Sample records for complex nuclear facilities

  1. Peculiarities of organizing the construction of nuclear medicine facilities and the transportation of radionuclide

    NASA Astrophysics Data System (ADS)

    Telichenko, Valeriy; Malykha, Galina; Dorogan, Igor

    2017-10-01

    The article is devoted to the organization of construction of nuclear medicine facilities in Russia. The article describes the main methods of nuclear medical diagnostics, as well as the peculiarities of nuclear medicine facilities that determine the need for application of specific methods for organizing and managing the construction, methods of requirements management in the organization of construction of nuclear medicine facilities. Sustainable development of the transport of radioactive isotopes from the place of production to places of consumption is very important for the safety of the population. The requirements management system is an important and necessary component in organizing the construction of complex facilities, such as nuclear medicine facilities. The author developed and proposed a requirements management system for the design, construction and operation of a nuclear medicine facility, which provides for a cyclic sequence of actions. This system allows reducing the consumption of resources including material and energy during construction and operation of complex objects.

  2. 77 FR 14007 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Notice Federal Register CITATION OF... THE MEETING: The Defense Nuclear Facilities Safety Board (Board) is expanding the matters to be.../ resolution of safety and technical issues across the defense nuclear facilities complex. Since this panel...

  3. Nuclear thermal propulsion test facility requirements and development strategy

    NASA Technical Reports Server (NTRS)

    Allen, George C.; Warren, John; Clark, J. S.

    1991-01-01

    The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.

  4. DOE’s Management and Oversight of the Nuclear Weapons Complex

    DTIC Science & Technology

    1990-03-22

    and Economic Development Division Before the Department of Energy Defense Nuclear Facilities Panel Committee on Armed Services House of Representatives...and newly created DOE offices. The Defense Nuclear Facilities Safety Board, whose board members were appointed this past year, was created to provide 6...mandated Defense Nuclear Facilities Safety Board. Continuing dialogue between DOE and the Board can also serve to enhance DOE’s ability to respond more

  5. Materials and Fuels Complex Tour

    ScienceCinema

    Miley, Don

    2017-12-11

    The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions.

  6. GAO’s Views on DOE’s 1991 Budget for Addressing Problems at the Nuclear Weapons Complex

    DTIC Science & Technology

    1990-03-02

    management, and efforts by DOE to make its contractors more accountable. Also, the Defense Nuclear Facilities Safety Board mandated by the Congress became...and safety matters. 6 Finally, the Defense Nuclear Facilities Safety Board was established. Although not a DOE action, its establishment, nevertheless

  7. High Intensity Proton Accelerator Project in Japan (J-PARC).

    PubMed

    Tanaka, Shun-ichi

    2005-01-01

    The High Intensity Proton Accelerator Project, named as J-PARC, was started on 1 April 2001 at Tokai-site of JAERI. The accelerator complex of J-PARC consists of three accelerators: 400 MeV Linac, 3 GeV rapid cycle synchrotron and 50 GeV synchrotron; and four major experimental facilities: Material and Life Science Facility, Nuclear and Particle Physics Facility, Nuclear Transmutation Experiment Facility and Neutrino Facility. The outline of the J-PARC is presented with the current status of construction.

  8. Prioritization methodology for the decommissioning of nuclear facilities: a study case on the Iraq former nuclear complex.

    PubMed

    Jarjies, Adnan; Abbas, Mohammed; Monken Fernandes, Horst; Wong, Melanie; Coates, Roger

    2013-05-01

    There are a number of sites in Iraq which have been used for nuclear activities and which contain potentially significant amounts of radioactive waste. The principal nuclear site being Al-Tuwaitha. Many of these sites suffered substantial physical damage during the Gulf Wars and have been subjected to subsequent looting. All require decommissioning in order to ensure both radiological and non-radiological safety. However, it is not possible to undertake the decommissioning of all sites and facilities at the same time. Therefore, a prioritization methodology has been developed in order to aid the decision-making process. The methodology comprises three principal stages of assessment: i) a quantitative surrogate risk assessment ii) a range of sensitivity analyses and iii) the inclusion of qualitative modifying factors. A group of Tuwaitha facilities presented the highest risk among the evaluated ones, followed by a middle ranking grouping of Tuwaitha facilities and some other sites, and a relatively large group of lower risk facilities and sites. The initial order of priority is changed when modifying factors are taken into account. It has to be considered the Iraq's isolation from the international nuclear community over the last two decades and the lack of experienced personnel. Therefore it is appropriate to initiate decommissioning operations on selected low risk facilities at Tuwaitha in order to build capacity and prepare for work to be carried out in more complex and potentially high hazard facilities. In addition it is appropriate to initiate some prudent precautionary actions relating to some of the higher risk facilities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Risk, media, and stigma at Rocky Flats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, J.; Peters, E.; Mertz, C.K.

    1998-12-01

    Public responses to nuclear technologies are often strongly negative. Events, such as accidents or evidence of unsafe conditions at nuclear facilities, receive extensive and dramatic coverage by the news media. These news stories affect public perceptions of nuclear risks and the geographic areas near nuclear facilities. One result of these perceptions, avoidance behavior, is a form of technological stigma that leads to losses in property values near nuclear facilities. The social amplification of risk is a conceptual framework that attempts to explain how stigma is created through media transmission of information about hazardous places and public perceptions and decisions. Thismore » paper examines stigma associated with the US Department of energy`s Rocky Flats facility, a major production plant in the nation`s nuclear weapons complex, located near Denver, Colorado. This study, based upon newspaper analyses and a survey of Denver area residents, finds that the social amplification theory provides a reasonable framework for understanding the events and public responses that took place in regard to Rocky Flats during a 6-year period, beginning with an FBI raid of the facility in 1989.« less

  10. Capsule review of the DOE research and development and field facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-09-01

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses,more » and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell

    The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less

  12. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  13. Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham; Don Konoyer

    2009-11-01

    The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the reroutingmore » and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.« less

  14. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    NASA Astrophysics Data System (ADS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  15. End State Condition Report for Materials and Fuels Complex Facilities MFC-799, 799A, and 770C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-10-01

    The Materials and Fuels Complex (MFC) facilities MFC-799, “Sodium Processing Facility” (a single building consisting of two areas: the Sodium Process Area and the Carbonate Process Area); MFC-799A, “Caustic Storage Area;” and MFC-770C, “Nuclear Calibration Laboratory,” have been declared excess to future Department of Energy (DOE) Office of Nuclear Energy(NE) mission requirements. Transfer of these facilities from NE to the DOE Office of Environmental Management (EM), and an associated schedule for doing so, have been agreed upon by the two offices. This report documents the completion of pre-transfer stabilization actions, as identified in DOE Guide 430.1-5, “Transition Implementation Guide,” formore » buildings MFC-799/799A and 770C, and indicates that these facilities are ready for transfer from NE to EM. The facilities are in a known, safe condition and information is provided to support efficient decommissioning and demolition (D&D) planning while minimizing the possibility of encountering unforeseen circumstances during the D&D activities.« less

  16. Content of system design descriptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A System Design Description (SDD) describes the requirements and features of a system. This standard provides guidance on the expected technical content of SDDs. The need for such a standard was recognized during efforts to develop SDDs for safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Existing guidance related to the corresponding documents in other industries is generally not suitable to meet the needs of DOE nuclear facilities. Across the DOE complex, different contractors have guidance documents, but they vary widely from site to site. While such guidance documents are valuable, no single guidance document has all themore » attributes that DOE considers important, including a reasonable degree of consistency or standardization. This standard is a consolidation of the best of the existing guidance. This standard has been developed with a technical content and level of detail intended to be most applicable to safety systems at DOE Hazard Category 2 nonreactor nuclear facilities. Notwithstanding that primary intent, this standard is recommended for other systems at such facilities, especially those that are important to achieving the programmatic mission of the facility. In addition, application of this standard should be considered for systems at other facilities, including non-nuclear facilities, on the basis that SDDs may be beneficial and cost-effective.« less

  17. Nevada National Security Site Environmental Report 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills

    This Nevada National Security Site Environmental Report (NNSSER) was prepared to satisfy DOE Order DOE O 231.1B, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NNSSERmore » summarizes data and compliance status for calendar year 2016 at the Nevada National Security Site (NNSS) and its two Nevada-based support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory–Nellis (RSL-Nellis). It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR) and the Nevada Test and Training Range (NTTR). NNSA/NFO directs the management and operation of the NNSS and six sites across the nation. In addition to the NNSA itself, the six sites include two in Nevada (NLVF and RSL-Nellis) and four in other states (RSL-Andrews in Maryland, Livermore Operations in California, Los Alamos Operations in New Mexico, and Special Technologies Laboratory in California). Los Alamos, Lawrence Livermore, and Sandia National Laboratories are the principal organizations that sponsor and implement the nuclear weapons programs at the NNSS. National Security Technologies, LLC (NSTec), is the current Management and Operating contractor accountable for the successful execution of work and ensuring that work is performed in compliance with environmental regulations. The six sites all provide support to enhance the NNSS as a location for its multiple missions. The three major NNSS missions include National Security/Defense, Environmental Management, and Nondefense. The major programs that support these missions are Stockpile Stewardship and Management, Nonproliferation and Counterterrorism, Nuclear Emergency Response, Strategic Partnership Projects, Environmental Restoration, Waste Management, Conservation and Renewable Energy, Other Research and Development, and Infrastructure. The major facilities that support the programs include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility, Dense Plasma Focus Facility, Joint Actinide Shock Physics Experimental Research Facility, Radiological/Nuclear Countermeasures Test and Evaluation Complex, Nonproliferation Test and Evaluation Complex (NPTEC), Radiological/Nuclear Weapons of Mass Destruction Incident Exercise Site, the Area 5 Radioactive Waste Management Complex (RWMC), and the Area 3 Radioactive Waste Management Site (RWMS).« less

  18. Visualizing Safeguards: Software for Conceptualizing and Communicating Safeguards Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallucci, N.

    2015-07-12

    The nuclear programs of states are complex and varied, comprising a wide range of fuel cycles and facilities. Also varied are the types and terms of states’ safeguards agreements with the IAEA, each placing different limits on the inspectorate’s access to these facilities. Such nuances make it difficult to draw policy significance from the ground-level nuclear activities of states, or to attribute ground-level outcomes to the implementation of specific policies or initiatives. While acquiring a firm understanding of these relationships is critical to evaluating and formulating effective policy, doing so requires collecting and synthesizing large bodies of information. Maintaining amore » comprehensive working knowledge of the facilities comprising even a single state’s nuclear program poses a challenge, yet marrying this information with relevant safeguards and verification information is more challenging still. To facilitate this task, Brookhaven National Laboratory has developed a means of capturing the development, operation, and safeguards history of all the facilities comprising a state’s nuclear program in a single graphic. The resulting visualization offers a useful reference tool to policymakers and analysts alike, providing a chronology of states’ nuclear development and an easily digestible history of verification activities across their fuel cycles.« less

  19. Commercial Decommissioning at DOE's Rocky Flats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freiboth, C.; Sandlin, N.; Schubert, A.

    2002-02-25

    Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rockymore » Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.« less

  20. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  1. Daddy, What's a Nuclear Reactor?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenweaver, Dennis W.

    2008-01-15

    No matter what we think of the nuclear industry, it is part of mankind's heritage. The decommissioning process is slowly making facilities associated with this industry disappear and not enough is being done to preserve the information for future generations. This paper provides some food for thought and provides a possible way forward. Industrial archaeology is an ever expanding branch of archaeology that is dedicated to preserving, interpreting and documenting our industrial past and heritage. Normally it begins with analyzing an old building or ruins and trying to determine what was done, how it was done and what changes mightmore » have occurred during its operation. We have a unique opportunity to document all of these issues and provide them before the nuclear facility disappears. Entombment is an acceptable decommissioning strategy; however we would have to change our concept of entombment. It is proposed that a number of nuclear facilities be entombed or preserved for future generations to appreciate. This would include a number of different types of facilities such as different types of nuclear power and research reactors, a reprocessing plant, part of an enrichment plant and a fuel manufacturing plant. One of the main issues that would require resolution would be that of maintaining information of the location of the buried facility and the information about its operation and structure, and passing this information on to future generations. This can be done, but a system would have to be established prior to burial of the facility so that no information would be lost. In general, our current set of requirements and laws may need to be re-examined and modified to take into account these new situations. As an alternative, and to compliment the above proposal, it is recommended that a study and documentation of the nuclear industry be considered as part of twentieth century industrial archaeology. This study should not only include the power and fuel cycle facilities, but also the nuclear weapons complex and the industrial and research sectors. This would be a large chore due to the considerable number of different types of facilities that have been used in these industries, but it would be a worthwhile endeavor. This study would gather information that would normally be lost due to the decommissioning process and allow future generations to appreciate these industries. Because of the volume and varying types of facilities, it might be more beneficial to produce a set of studies relating to different aspects of the industry. A logical division would be the separation of the commercial nuclear industry and the nuclear weapons complex. The separation of the fuel cycle facilities may also be considered. If done properly, this could result in a set of documents of interest to a wide audience. The current nuclear industry is slowly disappearing through the decommissioning process. This industry is unique and is part of mankind's heritage. It must not be forgotten and the information should be made available for future generations. The U.S. Department of Energy and the National Park Service are doing some limited preservation of information, but I do not believe its enough. It is not being done in a manner that will preserve the true activities that were performed. It is recommended that the American Nuclear Society, along with other organizations, evaluate this proposal and possibly provide funds for a set of studies to be prepared and ensure that this valuable part of our heritage is not lost.« less

  2. Safe, Cost Effective Management of Inactive Facilities at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, W. E.; Yannitell, D. M.; Freeman, D. W.

    The Savannah River Site is part of the U.S. Department of Energy complex. It was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in the production of nuclear weapons. The 310-square-mile site is located in South Carolina, about 12 miles south of Aiken, South Carolina, and about 15 miles southeast of Augusta, Georgia. Savannah River Site (SRS) has approximately 200 facilities identified as inactive. These facilities range in size and complexity from large nuclear reactors to small storage buildings. These facilities are located throughout the site including three reactor areas, the heavy watermore » plant area, the manufacturing area, and other research and support areas. Unlike DOE Closure Sites such as Hanford and Rocky Flats, SRS is a Project Completion Site with continuing missions. As facilities complete their defined mission, they are shutdown and transferred from operations to the facility disposition program. At the SRS, Facilities Decontamination and Decommissioning (FDD) personnel manage the disposition phase of a inactive facility's life cycle in a manner that minimizes life cycle cost without compromising (1) the health or safety of workers and the public or (2) the quality of the environment. The disposition phase begins upon completion of operations shutdown and extends through establishing the final end-state. FDD has developed innovative programs to manage their responsibilities within a constrained budget.« less

  3. VIEW OF PRECISION EQUIPMENT USED IN STAINLESS COMPONENT MANUFACTURING. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF PRECISION EQUIPMENT USED IN STAINLESS COMPONENT MANUFACTURING. THE FACILITY WAS DESCRIBED AS THE MOST MODERN NON-NUCLEAR MANUFACTURING BUILDING IN THE U.S. DEPARTMENT OF ENERGY COMPLEX, WITH MANY PRECISION INSTRUMENTS. (9/21/83) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO

  4. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  5. TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Anthony P.

    The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.

  6. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drollinger, Harold; Holz, Barbara A.; Bullard, Thomas F.

    2014-01-01

    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types ofmore » experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the summer of 2011. It was discovered that major modifications to the terrain have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to the tests and experiments, and construction of drill pads and retention ponds. Six large trenches for exploring across the Boundary geologic fault are also present. The U15 Complex, designated historic district 143 and site 26NY15177, is eligible to the National Register of Historic Places under Criteria A, C, and D of 36 CFR Part 60.4. As a historic district and archaeological site eligible to the National Register of Historic Places, the Desert Research Institute recommends that the area defined for the U15 Complex, historic district 143 and site 26NY15117, be left in place in its current condition. The U15 Complex should also be included in the NNSS cultural resources monitoring program and monitored for disturbances or alterations.« less

  7. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drollinger, Harold; Holz, Barbara A.; Bullard, Thomas F.

    2014-01-09

    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types ofmore » experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the summer of 2011. It was discovered that major modifications to the terrain have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to the tests and experiments, and construction of drill pads and retention ponds. Six large trenches for exploring across the Boundary geologic fault are also present. The U15 Complex, designated historic district 143 and site 26NY15177, is eligible to the National Register of Historic Places under Criteria A, C, and D of 36 CFR Part 60.4. As a historic district and archaeological site eligible to the National Register of Historic Places, the Desert Research Institute recommends that the area defined for the U15 Complex, historic district 143 and site 26NY15117, be left in place in its current condition. The U15 Complex should also be included in the NNSS cultural resources monitoring program and monitored for disturbances or alterations.« less

  8. TAN HOT SHOP AND SUPPORT FACILITY UTILIZATION STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Ken Crawforth

    2001-11-01

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D&D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D&D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho National Engineering and Environmental Laboratorymore » (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.« less

  9. TAN Hot Shop and Support Facility Utilization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picker, B.A.

    2001-11-16

    Impacts to the U.S. Department of Energy (DOE) complex caused by early closure (prior to 2018) and Demolition and Dismantlement (D and D) of the Test Area North (TAN) hot shop and its support facilities are explored in this report. Various possible conditions, such as Standby, Safe Store and Lay-up, that the facility may be placed in prior to eventually being turned over to D and D are addressed. The requirements, impacts, and implications to the facility and to the DOE Complex are discussed for each condition presented in the report. Some details of the report reference the Idaho Nationalmore » Engineering and Environmental Laboratory (INEEL) Spent Nuclear Fuel Life Cycle Baseline Plan, the INEEL 2000 Infrastructure Long Range Plan, and other internal INEEL reports.« less

  10. Anomaly detection applied to a materials control and accounting database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteson, R.; Spanks, L.; Yarbro, T.

    An important component of the national mission of reducing the nuclear danger includes accurate recording of the processing and transportation of nuclear materials. Nuclear material storage facilities, nuclear chemical processing plants, and nuclear fuel fabrication facilities collect and store large amounts of data describing transactions that involve nuclear materials. To maintain confidence in the integrity of these data, it is essential to identify anomalies in the databases. Anomalous data could indicate error, theft, or diversion of material. Yet, because of the complex and diverse nature of the data, analysis and evaluation are extremely tedious. This paper describes the authors workmore » in the development of analysis tools to automate the anomaly detection process for the Material Accountability and Safeguards System (MASS) that tracks and records the activities associated with accountable quantities of nuclear material at Los Alamos National Laboratory. Using existing guidelines that describe valid transactions, the authors have created an expert system that identifies transactions that do not conform to the guidelines. Thus, this expert system can be used to focus the attention of the expert or inspector directly on significant phenomena.« less

  11. Materials @ LANL: Solutions for National Security Challenges

    NASA Astrophysics Data System (ADS)

    Teter, David

    2012-10-01

    Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.

  12. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema

    None

    2018-01-16

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  13. Nuclear Energy Infrastructure Database Fitness and Suitability Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation (NE-4) initiated the Nuclear Energy-Infrastructure Management Project by tasking the Nuclear Science User Facilities (NSUF) to create a searchable and interactive database of all pertinent NE supported or related infrastructure. This database will be used for analyses to establish needs, redundancies, efficiencies, distributions, etc. in order to best understand the utility of NE’s infrastructure and inform the content of the infrastructure calls. The NSUF developed the database by utilizing data and policy direction from a wide variety of reports from the Department of Energy, the National Research Council, themore » International Atomic Energy Agency and various other federal and civilian resources. The NEID contains data on 802 R&D instruments housed in 377 facilities at 84 institutions in the US and abroad. A Database Review Panel (DRP) was formed to review and provide advice on the development, implementation and utilization of the NEID. The panel is comprised of five members with expertise in nuclear energy-associated research. It was intended that they represent the major constituencies associated with nuclear energy research: academia, industry, research reactor, national laboratory, and Department of Energy program management. The Nuclear Energy Infrastructure Database Review Panel concludes that the NSUF has succeeded in creating a capability and infrastructure database that identifies and documents the major nuclear energy research and development capabilities across the DOE complex. The effort to maintain and expand the database will be ongoing. Detailed information on many facilities must be gathered from associated institutions added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements.« less

  14. Hazardous Materials Verification and Limited Characterization Report on Sodium and Caustic Residuals in Materials and Fuel Complex Facilities MFC-799/799A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary Mecham

    2010-08-01

    This report is a companion to the Facilities Condition and Hazard Assessment for Materials and Fuel Complex Sodium Processing Facilities MFC-799/799A and Nuclear Calibration Laboratory MFC-770C (referred to as the Facilities Condition and Hazards Assessment). This report specifically responds to the requirement of Section 9.2, Item 6, of the Facilities Condition and Hazards Assessment to provide an updated assessment and verification of the residual hazardous materials remaining in the Sodium Processing Facilities processing system. The hazardous materials of concern are sodium and sodium hydroxide (caustic). The information supplied in this report supports the end-point objectives identified in the Transition Planmore » for Multiple Facilities at the Materials and Fuels Complex, Advanced Test Reactor, Central Facilities Area, and Power Burst Facility, as well as the deactivation and decommissioning critical decision milestone 1, as specified in U.S. Department of Energy Guide 413.3-8, “Environmental Management Cleanup Projects.” Using a tailored approach and based on information obtained through a combination of process knowledge, emergency management hazardous assessment documentation, and visual inspection, this report provides sufficient detail regarding the quantity of hazardous materials for the purposes of facility transfer; it also provides that further characterization/verification of these materials is unnecessary.« less

  15. Nevada National Security Site Environmental Report Summary 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, Cathy

    This document is a summary of the full 2016 Nevada National Security Site Environmental Report (NNSSER) prepared by the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/ NFO). This summary provides an abbreviated and more readable version of the full NNSSER. NNSA/NFO prepares the NNSSER to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the Nevada National Security Site (NNSS) to protect the public and the environment from radiation hazards and from potential nonradiological impacts. It is a comprehensive report of environmental activities performed at the NNSS andmore » offsite facilities over the previous calendar year. The NNSS is currently the nation’s unique site for ongoing national security–related missions and high-risk operations. The NNSS is located about 65 miles northwest of Las Vegas. The approximately 1,360-square-mile site is one of the largest restricted access areas in the United States. It is surrounded by federal installations with strictly controlled access as well as by lands that are open to public entry. In 2016, National Security Technologies, LLC (NSTec), was the NNSS Management and Operations Contractor accountable for ensuring work was performed in compliance with environmental regulations. NNSS activities in 2016 continued to be diverse, with the primary goal to ensure that the existing U.S. stockpile of nuclear weapons remains safe and reliable. Other activities included weapons of mass destruction first responder training; the controlled release of hazardous material at the Nonproliferation Test and Evaluation Complex (NPTEC); remediation of legacy contamination sites; characterization of waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico, or the Idaho National Laboratory in Idaho Falls, Idaho; disposal of low-level and mixed low-level radioactive waste; and environmental research. Facilities and centers that support the National Security/Defense mission include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility (DAF), National Criticality Experiments Research Center (NCERC) located in the DAF, Joint Actinide Shock Physics Experimental Research (JASPER) Facility, Dense Plasma Focus (DPF) Facility located in the Los Alamos Technical Facility (LATF), and the Radiological/ Nuclear Countermeasures Test and Evaluation Complex (RNCTEC). Facilities that support the Environmental Management mission include the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS), which has been in cold standby since 2006.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.« less

  17. Toward the framework and implementation for clearance of materials from regulated facilities.

    PubMed

    Chen, S Y; Moeller, D W; Dornsife, W P; Meyer, H R; Lamastra, A; Lubenau, J O; Strom, D J; Yusko, J G

    2005-08-01

    The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy, commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the U.S. Nuclear Regulatory Commission, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision to permit materials being released as "non-radioactive," including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify clearance as an important disposition option for solid materials, establish the framework and basis of release, and discuss resolutions regarding the implementation of such a disposition option.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar, Miguel; Gardner, Donald A.; Taylor, Edward R.

    Exelon Nuclear (Exelon) designed and constructed an Interim Radwaste Storage Facility (IRSF) in the mid-1980's at LaSalle County Nuclear Station (LaSalle). The facility was designed to store low-level radioactive waste (LLRW) on an interim basis, i.e., up to five years. The primary reason for the IRSF was to offset lack of disposal in case existing disposal facilities, such as the Southeast Compact's Barnwell Disposal Facility in Barnwell, South Carolina, ceased accepting radioactive waste from utilities not in the Southeast Compact. Approximately ninety percent of the Radwaste projected to be stored in the LaSalle IRSF in that period of time wasmore » Class A, with the balance being Class B/C waste. On July 1, 2008 the Barnwell Disposal Facility in the Southeast Compact closed its doors to out of- compact Radwaste, which precluded LaSalle from shipping Class B/C Radwaste to an outside disposal facility. Class A waste generated by LaSalle is still able to be disposed at the 'Envirocare of Utah LLRW Disposal Complex' in Clive, Utah. Thus the need for utilizing the LaSalle IRSF for storing Class B/C Radwaste for an extended period, perhaps life-of-plant or more became apparent. Additionally, other Exelon Midwest nuclear stations located in Illinois that did not build an IRSF heretofore also needed extended Radwaste storage. In early 2009, Exelon made a decision to forward Radwaste from the Byron Nuclear Station (Byron), Braidwood Nuclear Station (Braidwood), and Clinton Nuclear Station (Clinton) to LaSalle's IRSF. As only Class B/C Radwaste would need to be forwarded to LaSalle, the original volumetric capacity of the LaSalle IRSF was capable of handling the small number of additional expected shipments annually from the Exelon sister nuclear stations in Illinois. Forwarding Class B/C Radwaste from the Exelon sister nuclear stations in Illinois to LaSalle would require an amendment to the LaSalle Station operating license. Exelon submitted the License Amendment Request (LAR) to NRC on January 6, 2010; NRC approved the LAR on July 21, 2011. A similar decision was made by Exelon in early 2009 to forward Radwaste from Limerick Nuclear Station to its sister station, the Peach Bottom Atomic Power Station; both in Pennsylvania. A LAR submittal to the NRC was also provided and NRC approval was received in 2011. (authors)« less

  19. Congress targets DOE plants

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    Calling the Department of Energy's management of the nation's crippled nuclear weapons production complex “a 35-year secret chemical war waged against people living near DOE's sites,” Representative Thomas Luken (D-OH) opened a congressional hearing on February 23 with an appeal to DOE Secretary-designate James Watkins to release secret health records of workers at the plants. In testimony that followed, Comptroller General Charles Bowsher told a subcommittee of the House Energy and Commerce Committee that President Bush's new budget does not go far enough on the long and costly road of cleaning up and modernizing the contaminated and aging facilities. The renovation is expected to cost up to $155 billion.By next month, 11 of the 17 installations that make up the DOE complex will be on the EPA's Superfund list of the nation's most contaminated waste sites. Some o f the DOE facilities, including the Rocky Flats plant in Denver, Colo., the Hanford Reservation in eastern Washington, and the Savannah River plant in South Carolina, are among the most polluted sites ever identified by EPA. The principal function of the facilities, the production of tritium and plutonium for nuclear weapons, has stopped, creating what DOE has characterized as a looming national security crisis.

