Fundamental Physics with Electroweak Probes of Nuclei
NASA Astrophysics Data System (ADS)
Pastore, Saori
2018-02-01
The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, A. V.
A brief survey of theoretical and experimental work that is devoted to studying the resonance absorption and scattering of gamma rays by nuclei and which was initiated at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the 1950s and has been continued to date is given. Investigations of various versions of interaction in beta decay, magnetic-field-perturbed angular distributions of resonantly scattered gamma rays, the problem of the Moessbauer gamma resonance of long-lived isomeric states of nuclei, and the resonance scattering of annihilation photons by nuclei are described.
Pseudorapidity configurations in collisions between gold nuclei and track-emulsion nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net
2010-07-15
A method of parametrically invariant quantities is developed for studying pseudorapidity configurations in nucleus-nucleus collisions involving a large number of secondary particles. In simple models where the spectrum of pseudorapidities depends on three parameters, the shape of the spectrum may differ strongly from the shape of pseudorapidity configurations in individual events. Pseudorapidity configurations in collisions between gold nuclei of energy 10.6 GeV per nucleon and track-emulsion nuclei are contrasted against those in random stars calculated theoretically. An investigation of pseudorapidity configurations in individual events is an efficient method for verifying theoretical models.
Halse, Meghan E; Procacci, Barbara; Henshaw, Sarah-Louise; Perutz, Robin N; Duckett, Simon B
2017-05-01
We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H 2 ) into a metal dihydride complex and then follows the time-evolution of the p-H 2 -derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H 2 -derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H 2 -derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H 2 -derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1 H and 31 P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H 2 -derived spin order over micro-to-millisecond timescales. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Chaos in nuclei: Theory and experiment
NASA Astrophysics Data System (ADS)
Muñoz, L.; Molina, R. A.; Gómez, J. M. G.
2018-05-01
During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.
The nuclear contacts and short range correlations in nuclei
NASA Astrophysics Data System (ADS)
Weiss, R.; Cruz-Torres, R.; Barnea, N.; Piasetzky, E.; Hen, O.
2018-05-01
Atomic nuclei are complex strongly interacting systems and their exact theoretical description is a long-standing challenge. An approximate description of nuclei can be achieved by separating its short and long range structure. This separation of scales stands at the heart of the nuclear shell model and effective field theories that describe the long-range structure of the nucleus using a mean-field approximation. We present here an effective description of the complementary short-range structure using contact terms and stylized two-body asymptotic wave functions. The possibility to extract the nuclear contacts from experimental data is presented. Regions in the two-body momentum distribution dominated by high-momentum, close-proximity, nucleon pairs are identified and compared to experimental data. The amount of short-range correlated (SRC) nucleon pairs is determined and compared to measurements. Non-combinatorial isospin symmetry for SRC pairs is identified. The obtained one-body momentum distributions indicate dominance of SRC pairs above the nuclear Fermi-momentum.
KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei
NASA Astrophysics Data System (ADS)
Lü, Hongliang; Marchix, Anthony; Abe, Yasuhisa; Boilley, David
2016-03-01
KEWPIE-a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions-has been improved and rewritten in C++ programming language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data. Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.
NASA Astrophysics Data System (ADS)
Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.
2018-02-01
Experimental and theoretical results of the PCN fusion probability of reactants in the entrance channel and the Wsur survival probability against fission at deexcitation of the compound nucleus formed in heavy-ion collisions are discussed. The theoretical results for a set of nuclear reactions leading to formation of compound nuclei (CNs) with the charge number Z = 102- 122 reveal a strong sensitivity of PCN to the characteristics of colliding nuclei in the entrance channel, dynamics of the reaction mechanism, and excitation energy of the system. We discuss the validity of assumptions and procedures for analysis of experimental data, and also the limits of validity of theoretical results obtained by the use of phenomenological models. The comparison of results obtained in many investigated reactions reveals serious limits of validity of the data analysis and calculation procedures.
NASA Astrophysics Data System (ADS)
Greenberg, J. M.
The density of typical comet nuclei is estimated on the basis of published empirical and theoretical density data on meteors. The nuclei are assumed to consist of aggregated interstellar dust (silicate cores with complex organic refractory mantles) as proposed by Greenberg (1982 and 1983) and Van de Bult et al. (1985). The theoretical density (0.5 g/cu cm) of a compact nucleus of this type is contrasted with the observed densities of meteors associated with short-period comets (0.2 g/cu cm) and the Draconids associated with comet Giacobini-Zinner (0.01 g/cu cm), and it is inferred that the original comet debris was less than fully packed. A birdsnest structure comprising elongated crystals and about 60 percent empty space is proposed; its albedo is estimated as about 0.05 (in the range predicted by observations); and it is shown to undergo much less internal heating by the sun than a solid ice nucleus. The mean density of reconstituted cometary matter is found to be in the range 0.54-0.03 g/cu cm, consistent with the estimates (0.1 g/cu cm) of Lin (1966) and Donn (1963).
Towards a Deeper Understanding of the Nucleus with Exotic Nuclei
NASA Astrophysics Data System (ADS)
Ormand, Erich
2006-10-01
Despite more than fifty years of study, many questions about now nuclei are put together remain. While nuclei near the valley of stability have provided a wealth of information, they are not sufficient to provide us with a comprehensive and unified description of the nucleus. Especially lacking is an accurate picture of those exotic species that are the basis of cosmic alchemy. The missing pieces in the puzzle can be filled in with a determined experimental and theoretical effort focusing on nuclei lying far from the valley of stability. Here, I will outline the intellectual challenges that can be addressed by proposed exotic-beam facilities, and how new experimental data will quide and refine theoretical descriptions of the nucleus.
Tanase, Mihai; Waliszewski, Przemyslaw
2015-12-01
We propose a novel approach for the quantitative evaluation of aggressiveness in prostate carcinomas. The spatial distribution of cancer cell nuclei was characterized by the global spatial fractal dimensions D0, D1, and D2. Two hundred eighteen prostate carcinomas were stratified into the classes of equivalence using results of ROC analysis. A simulation of the cellular automata mix defined a theoretical frame for a specific geometric representation of the cell nuclei distribution called a local structure correlation diagram (LSCD). The LSCD and dispersion Hd were computed for each carcinoma. Data mining generated some quantitative criteria describing tumor aggressiveness. Alterations in tumor architecture along progression were associated with some changes in both shape and the quantitative characteristics of the LSCD consistent with those in the automata mix model. Low-grade prostate carcinomas with low complexity and very low biological aggressiveness are defined by the condition D0 < 1.545 and Hd < 38. High-grade carcinomas with high complexity and very high biological aggressiveness are defined by the condition D0 > 1.764 and Hd < 38. The novel homogeneity measure Hd identifies carcinomas with very low aggressiveness within the class of complexity C1 or carcinomas with very high aggressiveness in the class C7. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Bolshakov, A. E.; Golubev, A. A.; Zenkevich, P. R.; Kats, M. M.; Kolomiets, A. A.
2014-09-01
We report the results of a study into the feasibility of conducting the ELISE and EXL experiments on collisions of nuclei of radioactive fragments with electrons at the Institute for Theoretical and Experimental Physics (ITEP). A scheme for uranium ion acceleration in the ITEP accelerator complex is chosen, and it is shown that uranium ions may be accelerated with an intensity of ˜1 × 1011 ions/s as soon as the complex is modified and a new injector is constructed. The basic parameters of the modified complex are given, and a layout diagram indicating the positions of the target that serves to produce radioactive fragments, the separator, and the storage rings (CR, RESR, NESR, and ER) at the ITEP site is presented.
Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei
NASA Astrophysics Data System (ADS)
Shamami, S. Rahimi; Pahlavani, M. R.
2018-01-01
A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.
Research in Computational Astrobiology
NASA Technical Reports Server (NTRS)
Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.
2003-01-01
We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.
Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei
NASA Astrophysics Data System (ADS)
Leoni, S.
2016-05-01
The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.
Fabian, Andrew C.
1999-01-01
Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363
Spectroscopy of neutron-rich nuclei at REX-ISOLDE with MINIBALL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroell, Th.
2007-08-15
We report on 'safe' Coulomb excitation of neutron-rich nuclei. The radioactive nuclei have been produced by ISOLDE at CERN and postaccelerated by the REX-ISOLDE facility. The {gamma} rays emitted by the decay of excited states have been detected by the MINIBALL array. Recent results are presented and compared to theoretical models.
Deaton, J D; Guerrero, T; Howard, T H
1992-01-01
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent. PMID:1337290
Deaton, J D; Guerrero, T; Howard, T H
1992-12-01
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.
Nuclear charge radii: density functional theory meets Bayesian neural networks
NASA Astrophysics Data System (ADS)
Utama, R.; Chen, Wei-Chia; Piekarewicz, J.
2016-11-01
The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain.
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki
2013-08-01
We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Moody, K. J.; Henderson, R. A.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.
2007-10-01
Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with the approach to the theoretically predicted nuclear shells with N = 184 and Z = 114.
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Moody, K. J.; Henderson, R. A.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.
2008-04-01
Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with the approach to the theoretically predicted nuclear shells with N = 184 and Z = 114.
Correlated electron and nuclear dynamics in strong field photoionization of H(2)(+).
Silva, R E F; Catoire, F; Rivière, P; Bachau, H; Martín, F
2013-03-15
We present a theoretical study of H(2)(+) ionization under strong IR femtosecond pulses by using a method designed to extract correlated (2D) photoelectron and proton kinetic energy spectra. The results show two distinct ionization mechanisms-tunnel and multiphoton ionization-in which electrons and nuclei do not share the energy from the field in the same way. Electrons produced in multiphoton ionization share part of their energy with the nuclei, an effect that shows up in the 2D spectra in the form of energy-conservation fringes similar to those observed in weak-field ionization of diatomic molecules. In contrast, tunneling electrons lead to fringes whose position does not depend on the proton kinetic energy. At high intensity, the two processes coexist and the 2D plots show a very rich behavior, suggesting that the correlation between electron and nuclear dynamics in strong field ionization is more complex than one would have anticipated.
A method to obtain static potential for electron-molecule scattering
NASA Astrophysics Data System (ADS)
Srivastava, Rajesh; Das, Tapasi; Stauffer, Allan
2014-05-01
Electron scattering from molecules is complicated by the fact that molecules are a multi-centered target with the nuclei of the constituent atoms being a center of charge. One of the most important parts of a scattering calculation is to obtain the static potential which represents the interaction of the incident electron with the unperturbed charge distribution of the molecule. A common way to represent the charge distribution of molecules is with Gaussian orbitals centered on the various nuclei. We have derived a way to calculate spherically-averaged molecular static potentials using this form of molecular wave function which is mostly analytic. This method has been applied to elastic electron scattering from water molecules and we obtained differential cross sections which are compared with previous experimental and theoretical results. The method can be extended to more complex molecules. One of us (RS) is thankful to IAEA, Vienna, Austria and DAE-BRNS, Mumbai, India for financial support.
Mizoguchi, Asao; Ohshima, Yasuhiro; Endo, Yasuki
2011-08-14
Pure rotational spectra of the sodium chloride-water complexes, NaCl-(H(2)O)(n) (n = 1, 2, and 3), in the vibronic ground state have been observed by a Fourier- transform microwave spectrometer coupled with a laser ablation source. The (37)Cl-isotopic species and a few deuterated species have also been observed. From the analyses of the spectra, the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants of the Na and Cl nuclei were determined precisely for all the species. The molecular structures of NaCl-(H(2)O)(n) were determined using the rotational constants and the molecular symmetry. The charge distributions around Na and Cl nuclei in NaCl are dramatically changed by the complex formation with H(2)O. Prominent dependences of the bond lengths r(Na-Cl) on the number of H(2)O were also observed. By a comparison with results of theoretical studies, it is shown that the structure of NaCl-(H(2)O)(3) is approaching to that of the contact ion-pair, which is considered to be an intermediate species in the incipient solvation process.
NASA Astrophysics Data System (ADS)
Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev
2016-07-01
The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoruk, Abdulkadir, E-mail: yorukabdulkadir@hotmail.com; Turkan, Nureddin, E-mail: nureddin.turkan@medeniyet.edu.tr
2016-09-15
We have carried out the calculation of the quadrupole moments Q(2{sub 1}{sup +}) and electromagnetic transition rates B(E2) of some levels within the framework of the interacting boson model for even-mass Ge nuclei. The presented predictions of the quadrupole moments and B(E2) ratios for Ge nuclei are compared with the results of some previous experimental and theoretical ones along with those of the neighboring Kr and Se isotopes and then it was seen that they agree well with the previous experimental and theoretical ones.
New Results on Short-Range Correlations in Nuclei
Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak; ...
2017-10-12
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less
New Results on Short-Range Correlations in Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomin, Nadia; Higinbotham, Douglas; Sargsian, Misak
Nuclear dynamics at short distances is one of the most fascinating topics of strong interaction physics. The physics of it is closely related to the understanding of the role of the QCD in generating nuclear forces at short distances, as well as of the dynamics of the superdense cold nuclear matter relevant to the interior of neutron stars. The emergence of high-energy electron and proton beams has led to significant recent progress in high-energy nuclear scattering experiments investigating the short-range structure of nuclei. These experiments, in turn, have stimulated new theoretical studies resulting in the observation of several new phenomenamore » specific to the short-range structure of nuclei. In this article, we review recent theoretical and experimental progress in studies of short-range correlations in nuclei and discuss their importance for advancing our understanding of the dynamics of nuclear interactions at short distances.« less
Afanasjev, Anatoli V.; Agbemava, S. E.; Ray, D.; ...
2017-01-01
Here, the analysis of statistical and systematic uncertainties and their propagation to nuclear extremes has been performed. Two extremes of nuclear landscape (neutron-rich nuclei and superheavy nuclei) have been investigated. For the first extreme, we focus on the ground state properties. For the second extreme, we pay a particular attention to theoretical uncertainties in the description of fission barriers of superheavy nuclei and their evolution on going to neutron-rich nuclei.
Nucleation and Growth Kinetics from LaMer Burst Data.
Chu, Daniel B K; Owen, Jonathan S; Peters, Baron
2017-10-12
In LaMer burst nucleation, the individual nucleation events happen en masse, quasi-simultaneously, and at nearly identical homogeneous conditions. These properties make LaMer burst nucleation important for applications that require monodispersed particles and also for theoretical analyses. Sugimoto and co-workers predicted that the number of nuclei generated during a LaMer burst depends only on the solute supply rate and the growth rate, independent of the nucleation kinetics. Some experiments confirm that solute supply kinetics control the number of nuclei, but flaws in the original theoretical analysis raise questions about the predicted roles of growth and nucleation kinetics. We provide a rigorous analysis of the coupled equations that govern concentrations of nuclei and solutes. Our analysis confirms that the number of nuclei is largely determined by the solute supply and growth rates, but our predicted relationship differs from that of Sugimoto et al. Moreover, we find that additional nucleus size dependent corrections should emerge in systems with slow growth kinetics. Finally, we show how the nucleation kinetics determine the particle size distribution. We suggest that measured particle size distributions might therefore provide ways to test theoretical models of homogeneous nucleation kinetics.
Giurumescu, Claudiu A; Kang, Sukryool; Planchon, Thomas A; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D
2012-11-01
A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking.
Synthesis of Superheavy Nuclei in 48CA-INDUCED Reactions
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Sagaidak, R. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Voinov, A. A.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Subotic, K.; Zagrebaev, V. I.; Vostokin, G. K.; Itkis, M. G.; Moody, K. J.; Patin, J. B.; Shaughnessy, D. A.; Stoyer, M. A.; Stoyer, N. J.; Wilk, P. A.; Kenneally, J. M.; Landrum, J. H.; Wild, J. F.; Lougheed, R. W.
2008-11-01
Thirty-four new nuclides with Z = 104-116, 118 and N = 161-177 have been synthesized in the complete-fusion reactions of 238U, 237Np, 242,244Pu, 243Am, 245,248Cm, and 249Cf targets with 48Ca beams. The masses of evaporation residues were identified through measurements of the excitation functions of the xn-evaporation channels and from cross bombardments. The decay properties of the new nuclei agree with those of previously known heavy nuclei and with predictions from different theoretical models. A discussion of self-consistent interpretations of all observed decay chains originating from the parent isotopes 282,283112, 282113, 286-289114, 287,288115, 290-293116, and 294118 is presented. Decay energies and lifetimes of the neutron-rich superheavy nuclei as well as their production cross sections indicate a considerable increase in the stability of nuclei with an increasing number of neutrons, which agrees with the predictions of theoretical models concerning the decisive dependence of the structure and radioactive properties of superheavy elements on their proximity to the nuclear shells with N = 184 and Z = 114.
The energy distribution of very heavy cosmic ray nuclei within the penumbra at Palestine, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathiesen, O.; Larsson, L.; Andersson, R.
1975-09-01
The low-energy end of the rigidity spectrum of cosmic ray nuclei with atomic numbers 7greater than or equal to18, recorded in a balloon flight conducted from Palestine, Texas, has been compared with a corresponding theoretical spectrum based on the computations by Shea and Smart. The two distributions are found to be in qualitative agreement with each other. The spread in apparent particle charge, caused by the theoretical distribution of particle velocity at Palestine, has been calculated for detectors with different response functions. The resulting structure of the predicted charge spectrum of iron group nuclei is found to be in goodmore » agreement with corresponding experimental data.« less
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Narasimhan, P. T.
The results of theoretical and experimental studies of Zeeman-perturbed nuclear quadrupole spin echo envelope modulations (ZSEEM) for spin 3/2 nuclei in polycrystalline specimens are presented. The response of the Zeeman-perturbed spin ensemble to resonant two pulse excitations has been calculated using the density matrix formalism. The theoretical calculation assumes a parallel orientation of the external r.f. and static Zeeman fields and an arbitrary orientation of these fields to the principal axes system of the electric field gradient. A numerical powder averaging procedure has been adopted to simulate the response of the polycrystalline specimens. Using a coherent pulsed nuclear quadrupole resonance spectrometer the ZSEEM patterns of the 35Cl nuclei have been recorded in polycrystalline specimens of potassium chlorate, barium chlorate, mercuric chloride (two sites) and antimony trichloride (two sites) using the π/2-τ-π/2 sequence. The theoretical and experimental ZSEEM patterns have been compared. In the case of mercuric chloride, the experimental 35Cl ZSEEM patterns are found to be nearly identical for the two sites and correspond to a near-zero value of the asymmetry parameter, η, of the electric field gradient tensor. The difference in the η values for the two 35Cl sites (η ˜0·06 and η˜0·16) in antimony trichloride is clearly reflected in the experimental and theoretical ZSEEM patterns. The present study indicates the feasibility of evaluating η for spin 3/2 nuclei in polycrystalline specimens from ZSEEM investigations.
Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos
Giurumescu, Claudiu A.; Kang, Sukryool; Planchon, Thomas A.; Betzig, Eric; Bloomekatz, Joshua; Yelon, Deborah; Cosman, Pamela; Chisholm, Andrew D.
2012-01-01
A quantitative understanding of tissue morphogenesis requires description of the movements of individual cells in space and over time. In transparent embryos, such as C. elegans, fluorescently labeled nuclei can be imaged in three-dimensional time-lapse (4D) movies and automatically tracked through early cleavage divisions up to ~350 nuclei. A similar analysis of later stages of C. elegans development has been challenging owing to the increased error rates of automated tracking of large numbers of densely packed nuclei. We present Nucleitracker4D, a freely available software solution for tracking nuclei in complex embryos that integrates automated tracking of nuclei in local searches with manual curation. Using these methods, we have been able to track >99% of all nuclei generated in the C. elegans embryo. Our analysis reveals that ventral enclosure of the epidermis is accompanied by complex coordinated migration of the neuronal substrate. We can efficiently track large numbers of migrating nuclei in 4D movies of zebrafish cardiac morphogenesis, suggesting that this approach is generally useful in situations in which the number, packing or dynamics of nuclei present challenges for automated tracking. PMID:23052905
NASA Astrophysics Data System (ADS)
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-01
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
Stark, Julian; Rothe, Thomas; Kieß, Steffen; Simon, Sven; Kienle, Alwin
2016-04-07
Single cell nuclei were investigated using two-dimensional angularly and spectrally resolved scattering microscopy. We show that even for a qualitative comparison of experimental and theoretical data, the standard Mie model of a homogeneous sphere proves to be insufficient. Hence, an accelerated finite-difference time-domain method using a graphics processor unit and domain decomposition was implemented to analyze the experimental scattering patterns. The measured cell nuclei were modeled as single spheres with randomly distributed spherical inclusions of different size and refractive index representing the nucleoli and clumps of chromatin. Taking into account the nuclear heterogeneity of a large number of inclusions yields a qualitative agreement between experimental and theoretical spectra and illustrates the impact of the nuclear micro- and nanostructure on the scattering patterns.
Ashbrook, Sharon E; Wimperis, Stephen
2004-02-08
Spin-locking of half-integer quadrupolar nuclei, such as 23Na (I=3/2) and 27Al (I=5/2), is of renewed interest owing to the development of variants of the multiple-quantum and satellite-transition magic angle spinning (MAS) nuclear magnetic resonance experiments that either utilize spin-locking directly or offer the possibility that spin-locked states may arise. However, the large magnitude and, under MAS, the time dependence of the quadrupolar interaction often result in complex spin-locking phenomena that are not widely understood. Here we show that, following the application of a spin-locking pulse, a variety of coherence transfer processes occur on a time scale of approximately 1/omegaQ before the spin system settles down into a spin-locked state which may itself be time dependent if MAS is performed. We show theoretically for both spin I=3/2 and 5/2 nuclei that the spin-locked state created by this initial rapid dephasing typically consists of a variety of single- and multiple-quantum coherences and nonequilibrium population states and we discuss the subsequent evolution of these under MAS. In contrast to previous work, we consider spin-locking using a wide range of radio frequency field strengths, i.e., a range that covers both the "strong-field" (omega1 > omegaQPAS and "weak-field" (omega1 < omegaQPAS limits. Single- and multiple-quantum filtered spin-locking experiments on NaNO2, NaNO3, and Al(acac)3, under both static and MAS conditions, are used to illustrate and confirm the results of the theoretical discussion.
Gonzalez, Megan E; Eckert, Juergen; Aquino, Adelia J A; Poirier, Bill
2018-04-21
Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H) 2 (H 2 )(PEtPh 2 ) 3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm -1 -in excellent agreement with the experimental value of 6.4 cm -1 . This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.
NASA Astrophysics Data System (ADS)
Gonzalez, Megan E.; Eckert, Juergen; Aquino, Adelia J. A.; Poirier, Bill
2018-04-01
Progress in the hydrogen fuel field requires a clear understanding and characterization of how materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically. One class of material that has been examined in this context are dihydrogen complexes. Since their discovery by Kubas in 1984, many such complexes have been studied both experimentally and theoretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and treating the quantum dynamics (QD) explicitly. A "gas-phase" global potential energy surface is first constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional; this is followed by an exact QD calculation of the corresponding rotation/libration states. The results provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to be 6.914 cm-1—in excellent agreement with the experimental value of 6.4 cm-1. This work represents the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation in a coordination complex.
Superheavy nuclei from 48Ca-induced reactions
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.; Utyonkov, V. K.
2015-12-01
The discovery and investigation of the new region of superheavy nuclei at the DGFRS separator based on fusion reactions of 48Ca with 238U-249Cf target nuclei are reviewed. The production cross sections and summaries of the decay properties, including the results of the posterior experiments performed at the SHIP, BGS, and TASCA separators, as well as at the chemistry setups, are discussed and compared with the theoretical calculations and the systematic trends in the α-decay and spontaneous fission properties. The properties of the new nuclei, isotopes of elements 112-118, and their decay products demonstrate significant increases in the stability of the heaviest nuclei with increasing neutron number and closer approach to magic number N = 184.
