha of the regression line between the serum/CSF relation and molecular weight may represent an important indicative parameter. A small angle is suggestive of enhanced permeability of the BBB, a large angle of a correspondingly lowered permeability. Further, the analyses demonstrated that the combined use of several predictors can markedly improve differential diagnosis. The study also demonstrates the potential of a statistical analytic technique that is still rarely applied in medicine.

  14. [The Terminal Phase of an Intractable Neurological Disease from the Viewpoint of Nursing Care: The Importance of the Promotion of a Barrier-Free Mind for ALS Care].

    PubMed

    Muraoka, Koko

    2015-08-01

    Amyotrophic lateral sclerosis (ALS) is a particularly serious intractable neurological disease. Patients with ALS have high mortality rates if they are not put on an artificial respirator. Even with an artificial respirator, individuals with ALS are forced to witness their own physical deterioration. Because 24 hour care is usually required, an intense relationship ofter develops between patients with ALS and family caregivers. This relationship forms an invisible barrier and can impede a smooth introduction of external services. As a result, there can be a degradation in the quality of care. The purpose of this paper is to describe the voluntary efforts of patients and family caregivers in order to break down this barrier and to discuss what types of care support are available to promote barrier-free minds.

  15. A century of Dutch neurology.

    PubMed

    Koehler, P J; Bruyn, G W; Moffie, D

    1998-12-01

    The Netherlands Society of Neurology evolved from the Society of Psychiatry founded in 1871. The name was changed into Netherlands Society of Psychiatry and Neurology (NSPN) in 1897. In the same year, the word neurology was also added to the name of the journal. The Society steadily blossomed, but in 1909 the first signs of dissatisfaction occurred: the Amsterdam Neurologists Society was founded. A few split-offs would follow. The number of members of the NSPN increased from 205 in 1920 to 585 in 1960. In the early 1960s, the Society was reorganised and would consist of two sections, one for psychiatry and one for neurology. However, this would not last, as a full separation was established in 1974. For several reasons, the name of the journal was changed four times until it assumed its present name in 1974. The 100th volume of CNN was not published, as expected. in 1996, but in 1998, because of two skipped publication years, one during WWII and another in the 1970s. During the last decades of the nineteenth century, teaching of neurology was mostly given within the frame of psychiatry, following the German tradition of 'brainpsychiatry' (organic or biologic psychiatry). The first official chair of psychiatry was founded at Utrecht, 1893 (Winkler). In Amsterdam, private teachers such as Delprat taught 'electro-therapy and nervous diseases' since the 1880s. The first extraordinary chair of neurology and electrotherapy was founded for his successor, Wertheim Salomonson in 1899. The first university clinic for psychiatry and neurology started at the Amsterdam Municipal University, when Winkler became professor of psychiatry and neurology in Amsterdam in 1896. Around the turn of the century, chairs of psychiatry and neurology were also founded in Groningen and Leiden. Separate chairs for neurology and psychiatry appeared in Amsterdam in 1923 and in Utrecht in 1936. Following an initiative of Brouwer, the first neurological university clinic opened its doors in

  16. Neurological and cardiac responses after treatment with miglustat and a ketogenic diet in a patient with Sandhoff disease.

    PubMed

    Villamizar-Schiller, Ives T; Pabón, Laudy A; Hufnagel, Sophia B; Serrano, Norma C; Karl, Gabriela; Jefferies, John L; Hopkin, Robert J; Prada, Carlos E

    2015-03-01

    Sandhoff disease is a progressive neurodegenerative disorder characterized by accumulation of GM2 gangliosides. We describe a 6-year-old male with coarse facial features, developmental delay, refractory seizures, hypertrophic cardiomyopathy, who was later found to have Sandhoff disease. Previous studies have revealed that caloric restriction in combination with miglustat increased survival and motor behavior in mouse model of Sandhoff disease. These findings suggest that combination therapy may result in improved outcomes for patients with Sandhoff. Initiation of treatment with miglustat and a ketogenic diet was followed by improvement of the patient's seizure control and cardiac function. Further clinical investigation is required to better determine the benefit of management in late-onset forms of Sandhoff disease.