  20. Meteorological Support at the Savanna River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addis, Robert P.

    2005-10-14

    The Department of Energy (DOE) operates many nuclear facilities on large complexes across the United States in support of national defense. The operation of these many and varied facilities and processes require meteorological support for many purposes, including: for routine operations, to respond to severe weather events, such as lightning, tornadoes and hurricanes, to support the emergency response functions in the event of a release of materials to the environment, for engineering baseline and safety documentation, as well as hazards assessments etc. This paper describes a program of meteorological support to the Savannah River Site, a DOE complex located inmore » South Carolina.« less

  1. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility tomore » meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)« less

  2. Economic Analysis of Complex Nuclear Fuel Cycles with NE-COST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganda, Francesco; Dixon, Brent; Hoffman, Edward

    The purpose of this work is to present a new methodology, and associated computational tools, developed within the U.S. Department of Energy (U.S. DOE) Fuel Cycle Option Campaign to quantify the economic performance of complex nuclear fuel cycles. The levelized electricity cost at the busbar is generally chosen to quantify and compare the economic performance of different baseload generating technologies, including of nuclear: it is the cost of electricity which renders the risk-adjusted discounted net present value of the investment cash flow equal to zero. The work presented here is focused on the calculation of the levelized cost of electricitymore » of fuel cycles at mass balance equilibrium, which is termed LCAE (Levelized Cost of Electricity at Equilibrium). To alleviate the computational issues associated with the calculation of the LCAE for complex fuel cycles, a novel approach has been developed, which has been called the “island approach” because of its logical structure: a generic complex fuel cycle is subdivided into subsets of fuel cycle facilities, called islands, each containing one and only one type of reactor or blanket and an arbitrary number of fuel cycle facilities. A nuclear economic software tool, NE-COST, written in the commercial programming software MATLAB®, has been developed to calculate the LCAE of complex fuel cycles with the “island” computational approach. NE-COST has also been developed with the capability to handle uncertainty: the input parameters (both unit costs and fuel cycle characteristics) can have uncertainty distributions associated with them, and the output can be computed in terms of probability density functions of the LCAE. In this paper NE-COST will be used to quantify, as examples, the economic performance of (1) current Light Water Reactors (LWR) once-through systems; (2) continuous plutonium recycling in Fast Reactors (FR) with driver and blanket; (3) Recycling of plutonium bred in FR into LWR. For each fuel cycle, the contributions to the total LCAE of the main cost components will be identified.« less

  3. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morneau, Rachel Anne; Klasky, Marc Louis

    The U.S. Stockpile Stewardship Program [1] is designed to sustain and evaluate the nuclear weapons stockpile while foregoing underground nuclear tests. The maintenance of a smaller, aging U.S. nuclear weapons stockpile without underground testing requires complex computer calculations [14]. These calculations in turn need to be verified and benchmarked [14]. A wide range of research facilities have been used to test and evaluate nuclear weapons while respecting the Comprehensive Nuclear Test-Ban Treaty (CTBT) [2]. Some of these facilities include the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, the Z machine at Sandia National Laboratories, and the Dual Axismore » Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory. This research will focus largely on DARHT (although some information from Cygnus and the Los Alamos Microtron may be used in this research) by modeling it and comparing to experimental data. DARHT is an electron accelerator that employs high-energy flash x-ray sources for imaging hydro-tests. This research proposes to address some of the issues crucial to understanding DARHT Axis II and the analysis of the radiographic images produced. Primarily, the nature of scatter at DARHT will be modeled and verified with experimental data. It will then be shown that certain design decisions can be made to optimize the scatter field for hydrotest experiments. Spectral effects will be briefly explored to determine if there is any considerable effect on the density reconstruction caused by changes in the energy spectrum caused by target changes. Finally, a generalized scatter model will be made using results from MCNP that can be convolved with the direct transmission of an object to simulate the scatter of that object at the detector plane. The region in which with this scatter model is appropriate will be explored.« less

  4. Geohydrologic conditions at the nuclear-fuels reprocessing plant and waste-management facilities at the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Bergeron, M.P.; Kappel, W.M.; Yager, R.M.

    1987-01-01

    A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, N.Y. The facilities are underlain by glacial and postglacial deposits that fill an ancestrial bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses , ranges from 0.000018 to 0.000086 m/day. (USGS)

  5. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclearmore » applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program-specific measurements. As a result, ORELA has not received base funding to support major upgrades and significant maintenance operations that are essential to keep the facility in a state of readiness over the long term. As a result, ORELA has operated on a ''sub-bare-minimum'' budget for the past 10 to 15 years, and the facility has not been maintained at a level for continued reliable operation for the long term. During the Workshop, Jerry McKamy (NNSA/NA-117) used a hospital patient metaphor that accurately depicts the facility status. ORELA is currently in the intensive care unit (ICU) on life support, and refurbishment efforts are needed to get the ''patient'' off life support and out to an ordinary hospital room. McKamy further noted that the DOE NCSP is planning to fund immediate refurbishment tasks ($1.5 M over three years) to help reestablish reliable ORELA operation (i.e., move ORELA from ICU to an ordinary hospital room). Furthermore, the NCSP will work to identify and carry out the actions needed to discharge ORELA from the ''hospital'' over the next five to seven years. In accordance with the Workshop objectives, the technical community publicly endorsed the need for a reliable ORELA facility that can meet current and future nuclear data needs. These Workshop proceedings provide the formal documentation of the technical community endorsement for ORELA. Furthermore, the proceedings highlight the past and current contributions that ORELA has made to the nuclear industry. The Workshop further emphasized the operational and funding problems that currently plague the facility, thereby limiting ORELA's operational reliability. Despite the recent operational problems, ORELA is a uniquely capable measurement facility that must be part of the overall U.S. nuclear data measurement portfolio in order to support current and emerging nuclear applications. The Workshop proceedings further emphasize that ORNL, the technical community, and programmatic sponsors are eager to see ORELA reestablish reliable measurement operation and be readily available to address nuclear data challenges in the United States.« less

  6. Safety analysis in test facility design

    NASA Astrophysics Data System (ADS)

    Valk, A.; Jonker, R. J.

    1990-09-01

    The application of safety analysis techniques as developed in, for example nuclear and petrochemical industry, can be very beneficial in coping with the increasing complexity of modern test facility installations and their operations. To illustrate the various techniques available and their phasing in a project, an overview of the most commonly used techniques is presented. Two case studies are described: the hazard and operability study techniques and safety zoning in relation to the possible presence of asphyxiating atmospheres.

  7. Environment, Safety, and Health: Status of DOE’s Reorganization of it’s Safety Oversight Function

    DTIC Science & Technology

    1990-01-01

    facilities. After deliberation, the Congress in late 1988 directed that the Defense Nuclear Facilities Safety Board be established to provide...nuclear safety matters will be conducted by either the Advisory Committee on Nuclear Facility Safety or the recently mandated Defense Nuclear Facilities Safety...the facilities under the statutory purview of the Defense Nuclear Facilities Safety Board once the board determines it is ready to assume independent

  8. Impacts of Vehicle (In)Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chugg, J.; Rohde, K.

    Nuclear and radioactive material is routinely transported worldwide every day. Since 2010, the complexity of the transport vehicle to support such activities has grown exponentially. Many core functions of a vehicle are now handled by small embedded computer modules with more being added each year to enhance the owner’s experience and convenience. With a system as complex as today’s automobile, the potential for cyber security issues is certain. Hackers have begun exploring this new domain with public information increasingly disseminated. Because vehicles are allowed into and around secure nuclear facilities, the potential for using a vehicle as a new cybermore » entry point or vector into the facility is now plausible and must be mitigated. In addition, compromising such a vehicle could aide in illicit removal of nuclear material, putting sensitive cargo at risk. Because cyber attacks can now be introduced using vehicles, cyber security, needs to be integrated into an organization’s design basis threat document. Essentially, a vehicle now extends the perimeter for which security professionals are responsible.Electronic Control Units (ECU) responsible for handling all core and ancillary vehicle functions are interconnected using the controller area network (CAN) bus. A typical CAN network in a modern automobile contains 50 or more ECUs. The CAN protocol now supports a wide variety of areas, including automotive, road transportation, rail transportation, industrial automation, power generation, maritime, military vehicles, aviation, and medical devices. In many ways, the nuclear industry is employing the CAN bus protocol or other similar broadcast serial networks. This paper will provide an overview of the current state of automobile and CAN Bus security, as well as an overview of what has been publicly disclosed by many research organizations. It will then present several hypotheses of how vehicle security issues may impact nuclear activities. An initial discussion of how a vehicle can be used as a new threat vector to penetrate secure facilities will be presented. This includes how a modern automobile can be used as the exploitation mechanism for nearby devices such as laptops, cell phones, and wireless access points. Additional discussion will highlight how vehicle security might impact transportation of nuclear material through remote exploitation of a moving vehicle. The final discussion will include what possible implications might be relative to the physical protection systems at nuclear facilities. The audience will also be given details regarding the complexity of attack, thus implying the likelihood of successful exploitation, and information on how such attacks may be mitigated. Emerging security products for automobiles will be discussed and other mitigation methods will be detailed (e.g. disabling vehicle cellular modems). As a result, the audience will have a greater understanding of how to add vehicle security as a part of a comprehensive nuclear security policy.Finally, this paper will highlight the similarities between CAN Bus and other broadcast serial bus networks such as Profibus or DeviceNet, helping educate the reader on how susceptible this type of networking is to nefarious attacks and how it might affect components connected to many different nuclear systems, including control systems, safety systems, emergency systems, and support systems.« less

  9. Review of July 2013 Nuclear Security Insider Threat Exercise November 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pederson, Ann C.; Snow, Catherine L.; Townsend, Jeremy

    2013-11-01

    This document is a review of the Nuclear Security Insider Threat Exercise which was hosted at ORNL in July 2013. Nuclear security culture and the insider threat are best learned through experience. Culture is inherently difficult to teach, and as such is best learned through modeled behaviors and learning exercise. This TTX, NSITE, is a tool that strives to aid students in learning what an effective (and ineffective) nuclear security culture might look like by simulating dynamic events that strengthen or weaken the nuclear security regime. The goals of NSITE are to stimulate complex thought and discussion and assist decisionmore » makers and management in determining the most effective policies and procedures for their country or facility.« less

  10. 76 FR 26716 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting AGENCY: Defense Nuclear Facilities... Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing. FEDERAL REGISTER CITATIONS... Defense Nuclear Facilities Safety Board, Public Hearing Room, 625 Indiana Avenue, NW., Suite 300...

  11. 78 FR 4393 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... Session II, the Board will receive testimony concerning safety at Pantex defense nuclear facilities. The...

  12. Analog earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, R.B.

    1995-09-01

    Analogs are used to understand complex or poorly understood phenomena for which little data may be available at the actual repository site. Earthquakes are complex phenomena, and they can have a large number of effects on the natural system, as well as on engineered structures. Instrumental data close to the source of large earthquakes are rarely obtained. The rare events for which measurements are available may be used, with modfications, as analogs for potential large earthquakes at sites where no earthquake data are available. In the following, several examples of nuclear reactor and liquified natural gas facility siting are discussed.more » A potential use of analog earthquakes is proposed for a high-level nuclear waste (HLW) repository.« less

  13. 77 FR 479 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... of the Defense Nuclear Facilities Safety Board's (Board) public hearing and meeting described below... Nuclear Facilities Safety Board, 625 Indiana Avenue NW., Suite 700, Washington, DC 20004-2901, (800) 788...

  14. 77 FR 48970 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... (NNSA) efforts to mitigate risks to public and worker safety posed by aging defense nuclear facilities...

  15. Application of pulsed multi-ion irradiations in radiation damage research: A stochastic cluster dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan

    2018-07-01

    Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.

  16. 10. AERIAL VIEW LOOKING NORTHWEST AT THE 400AREA COMPLEX. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. AERIAL VIEW LOOKING NORTHWEST AT THE 400-AREA COMPLEX. THIS AREA OF THE PLANT MANUFACTURED NON-PLUTONIUM WEAPONS COMPONENTS FROM BERYLLIUM, DEPLETED URANIUM, AND STAINLESS STEEL. THE 400 - AREA ALSO INCLUDED A FACILITY FOR THE MODIFICATION OF SAFE SECURE TRANSPORT VEHICLES FOR SPECIAL NUCLEAR MATERIALS BEING SHIPPED TO AND FROM THE SITE. BUILDING 444, IN THE UPPER RIGHT EDGE OF THE PHOTOGRAPH, WAS THE ORIGINAL PLANT A. THE LARGE BUILDING IN THE TOP OF THE PHOTOGRAPH IS BUILDING 460, BUILT AS A STATE-OF-THE-ART STAINLESS STEEL MANUFACTURING FACILITY (6/27/95). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  17. Towards more accurate and reliable predictions for nuclear applications

    NASA Astrophysics Data System (ADS)

    Goriely, Stephane; Hilaire, Stephane; Dubray, Noel; Lemaître, Jean-François

    2017-09-01

    The need for nuclear data far from the valley of stability, for applications such as nuclear astrophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in fundamental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. Nowadays mean-field models can be tuned at the same level of accuracy as the phenomenological models, renormalized on experimental data if needed, and therefore can replace the phenomenological inputs in the evaluation of nuclear data. The latest achievements to determine nuclear masses within the non-relativistic HFB approach, including the related uncertainties in the model predictions, are discussed. Similarly, recent efforts to determine fission observables within the mean-field approach are described and compared with more traditional existing models.

  18. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to housemore » the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.« less

  19. 78 FR 12042 - Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2011 Service Contract Inventory Analysis/FY 2012 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB). ACTION: Notice of Public Availability of FY 2011 Service Contract...

  20. 76 FR 5354 - Public Availability of Defense Nuclear Facilities Safety Board FY 2010 Service Contract Inventory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board FY 2010 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (Board). ACTION: Notice of public availability of FY 2010 Service Contract Inventories. SUMMARY: In accordance with...

  1. 77 FR 7139 - Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Public Availability of Defense Nuclear Facilities Safety Board; FY 2010 Service Contract Inventory Analysis/FY 2011 Service Contract Inventory AGENCY: Defense Nuclear Facilities Safety Board (DNFSB). ACTION: Notice of Public Availability of FY 2010 Service Contract...

  2. 78 FR 49262 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting AGENCY: Defense Nuclear Facilities... given of the Defense Nuclear Facilities Safety Board's (Board) public meeting and hearing described... associated with continued operation of aging defense nuclear [[Page 49263

  3. Environmental Management

    ScienceCinema

    None

    2018-01-16

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  4. CDS Re Mix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    CDS (Change Detection Systems) is a mechanism for rapid visual analysis using complex image alignment algorithms. CDS is controlled with a simple interface that has been designed for use for anyone that can operate a digital camera. A challenge of complex industrial systems like nuclear power plants is to accurately identify changes in systems, structures and components that may critically impact the operation of the facility. CDS can provide a means of early intervention before the issues evolve into safety and production challenges.

  5. 76 FR 42686 - DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities Safety Board, Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2011-1 of the Defense Nuclear Facilities... Nuclear Facilities Safety Board, Office of Health, Safety and Security, U.S. Department of Energy, 1000... Department of Energy (DOE) acknowledges receipt of Defense Nuclear Facilities Safety Board (Board...

  6. Thermionic system evaluated test (TSET) facility description

    NASA Astrophysics Data System (ADS)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  7. Facing reality: The future of the US nuclear weapons complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    Facing Reality is a collaboration by 15 authors from environmental and grass-roots groups. The authors bluntly conclude that whether the inertia, habit, or material interest, the nuclear weapons establishment has proven itself incapable of genuine reform.' They therefore call for government agencies other than the Department of Energy to manage the tasks of decontamination and decommissioning. Just a partial list of what needs to be done to clean up the DOE's mess is daunting: closing, decommissioning, and decontaminating production facilities, dismantling thousands of nuclear warheads, safely storing dangerous radioactive materials, identifying alternative employment for weapons specialists, conducting meaningful health studiesmore » of workers and citizens exposed to radiation, and providng compensation for the victims of the nuclear buildup.« less

  8. A Fusion Nuclear Science Facility for a fast-track path to DEMO

    DOE PAGES

    Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...

    2014-10-01

    An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less

  9. Downgrading Nuclear Facilities to Radiological Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  10. 78 FR 24438 - Evaluations of Explosions Postulated To Occur at Nearby Facilities and on Transportation Routes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants AGENCY: Nuclear Regulatory... Nearby Facilities and on Transportation Routes Near Nuclear Power Plants.'' This regulatory guide describes for applicants seeking nuclear power reactor licenses and licensees of nuclear power reactors...

  11. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6 May interested persons and entities request that real property at defense nuclear facilities be...

  12. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6 May interested persons and entities request that real property at defense nuclear facilities be...

  13. 75 FR 56080 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... Facilities Safety Board's public hearing and meeting. FEDERAL REGISTER CITATION OF PREVIOUS ANNOUNCEMENT: 75... INFORMATION: Brian Grosner, General Manager, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Joan F.

    The US Department of Energy’s (DOE’s) Oak Ridge Reservation (ORR) is located in Roane and Anderson counties in East Tennessee, about 40 km (25 miles) from Knoxville. ORR is one of DOE’s most unique and complex sites. It encompasses three major facilities and thousands of employees that perform every mission in the DOE portfolio—energy research, environmental restoration, national security, nuclear fuel supply, reindustrialization, science education, basic and applied research in areas important to US security, and technology transfer. ORR was established in the early 1940s as part of the Manhattan Project for the purposes of enriching uranium and pioneering methodsmore » for producing and separating plutonium. Today, scientists at the Oak Ridge National Laboratory (ORNL), DOE’s largest multipurpose national laboratory, conduct world-leading research in advanced materials, alternative fuels, climate change, and supercomputing. The Y-12 National Security Complex (Y-12 or Y-12 Complex) is vital to maintaining the safety, security, and effectiveness of the US nuclear weapons stockpile and reducing the global threat posed by nuclear proliferation and terrorism. The East Tennessee Technology Park (ETTP), a former uranium enrichment complex, is being transitioned to a clean, revitalized industrial park.« less

  15. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. R. Allen; J. B. Benson; J. A. Foster

    2009-05-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities ismore » granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.« less

  16. Fire hazard analysis for Plutonium Finishing Plant complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41,more » Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.« less

  17. Nuclear Criticality Safety Data Book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollenbach, D. F.

    The objective of this document is to support the revision of criticality safety process studies (CSPSs) for the Uranium Processing Facility (UPF) at the Y-12 National Security Complex (Y-12). This design analysis and calculation (DAC) document contains development and justification for generic inputs typically used in Nuclear Criticality Safety (NCS) DACs to model both normal and abnormal conditions of processes at UPF to support CSPSs. This will provide consistency between NCS DACs and efficiency in preparation and review of DACs, as frequently used data are provided in one reference source.

  18. Confinement of Radioactive Materials at Defense Nuclear Facilities

    DTIC Science & Technology

    2004-10-01

    The design of defense nuclear facilities includes systems whose reliable operation is vital to the protection of the public, workers, and the...final safety-class barrier to the release of hazardous materials with potentially serious public consequences. The Defense Nuclear Facilities Safety...the public at certain defense nuclear facilities . This change has resulted in downgrading of the functional safety classification of confinement

  19. 76 FR 11764 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... Defense Nuclear Facilities Safety Board's public hearing and meeting described below. Interested persons... the matters to be considered. TIME AND DATE OF MEETING: 9 a.m., March 31, 2011. PLACE: Defense Nuclear...

  20. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less

  1. Nuclear Warheads: The Reliable Replacement Warhead program and the Life Extension Program

    DTIC Science & Technology

    2007-12-03

    eliminate the need for ESD controls.”67 CRS-22 68 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight...public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov...about/index.html]. 69 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, September 14, 2006. 70

  2. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2006-12-13

    Defense Nuclear Facilities Safety Board was created by Congress 1988 "as an independent oversight organization within the Executive Branch charged... nuclear facilities ." U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. involving CHE and plutonium...approach, if successful, would “reduce or eliminate the need for ESD controls.”42 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities

  3. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2007-04-04

    Information provided by Pantex Plant, Sept. 19, 2006. 50 The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent...protection of public health and safety’ at DOE’s defense nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http...www.dnfsb.gov/about/index.html]. 51 Personal communication, Kent Fortenberry, Technical Director, Defense Nuclear Facilities Safety Board, Sept. 14, 2006

  4. Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program

    DTIC Science & Technology

    2007-07-16

    The Defense Nuclear Facilities Safety Board was created by Congress 1988 “as an independent oversight organization within the Executive Branch charged... nuclear facilities .” U.S. Defense Nuclear Facilities Safety Board. “Who We Are,” at [http://www.dnfsb.gov/about/index.html]. beginning, addressed safety...approach, if successful, would “reduce or eliminate the need for ESD controls.”55 Kent Fortenberry, Technical Director of the Defense Nuclear Facilities Safety

  5. Potential application of LIBS to NNSA next generation safeguards initiative (NGSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barefield Ii, James E; Clegg, Samuel M; Veirs, Douglas K

    2009-01-01

    In a climate in which states and nations have been and perhaps currently are involved in the prol iferation of nuclear materials and technologies, advanced methodologies and improvements in current measurement techniques are needed to combat new threats and increased levels of sophistication. The Department of Energy through the National Nuclear Security Administration (NNSA) has undertaken a broad review of International Safeguards. The conclusion from that review was that a comprehensive initiative to revitalize international safeguards technology and the human resource base was urgently needed to keep pace with demands and increasingly sophisticated emerging safeguards challenges. To address these challenges,more » NNSA launched the Next Generation Safeguards Initiative (NGSI) to develop policies, concepts, technologies, expertise, and infrastructure necessary to sustain the international safeguards system as its mission evolves for the next 25 years. NGSI is designed to revitalize and strengthen the U.S. safeguards technical base, recognizing that without a robust program the United States of America will not be in a position to exercise leadership or provide the necessary support to the IAEA (International Atomic Energy Agency). International safeguards as administrated by the IAEA are the primary vehicle for verifying compliance with the peaceful use and nonproliferation of nuclear materials and technologies. Laser Induced Breakdown Spectroscopy or LIBS has the potential to support the goals of NGSI as follows: by providing (1) automated analysis in complex nuclear processing or reprocessing facilities in real-time or near real-time without sample preparation or removal, (2) isotopic and important elemental ratio (Cm/Pu, Cm/U, ... etc) analysis, and (3) centralized remote control, process monitoring, and analysis of nuclear materials in nuclear facilities at multiple locations within the facility. Potential application of LIBS to international safeguards as outlined in the NGSI will be discussed.« less

  6. The Fukushima Dai-ichi Accident and its implications for the safety of nuclear power

    NASA Astrophysics Data System (ADS)

    Barletta, William

    2016-05-01

    Five years ago the dramatic events in Fukushima that followed the massive earthquake and subsequent tsunami that struck Japan on March 11, 2011 sharpened the focus of scientists, engineers and general public on the broad range of technical, environmental and societal issues involved in assuring the safety of the world's nuclear power complex. They also called into question the potential of nuclear power to provide a growing, sustainable resource of CO2-free energy. The issues raised by Fukushima Dai-ichi have provoked urgent concern, not only because of the potential harm that could result from severe accidents or from intentional damage to nuclear reactors or to facilities involved in the nuclear fuel cycle, but also because of the extensive economic impact of those accidents and of the measures taken to avoid them.

  7. Security culture for nuclear facilities

    NASA Astrophysics Data System (ADS)

    Gupta, Deeksha; Bajramovic, Edita

    2017-01-01

    Natural radioactive elements are part of our environment and radioactivity is a natural phenomenon. There are numerous beneficial applications of radioactive elements (radioisotopes) and radiation, starting from power generation to usages in medical, industrial and agriculture applications. But the risk of radiation exposure is always attached to operational workers, the public and the environment. Hence, this risk has to be assessed and controlled. The main goal of safety and security measures is to protect human life, health, and the environment. Currently, nuclear security considerations became essential along with nuclear safety as nuclear facilities are facing rapidly increase in cybersecurity risks. Therefore, prevention and adequate protection of nuclear facilities from cyberattacks is the major task. Historically, nuclear safety is well defined by IAEA guidelines while nuclear security is just gradually being addressed by some new guidance, especially the IAEA Nuclear Security Series (NSS), IEC 62645 and some national regulations. At the overall level, IAEA NSS 7 describes nuclear security as deterrence and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear, other radioactive substances and their associated facilities. Nuclear security should be included throughout nuclear facilities. Proper implementation of a nuclear security culture leads to staff vigilance and a high level of security posture. Nuclear security also depends on policy makers, regulators, managers, individual employees and members of public. Therefore, proper education and security awareness are essential in keeping nuclear facilities safe and secure.

  8. Conduct of the Persian Gulf War: Final Report to Congress. Chapters 1 through 8. Sanitized Version

    DTIC Science & Technology

    1992-04-01

    missiles, missiles launched from the complexes could reach the Israeli cities of Tel Aviv, Haifa, and the nuclear facility at Dimona in the Negev ...Special Warfare:264,375,407 near-real time:31,220,235,247 near-shore: 298-299 Negev :16 network: 14-15,19,33,114,118-119,139

  9. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  10. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  11. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  12. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  13. 49 CFR 1580.111 - Harmonization of federal regulation of nuclear facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Harmonization of federal regulation of nuclear facilities. 1580.111 Section 1580.111 Transportation Other Regulations Relating to Transportation (Continued... regulation of nuclear facilities. TSA will coordinate activities under this subpart with the Nuclear...

  14. The new postirradiation examination facility of the Atomic Energy Corporation of South Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walt, P.L. van der; Aspeling, J.C.; Jonker, W.D.

    1992-01-01

    The Pelindaba Hot Cell Complex (HCC) forms an important part of the infrastructure and support services of the Atomic Energy Corporation (AEC) of South Africa. It is a comprehensive, one-stop facility designed to make South Africa self-sufficient in the fields of spent-fuel qualification and verification, reactor pressure vessel surveillance program testing, ad hoc failure analyses for the nuclear power industry, and research and development studies in conjunction with the Safari I material test reactor (MTR) and irradiation rigs. Local technology and expertise was used for the design and construction of the HCC, which start up in 1980. The facility wasmore » commissioned in 1990.« less

  15. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  16. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  17. 10 CFR 8.4 - Interpretation by the General Counsel: AEC jurisdiction over nuclear facilities and materials...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...