Interaction of eta mesons with nuclei.
Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K
2013-06-01
Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status of these efforts.
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon
2011-02-21
The dynamic nuclear polarization (DNP) process in solids depends on the magnitudes of hyperfine interactions between unpaired electrons and their neighboring (core) nuclei, and on the dipole-dipole interactions between all nuclei in the sample. The polarization enhancement of the bulk nuclei has been typically described in terms of a hyperfine-assisted polarization of a core nucleus by microwave irradiation followed by a dipolar-assisted spin diffusion process in the core-bulk nuclear system. This work presents a theoretical approach for the study of this combined process using a density matrix formalism. In particular, solid effect DNP on a single electron coupled to a nuclear spin system is considered, taking into account the interactions between the spins as well as the main relaxation mechanisms introduced via the electron, nuclear, and cross-relaxation rates. The basic principles of the DNP-assisted spin diffusion mechanism, polarizing the bulk nuclei, are presented, and it is shown that the polarization of the core nuclei and the spin diffusion process should not be treated separately. To emphasize this observation the coherent mechanism driving the pure spin diffusion process is also discussed. In order to demonstrate the effects of the interactions and relaxation mechanisms on the enhancement of the nuclear polarization, model systems of up to ten spins are considered and polarization buildup curves are simulated. A linear chain of spins consisting of a single electron coupled to a core nucleus, which in turn is dipolar coupled to a chain of bulk nuclei, is considered. The interaction and relaxation parameters of this model system were chosen in a way to enable a critical analysis of the polarization enhancement of all nuclei, and are not far from the values of (13)C nuclei in frozen (glassy) organic solutions containing radicals, typically used in DNP at high fields. Results from the simulations are shown, demonstrating the complex dependences of the DNP-assisted spin diffusion process on variations of the relevant parameters. In particular, the effect of the spin lattice relaxation times on the polarization buildup times and the resulting end polarization are discussed, and the quenching of the polarizations by the hyperfine interaction is demonstrated.
Chiral electroweak currents in nuclei
Riska, D. O.; Schiavilla, R.
2017-01-10
Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.
Organization of projections from the raphe nuclei to the vestibular nuclei in rats
NASA Technical Reports Server (NTRS)
Halberstadt, A. L.; Balaban, C. D.
2003-01-01
Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that raphe-vestibular connections are organized to selectively modulate processing in regions of the vestibular nuclear complex that receive input from specific cerebellar zones. This represents a potential mechanism whereby motor activity and behavioral arousal could influence the activity of cerebellovestibular circuits.
First principles NMR study of fluorapatite under pressure.
Pavan, Barbara; Ceresoli, Davide; Tecklenburg, Mary M J; Fornari, Marco
2012-01-01
NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method (Pickard and Mauri, 2001). Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from -5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as (43)Ca and (17)O. Copyright © 2012 Elsevier Inc. All rights reserved.
First Principles NMR Study of Fluorapatite under Pressure
Pavan, Barbara; Ceresoli, Davide; Tecklenburg, Mary M. J.; Fornari, Marco
2012-01-01
NMR is the technique of election to probe the local properties of materials. Herein we present the results of density functional theory (DFT) ab initio calculations of the NMR parameters for fluorapatite (FAp), a calcium orthophosphate mineral belonging to the apatite family, by using the GIPAW method [Pickard and Mauri, 2001]. Understanding the local effects of pressure on apatites is particularly relevant because of their important role in many solid state and biomedical applications. Apatites are open structures, which can undergo complex anisotropic deformations, and the response of NMR can elucidate the microscopic changes induced by an applied pressure. The computed NMR parameters proved to be in good agreement with the available experimental data. The structural evaluation of the material behavior under hydrostatic pressure (from −5 to +100 kbar) indicated a shrinkage of the diameter of the apatitic channel, and a strong correlation between NMR shielding and pressure, proving the sensitivity of this technique to even small changes in the chemical environment around the nuclei. This theoretical approach allows the exploration of all the different nuclei composing the material, thus providing a very useful guidance in the interpretation of experimental results, particularly valuable for the more challenging nuclei such as 43Ca and 17O. PMID:22770669
A simple method for estimating the size of nuclei on fractal surfaces
NASA Astrophysics Data System (ADS)
Zeng, Qiang
2017-10-01
Determining the size of nuclei on complex surfaces remains a big challenge in aspects of biological, material and chemical engineering. Here the author reported a simple method to estimate the size of the nuclei in contact with complex (fractal) surfaces. The established approach was based on the assumptions of contact area proportionality for determining nucleation density and the scaling congruence between nuclei and surfaces for identifying contact regimes. It showed three different regimes governing the equations for estimating the nucleation site density. Nuclei in the size large enough could eliminate the effect of fractal structure. Nuclei in the size small enough could lead to the independence of nucleation site density on fractal parameters. Only when nuclei match the fractal scales, the nucleation site density is associated with the fractal parameters and the size of the nuclei in a coupling pattern. The method was validated by the experimental data reported in the literature. The method may provide an effective way to estimate the size of nuclei on fractal surfaces, through which a number of promising applications in relative fields can be envisioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, A. C.; Goriely, S.; Bernstein, L. A.
2015-01-01
An enhanced probability for low-energy γ-emission ( upbend, Eγ < 3 MeV) at high excitation energies has been observed for several light and medium-mass nuclei close to the valley of stability. Also the M1 scissors mode seen in deformed nuclei increases the γ-decay probability for low-energy γ-rays (E γ ≈ 2–3 MeV). These phenomena, if present in neutron-rich nuclei, have the potential to increase radiative neutron-capture rates relevant for the r-process. Furthermore, the experimental and theoretical status of the upbend is discussed, and preliminary calculations of (n,γ) reaction rates for neutron-rich, mid-mass nuclei including the scissors mode are shown.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
NASA Astrophysics Data System (ADS)
Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.
Studies of Heavy-Ion Reactions and Transuranic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, W. Udo
2016-07-28
Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, targetmore » nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.« less
NASA Astrophysics Data System (ADS)
Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.
2017-09-01
A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.
Coello Pérez, Eduardo A.; Papenbrock, Thomas F.
2015-07-27
In this paper, we present a model-independent approach to electric quadrupole transitions of deformed nuclei. Based on an effective theory for axially symmetric systems, the leading interactions with electromagnetic fields enter as minimal couplings to gauge potentials, while subleading corrections employ gauge-invariant nonminimal couplings. This approach yields transition operators that are consistent with the Hamiltonian, and the power counting of the effective theory provides us with theoretical uncertainty estimates. We successfully test the effective theory in homonuclear molecules that exhibit a large separation of scales. For ground-state band transitions of rotational nuclei, the effective theory describes data well within theoreticalmore » uncertainties at leading order. To probe the theory at subleading order, data with higher precision would be valuable. For transitional nuclei, next-to-leading-order calculations and the high-precision data are consistent within the theoretical uncertainty estimates. In addition, we study the faint interband transitions within the effective theory and focus on the E2 transitions from the 0 2 + band (the “β band”) to the ground-state band. Here the predictions from the effective theory are consistent with data for several nuclei, thereby proposing a solution to a long-standing challenge.« less
Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei
Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...
2015-09-10
Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Priyanka, B.; Nithya, C.
2016-11-01
Within the Coulomb and proximity potential model for deformed nuclei (CPPMDN), the alpha decay properties of 34 isotopes of the superheavy nuclei with Z = 128 within the range 306 ≤ A ≤ 339 have been studied, considering both the parent and daughter nuclei to be deformed. The manuscript also deals with the decay properties of the isotopes of Z = 126 (within 288 ≤ A ≤ 339), Z = 124 (within 284 ≤ A ≤ 339) and Z = 122 (within 280 ≤ A ≤ 339). The alpha decay half lives thus evaluated have been compared with the values evaluated using other theoretical models and it was seen that, our theoretical alpha decay half lives match well with these values. Through the present study, we have underlined and have established the fact that, among the 192 isotopes considered in the present study, only those isotopes 321-324,328-335128, 318-320,323-327126, 305-308,315-322124 and 298-307,311-314122 can be synthesised and detected through alpha decay in laboratory. As the alpha decay half lives of these superheavy isotopes lie within the experimental limits, we hope these predictions, on the decay modes of these unknown nuclei, to pave the way for the future experiments. The proton separation energy calculations on 306-339128, 288-336126, 284-339124 and 280-339122 superheavy nuclei have also been done and the study revealed the probable proton emitters among these nuclei.
Adaptive segmentation of nuclei in H&S stained tendon microscopy
NASA Astrophysics Data System (ADS)
Chuang, Bo-I.; Wu, Po-Ting; Hsu, Jian-Han; Jou, I.-Ming; Su, Fong-Chin; Sun, Yung-Nien
2015-12-01
Tendiopathy is a popular clinical issue in recent years. In most cases like trigger finger or tennis elbow, the pathology change can be observed under H and E stained tendon microscopy. However, the qualitative analysis is too subjective and thus the results heavily depend on the observers. We develop an automatic segmentation procedure which segments and counts the nuclei in H and E stained tendon microscopy fast and precisely. This procedure first determines the complexity of images and then segments the nuclei from the image. For the complex images, the proposed method adopts sampling-based thresholding to segment the nuclei. While for the simple images, the Laplacian-based thresholding is employed to re-segment the nuclei more accurately. In the experiments, the proposed method is compared with the experts outlined results. The nuclei number of proposed method is closed to the experts counted, and the processing time of proposed method is much faster than the experts'.
Precision investigations of nuclei and nucleons with the (e, e'. gamma. ) reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papanicolas, C.N.; Ammons, E.A.; Cardman, L.S.
1988-11-20
Recent theoretical and experimental investigations of the (e, e'..gamma..) reaction show that it provides a probe of unparalleled precision and selectivity. Experiments aimed towards the isolation of multipole form factors in mixed transitions, the study of continuum excitations in nuclei, and the measurement of the response of the proton are underway at several laboratories.
Analysis of isomeric ratios for medium-mass nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danagulyan, A. S.; Hovhannisyan, G. H., E-mail: hov-gohar@ysu.am; Bakhshiyan, T. M.
Values of the isomeric ratios for product nuclei originating from simple charge-exchange reactions were analyzed. The cross sections for the formation of product nuclei in ground and isomeric states were calculated with the aid of the TALYS 1.4 and EMPIRE 3.2 codes. The calculated values of the isomeric ratios were compared with their experimental counterparts taken from the EXFOR database. For the {sup 86,87}Y, {sup 94,95,96,99}Tc, and {sup 44}Sc nuclei, the experimental values of the isomeric ratios exceed the respective calculated values. The nuclei in question feature weak deformations and have high-spin yrast lines and rotational bands. The possible reasonmore » behind the discrepancy between theoretical and experimental isomeric ratios is that the decay of yrast states leads with a high probability to the formation of isomeric states of detected product nuclei.« less
Zn(II), Cd(II) and Hg(I) complexes of cinnamic acid: FT-IR, FT-Raman, 1H and 13C NMR studies
NASA Astrophysics Data System (ADS)
Kalinowska, M.; Świsłocka, R.; Lewandowski, W.
2011-05-01
The effect of zinc, cadmium(II) and mercury(I) ions on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies provide some knowledge on the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. In the series of Zn(II) → Cd(II) → Hg(I) cinnamates: (1) systematic shifts of several bands in the experimental and theoretical IR and Raman spectra and (2) regular chemical shifts for protons 1H and 13C nuclei were observed.
Nuclear tetrahedral symmetry: possibly present throughout the periodic table.
Dudek, J; Goźdź, A; Schunck, N; Miśkiewicz, M
2002-06-24
More than half a century after the fundamental, spherical shell structure in nuclei had been established, theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TD(d) ("double-tetrahedral") symmetry group. Strong shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of TD(d); it can be seen as a geometrical effect that does not depend on a particular realization of the mean field. Possibilities of discovering the TD(d) symmetry in experiment are discussed.
Octupole deformation in odd-odd nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheline, R.K.
1988-01-01
Comparison of the experimental and theoretical ground-state spins of odd-odd nuclei in the region 220less than or equal toAless than or equal to228 generally shows agreement with a folded Yukawa octupole deformed model with epsilon/sub 3/ = 0.08 and some lack of agreement with the same model with epsilon/sub 3/ = 0. Thus in spite of limited spectroscopic information, the ground-state spins suggest the existence of octupole deformation in odd-odd nuclei in the region 220less than or equal toAless than or equal to228.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.
2016-12-01
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less
Cross section parameterizations for cosmic ray nuclei. 1: Single nucleon removal
NASA Technical Reports Server (NTRS)
Norbury, John W.; Townsend, Lawrence W.
1992-01-01
Parameterizations of single nucleon removal from electromagnetic and strong interactions of cosmic rays with nuclei are presented. These parameterizations are based upon the most accurate theoretical calculations available to date. They should be very suitable for use in cosmic ray propagation through interstellar space, the Earth's atmosphere, lunar samples, meteorites, spacecraft walls and lunar and martian habitats.
Large-scale configuration interaction description of the structure of nuclei around 100Sn and 208Pb
NASA Astrophysics Data System (ADS)
Qi, Chong
2016-08-01
In this contribution I would like to discuss briefly the recent developments of the nuclear configuration interaction shell model approach. As examples, we apply the model to calculate the structure and decay properties of low-lying states in neutron-deficient nuclei around 100Sn and 208Pb that are of great experimental and theoretical interests.
Biases in field measurements of ice nuclei concentrations
NASA Astrophysics Data System (ADS)
Garimella, S.; Voigtländer, J.; Kulkarni, G.; Stratmann, F.; Cziczo, D. J.
2015-12-01
Ice nuclei (IN) play an important role in the climate system by influencing cloud properties, precipitation, and radiative transfer. Despite their importance, there are significant uncertainties in estimating IN concentrations because of the complexities of atmospheric ice nucleation processes. Field measurements of IN concentrations with Continuous Flow Diffusion Chamber (CFDC) IN counters have been vital to constrain IN number concentrations and have led to various parameterizations of IN number vs. temperature and particle concentration. These parameterizations are used in many global climate models, which are very sensitive to the treatment of cloud microphysics. However, due to non-idealities in CFDC behavior, especially at high relative humidity, many of these measurements are likely biased too low. In this study, the extent of this low bias is examined with laboratory experiments at a variety of instrument conditions using the SPectrometer for Ice Nucleation, a commercially-available CFDC-style chamber. These laboratory results are compared to theoretical calculations and computational fluid dynamics models to map the variability of this bias as a function of chamber temperature and relative humidity.
Nuclear spectroscopic studies. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.
1994-02-18
The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).
FUSTIPEN—the France-U.S. Theory Institute for Physics with Exotic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papenbrock, Thomas
FUSTIPEN, the France-U.S. Theory Institute for Physics with Exotic Nuclei, was an international venue for theoretical research on the physics of nuclei during an era of particularly active experimental investigations of rare isotopes, see http://fustipen.ganil.fr/. It was dedicated to collaborative research between U.S.-based and French nuclear physicists, drawing on the complementary expertise in the two countries. The grant provided travel and local support for visits by U.S. nuclear physicists to GANIL, where the FUSTIPEN offices are located, and also supported collateral travel to other French research institutions.
Maris polarization in neutron-rich nuclei
NASA Astrophysics Data System (ADS)
Shubhchintak; Bertulani, C. A.; Aumann, T.
2018-03-01
We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.
NASA Astrophysics Data System (ADS)
Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.
2014-06-01
The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.
Time-dependent theoretical treatments of the dynamics of electrons and nuclei in molecular systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deumens, E.; Diz, A.; Longo, R.
1994-07-01
An overview is presented of methods for time-dependent treatments of molecules as systems of electrons and nuclei. The theoretical details of these methods are reviewed and contrasted in the light of a recently developed time-dependent method called electron-nuclear dynamics. Electron-nuclear dynamics (END) is a formulation of the complete dynamics of electrons and nuclei of a molecular system that eliminates the necessity of constructing potential-energy surfaces. Because of its general formulation, it encompasses many aspects found in other formulations and can serve as a didactic device for clarifying many of the principles and approximations relevant in time-dependent treatments of molecular systems.more » The END equations are derived from the time-dependent variational principle applied to a chosen family of efficiently parametrized approximate state vectors. A detailed analysis of the END equations is given for the case of a single-determinantal state for the electrons and a classical treatment of the nuclei. The approach leads to a simple formulation of the fully nonlinear time-dependent Hartree-Fock theory including nuclear dynamics. The nonlinear END equations with the [ital ab] [ital initio] Coulomb Hamiltonian have been implemented at this level of theory in a computer program, ENDyne, and have been shown feasible for the study of small molecular systems. Implementation of the Austin Model 1 semiempirical Hamiltonian is discussed as a route to large molecular systems. The linearized END equations at this level of theory are shown to lead to the random-phase approximation for the coupled system of electrons and nuclei. The qualitative features of the general nonlinear solution are analyzed using the results of the linearized equations as a first approximation. Some specific applications of END are presented, and the comparison with experiment and other theoretical approaches is discussed.« less
Effect of Wigner energy on the symmetry energy coefficient in nuclei
NASA Astrophysics Data System (ADS)
Tian, Jun-Long; Cui, Hai-Tao; Gao, Teng; Wang, Ning
2016-09-01
The nuclear symmetry energy coefficient (including the coefficient of the I4 term) of finite nuclei is extracted by using the differences of available experimental binding energies of isobaric nuclei. It is found that the extracted symmetry energy coefficient decreases with increasing isospin asymmetry I, which is mainly caused by Wigner correction, since is the summation of the traditional symmetry energy esym and the Wigner energy eW. We obtain the optimal values J = 30.25 ± 0.10 MeV, ass = 56.18 ± 1.25 MeV, and the Wigner parameter x = 2.38 ± 0.12 through a polynomial fit to 2240 measured binding energies for nuclei with 20 ⩽ A ⩽ 261 with an rms deviation of 23.42 keV. We also find that the volume symmetry coefficient J ≃ 30 MeV is insensitive to the value x, whereas the surface symmetry coefficient ass and the coefficient are very sensitive to the value of x in the range 1 ⩽ x ⩽ 4. The contribution of the term increases rapidly with increasing isospin asymmetry I. For very neutron-rich nuclei, the contribution of the term will play an important role. Supported by National Natural Science Foundation of China (11475004, 11275052, 11305003, 11375094 and 11465005), Natural Science Foundation of He'nan Educational Committee (2011A140001 and 2011GGJS-147), Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences (Y4KF041CJ1)
Decay properties of 256-339Ds superheavy nuclei
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Nithya, C.
2017-09-01
The decay properties of 84 isotopes of darmstadtium superheavy nuclei ( Z = 110) have been studied using various theoretical models. The proton emission half-lives, the alpha decay half-lives, the spontaneous fission half-lives and the cluster decay half-lives of all the isotopes are evaluated. The one-proton emission half-lives and the alpha decay half-lives are predicted using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated alpha half-lives are compared with the available experimental results as well as with the predictions of other theoretical models. The predicted half-lives matches well with the experimental results. The one-proton half-lives are also compared with the predictions using other formalisms. The shell-effect-dependent formula of Santhosh et al. has been employed for calculating the spontaneous fission half-lives. A theoretical comparison of spontaneous fission half-lives with four different formalisms is performed. By comparing the one-proton emission half-lives, the alpha decay half-lives and the spontaneous fission half-lives decay modes are predicted for all the isotopes of Ds. It is seen that the isotopes within the range 256 ≤ A ≤ 263 and 279 ≤ A ≤ 339 decay through spontaneous fission and the isotopes 264 ≤ A ≤ 278 exhibit alpha decay. Cluster decay half-lives are calculated using different models including the Coulomb and proximity potential (CPPM), for determining the magicities in the superheavy region. The effect of magicity at N = 184 and N = 202 were confirmed from the plot of log_{10}T_{1/2} versus neutron number of the daughter nuclei for the emission of different clusters. We hope that the systematic and detailed study of all the possible decay modes of 256-339Ds using various theoretical models will be helpful in the experimental identification of the isotopes of the element in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figuera, P.; Cardella, G.; Di Pietro, A.
2006-08-14
The study of reaction mechanisms in collisions induced by halo and/or weakly bound nuclei around the barrier has recently been the subject of many theoretical and experimental papers. Here we discuss our recent results concerning the study of the systems 13N+9Be and 6He+64Zn.
NASA Astrophysics Data System (ADS)
Kalinowska, Monika; Świsłocka, Renata; Lewandowski, Włodzimierz
2007-05-01
The effect of alkali metals (Li → Na → K → Rb → Cs) on the electronic structure of cinnamic acid (phenylacrylic acid) was studied. In this research many miscellaneous analytical methods, which complement one another, were used: infrared (FT-IR), Raman (FT-Raman), nuclear magnetic resonance ( 1H, 13C NMR) and quantum mechanical calculations. The spectroscopic studies lead to conclusions concerning the distribution of the electronic charge in molecule, the delocalization energy of π-electrons and the reactivity of metal complexes. The change of metal along with the series: Li → Na → K → Rb → Cs caused: (1) the change of electronic charge distribution in cinnamate anion what is seen via the occurrence of the systematic shifts of several bands in the experimental and theoretical IR and Raman spectra of cinnamates, (2) systematic chemical shifts for protons 1H and 13C nuclei.
Properties of Nuclei up to A = 16 using Local Chiral Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lonardoni, Diego; Carlson, Joseph; Gandolfi, Stefano
Here, we report accurate quantum Monte Carlo calculations of nuclei up to A = 16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in 16O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of bindingmore » energies, charge radii, and form factors for all these nuclei, including open-shell systems in A = 6 and 12.« less
Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)
NASA Technical Reports Server (NTRS)
Chandra, N.; Temkin, A.
1975-01-01
A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.
KIDS Nuclear Energy Density Functional: 1st Application in Nuclei
NASA Astrophysics Data System (ADS)
Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok
We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.
Properties of Nuclei up to A = 16 using Local Chiral Interactions
Lonardoni, Diego; Carlson, Joseph; Gandolfi, Stefano; ...
2018-03-22
Here, we report accurate quantum Monte Carlo calculations of nuclei up to A = 16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in 16O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of bindingmore » energies, charge radii, and form factors for all these nuclei, including open-shell systems in A = 6 and 12.« less
Recoil- α -fission and recoil- α – α -fission events observed in the reaction 48 Ca + 243 Am
Forsberg, U.; Rudolph, D.; Andersson, L. -L.; ...
2016-04-26
A recent high-resolution α, X-ray, and γ-ray coincidence-spectroscopy experiment at GSI offered the first glimpse of excitation schemes of isotopes along α-decay chains of Z=115. To understand these observations and to make predictions about shell structure of superheavy nuclei below 288115, we employed nuclear DFT. We find that the presence and nature of low-energy E1 transitions in well-deformed nuclei around Z=110, N=168 strongly depends on the strength of the spin-orbit coupling; hence, it provides an excellent constraint on theoretical models of superheavy nuclei.
Predictions on the modes of decay of odd Z superheavy isotopes within the range 105 ≤ Z ≤ 135
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Nithya, C.