  17. AMPA Receptors as Therapeutic Targets for Neurological Disorders.

    PubMed

    Lee, Kevin; Goodman, Lucy; Fourie, Chantelle; Schenk, Susan; Leitch, Beulah; Montgomery, Johanna M

    2016-01-01

    Almost every neurological disease directly or indirectly affects synapse function in the brain. However, these diseases alter synapses through different mechanisms, ultimately resulting in altered synaptic transmission and/or plasticity. Glutamate is the major neurotransmitter that mediates excitatory synaptic transmission in the brain through activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors. These receptors have therefore been identified as a target for the development of therapeutic treatments for neurological disorders including epilepsy, neurodegenerative diseases, autism, and drug addiction. The fact that AMPA receptors play a dominant role throughout the brain raises the significant challenge of selectively targeting only those regions affected by disease, and clinical trials have raised doubt regarding the feasibility of specifically targeting AMPA receptors for new therapeutic options. Benzamide compounds that act as positive allosteric AMPA receptor modulators, known as AMPAkines, can act on specific brain regions and were initially proposed to revolutionize the treatment of cognitive deficits associated with neurological disorders. Their therapeutic potential has since declined due to inconsistent results in clinical trials. However, recent advances in basic biomedical research are significantly increasing our knowledge of AMPA receptor structure, binding sites, and interactions with auxiliary proteins. In particular, the large complex of postsynaptic proteins that interact with AMPA receptor subunits have been shown to control AMPA receptor insertion, location, pharmacology, synaptic transmission, and plasticity. These proteins are now being considered as alternative therapeutic target sites for modulating AMPA receptors in neurological disorders.

  18. Neurology and diving.

    PubMed

    Massey, E Wayne; Moon, Richard E

    2014-01-01

    Diving exposes a person to the combined effects of increased ambient pressure and immersion. The reduction in pressure when surfacing can precipitate decompression sickness (DCS), caused by bubble formation within tissues due to inert gas supersaturation. Arterial gas embolism (AGE) can also occur due to pulmonary barotrauma as a result of breath holding during ascent or gas trapping due to disease, causing lung hyperexpansion, rupture and direct entry of alveolar gas into the blood. Bubble disease due to either DCS or AGE is collectively known as decompression illness. Tissue and intravascular bubbles can induce a cascade of events resulting in CNS injury. Manifestations of decompression illness can vary in severity, from mild (paresthesias, joint pains, fatigue) to severe (vertigo, hearing loss, paraplegia, quadriplegia). Particularly as these conditions are uncommon, early recognition is essential to provide appropriate management, consisting of first aid oxygen, targeted fluid resuscitation and hyperbaric oxygen, which is the definitive treatment. Less common neurologic conditions that do not require hyperbaric oxygen include rupture of a labyrinthine window due to inadequate equalization of middle ear pressure during descent, which can precipitate vertigo and hearing loss. Sinus and middle ear overpressurization during ascent can compress the trigeminal and facial nerves respectively, causing temporary facial hypesthesia and lower motor neuron facial weakness. Some conditions preclude safe diving, such as seizure disorders, since a convulsion underwater is likely to be fatal. Preventive measures to reduce neurologic complications of diving include exclusion of individuals with specific medical conditions and safe diving procedures, particularly related to descent and ascent.

  19. Human copy number variation and complex genetic disease.

    PubMed

    Girirajan, Santhosh; Campbell, Catarina D; Eichler, Evan E

    2011-01-01

    Copy number variants (CNVs) play an important role in human disease and population diversity. Advancements in technology have allowed for the analysis of CNVs in thousands of individuals with disease in addition to thousands of controls. These studies have identified rare CNVs associated with neuropsychiatric diseases such as autism, schizophrenia, and intellectual disability. In addition, copy number polymorphisms (CNPs) are present at higher frequencies in the population, show high diversity in copy number, sequence, and structure, and have been associated with multiple phenotypes, primarily related to immune or environmental response. However, the landscape of copy number variation still remains largely unexplored, especially for smaller CNVs and those embedded within complex regions of the human genome. An integrated approach including characterization of single nucleotide variants and CNVs in a large number of individuals with disease and normal genomes holds the promise of thoroughly elucidating the genetic basis of human disease and diversity.