  18. 76 FR 24018 - Notice of Availability of the Draft Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy... Draft Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and... alternatives for constructing and operating the nuclear facility (NF) portion of the Chemistry and Metallurgy...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configurationmore » management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.« less

  20. Mapping the Risks. Assessing the Homeland Security Implications of Publicly Available Geospatial Information

    DTIC Science & Technology

    2004-01-01

    Defense Nuclear Facilities Safety Board 1 0.2 Export-Import Bank 1 0.2 National Archives and Records Administration 1 0.2 Supreme Court of the United...Agency Commodity Futures Trading Commission Consumer Product Safety Commission Defense Nuclear Facilities Safety Board Environmental Protection Agency...Intelligence www.cia.gov Defense Nuclear Facilities Safety Board Defense Nuclear Facilities Safety Board www.dnfsb.gov Department of

  1. Progress on Cleaning Up the Only Commercial Nuclear Fuel Reprocessing Facility to Operate in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, T. J.; MacVean, S. A.; Szlis, K. A.

    2002-02-26

    This paper describes the progress on cleanup of the West Valley Demonstration Project (WVDP), an environmental management project located south of Buffalo, NY. The WVDP was the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States (1966 to 1972). Former fuel reprocessing operations generated approximately 600,000 gallons of liquid high-level radioactive waste stored in underground tanks. The U.S. Congress passed the WVDP Act in 1980 (WVDP Act) to authorize cleanup of the 220-acre facility. The facility is unique in that it sits on the 3,345-acre Western New York Nuclear Service Center (WNYNSC), whichmore » is owned by New York State through the New York State Energy Research and Development Authority (NYSERDA). The U.S. Department of Energy (DOE) has overall responsibility for the cleanup that is authorized by the WVDP Act, paying 90 percent of the WVDP costs; NYSERDA pays 10 percent. West Valley Nuclear Services Company (WVNSCO) is the management contractor at the WVDP. This paper will provide a description of the many accomplishments at the WVDP, including the pretreatment and near completion of vitrification of all the site's liquid high-level radioactive waste, a demonstration of technologies to characterize the remaining material in the high-level waste tanks, the commencement of decontamination and decommissioning (D&D) activities to place the site in a safe configuration for long-term site management options, and achievement of several technological firsts. It will also include a discussion of the complexities involved in completing the WVDP due to the various agency interests that require integration for future cleanup decisions.« less

  2. World Energy Data System (WENDS). Volume X. Nuclear facility profiles, PO--ZA. [Brief tabulated information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    In this compendium each profile of a nuclear facility is a capsule summary of pertinent facts regarding that particular installation. The facilities described include the entire fuel cycle in the broadest sense, encompassing resource recovery through waste management. Power plants and all US facilities have been excluded. To facilitate comparison the profiles have been recorded in a standard format. Because of the breadth of the undertaking some data fields do not apply to the establishment under discussion and accordingly are blank. The set of nuclear facility profiles occupies four volumes; the profiles are ordered by country name, and then bymore » facility code. Each nuclear facility profile volume contains two complete indexes to the information. The first index aggregates the facilities alphabetically by country. It is further organized by category of facility, and then by the four-character facility code. It provides a quick summary of the nuclear energy capability or interest in each country and also an identifier, the facility code, which can be used to access the information contained in the profile.« less

  3. The Future of U.S. Nuclear Forces: Boom or Bust

    DTIC Science & Technology

    2007-03-30

    materials, and nuclear waste.45 The Defense Nuclear Facilities Safety Board (DNFSB) was established by Congress in 1988 as an independent federal...adequate protection of public health and safety" at DOE’s defense nuclear facilities .46 This 100- person agency looks at four areas of the nuclear weapons...47 A.J. Eggenberger, Sixteenth Annual Report to Congress (Washington DC: Defense Nuclear Facilities Safety Board, February 2006), 13; available

  4. JAEA's actions and contributions to the strengthening of nuclear non-proliferation

    NASA Astrophysics Data System (ADS)

    Suda, Kazunori; Suzuki, Mitsutoshi; Michiji, Toshiro

    2012-06-01

    Japan, a non-nuclear weapons state, has established a commercial nuclear fuel cycle including LWRs, and now is developing a fast neutron reactor fuel cycle as part of the next generation nuclear energy system, with commercial operation targeted for 2050. Japan Atomic Energy Agency (JAEA) is the independent administrative agency for conducting comprehensive nuclear R&D in Japan after the merger of Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC). JAEA and its predecessors have extensive experience in R&D, facility operations, and safeguards development and implementation for new types of nuclear facilities for the peaceful use of nuclear energy. As the operator of various nuclear fuel cycle facilities and numerous nuclear materials, JAEA makes international contributions to strengthen nuclear non-proliferation. This paper provides an overview of JAEA's development of nuclear non-proliferation and safeguards technologies, including remote monitoring of nuclear facilities, environmental sample analysis methods and new efforts since the 2010 Nuclear Security Summit in Washington D.C.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, J.R.; Danneels, J.; Kenagy, W.D.

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposalmore » Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)« less

  6. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less

  7. 10 CFR 770.1 - What is the purpose of this part?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... or lease real property at defense nuclear facilities for economic development. (b) This part also... DOE activities at the defense nuclear facility. ...

  8. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY: Nuclear Regulatory Commission... Commission (NRC or the Commission) has issued renewed Facility Operating License No. R- 112, held by Reed... License No. R-112 will expire 20 years from its date of issuance. The renewed facility operating license...

  9. 77 FR 51943 - Procedures for Safety Investigations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1708 Procedures for Safety Investigations AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Proposed rule; extension of comment period. SUMMARY: The Defense Nuclear Facilities Safety Board is extending the time for comments on its proposed...

  10. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    NASA Technical Reports Server (NTRS)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; Mcfaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-01-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hangar, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  11. M.I.N.G., Mars Investment for a New Generation: Robotic construction of a permanently manned Mars base

    NASA Astrophysics Data System (ADS)

    Amos, Jeff; Beeman, Randy; Brown, Susan; Calhoun, John; Hill, John; Howorth, Lark; McFaden, Clay; Nguyen, Paul; Reid, Philip; Rexrode, Stuart

    1989-05-01

    A basic procedure for robotically constructing a manned Mars base is outlined. The research procedure was divided into three areas: environment, robotics, and habitat. The base as designed will consist of these components: two power plants, communication facilities, a habitat complex, and a hanger, a garage, recreation and manufacturing facilities. The power plants will be self-contained nuclear fission reactors placed approx. 1 km from the base for safety considerations. The base communication system will use a combination of orbiting satellites and surface relay stations. This system is necessary for robotic contact with Phobos and any future communication requirements. The habitat complex will consist of six self-contained modules: core, biosphere, science, living quarters, galley/storage, and a sick bay which will be brought from Phobos. The complex will be set into an excavated hole and covered with approximately 0.5 m of sandbags to provide radiation protection for the astronauts. The recreation, hangar, garage, and manufacturing facilities will each be transformed from the four one-way landers. The complete complex will be built by autonomous, artificially intelligent robots. Robots incorporated into the design are as follows: Large Modular Construction Robots with detachable arms capable of large scale construction activities; Small Maneuverable Robotic Servicers capable of performing delicate tasks normally requiring a suited astronaut; and a trailer vehicle with modular type attachments to complete specific tasks; and finally, Mobile Autonomous Rechargeable Transporters capable of transferring air and water from the manufacturing facility to the habitat complex.

  12. 75 FR 29785 - Draft Regulatory Guide: Issuance, Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-27

    ... Guide, DG-1248, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... or acceptance of a nuclear power plant simulation facility for use in operator and senior operator...

  13. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  14. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  15. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  16. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  17. 48 CFR 926.7103 - Requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... preference in hiring to an eligible employee of Department of Energy Defense Nuclear Facilities. This right... and subcontractors employed at Department of Energy Defense Nuclear Facilities, to the extent... implementation of Section 3161 at the Department of Energy Defense Nuclear Facility and local counsel, should...

  18. 76 FR 17627 - Sunshine Act Meeting Postponed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Postponed AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of public meeting postponement. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register of March 3, 2011 (76 FR 11764...

  19. Realistic Development and Testing of Fission System at a Non-Nuclear Testing Facility

    NASA Technical Reports Server (NTRS)

    Godfroy, Tom; VanDyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems.

  20. Realistic development and testing of fission systems at a non-nuclear testing facility

    NASA Astrophysics Data System (ADS)

    Godfroy, Tom; van Dyke, Melissa; Dickens, Ricky; Pedersen, Kevin; Lenard, Roger; Houts, Mike

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on a module has been performed at the Marshall Space Flight Center in the Propellant Energy Source Testbed (PEST). This paper discusses the experimental facilities and equipment used for performing resistance heated tests. Recommendations are made for improving non-nuclear test facilities and equipment for simulated testing of nuclear systems. .

  1. Nuclear shapes studied with low-energy Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Zielińska, Magda; Hadyńska-Klȩk, Katarzyna

    2018-05-01

    Coulomb excitation is one of the rare methods available to obtain information on static electromagnetic moments of short-lived excited nuclear states, including collective non-yrast levels. It is thus an ideal tool to study shape coexistence and shape evolution throughout the nuclear chart. Historically, these experiments were limited to stable isotopes, however the advent of new facilities, providing intense beams of short-lived radioactive species, has opened the possibility to apply this powerful technique to a much wider range of nuclei. Here, we present some recent complex Coulomb-excitation studies and use the example of superdeformed states in 42Ca to demonstrate the sensitivity of the method to second-order effects such as relative signs of electromagnetic matrix elements and quadrupole moments.

  2. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-07-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  3. CESAR robotics and intelligent systems research for nuclear environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.

    1992-01-01

    The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less

  4. Mortality among workers with chronic radiation sickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shilnikova, N.S.; Koshurnikova, N.A.; Bolotnikova, M.G.

    1996-07-01

    This study is based on a registry containing medical and dosimetric data of the employees who began working at different plants of the Mayak nuclear complex between 1948 and 1958 who developed chronic radiation sickness. Mayak is the first nuclear weapons plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production enterprise built in Russia and includes nuclear reactors, a radiochemical plant for plutonium separation, and a plutonium production plant.Workers whose employment began between 1948 and 1958 exhibited a 6-28% incidence of chronic radiation sickness at the different facilities. Theremore » were no cases of chronic radiation sickness among those who began working after 1958. Data on doses of external whole-body gamma-irradiation and mortality in workers with chronic radiation sickness are presented. 6 refs., 5 tabs.« less

  5. GKTC ACTIVITIES TO PROVIDE NUCLEAR MATERIAL PHYSICAL PROTECTION, CONTROL AND ACCOUNTING TRAINING FOR 2011-2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr

    2011-10-01

    The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed trainingmore » needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly describes the practical efforts applied to the provision of physical protection specialists advanced training in Ukraine and real results on the way to implement such efforts in 2011-2012.« less

  6. Industrial research for transmutation scenarios

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  7. Nuclear Power Plant Security and Vulnerabilities

    DTIC Science & Technology

    2009-03-18

    Commercial Spent Nuclear Fuel Storage , Public Report...systems that prevent hot nuclear fuel from melting even after the chain reaction has stopped, and storage facilities for highly radioactive spent nuclear ... nuclear fuel cycle facilities must defend against to prevent radiological sabotage and theft of strategic special nuclear material. NRC licensees use

  8. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  9. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false May DOE transfer real property at defense nuclear... ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  10. The Organization and Management of the Nuclear Weapons Program.

    DTIC Science & Technology

    1997-03-01

    over operations include the Defense Nuclear Facilities Safety Board, the Environmental Protection Agency, the Occupational Safety and Health...Safety, and Health. Still more guidance is received from the Defense Nuclear Facilities Safety Board and other external bodies such as the...state regulatory agencies, and the Defense Nuclear Facilities Safety Board. This chapter briefly reviews the most recent decade of this history, describes

  11. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE transfer real property at defense nuclear facilities for economic development at less than fair market...

  12. Prospects for the study of the properties of dense nuclear matter at the NICA heavy-ion complex at JINR (Dubna)

    NASA Astrophysics Data System (ADS)

    Kolesnikov, V. I.

    2017-06-01

    The NICA (Nuclotron-based Ion Collider fAcility) project is aimed in the construction at JINR (Dubna) a modern accelerator complex equipped with three detectors: the MultiPurpose Detector (MPD) and the Spin Physics Detector (SPD) at the NICA collider, as well as a fixed target experiment BM&N which will be use extracted beams from the Nuclotron accelerator. In this report, an overview of the main physics objectives of the NICA heavy-ion program will be given and the recent progress in the NICA construction (both accelerator complex and detectors) will be described.

  13. 75 FR 27228 - Proposed FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 Proposed FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of proposed rulemaking. SUMMARY: Pursuant to 10 CFR 1703.107(b)(6) of the Board's regulations, the Defense Nuclear Facilities Safety Board is...

  14. 77 FR 41258 - FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Establishment of FOIA Fee Schedule. SUMMARY: The Defense Nuclear Facilities Safety Board is publishing its Freedom of Information Act (FOIA) Fee Schedule Update pursuant to...

  15. 76 FR 28194 - Proposed FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 Proposed FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of proposed rulemaking. SUMMARY: Pursuant to 10 CFR 1703.107(b)(6) of the Board's regulations, the Defense Nuclear Facilities Safety Board is...

  16. 76 FR 43819 - FOIA Fee Schedule Update

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD 10 CFR Part 1703 FOIA Fee Schedule Update AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Establishment of FOIA Fee Schedule. SUMMARY: The Defense Nuclear Facilities Safety Board is publishing its Freedom of Information Act (FOIA) Fee Schedule Update pursuant to...

  17. 78 FR 20625 - Extension of Hearing Record Closure Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on January 22, 2013...

  18. 77 FR 65871 - Extension of Hearing Record Closure Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on August 15, 2012...

  19. 78 FR 1206 - Second Extension of Hearing Record Closure Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Second Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Second extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on...

  20. 75 FR 21605 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... depth federal safety management and oversight policies being developed by DOE and NNSA for defense... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities... in the Sunshine Act'' (5 U.S.C. 552b), notice is hereby given of the Defense Nuclear Facilities...

  1. Aluminum Data Measurements and Evaluation for Criticality Safety Applications

    NASA Astrophysics Data System (ADS)

    Leal, L. C.; Guber, K. H.; Spencer, R. R.; Derrien, H.; Wright, R. Q.

    2002-12-01

    The Defense Nuclear Facility Safety Board (DNFSB) Recommendation 93-2 motivated the US Department of Energy (DOE) to develop a comprehensive criticality safety program to maintain and to predict the criticality of systems throughout the DOE complex. To implement the response to the DNFSB Recommendation 93-2, a Nuclear Criticality Safety Program (NCSP) was created including the following tasks: Critical Experiments, Criticality Benchmarks, Training, Analytical Methods, and Nuclear Data. The Nuclear Data portion of the NCSP consists of a variety of differential measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) at the Oak Ridge National Laboratory (ORNL), data analysis and evaluation using the generalized least-squares fitting code SAMMY in the resolved, unresolved, and high energy ranges, and the development and benchmark testing of complete evaluations for a nuclide for inclusion into the Evaluated Nuclear Data File (ENDF/B). This paper outlines the work performed at ORNL to measure, evaluate, and test the nuclear data for aluminum for applications in criticality safety problems.

  2. Chemical processing in geothermal nuclear chimney

    DOEpatents

    Krikorian, O.H.

    1973-10-01

    A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

  3. Optimizing liquid effluent monitoring at a large nuclear complex.

    PubMed

    Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M

    2003-12-01

    Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk.

  4. 78 FR 65978 - Draft Revised Strategic Plan for FY 2014-2018

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Draft Revised Strategic Plan for FY 2014-2018 AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice. SUMMARY: In accordance with Office of Management and Budget Circular No. A-11, the Defense Nuclear Facilities Safety Board (DNFSB) is soliciting...

  5. 75 FR 4794 - Draft Revised Strategic Plan for FY 2010-2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Draft Revised Strategic Plan for FY 2010-2015 AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice. SUMMARY: In accordance with OMB Circular No. A-11, the Defense Nuclear Facilities Safety Board is soliciting comments from all interested and potentially...

  6. Modern tornado design of nuclear and other potentially hazardous facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, J.D.; Zhao, Y.

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

  7. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollar, Lenka; Mathews, Caroline E.

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In ordermore » to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.« less

  8. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  9. NIMBY, CLAMP, and the location of new nuclear-related facilities: U.S. national and 11 site-specific surveys.

    PubMed

    Greenberg, Michael R

    2009-09-01

    Public and political opposition have made finding locations for new nuclear power plants, waste management, and nuclear research and development facilities a challenge for the U.S. government and the nuclear industry. U.S. government-owned properties that already have nuclear-related activities and commercial nuclear power generating stations are logical locations. Several studies and utility applications to the Nuclear Regulatory Commission suggest that concentrating locations at major plants (CLAMP) has become an implicit siting policy. We surveyed 2,101 people who lived within 50 miles of 11 existing major nuclear sites and 600 who lived elsewhere in the United States. Thirty-four percent favored CLAMP for new nuclear power plants, 52% for waste management facilities, and 50% for new nuclear laboratories. College educated, relatively affluent male whites were the strongest CLAMP supporters. They disproportionately trusted those responsible for the facilities and were not worried about existing nuclear facilities or other local environmental issues. Notably, they were concerned about continuing coal use. Not surprisingly, CLAMP proponents tended to be familiar with their existing local nuclear site. In short, likely CLAMP sites have a large and politically powerful core group to support a CLAMP policy. The challenge to proponents of nuclear technologies will be to sustain this support and expand the base among those who clearly are less connected and receptive to new nearby sites.

  10. Space exploration initiative candidate nuclear propulsion test facilities

    NASA Technical Reports Server (NTRS)

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  11. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at closed or downsized defense nuclear facilities, for the purpose of permitting economic development. (b) DOE may transfer, by lease only, improvements at defense nuclear facilities on land withdrawn...

  12. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at defense nuclear facilities, for the purpose of permitting economic development. (b) DOE may transfer, by lease only, improvements at defense nuclear facilities on land withdrawn from the...

  13. 10 CFR 770.1 - What is the purpose of this part?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... or lease real property at closed or downsized defense nuclear facilities for economic development. (b... contaminant as a result of DOE activities at the defense nuclear facility. [65 FR 10689, Feb. 29, 2000, as...

  14. 75 FR 67711 - Extension of Scoping Period for the Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement... Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement... facility portion of the Chemistry and Metallurgy Research Building Replacement Project (CMRR-NF) at Los...

  15. 75 FR 74022 - Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD [Recommendation 2010-1] Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers AGENCY: Defense Nuclear Facilities Safety Board... Nuclear Facilities Safety Board has made a recommendation to the Secretary of Energy requesting an...

  16. 77 FR 60482 - Regulatory Guide 5.67, Material Control and Accounting for Uranium Enrichment Facilities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... INFORMATION CONTACT: Glenn Tuttle, Office of Nuclear Material Safety and Safeguards, Division of Fuel Cycle...

  17. 78 FR 4404 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On September 28, 2012 the Defense Nuclear Facilities Safety Board submitted...

  18. 77 FR 42973 - Export and Reexport Controls to Rwanda and United Nations Sanctions Under the Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Control List), Category 0--Nuclear Materials, Facilities, and Equipment [and Miscellaneous Items]--Export... Supplement No. 1 to Part 774 (the Commerce Control List), Category 0--Nuclear Materials, Facilities, and...

  19. Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A

    2010-01-01

    We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less

  20. Decommissioning of the Iraq former nuclear complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Mohammed; Helou, Tuama; Ahmead, Bushra

    2007-07-01

    Available in abstract form only. Full text of publication follows: A number of sites in Iraq have some degree of radiological contamination and require decommissioning and remediation in order to ensure radiological safety. Many of these sites in Iraq are located at the nuclear research centre at Al Tuwaitha. The International Atomic Energy Agency (IAEA) Board of Governors has approved a project to assist the Government of Iraq in the evaluation and decommissioning of former facilities that used radioactive materials. The project is divided into three phases: Phase 1: collect and analyze all available data and conduct training of themore » Iraqi staff, Phase 2: develop a decommissioning and remediation plan, and Phase 3: implement field activities relating to decommissioning, remediation and site selection suitable for final disposal of waste. Four working groups have been established to complete the Phase 1 work and significant progress has been made in drafting a new nuclear law which will provide the legal basis for the licensing of the decommissioning of the former nuclear complex. Work is also underway to collect and analysis existing date, to prioritize future activities and to develop a waste management strategy. This will be a long-term and costly project. (authors)« less

  1. 44 CFR 351.21 - The Nuclear Regulatory Commission.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true The Nuclear Regulatory... Assignments § 351.21 The Nuclear Regulatory Commission. (a) Assess NRC nuclear facility (e.g., commercial... protect the health and safety of the public. (b) Verify that nuclear facility licensee emergency plans can...

  2. 44 CFR 351.21 - The Nuclear Regulatory Commission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false The Nuclear Regulatory... Assignments § 351.21 The Nuclear Regulatory Commission. (a) Assess NRC nuclear facility (e.g., commercial... protect the health and safety of the public. (b) Verify that nuclear facility licensee emergency plans can...

  3. 44 CFR 351.21 - The Nuclear Regulatory Commission.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false The Nuclear Regulatory... Assignments § 351.21 The Nuclear Regulatory Commission. (a) Assess NRC nuclear facility (e.g., commercial... protect the health and safety of the public. (b) Verify that nuclear facility licensee emergency plans can...

  4. 44 CFR 351.21 - The Nuclear Regulatory Commission.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false The Nuclear Regulatory... Assignments § 351.21 The Nuclear Regulatory Commission. (a) Assess NRC nuclear facility (e.g., commercial... protect the health and safety of the public. (b) Verify that nuclear facility licensee emergency plans can...

  5. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33... NUCLEAR MATERIAL Special Nuclear Material of Low Strategic Significance § 74.33 Nuclear material control... strategic significance. (a) General performance objectives. Each licensee who is authorized by this chapter...

  6. Cancer risks near nuclear facilities: the importance of research design and explicit study hypotheses.

    PubMed

    Wing, Steve; Richardson, David B; Hoffmann, Wolfgang

    2011-04-01

    In April 2010, the U.S. Nuclear Regulatory Commission asked the National Academy of Sciences to update a 1990 study of cancer risks near nuclear facilities. Prior research on this topic has suffered from problems in hypothesis formulation and research design. We review epidemiologic principles used in studies of generic exposure-response associations and in studies of specific sources of exposure. We then describe logical problems with assumptions, formation of testable hypotheses, and interpretation of evidence in previous research on cancer risks near nuclear facilities. Advancement of knowledge about cancer risks near nuclear facilities depends on testing specific hypotheses grounded in physical and biological mechanisms of exposure and susceptibility while considering sample size and ability to adequately quantify exposure, ascertain cancer cases, and evaluate plausible confounders. Next steps in advancing knowledge about cancer risks near nuclear facilities require studies of childhood cancer incidence, focus on in utero and early childhood exposures, use of specific geographic information, and consideration of pathways for transport and uptake of radionuclides. Studies of cancer mortality among adults, cancers with long latencies, large geographic zones, and populations that reside at large distances from nuclear facilities are better suited for public relations than for scientific purposes.

  7. Experimental Fuels Facility Re-categorization Based on Facility Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiss, Troy P.; Andrus, Jason

    The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the DOE-ID Supplemental Guidance for DOE-STD-1027-92 based on the proposed downgrade of the initial facility categorization of Hazard Category 2.« less

  8. Optically-based Sensor System for Critical Nuclear Facilities Post-Event Seismic Structural Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCallen, David; Petrone, Floriana; Buckle, Ian

    The U.S. Department of Energy (DOE) has ownership and operational responsibility for a large enterprise of nuclear facilities that provide essential functions to DOE missions ranging from national security to discovery science and energy research. These facilities support a number of DOE programs and offices including the National Nuclear Security Administration, Office of Science, and Office of Environmental Management. With many unique and “one of a kind” functions, these facilities represent a tremendous national investment, and assuring their safety and integrity is fundamental to the success of a breadth of DOE programs. Many DOE critical facilities are located in regionsmore » with significant natural phenomenon hazards including major earthquakes and DOE has been a leader in developing standards for the seismic analysis of nuclear facilities. Attaining and sustaining excellence in nuclear facility design and management must be a core competency of the DOE. An important part of nuclear facility management is the ability to monitor facilities and rapidly assess the response and integrity of the facilities after any major upset event. Experience in the western U.S. has shown that understanding facility integrity after a major earthquake is a significant challenge which, lacking key data, can require extensive effort and significant time. In the work described in the attached report, a transformational approach to earthquake monitoring of facilities is described and demonstrated. An entirely new type of optically-based sensor that can directly and accurately measure the earthquake-induced deformations of a critical facility has been developed and tested. This report summarizes large-scale shake table testing of the sensor concept on a representative steel frame building structure, and provides quantitative data on the accuracy of the sensor measurements.« less

  9. 77 FR 43583 - DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-1 of the Defense Nuclear Facilities Safety Board, Savannah River Site Building 235-F Safety AGENCY: Department of Energy. ACTION: Notice. SUMMARY: On May 8, 2012, the Defense Nuclear Facilities Safety Board submitted Recommendation 2012-1...

  10. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    1999-04-30

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from February 1, 1999, through April 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less

  11. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less

  12. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann B. Beauchesne

    1998-09-30

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect onmore » individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from June 1, 1998 through September 30, 1998, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less

  13. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    1999-07-30

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from May 1, 1999, through July 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and Secretary Richardson.« less

  14. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    1999-01-31

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect onmore » individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1998 through January 31, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less

  15. 75 FR 43495 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Notice AGENCY: Defense Nuclear Facilities..., structures, and components, and (5) safety-related design aspects of new facilities or modifications of existing facilities needed to deliver high-level waste feed. The Board will be prepared to accept any other...

  16. 75 FR 81675 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Fuel Cycle Facilities.'' FOR FURTHER INFORMATION CONTACT: Mekonen M. Bayssie, Regulatory Guide... Materials in Liquid and Gaseous Effluents from Nuclear Fuel Cycle Facilities,'' was published as Draft... guidance is applicable to nuclear fuel cycle facilities, with the exception of uranium milling facilities...

  17. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  18. 10 CFR 2.103 - Action on applications for byproduct, source, special nuclear material, facility and operator...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...

  19. Metrology for decommissioning nuclear facilities: Partial outcomes of joint research project within the European Metrology Research Program.

    PubMed

    Suran, Jiri; Kovar, Petr; Smoldasova, Jana; Solc, Jaroslav; Van Ammel, Raf; Garcia Miranda, Maria; Russell, Ben; Arnold, Dirk; Zapata-García, Daniel; Boden, Sven; Rogiers, Bart; Sand, Johan; Peräjärvi, Kari; Holm, Philip; Hay, Bruno; Failleau, Guillaume; Plumeri, Stephane; Laurent Beck, Yves; Grisa, Tomas

    2018-04-01

    Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Diagnostic value of succinate ubiquinone reductase activity in the identification of patients with mitochondrial DNA depletion.