2018-05-01
The decay modes of 1051 odd Z superheavy nuclei within the range 105 ≤ Z ≤ 135, and their daughter nuclei are studied by comparing the alpha decay half-lives with the spontaneous fission half-lives. The alpha decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN) proposed by Santhosh et al. (2011) and the spontaneous fission half-lives are obtained with the shell-effect dependent formula of Santhosh et al. (Santhosh and Nithya, 2016). For a theoretical comparison, the alpha decay half-lives are also computed with the Coulomb and proximity potential model (CPPM), Viola-Seaborg-Sobiczewski semi-empirical relation (VSS), Universal curve of Poenaru et al. (UNIV), the analytical formula of Royer, and the Universal decay law of Qi et al. (UDL). The predicted decay modes and half-lives were compared with the available experimental results. The proton and neutron separation energies are calculated to identify those nuclei, which decay through proton and neutron emission. From the entire study of odd Z superheavy elements, it is seen that among 1051 nuclei, 233 nuclei exhibit proton emission and 18 nuclei exhibit neutron emission. 56 nuclei are stable against alpha decay with negative Q value for the decay. 92 nuclei show alpha decay followed by spontaneous fission and 9 nuclei show alpha decay followed by proton emission. 39 nuclei decay through full alpha chain and 595 nuclei decay through spontaneous fission. We hope that the study will be very useful for the future experimental investigations in this field.
Hyperheavy nuclei in covariant density functional theory: the existence and stability
NASA Astrophysics Data System (ADS)
Gyawali, Abhinaya; Agbemava, Sylvester; Afanasjev, Anatoli
2017-09-01
The limits of existence of finite nuclei is one of interesting questions of modern low-energy nuclear physics. A lot of theoretical efforts have been dedicated to the study of superheavy nuclei with Z < 126. However, very little is known about existence and stability of hyperheavy nuclei with proton numbers Z > 126 . Almost all investigations of such nuclei consider only spherical shapes for the ground states. However, the study of superheavy nuclei indicates that such assumption leads in many cases to misinterpretation of the situation. Thus, we performed a systematic investigation of such nuclei for proton numbers from 122 up to 184 and from two-proton drip line up to two-neutron one within the axial relativistic Hartree-Bogoliubov theory. The calculations are carried out in large deformation space extending from megadeformed oblate shapes via spherical ones up to scission configuration. The stability of such nuclei against fission (including triaxial and octupole shapes) and beta-decays have been investigated and the islands of their stability have been defined. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0013037 and by Department of Energy, National Nuclear Security Administration under Award Number DE-NA0002925.
Theoretical investigation of α -like quasimolecules in heavy nuclei
NASA Astrophysics Data System (ADS)
Delion, D. S.; Dumitrescu, A.; Baran, V. V.
2018-06-01
Quasimolecular α -like ground rotational bands were evidenced a long time ago in light nuclei, but they cannot be detected in heavy nuclei due to large Coulomb barriers. In order to search for rotational bands built on excited states in these nuclei, we investigate the shape of an α -nucleus quasimolecular potential matched to a realistic external α -daughter interaction by using as input data α -decay widths. It turns out that its Gaussian length parameter lies in a narrow interval, b0∈[0.6 ,0.8 ] fm, and the equilibrium radius is slightly larger than the predicted Mott transition point from nucleonic to the α -cluster phase in finite nuclei, confirming that α clusters are born on the nuclear surface at low densities. We point out that the α emitters above magic nuclei have the largest spectroscopic factors Sα˜10 % . In addition, we predict that for nuclei with b0>0.75 fm, the first excited vibrational resonant state in the quasimolecular potential is close to the Coulomb barrier and therefore the rotational band built on it can be evidenced by the structure of the α -scattering cross section versus energy. Moreover, its detection by a highly sensitive γ -ray beam produced by laser facilities would provide an additional proof for the existence of α molecules in heavy nuclei.
NASA Astrophysics Data System (ADS)
Bacca, Sonia
2016-04-01
A brief review of models to describe nuclear structure and reactions properties is presented, starting from the historical shell model picture and encompassing modern ab initio approaches. A selection of recent theoretical results on observables for exotic light and medium-mass nuclei is shown. Emphasis is given to the comparison with experiment and to what can be learned about three-body forces and continuum properties.
Nucleon transfer reactions with radioactive beams
NASA Astrophysics Data System (ADS)
Wimmer, K.
2018-03-01
Transfer reactions are a valuable tool to study the single-particle structure of nuclei. At radioactive beam facilities transfer reactions have to be performed in inverse kinematics. This creates a number of experimental challenges, but it also has some advantages over normal kinematics measurements. An overview of the experimental and theoretical methods for transfer reactions, especially with radioactive beams, is presented. Recent experimental results and highlights on shell evolution in exotic nuclei are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, D.G.; Becchetti, F.D.; Flynn, E.R.
Inelastic proton scattering on the stable odd-A tin isotopes /sup 115/Sn, /sup 117/Sn, and /sup 119/Sn has been carried out at 18 MeV on isotope separated targets. Angular distributions were not obtained but, nevertheless, the individual spectra reveal a large number of strongly populated states in the energy region of the known octupole strength of the even-A nuclei, permitting several new (tentative) 5/2/sup -/,7/2/sup -/ spin assignments. General comparisons are made of the observed relative strengths with those obtained from other reactions populating the same final states, revealing a complex nuclear structure in the odd-A tins which is not understoodmore » theoretically.« less
NASA Astrophysics Data System (ADS)
Ismail, M.; Adel, A.
2018-04-01
The α -decay half-lives of the recently synthesized superheavy nuclei (SHN) are investigated by employing the density dependent cluster model. A realistic nucleon-nucleon (NN ) interaction with a finite-range exchange part is used to calculate the microscopic α -nucleus potential in the well-established double-folding model. The calculated potential is then implemented to find both the assault frequency and the penetration probability of the α particle by means of the Wentzel-Kramers-Brillouin (WKB) approximation in combination with the Bohr-Sommerfeld quantization condition. The calculated values of α -decay half-lives of the recently synthesized Og isotopes and its decay products are in good agreement with the experimental data. Moreover, the calculated values of α -decay half-lives have been compared with those values evaluated using other theoretical models, and it was found that our theoretical values match well with their counterparts. The competition between α decay and spontaneous fission is investigated and predictions for possible decay modes for the unknown nuclei 118 290 -298Og are presented. We studied the behavior of the α -decay half-lives of Og isotopes and their decay products as a function of the mass number of the parent nuclei. We found that the behavior of the curves is governed by proton and neutron magic numbers found from previous studies. The proton numbers Z =114 , 116, 108, 106 and the neutron numbers N =172 , 164, 162, 158 show some magic character. We hope that the theoretical prediction of α -decay chains provides a new perspective to experimentalists.
Quantum-Theoretical Methods and Studies Relating to Properties of Materials
1989-12-19
particularly sensitive to the behavior of the electron distribution close to the nuclei, which contributes only to E(l). Although the above results were...other condensed phases. So it was a useful test case to test the behavior of the theoretical computations for the gas phase relative to that in the...increasingly complicated and time- comsuming electron-correlation approximations should assure a small error in the theoret- ically computed enthalpy for a
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.
Vandersypen, L M; Steffen, M; Breyta, G; Yannoni, C S; Sherwood, M H; Chuang, I L
The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shor's quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shor's algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.
Limbic circuitry of the midline thalamus.
Vertes, Robert P; Linley, Stephanie B; Hoover, Walter B
2015-07-01
The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or 'limbic thalamus') consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The 'limbic' thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic-associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the 'limbic thalamus'. Copyright © 2015 Elsevier Ltd. All rights reserved.
LIMBIC CIRCUITRY OF THE MIDLINE THALAMUS
Vertes, Robert P.; Linley, Stephanie B.; Hoover, Walter B.
2016-01-01
The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or ‘limbic thalamus’) consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The ‘limbic’ thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic–associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the ‘limbic thalamus’. PMID:25616182
NASA Astrophysics Data System (ADS)
Zhu, Long
2017-12-01
Within the dinuclear system (DNS) model, the multinucleon transfer reactions 129,136Xe + 248Cm, 112Sn + 238U, and 144Xe + 248Cm are investigated. The production cross sections of primary fragments are calculated with the DNS model. By using a statistical model, we investigate the influence of charged particle evaporation channels on production cross sections of exotic nuclei. It is found that for excited neutron-deficient nuclei the charged particle evaporation competes with neutron emission and plays an important role in the cooling process. The production cross sections of several exotic actinide nuclei are predicted in the reactions 112Sn + 238U and 136,144Xe + 248Cm. Considering the beam intensities, the collisions of 136,144Xe projectiles with a 248Cm target for producing neutron-rich nuclei with Z=92-96 are investigated. Supported by National Natural Science Foundation of China (11605296) and Natural Science Foundation of Guangdong Province, China (2016A030310208)
Studies in the Phonology of Asian Languages VI: Complex Syllable Nuclei in Vietnamese.
ERIC Educational Resources Information Center
Han, Mieko S.
This study is the sixth in the series "Studies in the Phonology of Asian Languages." A phonetic and phonemic analysis of the three complex nuclei of Vietnames (Hanoi dialect), spelled (1) ye-, -ie-, -ia, (2) -u'o'-, -u'a, and (3) -uo-, -ua, was carried out using the sound spectrograph. The relative domains of the target qualities of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesna, V. A.; Gledenov, Yu. M.; Nesvizhevsky, V. V., E-mail: nesvizhevsky@ill.eu
The paper presents results of preliminarymeasurements of the left–right asymmetry in integral spectra of γ-quanta emitted in the interaction of polarized thermal neutrons with nuclei. These results indicate that for all cases of measured statistically significant P-odd asymmetry, the left–right asymmetry coefficient is much smaller than the P-odd asymmetry coefficient. This observation is not consistent with the predictions of theoretical calculations.
Two-proton radioactivity with 2p halo in light mass nuclei A = 18-34
NASA Astrophysics Data System (ADS)
Saxena, G.; Kumawat, M.; Kaushik, M.; Jain, S. K.; Aggarwal, Mamta
2017-12-01
Two-proton radioactivity with 2p halo is reported theoretically in light mass nuclei A = 18- 34. We predict 19Mg, 22Si, 26S, 30Ar and 34Ca as promising candidates of ground state 2p-radioactivity with S2p < 0 and Sp > 0. Observation of extended tail of spatial charge density distribution, larger charge radius and study of proton single particle states, Fermi energy and the wave functions indicate 2p halo like structure which supports direct 2p emission. The Coulomb and centrifugal barriers in experimentally identified 2p unbound 22Si show a quasi-bound state that ensures enough life time for such experimental probes. Our predictions are in good accord with experimental and other theoretical data available so far.
Spectroscopic properties of nuclear skyrme energy density functionals.
Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G
2014-12-19
We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.
Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urban, Jeffry Todd
Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics.more » The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding module for the recently developed NMR remote detection experiment. The feasibility of using hyperpolarized xenon-129 gas as a sensor is discussed. This work also reports the use of an optical atomic magnetometer to detect the nuclear magnetization of Xe-129 gas, which has potential applicability as a detection module for NMR remote detection experiments.« less
Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae
NASA Astrophysics Data System (ADS)
Titus, R.; Sullivan, C.; Zegers, R. G. T.; Brown, B. A.; Gao, B.
2018-01-01
The sensitivity of the late stages of stellar core collapse to electron-capture rates on nuclei is investigated, with a focus on electron-capture rates on 74 nuclei with neutron number close to 50, just above doubly magic 78Ni. It is demonstrated that variations in key characteristics of the evolution, such as the lepton fraction, electron fraction, entropy, stellar density, and in-fall velocity are about 50% due to uncertainties in the electron-capture rates on nuclei in this region, although thousands of nuclei are included in the simulations. The present electron-capture rate estimates used for the nuclei in this high-sensitivity region of the chart of isotopes are primarily based on a simple approximation, and it is shown that the estimated rates are likely too high, by an order of magnitude or more. Electron-capture rates based on Gamow-Teller strength distributions calculated in microscopic theoretical models will be required to obtain better estimates. Gamow-Teller distributions extracted from charge-exchange experiments performed at intermediate energies serve to guide the development and benchmark the models. A previously compiled weak-rate library that is used in the astrophysical simulations was updated as part of the work presented here, by adding additional rate tables for nuclei near stability for mass numbers between 60 and 110.
Nucleus-acoustic shock waves in white dwarfs
NASA Astrophysics Data System (ADS)
Jannat, S.; Mamun, A. A.
2018-04-01
The nucleus-acoustic shock waves (NASWs) propagating in a white dwarf plasma system, which contain non-relativistically or ultrarelativistically degenerate electrons, non-relativistically degenerate, viscous fluid of light nuclei, and immobile nuclei of heavy elements, have been theoretically investigated. We have used the reductive perturbation method, which is valid for small but finite-amplitude NASWs to derive the Burgers equation. The NASWs are, in fact, associated with the nucleus-acoustic (NA) waves in which the inertia is provided by the light nuclei, and restoring force is provided by the degenerate pressure of electrons. On the other hand, the stationary heavy nuclei participate only in maintaining the background charge neutrality condition at equilibrium. It is found that the viscous force acting in the fluid of light nuclei is a source of dissipation, and is responsible for the formation of NASWs. It is also observed that the basic features (polarity, amplitude, width, etc.) of the NASWs are significantly modified by the presence of heavy nuclei, and that NASWs are formed with either positive or negative potential depending on the values of the charge density of the heavy nuclei. The basic properties are also found to be significantly modified by the effects of ultrarelativistically degenerate electrons. The implications of our results in white dwarfs are briefly discussed.
Attempt to probe nuclear charge radii by cluster and proton emissions
NASA Astrophysics Data System (ADS)
Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong
2013-05-01
We deduce the rms nuclear charge radii for ground states of light and medium-mass nuclei from experimental data of cluster radioactivity and proton emission in a unified framework. On the basis of the density-dependent cluster model, the calculated decay half-lives are obtained within the modified two-potential approach. The charge distribution of emitted clusters in the cluster decay and that of daughter nuclei in the proton emission are determined to correspondingly reproduce the experimental half-lives within the folding model. The obtained charge distribution is then employed to give the rms charge radius of the studied nuclei. Satisfactory agreement between theory and experiment is achieved for available experimental data, and the present results are found to be consistent with theoretical estimations. This study is expected to be helpful in the future detection of nuclear sizes, especially for these exotic nuclei near the proton dripline.
Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization
NASA Astrophysics Data System (ADS)
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.
2016-09-01
We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.
NASA Astrophysics Data System (ADS)
Tel, Eyyup; Sahan, Muhittin; Alkanli, Hasancan; Sahan, Halide; Yigit, Mustafa
2017-09-01
In this study, the (n,α) nuclear reaction cross section was calculated for 41K target nuclei for neutron and proton density parameters using SKa, SKb, SLy5, and SLy6 Skyrme force. Theoretical cross section for the (n,α) nuclear reaction was obtained using a formula constituted by Tel et al. (2008). Results are compared with experimental data from EXFOR. The calculated results from formula was found in a close agreement with experimental data.
NASA Astrophysics Data System (ADS)
Rudigier, M.; Nomura, K.; Dannhoff, M.; Gerst, R.-B.; Jolie, J.; Saed-Samii, N.; Stegemann, S.; Régis, J.-M.; Robledo, L. M.; Rodríguez-Guzmán, R.; Blazhev, A.; Fransen, Ch.; Warr, N.; Zell, K. O.
2015-04-01
Background: The available data for E 2 transition strengths in the region between neutron-deficient hafnium and platinum isotopes are far from complete. More and precise data are needed to enhance the picture of structure evolution in this region and to test state-of-the-art nuclear models. In a simple model, the maximum collectivity is expected at the middle of the major shell. However, for actual nuclei, particularly in heavy-mass regions, which should be highly complex, this picture may no longer be the case, and one should use a more realistic nuclear-structure model. We address this point by studying the spectroscopy of Hf as a representative case. Purpose: We remeasure the 21+ half-lives of 172,174,176Hf, for which there is some disagreement in the literature. The main goal is to measure, for the first time, the half-lives of higher-lying states of the rotational band. The new results are compared to a theoretical calculation for absolute transition strengths. Method: The half-lives were measured using γ -γ and conversion-electron-γ delayed coincidences with the fast timing method. For the determination of half-lives in the picosecond region, the generalized centroid difference method was applied. For the theoretical calculation of the spectroscopic properties, the interacting boson model is employed, whose Hamiltonian is determined based on microscopic energy-density functional calculations. Results: The measured 21+ half-lives disagree with results from earlier γ -γ fast timing measurements, but are in agreement with data from Coulomb excitation experiments and other methods. Half-lives of the 41+ and 61+ states were measured, as well as a lower limit for the 81+ states. Conclusions: This work shows the importance of a mass-dependent effective boson charge in the interacting boson model for the description of E 2 transition rates in chains of nuclei. It encourages further studies of the microscopic origin of this mass dependence. New experimental values on transition rates in nuclei from neighboring isotopic chains could support these studies.
Using white-light spectroscopy for size determination of tissue phantoms
NASA Astrophysics Data System (ADS)
Vitol, Elina A.; Kurzweg, Timothy P.; Nabet, Bahram
2005-09-01
Along with breast and cervical cancer, esophageal adenocarcinoma is one of the most common types of cancers. The characteristic features of pre-cancerous tissues are the increase in cell proliferation rate and cell nuclei enlargement, which both take place in the epithelium of human body surfaces. However, in the early stages of cancer these changes are very small and difficult to detect, even for expert pathologists. The aim of our research is to develop an optical probe for in vivo detection of nuclear size changes using white light scattering from cell nuclei. The probe will be employed through an endoscope and will be used for the medical examination of the esophagus. The proposed method of examination will be noninvasive, cheap, and specific, compared to a biopsy. Before the construction of this probe, we have developed theory to determine the nuclei size from the reflection data. In this first stage of our research, we compare experimental and theoretical scattered light intensities. Our theoretical model includes the values of scatterer size from which we can extract the nuclei size value. We first performed the study of polystyrene microspheres, acting as a tissue phantom. Spectral and angular distributions of scattered white light from tissue phantoms were studied. Experimental results show significant differences between the spectra of microspheres of different sizes and demonstrate almost linear relation between the number of spectral oscillations and the size of microspheres. Best results were achieved when the scattered light spectrum was collected at 30° to the normal of the sample surface. We present these research results in this paper. In ongoing work, normal and cancerous mammalian cell studies are being performed in order to determine cell nuclei size correlation with the size of microspheres through the light scattering spectrum observation.
Quantified Gamow shell model interaction for p s d -shell nuclei
NASA Astrophysics Data System (ADS)
Jaganathen, Y.; Betan, R. M. Id; Michel, N.; Nazarewicz, W.; Płoszajczak, M.
2017-11-01
Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In this study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the p s d f -shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤A ≲12 at the p -s d -shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon-4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A =9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. Conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the p s d region of the nuclear chart.
Quantified Gamow shell model interaction for p s d -shell nuclei
Jaganathen, Y.; Betan, R. M. Id; Michel, N.; ...
2017-11-20
Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In thismore » study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤ A ≲ 12 at the p-sd-shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ 2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon- 4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A = 9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. In conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the psd region of the nuclear chart.« less
Embryonic Origins of the Mouse Superior Olivary Complex
Howell, David M.; Spirou, George A.; Mathers, Peter H.
2014-01-01
Many areas of the central nervous system are organized into clusters of cell groups, with component cell groups exhibiting diverse but related functions. One such cluster, the superior olivary complex (SOC), is located in the ventral auditory brainstem in mammals. The SOC is an obligatory contact point for most projection neurons of the ventral cochlear nucleus and plays central roles in many aspects of monaural and binaural information processing. Despite their important interrelated functions, little is known about the embryonic origins of SOC nuclei, due in part to a paucity of developmental markers to distinguish individual cell groups. In this report, we present a collection of novel markers for the developing SOC nuclei in mice, including the transcription factors FoxP1, MafB, and Sox2, and the lineage-marking transgenic line En1-Cre. We use these definitive markers to examine the rhombic lip and rhombomeric origins of SOC nuclei and demonstrate that they can serve to uniquely identify SOC nuclei and subnuclei in newborn pups. The markers are also useful in identifying distinct nuclear domains within the presumptive SOC as early as embryonic day (E) 14.5, well before morphological distinction of individual nuclei is evident. These findings indicate that the mediolateral and dorsoventral position of SOC nuclei characteristic of the adult brainstem is established during early neurogenesis. PMID:23303740
NASA Astrophysics Data System (ADS)
Mumpower, M. R.; Kawano, T.; Ullmann, J. L.; Krtička, M.; Sprouse, T. M.
2017-08-01
Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ -strength function as model inputs. It has recently been suggested that the M 1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M 1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M 1 scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. We comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M 1 scissors mode active.
Triple Differential Cross Sections for single ionization of the Ethane molecule
NASA Astrophysics Data System (ADS)
Ali, Esam; Nixon, Kate; Ning, Chuangang; Murray, Andrew; Madison, Don
2015-09-01
We report experimental and theoretical results for electron-impact (e,2e) ionization of the Ethane molecule (C2H6) in the coplanar scattering geometry for four different ejected electron energies Ea = 5,10,15, and 20 eV respectively, and for each ejected electron energy, the projectile scattering angle is fixed at 10°. We will show that the TDCS is very sensitive for the case of two heavy nuclei surrounded by lighter H nuclei. On the theoretical side, we have used the M3DW coupled with the Orientation Averaged Molecular Orbital (OAMO) approximation and proper average (PA) over all orientations. These approximations show good agreement with experimental data for the binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).
Reflection asymmetry in odd-A and odd-odd actinium nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, I.
1993-09-01
Theoretical calculations and measurements indicate that octupole correlations are at a maximum in the ground states of the odd-proton nuclei Ac and Pa. It has been expected that odd-odd nuclei should have even larger amount of octupole-octupole correlations. We have recently made measurements on the structure of {sup 224}Ac. Although spin and parity assignments could not be made, two bands starting at 354.1 and 360.0 keV have properties characteristic of reflection asymmetric shape. These two bands have very similar rotational constants and also similar alpha decay rates, which suggest similarity between the wavefunctions of these bands. These signatures provide evidencemore » for octupole correlations in these nuclides.« less
NASA Astrophysics Data System (ADS)
Abramov, B. M.; Alekseev, P. N.; Borodin, Yu. A.; Bulychjov, S. A.; Dukhovskoy, I. A.; Krutenkova, A. P.; Kulikov, V. V.; Martemyanov, M. A.; Matsyuk, M. A.; Turdakina, E. N.; Khanov, A. I.
2013-06-01
The proton yields at an angle of 3.5° have been measured in the FRAGM experiment on the fragmentation of carbon ions with the energies T 0 = 0.6, 0.95, and 2.0 GeV/nucleon on a beryllium target at the heavy-ion accelerator complex TWAC (terawatt accumulator, Institute for Theoretical and Experimental Physics). The data are represented in the form of the dependences of the invariant cross section for proton yield on the cumulative variable x in the range of 0.9 < x < 2.4. This invariant cross section varies within six orders of magnitude. The proton spectra have been analyzed within the theoretical approach of the fragmentation of quark clusters with the fragmentation functions obtained in the quark-gluon string model. The probabilities of the existence of six- and nine-quark clusters in the carbon nuclei are estimated as 8-12 and 0.2-0.6%, respectively. The results are compared to the estimated of quark effects obtained by other methods.
Wigner molecules in carbon-nanotube quantum dots
NASA Astrophysics Data System (ADS)
Rontani, Massimo; Secchi, Andrea
2010-03-01
The paradigm of few-electron complexes in quantum dots (QDs) relies on the ``particle-in-a-box'' idea that lowest-energy orbitals are filled according to Pauli's exclusion principle. If Coulomb repulsion is sufficiently strong to overcome the kinetic energy cost of localization, a different scenario is predicted: a ``Wigner'' molecule (WM) forms, made of electrons frozen in space according to a geometrical pattern. Despite considerable experimental effort, evidence of the WM in semiconductor QDs has been elusive so far. Here we demonstrate theoretically that WMs occur in gate-defined QDs embedded in typical semiconducting carbon nanotubes (CNTs). Their signatures must be searched ---and indeed have already been observed [Deshpande and Bockrath, Nature Phys. 4, 314 (2008)] --- in tunneling spectra. Through exact diagonalisation (ED) calculations, we unveil the inherent features of the electron molecular states. We show that, like nuclei in a usual molecule, electrons have localized wave functions and hence negligible exchange interactions. The molecular excitations are vibrations around the equilibrium positions of electrons. ED results are well reproduced by an ansatz vibrational wave function, which provides a simple theoretical model for transport experiments in ultraclean CNTs.