  20. Complexities of Assessing the Disease Burden Attributable to Leishmaniasis

    PubMed Central

    Bern, Caryn; Maguire, James H.; Alvar, Jorge

    2008-01-01

    Among parasitic diseases, morbidity and mortality caused by leishmaniasis are surpassed only by malaria and lymphatic filariasis. However, estimation of the leishmaniasis disease burden is challenging, due to clinical and epidemiological diversity, marked geographic clustering, and lack of reliable data on incidence, duration, and impact of the various disease syndromes. Non-health effects such as impoverishment, disfigurement, and stigma add to the burden, and introduce further complexities. Leishmaniasis occurs globally, but has disproportionate impact in the Horn of Africa, South Asia and Brazil (for visceral leishmaniasis), and Latin America, Central Asia, and southwestern Asia (for cutaneous leishmaniasis). Disease characteristics and challenges for control are reviewed for each of these foci. We recommend review of reliable secondary data sources and collection of baseline active survey data to improve current disease burden estimates, plus the improvement or establishment of effective surveillance systems to monitor the impact of control efforts. PMID:18958165

  1. Ion Channels in Neurological Disorders.

    PubMed

    Kumar, Pravir; Kumar, Dhiraj; Jha, Saurabh Kumar; Jha, Niraj Kumar; Ambasta, Rashmi K

    2016-01-01

    The convergent endeavors of the neuroscientist to establish a link between clinical neurology, genetics, loss of function of an important protein, and channelopathies behind neurological disorders are quite intriguing. Growing evidence reveals the impact of ion channels dysfunctioning in neurodegenerative disorders (NDDs). Many neurological/neuromuscular disorders, viz, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and age-related disorders are caused due to altered function or mutation in ion channels. To maintain cell homeostasis, ion channels are playing a crucial role which is a large transmembrane protein. Further, these channels are important as it determines the membrane potential and playing critically in the secretion of neurotransmitter. Behind NDDs, losses of pathological proteins and defective ion channels have been reported and are found to aggravate the disease symptoms. Moreover, ion channel dysfunctions are eliciting a range of symptoms, including memory loss, movement disabilities, neuromuscular sprains, and strokes. Since the possible mechanistic role played by aberrant ion channels, their receptor and associated factors in neurodegeneration remained elusive; therefore, it is a challenging task for the neuroscientist to implement the therapeutics for targeting NDDs. This chapter reviews the potential role of the ion channels in membrane physiology and brain homeostasis, where ion channels and their associated factors have been characterized with their functional consequences in neurological diseases. Moreover, mechanistic role of perturbed ion channels has been identified in various NDDs, and finally, ion channel modulators have been investigated for their therapeutic intervention in treating common NDDs.

  2. Leading the way: finding genes for neurologic disease in dogs using genome-wide mRNA sequencing.

    PubMed

    Ostrander, Elaine A; Beale, Holly C

    2012-07-10

    Because of dogs' unique population structure, human-like disease biology, and advantageous genomic features, the canine system has risen dramatically in popularity as a tool for discovering disease alleles that have been difficult to find by studying human families or populations. To date, disease studies in dogs have primarily employed either linkage analysis, leveraging the typically large family size, or genome-wide association, which requires only modest-sized case and control groups in dogs. Both have been successful but, like most techniques, each requires a specific combination of time and money, and there are inherent problems associated with each. Here we review the first report of mRNA-Seq in the dog, a study that provides insights into the potential value of applying high-throughput sequencing to the study of genetic diseases in dogs. Forman and colleagues apply high-throughput sequencing to a single case of canine neonatal cerebellar cortical degeneration. This implementation of whole genome mRNA sequencing, the first reported in dog, is additionally unusual due to the analysis: the data was used not to examine transcript levels or annotate genes, but as a form of target capture that revealed the sequence of transcripts of genes associated with ataxia in humans. This approach entails risks. It would fail if, for example, the relevant transcripts were not sufficiently expressed for genotyping or were not associated with ataxia in humans. But here it pays off handsomely, identifying a single frameshift mutation that segregates with the disease. This work sets the stage for similar studies that take advantage of recent advances in genomics while exploiting the historical background of dog breeds to identify disease-causing mutations.

  3. The mitochondrial disease associated protein Ndufaf2 is dispensable for Complex-1 assembly but critical for the regulation of oxidative stress

    PubMed Central

    Schlehe, Julia S.; Journel, Marion S.M.; Taylor, Kelsey P.; Amodeo, Katherine D.