    PubMed

    Hargreaves, P; Rahman, S; Guthrie, P; Taanman, J W; Leonard, J V; Land, J M; Heales, S J R

    2002-02-01

    Mitochondrial DNA (mtDNA) depletion syndrome (McKusick 251880) is characterized by a progressive quantitative loss of mtDNA resulting in severe mitochondrial dysfunction. A diagnosis of mtDNA depletion can only be confirmed after Southern blot analysis of affected tissue. Only a limited number of centres have the facilities to offer this service, and this is frequently on an irregular basis. There is therefore a need for a test that can refine sample selection as well as complementing the molecular analysis. In this study we compared the activities of the nuclear-encoded succinate ubiquinone reductase (complex II) to the activities of the combined mitochondrial and nuclear-encoded mitochondrial electron transport chain (ETC) complexes; NADH:ubiquinone reductase (complex I), ubiquinol-cytochrome-c reductase (complex III), and cytochrome-c oxidase (complex IV), in skeletal muscle biopsies from 7 patients with confirmed mtDNA depletion. In one patient there was no evidence of an ETC defect. However, the remaining 6 patients exhibited reduced complex I and IV activities. Five of these patients also displayed reduced complex II-III (succinate:cytochrome-c reductase) activity. Individual measurement of complex II and complex III activities demonstrated normal levels of complex II activity compared to complex III, which was reduced in the 5 biopsies assayed. These findings suggest a possible diagnostic value for the detection of normal levels of complex II activity in conjunction with reduced complex I, III and IV activity in the identification of likely candidates for mtDNA depletion syndrome

  1. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... supporting the economic viability of the proposed development; and (v) The consideration offered and any... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  2. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Information supporting the economic viability of the proposed development; and (v) The consideration offered... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  3. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... supporting the economic viability of the proposed development; and (v) The consideration offered and any... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  4. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... supporting the economic viability of the proposed development; and (v) The consideration offered and any... at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  5. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6... transferred for economic development? Any person or entity may request that specific real property be made...

  6. Response analysis of a nuclear containment structure with nonlinear soil-structure interaction under bi-directional ground motion

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar

    2015-06-01

    Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.

  7. Chemical oxygen-iodine laser (COIL) for the dismantlement of nuclear facilities

    NASA Astrophysics Data System (ADS)

    Hallada, Marc R.; Seiffert, Stephan L.; Walter, Robert F.; Vetrovec, John

    2000-05-01

    The dismantlement of obsolete nuclear facilities is a major challenge for both the US Department of Energy and nuclear power utilities. Recent demonstrations have shown that lasers can be highly effective for size reduction cutting, especially for the efficient storage and recycling of materials. However, the full benefits of lasers can only be realized with high average power beams that can be conveniently delivered, via fiber optics, to remote and/or confined areas. Industrial lasers that can meet these requirements are not available now or for the foreseeable future. However, a military weapon laser, a Chemical Oxygen Iodine Laser (COIL), which has been demonstrated at over a hundred kilo Watts, could be adapted to meet these needs and enable entirely new industrial applications. An 'industrialized' COIL would enable rapid sectioning of thick and complex structures, such as glove boxes, reactor vessels, and steam generators, accelerating dismantlement schedules and reducing worker hazards. The full advantages of lasers in dismantlement could finally be realized with a portable COIL which is integrated with sophisticated robotics. It could be built and deployed in less than two years, breaking the paradigm of labor-intensive dismantlement operations and cutting processing times and costs dramatically.

  8. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  9. Stockpile Stewardship: How We Ensure the Nuclear Deterrent Without Testing

    ScienceCinema

    None

    2018-01-16

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.

  10. Cancer Risks near Nuclear Facilities: The Importance of Research Design and Explicit Study Hypotheses

    PubMed Central

    Wing, Steve; Richardson, David B.; Hoffmann, Wolfgang

    2011-01-01

    Background In April 2010, the U.S. Nuclear Regulatory Commission asked the National Academy of Sciences to update a 1990 study of cancer risks near nuclear facilities. Prior research on this topic has suffered from problems in hypothesis formulation and research design. Objectives We review epidemiologic principles used in studies of generic exposure–response associations and in studies of specific sources of exposure. We then describe logical problems with assumptions, formation of testable hypotheses, and interpretation of evidence in previous research on cancer risks near nuclear facilities. Discussion Advancement of knowledge about cancer risks near nuclear facilities depends on testing specific hypotheses grounded in physical and biological mechanisms of exposure and susceptibility while considering sample size and ability to adequately quantify exposure, ascertain cancer cases, and evaluate plausible confounders. Conclusions Next steps in advancing knowledge about cancer risks near nuclear facilities require studies of childhood cancer incidence, focus on in utero and early childhood exposures, use of specific geographic information, and consideration of pathways for transport and uptake of radionuclides. Studies of cancer mortality among adults, cancers with long latencies, large geographic zones, and populations that reside at large distances from nuclear facilities are better suited for public relations than for scientific purposes. PMID:21147606

  11. Nuclear energy center site survey reactor plant considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harty, H.

    The Energy Reorganization Act of 1974 required the Nuclear Regulatory Commission (NRC) to make a nuclear energy center site survey (NECSS). Background information for the NECSS report was developed in a series of tasks which include: socioeconomic inpacts; environmental impact (reactor facilities); emergency response capability (reactor facilities); aging of nuclear energy centers; and dry cooled nuclear energy centers.

  12. Characterization of Actinides Complexed to Nuclear Fuel Constituents Using ESI-MS.

    PubMed

    McDonald, Luther W; Campbell, James A; Vercouter, Thomas; Clark, Sue B

    2016-03-01

    Electrospray ionization-mass spectrometry (ESI-MS) was tested for its use in monitoring spent nuclear fuel (SNF) constituents including U, Pu, dibutyl phosphate (DBP), and tributyl phosphate (TBP). Both positive and negative ion modes were used to evaluate the speciation of U and Pu with TBP and DBP. Furthermore, apparent stability constants were determined for U complexed to TBP and DBP. In positive ion mode, TBP produced a strong signal with and without complexation to U or Pu, but, in negative ion mode, no TBP, U-TBP, or Pu-TBP complexes were observed. Apparent stability constants were determined for [UO2(NO3)2(TBP)2], [UO2(NO3)2(H2O)(TBP)2], and [UO2(NO3)2(TBP)3]. In contrast DBP, U-DBP, and Pu-DBP complexes were observed in both positive and negative ion modes. Apparent stability constants were determined for the species [UO2(DBP)], [UO2(DBP)3], and [UO2(DBP)4]. Analyzing mixtures of U or Pu with TBP and DBP yielded the formation of ternary complexes whose stoichiometry was directly related to the ratio of TBP to DBP. The ESI-MS protocols used in this study will further demonstrate the utility of ESI-MS and its applicability to process control monitoring in SNF reprocessing facilities.

  13. Idaho National Laboratory 2015-2023 Ten-Year Site Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Elizabeth Connell; Bill Buyers

    2013-09-01

    This Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of sustaining the INL infrastructure to meet the Department of Energy Office of Nuclear Energy (DOE-NE) mission: to promote nuclear power as a resource capable of making major contributions in meeting the nation’s energy supply, environmental and energy security needs. This TYSP provides the strategy for INL to accomplish its mission by: (1) linking R&D mission goals to core capabilities and infrastructure requirements; (2) establishing a ten-year end-state vision for INL facility complexes; (3) identifying and prioritizing infrastructure needs and capability gaps; (4)more » establishing maintenance and repair strategies that allow for sustainment of mission-critical (MC) facilities; and (5) applying sustainability principles to each decision and action. The TYSP serves as the infrastructure-planning baseline for INL; and, though budget formulation documents are informed by the TYSP, it is not itself a budget document.« less

  14. License restrictions at Barnwell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Autry, V.R.

    1991-12-31

    The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less

  15. 10 CFR 770.5 - How does DOE notify persons and entities that defense nuclear facility real property is available...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false How does DOE notify persons and entities that defense nuclear facility real property is available for transfer for economic development? 770.5 Section 770.5 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC...

  16. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false May interested persons and entities request that real property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6...

  17. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...

  18. 10 CFR 770.5 - How does DOE notify persons and entities that defense nuclear facility real property is available...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false How does DOE notify persons and entities that defense nuclear facility real property is available for transfer for economic development? 770.5 Section 770.5 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC...

  19. 10 CFR 770.7 - What procedures are to be used to transfer real property at defense nuclear facilities for...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false What procedures are to be used to transfer real property at defense nuclear facilities for economic development? 770.7 Section 770.7 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.7 What...

  20. 10 CFR 770.8 - May DOE transfer real property at defense nuclear facilities for economic development at less...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false May DOE transfer real property at defense nuclear facilities for economic development at less than fair market value? 770.8 Section 770.8 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.8 May DOE...

  1. 10 CFR 770.6 - May interested persons and entities request that real property at defense nuclear facilities be...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false May interested persons and entities request that real property at defense nuclear facilities be transferred for economic development? 770.6 Section 770.6 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC DEVELOPMENT § 770.6...

  2. Nuclear Science in the Undergraduate Curriculum: The New Nuclear Science Facility at San Jose State University.

    ERIC Educational Resources Information Center

    Ling, A. Campbell

    1979-01-01

    The following aspects of the radiochemistry program at San Jose State University in California are described: the undergraduate program in radiation chemistry, the new nuclear science facility, and academic programs in nuclear science for students not attending San Jose State University. (BT)

  3. 78 FR 26812 - University of California, Irvine; License Renewal for University of California, Irvine Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-326; NRC-2010-0217] University of California, Irvine; License Renewal for University of California, Irvine Nuclear Reactor Facility; Supplemental Information... Renewal for University of California, Irvine Nuclear Reactor Facility,'' to inform the public that the NRC...

  4. Heavy ion linear accelerator for radiation damage studies of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less

  5. Heavy ion linear accelerator for radiation damage studies of materials

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif

    2017-03-01

    A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

  6. Numerical Simulation of Ground Coupling of Low Yield Nuclear Detonation

    DTIC Science & Technology

    2010-06-01

    Without nuclear testing, advanced simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring...in planning future experimental work at NIF . 15. NUMBER OF PAGES 93 14. SUBJECT TERMS National Ignition Facility, GEODYN, Ground Coupling...simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring safety, reliability, and effectiveness

  7. Stockpile Stewardship: How We Ensure the Nuclear Deterrent Without Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-09-04

    In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun,more » the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.« less

  8. Influence of gamma-ray skyshine on nuclear facilities design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, M.; Tsuji, M.; Kimura, Y.

    1986-01-01

    In safety analysis of nuclear facilities, skyshine dose rate at site boundary is one of the most important shielding design problems. For nuclear power stations in Japan, the skyshine dose rate at the site boundary has been specified not to exceed 5 mR/yr by the authorities, including total dose contribution from all structures on site, and this guide is commonly applied to other nuclear fuel cycle facilities. Therefore the design criterion dose of each structure on site is, considering plot planning, shielding condition, and so on, defined as a value <5 mR/yr. The purpose of this study is to investigatemore » how skyshine dose standards or other factors have an influence on the design of nuclear facilities, in a parametric survey of gamma-ray skyshine.« less

  9. Velocimetry Overview for visitors from the DOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Matthew E.; Holtkamp, David Bruce

    2016-08-19

    We are in the midst of a transformative period in which technological advances are making fundamental changes in the measurement techniques that form the backbone of nuclear weapon certification. Optical velocimetry has replaced electrical shorting pins in “Hydrotests,” which measure the dynamic implosion process. This advance has revolutionized nuclear weapons certification during the last 5 years. We can now measure the implosion process that drives a nuclear detonation with many orders of magnitude more resolution in both space and time than was possible just 10 years ago. It has been compared to going from Morse Code to HDTV, resulting inmore » a dozen or more improvements in models of these weapons. These Hydrotests are carried out at LANL, LLNL and the NNSS, with the later holding the important role of allowing us to test with nuclear materials, in sub-critical configurations (i.e., no yield.) Each of these institutions has largely replaced pins with hundreds of channels of optical velocimetry. Velocimetry is non-contact and is used simultaneously with the X-ray capability of these facilities. The U1-a facility at NNSS pioneered this approach in the Gemini series in 2012, and continues to lead, both in channel count and technological advances. Close cooperation among LANL, LLNL and NSTec in these advances serves the complex by leveraging capabilities across sites and accelerating the pace of technical improvements.« less

  10. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ethan W. Brown

    2001-09-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.« less

  11. Department of Energy Actions Necessary to Improve DOE’s Training Program

    DTIC Science & Technology

    1999-02-01

    assessments, the Department has completed analyses and implemented training programs for the defense nuclear facilities technical workforce and...certification standards, such as those examined by the Defense Nuclear Facilities Safety Board in its reviews of Department operations, impose... nuclear facilities will have their technical skills assessed and will receive continuing training to maintain certain necessary skills. Page 17 GAO/RCED

  12. Nuclear Weapons: NNSA Needs to Establish a Cost and Schedule Baseline for Manufacturing a Critical Nuclear Weapon Component

    DTIC Science & Technology

    2008-05-01

    building up to and beyond the 2013 time frame. However, in October 2007, the Defense Nuclear Facilities Safety Board, which monitors safety...manufacturing. They said that NNSA is still working through this process with the Defense Nuclear Facilities Safety Board. Processing of waste

  13. 77 FR 14441 - Facility Operating License Amendment From Southern Nuclear Operating, Inc., Joseph M. Farley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-09

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-348 AND 50-364; NRC-2012-0053] Facility Operating License Amendment From Southern Nuclear Operating, Inc., Joseph M. Farley Nuclear Plant, Units 1 and 2...-0053. You may submit comments by the following methods: Federal Rulemaking Web site: Go to http://www...

  14. 76 FR 35137 - Vulnerability and Threat Information for Facilities Storing Spent Nuclear Fuel and High-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...

  15. 77 FR 36302 - Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying License (Effective... of 10 CFR part 72, Subpart K at the Yankee Nuclear Power Station. The facility is located at the... Facility Operating License for Yankee Nuclear Power Station must be modified to include provisions with...

  16. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  17. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  18. 10 CFR 74.33 - Nuclear material control and accounting for uranium enrichment facilities authorized to produce...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...

  19. 10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... enrichment facilities. 140.13b Section 140.13b Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...

  20. 76 FR 62868 - Washington State University; Notice of Issuance of Renewed Facility Operating License No. R-76

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ...; Notice of Issuance of Renewed Facility Operating License No. R-76 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of issuance of renewed facility operating license No. R- 76. ADDRESSES: You can access.... Nuclear Regulatory Commission (NRC, the Commission) has issued renewed Facility Operating License No. R-76...

  1. Ground test facility for SEI nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Harmon, Charles D.; Ottinger, Cathy A.; Sanchez, Lawrence C.; Shipers, Larry R.

    1992-07-01

    Nuclear (fission) thermal propulsion has been identified as a critical technology for a manned mission to Mars by the year 2019. Facilities are required that will support ground tests to qualify the nuclear rocket engine design, which must support a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power for a flight weight reactor/engine. This paper describes the design of a fuel element ground test facility, with a strong emphasis on safety and economy. The details of major structures and support systems of the facility are discussed, and a design diagram of the test facility structures is presented.

  2. Socket welds in nuclear facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, P.A.; Torres, L.L.

    1995-12-31

    Socket welds are easier and faster to make than are butt welds. However, they are often not used in nuclear facilities because the crevices between the pipes and the socket sleeves may be subject to crevice corrosion. If socket welds can be qualified for wider use in facilities that process nuclear materials, the radiation exposures to welders can be significantly reduced. The current tests at the Idaho Chemical Processing Plant (ICPP) are designed to determine if socket welds can be qualified for use in the waste processing system at a nuclear fuel processing plant.

  3. Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Schanfein; Casey Durst

    2012-11-01

    Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA)more » time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC. For the nuclear industry to reap the benefits of SBD (i.e. avoid cost overruns and construction schedule slippages), nuclear facility designers and operators should work closely with the State Regulatory Authority and IAEA as soon as a decision is taken to build a new nuclear facility. Ideally, this interaction should begin during the conceptual design phase and continue throughout construction and start-up of a nuclear facility. Such early coordination and planning could influence decisions on the design of the nuclear material processing flow-sheet, material storage and handling arrangements, and facility layout (including safeguards equipment), etc.« less

  4. U.S. Nuclear Weapons Modernization - the Stockpile Life Extension Program

    NASA Astrophysics Data System (ADS)

    Cook, Donald

    2016-03-01

    Underground nuclear testing of U.S. nuclear weapons was halted by President George H.W. Bush in 1992 when he announced a moratorium. In 1993, the moratorium was extended by President Bill Clinton and, in 1995, a program of Stockpile Stewardship was put in its place. In 1996, President Clinton signed the Comprehensive Nuclear Test Ban Treaty (CTBT). Twenty years have passed since then. Over the same time, the average age of a nuclear weapon in the stockpile has increased from 6 years (1992) to nearly 29 years (2015). At its inception, achievement of the objectives of the Stockpile Stewardship Program (SSP) appeared possible but very difficult. The cost to design and construct several large facilities for precision experimentation in hydrodynamics and high energy density physics was large. The practical steps needed to move from computational platforms of less than 100 Mflops/sec to 10 Teraflops/sec and beyond were unknown. Today, most of the required facilities for SSP are in place and computational speed has been increased by more than six orders of magnitude. These, and the physicists and engineers in the complex of labs and plants within the National Nuclear Security Administration (NNSA) who put them in place, have been the basis for underpinning an annual decision, made by the weapons lab directors for each of the past 20 years, that resort to underground nuclear testing is not needed for maintaining confidence in the safety and reliability of the U.S stockpile. A key part of that decision has been annual assessment of the physical changes in stockpiled weapons. These weapons, quite simply, are systems that invariably and unstoppably age in the internal weapon environment of radioactive materials and complex interfaces of highly dissimilar organic and inorganic materials. Without an ongoing program to rebuild some components and replace other components to increase safety or security, i.e., life extending these weapons, either underground testing would again be required to assess many changes at once, or confidence in these weapons would be reduced. The strategy and details of the U.S. Stockpile Life Extension Program will be described in this talk. In brief, the strategy is to reduce the number of weapons in the stockpile while increasing confidence in the weapons that remain and, where possible, increase their safety, increase their security, and reduce their nuclear material quantities and yields. A number of ``myths'' pertaining to nuclear weapons, the SSP, and the Stockpile Life Extension Program will be explored.

  5. Nuclear Security Objectives of an NMAC System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Rebecca Lynn

    After completing this module, you should be able to: Describe the role of Nuclear Material Accounting and Control (NMAC) in comprehensive nuclear security at a facility; Describe purpose of NMAC; Identify differences between the use of NMAC for IAEA safeguards and for facility nuclear security; List NMAC elements and measures; and Describe process for resolution of irregularities

  6. 76 FR 20052 - Notice of Issuance of Regulatory Guide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Guide 1.149, ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License..., ``Nuclear Power Plant Simulation Facilities for Use in Operator Training, License Examinations, and... simulation facility for use in operator and senior operator training, license examination operating tests...

  7. 1st Quarter Transportation Report FY2017: Waste Shipments To and From the Nevada National Security Site (NNSS), Radioactive Waste Management Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. This report summarizes the 1st quarter of fiscal year (FY) 2017 low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW) and classified non-radioactive (CNR) shipments. There were no shipments sent for offsite treatment from a NNSS facility and returned to the NNSS this quarter of FY2017.

  8. Providing security assurance in line with national DBT assumptions

    NASA Astrophysics Data System (ADS)

    Bajramovic, Edita; Gupta, Deeksha

    2017-01-01

    As worldwide energy requirements are increasing simultaneously with climate change and energy security considerations, States are thinking about building nuclear power to fulfill their electricity requirements and decrease their dependence on carbon fuels. New nuclear power plants (NPPs) must have comprehensive cybersecurity measures integrated into their design, structure, and processes. In the absence of effective cybersecurity measures, the impact of nuclear security incidents can be severe. Some of the current nuclear facilities were not specifically designed and constructed to deal with the new threats, including targeted cyberattacks. Thus, newcomer countries must consider the Design Basis Threat (DBT) as one of the security fundamentals during design of physical and cyber protection systems of nuclear facilities. IAEA NSS 10 describes the DBT as "comprehensive description of the motivation, intentions and capabilities of potential adversaries against which protection systems are designed and evaluated". Nowadays, many threat actors, including hacktivists, insider threat, cyber criminals, state and non-state groups (terrorists) pose security risks to nuclear facilities. Threat assumptions are made on a national level. Consequently, threat assessment closely affects the design structures of nuclear facilities. Some of the recent security incidents e.g. Stuxnet worm (Advanced Persistent Threat) and theft of sensitive information in South Korea Nuclear Power Plant (Insider Threat) have shown that these attacks should be considered as the top threat to nuclear facilities. Therefore, the cybersecurity context is essential for secure and safe use of nuclear power. In addition, States should include multiple DBT scenarios in order to protect various target materials, types of facilities, and adversary objectives. Development of a comprehensive DBT is a precondition for the establishment and further improvement of domestic state nuclear-related regulations in the field of physical and cyber protection. These national regulations have to be met later on by I&C platform suppliers, electrical systems suppliers, system integrators and turn-key providers.

  9. In search of plutonium: A nonproliferation journey

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried

    2010-02-01

    In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

  10. Neutron Scattering Facilities

    Science.gov Websites

    Low Energy Neutron Source (LENS), Indiana University Cyclotron Facility, USA McMaster Nuclear Reactor Research, Gaithersburg, Maryland, USA Peruvian Institute of Nuclear Energy (IPEN), Lima, Peru Spallation Nuclear Science and Technology Organisation, Lucas Heights, Australia High-flux Advanced Neutron

  11. 5 CFR 5801.102 - Prohibited securities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...

  12. 5 CFR 5801.102 - Prohibited securities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... licenses for facilities which generate electric energy by means of a nuclear reactor; (2) State or local... reactor or a low-level waste facility; (3) Entities manufacturing or selling nuclear power or test reactors; (4) Architectural-engineering companies providing services relating to a nuclear power reactor...

  13. The Nature of Scatter at the DARHT Facility and Suggestions for Improved Modeling of DARHT Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morneau, Rachel Anne

    This report describes the US Stockpile Stewardship Program which is meant to sustain and evaluate nuclear weapon stockpile with no underground nuclear tests. This research will focus on DARHT, the Dual Axis Radiographic Hydrodynamic Test facility.

  14. Investigation of injury/illness data at a nuclear facility. Part II

    DOE PAGES

    Cournoyer, Michael E.; Garcia, Vincent E.; Sandoval, Arnold N.; ...

    2015-07-01

    At Los Alamos National Laboratory (LANL), there are several nuclear facilities, accelerator facilities, radiological facilities, explosives sites, moderate- and high-hazard non-nuclear facilities, biosciences laboratory, etc. The Plutonium Science and Manufacturing Directorate (ADPSM) provides special nuclear material research, process development, technology demonstration, and manufacturing capabilities. ADPSM manages the LANL Plutonium Facility. Within the Radiological Control Area at TA-55 (PF-4), chemical and metallurgical operations with plutonium and other hazardous materials are performed. LANL Health and Safety Programs investigate injury and illness data. In this study, statistically significant trends have been identified and compared for LANL, ADPSM, and PF-4 injury/illness cases. A previouslymore » described output metric is used to measures LANL management progress towards meeting its operational safety objectives and goals. Timelines are used to determine trends in Injury/Illness types. Pareto Charts are used to prioritize causal factors. The data generated from analysis of Injury/Illness data have helped identify and reduce the number of corresponding causal factors.« less

  15. Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Hill, T. J.; Stanley, M. L.; Martinell, J. S.

    1993-01-01

    The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.

  16. 3DD - Three Dimensional Disposal of Spent Nuclear Fuel - 12449

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvorakova, Marketa; Slovak, Jiri

    2012-07-01

    Three dimensional disposal is being considered as a way in which to store long-term spent nuclear fuel in underground disposal facilities in the Czech Republic. This method involves a combination of the two most common internationally recognised disposal methods in order to practically apply the advantages of both whilst, at the same time, eliminating their weaknesses; the method also allows easy removal in case of potential re-use. The proposed method for the disposal of spent nuclear fuel will reduce the areal requirements of future deep geological repositories by more than 30%. It will also simplify the container handling process bymore » using gravitational forces in order to meet requirements concerning the controllability of processes and ensuring operational and nuclear safety. With regard to the issue of the efficient potential removal of waste containers, this project offers an ingenious solution which does not disrupt the overall stability of the original disposal complex. (authors)« less

  17. Characterization of the radiation environment for a large-area interim spent-nuclear-fuel storage facility

    NASA Astrophysics Data System (ADS)

    Fortkamp, Jonathan C.

    Current needs in the nuclear industry and movements in the political arena indicate that authorization may soon be given for development of a federal interim storage facility for spent nuclear fuel. The initial stages of the design work have already begun within the Department of Energy and are being reviewed by the Nuclear Regulatory Commission. This dissertation addresses the radiation environment around an interim spent nuclear fuel storage facility. Specifically the dissertation characterizes the radiation dose rates around the facility based on a design basis source term, evaluates the changes in dose due to varying cask spacing configurations, and uses these results to define some applicable health physics principles for the storage facility. Results indicate that dose rates from the facility are due primarily from photons from the spent fuel and Co-60 activation in the fuel assemblies. In the modeled cask system, skyshine was a significant contribution to dose rates at distances from the cask array, but this contribution can be reduced with an alternate cask venting system. With the application of appropriate health physics principles, occupation doses can be easily maintained far below regulatory limits and maintained ALARA.

  18. Feasibility study of a gamma camera for monitoring nuclear materials in the PRIDE facility

    NASA Astrophysics Data System (ADS)

    Jo, Woo Jin; Kim, Hyun-Il; An, Su Jung; Lee, Chae Young; Song, Han-Kyeol; Chung, Yong Hyun; Shin, Hee-Sung; Ahn, Seong-Kyu; Park, Se-Hwan

    2014-05-01

    The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology, in which actinides are recovered together with plutonium. There is no pure plutonium stream in the process, so it has an advantage of proliferation resistance. Tracking and monitoring of nuclear materials through the pyroprocess can significantly improve the transparency of the operation and safeguards. An inactive engineering-scale integrated pyroprocess facility, which is the PyRoprocess Integrated inactive DEmonstration (PRIDE) facility, was constructed to demonstrate engineering-scale processes and the integration of each unit process. the PRIDE facility may be a good test bed to investigate the feasibility of a nuclear material monitoring system. In this study, we designed a gamma camera system for nuclear material monitoring in the PRIDE facility by using a Monte Carlo simulation, and we validated the feasibility of this system. Two scenarios, according to locations of the gamma camera, were simulated using GATE (GEANT4 Application for Tomographic Emission) version 6. A prototype gamma camera with a diverging-slat collimator was developed, and the simulated and experimented results agreed well with each other. These results indicate that a gamma camera to monitor the nuclear material in the PRIDE facility can be developed.