Surface symmetry energy of nuclear energy density functionals
NASA Astrophysics Data System (ADS)
Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.
2011-03-01
We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
Parameterization of fission barrier heights of medium, heavy and super heavy nuclei
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2017-12-01
A new semi empirical formula is proposed for fission barrier heights of medium, heavy and super heavy nuclei in the atomic number region 50 ≤ Z ≤ 130. The fitting parameters for the proposed formula are obtained by making a polynomial fit to the available theoretical and experimental data. The calculated fission barrier heights are compared with that of experiments and other theoretical models such as SHF(SLy6) (Burvenich et al. in Phys Rev C 69:014307, 2004), SHFB(SkM) (Baran et al. in Nucl Phys A 944:442, 2015), FRLDM (Möller et al. in Phys Rev C 79:064304, 2009), ETFSI (SkSC4) with Skyrme SkSC4 force (Mamdouh et al. in Nucl Phys A 679:337, 2001), WS (Kowal et al. in Phys Rev C 82:014303, 2010) and CDFT(DD-ME2) (Abusara et al. in Phys Rev C 85:024314, 2012). The standard deviation for fission barrier heights produced by present formula is evaluated. The good agreement of present formula with the experiments and other models suggests that the present formula could be used to evaluate the fission barrier heights of medium, heavy and super heavy nuclei in the region 50 ≤ Z ≤ 130. This formula is a first of its kind that produces fission barrier heights of 2858 nuclei with the only simple inputs of only neutron number (N), proton number (Z) and mass number (A).
Parameterization of fission barrier heights of medium, heavy and super heavy nuclei
NASA Astrophysics Data System (ADS)
Manjunatha, H. C.
2018-04-01
A new semi empirical formula is proposed for fission barrier heights of medium, heavy and super heavy nuclei in the atomic number region 50 ≤ Z ≤ 130. The fitting parameters for the proposed formula are obtained by making a polynomial fit to the available theoretical and experimental data. The calculated fission barrier heights are compared with that of experiments and other theoretical models such as SHF(SLy6) (Burvenich et al. in Phys Rev C 69:014307, 2004), SHFB(SkM) (Baran et al. in Nucl Phys A 944:442, 2015), FRLDM (Möller et al. in Phys Rev C 79:064304, 2009), ETFSI (SkSC4) with Skyrme SkSC4 force (Mamdouh et al. in Nucl Phys A 679:337, 2001), WS (Kowal et al. in Phys Rev C 82:014303, 2010) and CDFT(DD-ME2) (Abusara et al. in Phys Rev C 85:024314, 2012). The standard deviation for fission barrier heights produced by present formula is evaluated. The good agreement of present formula with the experiments and other models suggests that the present formula could be used to evaluate the fission barrier heights of medium, heavy and super heavy nuclei in the region 50 ≤ Z ≤ 130. This formula is a first of its kind that produces fission barrier heights of 2858 nuclei with the only simple inputs of only neutron number (N), proton number (Z) and mass number (A).
Spin-locking of half-integer quadrupolar nuclei in NMR of solids: The far off-resonance case.
Odedra, Smita; Wimperis, Stephen
Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of large resonance offsets has been studied using both approximate and exact theoretical approaches and, in the case of I=3/2, experimentally. We show the variety of coherences and population states produced in a far off-resonance spin-locking NMR experiment (one consisting solely of a spin-locking pulse) and how these vary with the radiofrequency field strength and offset frequency. Under magic angle spinning (MAS) conditions and in the "adiabatic limit", these spin-locked states acquire a time dependence. We discuss the rotor-driven interconversion of the spin-locked states, using an exact density matrix approach to confirm the results of the approximate model. Using conventional and multiple-quantum filtered spin-locking 23 Na (I=3/2) NMR experiments under both static and MAS conditions, we confirm the results of the theoretical calculations, demonstrating the applicability of the approximate theoretical model to the far off-resonance case. This simplified model includes only the effects of the initial rapid dephasing of coherences that occurs at the start of the spin-locking period and its success in reproducing both experimental and exact simulation data indicates that it is this dephasing that is the dominant phenomenon in NMR spin-locking of quadrupolar nuclei, as we have previously found for the on-resonance and near-resonance cases. Potentially, far off-resonance spin-locking of quadrupolar nuclei could be of interest in experiments such as cross polarisation as a consequence of the spin-locking pulse being applied to a better defined initial state (the thermal equilibrium bulk magnetisation aligned along the z-axis) than can be created in a powdered solid with a selective radiofrequency pulse, where the effect of the pulse depends on the orientation of the individual crystallites. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Gonzalo-Ruiz, A.; Alonso, A.; Sanz, J. M.; Llinas, R. R.
1992-01-01
To better understand the functional organization of the mammillary nuclei, we investigated the afferents to this nuclear complex in the rat with iontophoretically injected wheat germ agglutinin conjugated to horseradish peroxidase. Particular attention was paid to tracing local hypothalamic afferents to these nuclei. Injections into the medial mammillary nucleus (MMN) revealed strong projections from the subicular region, and weaker projections from the prefrontal cortex, medial septum, and the nucleus of the diagonal band of Broca. Other descending subcortical projections to the MMN arise from the anterior and the lateral hypothalamic area, the medial preoptic area, and the bed nucleus of the stria terminalis. Ascending afferents to the MMN were found to originate in the raphe and various tegmental nuclei. Following all injections into the MMN, labelled neurons were found in nuclei surrounding the mammillary body. The lateral and posterior subdivisions of the tuberomammillary nucleus projected mainly to the pars medianus and pars medialis of the MMN. The dorsal and ventral premammillary nuclei projected to the pars lateralis of the MMN. The supramammillary nucleus at rostral level had a small projection to the pars medialis and lateralis of the MMN. However, the most obvious projection from this nucleus was to the pars posterior of the MMN, chiefly from the lateral part of the caudal supramammillary nucleus. Injections into the lateral mammillary nucleus revealed inputs from the presubiculum, parasubiculum, septal region, dorsal tegmental nucleus, dorsal raphe nucleus, and periaqueductal gray. In addition, the lateral mammillary nucleus was found to receive a moderate projection from the medial part of the supramammillary nucleus and stronger projections from the lateral part of the caudal supramammillary nucleus. A very light projection was also seen from the lateral and posterior subdivisions of the tuberomammillary nucleus. These findings add to our knowledge of the extensive and complex connectivity of the mammillary nuclei. In particular, the local connections we have demonstrated with the supramammillary and tuberomammillary nuclei indicate the existence of significant local circuits as well as circuits involving more distant brain regions such as the septal nuclei, subiculum, prefrontal cortex, and brain stem tegmentum.
Zhang, Xuebo; Zeng, Shaoju; Zhang, Xinwen; Zuo, Mingxue
2011-09-12
Songbirds can produce a remarkable diversity of songs, which is well-characterized learned behavior that reflects the basic processes of language learning in humans. As song control nuclei governing song behavior has been identified, bird song provides an excellent model to address the relationship between brain areas and their controlling behavior. The Mongolian lark (Melanocorypha mongolica), a species of the Alaudidae family, is well known for its elaborate singing and ability to learn new songs, even in adulthood. Here, we studied the singing behavior and underlying neural structures of the Mongolian lark in both sexes. We found that the sizes of song bouts and song phrases (song repertoires) in male Mongolian larks are extremely large, and that each song repertoire or phrase has a complex structure, comprising several different syllables that seldom appear in other types of song bouts. In accordance with these complex songs, Mongolian lark song control nuclei are well developed and can be easily detected by Nissl staining. In contrast to male Mongolian larks, females were not observed to sing. However, they possess significant song control nuclei with abundant neural connectivity within them despite their small sizes compared with males. These data provide new evidence that help further clarify the mechanisms by which songbirds sing. Our results also have implications for the evolution of complex birdsongs and song control nuclei in oscine birds. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fioretto, E.; Corradi, L.; Galtarossa, F.; Szilner, S.; Montanari, D.; Mijatović, T.; Pollarolo, G.; Jia, H. M.; Ackermann, D.; Bourgin, D.; Colucci, G.; Courtin, S.; Fruet, G.; Goasduff, A.; Grebosz, J.; Haas, F.; Jelavić Malenica, D.; Jeong, S. C.; John, P. R.; Milin, M.; Montagnoli, G.; Skukan, N.; Scarlassara, F.; Soić, N.; Stefanini, A. M.; Strano, E.; Tokić, V.; Ur, C. A.; Valiente-Dobón, J. J.; Watanabe, Y. X.
2017-11-01
Multineutron and multiproton transfer channels, populated in the inverse kinematics reaction 197Au+130Te at Elab=1.07 GeV, were measured at Laboratori Nazionali di Legnaro using the presently heaviest ion beam delivered by the PIAVE-ALPI accelerator complex and detecting both projectile-like and targetlike ions. To this end the large solid angle magnetic spectrometer PRISMA was coupled to a second arm for the detection of the heavy fragments in kinematic coincidence with the light ones selected and identified with the spectrometer. The data analysis is still in progress and will allow to compare the yields of both light and heavy partner with theoretical predictions performed with the GRAZING code to get quantitative information on transfer channels and the effect of evaporation and fission on the production rate of primary fragments. The mass integrated Z distribution, extracted from the experimental data, evidenced the population of proton pickup channels that, in conjunction with the neutron stripping ones from the 130Te, open the path for the production of neutron-rich heavy nuclei. In the following, we will present some preliminary results as well as details on the experimental configuration and perspectives for future investigations in the neutron-rich heavy region.
Open sd-shell nuclei from first principles
Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; ...
2016-07-05
We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less
Open sd-shell nuclei from first principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute
We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less
EMC effect: Past, Present, and Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fomin, Nadia
2015-09-01
Since the discovery of the EMC effect over 30 years ago, it has been of great theoretical interest and studied in several experimental measurements. No unified picture arose to explain the underlying cause of per nucleon structure function modification in nuclei. Precise measurements on light nuclei from JLab’s 6 GeV era revitalized this research by showing that traditional A or density dependent models of this nuclear modification do not work. The measurements will be reviewed, discussed and preliminary data on heavy targets from JLab’s E03-103 will be presented.
Phase transition dynamics for hot nuclei
NASA Astrophysics Data System (ADS)
Borderie, B.; Le Neindre, N.; Rivet, M. F.; Désesquelles, P.; Bonnet, E.; Bougault, R.; Chbihi, A.; Dell'Aquila, D.; Fable, Q.; Frankland, J. D.; Galichet, E.; Gruyer, D.; Guinet, D.; La Commara, M.; Lombardo, I.; Lopez, O.; Manduci, L.; Napolitani, P.; Pârlog, M.; Rosato, E.; Roy, R.; St-Onge, P.; Verde, G.; Vient, E.; Vigilante, M.; Wieleczko, J. P.; Indra Collaboration
2018-07-01
An abnormal production of events with almost equal-sized fragments was theoretically proposed as a signature of spinodal instabilities responsible for nuclear multifragmentation in the Fermi energy domain. On the other hand finite size effects are predicted to strongly reduce this abnormal production. High statistics quasifusion hot nuclei produced in central collisions between Xe and Sn isotopes at 32 and 45 A MeV incident energies have been used to definitively establish, through the experimental measurement of charge correlations, the presence of spinodal instabilities. N/Z influence was also studied.
Exploring the Physics of Unstable Nuclei
NASA Astrophysics Data System (ADS)
Volya, Alexander
In this presentation the Continuum Shell Model (CSM) approach is advertised as a powerful theoretical tool for studying physics of unstable nuclei. The approach is illustrated using 17O as an example, which is followed by a brief presentation of the general CSM formalism. The successes of the CSM are highlighted and references are provided throughout the text. As an example, the CSM is applied perturbatively to 20O allowing one to explore the effects of continuum on positions of weakly bound states and low-lying resonances, as well as to discern some effects of threshold discontinuity.
Two-neutron decay within RMF+BCS approach
NASA Astrophysics Data System (ADS)
Kumawat, M.; Singh, U. K.; Saxena, G.; Kaushik, M.; Jain, S. K.
2018-05-01
A theoretical global study has been done for identifying possible candidates of 2n-radioactivity for all even and odd nuclei under proton number Z ≤ 40 by employing Relativistic Mean-Filed plus BCS (RMF+BCS) approach. We investigate two-and one-neutron separation energy, deformation, pairing energy, wave-function, potential and other ground state properties for our study of even and odd Z nuclei to find candidates of 2n-decay within Z ≤ 40. These results are found in agreement of recent experiments and consistent with other parameters of RMF and other theories.
Molecular Chemistry as Diagnostic tool for Starbursts and AGNs The Molecular ISM of NGC 4418
NASA Astrophysics Data System (ADS)
Monje, R. R.; Aalto, S.
We present a brief discussion of the statistical surveys of HCN, HNC, HCO+ and HC3N that are used to model the extreme environments in the nuclei of starbursts and AGNs. Molecular studies are particularly useful for probing the deeply enshrouded dusty nuclei of luminous infrared galaxies. Here we present NGC 4418 as an example, one of the closest LIRG with high obscuration of the inner region. The interpretation of the observed line ratios require parallel development of theoretical chemical and radiative transport models.
Measurement of the {sup 214}Po half-life by the DEVIS track setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, V. A.; Brakhman, E. V.; Zeldovich, O. Ya.
2013-04-15
Measurement of the {sup 214}Po half-life with the DEVIS track setup at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) by means of a procedure based on determining lifetimes of individual nuclei is described. The value obtained for the {sup 214}Po half-life is 163.8 {+-} 3.0 Micro-Sign s. The possibility of reaching the accuracy of the measurements that is required for testing the statement that the decay of some nuclei has a nonexponential character and the source intensity necessary for this are discussed.
The quest for novel modes of excitation in exotic nuclei
NASA Astrophysics Data System (ADS)
Paar, N.
2010-06-01
This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.
The effect of liquid-liquid phase separation of glass on the properties and crystallization behavior
NASA Technical Reports Server (NTRS)
Li, J. Z.
1985-01-01
A theoretical discussion is given of the phase separation mechanism of amorphous materials. This includes nucleus growth, spinoidal decomposition, and nuclei agglomeration and coarsening. Various types of glass are analyzed.
NASA Astrophysics Data System (ADS)
Zhang, H. F.; Royer, G.
2007-10-01
Theoretical α decay half-lives of the heaviest odd-Z nuclei are calculated using the experimental Qα value. The barriers in the quasimolecular shape path are determined within a Generalized Liquid Drop Model (GLDM) and the WKB approximation is used. The results are compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The calculations provide consistent estimates for the half-lives of the α decay chains of these superheavy elements. The experimental data stand between the GLDM calculations and VSS ones in the most time. Predictions are provided for the α decay half-lives of other superheavy nuclei within the GLDM and VSS approaches using the recent extrapolated Qα of Audi, Wapstra, and Thibault [Nucl. Phys. A729, 337 (2003)], which may be used for future experimental assignment and identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayakawa, T.; Ogata, K.; Miyamoto, S.
The M1 strengths (or level density of 1{sup +} states) are of importance for estimation of interaction strengths between neutrinos and nuclei for the study of the supernova neutrino-process. In 1957, Agodi predicted theoretically angular distribution of neutrons emitted from states excited via dipole transitions with linearly polarized gamma-ray beam at the polar angle of θ=90° should be followed by a simple function, a + b cos(2φ), where φ, is azimuthal angel. However, this theoretical prediction has not been verified over the wide mass region except for light nuclei as deuteron. We have measured neutron angular distributions with (polarized gamma,more » n) reactions on Au, Nal, and Cu. We have verified the Agodi's prediction for the first time over the wide mass region. This suggests that (polarized gamma, n) reactions may be useful tools to study M1 strengths in giant resonance regions.« less
NUCLEAR AND HEAVY ION PHYSICS: α-decay half-lives of superheavy nuclei and general predictions
NASA Astrophysics Data System (ADS)
Dong, Jian-Min; Zhang, Hong-Fei; Wang, Yan-Zhao; Zuo, Wei; Su, Xin-Ning; Li, Jun-Qing
2009-08-01
The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the α-decay half-lives of superheavy nuclei (SHN) using the experimental α-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (QAudi) and Muntian et al. (QM) have been tested to find that the cluster model with QAudi and QM could provide reliable results for Z > 112 but the GLDM with QAudi for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.
Stopping of relativistic heavy ions in various media
NASA Technical Reports Server (NTRS)
Waddington, C. J.; Fixsen, D. J.; Crawford, H. J.; Lindstrom, P. J.; Heckman, H. H.
1986-01-01
The residual ranges of (900 + or - 3)-MeV/amu gold nuclei accelerated at the Lawrence Berkeley Laboratory Bevalac have been measured in several different media. The energy of the beam of nuclei was measured directly using a new time-of-flight system. The ranges were measured by absorption in linear wedges of polyethylene, carbon, aluminum, copper, tin, and lead and in circular wedges of polystyrene, aluminum, and gold, and by total absorption in nuclear emulsion. The measured ranges were significantly different from those calculated from the best available theoretical estimates of the energy loss of highly charged nuclei. It is concluded that at present energy losses and residual ranges of relativistic heavy ions in an arbitrary medium cannot be predicted with better than an approximately 2 percent accuracy.
Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms
NASA Astrophysics Data System (ADS)
Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui
2018-02-01
In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.
Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogli, G. L.; Rotunno, A. M.; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari
2009-07-01
Half-life estimates for neutrinoless double beta decay depend on particle physics models for lepton-flavor violation, as well as on nuclear physics models for the structure and transitions of candidate nuclei. Different models considered in the literature can be contrasted - via prospective data - with a 'standard' scenario characterized by light Majorana neutrino exchange and by the quasiparticle random phase approximation, for which the theoretical covariance matrix has been recently estimated. We show that, assuming future half-life data in four promising nuclei ({sup 76}Ge, {sup 82}Se, {sup 130}Te, and {sup 136}Xe), the standard scenario can be distinguished from a fewmore » nonstandard physics models, while being compatible with alternative state-of-the-art nuclear calculations (at 95% C.L.). Future signals in different nuclei may thus help to discriminate at least some decay mechanisms, without being spoiled by current nuclear uncertainties. Prospects for possible improvements are also discussed.« less
Real-time molecular scale observation of crystal formation.
Schreiber, Roy E; Houben, Lothar; Wolf, Sharon G; Leitus, Gregory; Lang, Zhong-Ling; Carbó, Jorge J; Poblet, Josep M; Neumann, Ronny
2017-04-01
How molecules in solution form crystal nuclei, which then grow into large crystals, is a poorly understood phenomenon. The classical mechanism of homogeneous crystal nucleation proceeds via the spontaneous random aggregation of species from liquid or solution. However, a non-classical mechanism suggests the formation of an amorphous dense phase that reorders to form stable crystal nuclei. So far it has remained an experimental challenge to observe the formation of crystal nuclei from five to thirty molecules. Here, using polyoxometallates, we show that the formation of small crystal nuclei is observable by cryogenic transmission electron microscopy. We observe both classical and non-classical nucleation processes, depending on the identity of the cation present. The experiments verify theoretical studies that suggest non-classical nucleation is the lower of the two energy pathways. The arrangement in just a seven-molecule proto-crystal matches the order found by X-ray diffraction of a single bulk crystal, which demonstrates that the same structure was formed in each case.
Isolation of the constitutive heterochromatin from mouse liver nuclei.
Zatsepina, Olga V; Zharskaya, Oxana O; Prusov, Andrei N
2008-01-01
A method for isolation of constitutive heterochromatin (chromocenters) from nuclei of mouse liver cells is described. This method is based on the higher resistance of chromocenters to low ionic strength treatment as compared with that of nucleoli and euchromatin. The method allows separation of chromocenters that are essentially free of nucleoli and other nuclear contaminants. In contrast to nuclei and nucleoli, isolated chromocenters are characterized by a simpler protein composition and contain a smaller number of proteins (especially of high molecular weight proteins). They possess telomeric DNA and telomerase activity that suggests a tight association of chromocenters with the telomerase complex in mouse hepatocyte nuclei.
Segmentation of nuclear images in automated cervical cancer screening
NASA Astrophysics Data System (ADS)
Dadeshidze, Vladimir; Olsson, Lars J.; Domanik, Richard A.
1995-08-01
This paper describes an efficient method of segmenting cell nuclei from complex scenes based upon the use of adaptive region growing in conjuction with nucleus-specific filters. Results of segmenting potentially abnormal (cancer or neoplastic) cell nuclei in Papanicolaou smears from 0.8 square micrometers resolution images are also presented.
Constraining the astrophysical origin of the p-nuclei through nuclear physics and meteoritic data.
Rauscher, T; Dauphas, N; Dillmann, I; Fröhlich, C; Fülöp, Zs; Gyürky, Gy
2013-06-01
A small number of naturally occurring, proton-rich nuclides (the p-nuclei) cannot be made in the s- and r-processes. Their origin is not well understood. Massive stars can produce p-nuclei through photodisintegration of pre-existing intermediate and heavy nuclei. This so-called γ-process requires high stellar plasma temperatures and occurs mainly in explosive O/Ne burning during a core-collapse supernova. Although the γ-process in massive stars has been successful in producing a large range of p-nuclei, significant deficiencies remain. An increasing number of processes and sites has been studied in recent years in search of viable alternatives replacing or supplementing the massive star models. A large number of unstable nuclei, however, with only theoretically predicted reaction rates are included in the reaction network and thus the nuclear input may also bear considerable uncertainties. The current status of astrophysical models, nuclear input and observational constraints is reviewed. After an overview of currently discussed models, the focus is on the possibility to better constrain those models through different means. Meteoritic data not only provide the actual isotopic abundances of the p-nuclei but can also put constraints on the possible contribution of proton-rich nucleosynthesis. The main part of the review focuses on the nuclear uncertainties involved in the determination of the astrophysical reaction rates required for the extended reaction networks used in nucleosynthesis studies. Experimental approaches are discussed together with their necessary connection to theory, which is especially pronounced for reactions with intermediate and heavy nuclei in explosive nuclear burning, even close to stability.
NASA Astrophysics Data System (ADS)
Giardina, G.; Nasirov, A. K.; Mandaglio, G.; Curciarello, F.; De Leo, V.; Fazio, G.; Manganaro, M.; Romaniuk, M.; Saccá, C.
2011-02-01
The hindrance to complete fusion is a phenomenon presenting in the most part of the capture events in reactions with massive nuclei. This phenomenon is due to the onset of the quasifission process which competes with complete fusion during the evolution of the composed system formed at capture stage. The branching ratio between quasifission and complete fusion strongly depends from different characteristics of reacting nuclei in the entrance channel. The experimental and theoretical investigations of reaction dynamics connected with the formation of composed system is nowadays the main subject of the nuclear reactions. There is ambiguity in establishment of the reaction mechanism leading to the observed binary fissionlike fragments. The correct estimation of the fusion probability is important in planning experiments for the synthesis of superheavy elements. The experimental determination of evaporation residues only is not enough to restore the true reaction dynamics. The experimental observation of fissionlike fragments only cannot assure the correct distinguishing of products of the quasifission, fast fission, and fusion-fission processes which have overlapping in the mass (angular, kinetic energy) distributions of fragments. In this paper we consider a wide set of reactions (with different mass asymmetry and mass symmetry parameters) with the aim to explain the role played by many quantities on the reaction mechanisms. We also present the results of study of the 48Ca+249Bk reaction used to synthesize superheavy nuclei with Z = 117 by the determination of the evaporation residue cross sections and the effective fission barriers < Bf > of excited nuclei formed along the de-excitation cascade of the compound nucleus.