    2013-01-01

    Deficiency in human mitochondrial Complex-1 has been linked to a wide variety of neurological disorders. Homozygous deletion of the Complex-1 associated protein, Ndufaf2, leads to a severe juvenile onset encephalopathy involving degeneration of the substantia nigra and other sub-cortical regions resulting in adolescent lethality. To understand the precise role of Ndufaf2 in Complex-1 function and its links to neurologic disease, we studied the effects on Complex-1 assembly and function, as well as pathological consequences at the cellular level, in multiple in vitro models of Ndufaf2 deficiency. Using both Ndufaf2-deficient human neuroblastoma cells and primary fibroblasts cultured from Ndufaf2 knock-out mice we found that Ndufaf2-deficiency selectively reduces Complex-1 activity. While Ndufaf2 is traditionally referred to as an assembly factor of Complex-1, surprisingly, however, Ndufaf2-deficient cells were able to assemble a fully mature Complex-1 enzyme, albeit with reduced kinetics. Importantly, no evidence of intermediate or incomplete assembly was observed. Ndufaf2 deficiency resulted in significant increases in oxidative stress and mitochondrial DNA deletion, consistent with contemporary hypotheses regarding the pathophysiology of inherited mutations in Complex-1 disorders. These data suggest that Ndufaf2, unlike other Complex-1 assembly factors, may be more accurately described as a chaperone involved in proper folding during Complex-1 assembly, since it is dispensable for Complex-1 maturation but not its proper function. PMID:23702311

  4. A complex case of congenital cystic renal disease

    PubMed Central

    Cordiner, David S; Evans, Clair A; Brundler, Marie-Anne; McPhillips, Maeve; Murio, Enric; Darling, Mark; Taheri, Sepideh

    2012-01-01

    This case outlines the potential complexity of autosomal recessive polycystic kidney disease (ARPKD). It highlights the challenges involved in managing this condition, some of the complications faced and areas of uncertainty in the decision making process. With a paucity of published paediatric cases on this subject, this should add to the pool of information currently available. PMID:22605879

  5. [Neurologic appearence of Behçet disease in 14-year old boy treated with adalimumab with good result].

    PubMed

    Iwańczak, Barbara; Reich, Adam; Kofla-Dłubacz, Anna; Kazanowska, Bernarda; Ruczka, Małgorzata

    2016-02-01

    Behçet disease is a multiorgan inflammatory vessel disorder of unknown etiology which only occasionally occurs in children. Here, we demonstrate a 14-year-old boy with Behçet disease diagnosed based on recurrent aphthous stomatitis, acneiform facial lesions, subpreputial erosions and extensive thrombosis involving sigmoid sinus, transverse sinus and right internal cervical vein. Treatment with low molecular weight heparins, systemic corticosteroids, and azathioprine only resulted in partial remission of clinical symptoms. Addition of adalimumab led to complete resolution of clinical and biochemical abnormalities and disappearance of thrombosis in central nervous system.

  6. First isolation of Bunyamwera virus (Bunyaviridae family) from horses with neurological disease and an abortion in Argentina.

    PubMed

    Tauro, Laura B; Rivarola, Maria E; Lucca, Eduardo; Mariño, Betina; Mazzini, Rubén; Cardoso, Jedson Ferreira; Barrandeguy, María Edith; Teixeira Nunes, Marcio Roberto; Contigiani, Marta S

    2015-10-01

    Bunyamwera virus (BUNV) is the prototype virus for both the Orthobunyavirus genus and the Bunyaviridae family. Different strains of BUNV have been associated with clinical diseases in domestic animals, mainly ruminants. During 2013, in Argentina's Santa Fe Province, three new isolates of BUNV were recovered from the brain and spleen of two horses with encephalitis, and from the brain of an aborted equine fetus. This isolation of BUNV from domestic animals provided the first association of BUNV infection with disease of the central nervous system and abortion in equines in Argentina.

  7. Unlocking Proteomic Heterogeneity in Complex Diseases through Visual Analytics

    PubMed Central

    Bhavnani, Suresh K.; Dang, Bryant; Bellala, Gowtham; Divekar, Rohit; Visweswaran, Shyam; Brasier, Allan; Kurosky, Alex

    2015-01-01

    Despite years of preclinical development, biological interventions designed to treat complex diseases like asthma often fail in phase III clinical trials. These failures suggest that current methods to analyze biomedical data might be missing critical aspects of biological complexity such as the assumption that cases and controls come from homogeneous distributions. Here we discuss why and how methods from the rapidly evolving field of visual analytics can help translational teams (consisting of biologists, clinicians, and bioinformaticians) to address the challenge of modeling and inferring heterogeneity in the proteomic and phenotypic profiles of patients with complex diseases. Because a primary goal of visual analytics is to amplify the cognitive capacities of humans for detecting patterns in complex data, we begin with an overview of the cognitive foundations for the field of visual analytics. Next, we organize the primary ways in which a specific form of visual analytics called networks have been used to model and infer biological mechanisms, which help to identify the properties of networks that are particularly useful for the discovery and analysis of proteomic heterogeneity in complex diseases. We describe one such approach called subject-protein networ