  19. Nuclear Families and Nuclear Risks: The Effects of Gender, Geography, and Progeny on Attitudes toward a Nuclear Waste Facility

    ERIC Educational Resources Information Center

    Freudenburg, William R.; Davidson, Debra J.

    2007-01-01

    Studies of reactions to nuclear facilities have found consistent male/female differences, but the underlying reasons have never been well-clarified. The most common expectations involve traditional roles--with men focusing more on economic concerns and with women (especially mothers) being more concerned about family safety/health. Still, with…

  20. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorensek, M.; Hamm, L.; Garcia, H.

    2011-07-18

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come frommore » many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.« less

  1. Marie Curie: the Curie Institute in Senegal to Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Gueye, Paul

    Sub-Saharan Africa is not a place where one will look first when radioactivity or nuclear physics is mentioned. Conducting forefront research at the international stage at US national facilities such as the Thomas Jefferson National Accelerator Facility in Virginia or the National Superconducting Cyclotron Facility/Facility for Rare Isotope Beams in Michigan does not point to Historically Black Colleges either. The two are actually intrinsically connected as my personal journey from my early exposure to radiation at the Curie Institute at the LeDantec Hospital in Senegal lead me to Hampton University. The former, through one of my uncles, catapulted me into a nuclear physics PhD while the latter houses the only nuclear physics program at an HBCU to date that has established itself as one of the premier programs in the nation. This talk will review the impact of Marie Curie in my life as a nuclear physicist.

  2. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  3. Use the results of measurements on KBR facility for testing of neutron data of main structural materials for fast reactors

    NASA Astrophysics Data System (ADS)

    Koscheev, Vladimir; Manturov, Gennady; Pronyaev, Vladimir; Rozhikhin, Evgeny; Semenov, Mikhail; Tsibulya, Anatoly

    2017-09-01

    Several k∞ experiments were performed on the KBR critical facility at the Institute of Physics and Power Engineering (IPPE), Obninsk, Russia during the 1970s and 80s for study of neutron absorption properties of Cr, Mn, Fe, Ni, Zr, and Mo. Calculations of these benchmarks with almost any modern evaluated nuclear data libraries demonstrate bad agreement with the experiment. Neutron capture cross sections of the odd isotopes of Cr, Mn, Fe, and Ni in the ROSFOND-2010 library have been reevaluated and another evaluation of the Zr nuclear data has been adopted. Use of the modified nuclear data for Cr, Mn, Fe, Ni, and Zr leads to significant improvement of the C/E ratio for the KBR assemblies. Also a significant improvement in agreement between calculated and evaluated values for benchmarks with Fe reflectors was observed. C/E results obtained with the modified ROSFOND library for complex benchmark models that are highly sensitive to the cross sections of structural materials are no worse than results obtained with other major evaluated data libraries. Possible improvement in results by decreasing the capture cross section for Zr and Mo at the energies above 1 keV is indicated.

  4. Characterization of Actinides Complexed to Nuclear Fuel Constituents Using ESI-MS

    DOE PAGES

    McDonald, Luther W.; Campbell, James A.; Vercouter, Thomas; ...

    2016-03-01

    Electrospray ionization-mass spectrometry (ESI-MS) was tested for its use in monitoring spent nuclear fuel (SNF) constituents including U, Pu, dibutyl phosphate (DBP), and tributyl phosphate (TBP). Both positive and negative ion modes were used to evaluate the speciation of U and Pu with TBP and DBP. Furthermore, apparent stability constants were determined for U complexed to TBP and DBP. In positive ion mode, TBP produced a strong signal with and without complexation to U or Pu, but, in negative ion mode, no TBP, U-TBP, or Pu-TBP complexes were observed. Apparent stability constants were determined for [UO 2(NO 3) 2(TBP) 2],more » [UO 2(NO 3) 2(H 2O)(TBP) 2], and [UO 2(NO 3) 2(TBP) 3]. In contrast DBP, U-DBP, and Pu-DBP complexes were observed in both positive and negative ion modes. Apparent stability constants were determined for the species [UO 2(DBP)], [UO 2(DBP) 3], and [UO 2(DBP) 4]. Analyzing mixtures of U or Pu with TBP and DBP yielded the formation of ternary complexes whose stoichiometry was directly related to the ratio of TBP to DBP. The ESI-MS protocols used in this study will further demonstrate the utility of ESI-MS and its applicability to process control monitoring in SNF reprocessing facilities.« less

  5. Israel: Possible Military Strike Against Iran’s Nuclear Facilities

    DTIC Science & Technology

    2012-03-27

    centrifuge facility and a larger commercial facility located at this site. The commercial facility is reportedly hardened by steel-reinforced concrete , buried...prime minister has had to contemplate. A strike against Iran’s nuclear facilities could lead to regional conflagration , tens of thousands of...high explosives, and can penetrate more than 6 feet of reinforced concrete . The GBU-28 5000-lb class weapon penetrates at least 20 feet of concrete

  6. The Impact of Declining Navy Budgets on United States Shipyards

    DTIC Science & Technology

    1992-12-01

    and the Department of Energy Defense Nuclear Facilities Panel in April 1991 that the nuclear industrial base is being crippled with the reduction in...Seapower and Strategic and Critical Materials Subcommittee and Department of Energy Defense Nuclear Facilities Panel, 102 Congress, 1st Session, Government

  7. The RIB facility EXOTIC and its experimental program at INFN-LNL

    NASA Astrophysics Data System (ADS)

    Parascandolo, Concetta

    2018-05-01

    In this contribution, I will present a review about the EXOTIC facility and the research field accessible by using its Radioactive Ion Beams. The EXOTIC facility, installed at the INFN-Laboratori Nazionali di Legnaro, is devoted to the in-flight production of light Radioactive Ion Beams in the energy range between 3-5 MeV/nucleon. The scientific activity performed at EXOTIC concerns different aspects of nuclear physics and nuclear astrophysics, such as, the investigation of reaction mechanisms and nuclear structure, resonant scattering experiments and measurements of nuclear reaction cross sections of astrophysical interest.

  8. 77 FR 65729 - Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 70-3103; NRC-2010-0264] Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services LLC, National Enrichment Facility, Eunice..., Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear...

  9. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, A.M.; Heineman, R.; Norton, S.

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Actmore » of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.« less

  10. Maternal residential proximity to nuclear facilities and low birth weight in offspring in Texas.

    PubMed

    Gong, Xi; Benjamin Zhan, F; Lin, Yan

    2017-03-01

    Health effects of close residential proximity to nuclear facilities have been a concern for both the general public and health professionals. Here, a study is reported examining the association between maternal residential proximity to nuclear facilities and low birth weight (LBW) in offspring using data from 1996 through 2008 in Texas, USA. A case-control study design was used together with a proximity-based model for exposure assessment. First, the LBW case/control births were categorized into multiple proximity groups based on distances between their maternal residences and nuclear facilities. Then, a binary logistic regression model was used to examine the association between maternal residential proximity to nuclear facilities and low birth weight in offspring. The odds ratios were adjusted for birth year, public health region of maternal residence, child's sex, gestational weeks, maternal age, education, and race/ethnicity. In addition, sensitivity analyses were conducted for the model. Compared with the reference group (more than 50 km from a nuclear facility), the exposed groups did not show a statistically significant increase in LBW risk [adjusted odds ratio (aOR) 0.91 (95% confidence interval (CI): 0.81, 1.03) for group 40-50 km; aOR 0.98 (CI 0.84, 1.13) for group 30-40 km; aOR 0.95 (CI 0.79, 1.15) for group 20-30 km; aOR 0.86 (CI 0.70, 1.04) for group 10-20 km; and aOR 0.98 (CI 0.59, 1.61) for group 0-10 km]. These results were also confirmed by results of the sensitivity analyses. The results suggest that maternal residential proximity to nuclear facilities is not a significant factor for LBW in offspring.

  11. Financial Management: Extending the Financial Statements Audit Requirement of the CFO Act to Additional Federal Agencies

    DTIC Science & Technology

    2002-05-14

    Defense Nuclear Facilities Safety Board has balance-sheet-only audits every 3 to 5 years, most recently for fiscal year 1997. It did not prepare fiscal...associated with the agency’s operations were the most important factors to Have had financial statements audits Defense Nuclear Facilities Safety...audits, the International Trade Commission and the Defense Nuclear Facilities Safety Board, did not have financial statements audits for fiscal year

  12. Department of Energy: Fundamental Reassessment Needed to Address Major Mission, Structure, and Accountability Problems

    DTIC Science & Technology

    2001-12-01

    addition, the Defense Nuclear Facilities Safety Board warned in 1997 that, given likely future reductions in DOE’s budget, the department needed to...future leaders of the acquisition workforce. The Defense Nuclear Facilities Safety Board’s 2000 report credited DOE with taking steps to improve the...technical capabilities of personnel at its defense nuclear facilities , but pointed out the need for DOE’s leadership to pay increased attention to this

  13. Nuclear data activities at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Lo Meo, S.; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Radeck, D.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2016-10-01

    Nuclear data in general, and neutron-induced reaction cross sections in particular, are important for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear technology, not only for existing power reactors but also for radiation dosimetry, medical applications, the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor systems as in Generation IV. Applications of nuclear data are also related to research fields as the study of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR database. The EXFOR database forms an important link between nuclear data measurements and the evaluated data libraries. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of the scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at CERN's neutron time-of-flight facility n_TOF will be presented.

  14. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    2000-01-01

    Through the National Governors Association (NGA) project ``Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from October 1, 1999 through January 31, 2000, under the NGA grant. The work accomplished by the NGA project team during the past three months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; convened and facilitated the October 6--8 NGA FFCA Task Force Meeting in Oak Ridge, Tennessee; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and the Department.« less

  15. ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziehm, Ronny; Pichurin, Sergey Grigorevich

    2003-02-27

    As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwastemore » Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper provides information on the output of the Detail Design and will reflect the progress of the design work.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalho, Antonio G.

    The Portuguese Research Reactor (RPI) is the main research facility in the Laboratorio de Fisica e Engenharia Nucleares. This laboratory is one of the departments of Junta de Energia Nuclear, the coordinating body of the nuclear activity in Portugal. A description of the facility, reactor utilization, positioning within Portugal, and areas of cooperation with other institutions are summarized.

  17. 10 CFR 1706.9 - Examples.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Examples. 1706.9 Section 1706.9 Energy DEFENSE NUCLEAR... review of a safety aspect of a particular defense nuclear facility proposes to use the services of an expert who also serves on an oversight committee for a contractor of other defense nuclear facilities. (2...

  18. 10 CFR 1706.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Definitions. 1706.2 Section 1706.2 Energy DEFENSE NUCLEAR... with respect to its internal functions or its oversight of defense nuclear facilities, or otherwise to... party controls or can control both. Board means, as the context requires, the Defense Nuclear Facilities...

  19. 10 CFR 1706.9 - Examples.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Examples. 1706.9 Section 1706.9 Energy DEFENSE NUCLEAR... review of a safety aspect of a particular defense nuclear facility proposes to use the services of an expert who also serves on an oversight committee for a contractor of other defense nuclear facilities. (2...

  20. 10 CFR 1706.9 - Examples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Examples. 1706.9 Section 1706.9 Energy DEFENSE NUCLEAR... review of a safety aspect of a particular defense nuclear facility proposes to use the services of an expert who also serves on an oversight committee for a contractor of other defense nuclear facilities. (2...

  1. 10 CFR 1706.9 - Examples.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Examples. 1706.9 Section 1706.9 Energy DEFENSE NUCLEAR... review of a safety aspect of a particular defense nuclear facility proposes to use the services of an expert who also serves on an oversight committee for a contractor of other defense nuclear facilities. (2...

  2. 10 CFR 1706.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Definitions. 1706.2 Section 1706.2 Energy DEFENSE NUCLEAR... with respect to its internal functions or its oversight of defense nuclear facilities, or otherwise to... party controls or can control both. Board means, as the context requires, the Defense Nuclear Facilities...

  3. 10 CFR 1706.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Definitions. 1706.2 Section 1706.2 Energy DEFENSE NUCLEAR... with respect to its internal functions or its oversight of defense nuclear facilities, or otherwise to... party controls or can control both. Board means, as the context requires, the Defense Nuclear Facilities...

  4. 75 FR 60745 - Notice of Intent To Prepare a Supplemental Environmental Impact Statement for the Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Supplemental Environmental Impact Statement for the Nuclear Facility Portion of the Chemistry and Metallurgy... construction and operation of the nuclear facility portion of the Chemistry and Metallurgy Research Building... Chemistry and Metallurgy Research Building Replacement Project at Los Alamos National Laboratory, Los Alamos...

  5. 10 CFR 75.6 - Facility and location reporting.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Facility and location reporting. 75.6 Section 75.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA..., all communications concerning the regulations in this Part shall be addressed to the U.S. Nuclear...

  6. 10 CFR 75.6 - Facility and location reporting.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Facility and location reporting. 75.6 Section 75.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA..., all communications concerning the regulations in this Part shall be addressed to the U.S. Nuclear...

  7. 10 CFR 75.6 - Facility and location reporting.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Facility and location reporting. 75.6 Section 75.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA..., all communications concerning the regulations in this Part shall be addressed to the U.S. Nuclear...

  8. 10 CFR 75.6 - Facility and location reporting.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Facility and location reporting. 75.6 Section 75.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA..., all communications concerning the regulations in this Part shall be addressed to the U.S. Nuclear...

  9. 10 CFR 75.6 - Facility and location reporting.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Facility and location reporting. 75.6 Section 75.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA..., all communications concerning the regulations in this Part shall be addressed to the U.S. Nuclear...

  10. Support of the Iraq nuclear facility dismantlement and disposal program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coates, Roger; Cochran, John; Danneels, Jeff

    2007-07-01

    Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDsmore » Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)« less

  11. 10 CFR 75.15 - Facility attachments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Facility attachments. 75.15 Section 75.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material... under Article 39(b) of the main text of the Safeguards Agreement, do not have Facility Attachments or...

  12. 10 CFR 75.15 - Facility attachments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Facility attachments. 75.15 Section 75.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Material... under Article 39(b) of the main text of the Safeguards Agreement, do not have Facility Attachments or...

  13. 77 FR 7613 - Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-264; NRC-2012-0026] Dow Chemical Company; Dow Chemical TRIGA Research Reactor; Facility Operating License No. R-108 AGENCY: Nuclear Regulatory Commission... Facility Operating License No. R-108 (``Application''), which currently authorizes the Dow Chemical Company...

  14. 75 FR 45678 - Notice of Availability of Interim Staff Guidance Document for Fuel Cycle Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Document for Fuel Cycle Facilities AGENCY: Nuclear Regulatory Commission. ACTION: Notice of availability..., Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards, U.S... Commission (NRC) prepares and issues Interim Staff Guidance (ISG) documents for fuel cycle facilities. These...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA from use at their institutions. These areas are discussed in this report.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed further in the report.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R.U.; Benneche, P.E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these user institutions is enhanced by the use of the nuclear facilities. Several methods have been used by the UVA Reactor Facility to achieve this objective. First, many college and secondary school groups toured the Reactor Facility and viewed the UVAR reactor and associated experimental facilities. Second, advanced undergraduate and graduate classes from area colleges and universities visited the facility to perform experiments in nuclear engineering and physics which would notmore » be possible at the user institution. Third, irradiation and analysis services at the Facility have been made available for research by faculty and students from user institutions. Fourth, some institutions have received activated material from UVA for use at their institutions. These areas are discussed here.« less

  18. Jefferson Lab Science: Present and Future

    DOE PAGES

    McKeown, Robert D.

    2015-02-12

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  19. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to bemore » considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.« less

  20. Societal-Equity-Enhancing Criteria and Facility-Host Incentives Supporting Five Key Elements in the January 2012 Blue Ribbon Commission Report - 13015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eriksson, Leif G.; Dials, George E.; George, Critz H.

    2013-07-01

    In February 2009, the Obama Administration announced it would abandon USA's only candidate SNF/HLW-disposal facility since 1987. In 2010, all related activities were stopped and the Blue Ribbon Commission on America's Nuclear Future was established 'to recommend a new strategy for managing the back end of the nuclear fuel cycle', which it did in January 2012, emphasizing eight key elements. However, Key Element 1, 'A new, consent-based approach to siting future nuclear facilities', is qualitative/indeterminate rather than quantitative/measurable. It is thus highly-susceptible to semantic permutations that could extend rather than, as intended, expedite the siting of future nuclear facilities unlessmore » it also defines: a) Whose consent is needed?; and b) What constitutes consent? The following 'generic', radiation-risk- and societal-equity-based criteria address these questions: 1. Identify areas affected by projected radiation and other health risks from: a. The proposed nuclear facility (facility stakeholders); and b. The related nuclear-materials-transportation routes (transportation stakeholders); then 2. Surround each stakeholder area with a buffer zone and use this enlarged foot print to identify: a. Stakeholder hosts; and b. Areas not hosting any stakeholder category (interested parties). 3. Define 'consent-based' as being at least 60 percent of the 'population' in the respective stakeholder category and apply this yardstick to both 'in favor' and 'against' votes. Although criteria 1 and 2 also need facility-based definitions to make Key Element 1 measurable, the described siting approach, augmented by related facility-host incentives, would expedite the schedule and reduce the cost for achieving Key Elements 4-6 and 8, politics permitting. (authors)« less

  1. Geokinetic environment investigations

    NASA Astrophysics Data System (ADS)

    Hartnett, E. B.; Carleen, E. D.; Blaney, J. I.

    1981-03-01

    This report covers the development and implementation of special concepts, techniques and instrumentation for the collection, analysis and application of geokinetic data. The Geokinetic Data Acquisition System (GDAS) was modified, maintained and operationally deployed to various sites designated by AFGL. Tests were conducted at the Defense Nuclear Agency (DNA) CASINO Facility in Maryland; Central Inertial Guidance Test Facility (CIGTF), Holloman AFB, N.M.; Space Transportation System (STS) Launch Complex, Vandenberg AFB, Ca. and the SAC Wing V Minuteman Complex at Cheyenne, Wy. The CASINO data contributed to SAMSO's MX/TGG Advanced Development Bridge II Program for radiation hardening of third generation hardware. The CIGTF investigation supported USAF requirements for highly precise azimuth reference. The Hill AFB the performance of a minuteman III missile guidance system in an engineering silo. The STS program at Vandenberg AFB was to assist in determining the nature of a Titan III-D pressure load. The SAC Wing V deployment was to investigate plateau/valley basin geologic characteristics in respect to motion response.

  2. Evaluation of Isotopic Data Mismatches on DOE-STD-1027 Facility Categorization Inventories for the K-1065 Complex and the Above Grade Storage Facility (AGSF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, M.G.; Coleman, G.H.

    2006-07-01

    The contents of a safety basis (SB) are based upon the facility's purpose of operation, radiological inventory, and safety systems in place to mitigate any releases to the employees, general public and environment. Specifically, the radiological inventory is used for facility categorizations (e.g., Category 2, Category 3) and determining the material at risk used in the associated nuclear safety analysis calculations. Radiological inventory discrepancies, referred to as 'mismatches', have the potential to adversely impact the SB. This paper summarizes a process developed to: 1) identify these 'mismatches' based on a facility's radiological inventory, 2) categorize these 'mismatches' according to availablemore » data, and then 3) determine if these 'mismatches' yield either trivial or significant cumulative impacts on credited assumptions associated with a particular facility's SB. The two facilities evaluated for 'mismatches' were the K-1065 Complex and the Above Grade Storage Facility (AGSF). The randomly selected containers from each facility were obtained along with screening the radiological inventories found in the Waste Information Tracking System (WITS) database and the Request for Disposal (RFD) forms. Ideally, the radiological inventory, which is comprised of isotopic data for each container, is maintained in the WITS database. However, the RFD is the official repository record for isotopic data for each container. Historically, neither WITS nor the RFDs were required to contain isotopic data. Based on the WITS and RFD data, the containers were then categorized into five (5) separate conditions: Condition 1) Isotopic data in the RFD matches the isotopic data in WITS; Condition 2) Isotopic data in the RFD does not match the isotopic data in WITS; Condition 3) Isotopic data are in the RFD, but are not in WITS; Condition 4) No isotopic data in the RFD, but isotopic data are found in WITS; Condition 5) No isotopic data found in either the RFD or WITS. The results show trivial cumulative impacts (i.e., no inherent data biases) on credited assumptions associated with the K-1065 Complex and AGSF SBs. Recent random comparisons of WITS and RFDs continue to verify and validate that the administrative and procedural controls are adequate to ensure compliance with the SB for these facilities, thus providing a useful model for evaluating other facilities located at the Department of Energy's Oak Ridge Reservation (DOE-ORR). (authors)« less

  3. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichmentmore » plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.« less

  4. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomicmore » facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor`s Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced.« less

  5. Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs

    DOE PAGES

    Ruth, Mark F.; Zinaman, Owen R.; Antkowiak, Mark; ...

    2013-12-20

    As the U.S. energy system evolves, the amount of electricity from variable-generation sources is likely to increase, which could result in additional times when electricity demand is lower than available production. Therefore, purveyors of technologies that traditionally have provided base-load electricity—such as nuclear power plants—can explore new operating procedures to deal with the associated market signals. Concurrently, innovations in nuclear reactor design coupled with sophisticated control systems now allow for more complex apportionment of heat within an integrated system such as one linked to energy-intensive chemical processes. Our paper explores one opportunity – nuclear-renewable hybrid energy systems. These are definedmore » as integrated facilities comprised of nuclear reactors, renewable energy generation, and industrial processes that can simultaneously address the need for grid flexibility, greenhouse gas emission reductions, and optimal use of investment capital. Six aspects of interaction (interconnections) between elements of nuclear-renewable hybrid energy systems are identified: Thermal, electrical, chemical, hydrogen, mechanical, and information. In addition, system-level aspects affect selection, design, and operation of this hybrid system type. Throughout the paper, gaps and research needs are identified to promote further exploration of the topic.« less

  6. Phenolic cation exchange resin material for recovery of cesium and strontium

    DOEpatents

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  7. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    DOEpatents

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  8. All About MOX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-07-29

    In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  9. Future Shock: A Case for the B-2 Bomber

    DTIC Science & Technology

    1994-06-01

    Defense Nuclear Facilities Panel of the Committee on Armed Services, 102d Cong., 2d sess., 1992, 369 3 Ibid, 64. 4 Ibid, 320. 6 Chapter 2 The...Options For The 1990s: Hearings before the Defense Policy Panel and the Department of Energy Defense Nuclear Facilities Panel of the Committee on Armed...Department of Energy Defense Nuclear Facilities Panel of the Committee on Armed Services, 102d Cong., 2d sess., 1992, p. 241. 43 Ibid. 44 Although

  10. All About MOX

    ScienceCinema

    None

    2018-01-16

    In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  11. Russian University Education in Nuclear Safeguards and Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.

    2009-03-15

    As safeguards and security (S&S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC&A). As part of the U.S. Department of Energy’s (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S&S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S&S personnel. The Educationmore » Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S&S Graduate Program is available only at MEPhI and is the world’s first S&S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S&S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5½ year Engineering Degree Program (EDP) in S&S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program’s first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S&S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills. The project has also supported the instruction of policy-oriented nonproliferation courses at various Russian universities. These courses are targeted towards future workers in the nuclear field to help build an effective nonproliferation awareness within the nuclear complex. A long-range goal of this project is to assist the educational programs at MEPhI and TPU in becoming self-sustainable and therefore able to maintain the three degree programs without DOE support. This paper describes current development of these education programs and new initiatives. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical S&S degree programs.« less

  12. Spent fuel treatment at ANL-West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, K.M.; Benedict, R.W.; Levinskas, D.

    1994-12-31

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Cycle Facility at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will employ a pyrochemical process that also has applications for treating most of the fuel types within the Department of Energy complex. The treatment equipment is in its last stage of readiness, and operations will begin in the Fall of 1994.

  13. 10 CFR 770.4 - What definitions are used in this part?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false What definitions are used in this part? 770.4 Section 770.4 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC.... Defense Nuclear Facility means “Department of Energy defense nuclear facility” within the meaning of...

  14. 76 FR 60091 - Notice of Availability of Environmental Assessment and Finding of No Significant Impact for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-407; NRC-2011-0153] Notice of Availability of Environmental Assessment and Finding of No Significant Impact for the University of Utah Nuclear Reactor Facility; Facility Operating License No. R-126 AGENCY: Nuclear Regulatory Commission. ACTION: Notice of...

  15. 10 CFR 770.4 - What definitions are used in this part?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false What definitions are used in this part? 770.4 Section 770.4 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC.... Defense Nuclear Facility means “Department of Energy defense nuclear facility” within the meaning of...

  16. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... DEPARTMENT OF ENERGY DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...

  17. 75 FR 69648 - Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD [Recommendation 2010-1] Safety Analysis Requirements for Defining Adequate Protection for the Public and the Workers AGENCY: Defense Nuclear Facilities Safety Board... Facilities Safety Board has made a recommendation to the Secretary of Energy requesting an amendment to the...

  18. Of Ashes and Atoms

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This feature length DVD documentary, reviews the history of the Plum Brook Nuclear Reactor from the initial settlers of the area, through its use as a munitions facility during the second World War to the development of the nuclear facility and its use as one of the first nuclear test reactors built in the United States, and the only one built by NASA. It concludes with the beginning of the decommissioning of the facility. There is a brief review of the reactor design, and its workings. Through discussions with the NASA engineers and operators of the facility, the film reviews the work done to advance the knowledge of the effects of radiation, the properties of radiated materials, and the work to advance the state of the art in nuclear propulsion. The film shows footage of public tours, and shows actual footage of the facility in operation, and after its shutdown in 1973. The DVD was narrated by Kate Mulgrew, who leads the viewer through the history of the facility to its eventual ongoing decommissioning, and return to the state of pastoral uses.

  19. Required Assets for a Nuclear Energy Applied R&D Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facilitymore » requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs, a viable work force, and well-equipped specialized facilities.« less

  20. 48 CFR 970.2672-3 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Restructuring Under Section 3161 of the National Defense Authorization Act for Fiscal Year 1993, in contracts for the management and operation of Department of Energy Defense Nuclear Facilities and, as... Defense Nuclear Facility. ...

  1. International nuclear fuel cycle fact book. [Contains glossary of organizations, facilities, technical and other terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronymsmore » of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States.« less

  2. Laboratory Astrophysics Prize: Laboratory Astrophysics with Nuclei

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2018-06-01

    Nuclear astrophysics is concerned with nuclear reaction and decay processes from the Big Bang to the present star generation controlling the chemical evolution of our universe. Such nuclear reactions maintain stellar life, determine stellar evolution, and finally drive stellar explosion in the circle of stellar life. Laboratory nuclear astrophysics seeks to simulate and understand the underlying processes using a broad portfolio of nuclear instrumentation, from reactor to accelerator from stable to radioactive beams to map the broad spectrum of nucleosynthesis processes. This talk focuses on only two aspects of the broad field, the need of deep underground accelerator facilities in cosmic ray free environments in order to understand the nucleosynthesis in stars, and the need for high intensity radioactive beam facilities to recreate the conditions found in stellar explosions. Both concepts represent the two main frontiers of the field, which are being pursued in the US with the CASPAR accelerator at the Sanford Underground Research Facility in South Dakota and the FRIB facility at Michigan State University.