Isospin Conservation in Neutron Rich Systems of Heavy Nuclei
NASA Astrophysics Data System (ADS)
Jain, Ashok Kumar; Garg, Swati
2018-05-01
It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.
Wohlschläger, Afra; Karne, Harish; Jordan, Denis; Lowe, Mark J; Jones, Stephen E; Anand, Amit
2018-01-01
Background: Dorsal raphe nucleus (DRN) and ventral tegmental area (VTA) are major brainstem monamine nuclei consisting of serotonin and dopamine neurons respectively. Animal studies show that firing patterns in both nuclei are altered when animals exhibit depression like behaviors. Functional MRI studies in humans have shown reduced VTA activation and DRN connectivity in depression. This study for the first time aims at investigating the functional integrity of local neuronal firing concurrently in both the VTA and DRN in vivo in humans using spectral analysis of resting state low frequency fluctuation fMRI. Method: A total of 97 medication-free subjects-67 medication-free young patients (ages 18-30) with major depressive disorder and 30 closely matched healthy controls were included in the study to detect aberrant dynamics in DRN and VTA. For the investigation of altered localized dynamics we conducted power spectral analysis and above this spectral cross correlation between the two groups. Complementary to this, spectral dependence of permutation entropy, an information theoretical measure, was compared between groups. Results: Patients displayed significant spectral slowing in VTA vs. controls ( p = 0.035, corrected). In DRN, spectral slowing was less pronounced, but the amount of slowing significantly correlated with 17-item Hamilton Depression Rating scores of depression severity ( p = 0.038). Signal complexity as assessed via permutation entropy showed spectral alterations inline with the results on spectral slowing. Conclusion: Our results indicate that altered functional dynamics of VTA and DRN in depression can be detected from regional fMRI signal. On this basis, impact of antidepressant treatment and treatment response can be assessed using these markers in future studies.
Mumpower, Matthew Ryan; Kawano, Toshihiko; Ullmann, John Leonard; ...
2017-08-17
Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ-strength function as model inputs. It has recently been suggested that the M1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M1more » scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. As a result, we comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M1 scissors mode active.« less
Distinct development of the trigeminal sensory nuclei in platypus and echidna.
Ashwell, Ken W S; Hardman, Craig D
2012-01-01
Both lineages of the modern monotremes have been reported to be capable of electroreception using the trigeminal pathways and it has been argued that electroreception arose in an aquatic platypus-like ancestor of both modern monotreme groups. On the other hand, the trigeminal sensory nuclear complex of the platypus is highly modified for processing tactile and electrosensory information from the bill, whereas the trigeminal sensory nuclear complex of the short-beaked echidna (Tachyglossus aculeatus) is not particularly specialized. If the common ancestor for both platypus and echidna were an electroreceptively and trigeminally specialized aquatic feeder, one would expect the early stages of development of the trigeminal sensory nuclei in both species to show evidence of structural specialization from the outset. To determine whether this is the case, we examined the development of the trigeminal sensory nuclei in the platypus and short-beaked echidna using the Hill and Hubrecht embryological collections. We found that the highly specialized features of the platypus trigeminal sensory nuclei (i.e. the large size of the principal nucleus and oral part of the spinal trigeminal nuclear complex, and the presence of a dorsolateral parvicellular segment in the principal nucleus) appear around the time of hatching in the platypus, but are never seen at any stage in the echidna. Our findings support the proposition that the modern echidna and platypus are derived from a common ancestor with only minimal trigeminal specialization and that the peculiar anatomy of the trigeminal sensory nuclei in the modern platypus emerged in the ornithorhynchids after divergence from the tachyglossids. Copyright © 2012 S. Karger AG, Basel.
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.
Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram
2016-01-01
The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.
Automated Segmentation of Nuclei in Breast Cancer Histopathology Images
Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram
2016-01-01
The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496
Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses.
Sudhakar, Shyam Kumar; Torben-Nielsen, Benjamin; De Schutter, Erik
2015-12-01
Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.
Fluorescent Magnesium Nanocomplex in Protein Scaffold for Cell Nuclei Imaging Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Alok; Tripathi, Apritam; Purohit, Rahul
2015-10-27
Here in, we report a facile strategy for the synthesis of water-soluble ultra-fine blue emitting fluorescent Magnesium nanoparticles-protein complex (MgNC). This MgNC is demonstrated to exhibit excellent photo stability and biocompatibility. It was also observed that MgNC stain cell nuclei with high specifcity.
Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei
NASA Astrophysics Data System (ADS)
Holt, R. J.; Gilman, R.
2012-08-01
We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unravelling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.
Increased ionization supports growth of aerosols into cloud condensation nuclei.
Svensmark, H; Enghoff, M B; Shaviv, N J; Svensmark, J
2017-12-19
Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important addition to the growth caused by condensation of neutral molecules. Under atmospheric conditions the growth from ions can constitute several percent of the neutral growth. We performed experimental studies which quantify the effect of ions on the growth of aerosols between nucleation and sizes >20 nm and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth's present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity.
Ab initio treatment of fully open-shell medium-mass nuclei with the IM-SRG
NASA Astrophysics Data System (ADS)
Stroberg, Ragnar; Calci, Angelo; Holt, Jason; Navratil, Petr; Bogner, Scott; Hergert, Heiko; Roth, Robert; Schwenk, Achim
2016-09-01
The in-medium similarity renormalization group (IM-SRG) is a recently-developed theoretical many-body framework which - like the coupled cluster and the self-consistent Green's function approaches - allows for the treatment of medium-mass nuclei using interactions fit at the few-body level. I will give a brief overview of how the IM-SRG may be used to decouple a shell-model type valence space. I will then describe a recent development for the approximate treatment of residual 3N forces in the valence space which extends the reach of IM-SRG to essentially all medium-mass nuclei, and I will present some selected results spanning isotopic chains from beryllium (Z=4) to nickel (Z=28). Finally, I will discuss the consistent treatment of transition operators, highlighting the potential for future applications in electroweak physics.
NASA Astrophysics Data System (ADS)
Fritsch, A.; Ayyad, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Carpenter, L.; Cortesi, M.; Mittig, W.; Suzuki, D.; Ahn, T.; Kolata, J. J.; Becchetti, F. D.; Howard, A. M.
2016-03-01
Some exotic nuclei appear to exhibit α-cluster structure. While various theoretical models currently describe such clustering, more experimental data are needed to constrain model predictions. The Prototype Active-Target Time-Projection Chamber (PAT-TPC) has low-energy thresholds for charged-particle decay and a high luminosity due to its thick gaseous active target volume, making it well-suited to search for low-energy α-cluster reactions. Radioactive-ion beams produced by the TwinSol facility at the University of Notre Dame were delivered to the PAT-TPC to study nuclei including 14C and 14O via α-resonant scattering. Differential cross sections and excitation functions were measured. Preliminary results from our recent experiments will be presented. This work is supported by the U.S. National Science Foundation.
Studies of the shapes of heavy pear-shaped nuclei at ISOLDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, P. A., E-mail: peter.butler@liverpool.ac.uk
2016-07-07
For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a ”pear-shape” in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that willmore » exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, M.; Singh, B.; Abriola, D.
2014-06-01
After a comprehensive compilation and evaluation of beta-delayed neutron (β -n) emission probabilities, P n, and associated half-lives for A ≤ 72 nuclei has been performed for the first time. The recommended values have been used to analyze the systematics of β -nemission in this region. The ratio P n/T 1/2 is better correlated with the Q-value of the β -n decay mode than the previously proposed Kratz-Herrmann Formula (KHF). Moreover, the recommended values are also compared with theoretical quasi-particle random phase approximation (QRPA) calculations.
Cosmic-Ray Lithium Production at the Nova Eruptions Followed by a Type Ia Supernova
NASA Astrophysics Data System (ADS)
Kawanaka, Norita; Yanagita, Shohei
2018-01-01
Recent measurements of cosmic-ray (CR) light nuclei by AMS-02 have shown that there is an unexpected component of CR lithium whose spectral index is harder than that expected from the secondary production scenario. We propose the nearby type Ia supernova following a nova eruption as the origin of lithium nuclei in the CRs. By fitting the data of CR protons, helium, and lithium fluxes provided by AMS-02 with our theoretical model we show that this scenario is consistent with the observations. The observational tests that can check our hypothesis are briefly discussed.
The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghumman, S. S.
The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.
Consciousness and the Brainstem.
ERIC Educational Resources Information Center
Parvizi, Josef; Damasio, Antonio
2001-01-01
Summarizes a theoretical framework and set of hypotheses aimed at accounting for consciousness in neurobiological terms. Discusses the functional neuroanatomy of nuclei in the brainstem reticular formation. Notes that the views presented are compatible with the idea that the reticular formation modulates the electrophysiological activity of the…
Precerebellar and vestibular nuclei of the short-beaked echidna (Tachyglossus aculeatus).
Ashwell, K W S; Paxinos, G; Watson, C R R
2007-09-01
The monotremes are a unique group of living mammals, which diverged from the line leading to placental mammals at least 125 million years ago. We have examined the organization of pontine, inferior olivary, lateral reticular and vestibular nuclei in the brainstem of the short-beaked echidna (Tachyglossus aculeatus) to determine if the cyto- and chemoarchitecture of these nuclei are similar to that in placental mammals and marsupials. We have used Nissl staining in conjunction with enzyme-histochemistry for acetylcholinesterase, cytochrome oxidase and NADPH diaphorase as well as immunohistochemistry for non-phosphorylated neurofilament protein (SMI-32 antibody) and calcium binding proteins (parvalbumin, calbindin, calretinin). Homologies could be established between the arch shaped inferior olivary complex of the echidna and the principal, dorsal and medial accessory subdivisions of the therian inferior olivary complex. The pontine nuclei of the echidna included basilar and reticulotegmental components with similar cyto- and chemarchitectural features to therians and there were magnocellular and subtrigeminal components of the lateral reticular nucleus, also as seen in therians. Subdivisions and chemoarchitecture of the vestibular complex of the echidna were both similar to that region in rodents. In all three precerebellar nuclear groups studied and in the vestibular nucleus organization, the cyto- and chemoarchitecture of the echidna was very similar to that seen in therian mammals and no "primitive" or "reptilian" features were evident.
Hall, Mark R.; Meinke, William; Goldstein, David A.
1973-01-01
Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins. PMID:4359958
The compression-mode giant resonances and nuclear incompressibility
NASA Astrophysics Data System (ADS)
Garg, Umesh; Colò, Gianluca
2018-07-01
The compression-mode giant resonances, namely the isoscalar giant monopole and isoscalar giant dipole modes, are examples of collective nuclear motion. Their main interest stems from the fact that one hopes to extrapolate from their properties the incompressibility of uniform nuclear matter, which is a key parameter of the nuclear Equation of State (EoS). Our understanding of these issues has undergone two major jumps, one in the late 1970s when the Isoscalar Giant Monopole Resonance (ISGMR) was experimentally identified, and another around the turn of the millennium since when theory has been able to start giving reliable error bars to the incompressibility. However, mainly magic nuclei have been involved in the deduction of the incompressibility from the vibrations of finite nuclei. The present review deals with the developments beyond all this. Experimental techniques have been improved, and new open-shell, and deformed, nuclei have been investigated. The associated changes in our understanding of the problem of the nuclear incompressibility are discussed. New theoretical models, decay measurements, and the search for the evolution of compressional modes in exotic nuclei are also discussed.
Calculations of the β-decay half-lives of neutron-deficient nuclei
NASA Astrophysics Data System (ADS)
Tan, Wenjin; Ni, Dongdong; Ren, Zhongzhou
2017-05-01
In this work, β+/EC decays of some medium-mass nuclei are investigated within the extended quasiparticle random-phase approximation (QRPA), where neutron-neutron, proton-proton and neutron-proton (np) pairing correlations are taken into consideration in the specialized Hartree-Fock-Bogoliubov (HFB) transformation. In addition to the pairing interaction, the Brückner G-matrix obtained with the charge-dependent Bonn nucleon-nucleon force is used for the residual particle-particle and particle-hole interactions. Calculations are performed for even-even proton-rich isotopes ranging from Z=24 to Z=34. It is found that the np pairing interaction plays a significant role in β-decay for some nuclei far from stability. Compared with other theoretical calculations, our calculations show good agreement with the available experimental data. Predictions of β-decay half-lives for some very neutron-deficient nuclei are made for reference. Supported by National Nature Science Foundation of China (11535004, 11375086, 11120101005, 11175085 and 11235001), 973 Nation Major State Basic Research and Development of China (2013CB834400) and Science and Technology Development Fund of Macau (020/2014/A1 and 039/2013/A2)
Some recent experimental results related to nuclear chirality
NASA Astrophysics Data System (ADS)
Timár, J.; Kuti, I.; Sohler, D.; Starosta, K.; Koike, T.; Paul, E. S.
2014-09-01
Detailed band structures of three chiral-candidate nuclei, 134Pr, 132La and 103Rh have been studied. The aim of the study was twofold. First, to try to explore the reasons behind the contradiction between the theoretically predicted chirality in these nuclei and the recently observed fingerprints that suggest non-chiral interpretation for the previous chiral candidate band doublets. Second, to search for multiple chiral bands of different types in these nuclei. In 134Pr a new πh11/2vh11/2 band has been observed besides the previously known chiral-candidate πh11/2vh11/2 doublet. This new band and the yrare πh11/2vh11/2 band show the expected features of a chiral doublet structure. This fact combined with the observed similarity between the band structures of 134Pr and 132La suggests that chirality might exist in these nuclei. The detailed study of the 103Rh band structure resulted in the observation of two new chiral-doublet looking structures besides the previously known one. This is indicative of possible existence of multiple chiral doublet structure in this nucleus.
Bernard, René; Veh, Rüdiger W
2012-08-01
The lateral habenular complex (LHb) is a bilateral epithalamic brain structure involved in the modulation of ascending monoamine systems in response to afferents from limbic regions and basal ganglia. The LHb is implicated in various biological functions, such as reward, sleep-wake cycle, feeding, pain processing, and memory formation. The modulatory role of the LHb is partially assumed by putative spontaneously active LHb neurons projecting to the dopaminergic ventral tegmental area (VTA) and to the serotonergic median (MnR) and dorsal raphe nuclei (DR). All four nuclei form a complex and coordinated network to evoke appropriate responses to reward-related stimuli. At present it is not known whether individual LHb neurons project to only one or to more than one monoaminergic nucleus. To answer this question, we made dual injections of two different retrograde tracers into the rat VTA and either DR or MnR. Tracers were visualized by immunohistochemistry. In coronal sections, the different retrogradly labeled habenular neurons were quantified and assigned to the corresponding habenular subnuclei. Our results show that 1) the distribution of neurons in the LHb projecting to the three monoamine nuclei is similar and exhibits a great overlap, 2) the vast majority of LHb projection neurons target one monoaminergic nucleus only, and 3) very few, heterogeneously distributed LHb neurons project to both dopaminergic and serotonergic nuclei. These results imply that the LHb forms both separate and interconnected circuits with each monoaminergic nucleus, permitting the LHb to modulate its output to different monoamine systems either independently or jointly. Copyright © 2012 Wiley Periodicals, Inc.
Solar r-process-constrained actinide production in neutrino-driven winds of supernovae
NASA Astrophysics Data System (ADS)
Goriely, S.; Janka, H.-Th.
2016-07-01
Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular, nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production (232Th, 235, 236, 238U, 237Np, 244Pu, and 247Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions - but still lack, for example, the effects of strong magnetic fields - we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time-scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the Solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.
Active galactic nuclei: what's in a name?
NASA Astrophysics Data System (ADS)
Padovani, P.; Alexander, D. M.; Assef, R. J.; De Marco, B.; Giommi, P.; Hickox, R. C.; Richards, G. T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; Salvato, M.
2017-08-01
Active galactic nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different "flavours" in the literature that now comprise a complex and confusing AGN "zoo". It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their "big picture" through observations in each electromagnetic band from radio to γ -rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude, we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.
NASA Astrophysics Data System (ADS)
Eslamizadeh, H.; Abdollahi, N.
2018-02-01
The dynamics of fission of the excited compound nuclei 256Fm, 215Fr, 187Ir, 172Yb, 162Yb, and 142Ce produced in fusion reactions with 158.8 MeV 18O has been studied by solving three- and four-dimensional Langevin equations with dissipation generated through the chaos weighted wall and window friction formula. The constant dissipation coefficients of K , γK=0.077 (MeVzs ) -1 /2 , γK=0.2 (MeVzs ) -1 /2 and a nonconstant dissipation coefficient of K have been used to reproduce the experimental data for both symmetric and asymmetric splitting of the fissioning systems. The average kinetic energies of fission fragments, the pre-scission neutron multiplicities, the fission time, and the variances of the mass and kinetic energy of fission fragments are calculated for the excited compound nuclei 256Fm, 215Fr, 187Ir, 172Yb, 162Yb, 142Ce, and results of the calculations are compared with each other and with the experimental data. Comparison of the theoretical results with the experimental data calculated by using different values of γK shows that the difference is small between the results of calculations for symmetric and asymmetric simulations of the fission process of excited intermediate nuclei, whereas for heavy compound nuclei the difference is slightly high. In other words, the effect of the asymmetry parameter on the fission process of intermediate nuclei is smaller than the effect on heavy nuclei. Furthermore, we show that the pre-scission neutron multiplicity decreases rapidly with increasing fragment asymmetry.
Frontal-thalamic circuits associated with language
Barbas, Helen; García-Cabezas, Miguel Ángel; Zikopoulos, Basilis
2012-01-01
Thalamic nuclei associated with language including the ventral lateral, ventral anterior, intralaminar and mediodorsal form a hub that uniquely receives the output of the basal ganglia and cerebellum, and is connected with frontal (premotor and prefrontal) cortices through two parallel circuits: a thalamic pathway targets the middle frontal cortical layers focally, and the other innervates widely cortical layer 1, poised to recruit other cortices and thalamic nuclei for complex cognitive operations. Return frontal pathways to the thalamus originate from cortical layers 6 and 5. Information through this integrated thalamo-cortical system is gated by the inhibitory thalamic reticular nucleus and modulated by dopamine, representing a specialization in primates. The intricate dialogue of distinct thalamic nuclei with the basal ganglia, cerebellum, and specific dorsolateral prefrontal and premotor cortices associated with language, suggests synergistic roles in the complex but seemingly effortless sequential transformation of cognitive operations for speech production in humans. PMID:23211411
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H. F.; Royer, G.
Theoretical {alpha} decay half-lives of the heaviest odd-Z nuclei are calculated using the experimental Q{sub {alpha}} value. The barriers in the quasimolecular shape path are determined within a Generalized Liquid Drop Model (GLDM) and the WKB approximation is used. The results are compared with calculations using the Density-Dependent M3Y (DDM3Y) effective interaction and the Viola-Seaborg-Sobiczewski (VSS) formulas. The calculations provide consistent estimates for the half-lives of the {alpha} decay chains of these superheavy elements. The experimental data stand between the GLDM calculations and VSS ones in the most time. Predictions are provided for the {alpha} decay half-lives of other superheavymore » nuclei within the GLDM and VSS approaches using the recent extrapolated Q{sub {alpha}} of Audi, Wapstra, and Thibault [Nucl. Phys. A729, 337 (2003)], which may be used for future experimental assignment and identification.« less
NASA Astrophysics Data System (ADS)
Kunieda, Satoshi
2017-09-01
We report the status of the R-matrix code AMUR toward consistent cross-section evaluation and covariance analysis for the light-mass nuclei. The applicable limit of the code is extended by including computational capability for the charged-particle elastic scattering cross-sections and the neutron capture cross-sections as example results are shown in the main texts. A simultaneous analysis is performed on the 17O compound system including the 16O(n,tot) and 13C(α,n)16O reactions together with the 16O(n,n) and 13C(α,α) scattering cross-sections. It is found that a large theoretical background is required for each reaction process to obtain a simultaneous fit with all the experimental cross-sections we analyzed. Also, the hard-sphere radii should be assumed to be different from the channel radii. Although these are technical approaches, we could learn roles and sources of the theoretical background in the standard R-matrix.
Indications of negative evolution for the sources of the highest energy cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan
2015-09-14
Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically.more » In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.« less
Isospin-symmetry-breaking effects in A˜70 nuclei within beyond-mean-field approach
NASA Astrophysics Data System (ADS)
Petrovici, A.; Andrei, O.
2015-02-01
Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A˜70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A˜70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A˜70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z 66As and 70Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.
Light element production by low energy nuclei from massive stars
NASA Technical Reports Server (NTRS)
Vangioni-Flam, E.; Casse, M.; Ramaty, R.
1997-01-01
The Orion complex is a source of gamma rays attributed to the de-excitation of fast carbon and oxygen nuclei excited through interactions with ambient hydrogen and helium. This has consequences for the production and evolution of light isotopes in the Galaxy, as massive stars appear as prolific sources of C-O rich low energy nuclei. The different stages of massive star evolution are considered in relation to the acceleration of nuclei to moderate energies. It is concluded that the low energy nuclear component originating from massive stars plays a larger role than the usual Galactic cosmic rays in shaping the evolution of Li-6, Be-9, B-10 and B-11, especially in the early Galactic evolution. The enhancement of the B-11/B-10 ratio observed in meteorites and in the interstellar medium is attributed to the interaction of low energy carbon nuclei with ambient H and to a lesser degree, to neutrino spallation.
Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovici, A.; Andrei, O.
2015-02-24
Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to themore » odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.« less
Hannibal, Jens
2002-11-25
In the present study the localization of pituitary adenylate cyclase-activating peptide (PACAP)-expressing cell bodies and PACAP projections were mapped in the adult rat brain and spinal cord by using immunohistochemistry and in situ hybridization histochemistry. A widespread occurrence of PACAP-containing cell bodies was found, with the greatest accumulation in several hypothalamic nuclei and in several brainstem nuclei, especially the habenular nuclei, the pontine nucleus, the lateral parabrachial nucleus (LPB), and the vagal complex. PACAP was also present in cell bodies in the olfactory areas, in neocortical areas, in the hippocampus, in the vestibulo- and cochlear nuclei, in cell bodies of the intermediolateral cell column of the spinal cord and in Purkinje cells of the cerebellum, in the subfornical organ, and in the organum vasculosum of the lamina terminalis. An intense accumulation of PACAP-immunoreactive (-IR) nerve fibers was observed throughout the hypothalamus, in the amydaloid and extended amygdaloid complex, in the anterior and paraventricular thalamic nuclei, in the intergeniculate leaflet, in the pretectum, and in several brainstem nuclei, such as the parabrachial nucleus, the sensory trigeminal nucleus, and the nucleus of the solitary tract. PACAP-IR nerve fibers were also found in the area postrema, the posterior pituitary and the choroid plexus, and the dorsal and ventral horn of the spinal cord. The widespread distribution of PACAP in the brain and spinal cord suggests that PACAP is involved in the control of many autonomic and sensory functions as well as higher cortical processes. Copyright 2002 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadyrbekov, M. S., E-mail: nodirbekov@inp.uz; Bozarov, O. A.
Reduced probabilities for intra- and interband E2 transitions in excited collective states of even–even lanthanide and actinide nuclei are analyzed on the basis of a model that admits an arbitrary triaxiality. They are studied in detail in the energy spectra of {sup 154}Sm, {sup 156}Gd, {sup 158}Dy, {sup 162,164}Er, {sup 230,232}Th, and {sup 232,234,236,238}U even–even nuclei. Theoretical and experimental values of the reduced probabilities for the respective E2 transitions are compared. This comparison shows good agreement for all states, including high-spin ones. The ratios of the reduced probabilities for the E2 transitions in question are compared with results following frommore » the Alaga rules. These comparisons make it possible to assess the sensitivity of the probabilities being considered to the presence of quadrupole deformations.« less
Statistical analysis of excitation energies in actinide and rare-earth nuclei
NASA Astrophysics Data System (ADS)
Levon, A. I.; Magner, A. G.; Radionov, S. V.
2018-04-01
Statistical analysis of distributions of the collective states in actinide and rare-earth nuclei is performed in terms of the nearest-neighbor spacing distribution (NNSD). Several approximations, such as the linear approach to the level repulsion density and that suggested by Brody to the NNSDs were applied for the analysis. We found an intermediate character of the experimental spectra between the order and the chaos for a number of rare-earth and actinide nuclei. The spectra are closer to the Wigner distribution for energies limited by 3 MeV, and to the Poisson distribution for data including higher excitation energies and higher spins. The latter result is in agreement with the theoretical calculations. These features are confirmed by the cumulative distributions, where the Wigner contribution dominates at smaller spacings while the Poisson one is more important at larger spacings, and our linear approach improves the comparison with experimental data at all desired spacings.
Dipole Excitation of Soft and Giant Resonances in 132Sn and neighboring unstable nuclei
NASA Astrophysics Data System (ADS)
Boretzky, Konstanze
2006-04-01
The evolution of dipole-strength distributions above the one-neutron threshold was investigated for exotic neutron-rich nuclei in a series of experiments using the electromagnetic projectile excitation at beam energies around 500 MeV/u. For halo nuclei, the large observed dipole strength (shown here for 11Be) is explained within the direct-breakup model to be of non-collective character. For neutron-rich oxygen isotopes, the origin of the observed low-lying strength is concluded to be due to single-particle transitions on theoretical grounds. The dipole strength spectra for 130,132Sn exhibit resonance-like structures observed at energies around 10 MeV exhausting a few percent of the Thomas-Reiche-Kuhn (TRK) sum rule, separated clearly from the dominant Giant Dipole Resonance (GDR). The data agree with predictions for a new dipole mode related to the oscillation of excess neutrons versus the core nucleons ("pygmy resonance").
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaganathen, Y.; Betan, R. M. Id; Michel, N.
Background: The structure of weakly bound and unbound nuclei close to particle drip lines is one of the major science drivers of nuclear physics. A comprehensive understanding of these systems goes beyond the traditional configuration interaction approach formulated in the Hilbert space of localized states (nuclear shell model) and requires an open quantum system description. The complex-energy Gamow shell model (GSM) provides such a framework as it is capable of describing resonant and nonresonant many-body states on equal footing. Purpose: To make reliable predictions, quality input is needed that allows for the full uncertainty quantification of theoretical results. In thismore » study, we carry out the optimization of an effective GSM (one-body and two-body) interaction in the psdf-shell-model space. The resulting interaction is expected to describe nuclei with 5 ≤ A ≲ 12 at the p-sd-shell interface. Method: The one-body potential of the 4He core is modeled by a Woods-Saxon + spin-orbit + Coulomb potential, and the finite-range nucleon-nucleon interaction between the valence nucleons consists of central, spin-orbit, tensor, and Coulomb terms. The GSM is used to compute key fit observables. The χ 2 optimization is performed using the Gauss-Newton algorithm augmented by the singular value decomposition technique. The resulting covariance matrix enables quantification of statistical errors within the linear regression approach. Results: The optimized one-body potential reproduces nucleon- 4He scattering phase shifts up to an excitation energy of 20 MeV. The two-body interaction built on top of the optimized one-body field is adjusted to the bound and unbound ground-state binding energies and selected excited states of the helium, lithium, and beryllium isotopes up to A = 9 . A very good agreement with experimental results was obtained for binding energies. First applications of the optimized interaction include predictions for two-nucleon correlation densities and excitation spectra of light nuclei with quantified uncertainties. In conclusion: The new interaction will enable comprehensive and fully quantified studies of structure and reactions aspects of nuclei from the psd region of the nuclear chart.« less
NASA Astrophysics Data System (ADS)
Libanova, O. N.; Golubeva, E. S.; Ermolaev, S. V.; Matushko, V. L.; Botvina, A. S.
2018-05-01
This paper is focused on fission of Th-232 nuclei induced by protons with energies ranging from 20 to 140 MeV. This energy range is the most informative for studying the competition between asymmetric and symmetric fission modes. Experimental cross sections of production of radionuclides in thorium targets have been determined a year after irradiation. The corresponding theoretical values are calculated using the cascade-evaporation-fission model. The theoretical and experimental cross sections (literature data included) are compared.
Predictions on the modes of decay of even Z superheavy isotopes within the range 104 ≤ Z ≤ 136
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Nithya, C.
2018-01-01
The decay modes and half lives of all the even Z isotopes of superheavy elements within the range 104 ≤ Z ≤ 136 have been predicted by comparing the alpha decay half-lives with the spontaneous fission half-lives. The Coulomb and proximity potential model for deformed nuclei (CPPMDN) and the shell-effect-dependent formula of Santhosh et al. are used to calculate the alpha half-lives and spontaneous fission half-lives respectively. For theoretical comparison the alpha decay half-lives are also calculated using Coulomb and proximity potential model (CPPM), the Viola-Seaborg-Sobiczewski semi-empirical (VSS) relation, the universal (UNIV) curve of Poenaru et al., the analytical formula of Royer and the universal decay law (UDL) of Qi et al. Another tool used for the evaluation of spontaneous fission half-lives is the semi-empirical formula of Xu et al. The nuclei with alpha decay half-lives less than spontaneous fission half-lives will survive fission and hence decay through alpha emission. The predicted half lives and decay modes are compared with the available experimental results. The one-proton and two-proton separation energies of all the isotopes are calculated to find nuclei which lie beyond the proton drip line. Among 1119 even Z nuclei within the range 104 ≤ Z ≤ 136, 164 nuclei show sequential alpha emission followed by subsequent spontaneous fission. Since the isotopes decay through alpha decay chain and the half-lives are in measurable range, these isotopes are predicted to be synthesized and detected in laboratory via alpha decay. 2 nuclei will decay by alpha decay followed by proton emission, 54 nuclei show full alpha chains, 642 nuclei will decay through spontaneous fission, 166 nuclei exhibit proton decay and 91 isotopes are found to be stable against alpha decay. All the isotopes are tabulated according to their decay modes. The study is intended to enhance further experimental investigations in superheavy region.
Theoretical Astrophysics - Volume 3, Galaxies and Cosmology
NASA Astrophysics Data System (ADS)
Padmanabhan, T.
2002-12-01
1. Overview: galaxies and cosmology; 2. Galactic structure and dynamics; 3. Friedmann model of the universe; 4. Thermal history of the universe; 5. Structure formation; 6. Cosmic microwave background radiation; 7. Formation of baryonic structures; 8. Active galactic nuclei; 9. Intergalactic medium and absorption systems; 10. Cosmological observations.
Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.
2012-01-01
Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.
Particle Acceleration in Relativistic Outflows
NASA Technical Reports Server (NTRS)
Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin
2012-01-01
In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.
A new approach for measuring power spectra and reconstructing time series in active galactic nuclei
NASA Astrophysics Data System (ADS)
Li, Yan-Rong; Wang, Jian-Min
2018-05-01
We provide a new approach to measure power spectra and reconstruct time series in active galactic nuclei (AGNs) based on the fact that the Fourier transform of AGN stochastic variations is a series of complex Gaussian random variables. The approach parametrizes a stochastic series in frequency domain and transforms it back to time domain to fit the observed data. The parameters and their uncertainties are derived in a Bayesian framework, which also allows us to compare the relative merits of different power spectral density models. The well-developed fast Fourier transform algorithm together with parallel computation enables an acceptable time complexity for the approach.
Carlo, C N; Stefanacci, L; Semendeferi, K; Stevens, C F
2010-04-15
The amygdaloid complex (AC), a key component of the limbic system, is a brain region critical for the detection and interpretation of emotionally salient information. Therefore, changes in its structure and function are likely to provide correlates of mood and emotion disorders, diseases that afflict a large portion of the human population. Previous gross comparisons of the AC in control and diseased individuals have, however, mainly failed to discover these expected correlations with diseases. We have characterized AC nuclei in different nonhuman primate species to establish a baseline for more refined comparisons between the normal and the diseased amygdala. AC nuclei volume and neuron number in 19 subdivisions are reported from 13 Old and New World primate brains, spanning five primate species, and compared with corresponding data from humans. Analysis of the four largest AC nuclei revealed that volume and neuron number of one component, the central nucleus, has a negative allometric relationship with total amygdala volume and neuron number, which is in contrast with the isometric relationship found in the other AC nuclei (for both neuron number and volume). Neuron density decreases across all four nuclei according to a single power law with an exponent of about minus one-half. Because we have included quantitative comparisons with great apes and humans, our conclusions apply to human brains, and our scaling laws can potentially be used to study the anatomical correlates of the amygdala in disorders involving pathological emotion processing. (c) 2009 Wiley-Liss, Inc.
Amaya, Kensey R; Sweedler, Jonathan V; Clayton, David F
2011-08-01
Fatty acids are central to brain metabolism and signaling, but their distributions within complex brain circuits have been difficult to study. Here we applied an emerging technique, time-of-flight secondary ion mass spectrometry (ToF-SIMS), to image specific fatty acids in a favorable model system for chemical analyses of brain circuits, the zebra finch (Taeniopygia guttata). The zebra finch, a songbird, produces complex learned vocalizations under the control of an interconnected set of discrete, dedicated brain nuclei 'song nuclei'. Using ToF-SIMS, the major song nuclei were visualized by virtue of differences in their content of essential and non-essential fatty acids. Essential fatty acids (arachidonic acid and docosahexaenoic acid) showed distinctive distributions across the song nuclei, and the 18-carbon fatty acids stearate and oleate discriminated the different core and shell subregions of the lateral magnocellular nucleus of the anterior nidopallium. Principal component analysis of the spectral data set provided further evidence of chemical distinctions between the song nuclei. By analyzing the robust nucleus of the arcopallium at three different ages during juvenile song learning, we obtain the first direct evidence of changes in lipid content that correlate with progression of song learning. The results demonstrate the value of ToF-SIMS to study lipids in a favorable model system for probing the function of lipids in brain organization, development and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia
Cobia, Derin J.; Smith, Matthew J.; Salinas, Ilse; Ng, Charlene; Gado, Mohktar; Csernansky, John G.; Wang, Lei
2016-01-01
Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior. PMID:27613507
Nuclear organization of the rock hyrax (Procavia capensis) amygdaloid complex.
Limacher-Burrell, Aude-Marie; Bhagwandin, Adhil; Gravett, Nadine; Maseko, Busisiwe C; Manger, Paul R
2016-07-01
The current study details the nuclear organization of the rock hyrax amygdaloid complex using both Nissl and myelin stains, along with a range of immunohistochemical stains. The rock hyrax appears to be the least derived of the Afrotherians, a group with a huge range of body phenotypes, life histories and specialized behaviours, brain sizes, and ecological niches. In this sense, the rock hyrax represents a species where the organization of the amygdaloid complex may be reflective of that in stem Eutherian mammals. Our analysis indicates that the nuclear organization of the rock hyrax amygdaloid complex is indeed very similar to that in other mammals studied, with four major nuclear groupings (the deep or basolateral group; the superficial or cortical-like or corticomedial group; the centromedial group; and the other amygdaloid nuclei) being observed, which is typical of Eutherian mammals. Moreover, each of these groupings is composed of several nuclei, the vast majority of which were readily identified in the rock hyrax. Small nuclei identified in rodents and primates were absent in the superficial and centromedial groups, seemingly involved with olfaction. A novel shell-like nucleus of the accessory basal nuclear cluster was observed in the rock hyrax, again, likely to be involved in olfaction. The current study underlines the conserved nature of nuclear parcellation in the Eutherian mammal amygdaloid complex and indicates that across most species, the flow of information processing related to species-specific affective-laden stimuli and the resultant physiological and behavioural outcomes are likely to be similar across species.
NASA Astrophysics Data System (ADS)
Kaur, Amandeep; Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.
The temperature-dependent preformed cluster model [PCM(T)] is employed to extend our recent work [Niyti, G. Sawhney, M. K. Sharma and R. K. Gupta, Phys. Rev. C 91 (2015) 054606] on α-decay chains of various isotopes of Z = 113-118 superheavy nuclei (SHN), to spontaneous fissioning nuclei 103266Lr, 104267Rf, 105266‑268Db, 111281Rg, and 112282Cn occurring as end products of these α-decay chains. The behavior of fragment mass distribution and competitive emergence of the dominant decay mode, i.e., the α-emission versus spontaneous fission (SF), are studied for identifying the most probable heavy fission fragments, along with the estimation of SF half-life times T1/2SF and total kinetic energy (TKE) of the above noted isotopes of Z = 103-112 nuclei decaying via the SF process. The mass distributions of chosen nuclei are clearly symmetric, independent of mass and temperature. The most preferred decay fragment is found to lie in the neighborhood of doubly magic shell closures of Z = 50 and N = 82, with largest preformation factor P0. In addition, a comparative study of the “hot compact” and “cold elongated” configurations of β2i-deformed and 𝜃iopt-oriented nuclei indicates significantly different behaviors of the two mass fragmentation yields, favoring “hot compact” configuration.
Odd-even staggering in the neutron-proton interaction and nuclear mass models
NASA Astrophysics Data System (ADS)
Cheng, Y. Y.; Zhao, Y. M.; Arima, A.
2015-02-01
In this paper we study odd-even staggering of the empirical neutron-proton interaction between the last neutron and the last proton, denoted as δ V1 n -1 p , and its consequence in the Garvey-Kelson mass relations (GKs) and nuclear mass models. The root-mean-squared deviations of predicted masses respectively for even-A and odd-A nuclei by using two combinatorial GKs suggest a large odd-even staggering of δ V1 n -1 p between even-odd and odd-even nuclei, while the odd-even difference of δ V1 n -1 p between even-even and odd-odd nuclei is much smaller. The contribution of the odd-even staggering of δ V1 n -1 p between even-A and odd-A nuclei in deviations of theoretical δ V1 n -1 p values of the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model are well represented by an isospin-dependent term. The consideration of this odd-even staggering improves our description of binding energies and one-neutron separation energies in both the Duflo-Zuker model and the improved Weizs a ̈cker -Skyrme model.
Empirical p-n interactions, the synchronized filling of Nilsson orbitals, and emergent collectivity
NASA Astrophysics Data System (ADS)
Cakirli, R. B.
2014-09-01
The onset of collectivity and deformation, changes to the single particle energies and magic numbers and so on are strongly influenced by, for example, proton (p) and neutron (n) interactions inside atomic nuclei. Experimentally, using binding energies (or masses), one can extract an average p-n interaction between the last two protons and the last two neutrons, called δVpn. We have studied δVpn values using calculations of spatial overlaps between p and n Nilsson orbitals, considering different deformations, for the Z= 50-82, N= 82-126 shells, and comparison of these theoretical results with experimental δVpn values. Our results show that enhanced valence p-n interactions are closely correlated with the development of collectivity, shape changes, and the saturation of deformation in nuclei. We note that the difference of the Nilsson quantum numbers of the last filled Nilsson p and n orbitals, has a special relation, 0[110], in which they differ by only a single quantum in the z-direction, for those nuclei where δVpn is largest for each Z in medium mass and heavy nuclei. The synchronised filling of such orbital pairs correlates with the emergence of collectivity.
NASA Technical Reports Server (NTRS)
Panov, A. D.; Sokolskaya, N. V.; Adams, J.H.; Ahn, H.S.; Bashindzhagyan, G. L.; Batkov, K.E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganal, O.;
2007-01-01
The ATIC balloon-borne experiment measures the energy spectra of elements from H to Fe in primary cosmic rays from about 100 GeV to 100 TeV. ATIC is comprised of a fully active bismuth germanate calorimeter, a carbon target with embedded scintillator hodoscopes, and a silicon matrix that is used as a main charge detector. The silicon matrix produces good charge resolution for the protons and helium but only a partial resolution for heavier nuclei. In the present paper a charge resolution of ATIC device was essentially improved and backgrounds were reduced in the region from Be to Si by means of the upper layer of the scintillator hodoscope that was used as an additional charge detector together with the silicon matrix. The flux ratios of nuclei B/C, O/C, N/C in the energy region from about 10 GeV/nucleon to 300 GeV/nucleon that were obtained from new high-resolution and high-quality charge spectra of nuclei are presented. The results are compared with existing theoretical predictions.
Results on the energy dependence of cosmic-ray charge composition
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.; Ormes, J. F.
1973-01-01
Results of measurements by a balloon-borne ionization spectrometer of the energy dependence of high-energy cosmic-ray charge composition. The results presented are greatly improved over those obtained earlier by Ormes et al. (1971) by the use of a multidimensional charge analysis with more efficient background rejection, and a more accurate energy determination. Complex couplings between the charge, energy, and trajectory information were taken into account and are discussed. The spectra of individual elements up to oxygen and of groups of nuclei up through iron were measured up to almost 100 GeV per nucleon. The energy spectrum of the secondary nuclei, B + N, is found to be steeper than that of the primary nuclei, C + O, in agreement with Smith et al. (1973). The most dramatic finding is that the spectrum of the iron nuclei is flatter than that of the carbon and oxygen nuclei by 0.57 plus or minus 0.14 of a power.
Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat.
Linley, Stephanie B; Olucha-Bordonau, Francisco; Vertes, Robert P
2017-01-01
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT + fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Anatomy of the human hypothalamus (chiasmatic and tuberal region).
Braak, H; Braak, E
1992-01-01
The hypothalamus sensu stricto consists of the chiasmatic, the tuberal and the mamillary region. The present study is confined to the poorly myelinated chiasmatic and tuberal region. Both regions harbor many nuclear grays with relatively clear-cut boundaries embedded in an ill-defined nerve cell assembly referred to as the hypothalamic gray. Prominent components of the chiasmatic region are the magnocellular neurosecretory complex (supraoptic nucleus, paraventricular nucleus, accessory neurosecretory nucleus), the sexually dimorphic intermediate nucleus, the suprachiasmatic and retrochiasmatic nuclei. The dominating structure of the tuberal region is the complex of the ventromedial, posteromedial and dorsomedial nuclei supplemented by the periventricular and infundibular nuclei. Lateral portions of the tuber cinereum harbor the lateral tuberal nucleus and the tuberomamillary nucleus. The lateral tuberal nucleus exhibits pronounced cell loss in Huntington's chorea and is also severely involved in cases of dementia with argyrophilic grains. The large nerve cells of the tuberomamillary nucleus show particularly severe affection in both Alzheimer's (intraneuronal neurofibrillary changes) and Parkinson's disease (Lewy bodies).
Theoretical studies of possible toroidal high-spin isomers in the light-mass region
Staszczak, A.; Wong, Cheuk-Yin
2016-05-11
We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ℏ and 140ℏ, which follow the same (multi-particle) (multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC) experiments.
Steinmetz, J E; Sengelaub, D R
1992-03-01
Wheat germ agglutinin and cholera toxin-conjugated horseradish peroxidase (HRP) were used to retrogradely and anterogradely trace connectivity between the lateral regions of the pontine nuclei and the anterior interpositus nucleus of the cerebellum in rabbits. Projections from the pontine nuclei were found to terminate in the anterior interpositus nucleus and the interpositus was found to send projections to the pontine nuclei. Projections from the nucleus reticularis tegmenti pontis, dorsal accessory inferior olive, and Larsell's lobule HVI of the cerebellum were also found to terminate in the interpositus nucleus and projections from the interpositus nucleus to the inferior olivary complex were observed. The projections from brain stem regions to the interpositus nucleus are discussed as possible pathways that are involved in classical eyelid conditioning.
Nuclear-bound quarkonia and heavy-flavor hadrons
NASA Astrophysics Data System (ADS)
Krein, G.; Thomas, A. W.; Tsushima, K.
2018-05-01
In our quest to win a deeper understanding of how QCD actually works, the study of the binding of heavy quarkonia and heavy-flavor hadrons to atomic nuclei offers enormous promise. Modern experimental facilities such as FAIR, Jefferson Lab at 12 GeV and J-PARC offer exciting new experimental opportunities to study such systems. These experimental advances are complemented by new theoretical approaches and predictions, which will both guide these experimental efforts and be informed and improved by them. This review will outline the main theoretical approaches, beginning with QCD itself, summarize recent theoretical predictions and relate them both to past experiments and those from which we may expect results in the near future.
Revisiting Grodzins systematics of B(E2) values
Pritychenko, B.; Birch, M.; Singh, B.
2017-04-03
Using Grodzins formalism, we analyze systematics of our latest evaluated B(E2) data for all the even–even nuclei in Z=2–104. The analysis indicates a low predictive power of systematics for a large number of cases, and a strong correlation between B(E2) fit values and nuclear structure effects. These findings provide a strong rationale for introduction of individual or elemental (grouped by Z) fit parameters. The current estimates of quadrupole collectivities for systematics of even–even nuclei yield complementary values for comparison with experimental results and theoretical calculations. Furthermore, the lists of fit parameters and predicted B(E2) values are given and possible implicationsmore » are discussed.« less
Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering
NASA Astrophysics Data System (ADS)
Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen
2014-09-01
Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.
An ancient revisits cosmology.
Greenstein, J L
1993-01-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403
NASA Astrophysics Data System (ADS)
Greenstein, Jesse L.
1993-06-01
In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.
Homogeneous crystal nucleation in polymers.
Schick, C; Androsch, R; Schmelzer, J W P
2017-11-15
The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.
On Complex Nuclei Energetics in LENR
NASA Astrophysics Data System (ADS)
Miley, George H.; Hora, Heinz
2005-03-01
Swimming Electron Layer (SEL) theory plus fission of ``complex nuclei'' were proposed earlier to explain reaction products observed in electrolysis with multi-layer thin-film metallic electrodesootnotetext1.G.H. Miley, and J.A. Patterson, J. New Energy, Vol. 1, pp.11-15, (1996).. SEL was then extended to treat gas-diffusion driven transmutation experimentsootnotetextG. H. Miley and H. Hora, ``Nuclear Reactions in Solids,'' APS DNP Mtg., East Lansing, MI, Oct (2002).. It is also consistent with measured charged-particle emission during thin-film electrolysis and x-ray emission during plasma bombardment experimentsootnotetextA. Karabut, ``X-ray emission in high-current glow discharge,'' Proc., ICCF-9, Beijing China, May (2002).. The binding energy per complex nucleon can be estimated by an energy balance combined with identification of products for each complex e.g. complexes of A 39 have ˜ 0.05 MeV/Nucleon, etc, in thin film electrolysis. Energies in gas diffusion experiments are lower due to the reduced trap site potential at the multi-atom surface. In the case of x-ray emission, complexes involve subsurface defect center traps, giving only a few keV/Nucleon, consistent with experiments^3.
NASA Astrophysics Data System (ADS)
Karyagin, Stanislav V.
2001-03-01
The hosts and nuclei-candidates (mass approximately 46 - 243, transition energy approximately 1 - 200 keV, decay's time 10-7 - 10+2 s) for gamma-laser (GL) realization are represented over Mendeleev Table. The choice of active media (nuclei-candidates, hosts) for GL is based on the joint theory of (gamma) -generation and radiation-heat regime which accounts a big complex of hindrances against GL and thus discards many tentative candidates. Nuclei- candidates are screened at the analyzing of data banks for nuclear transitions. Chosen candidates (approximately 20) could be used due to author's method SPTEN (Soft Prompt Transplantation of Excited Nuclei). The discarded tentative nuclei (approximately 80) with the life-times 10-6 - 10+2 are represented too. All analyzed long-lived (approximately 0.5 - 10+2 s) isomers are turned to be not fit for GL without use of very strong multi-wave Borrman effect even at the supposition of natural line's width. The application of the revealed candidates in two different (gamma) -laser's categories (residential and non- residential) is discussed.