  3. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2004-02-28

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Department’s activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Department’s defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review ofmore » the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.« less

  4. The integration of science and politics to clean up 50 years in the nuclear sandbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, C.E.; Holeman, T.

    1999-07-01

    The Cold War was fought between world superpowers for approximately 40 years from the end of the second World War until the end of the 1980s. During that time, the US government devoted billions of dollars to the development and production of nuclear weapons. Now the Cold War is over and the US is left with numerous nuclear weapons factories, stockpiles of nuclear materials, and mountains of waste to decontaminate and decommission. In the heat of the Cold War, little or no thought was given to how the facilities building bombs would be dismantled. Far too little attention was paidmore » to the potential human health and environmental impact of the weapons production. Now, dozens of communities across the country face the problems this negligence created. In many cases, the location, extent, and characteristics of the waste and contamination are unknown, due to negligence or due to intentional hiding of waste and associated problems. Water supplies are contaminated and threatened; air quality is degraded and threatened; workers and residents risk contamination and health impacts; entire communities risk disaster from potential nuclear catastrophe. The US government, in the form of the US Department of Energy (DOE), now accepts responsibility for creating and cleaning up the mess. But it is the local communities, the home towns of the bomb factories and laboratories, that carry a significant share of the burden of inventing the science and politics required to clean up 50 years in the nuclear sandbox. The purpose of this paper is to evaluate the role of the local community in addressing the cleanup of the US nuclear weapons complex. Local governments do not own nor are responsible for the environmental aftermath, but remain the perpetual neighbor to the facility, the hometown of workers, and long-term caretaker of the off-site impacts of the on-site contamination and health risks.« less

  5. Radiochemical Processing Laboratory (RPL) at PNNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peurrung, Tony; Clark, Sue; Bryan, Sam

    2017-03-23

    Nuclear research is one of the core components of PNNL's mission. The centerpiece of PNNL's nuclear research is the Radiochemical Processing Laboratory (RPL), a Category 2 nuclear facility with state-of-the-art instrumentation, scientific expertise, and specialized capabilities that enable research with significant quantities of fissionable materials and other radionuclides—from tritium to plutonium. High impact radiological research has been conducted in the RPL since the 1950's, when nuclear weapons and energy production at Hanford were at the forefront of national defense. Since then, significant investments have been made in the RPL to maintain it as a premier nuclear science research facility supportingmore » multiple programs. Most recently, PNNL is developing a world-class analytical electron microscopy facility dedicated to the characterization of radiological materials.« less

  6. U.S. Nuclear Weapons: Changes in Policy and Force Structure

    DTIC Science & Technology

    2006-08-10

    the Mound Plant , near Dayton OH; the Pinellas Plant , in Clearwater, FL; and the Pantex Plant near Amarillo, TX. These facilities were also operated...major nuclear weapons production facilities. These included the Rocky Flats Plant , outside Denver, CO; the Kansas City Plant , near Kansas City, MO...response to safety concerns. The Rocky Flats Plant , which produced the nuclear triggers, or “pits,” for nuclear weapons closed in 1989, in response

  7. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J. Jr.; Moran, Robert P.; Pearson, J. Boise

    2012-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities

  8. Comparison of DOE and NIRMA approaches to configuration management programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, E.Y.; Kulzick, K.C.

    One of the major management programs used for commercial, laboratory, and defense nuclear facilities is configuration management. The safe and efficient operation of a nuclear facility requires constant vigilance in maintaining the facility`s design basis with its as-built condition. Numerous events have occurred that can be attributed to (either directly or indirectly) the extent to which configuration management principles have been applied. The nuclear industry, as a whole, has been addressing this management philosophy with efforts taken on by its constituent professional organizations. The purpose of this paper is to compare and contrast the implementation plans for enhancing a configurationmore » management program as outlined in the U.S. Department of Energy`s (DOE`s) DOE-STD-1073-93, {open_quotes}Guide for Operational Configuration Management Program,{close_quotes} with the following guidelines developed by the Nuclear Information and Records Management Association (NIRMA): 1. PP02-1994, {open_quotes}Position Paper on Configuration Management{close_quotes} 2. PP03-1992, {open_quotes}Position Paper for Implementing a Configuration Management Enhancement Program for a Nuclear Facility{close_quotes} 3. PP04-1994 {open_quotes}Position Paper for Configuration Management Information Systems.{close_quotes}« less

  9. Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities

    DOE PAGES

    Solodov, Alexander; Williams, Adam; Al Hanaei, Sara; ...

    2017-04-18

    Unmanned aerial vehicles (UAV) are among the major growing technologies that have many beneficial applications, yet they can also pose a significant threat. Recently, several incidents occurred with UAVs violating privacy of the public and security of sensitive facilities, including several nuclear power plants in France. The threat of UAVs to the security of nuclear facilities is of great importance and is the focus of this work. This paper presents an overview of UAV technology and classification, as well as its applications and potential threats. We show several examples of recent security incidents involving UAVs in France, USA, and Unitedmore » Arab Emirates. Further, the potential threats to nuclear facilities and measures to prevent them are evaluated. The importance of measures for detection, delay, and response (neutralization) of UAVs at nuclear facilities are discussed. An overview of existing technologies along with their strength and weaknesses are shown. Finally, the results of a gap analysis in existing approaches and technologies is presented in the form of potential technological and procedural areas for research and development. Furthermore based on this analysis, directions for future work in the field can be devised and prioritized.« less

  10. Potential criminal adversaries of nuclear programs: a portrait

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, B.M.

    1980-07-01

    This paper examines the possibility that terrorists or other kinds of criminals might attempt to seize or sabotage a nuclear facility, steal nuclear material, or carry out other criminal activities in the nuclear domain which has created special problems for the security of nuclear programs. This paper analyzes the potential threat. Our tasks was to describe the potential criminal adversary, or rather the spectrum of potential adversaries who conceivably might carry out malevolent criminal actions against nuclear programs and facilities. We were concerned with both the motivations as well as the material and operational capabilities likely to be displayed bymore » various categories of potential nuclear adversaries.« less

  11. Comparison of the socioeconomic impacts of international fuel service centers versus dispersed nuclear facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braid, Jr., R. B.

    1979-01-01

    The paper investigates a variety of community impacts including: public services, fiscal issues, economic matters, land and water use, political and social cohesion, and legal considerations. Comparisons of socioeconomic impacts of colocated versus dispersed sites are made on the basis of the size of the impacted communities, the size and type of nuclear facility, and the facility's construction time frame. The paper concludes that, under similar circumstances, most of the socioeconomic impacts of colocated nuclear facilities would be somewhat less than the sum of the impacts associated with equivalent dispersed sites. While empirical data is non-existent, the paper contends, however,more » that because the socioeconomic impacts of colocated facilities are so great and readily identifiable to a public unskilled in making comparisons with the dispersed alternative, the facilities will likely generate so much public opposition that IFSCs will probably prove infeasible.« less

  12. 76 FR 37799 - DOE Final Decision in Response to Recommendation 2010-1 of the Defense Nuclear Facilities Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... the public, workers, and the environment. For example, the Board clarified that use of the term.... Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as a safe harbor methodology..., our workers, and the environment at all of our facilities. We share your conviction that a clear set...

  13. 76 FR 28244 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... occur. 4. Who is required or asked to report: Nuclear power reactor licensees, licensed under 10 CFR..., special nuclear material; Category I fuel facilities; Category II and III facilities; research and test...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulder, R. U.; Benneche, P. E.; Hosticka, B.

    The objective of the DOE supported Reactor Sharing Program is to increase the availability of university nuclear reactor facilities to non-reactor-owning educational institutions. The educational and research programs of these users institutions is enhanced by the use of the nuclear facilities.

  15. Class notes from the first international training course on the physical protection of nuclear facilities and materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrington, P.B.

    1979-05-01

    The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included inmore » these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.« less

  16. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA)more » of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with the IAEA. If these requirements are understood at the earliest stages of facility design, it will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards, and will help the IAEA implement nuclear safeguards worldwide, especially in countries building their first nuclear facilities. It is also hoped that this guidance document will promote discussion between the IAEA, State Regulator/SSAC, Project Design Team, and Facility Owner/Operator at an early stage to ensure that new ISFSIs will be effectively and efficiently safeguarded. This is intended to be a living document, since the international nuclear safeguards requirements may be subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and facility operators for greater efficiency and cost effectiveness. As these improvements are made, it is recommended that the subject guidance document be updated and revised accordingly.« less

  17. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Phase II Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J.; Moran, Robert P.; Pearson, J. Bose

    2013-01-01

    To support the on-going nuclear thermal propulsion effort, a state-of-the-art non nuclear experimental test setup has been constructed to evaluate the performance characteristics of candidate fuel element materials and geometries in representative environments. The facility to perform this testing is referred to as the Nuclear Thermal Rocket Element Environment Simulator (NTREES). This device can simulate the environmental conditions (minus the radiation) to which nuclear rocket fuel components will be subjected during reactor operation. Test articles mounted in the simulator are inductively heated in such a manner so as to accurately reproduce the temperatures and heat fluxes which would normally occur as a result of nuclear fission and would be exposed to flowing hydrogen. Initial testing of a somewhat prototypical fuel element has been successfully performed in NTREES and the facility has now been shutdown to allow for an extensive reconfiguration of the facility which will result in a significant upgrade in its capabilities. Keywords: Nuclear Thermal Propulsion, Simulator

  18. The workshop on signatures of medical and industrial isotope production - WOSMIP; Strassoldo, Italy, 1-3 July 2009.

    PubMed

    Matthews, K M; Bowyer, T W; Saey, P R J; Payne, R F

    2012-08-01

    Radiopharmaceuticals make contributions of inestimable value to medical practice. With growing demand new technologies are being developed and applied worldwide. Most diagnostic procedures rely on (99m)Tc and the use of uranium targets in reactors is currently the favored method of production, with 95% of the necessary (99)Mo parent currently being produced by four major global suppliers. Coincidentally there are growing concerns for nuclear security and proliferation. New disarmament treaties such as the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are coming into effect and treaty compliance-verification monitoring is gaining momentum. Radioxenon emissions (isotopes Xe-131, 133, 133m and 135) from radiopharmaceutical production facilities are of concern in this context because radioxenon is a highly sensitive tracer for detecting nuclear explosions. There exists, therefore, a potential for confusing source attribution, with emissions from radiopharmaceutical-production facilities regularly being detected in treaty compliance-verification networks. The CTBT radioxenon network currently under installation is highly sensitive with detection limits approaching 0.1 mBq/m³ and, depending on transport conditions and background, able to detect industrial release signatures from sites thousands of kilometers away. The method currently employed to distinguish between industrial and military radioxenon sources involves plots of isotope ratios (133m)Xe/(131m)Xe versus (135)Xe/(133)Xe, but source attribution can be ambiguous. Through the WOSMIP Workshop the environmental monitoring community is gaining a better understanding of the complexities of the processes at production facilities, and the production community is recognizing the impact their operations have on monitoring systems and their goal of nuclear non-proliferation. Further collaboration and discussion are needed, together with advances in Xe trapping technology and monitoring systems. Such initiatives will help in addressing the dichotomy which exists between expanding production and improving monitoring sensitivity, with the ultimate aim of enabling unambiguous distinction between different nuclide signatures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Training in Tbilisi nuclear facility provides new sampling perspectives for IAEA inspectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brim, Cornelia P.

    2016-06-08

    Office of Nonproliferation and Arms Control- (NPAC-) sponsored training in a “cold” nuclear facility in Tbilisi, Georgia provides International Atomic Energy Agency (IAEA) inspectors with a new perspective on environmental sampling strategies. Sponsored by the Nuclear Safeguards program under the NPAC, Pacific Northwest National Laboratory (PNNL) experts have been conducting an annual weeklong class for IAEA inspectors in a closed nuclear facility since 2011. The Andronikashvili Institute of Physics and the Republic of Georgia collaborate with PNNL to provide the training, and the U.S. Department of State, the U.S. Embassy in Tbilisi and the U.S. Mission to International Organizations inmore » Vienna provide logistical support.« less

  20. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... sale or lease at defense nuclear facilities, for the purpose of permitting economic development. (b... permitting economic development. ....2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC...

  1. Nuclear Science User Facilities (NSUF) Monthly Report March 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soelberg, Renae

    Nuclear Science User Facilities (NSUF) Formerly: Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report February 2015 Highlights; Jim Cole attended the OECD NEA Expert Group on Innovative Structural Materials meeting in Paris, France; Jim Lane and Doug Copsey of Writers Ink visited PNNL to prepare an article for the NSUF annual report; Brenden Heidrich briefed the Nuclear Energy Advisory Committee-Facilities Subcommittee on the Nuclear Energy Infrastructure Database project and provided them with custom reports for their upcoming visits to Argonne National Laboratory, Idaho National Laboratory, Oak Ridge National Laboratory and the Massachusetts Institute of Technology; and Universitymore » of California-Berkeley Principal Investigator Mehdi Balooch visited PNNL to observe measurements and help finalize plans for completing the desired suite of analyses. His visit was coordinated to coincide with the visit of Jim Lane and Doug Copsey.« less

  2. Regulatory cross-cutting topics for fuel cycle facilities.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott

    This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research & Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas: Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities) Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed: Integrated Security,more » Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)« less

  3. Status of the NRC Decommissioning Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlando, D. A.; Camper, L.; Buckley, J.

    2003-02-24

    On July 21, 1997, the U.S. Nuclear Regulatory Commission (NRC) published the final rule on Radiological Criteria for License Termination (the License Termination Rule or LTR) as Subpart E to 10 CFR Part 20. NRC regulations require that materials licensees submit Decommissioning Plans to support the decommissioning of its facility if it is required by license condition, or if the procedures and activities necessary to carry out the decommissioning have not been approved by NRC and these procedures could increase the potential health and safety impacts to the workers or the public. NRC regulations also require that reactor licensees submitmore » Post-shutdown Decommissioning Activities Reports and License Termination Plans to support the decommissioning of nuclear power facilities. This paper provides an update on the status of the NRC's decommissioning program that was presented during WM'02. It discusses the staff's current efforts to streamline the decommissioning process, current issues being faced in the decommissioning program, such as partial site release and restricted release of sites, as well as the status of the decommissioning of complex sites and those listed in the Site Decommissioning Management Plan. The paper discusses the status of permanently shut-down commercial power reactors and the transfer of complex decommissioning sites and sites listed on the SDMP to Agreement States. Finally the paper provides an update of the status of various tools and guidance the NRC is developing to assist licensees during decommissioning, including an effort to consolidate and risk-inform decommissioning guidance.« less

  4. Nuclear Energy Infrastructure Database Description and User’s Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidrich, Brenden

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from amore » variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.« less

  5. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  6. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.

    2003-02-26

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. Themore » first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.« less

  7. Proceedings of the Symposium on Training of Nuclear Facility Personnel (7th, Orlando, Florida, April 27-30, 1987).

    ERIC Educational Resources Information Center

    Oak Ridge National Lab., TN.

    These proceedings contain program highlights as well as 45 papers given during six sessions of the Symposium on Training of Nuclear Facility Personnel. The six sessions are entitled: (1) the training challenge; (2) influences on nuclear training; (3) the human factors--training partnership and factors affecting job performance; (4) current…

  8. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy

    2013-07-01

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  9. 77 FR 35080 - Entergy Nuclear Operations, Inc., Pilgrim Nuclear Power Station; Record of Decision and Issuance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ...., Pilgrim Nuclear Power Station; Record of Decision and Issuance of Renewed Facility Operating License No... as the record of decision for the renewal of facility operating license No. DPR-35, consistent with... referenced. NRC's PDR: You may examine and purchase copies of public documents at the NRC's PDR, Room O1-F21...

  10. The WPI reactor-readying for the next generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobek, L.M.

    1993-01-01

    Built in 1959, the 10-kW open-pool nuclear training reactor at Worcester Polytechnic Institute (WPI) was one of the first such facilities in the nation located on a university campus. Since then, the reactor and its related facilities have been used to train two generations of nuclear engineers and scientists for the nuclear industry. With the use of nuclear technology playing an increasing role in many segments of the economy, WPI with its nuclear reactor facility is committed to continuing its mission of training future nuclear engineers and scientists. The WPI reactor includes a 6-in. beam port, graphite thermal column, andmore » in-core sample facility. The reactor, housed in an open 8000-gal tank of water, is designed so that the core is readily accessible. Both the control console and the peripheral counting equipment used for student projects and laboratory exercises are located in the reactor room. This arrangement provides convenience and flexibility in using the reactor for foil activations in neutron flux measurements, diffusion measurements, radioactive decay measurements, and the neutron activation of samples for analysis. In 1988, the reactor was successfully converted to low-enriched uranium fuel.« less

  11. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysismore » of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.« less

  12. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medicalmore » isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.« less

  13. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)« less

  14. Proposed BISOL Facility - a Conceptual Design

    NASA Astrophysics Data System (ADS)

    Ye, Yanlin

    2018-05-01

    In China, a new large-scale nuclear-science research facility, namely the "Beijing Isotope-Separation-On-Line neutron-rich beam facility (BISOL)", has been proposed and reviewed by the governmental committees. This facility aims at both basic science and application goals, and is based on a double-driver concept. On the basic science side, the radioactive ion beams produced from the ISOL device, driven by a research reactor or by an intense deuteron-beam ac- celerator, will be used to study the new physics and technologies at the limit of the nuclear stability in the medium mass region. On the other side regarding to the applications, the facility will be devoted to the material research asso- ciated with the nuclear energy system, by using typically the intense neutron beams produced from the deuteron-accelerator driver. The initial design will be outlined in this report.

  15. High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-01

    This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining themore » facility and executing the mission of the High-Level Waste Storage Tank Farms.« less

  16. IDNS: The Illinois Nuclear Safety Agency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallina, C.O.

    The Illinois Department of Nuclear Safety (IDNS) is one of only two cabinet-level state agencies in the United States devoted exclusively to nuclear and radiation safety. It was established in 1980 by then Gov. James Thompson in response to the 1979 accident at Three Mile Island-2, so the state would be prepared in case of a similar accident at an Illinois nuclear power facility. There are 13 commercial nuclear reactors at seven sites in Illinois, more than in any other state. If Illinois were a country, it would be seventh in the world in the amount of nuclear-generated electricity, andmore » second in the percentage of electricity produced by nuclear power. The state also has several major nonreactor nuclear facilities. 9 refs.« less

  17. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Suzette Jackson; Coppersmith, Ryan; Coppersmith, Kevin

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Advanced Test Reactor (ATR), and Naval Reactors Facility (NRF) at the Idaho National Laboratory (INL). The PSHA followed the approaches and procedures for Senior Seismic Hazard Analysis Committee (SSHAC) Level 1 study and included a Participatory Peer Review Panel (PPRP) to provide the confident technical basis and mean-centered estimates of the ground motions. A new risk-informed methodology for evaluating the need for an update of an existing PSHA was developed as part of the Seismic Risk Assessment (SRA) project. To develop and implement the newmore » methodology, the SRA project elected to perform two SSHAC Level 1 PSHAs. The first was for the Fuel Manufacturing Facility (FMF), which is classified as a Seismic Design Category (SDC) 3 nuclear facility. The second was for the ATR Complex, which has facilities classified as SDC-4. The new methodology requires defensible estimates of ground motion levels (mean and full distribution of uncertainty) for its criteria and evaluation process. The INL SSHAC Level 1 PSHA demonstrates the use of the PPRP, evaluation and integration through utilization of a small team with multiple roles and responsibilities (four team members and one specialty contractor), and the feasibility of a short duration schedule (10 months). Additionally, a SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels for the Spent Fuel Handling Recapitalization Project (SFHP) process facility.« less

  18. The NGA-DOE grant to examine critical issues related to radioactive waste and materials disposition involving DOE facilities. Quarterly report, October 1--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beauchesne, A.M.

    1997-12-31

    Topics explored through this project include: decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis; interstate waste and materials shipments; and reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes.more » The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE`s proposed National Dialogue.« less

  19. NNSA B-Roll: MOX Facility

    ScienceCinema

    None

    2017-12-09

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  20. NNSA B-Roll: MOX Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-05-21

    In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.

  1. Site Environmental Report for Calendar Year 2005. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-09-30

    This annual report describes the environmental monitoring programs related to the Department of Energy’s (DOE) activities at the Santa Susana Field Laboratory (SSFL) facility located in Ventura County, California during 2005. Part of the SSFL facility, known as Area IV, had been used for DOE’s activities since the 1950s. A broad range of energy related research and development (R&D) projects, including nuclear technologies projects, was conducted at the site. All the nuclear R&D operations in Area IV ceased in 1988. Current efforts are directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and closure of facilities used formore » liquid metal research.« less

  2. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning ofmore » Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)« less

  3. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's abilitymore » to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.« less

  4. Savannah River Site Footprint Reduction Results under the American Recovery and Reinvestment Act - 13302

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flora, Mary; Adams, Angelia; Pope, Robert

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilitiesmore » were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and permitted with waste unit remediation activities to streamline regulatory approval and execution. Achieving footprint reduction fulfills the Government's responsibility to address legacy contamination; allows earlier completion of legally enforceable compliance agreement milestones; and enables future potential reuse of DOE resources, including land and infrastructure for other missions. Over the last 3.5 years significant achievements were met that contributed to footprint reduction, including the closure of 41 waste units (including 20 miles of radiologically contaminated stream) and decommissioning of 30 facilities (including the precedent setting in situ closure of two former production reactors, the first in the DOE Complex). Other notable achievements included the removal of over 39,750 cubic meters of debris and 68,810 cubic meters of contaminated soils, including 9175 cubic meters of lead-contaminated soil from a former site small arms testing range and treatment of 1,262 cubic meters of tritium-laden soils and concrete using a thermal treatment system. (authors)« less

  5. 76 FR 57980 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Senior Executive Service Performance Review Board AGENCY... the Defense Nuclear Facilities Safety Board (DNFSB) Senior Executive Service (SES) Performance Review... summary rating of the senior executive's performance, the executive's response, and the higher level...

  6. 78 FR 55244 - Senior Executive Service Performance Review Board; Membership

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Senior Executive Service Performance Review Board... the membership of the Defense Nuclear Facilities Safety Board (DNFSB) Senior Executive Service (SES... rating of a senior executive's performance, the executive's response, and the higher level official's...

  7. 77 FR 54570 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Senior Executive Service Performance Review Board AGENCY... the Defense Nuclear Facilities Safety Board (DNFSB) Senior Executive Service (SES) Performance Review.... The PRB shall review and evaluate the initial summary rating of the senior executive's performance...

  8. Quality assurance in nuclear medicine facilities; availability of final recommendations--FDA. Notice.

    PubMed

    1985-05-13

    The Food and Drug Administration (FDA) is announcing the availability of final recommendations prepared by its Center for Devices and Radiological Health (CDRH) on quality assurance programs in nuclear medicine facilities. The final recommendations include the agency's rationale for the recommendations as well as references that can be used as well as references that can be used as guides in conducting quality control monitoring. These final recommendations are available as a technical report in CDRH's radiation recommendations series. They are intended to encourage and promote the development of voluntary quality assurance programs in nuclear medicine facilities.

  9. Method and means of monitoring the effluent from nuclear facilities

    DOEpatents

    Lattin, Kenneth R.; Erickson, Gerald L.

    1976-01-01

    Radioactive iodine is detected in the effluent cooling gas from a nuclear reactor or nuclear facility by passing the effluent gas through a continuously moving adsorbent filter material which is then purged of noble gases and conveyed continuously to a detector of radioactivity. The purging operation has little or no effect upon the concentration of radioactive iodine which is adsorbed on the filter material.

  10. Japan: Tsunami Flooding

    Atmospheric Science Data Center

    2013-04-16

    ... includes the area around the damaged Fukushima Dai-ichi nuclear power facility and extends northward along the coast. The ... of the Abukuma River to south of the Fukushima Dai-ichi nuclear power facility, and covers an area of 41 kilometers (25 miles) by 89 ... 2 kilometers (1.2 miles) inland is visible just north of the nuclear power plant. Further up the coast, to the south of Matsukawa-ura Bay, ...

  11. Oak Ridge Reservation Physical Characteristics and Natural Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parr, P.D.; Hughes, J.F.

    The topography, geology, hydrology, vegetation, and wildlife of the Oak Ridge Reservation (ORR) provide a complex and intricate array of resources that directly impact land stewardship and use decisions (Fig. 1). The purpose of this document is to consolidate general information regarding the natural resources and physical characteristics of the ORR. The ORR, encompassing 33,114 acres (13,401 ha) of federally owned land and three Department of Energy (DOE) installations, is located in Roane and Anderson Counties in east Tennessee, mostly within the corporate limits of the city of Oak Ridge and southwest of the population center of Oak Ridge. Themore » ORR is bordered on the north and east by the population center of the city of Oak Ridge and on the south and west by the Clinch River/Melton Hill Lake impoundment. All areas of the ORR are relatively pristine when compared with the surrounding region, especially in the Valley and Ridge Physiographic Province (Fig. 2). From the air, the ORR is clearly a large and nearly continuous island of forest within a landscape that is fragmented by urban development and agriculture. Satellite imagery from 2006 was used to develop a land-use/land-cover cover map of the ORR and surrounding lands (Fig. 3). Following the acquisition of the land comprising the ORR in the early 1940s, much of the Reservation served as a buffer for the three primary facilities: the X-10 nuclear research facility (now known as the Oak Ridge National Laboratory [ORNL]), the first uranium enrichment facility or Y-12 (now known as the Y-12 National Security Complex [Y-12 Complex]), and a gaseous diffusion enrichment facility (now known as the East Tennessee Technology Park [ETTP]). Over the past 60 years, this relatively undisturbed area has evolved into a rich and diverse eastern deciduous forest ecosystem of streams and reservoirs, hardwood forests, and extensive upland mixed forests. The combination of a large land area with complex physical characteristics and diverse natural resources has provided a critical foundation for supporting DOE's environmental research mission, as well as the area in which to build leading-edge facilities.« less

  12. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-goingmore » missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.« less

  13. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.« less

  14. Facility Targeting, Protection and Mission Decision Making Using the VISAC Code

    NASA Technical Reports Server (NTRS)

    Morris, Robert H.; Sulfredge, C. David

    2011-01-01

    The Visual Interactive Site Analysis Code (VISAC) has been used by DTRA and several other agencies to aid in targeting facilities and to predict the associated collateral effects for the go, no go mission decision making process. VISAC integrates the three concepts of target geometric modeling, damage assessment capabilities, and an event/fault tree methodology for evaluating accident/incident consequences. It can analyze a variety of accidents/incidents at nuclear or industrial facilities, ranging from simple component sabotage to an attack with military or terrorist weapons. For nuclear facilities, VISAC predicts the facility damage, estimated downtime, amount and timing of any radionuclides released. Used in conjunction with DTRA's HPAC code, VISAC also can analyze transport and dispersion of the radionuclides, levels of contamination of the surrounding area, and the population at risk. VISAC has also been used by the NRC to aid in the development of protective measures for nuclear facilities that may be subjected to attacks by car/truck bombs.