Nuclear Structure in China 2010
NASA Astrophysics Data System (ADS)
Bai, Hong-Bo; Meng, Jie; Zhao, En-Guang; Zhou, Shan-Gui
2011-08-01
Personal view on nuclear physics research / Jie Meng -- High-spin level structures in [symbol]Zr / X. P. Cao ... [et al.] -- Constraining the symmetry energy from the neutron skin thickness of tin isotopes / Lie-Wen Chen ... [et al.] -- Wobbling rotation in atomic nuclei / Y. S. Chen and Zao-Chun Gao -- The mixing of scalar mesons and the possible nonstrange dibaryons / L. R. Dai ... [et al.] -- Net baryon productions and gluon saturation in the SPS, RHIC and LHC energy regions / Sheng-Qin Feng -- Production of heavy isotopes with collisions between two actinide nuclides / Z. Q. Feng ... [et al.] -- The projected configuration interaction method / Zao-Chun Gao and Yong-Shou Chen -- Applications of Nilsson mean-field plus extended pairing model to rare-earth nuclei / Xin Guan ... [et al.] -- Complex scaling method and the resonant states / Jian-You Guo ... [et al.] -- Probing the equation of state by deep sub-barrier fusion reactions / Hong-Jun Hao and Jun-Long Tian -- Doublet structure study in A[symbol]105 mass region / C. Y. He ... [et al.] -- Rotational bands in transfermium nuclei / X. T. He -- Shape coexistence and shape evolution [symbol]Yb / H. Hua ... [et al.] -- Multistep shell model method in the complex energy plane / R. J. Liotta -- The evolution of protoneutron stars with kaon condensate / Ang Li -- High spin structures in the [symbol]Lu nucleus / Li Cong-Bo ... [et al.] -- Nuclear stopping and equation of state / QingFeng Li and Ying Yuan -- Covariant description of the low-lying states in neutron-deficient Kr isotopes / Z. X. Li ... [et al.] -- Isospin corrections for superallowed [symbol] transitions / HaoZhao Liang ... [et al.] -- The positive-parity band structures in [symbol]Ag / C. Liu ... [et al.] -- New band structures in odd-odd [symbol]I and [symbol]I / Liu GongYe ... [et al.] -- The sd-pair shell model and interacting boson model / Yan-An Luo ... [et al.] -- Cross-section distributions of fragments in the calcium isotopes projectile fragmentation at the intermediate energy / C. W. Ma ... [et al.].Systematic study of spin assignment and dynamic moment of inertia of high-j intruder band in [symbol]In / K. Y. Ma ... [et al.] -- Signals of diproton emission from the three-body breakup channel of [symbol]Al and [symbol]Mg / Ma Yu-Gang ... [et al.] -- Uncertainties of Th/Eu and Th/Hf chronometers from nucleus masses / Z. M. Niu ... [et al.] -- The chiral doublet bands with [symbol] configuration in A[symbol]100 mass region / B. Qi ... [et al.] -- [symbol] formation probabilities in nuclei and pairing collectivity / Chong Qi -- A theoretical prospective on triggered gamma emission from [symbol]Hf[symbol] isomer / ShuiFa Shen ... [et al.] -- Study of nuclear giant resonances using a Fermi-liquid method / Bao-Xi Sun -- Rotational bands in doubly odd [symbol]Sb / D. P. Sun ... [et al.] -- The study of the neutron N=90 nuclei / W. X. Teng ... [et al.] -- Dynamical modes and mechanisms in ternary reaction of [symbol]Au+[symbol]Au / Jun-Long Tian ... [et al.] -- Dynamical study of X(3872) as a D[symbol] molecular state / B. Wang ... [et al.] -- Super-heavy stability island with a semi-empirical nuclear mass formula / N. Wang ... [et al.] -- Pseudospin partner bands in [symbol]Sb / S. Y. Wang ... [et al.] -- Study of elastic resonance scattering at CIAE / Y. B. Wang ... [et al.] -- Systematic study of survival probability of excited superheavy nuclei / C. J. Xia ... [et al.] -- Angular momentum projection of the Nilsson mean-field plus nearest-orbit pairing interaction model / Ming-Xia Xie ... [et al.] -- Possible shape coexistence for [symbol]Sm in a reflection-asymmetric relativistic mean-field approach / W. Zhang ... [et al.] -- Nuclear pairing reduction due to rotation and blocking / Zhen-Hua Zhang -- Nucleon pair approximation of the shell model: a review and perspective / Y. M. Zhao ... [et al.] -- Band structures in doubly odd [symbol]I / Y. Zheng ... [et al.] -- Lifetimes of high spin states in [symbol]Ag / Y. Zheng ... [et al.] -- Effect of tensor interaction on the shell structure of superheavy nuclei / Xian-Rong Zhou ... [et al.].
Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia.
Cobia, Derin J; Smith, Matthew J; Salinas, Ilse; Ng, Charlene; Gado, Mokhtar; Csernansky, John G; Wang, Lei
2017-02-01
Thalamic abnormalities are considered part of the complex pathophysiology of schizophrenia, particularly the involvement of specific thalamic nuclei. The goals of this study were to: introduce a novel atlas-based parcellation scheme for defining various thalamic nuclei; compare their integrity in a schizophrenia sample against healthy individuals at baseline and follow-up time points, as well as rates of change over time; examine relationships between the nuclei and abnormalities in known connected cortical regions; and finally, to determine if schizophrenia-related thalamic nuclei changes relate to cognitive functioning and clinical symptoms. Subjects were from a larger longitudinal 2-year follow-up study, schizophrenia (n=20) and healthy individuals (n=20) were group-matched for age, gender, and recent-alcohol use. We used high-dimensional brain mapping to obtain thalamic morphology, and applied a novel atlas-based method for delineating anterior, mediodorsal, and pulvinar nuclei. Results from cross sectional GLMs revealed group differences in bilateral mediodorsal and anterior nuclei, while longitudinal models revealed significant group-by-time interactions for the mediodorsal and pulvinar nuclei. Cortical correlations were the strongest for the pulvinar in frontal, temporal and parietal regions, followed by the mediodorsal nucleus in frontal regions, but none in the anterior nucleus. Thalamic measures did not correlate with cognitive and clinical scores at any time point or longitudinally. Overall, findings revealed a pattern of persistent progressive abnormalities in thalamic nuclei that relate to advancing cortical decline in schizophrenia, but not with measures of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.
Realistic Gamow shell model for resonance and continuum in atomic nuclei
NASA Astrophysics Data System (ADS)
Xu, F. R.; Sun, Z. H.; Wu, Q.; Hu, B. S.; Dai, S. J.
2018-02-01
The Gamow shell model can describe resonance and continuum for atomic nuclei. The model is established in the complex-moment (complex-k) plane of the Berggren coordinates in which bound, resonant and continuum states are treated on equal footing self-consistently. In the present work, the realistic nuclear force, CD Bonn, has been used. We have developed the full \\hat{Q}-box folded-diagram method to derive the realistic effective interaction in the model space which is nondegenerate and contains resonance and continuum channels. The CD-Bonn potential is renormalized using the V low-k method. With choosing 16O as the inert core, we have applied the Gamow shell model to oxygen isotopes.
Herold, Christina; Paulitschek, Christina; Palomero-Gallagher, Nicola; Güntürkün, Onur; Zilles, Karl
2018-02-15
At the beginning of the 20th century it was suggested that a complex group of nuclei in the avian posterior ventral telencephalon is comparable to the mammalian amygdala. Subsequent findings, however, revealed that most of these structures share premotor characteristics, while some indeed constitute the avian amygdala. These developments resulted in 2004 in a change of nomenclature of these nuclei, which from then on were named arcopallial or amygdala nuclei and referred to as the arcopallium/amygdala complex. The structural basis for the similarities between avian and mammalian arcopallial and amygdala subregions is poorly understood. Therefore, we analyzed binding site densities for glutamatergic AMPA, NMDA and kainate, GABAergic GABA A , muscarinic M 1 , M 2 and nicotinic acetylcholine (nACh; α 4 β 2 subtype), noradrenergic α 1 and α 2 , serotonergic 5-HT 1A and dopaminergic D 1/5 receptors using quantitative in vitro receptor autoradiography combined with a detailed analysis of the cyto- and myelo-architecture. Our approach supports a segregation of the pigeon's arcopallium/amygdala complex into the following subregions: the arcopallium anterius (AA), the arcopallium ventrale (AV), the arcopallium dorsale (AD), the arcopallium intermedium (AI), the arcopallium mediale (AM), the arcopallium posterius (AP), the nucleus posterioris amygdalopallii pars basalis (PoAb) and pars compacta (PoAc), the nucleus taeniae amgygdalae (TnA) and the area subpallialis amygdalae (SpA). Some of these subregions showed further subnuclei and each region of the arcopallium/amygdala complex are characterized by a distinct multi-receptor density expression. Here we provide a new detailed map of the pigeon's arcopallium/amygdala complex and compare the receptor architecture of the subregions to their possible mammalian counterparts. © 2017 Wiley Periodicals, Inc.
Coherent Patterns in Nuclei and in Financial Markets
NASA Astrophysics Data System (ADS)
DroŻdŻ, S.; Kwapień, J.; Speth, J.
2010-07-01
In the area of traditional physics the atomic nucleus belongs to the most complex systems. It involves essentially all elements that characterize complexity including the most distinctive one whose essence is a permanent coexistence of coherent patterns and of randomness. From a more interdisciplinary perspective, these are the financial markets that represent an extreme complexity. Here, based on the matrix formalism, we set some parallels between several characteristics of complexity in the above two systems. We, in particular, refer to the concept—historically originating from nuclear physics considerations—of the random matrix theory and demonstrate its utility in quantifying characteristics of the coexistence of chaos and collectivity also for the financial markets. In this later case we show examples that illustrate mapping of the matrix formulation into the concepts originating from the graph theory. Finally, attention is drawn to some novel aspects of the financial coherence which opens room for speculation if analogous effects can be detected in the atomic nuclei or in other strongly interacting Fermi systems.
Evangelio, Marian; García-Amado, María; Clascá, Francisco
2018-01-01
A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species.
Evangelio, Marian; García-Amado, María; Clascá, Francisco
2018-01-01
A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species. PMID:29706872
Nuclear binding of progesterone in hen oviduct. Binding to multiple sites in vitro.
Pikler, G M; Webster, R A; Spelsberg, T C
1976-01-01
Steroid hormones, including progesterone, are known to bind with high affinity (Kd approximately 1x10(-10)M) to receptor proteins once they enter target cells. This complex (the progesterone-receptor) then undergoes a temperature-and/or salt-dependent activation which allows it to migrate to the cell nucleus and to bind to the deoxyribonucleoproteins. The present studies demonstrate that binding the hormone-receptor complex in vitro to isolated nuclei from the oviducts of laying hens required the same conditions as do other studies of bbinding in vitro reported previously, e.g. the hormone must be complexed to intact and activated receptor. The assay of the nuclear binding by using multiple concentrations of progesterone receptor reveals the presence of more than one class of binding site in the oviduct nuclei. The affinity of each of these classes of binding sites range from Kd approximately 1x10(-9)-1x10(-8)M. Assays using free steroid (not complexed with receptor) show no binding to these sites. The binding to each of the classes of sites, displays a differential stability to increasing ionic concentrations, suggesting primarily an ionic-type interaction for all classes. Only the highest-affinity class of binding site is capable of binding progesterone receptor under physioligical-saline conditions. This class represent 6000-10000 sites per cell nucleus and resembles the sites detected in vivo (Spelsberg, 1976, Biochem. J. 156, 391-398) which cause maximal transcriptional response when saturated with the progesterone receptor. The multiple binding sites for the progesterone receptor either are not present or are found in limited numbers in the nuclei of non-target organs. Differences in extent of binding to the nuclear material between a target tissue (oviduct) and other tissues (spleen or erythrocyte) are markedly dependent on the ionic conditions, and are probably due to binding to different classes of sites in the nuclei. PMID:182147
Description of alpha-nucleus interaction cross sections for cosmic ray shielding studies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1993-01-01
Nuclear interactions of high-energy alpha particles with target nuclei important for cosmic ray studies are discussed. Models for elastic, quasi-elastic, and breakup reactions are presented and compared with experimental data. Energy-dependent interaction cross sections and secondary spectra are presented based on theoretical models and the limited experimental data base.
NASA Astrophysics Data System (ADS)
Betancourt, Minerba; Minerva Collaboration
2017-01-01
MINERvA is a neutrino scattering experiment to make precision measurements of cross sections and investigate nuclear effects. A precise understanding of neutrino interactions is crucial for the neutrino oscillation program. Several cross sections will be presented, including pion production, kaon production as well as direct comparisons of the same process on different nuclei. Comparisons with theoretical models are reported.
Chiva, M; Saperas, N; Ribes, E
2011-12-01
In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and conclude that the appearance of precursor (intermediate) molecules facilitated the development of complex patterns of condensation and, as a consequence, a great diversity of forms in the sperm cell nuclei Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovici, A.; Schmid, K. W.; Faessler, A.
The structure of neutron-rich nuclei in the A Asymptotically-Equal-To 100 mass region relevant for the astrophysical r process manifests drastic changes in some isotopic chains and often sudden variations of particular nuclear properties have been identified. For a realistic description of the evolution in structure with increasing energy, spin, and isospin determined by shape coexistence and mixing beyond-mean-field approaches are required. Our recent studies represent an attempt to the self-consistent description of the shape coexistence phenomena in neutron-rich A Asymptotically-Equal-To 100 nuclei within the complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction basedmore » on the Bonn A potential in a large model space. Results concerning the triple shape coexistence and the shape evolution in the N=58 Sr and Zr isotopes, the shape evolution in a chain of Zr nuclei, as well as the Gamow-Teller {beta}-decay properties of neutron-rich Zr and Tc nuclei are presented.« less
Crop epigenetics and the molecular hardware of genotype × environment interactions.
King, Graham J
2015-01-01
Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalization within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behavior of epigenetic marks such as DNA cytosine methylation (5mC), and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears to be a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localized ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involves specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the internal environment of plant nuclei. It is hoped that this will generate a deeper understanding of the molecular mechanisms underlying genotype × environment interactions that may be beneficial for long-term improvement of crop performance in less predictable climates.
Crop epigenetics and the molecular hardware of genotype × environment interactions
King, Graham J.
2015-01-01
Crop plants encounter thermal environments which fluctuate on a diurnal and seasonal basis. Future climate resilient cultivars will need to respond to thermal profiles reflecting more variable conditions, and harness plasticity that involves regulation of epigenetic processes and complex genomic regulatory networks. Compartmentalization within plant cells insulates the genomic central processing unit within the interphase nucleus. This review addresses the properties of the chromatin hardware in which the genome is embedded, focusing on the biophysical and thermodynamic properties of DNA, histones and nucleosomes. It explores the consequences of thermal and ionic variation on the biophysical behavior of epigenetic marks such as DNA cytosine methylation (5mC), and histone variants such as H2A.Z, and how these contribute to maintenance of chromatin integrity in the nucleus, while enabling specific subsets of genes to be regulated. Information is drawn from theoretical molecular in vitro studies as well as model and crop plants and incorporates recent insights into the role epigenetic processes play in mediating between environmental signals and genomic regulation. A preliminary speculative framework is outlined, based on the evidence of what appears to be a cohesive set of interactions at molecular, biophysical and electrostatic level between the various components contributing to chromatin conformation and dynamics. It proposes that within plant nuclei, general and localized ionic homeostasis plays an important role in maintaining chromatin conformation, whilst maintaining complex genomic regulation that involves specific patterns of epigenetic marks. More generally, reversible changes in DNA methylation appear to be consistent with the ability of nuclear chromatin to manage variation in external ionic and temperature environment. Whilst tentative, this framework provides scope to develop experimental approaches to understand in greater detail the internal environment of plant nuclei. It is hoped that this will generate a deeper understanding of the molecular mechanisms underlying genotype × environment interactions that may be beneficial for long-term improvement of crop performance in less predictable climates. PMID:26594221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.
Here, despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results aremore » complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.« less
STM images of carbon-nanotube quantum dots: Seeing a Wigner molecule of correlated electrons
NASA Astrophysics Data System (ADS)
Secchi, Andrea; Rontani, Massimo
2011-03-01
The paradigm of few-electron complexes in quantum dots (QDs) relies on the idea that the lowest quantized levels are filled according to Pauli's exclusion principle. If Coulomb repulsion is sufficiently strong to overcome the kinetic energy cost of localization, a different scenario is predicted: a ``Wigner'' molecule (WM) forms, made of electrons frozen in space according to a geometrical pattern. Despite considerable experimental effort, evidence of the WM in semiconductor QDs has been elusive so far. Here we demonstrate theoretically that WMs occur in gate-defined QDs embedded in typical semiconducting carbon nanotubes (CNTs). The unambiguous signatures of the WM state must be searched in the scanning tunneling microscopy (STM) images of the electrons. Through exact diagonalisation (ED) calculations, we unveil the inherent features of the electron molecular states. We show that, like nuclei in a usual molecule, electrons have localized wave functions and hence negligible exchange interactions. ED results for single and double QDs provide a simple interpretation for transport experiments in ultraclean CNTs.
Unexpectedly large charge radii of neutron-rich calcium isotopes
Garcia Ruiz, R. F.; Bissell, M. L.; Blaum, K.; ...
2016-02-08
Here, despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results aremore » complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-rich atomic nuclei.« less
Outer crust of nonaccreting cold neutron stars
NASA Astrophysics Data System (ADS)
Rüster, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Jürgen
2006-03-01
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.
High-precision half-life determination for 21Na using a 4 π gas-proportional counter
NASA Astrophysics Data System (ADS)
Finlay, P.; Laffoley, A. T.; Ball, G. C.; Bender, P. C.; Dunlop, M. R.; Dunlop, R.; Hackman, G.; Leslie, J. R.; MacLean, A. D.; Miller, D.; Moukaddam, M.; Olaizola, B.; Severijns, N.; Smith, J. K.; Southall, D.; Svensson, C. E.
2017-08-01
A high-precision half-life measurement for the superallowed β+ transition between the isospin T =1 /2 mirror nuclei 21Na and 21Ne has been performed at the TRIUMF-ISAC radioactive ion beam facility yielding T1 /2=22.4506 (33 ) s, a result that is a factor of 4 more precise than the previous world-average half-life for 21Na and represents the single most precisely determined half-life for a transition between mirror nuclei to date. The contribution to the uncertainty in the 21Na F tmirror value due to the half-life is now reduced to the level of the nuclear-structure-dependent theoretical corrections, leaving the branching ratio as the dominant experimental uncertainty.
Uncertainty quantification and propagation in nuclear density functional theory
Schunck, N.; McDonnell, J. D.; Higdon, D.; ...
2015-12-23
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this study, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statisticalmore » analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.« less
The B(E2;4^+1->2^+1) / B(E2;2^+1->0^+1) Ratio in Even-Even Nuclei
NASA Astrophysics Data System (ADS)
Loelius, C.; Sharon, Y. Y.; Zamick, L.; G"Urdal, G.
2009-10-01
We considered 207 even-even nuclei throughout the chart of nuclides for which the NNDC Tables had data on the energies and lifetimes of the 2^+1 and 4^+1 states. Using these data we calculated for each nucleus the electric quadrupole transition strengths B(E2;4^+1->2^+1) and B(E2;2^+1->0^+1), as well as their ratio. The internal conversion coefficients were obtained by using the NNDC HSICC calculator. For each nucleus we plotted the B(E2) ratio against A, N, and Z. We found that for close to 90% of the nuclei considered the ratio had values between 0.5 and 2.5. Most of the outliers had magic numbers of protons or neutrons. Our ratio results were compared with the theoretical predictions for this ratio by different models--10/7 in the rotational model and 2 in the simplest vibrational model. In the rotational regions (for 150 < A < 180 and A > 220) the ratios were indeed close to 10/7. For the few nuclei thought to be vibrational the ratios were usually less than 2. Otherwise, we got a wide scatter of ratio values. Hence other models, including the NpNn scheme, must be considered in interpreting these results.
Intermediate-energy nuclear chemistry workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, G.W.; Giesler, G.C.; Liu, L.C.
1981-05-01
This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.
NASA Astrophysics Data System (ADS)
Bonaccorso, Angela
2015-02-01
Among exotic nuclei those at the drip line which are unstable against neutron emission are particularly interesting because they convey information on the nuclear force in the most extreme situations. Strictly speaking they are not ''nuclei" but they exist thanks to long living resonances between a neutron and a bound ''core" nucleus. Adding one more neutron they become bound and are called "borromean". Being particularly exotic they have attracted much attention in past years, see for example Refs.[1, 2, 3]. One very challenging example is 13Be whose level ordering has been discussed in a large number of papers in which it has been studied by transfer [4] and fragmentation experiments [5]-[11], or it has been discussed theoretically[12]-[19]. Although projectile fragmentation spectra show evident similarities, the interpretations of data all differ from each other. In this paper we argue that a way trough the problem could be to try to establish first, or at the same time, the quite elusive "nature" of the second s-state in the Beryllium isotopes with A=9-14. On the other hand there are other recent neutron removal experiments leading to nuclei unstable by one or more proton emissions [20], and thus somewhat mirror to borromean nuclei, performed with nuclei close to the proton drip line. It has been shown that by taking in coincidence all (charged) particles but the removed neutron, reconstructing the invariant mass and gating on the ground state peak, it is possible to obtain the longitudinal momentum distribution of the unbound "core". One can link it to the original wave function of the bound orbital and thus determine the initial neutron angular momentum from the shape of the distribution and the initial occupation probability from the absolute removal cross section. Then it is clear that modern experiments and theories are able to study unstable nuclei with the same degree of accuracy as stable nuclei. Such a line of research offers a great potential for numerous further studies beyond the drip line.
Zhang, Tao; Paulson, James R; Bakhrebah, Muhammed; Kim, Ji Hun; Nowell, Cameron; Kalitsis, Paul; Hudson, Damien F
2016-05-01
Condensin is an integral component of the mitotic chromosome condensation machinery, which ensures orderly segregation of chromosomes during cell division. In metazoans, condensin exists as two complexes, condensin I and II. It is not yet clear what roles these complexes may play outside mitosis, and so we have examined their behaviour both in normal interphase and in premature chromosome condensation (PCC). We find that a small fraction of condensin I is retained in interphase nuclei, and our data suggests that this interphase nuclear condensin I is active in both gene regulation and chromosome condensation. Furthermore, live cell imaging demonstrates condensin II dramatically increases on G1 nuclei following completion of mitosis. Our PCC studies show condensins I and II and topoisomerase II localise to the chromosome axis in G1-PCC and G2/M-PCC, while KIF4 binding is altered. Individually, condensins I and II are dispensable for PCC. However, when both are knocked out, G1-PCC chromatids are less well structured. Our results define new roles for the condensins during interphase and provide new information about the mechanism of PCC.
NASA Astrophysics Data System (ADS)
Marketin, T.; Huther, L.; Martínez-Pinedo, G.
2016-02-01
Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be taken into account consistently in modern evaluations of half-lives. Both the β -decay half-lives and β -delayed neutron emission probabilities have a noticeable impact on the results of heavy element nucleosynthesis models.