  15. The Alto Tandem and Isol Facility at IPN Orsay

    NASA Astrophysics Data System (ADS)

    Franchoo, Serge

    Alto is an infrastructure for experimental nuclear physics in France that comprises both an on-line isotope-separation facility based on the photofission of uranium and a stable-ion beam facility based on a 14.5-MV tandem accelerator. The isotope-separation on-line section of Alto is dedicated to the production of neutron-rich radioactive ion beams (RIB) from the interaction of the γ-flux induced by a 50-MeV 10-µA electron beam in a uranium-carbide target. It is dimensioned for 1011 fissions per second. The RIB facility is exploited in alternating mode with the tandem-based section of Alto, capable of accelerating both light ions for nuclear astrophysics and heavy ions for γ-spectroscopy. The facility thereby offers the opportunity to deliver beams to a large range of physics programmes from nuclear to interdisciplinary physics. In this article, we present the Alto facility as well as some of the highlights and prospects of the experimental programme.

  16. Dedicated nuclear facilities for electrolytic hydrogen production

    NASA Technical Reports Server (NTRS)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  17. Current significant challenges in the decommissioning and environmental remediation of radioactive facilities: A perspective from outside the nuclear industry.

    PubMed

    Gil-Cerezo, V; Domínguez-Vilches, E; González-Barrios, A J

    2017-05-01

    This paper presents the results of implementing an extrajudicial environmental mediation procedure in the socioenvironmental conflict associated with routine operation of the El Cabril Disposal Facility for low- and medium- activity radioactive waste (Spain). We analyse the socio-ethical perspective of this facility's operation with regard to its nearby residents, detailing the structure and development of the environmental mediation procedure through the participation of society and interested parties who are or may become involved in such a conflict. The research, action, and participation method was used to apply the environmental mediation procedure. This experience provides lessons that could help improve decision-making processes in nuclear or radioactive facility decommissioning projects or in environmental remediation projects dealing with ageing facilities or with those in which nuclear or radioactive accidents/incidents may have occurred. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Radiological survey of the Mare Island Naval Shipyard, Alameda Naval Air Station, and Hunters Point Shipyard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semler, M.O.; Blanchard, R.L.

    1989-06-01

    Since 1963, the Eastern Environmental Radiation Facility (EERF), US Environmental Protection Agency (USEPA), in cooperation with the US Naval Sea Systems Command (NAVSEA) has surveyed facilities serving nuclear-powered warships on the Atlantic and Pacific coasts and the Gulf of Mexico. These surveys assess whether the operation of nuclear-powered warships, during construction, maintenance, overhaul, or refueling, have created elevated levels of radioactivity. The surveys emphasize sampling those areas and pathways that could expose the public. In 1984, NAVSEA requested that EPA survey all active facilities serving nuclear-powered warships over the next three years. This report contains the results of surveys conductedmore » at Naval facilities located at Mare Island, Alameda, and Hunters Point in the San Francisco region. The locations of these facilities are shown. 3 refs., 4 figs., 3 tabs.« less

  19. The measurement programme at the neutron time-of-flight facility n_TOF at CERN

    NASA Astrophysics Data System (ADS)

    Gunsing, F.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bacak, M.; Balibrea-Correa, J.; Barbagallo, M.; Barros, S.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Brugger, M.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Castelluccio, D. M.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Colonna, N.; Cortés-Giraldo, M. A.; Cortés, G.; Cosentino, L.; Damone, L. A.; Deo, K.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Frost, R. J. W.; Furman, V.; Ganesan, S.; García, A. R.; Gawlik, A.; Gheorghe, I.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Göbel, K.; Harada, H.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Katabuchi, T.; Kavrigin, P.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui, J.; Licata, M.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Montesano, S.; Musumarra, A.; Nolte, R.; Negret, A.; Oprea, A.; Palomo-Pinto, F. R.; Paradela, C.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rout, P.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weigand, M.; Weiss, C.; Wolf, C.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n_TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n_TOF will be presented.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benton, J; Wall, D; Parker, E

    This paper presents the latest information on one of the Accelerated Highly Enriched Uranium (HEU) Disposition initiatives that resulted from the May 2002 Summit meeting between Presidents George W. Bush and Vladimir V. Putin. These initiatives are meant to strengthen nuclear nonproliferation objectives by accelerating the disposition of nuclear weapons-useable materials. The HEU Transparency Implementation Program (TIP), within the National Nuclear Security Administration (NNSA) is working to implement one of the selected initiatives that would purchase excess Russian HEU (93% 235U) for use as fuel in U.S. research reactors over the next ten years. This will parallel efforts to convertmore » the reactors' fuel core from HEU to low enriched uranium (LEU) material, where feasible. The paper will examine important aspects associated with the U.S. research reactor HEU purchase. In particular: (1) the establishment of specifications for the Russian HEU, and (2) transportation safeguard considerations for moving the HEU from the Mayak Production Facility in Ozersk, Russia, to the Y-12 National Security Complex in Oak Ridge, TN.« less

  1. 75 FR 56999 - Senior Executive Service Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Senior Executive Service Performance Review Board AGENCY... the Defense Nuclear Facilities Safety Board (DNFSB) Senior Executive Service (SES) Performance Review... performance review boards. The PRB shall review and evaluate the initial summary rating of the senior...

  2. 10 CFR 55.5 - Communications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... involving a test and research reactor facility licensed under 10 CFR part 50 and any related inquiry...

  3. 10 CFR 55.5 - Communications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... involving a test and research reactor facility licensed under 10 CFR part 50 and any related inquiry...

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  5. Taking Steps to Protect Against the Insider Threat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Noah Gale; Williams, Martha; Lewis, Joel

    2015-10-16

    Research reactors are required (in accordance with the Safeguards Agreement between the State and the IAEA) to maintain a system of nuclear material accounting and control for reporting quantities of nuclear material received, shipped, and held on inventory. Enhancements to the existing accounting and control system can be made at little additional cost to the facility, and these enhancements can make nuclear material accounting and control useful for nuclear security. In particular, nuclear material accounting and control measures can be useful in protecting against an insider who is intent on unauthorized removal or misuse of nuclear material or misuse ofmore » equipment. An enhanced nuclear material accounting and control system that responds to nuclear security is described in NSS-25G, Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities, which is scheduled for distribution by the IAEA Department of Nuclear Security later this year. Accounting and control measures that respond to the insider threat are also described in NSS-33, Establishing a System for Control of Nuclear Material for Nuclear Security Purposes at a Facility During Storage, Use and Movement, and in NSS-41, Preventive and Protective Measures against Insider Threats (originally issued as NSS-08), which are available in draft form. This paper describes enhancements to existing material control and accounting systems that are specific to research reactors, and shows how they are important to nuclear security and protecting against an insider.« less

  6. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less

  7. As-built data capture of complex piping using photogrammetry technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morray, J.P.; Ziu, C.G.

    1995-11-01

    Plant owners face an increasingly difficult and expensive task of updating drawings, both regarding the plant logic and physical layout. Through the use of photogrammetry technology, H-H spectrum has created a complete operating plant data capture service, with the result that the task of recording accurate plant configurations has become assured and economical. The technology has proven to be extremely valuable for the capture of complex piping configurations, as well as entire plant facilities, and yields accuracy within 1/4 inch. The method uses photographs and workstation technology to quickly document and compute the plant layout, with all components, regardless ofmore » size, included in the resulting model. The system has the capability to compute actual 3-D coordinates of any point based on previous triangulations, allowing for an immediate assessment of accuracy. This ensures a consistent level of accuracy, which is impossible to achieve in a manual approach. Due to the speed of the process, the approach is very important in hazardous/difficult environments such as nuclear power facilities or offshore platforms.« less

  8. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    NASA Astrophysics Data System (ADS)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  9. Final Memorandum on Remedial-Action Objectives for Operable Units 4-10. Tooele Army Depot-North Area

    DTIC Science & Technology

    1992-12-01

    HAZARDOUS MATERIALS AGENCY (USATHAMA) ABERDEEN PROVING GROUND, MARYLAND Prepared by SEC Donohue, Inc. (Formerly Chem- Nuclear Environmental Services, Inc...Inc. (formerly Chem- Nuclear Environmental Services, Inc.), as deliverables under a Federal Facilities Agreement (FFA) between TEAD, the State of Utah...of Building 659. The building has a concrete floor and bermed containment and is a Nuclear Regulatory Commission (NRC)-licensed facility for the

  10. Nuclear Thermal Rocket Element Environmental Simulator (NTREES) Upgrade Activities

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2014-01-01

    Over the past year the Nuclear Thermal Rocket Element Environmental Simulator (NTREES) has been undergoing a significant upgrade beyond its initial configuration. The NTREES facility is designed to perform realistic non-nuclear testing of nuclear thermal rocket (NTR) fuel elements and fuel materials. Although the NTREES facility cannot mimic the neutron and gamma environment of an operating NTR, it can simulate the thermal hydraulic environment within an NTR fuel element to provide critical information on material performance and compatibility. The first phase of the upgrade activities which was completed in 2012 in part consisted of an extensive modification to the hydrogen system to permit computer controlled operations outside the building through the use of pneumatically operated variable position valves. This setup also allows the hydrogen flow rate to be increased to over 200 g/sec and reduced the operation complexity of the system. The second stage of modifications to NTREES which has just been completed expands the capabilities of the facility significantly. In particular, the previous 50 kW induction power supply has been replaced with a 1.2 MW unit which should allow more prototypical fuel element temperatures to be reached. The water cooling system was also upgraded to so as to be capable of removing 100% of the heat generated during. This new setup required that the NTREES vessel be raised onto a platform along with most of its associated gas and vent lines. In this arrangement, the induction heater and water systems are now located underneath the platform. In this new configuration, the 1.2 MW NTREES induction heater will be capable of testing fuel elements and fuel materials in flowing hydrogen at pressures up to 1000 psi at temperatures up to and beyond 3000 K and at near-prototypic reactor channel power densities. NTREES is also capable of testing potential fuel elements with a variety of propellants, including hydrogen with additives to inhibit corrosion of certain potential NTR fuel forms. Additional diagnostic upgrades included in the present NTREES set up include the addition of a gamma ray spectrometer located near the vent filter to detect uranium fuel particles exiting the fuel element in the propellant exhaust stream to provide additional information any material loss occurring during testing. Other aspects of the upgrade included reworking NTREES to reduce the operational complexity of the system despite the increased complexity of the induction heating system. To this end, many of the controls were consolidated on fewer panels. As part of this upgrade activity, the Safety Assessment (SA) and the Standard Operating Procedures (SOPs) for NTREES were extensively rewritten. The new 1.2 MW induction heater consists of three physical units consisting of a transformer, rectifier, and inverter. This multiunit arrangement facilitated increasing the flexibility of the induction heater by more easily allowing variable frequency operation. Frequency ranges between 20 and 60 kHz can be accommodated in the new induction heater allowing more representative power distributions to be generated within the test elements.

  11. OCE NEMP PROGRAM DEVELOPMENT OF CRITERIA FOR PROTECTION OF NIKE-X POWER PLANT AND FACILITIES ELECTRICAL SYSTEMS AGAINST NUCLEAR ELECTROMAGNETIC PULSE EFFECTS.

    DTIC Science & Technology

    technical backup material for the OCE NEMP PROGRAM, Development of Criteria for Protection of NIKE-X Power Plant and Facilities Electrical Systems Against Nuclear Electromagnetic Pulse Effects, Protective MEASURES. (Author)

  12. 48 CFR 970.2672-3 - Contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Under Section 3161 of the National Defense Authorization Act for Fiscal Year 1993, in contracts for the management and operation of Department of Energy Defense Nuclear Facilities and, as appropriate, in other contracts that include site management responsibilities at a Department of Energy Defense Nuclear Facility...

  13. 48 CFR 970.2672-3 - Contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Under Section 3161 of the National Defense Authorization Act for Fiscal Year 1993, in contracts for the management and operation of Department of Energy Defense Nuclear Facilities and, as appropriate, in other contracts that include site management responsibilities at a Department of Energy Defense Nuclear Facility...

  14. 48 CFR 970.2672-1 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... at a DOE Defense Nuclear Facility is necessary, DOE contractors and subcontractors at DOE Defense Nuclear Facilities shall accomplish work force restructuring or displacement so as to mitigate social and... with the objectives of section 3161 of the National Defense Authorization Act for Fiscal Year 1993, 42...

  15. 48 CFR 970.2672-1 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... at a DOE Defense Nuclear Facility is necessary, DOE contractors and subcontractors at DOE Defense Nuclear Facilities shall accomplish work force restructuring or displacement so as to mitigate social and... with the objectives of section 3161 of the National Defense Authorization Act for Fiscal Year 1993, 42...

  16. 48 CFR 970.2672-1 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... at a DOE Defense Nuclear Facility is necessary, DOE contractors and subcontractors at DOE Defense Nuclear Facilities shall accomplish work force restructuring or displacement so as to mitigate social and... with the objectives of section 3161 of the National Defense Authorization Act for Fiscal Year 1993, 42...

  17. 48 CFR 970.2672-3 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Under Section 3161 of the National Defense Authorization Act for Fiscal Year 1993, in contracts for the management and operation of Department of Energy Defense Nuclear Facilities and, as appropriate, in other contracts that include site management responsibilities at a Department of Energy Defense Nuclear Facility...

  18. 48 CFR 970.2672-3 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Under Section 3161 of the National Defense Authorization Act for Fiscal Year 1993, in contracts for the management and operation of Department of Energy Defense Nuclear Facilities and, as appropriate, in other contracts that include site management responsibilities at a Department of Energy Defense Nuclear Facility...

  19. 48 CFR 970.2672-1 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... at a DOE Defense Nuclear Facility is necessary, DOE contractors and subcontractors at DOE Defense Nuclear Facilities shall accomplish work force restructuring or displacement so as to mitigate social and... with the objectives of section 3161 of the National Defense Authorization Act for Fiscal Year 1993, 42...

  20. 10 CFR 55.5 - Communications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Nuclear Regulatory Commission, Washington, DC 20555-0001. The guidance discusses, among other topics, the.... (b)(1) Except for test and research reactor facilities, the Director, Office of Nuclear Reactor... this part involving a test and research reactor facility licensed under 10 CFR part 50 and any related...

  1. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  2. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  3. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  4. National Ignition Facility under fire over ignition failure

    NASA Astrophysics Data System (ADS)

    Allen, Michael

    2016-08-01

    The 3.5bn National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in California is no nearer to igniting a sustainable nuclear fusion burn - four years after its initial target date - according to a report by the US National Nuclear Security Administration (NNSA).

  5. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  6. 10 CFR 1707.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Definitions. 1707.103 Section 1707.103 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS General Provisions § 1707.103 Definitions. DNFSB means the Defense Nuclear Facilities Safety Board...

  7. Construction Cost Growth for New Department of Energy Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubic, Jr., William L.

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facilitymore » (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.« less

  8. Application of Framework for Integrating Safety, Security and Safeguards (3Ss) into the Design Of Used Nuclear Fuel Storage Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badwan, Faris M.; Demuth, Scott F

    Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.« less

  9. Post-closure biosphere assessment modelling: comparison of complex and more stylised approaches.

    PubMed

    Walke, Russell C; Kirchner, Gerald; Xu, Shulan; Dverstorp, Björn

    2015-10-01

    Geological disposal facilities are the preferred option for high-level radioactive waste, due to their potential to provide isolation from the surface environment (biosphere) on very long timescales. Assessments need to strike a balance between stylised models and more complex approaches that draw more extensively on site-specific information. This paper explores the relative merits of complex versus more stylised biosphere models in the context of a site-specific assessment. The more complex biosphere modelling approach was developed by the Swedish Nuclear Fuel and Waste Management Co (SKB) for the Formark candidate site for a spent nuclear fuel repository in Sweden. SKB's approach is built on a landscape development model, whereby radionuclide releases to distinct hydrological basins/sub-catchments (termed 'objects') are represented as they evolve through land rise and climate change. Each of seventeen of these objects is represented with more than 80 site specific parameters, with about 22 that are time-dependent and result in over 5000 input values per object. The more stylised biosphere models developed for this study represent releases to individual ecosystems without environmental change and include the most plausible transport processes. In the context of regulatory review of the landscape modelling approach adopted in the SR-Site assessment in Sweden, the more stylised representation has helped to build understanding in the more complex modelling approaches by providing bounding results, checking the reasonableness of the more complex modelling, highlighting uncertainties introduced through conceptual assumptions and helping to quantify the conservatisms involved. The more stylised biosphere models are also shown capable of reproducing the results of more complex approaches. A major recommendation is that biosphere assessments need to justify the degree of complexity in modelling approaches as well as simplifying and conservative assumptions. In light of the uncertainties concerning the biosphere on very long timescales, stylised biosphere models are shown to provide a useful point of reference in themselves and remain a valuable tool for nuclear waste disposal licencing procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Probing Nuclear Spin Effects on Electronic Spin Coherence via EPR Measurements of Vanadium(IV) Complexes.

    PubMed

    Graham, Michael J; Krzyaniak, Matthew D; Wasielewski, Michael R; Freedman, Danna E

    2017-07-17

    Quantum information processing (QIP) has the potential to transform numerous fields from cryptography, to finance, to the simulation of quantum systems. A promising implementation of QIP employs unpaired electronic spins as qubits, the fundamental units of information. Though molecular electronic spins offer many advantages, including chemical tunability and facile addressability, the development of design principles for the synthesis of complexes that exhibit long qubit superposition lifetimes (also known as coherence times, or T 2 ) remains a challenge. As nuclear spins in the local qubit environment are a primary cause of shortened superposition lifetimes, we recently conducted a study which employed a modular spin-free ligand scaffold to place a spin-laden propyl moiety at a series of fixed distances from an S = 1 / 2 vanadium(IV) ion in a series of vanadyl complexes. We found that, within a radius of 4.0(4)-6.6(6) Å from the metal center, nuclei did not contribute to decoherence. To assess the generality of this important design principle and test its efficacy in a different coordination geometry, we synthesized and investigated three vanadium tris(dithiolene) complexes with the same ligand set employed in our previous study: K 2 [V(C 5 H 6 S 4 ) 3 ] (1), K 2 [V(C 7 H 6 S 6 ) 3 ] (2), and K 2 [V(C 9 H 6 S 8 ) 3 ] (3). We specifically interrogated solutions of these complexes in DMF-d 7 /toluene-d 8 with pulsed electron paramagnetic resonance spectroscopy and electron nuclear double resonance spectroscopy and found that the distance dependence present in the previously synthesized vanadyl complexes holds true in this series. We further examined the coherence properties of the series in a different solvent, MeCN-d 3 /toluene-d 8 , and found that an additional property, the charge density of the complex, also affects decoherence across the series. These results highlight a previously unknown design principle for augmenting T 2 and open new pathways for the rational synthesis of complexes with long coherence times.

  11. [Nuclear energy and environment: review of the IAEA environmental projects].

    PubMed

    Fesenko, S; Fogt, G

    2012-01-01

    The review of the environmental projects of the International Atomic Energy Agency is presented. Basic IAEA documents intended to protect humans and the Environment are considered and their main features are discussed. Some challenging issues in the area of protection of the Environment and man, including the impact of nuclear facilities on the environment, radioactive waste management, and remediation of the areas affected by radiological accidents, nuclear testing and sites of nuclear facilities are also discussed. The need to maintain the existing knowledge in radioecology and protection of the environment is emphasised.

  12. Hanford Spent Nuclear Fuel Project recommended path forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, J.C.

    The Spent Nuclear Fuel Project (the Project), in conjunction with the U.S. Department of Energy-commissioned Independent Technical Assessment (ITA) team, has developed engineered alternatives for expedited removal of spent nuclear fuel, including sludge, from the K Basins at Hanford. These alternatives, along with a foreign processing alternative offered by British Nuclear Fuels Limited (BNFL), were extensively reviewed and evaluated. Based on these evaluations, a Westinghouse Hanford Company (WHC) Recommended Path Forward for K Basins spent nuclear fuel has been developed and is presented in Volume I of this document. The recommendation constitutes an aggressive series of projects to construct andmore » operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. The overall processing and storage scheme is based on the ITA team`s proposed passivation and vault storage process. A dual purpose staging and vault storage facility provides an innovative feature which allows accelerated removal of fuel and sludge from the basins and minimizes programmatic risks beyond any of the originally proposed alternatives. The projects fit within a regulatory and National Environmental Policy Act (NEPA) overlay which mandates a two-phased approach to construction and operation of the needed facilities. The two-phase strategy packages and moves K Basins fuel and sludge to a newly constructed Staging and Storage Facility by the year 2000 where it is staged for processing. When an adjoining facility is constructed, the fuel is cycled through a stabilization process and returned to the Staging and Storage Facility for dry interim (40-year) storage. The estimated total expenditure for this Recommended Path Forward, including necessary new construction, operations, and deactivation of Project facilities through 2012, is approximately $1,150 million (unescalated).« less

  13. 10 CFR 1706.7 - Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Procedures. 1706.7 Section 1706.7 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.7 Procedures. (a) Pre... the same defense nuclear facility that is the subject of the proposed new work (including overlap...

  14. 10 CFR 1704.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...). These procedures apply to meetings, as defined herein, of the Members of the Defense Nuclear Facilities... 10 Energy 4 2014-01-01 2014-01-01 false Applicability. 1704.1 Section 1704.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.1...

  15. 10 CFR 1704.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...). These procedures apply to meetings, as defined herein, of the Members of the Defense Nuclear Facilities... 10 Energy 4 2010-01-01 2010-01-01 false Applicability. 1704.1 Section 1704.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.1...

  16. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  17. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  18. 10 CFR 1706.7 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Procedures. 1706.7 Section 1706.7 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.7 Procedures. (a) Pre... the same defense nuclear facility that is the subject of the proposed new work (including overlap...

  19. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  20. 10 CFR 1704.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...). These procedures apply to meetings, as defined herein, of the Members of the Defense Nuclear Facilities... 10 Energy 4 2012-01-01 2012-01-01 false Applicability. 1704.1 Section 1704.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.1...

  1. 10 CFR 1706.7 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Procedures. 1706.7 Section 1706.7 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.7 Procedures. (a) Pre... the same defense nuclear facility that is the subject of the proposed new work (including overlap...

  2. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  3. 10 CFR 1706.7 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Procedures. 1706.7 Section 1706.7 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.7 Procedures. (a) Pre... the same defense nuclear facility that is the subject of the proposed new work (including overlap...

  4. 10 CFR 1707.301 - Fees.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Fees. 1707.301 Section 1707.301 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL RECORDS IN LEGAL PROCEEDINGS... (authentication) of copies of records. The Defense Nuclear Facilities Safety Board may certify that records are...

  5. 10 CFR 1704.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...). These procedures apply to meetings, as defined herein, of the Members of the Defense Nuclear Facilities... 10 Energy 4 2011-01-01 2011-01-01 false Applicability. 1704.1 Section 1704.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.1...

  6. 10 CFR 1704.1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...). These procedures apply to meetings, as defined herein, of the Members of the Defense Nuclear Facilities... 10 Energy 4 2013-01-01 2013-01-01 false Applicability. 1704.1 Section 1704.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD RULES IMPLEMENTING THE GOVERNMENT IN THE SUNSHINE ACT § 1704.1...

  7. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  8. 75 FR 57532 - In the Matter of: Stone & Webster Construction, Inc.; Confirmatory Order (Effective Immediately)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... to working in the nuclear industry for workers coming in without nuclear experience; New Hire... employees in its Nuclear Services (i.e., construction) and Nuclear Maintenance Divisions working at nuclear... (i.e., construction) and Nuclear Maintenance Divisions working at nuclear facilities addressing: (a...

  9. Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-02-01

    This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the majormore » Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.« less

  10. The North Korean nuclear dilemma.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hecker, Siegfried S.

    2004-01-01

    The current nuclear crisis, the second one in ten years, erupted when North Korea expelled international nuclear inspectors in December 2002, then withdrew from the Nuclear Nonproliferation Treaty (NPT), and claimed to be building more nuclear weapons with the plutonium extracted from the spent fuel rods heretofore stored under international inspection. These actions were triggered by a disagreement over U.S. assertions that North Korea had violated the Agreed Framework (which froze the plutonium path to nuclear weapons to end the first crisis in 1994) by clandestinely developing uranium enrichment capabilities providing an alternative path to nuclear weapons. With Stanford Universitymore » Professor John Lewis and three other Americans, I was allowed to visit the Yongbyon Nuclear Center on Jan. 8, 2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. On the basis of our visit, we were not able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. However, based on the capabilities we saw, we must assume that North Korea has the capability to produce a crude nuclear device. On the matter of uranium enrichment programs, our host categorically denied that North Korea has a uranium enrichment program - he said, 'we have no program, no equipment, and no technical expertise for uranium enrichment.' The denials were not convincing at the time and since then have proven to be quite hollow by the revelations of A.Q. Khan's nuclear black market activities. There is no easy solution to the nuclear crisis in North Korea. A military strike to eliminate the nuclear facilities was never very attractive and now has been overcome by events. The principal threat is posed by a stockpile of nuclear weapons and weapons-grade plutonium. We have no way of finding where either may be hidden. A diplomatic solution remains the only path forward, but it has proven elusive. All sides have proclaimed a nuclear weapons-free Korean Peninsula as the end goal. The U.S. Government has chosen to negotiate with North Korea by means of the six-party talks. It has very clearly outlined its position of insisting on complete, verifiable, irreversible dismantlement of all North Korean nuclear programs. North Korea has offered several versions of 're-freezing' its plutonium program while still denying a uranium enrichment program. It has insisted on simultaneous and reciprocal steps to a final solution. Regardless of which diplomatic path is chosen, the scientific challenges of eliminating the North Korean nuclear weapons programs (and its associated infrastructure) in a safe, secure, and verifiable manner are immense. The North Korean program is considerably more complex and developed than the fledgling Iraqi program of 1991 and Libyan program of 2004. It is more along the lines, but more complex than that of South Africa in the early 1990s. Actions taken or not taken by the North Koreans at their nuclear facilities during the course of the ongoing diplomatic discussions are key to whether or not the nuclear program can be eliminated safely and securely, and they will greatly influence the price tag for such operations. Moreover, they will determine whether or not one can verify complete elimination. Hence, cooperation of the North Koreans now and during the dismantlement and elimination stages is crucial. Technical discussions among specialists, perhaps within the framework of the working groups of the six-party talks, could be very productive in setting the stage for an effective, verifiable elimination of North Korea's nuclear weapons program.« less

  11. Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center

    NASA Astrophysics Data System (ADS)

    Myers, Astasia

    2011-06-01

    The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.

  12. Exploring Operational Safeguards, Safety, and Security by Design to Address Real Time Threats in Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schanfein, Mark J.; Mladineo, Stephen V.

    2015-07-07

    Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insidermore » who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.« less

  13. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiberteau, Ph.; Nokhamzon, J.G.

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future.more » Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the CEA comes from the diversity of facilities to be dismantled, which are predominantly research facilities and therefore have no series advantage. There is tremendous operating feedback, however. For more than twenty years in all its centres, the CEA has acquired experience and know-how through dismantling research reactors or critical models and laboratories or plants. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing from two dedicated funds, close to euro 15,000 Millions for the next thirty years, for current or projected dismantling operations, the Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2020, the dismantling of the UP1 plant at Marcoule, one of the largest dismantling works in the world, will be well advanced, with all the process equipment dismantled. (authors)« less

  14. The Role of Military Forces in Disaster Response: Remove the Impediments

    DTIC Science & Technology

    2012-03-08

    5Alicia Acuna, “As U.S. Preps for Nuclear Disaster Drills, Scientists Reassure About Quake Zone Facilities,” March 28, 2011, http...www.foxnews.com/politics/2011/03/28/preps- nuclear - disaster -drills-scientists-reassure-quake-zone-facilities (accessed January 1, 2012). 30 6The Federal

  15. 75 FR 68629 - Massachusetts Institute of Technology Reactor Notice of Issuance of Renewed Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-08

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-020; NRC-2010-0313] Massachusetts Institute of Technology Reactor Notice of Issuance of Renewed Facility Operating; License No. R-37 The U.S. Nuclear... Institute of Technology (the licensee), which authorizes continued operation of the Massachusetts Institute...

  16. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  17. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  18. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  19. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  20. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  1. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  2. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  3. 10 CFR 1707.205 - Processing demands or requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Processing demands or requests. 1707.205 Section 1707.205 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF OFFICIAL... and/or produce official records and information. (b) The Defense Nuclear Facilities Safety Board will...

  4. 10 CFR 1706.5 - General rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... activities or research related to the Board's oversight of defense nuclear facilities, where the award would... offering to provide to DOE or to contractors or subcontractors for defense nuclear facilities; or (3) For... 10 Energy 4 2014-01-01 2014-01-01 false General rules. 1706.5 Section 1706.5 Energy DEFENSE...

  5. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  6. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  7. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  8. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  9. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  10. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  11. 10 CFR 1707.204 - Service of subpoenas or requests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Service of subpoenas or requests. 1707.204 Section 1707.204 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY DNFSB EMPLOYEES AND PRODUCTION OF... be served on the General Counsel, Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW...

  12. 10 CFR 1706.5 - General rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... activities or research related to the Board's oversight of defense nuclear facilities, where the award would... offering to provide to DOE or to contractors or subcontractors for defense nuclear facilities; or (3) For... 10 Energy 4 2012-01-01 2012-01-01 false General rules. 1706.5 Section 1706.5 Energy DEFENSE...

  13. 10 CFR 1706.1 - Scope; statement of policy.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Scope; statement of policy. 1706.1 Section 1706.1 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD ORGANIZATIONAL AND CONSULTANT CONFLICTS OF INTERESTS § 1706.1... the Defense Nuclear Facilities Safety Board will follow in determining whether a contractor or offeror...

  14. 10 CFR 1706.5 - General rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... activities or research related to the Board's oversight of defense nuclear facilities, where the award would... offering to provide to DOE or to contractors or subcontractors for defense nuclear facilities; or (3) For... 10 Energy 4 2013-01-01 2013-01-01 false General rules. 1706.5 Section 1706.5 Energy DEFENSE...

  15. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  16. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  17. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  18. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  19. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  20. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  1. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  2. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  3. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  4. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  5. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  6. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  7. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  8. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  9. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  10. 78 FR 25484 - License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... NUCLEAR REGULATORY COMMISSION [Docket No.: 40-8452; NRC-2012-0095] License Amendment for Anadarko Petroleum Corporation, Bear Creek Facility, Converse County, Wyoming AGENCY: Nuclear Regulatory Commission... License SUA- 1310 issued to Anadarko Petroleum Corporation (APC or the licensee) to authorize alternate...

  11. 75 FR 44817 - Notice of Availability of Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services, National... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and...

  12. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  13. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  14. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  15. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  16. 10 CFR 1705.07 - Requests for correction of records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Requests for correction of records. 1705.07 Section 1705.07 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.07 Requests for correction of..., Defense Nuclear Facilities Safety Board, 625 Indiana Avenue, NW., Suite 700, Washington, DC 20004. The...

  17. 10 CFR 1705.03 - Systems of records notification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Systems of records notification. 1705.03 Section 1705.03 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.03 Systems of records notification. (a... writing. Written requests should be directed to: Privacy Act Officer, Defense Nuclear Facilities Safety...

  18. 10 CFR 1705.06 - Appeals from access denials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Appeals from access denials. 1705.06 Section 1705.06 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.06 Appeals from access denials. When.... This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board, 625 Indiana...

  19. 10 CFR 1705.08 - Appeals from correction denials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Appeals from correction denials. 1705.08 Section 1705.08 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD PRIVACY ACT § 1705.08 Appeals from correction denials. (a... in writing. This appeal should be directed to The Chairman, Defense Nuclear Facilities Safety Board...

  20. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less

  1. Cancer in populations living near nuclear facilities. A survey of mortality nationwide and incidence in two states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablon, S.; Hrubec, Z.; Boice, J.D. Jr.

    Reports from the United Kingdom have described increases in leukemia and lymphoma among young persons living near certain nuclear installations. Because of concerns raised by these reports, a mortality survey was conducted in populations living near nuclear facilities in the United States. All facilities began service before 1982. Over 900,000 cancer deaths occurred from 1950 through 1984 in 107 counties with or near nuclear installations. Each study county was matched for comparison to three control counties in the same region. There were 1.8 million cancer deaths in the 292 control counties during the 35 years studied. Deaths due to leukemiamore » or other cancers were not more frequent in the study counties than in the control counties. For childhood leukemia mortality, the relative risk comparing the study counties with their controls before plant start-up was 1.08, while after start-up it was 1.03. For leukemia mortality at all ages, the relative risks were 1.02 before start-up and 0.98 after. For counties in two states, cancer incidence data were also available. For one facility, the standardized registration ratio for childhood leukemia was increased significantly after start-up. However, the increase also antedated the operation of this facility. The study is limited by the correlational approach and the large size of the geographic areas (counties) used. It does not prove the absence of any effect. If, however, any excess cancer risk was present in US counties with nuclear facilities, it was too small to be detected with the methods employed.« less

  2. 75 FR 13801 - Firstenergy Nuclear Operating Company and Firstenergy Nuclear Generation Corp.; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-346; NRC-2010-0121] Firstenergy Nuclear Operating Company and Firstenergy Nuclear Generation Corp.; Notice of Withdrawal of Application for Amendment to Facility Operating License The U.S. Nuclear Regulatory Commission (the Commission) has [[Page 13802

  3. Proliferation resistance assessments during the design phase of a recycling facility as a means of reducing proliferation risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindell, M.A.; Grape, S.; Haekansson, A.

    The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakestmore » barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)« less

  4. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James Werner; Sam Bhattacharyya; Mike Houts

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuelmore » and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.« less

  5. A historical application of social amplification of risk model: Economic impacts of risk events at nuclear weapons facilities?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, W.C.

    1996-12-31

    Public perceptions of risk have proven to be a critical barrier to the federal government`s extensive, decade-long, technical and scientific effort to site facilities for the interim storage and permanent disposal of high-level radioactive waste (HLW). The negative imagery, fear, and anxiety that are linked to ``nuclear`` and ``radioactive`` technologies, activities, and facilities by the public originate from the personal realities and experiences of individuals and the information they receive. These perceptions continue to be a perplexing problem for those responsible for making decisions about federal nuclear waste management policies and programs. The problem of understanding and addressing public perceptionsmore » is made even more difficult because there are decidedly different opinions about HLW held by the public and nuclear industry and radiation health experts.« less

  6. Neutron cross section measurements at n-TOF for ADS related studies

    NASA Astrophysics Data System (ADS)

    Mastinu, P. F.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Bustreo, N.; aumann, P.; vá, F. Be; Berthoumieux, E.; Calviño, F.; Cano-Ott, D.; Capote, R.; Carrillo de Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; itzpatrick, L.; Frais-Kölbl, H.; Fujii, K.; Furman, W.; Guerrero, C.; Goncalves, I.; Gallino, R.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krti ka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Massimi, C.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Oshima, M.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescherand, M.; Wisshak, K.

    2006-05-01

    A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.

  7. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE PAGES

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; ...

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  8. Joint CDRH (Center for Devices and Radiological Health) and state quality-assurance surveys in nuclear medicine: Phase 2 - radiopharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, D.R.; Evans, C.D.

    The report discusses survey results on aspects of the quality assurance of radio-pharmaceuticals from 180 nuclear-medicine facilities in the United States. Data were collected from facilities in 8 states. Demographic information about nuclear-medicine operations and quality-assurance programs was gathered by state radiation-control-program personnel. The data collected from the survey show an incomplete acceptance of quality-assurance practices for radiopharmaceuticals. Most of the facilities in the survey indicated that, because an inferior radiopharmaceutical was prepared so infrequently, they did not believe it was cost-effective to perform extensive quality-assurance testing. The Center for Devices and Radiological Health hopes that the information from themore » survey will stimulate nuclear-medicine professionals and their organizations to encourage appropriate testing of all radiopharmaceuticals.« less

  9. International nuclear waste management fact book

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addressesmore » and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.« less

  10. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Kruzic

    2007-09-01

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolitionmore » (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.« less

  11. 75 FR 8150 - STP Nuclear Operating Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-498 and 50-499; NRC-2010-060] STP Nuclear Operating... The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption, pursuant to...,'' for Facility Operating [[Page 8151

  12. The ISOLDE facility and the HIE-HISOLDE project: Recent highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borge, M. J. G.

    2014-07-23

    The ISOLDE facility at CERN has as objective the production, study and research of nuclei far from stability. The facility provides low energy radioactive beams and post-accelerated beams. In the last 45 years the ISOLDE facility has gathered unique expertise in research with radioactive beams. Over 700 isotopes of more than 70 elements have been used in a wide range of research domains, including cutting edge studies in nuclear structure, atomic physics, nuclear astrophysics, and fundamental interactions. These nuclear probes are also used to do frontier research in solid state and life sciences. There is an on-going upgrade of themore » facility, the HIE-ISOLDE project, which aims to improve the ISOLDE capabilities in a wide front, from an energy increase of the post-accelerated beam to improvements in beam quality and beam purity. The first phase of HIE-ISOLDE will start for physics in the autumn of 2015 with an upgrade of energy for all post-accelerated ISOLDE beams up to 5.5 MeV/u. In this contribution the most recent highlights of the facility are presented.« less

  13. A survey of nuclear-related agreements and possibilities for nuclear cooperation in South Asia: Cooperative Monitoring Center Occasional Paper/15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAJEN,GAURAV

    2000-04-01

    Several existing nuclear-related agreements already require India and Pakistan, as members, to share information. The agreements are bilateral, regional, and international. Greater nuclear transparency between India and Pakistan could be promoted by first understanding the information flows required by existing agreements. This understanding is an essential step for developing projects that can incrementally advance the sensitivity of the information being shared. This paper provides a survey of existing nuclear-related agreements involving India and Pakistan, and suggests future confidence-building projects using the frameworks provided by these agreements. The Bilateral Agreement on the Prohibition of Attack against Nuclear Reactors and Nuclear Facilitiesmore » is discussed as a basis for creating further agreements on restricting the use and deployment of nuclear weapons. The author suggests options for enhancing the value of the list of nuclear facilities exchanged annually as a part of this agreement. The International Atomic Energy Agency's regional cooperation agreement among countries in the Asia-Pacific region is an opportunity for greater subregional nuclear cooperation in South Asia. Linking the regional agreement with South Asian environmental cooperation and marine pollution protection efforts could provide a framework for projects involving Indian and Pakistani coastal nuclear facilities. Programs of the Food and Agriculture Organization of the United Nations that use nuclear techniques to increase food and crop production and optimize water management in arid areas also provide similar opportunities for nuclear cooperation. Other frameworks for nuclear cooperation originate from international conventions related to nuclear safety, transportation of nuclear wastes, worker protection against ionizing radiation, and the nondeployment of nuclear weapons in certain areas. The information shared by existing frameworks includes: laws and regulations (including internal inspection procedures that enforce compliance); lists of nuclear facilities; emergency response procedures and available resources; information related to the transportation of nuclear wastes (particularly via shipping); understanding and notification of accidental releases; and radionuclide release data from select coastal facilities. Incremental increases in the sensitivity of the information being shared could strengthen norms for Indian and Pakistani nuclear transparency. This paper suggests seven technology-based Indian and Pakistani nuclear transparency projects for consideration. Existing nuclear-related agreements provide an information-sharing framework within which the projects could occur. Eventually, as confidence increases and new agreements are negotiated, future projects could begin to deal with the accounting of fissile materials and nuclear weapons disposition and control.« less

  14. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    NASA Astrophysics Data System (ADS)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  15. 78 FR 784 - Entergy Nuclear Operations, Inc.; Pilgrim Nuclear Power Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ....; Pilgrim Nuclear Power Station; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is... Nuclear Power Station (PNPS). The license provides, among other things, that the facility is subject to... participated in two FEMA-evaluated exercises in conjunction with the Vermont Yankee Nuclear Power Plant and...

  16. Science in Flux: NASA's Nuclear Program at Plum Brook Station 1955-2005

    NASA Technical Reports Server (NTRS)

    Bowles, Mark D.

    2006-01-01

    Science in Flux traces the history of one of the most powerful nuclear test reactors in the United States and the only nuclear facility ever built by NASA. In the late 1950's NASA constructed Plum Brook Station on a vast tract of undeveloped land near Sandusky, Ohio. Once fully operational in 1963, it supported basic research for NASA's nuclear rocket program (NERVA). Plum Brook represents a significant, if largely forgotten, story of nuclear research, political change, and the professional culture of the scientists and engineers who devoted their lives to construct and operate the facility. In 1973, after only a decade of research, the government shut Plum Brook down before many of its experiments could be completed. Even the valiant attempt to redefine the reactor as an environmental analysis tool failed, and the facility went silent. The reactors lay in costly, but quiet standby for nearly a quarter-century before the Nuclear Regulatory Commission decided to decommission the reactors and clean up the site. The history of Plum Brook reveals the perils and potentials of that nuclear technology. As NASA, Congress, and space enthusiasts all begin looking once again at the nuclear option for sending humans to Mars, the echoes of Plum Brook's past will resonate with current policy and space initiatives.

  17. NEUTRON CHARACTERIZATION OF ENSA-DPT TYPE SPENT FUEL CASK AT TRILLO NUCLEAR POWER PLANT.

    PubMed

    Méndez-Villafañe, Roberto; Campo-Blanco, Xandra; Embid, Miguel; Yéboles, César A; Morales, Ramón; Novo, Manuel; Sanz, Javier

    2018-04-23

    The Neutron Standards Laboratory of CIEMAT has conducted the characterization of the independent spent fuel storage installation at the Trillo Nuclear Power Plant. At this facility, the spent fuel assemblies are stored in ENSA-DPT type dual purpose casks. Neutron characterization was performed by dosimetry measurements with a neutron survey meter (LB6411) inside the facility, around an individual cask and between stored casks, and outside the facility. Spectra measurements were also performed with a Bonner sphere system in order to determine the integral quantities and validate the use of the neutron monitor at the different positions. Inside the facility, measured neutron spectra and neutron ambient dose equivalent rate are consistent with the casks spatial distribution and neutron emission rates, and measurements with both instruments are consistent with each other. Outside the facility, measured neutron ambient dose equivalent rates are well below the 0.5 μSv/h limit established by the nuclear regulatory authority.

  18. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staiger, Merle Daniel; M. C. Swenson

    2005-01-01

    This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less

  19. Abatement of Xenon and Iodine Emissions from Medical Isotope Production Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Sorensen, Christina M.; Bowyer, Ted W.

    2014-04-01

    The capability of the International Monitoring System (IMS) to detect xenon from underground nuclear explosions is dependent on the radioactive xenon background. Adding to the background, medical isotope production (MIP) by fission releases several important xenon isotopes including xenon-133 and iodine-133 that decays to xenon-133. The amount of xenon released from these facilities may be equivalent to or exceed that released from an underground nuclear explosion. Thus the release of gaseous fission products within days of irradiation makes it difficult to distinguish MIP emissions from a nuclear explosion. In addition, recent shortages in molybdenum-99 have created interest and investment opportunitiesmore » to design and build new MIP facilities in the United States and throughout the world. Due to the potential increase in the number of MIP facilities, a discussion of abatement technologies provides insight into how the problem of emission control from MIP facilities can be tackled. A review of practices is provided to delineate methods useful for abatement of medical isotopes.« less

  20. The Coming Nuclear Renaissance for Next Generation Safeguards Specialists--Maximizing Potential and Minimizing the Risks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eipeldauer, Mary D

    2009-01-01

    This document is intended to provide an overview of the workshop entitled 'The Coming Nuclear Renaissance for the Next Generation Safeguards Experts-Maximizing Benefits While Minimizing Proliferation Risks', conducted at Oak Ridge National Laboratory (ORNL) in partnership with the Y-12 National Security Complex (Y-12) and the Savannah River National Laboratory (SRNL). This document presents workshop objectives; lists the numerous participant universities and individuals, the nuclear nonproliferation lecture topics covered, and the facilities tours taken as part of the workshop; and discusses the university partnership sessions and proposed areas for collaboration between the universities and ORNL for 2009. Appendix A contains themore » agenda for the workshop; Appendix B lists the workshop attendees and presenters with contact information; Appendix C contains graphics of the evaluation form results and survey areas; and Appendix D summarizes the responses to the workshop evaluation form. The workshop was an opportunity for ORNL, Y-12, and SRNL staff with more than 30 years combined experience in nuclear nonproliferation to provide a comprehensive overview of their expertise for the university professors and their students. The overall goal of the workshop was to emphasize nonproliferation aspects of the nuclear fuel cycle and to identify specific areas where the universities and experts from operations and national laboratories could collaborate.« less

  1. Progress on plutonium stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurt, D.

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  2. [Estimation of cost-saving for reducing radioactive waste from nuclear medicine facilities by implementing decay in storage (DIS) in Japan].

    PubMed

    Kida, Tetsuo; Hiraki, Hitoshi; Yamaguchi, Ichirou; Fujibuchi, Toshioh; Watanabe, Hiroshi

    2012-01-01

    DIS has not yet been implemented in Japan as of 2011. Therefore, even if risk was negligible, medical institutions have to entrust radioactive temporal waste disposal to Japan Radio Isotopes Association (JRIA) in the current situation. To decide whether DIS should be implemented in Japan or not, cost-saving effect of DIS was estimated by comparing the cost that nuclear medical facilities pay. By implementing DIS, the total annual cost for all nuclear medical facilities in Japan is estimated to be decreased to 30 million yen or less from 710 million yen. DIS would save 680 million yen (96%) per year.

  3. Nuclear Security Education Program at the Pennsylvania State University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uenlue, Kenan; The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304; Jovanovic, Igor

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basismore » of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale Reactor (PSBR), gamma irradiation facilities (in-pool irradiator, dry irradiator, and hot cells), neutron beam laboratory, radiochemistry laboratories, and various radiation detection and measurement laboratories. A new nuclear security education laboratory was created with DOE NNSA- GTRI funds at RSEC. The nuclear security graduate level curriculum enables the PSU to educate and train future nuclear security experts, both within the United States as well as worldwide. The nuclear security education program at Penn State will grant a Master's degree in nuclear security starting fall 2015. The PSU developed two courses: Nuclear Security- Detector And Source Technologies and Nuclear Security- Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements (Laboratory). Course descriptions and course topics of these courses are described briefly: - Nuclear Security - Detector and Source Technologies; - Nuclear Security - Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Laboratory.« less

  4. Studies of neutron-rich nuclei far from stability at TRISTAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, R.L.

    The ISOL facility, TRISTAN, is a user facility located at Brookhaven National Laboratory's High Flux Beam Reactor. Short-lived, neutron-rich nuclei, far from stability, are produced by thermal neutron fission of /sup 235/U. An extensive array of experimental end stations are available for nuclear structure studies. These studies are augmented by a variety of long-lived ion sources suitable for use at a reactor facility. Some recent results at TRISTAN are presented as examples of using an ISOL facility to study series of nuclei, whereby an effective means of conducting nuclear structure investigations is available.

  5. Leveraging Safety Programs to Improve and Support Security Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, Janice; Snell, Mark K.; Pratt, R.

    2015-10-01

    There has been a long history of considering Safety, Security, and Safeguards (3S) as three functions of nuclear security design and operations that need to be properly and collectively integrated with operations. This paper specifically considers how safety programmes can be extended directly to benefit security as part of an integrated facility management programme. The discussion will draw on experiences implementing such a programme at Sandia National Laboratories’ Annular Research Reactor Facility. While the paper focuses on nuclear facilities, similar ideas could be used to support security programmes at other types of high-consequence facilities and transportation activities.

  6. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  7. Poland becoming a member of the Global Nuclear Energy Partnership, Vol. 2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koritarov, V. K.; Conzelmann, G.; Cirillo, R. R.

    Within a constrained carbon environment, the risks of future natural gas supply, and the need to move to market-based electricity prices, the study team found: (1) the deployment of new nuclear energy in Poland itself is very competitive in the next decade or two; (2) if such generation could be made available to Poland prior to deployment of its own nuclear generation facilities, Poland would benefit from partnering with its Baltic neighbors to import electricity derived from new nuclear generation facilities sited in Lithuania; and (3) Poland appears to be a good candidate for a partnership in the Global Nuclearmore » Energy Partnership (GNEP) as an emerging nuclear energy country.« less

  8. Poland becoming a member of the Global Nuclear Energy Partnership, Vol. 1.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koritarov, V. K.; Conzelmann, G.; Cirillo, R. R.

    Within a constrained carbon environment, the risks of future natural gas supply, and the need to move to market-based electricity prices, the study team found: (1) the deployment of new nuclear energy in Poland itself is very competitive in the next decade or two; (2) if such generation could be made available to Poland prior to deployment of its own nuclear generation facilities, Poland would benefit from partnering with its Baltic neighbors to import electricity derived from new nuclear generation facilities sited in Lithuania; and (3) Poland appears to be a good candidate for a partnership in the Global Nuclearmore » Energy Partnership (GNEP) as an emerging nuclear energy country.« less

  9. Nuclear data made easily accessible through the Notre Dame Nuclear Database

    NASA Astrophysics Data System (ADS)

    Khouw, Timothy; Lee, Kevin; Fasano, Patrick; Mumpower, Matthew; Aprahamian, Ani

    2014-09-01

    In 1994, the NNDC revolutionized nuclear research by providing a colorful, clickable, searchable database over the internet. Over the last twenty years, web technology has evolved dramatically. Our project, the Notre Dame Nuclear Database, aims to provide a more comprehensive and broadly searchable interactive body of data. The database can be searched by an array of filters which includes metadata such as the facility where a measurement is made, the author(s), or date of publication for the datum of interest. The user interface takes full advantage of HTML, a web markup language, CSS (cascading style sheets to define the aesthetics of the website), and JavaScript, a language that can process complex data. A command-line interface is supported that interacts with the database directly on a user's local machine which provides single command access to data. This is possible through the use of a standardized API (application programming interface) that relies upon well-defined filtering variables to produce customized search results. We offer an innovative chart of nuclides utilizing scalable vector graphics (SVG) to deliver users an unsurpassed level of interactivity supported on all computers and mobile devices. We will present a functional demo of our database at the conference.

  10. Physics through the 1990s: Nuclear physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume begins with a non-mathematical introduction to nuclear physics. A description of the major advances in the field follows, with chapters on nuclear structure and dynamics, fundamental forces in the nucleus, and nuclei under extreme conditions of temperature, density, and spin. Impacts of nuclear physics on astrophysics and the scientific and societal benefits of nuclear physics are then discussed. Another section deals with scientific frontiers, describing research into the realm of the quark-gluon plasma; the changing description of nuclear matter, specifically the use of the quark model; and the implications of the standard model and grand unified theories of elementary-particle physics; and finishes with recommendations and priorities for nuclear physics research facilities, instrumentation, accelerators, theory, education, and data bases. Appended are a list of national accelerator facilities, a list of reviewers, a bibliography, and a glossary.

  11. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  12. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  13. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  14. 10 CFR 1707.203 - Filing requirements for demands or requests for documents or testimony.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Filing requirements for demands or requests for documents or testimony. 1707.203 Section 1707.203 Energy DEFENSE NUCLEAR FACILITIES SAFETY BOARD TESTIMONY BY...) The Defense Nuclear Facilities Safety Board reserves the right to require additional information to...

  15. 76 FR 37798 - DOE Response to Recommendation 2010-2 of the Defense Nuclear Facilities Safety Board, Pulse Jet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Safety Board, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant AGENCY: Department of... their Recommendation 2010-2, concerning Pulse Jet Mixing at the Waste Treatment and Immobilization Plant... Nuclear Facilities Safety Board (Board) Recommendation 2010-2, Pulse Jet Mixing (PJM) at the Waste...

  16. 78 FR 67344 - Sunshine Act Meeting; New Time and Date of Proceeding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting; New Time and Date of Proceeding AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Notice of Public Meeting and Hearing; New Time... the postponement in the Federal Register due to the shutdown. The Board has now decided on a new time...

  17. 27 CFR 478.132 - Dispositions of semiautomatic assault weapons and large capacity ammunition feeding devices to...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... official use and to employees or contractors of nuclear facilities. 478.132 Section 478.132 Alcohol... and to employees or contractors of nuclear facilities. Licensed manufacturers, licensed importers, and licensed dealers in semiautomatic assault weapons, as well as persons who manufacture, import, or deal in...

  18. 10 CFR 770.1 - What is the purpose of this part?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false What is the purpose of this part? 770.1 Section 770.1 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... or lease real property at defense nuclear facilities for economic development. (b) This part also...

  19. 10 CFR 770.2 - What real property does this part cover?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false What real property does this part cover? 770.2 Section 770.2 Energy DEPARTMENT OF ENERGY TRANSFER OF REAL PROPERTY AT DEFENSE NUCLEAR FACILITIES FOR ECONOMIC... sale or lease at defense nuclear facilities, for the purpose of permitting economic development. (b...

  20. 77 FR 75676 - Standard Review Plan for Review of Fuel Cycle Facility License Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0220] Standard Review Plan for Review of Fuel Cycle... Review of a License Application for a Fuel Cycle Facility.'' The NRC is extending the public comment... of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and Safeguards. [FR Doc. 2012...

Top