Bistafa, Carlos; Kitamura, Yukichi; Martins-Costa, Marilia T C; Nagaoka, Masataka; Ruiz-López, Manuel F
2018-06-12
We describe a method to locate stationary points in the free-energy hypersurface of complex molecular systems using high-level correlated ab initio potentials. In this work, we assume a combined QM/MM description of the system although generalization to full ab initio potentials or other theoretical schemes is straightforward. The free-energy gradient (FEG) is obtained as the mean force acting on relevant nuclei using a dual level strategy. First, a statistical simulation is carried out using an appropriate, low-level quantum mechanical force-field. Free-energy perturbation (FEP) theory is then used to obtain the free-energy derivatives for the target, high-level quantum mechanical force-field. We show that this composite FEG-FEP approach is able to reproduce the results of a standard free-energy minimization procedure with high accuracy, while simultaneously allowing for a drastic reduction of both computational and wall-clock time. The method has been applied to study the structure of the water molecule in liquid water at the QCISD/aug-cc-pVTZ level of theory, using the sampling from QM/MM molecular dynamics simulations at the B3LYP/6-311+G(d,p) level. The obtained values for the geometrical parameters and for the dipole moment of the water molecule are within the experimental error, and they also display an excellent agreement when compared to other theoretical estimations. The developed methodology represents therefore an important step toward the accurate determination of the mechanism, kinetics, and thermodynamic properties of processes in solution, in enzymes, and in other disordered chemical systems using state-of-the-art ab initio potentials.
Localization of mRNA for CHRNA7 in human fetal brain.
Agulhon, C; Abitbol, M; Bertrand, D; Malafosse, A
1999-08-02
The aim of this study was to determine the regional distribution in situ of the mRNA for the alpha 7 subunit of the neuronal nicotinic acetylcholine receptor in human fetal brain. We found high levels of alpha 7 gene expression in nuclei that receive sensory information, such as those of the neocortex and hippocampus, the thalamic nuclei, the reticular thalamic nucleus, the pontine nuclei and the superior olive complex. These data support a possible regulatory function for alpha 7-containing receptors in sensory processing, which may be involved in the pathological physiology of schizophrenia and autism. Early alpha 7 gene expression is also consistent with a morphogenetic role for alpha 7 receptors in central nervous system development.
Manifestation of α clustering in 10Be via α -knockout reaction
NASA Astrophysics Data System (ADS)
Lyu, Mengjiao; Yoshida, Kazuki; Kanada-En'yo, Yoshiko; Ogata, Kazuyuki
2018-04-01
Background: Proton-induced α -knockout reactions may allow direct experimental observation of α clustering in nuclei. This is obtained by relating the theoretical descriptions of clustering states to the experimental reaction observables. It is desired to introduce microscopic structure models into the theoretical frameworks for α -knockout reactions. Purpose: Our goal is to probe the α clustering in the 10Be nucleus by proton-induced α -knockout reaction observables. Method: We adopt an extended version of the Tohsaki-Horiuchi-Schuck-Röpke wave function of 10Be and integrate it with the distorted-wave impulse approximation framework for the calculation of (p ,p α ) -knockout reactions. Results: We make the first calculation for the 10Be(p ,p α )6He reaction at 250 MeV by implementing a microscopic α -cluster wave function, and we predict the triple-differential cross section (TDX). Furthermore, by constructing artificial states of the target nucleus 10Be with compact or dilute spatial distributions, the TDX is found to be highly sensitive to the extent of clustering in the target nuclei. Conclusions: These results provide reliable manifestation of α clustering in 10Be.
S-factor for radiative capture reactions for light nuclei at astrophysical energies
NASA Astrophysics Data System (ADS)
Ghasemi, Reza; Sadeghi, Hossein
2018-06-01
The astrophysical S-factors of thermonuclear reactions, including radiative capture reactions and their analysis in the frame of different theoretical models, are the main source of nuclear processes. We have done research on the radiative capture reactions importance in the framework of a potential model. Investigation of the reactions in the astrophysical energies is of great interest in the aspect of astrophysics and nuclear physics for developing correct models of burning and evolution of stars. The experimental measurements are very difficult and impossible because of these reactions occurrence at low-energies. In this paper we do a calculation on radiative capture astrophysical S-factors for nuclei in the mass region A < 17. We calculate the astrophysical factor for the dipole electronic transition E1 and magnetic dipole transition M1 and electric quadrupole transition E2 by using the M3Y potential for non-resonances and resonances captures. Then we have got the parameter of a central part and spin-orbit part of M3Y potential and spectroscopic factor for reaction channels. For the astrophysical S-factor of this article the good agreement is achieved In comparison with experimental data and other theoretical methods.
NASA Astrophysics Data System (ADS)
Mazzuca, James W.; Haut, Nathaniel K.
2018-06-01
It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.
Mazzuca, James W; Haut, Nathaniel K
2018-06-14
It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skobelev, N. K., E-mail: skobelev@jinr.ru
2016-07-15
Experimental data on the cross sections for channels of fusion and transfer reactions induced by beams of radioactive halo nuclei and clustered and stable loosely bound nuclei were analyzed, and the results of this analysis were summarized. The interplay of the excitation of single-particle states in reaction-product nuclei and direct reaction channels was established for transfer reactions. Respective experiments were performed in stable ({sup 6}Li) and radioactive ({sup 6}He) beams of the DRIBs accelerator complex at the Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, and in deuteron and {sup 3}He beams of the U-120M cyclotron at themore » Nuclear Physics Institute, Academy Sciences of Czech Republic (Řež and Prague, Czech Republic). Data on subbarrier and near-barrier fusion reactions involving clustered and loosely bound light nuclei ({sup 6}Li and {sup 3}He) can be described quite reliably within simple evaporation models with allowance for different reaction Q-values and couple channels. In reactions involving halo nuclei, their structure manifests itself most strongly in the region of energies below the Coulomb barrier. Neutron transfer occurs with a high probability in the interactions of all loosely bound nuclei with light and heavy stable nuclei at positive Q-values. The cross sections for such reactions and the respective isomeric ratios differ drastically for nucleon stripping and nucleon pickup mechanisms. This is due to the difference in the population probabilities for excited single-particle states.« less
Rare isotopes and the sound of dilute nuclear matter
NASA Astrophysics Data System (ADS)
Papakonstantinou, P.
2018-04-01
Dilute baryonic matter, at densities below the normal saturation density of symmetric matter, is found on the crust of neutron stars and in collapsing supernova matter, its properties determining the evolution of those stellar objects. It is also readily found on the surface of ordinary and exotic atomic nuclei and lives fleetingly in the form of space-extended resonances of excited nucleons. Liminal states of nuclear matter, between saturation and full evaporation or clusterization, are manifest in the structure of symmetric nuclei through clustering and of very asymmetric rare species in haloes and the neutron skin; they stand literally at the threshold of a nucleus's response to hadronic probes, including processes which hinder or enable fusion. In this contribution I focus on excited states, and in particular exotic or not-so-exotic dipole excitation modes of N = Z nuclei and neutron-rich species, including new theoretical results on threshold strength. Modes of special interest are vibrations of and within diffuse surface layers and alpha-cluster oscillations. The modeling of such processes is relevant, directly or indirectly, for the description of reactions at astrophysical energies.
Lifetime measurements in transitional nuclei by fast electronic scintillation timing
NASA Astrophysics Data System (ADS)
Caprio, M. A.; Zamfir, N. V.; Casten, R. F.; Amro, H.; Barton, C. J.; Beausang, C. W.; Cooper, J. R.; Gürdal, G.; Hecht, A. A.; Hutter, C.; Krücken, R.; McCutchan, E. A.; Meyer, D. A.; Novak, J. R.; Pietralla, N.; Ressler, J. J.; Berant, Z.; Brenner, D. S.; Gill, R. L.; Regan, P. H.
2002-10-01
A new generation of experiments studying nuclei in spherical-deformed transition regions has been motivated by the introduction of innovative theoretical approaches to the treatment of these nuclei. The important structural signatures in the transition regions, beyond the basic yrast level properties, involve γ-ray transitions between low-spin, non-yrast levels, and so information on γ-ray branching ratios and absolute matrix elements (or level lifetimes) for these transitions is crucial. A fast electronic scintillation timing (FEST) system [H. Mach, R. L. Gill, and M. Moszyński, Nucl. Instrum. Methods A 280, 49 (1989)], making use of BaF2 and plastic scintillation detectors, has been implemented at the Yale Moving Tape Collector for the measurement of lifetimes of states populated in β^ decay. Experiments in the A100 (Pd, Ru) and A150 (Dy, Yb) regions have been carried out, and a few examples will be presented. Supported by the US DOE under grants and contracts DE-FG02-91ER-40609, DE-FG02-88ER-40417, and DE-AC02-98CH10886 and by the German DFG under grant Pi 393/1.
The neutron skin thickness in nuclei with clustering at low densities
NASA Astrophysics Data System (ADS)
Nooraihan, A.; Usmani, Q. N.; Sauli, Z.; Anwar, K.
2016-11-01
This study concentrates on searching for a dependable, fully microscopic theory to find out new behaviours and understand their consequences for theoretical pictures. The models for nuclear structure are tested, refined and developed by acquiring new data [1][2][3]. This data is useful for astrophysical calculations and predictions. In density functional theories, including the ETF theory, the equation of state (EOS) of symmetric nuclear matter (SNM), is an important measure. Empirically, we receive information about quantities relating to SNM, all these measures are thoroughly tested. In the absence of any unswerving knowledge below this density we shall take that energy still rises up to some density, neglecting possible small fluctuations, as the density is brought down. Our discussion at the moment is without the Coulomb forces applicable only for the hypothetical nuclear matter; they are added finally to correctly portray the actual picture in nuclei. Our approach in this study is macroscopic. This work concludes that the neutron skin thickness in nuclei is found to reduce significantly, for the reason of clustering.
Vicente, Juan-Jesus; Cande, W. Zacheus
2014-01-01
The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered. PMID:25057014
Charge migration and charge transfer in molecular systems
Wörner, Hans Jakob; Arrell, Christopher A.; Banerji, Natalie; Cannizzo, Andrea; Chergui, Majed; Das, Akshaya K.; Hamm, Peter; Keller, Ursula; Kraus, Peter M.; Liberatore, Elisa; Lopez-Tarifa, Pablo; Lucchini, Matteo; Meuwly, Markus; Milne, Chris; Moser, Jacques-E.; Rothlisberger, Ursula; Smolentsev, Grigory; Teuscher, Joël; van Bokhoven, Jeroen A.; Wenger, Oliver
2017-01-01
The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review. PMID:29333473
Outer crust of nonaccreting cold neutron stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruester, Stefan B.; Hempel, Matthias; Schaffner-Bielich, Juergen
The properties of the outer crust of nonaccreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables, updating in particular the classic work of Baym, Pethick, and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 are used and a thorough comparison of many modern theoretical nuclear models, both relativistic and nonrelativistic, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared to check their differences concerning the neutron drip line, magic neutron numbers, the equationmore » of state, and the sequence of neutron-rich nuclei up to the drip line in the outer crust of nonaccreting cold neutron stars.« less
Nuclear half-lives for {alpha}-radioactivity of elements with 100 {<=} Z {<=} 130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, P. Roy; Samanta, C.; Physics Department, Gottwald Science Center, University of Richmond, Richmond, VA 23173
2008-11-15
Theoretical estimates for the half-lives of about 1700 isotopes of heavy elements with 100 {<=} Z {<=} 130 are tabulated using theoretical Q-values. The quantum mechanical tunneling probabilities are calculated within a WKB framework using microscopic nuclear potentials. The microscopic nucleus-nucleus potentials are obtained by folding the densities of interacting nuclei with a density-dependent M3Y effective nucleon-nucleon interaction. The {alpha}-decay half-lives calculated in this formalism using the experimental Q-values were found to be in good agreement over a wide range of experimental data spanning about 20 orders of magnitude. The theoretical Q-values used for the present calculations are extracted frommore » three different mass estimates viz. Myers-Swiatecki, Muntian-Hofmann-Patyk-Sobiczewski, and Koura-Tachibana-Uno-Yamada.« less
NASA Technical Reports Server (NTRS)
Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.
1985-01-01
The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.
The case against climate regulation via oceanic phytoplankton sulphur emissions.
Quinn, P K; Bates, T S
2011-11-30
More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis--referred to as CLAW--the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis.
Song, Jie; Xiao, Liang; Lian, Zhichao
2017-03-01
This paper presents a novel method for automated morphology delineation and analysis of cell nuclei in histopathology images. Combining the initial segmentation information and concavity measurement, the proposed method first segments clusters of nuclei into individual pieces, avoiding segmentation errors introduced by the scale-constrained Laplacian-of-Gaussian filtering. After that a nuclear boundary-to-marker evidence computing is introduced to delineate individual objects after the refined segmentation process. The obtained evidence set is then modeled by the periodic B-splines with the minimum description length principle, which achieves a practical compromise between the complexity of the nuclear structure and its coverage of the fluorescence signal to avoid the underfitting and overfitting results. The algorithm is computationally efficient and has been tested on the synthetic database as well as 45 real histopathology images. By comparing the proposed method with several state-of-the-art methods, experimental results show the superior recognition performance of our method and indicate the potential applications of analyzing the intrinsic features of nuclei morphology.
Reversible changes in size of cell nuclei isolated from Amoeba proteus: role of the cytoskeleton.
Pomorski, P; Grebecka, L; Grebecki, A; Makuch, R
2000-01-01
Micrurgically isolated interphasal nuclei of Amoeba proteus, which preserve F-actin cytoskeletal shells on their surface, shrink after perfusion with imidazole buffer without ATP, and expand to about 200% of their cross-sectional area upon addition of pyrophosphate. These changes in size may be reproduced several times with the same nucleus. The shrunken nuclei are insensitive to the osmotic effects of sugars and distilled water, whereas the expanded ones react only to the distilled water, showing further swelling. The shrinking-expansion cycles are partially inhibited by cytochalasins. They are attributed to the state of actomyosin complex in the perinuclear cytoskeleton, which is supposed to be in the rigor state in the imidazole buffer without ATP, and to dissociate in the presence of pyrophosphate. Inflow of external medium to the nuclei during dissociation of the myosin from the perinuclear F-actin may be due to colloidal osmosis depending on other macromolecular components of the karyoplasm.
Are cometary nuclei primordial rubble piles?
NASA Technical Reports Server (NTRS)
Weissman, P. R.
1986-01-01
Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.
NASA Astrophysics Data System (ADS)
Adjei-Acheamfour, Mischa; Storek, Michael; Böhmer, Roland
2017-05-01
Previous deuteron nuclear magnetic resonance studies revealed conflicting evidence regarding the possible motional heterogeneity of the water dynamics on the hydrate lattice of an ice-like crystal. Using oxygen-17 nuclei as a sensitive quadrupolar probe, the reorientational two-time correlation function displays a clear nonexponentiality. To check whether this dispersive behavior is a consequence of dynamic heterogeneity or rather of an intrinsic nonexponentiality, a multidimensional, four-time magnetic resonance experiment was devised that is generally applicable to strongly quadrupolarly perturbed half-integer nuclei such as oxygen-17. Measurements of an appropriate four-time function demonstrate that it is possible to select a subensemble of slow water molecules. Its mean time scale is compared to theoretical predictions and evidence for significant motional heterogeneity is found.
Nuclear dipole polarizability from mean-field modeling constrained by chiral effective field theory
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Lim, Yeunhwan; Holt, Jeremy W.; Ko, Che Ming
2018-02-01
We construct a new Skyrme interaction Skχm* by fitting the equation of state and nucleon effective masses in asymmetric nuclear matter from chiral two- and three-body forces as well as the binding energies of finite nuclei. Employing this interaction to study the electric dipole polarizabilities of 48Ca, 68Ni, 120Sn, and 208Pb in the random-phase approximation, we find that the theoretical predictions are in good agreement with experimentally measured values without additional fine tuning of the Skyrme interaction, thus confirming the usefulness of the new Skyrme interaction in studying the properties of nuclei. We further use this interaction to study the neutron skin thicknesses of 48Ca and 208Pb, and they are found to be consistent with the experimental data.
Reipert, S; Reipert, B M; Allen, T D
1994-09-01
The aim of the work is to visualise nuclear pore complexes (NPCs) in mammalian cells by high resolution scanning electron microscopy. A detergent-free isolation protocol was employed to obtain clean nuclei from the haemopoietic cell line K 562. Nuclear isolation was performed by mechanical homogenisation under hypotonic conditions followed by purification of the nuclear fraction. The isolated nuclei were attached to silicon chips, fixed, critical point dried, and sputter coated with a thin film (3-4 nm) of tantalum. Analysis of the nuclear surface by scanning electron microscopy (SEM) revealed a strong sensitivity of the outer nuclear membrane (ONM) to disruption during the isolation procedure. A significant reduction of the characteristic pattern of damage to the ONM was achieved by means of an isopicnic centrifugation on an isoosmolar balanced Percoll gradient. Analysis of the population of isolated nuclei by flow cytometry showed no signs of cell cycle specific losses of nuclei during isolation. The SEM investigations of the morphology of the nuclear envelope (NE) and of substructural details of NPCs and polyribosomes were performed using an in-lens field emission scanning electron microscope.
Raut, Vishal V.; Pandey, Shashibhal M.; Sainis, Jayashree K.
2011-01-01
Background and Scope In eukaryotes, chromatin remodelling complexes are shown to be responsible for nucleosome mobility, leading to increased accessibility of DNA for DNA binding proteins. Although the existence of such complexes in plants has been surmised mainly at the genetic level from bioinformatics studies and analysis of mutants, the biochemical existence of such complexes has remained unexplored. Methods Histone H1-depleted donor chromatin was prepared by micrococcal nuclease digestion of wheat nuclei and fractionation by exclusion chromatography. Nuclear extract was partially purified by cellulose phosphate ion exchange chromatography. Histone octamer trans-transfer activity was analysed using the synthetic nucleosome positioning sequence in the absence and presence of ATP and its analogues. ATPase activity was measured as 32Pi released using liquid scintillation counting. Key Results ATP-dependent histone octamer trans-transfer activity, partially purified from wheat nuclei using cellulose phosphate, showed ATP-dependent octamer displacement in trans from the H1-depleted native donor chromatin of wheat to the labelled synthetic nucleosome positioning sequence. It also showed nucleosome-dependent ATPase activity. Substitution of ATP by ATP analogues, namely ATPγS, AMP-PNP and ADP abolished the octamer trans-transfer, indicating the requirement of ATP hydrolysis for this activity. Conclusions ATP-dependent histone octamer transfer in trans is a recognized activity of chromatin remodelling complexes required for chromatin structure dynamics in non-plant species. Our results suggested that wheat nuclei also possess a typical chromatin remodelling activity, similar to that in other eukaryotes. This is the first report on chromatin remodelling activity in vitro from plants. PMID:21896571
1978-01-01
This laboratory has previously isolated a fraction from rat liver nuclei consisting of nuclear pore complexes associated with the proteinaceous lamina which underlies the inner nuclear membrane. Using protein eluted from sodium dodecyl sulfate (SDS) gels, we have prepared antibodies in chickens to each of the three predominant pore complex- lamina bands. Ouchterlony double diffusion analysis shows that each of these individual bands cross-reacts strongly with all three antisera. In immunofluorescence localization performed on tissue culture cells with these antibodies, we obtain a pattern of intense staining at the periphery of the interphase nucleus, with little or no cytoplasmic reaction. Electron microscope immunoperoxidase staining of rat liver nuclei with these antibodies labels exclusively the nuclear periphery. Furthermore, reaction occurs in areas which contain the lamina, but not at the pore complexes. While our isolation procedure extracts the internal contents of nuclei completely, semiquantitative Ouchterlony analysis shows that it releases negligible amounts of these lamina antigens. Considered together, our results indicate that these three bands represent major components of a peripheral nuclear lamina, and are not structural elements of an internal "nuclear protein matrix." Fluorescence microscopy shows that the perinuclear interphase localization of these lamina proteins undergoes dramatic changes during mitosis. Concomitant with nuclear envelope disassembly in prophase, these antigens assume a diffuse localization throughout the cell. This distribution persists until telophase, when the antigens become progressively and completely localized at the surface of the daughter chromosome masses. We propose that the lamina is a biological polymer which can undergo reversible disassembly during mitosis. PMID:102651
16th International Conference on Nuclear Structure: NS2016
Galindo-Uribarri, Alfredo
2016-10-28
Every two years the Nuclear Structure (NS) conference series brings together researchers from an international community of experimental and theoretical nuclear physicists to present and discuss their latest results in nuclear structure. This biennial conference covered the latest results on experimental and theoretical research into the structure of nuclei at the extremes of isospin, excitation energy, mass, and angular momentum. Topics included many of the most exciting areas of modern nuclear structure research such as transitional behavior, nuclear structure and its evolution across the nuclear landscape, shell structure, collectivity, nuclear structure with radioactive beams, and macroscopic and microscopic approaches tomore » nuclear structure.« less
The Interaction-Activity Connection
NASA Technical Reports Server (NTRS)
Borne, Kirk D.
1996-01-01
A review is presented of the numerous studies that have been undertaken to investigate the likely interaction-activity connection among galaxies. Both observational evidence and theoretical supporting models are reviewed. Some specific examples of "interactive" galaxies from the author's own research are presented: (a) the collision-induced AGN (Active Galactic Nuclei) activity in the radio jet source 3C278; and (b) the collision-induced starburst activity in the spectacular "Cartwheel" ring galaxy. Some comments are offered concerning some of the more promising theoretical investigations that are now taking place. A few words of warning are also offered about the possible misinterpretation of putative collision-induced morphologies among some galaxy samples.
16th International Conference on Nuclear Structure: NS2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galindo-Uribarri, Alfredo
Every two years the Nuclear Structure (NS) conference series brings together researchers from an international community of experimental and theoretical nuclear physicists to present and discuss their latest results in nuclear structure. This biennial conference covered the latest results on experimental and theoretical research into the structure of nuclei at the extremes of isospin, excitation energy, mass, and angular momentum. Topics included many of the most exciting areas of modern nuclear structure research such as transitional behavior, nuclear structure and its evolution across the nuclear landscape, shell structure, collectivity, nuclear structure with radioactive beams, and macroscopic and microscopic approaches tomore » nuclear structure.« less
Czubryt, M P; Russell, J C; Sarantopoulos, J; Gilchrist, J S; Pierce, G N
1997-11-01
The putative role of the nuclear nucleoside triphosphatase (NTPase) is to provide energy to the nuclear pore complex for poly A(+) mRNA export. Previous work has demonstrated that liver nuclear NTPase activity is greater in 6 month old corpulent (cp/cp) female JCR:LA rats, a hyperlipidemic rat model, compared to lean (+/?) animals. This increase appeared to be related to increases in nuclear membrane cholesterol content. The current study extended these initial data to compare NTPase activity as a function of age and sex in isolated JCR:LA-cp rat liver nuclei, to further test the hypothesis that nuclear membrane cholesterol may modulate NTPase activity. NTPase activity was increased in cp/cp female animals compared to +/? females at all ages studied, with Vmax values increased by 60-176%. Membrane integrity of cp/cp female nuclei was reduced compared to +/? female nuclei. Nuclear membrane cholesterol levels increased linearly with age by 50, 150 and 250% in 3, 6 and 9 month old cp/cp females over leans. In contrast, nuclei from cp/cp males exhibited only minor, isolated changes in NTPase activity. Furthermore, there were no significant changes in nuclear cholesterol content or membrane integrity in the less hyperlipidemic male animals at any age. These data suggest that altered lipid metabolism may lead to changes in nuclear membrane structure, which in turn may alter NTPase activity and functioning of the nuclear pore complex.
The NIMA Kinase Is Required To Execute Stage-Specific Mitotic Functions after Initiation of Mitosis
Govindaraghavan, Meera; Lad, Alisha A.
2014-01-01
The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events. PMID:24186954
Sensitivity of Cirrus Properties to Ice Nuclei Abundance
NASA Technical Reports Server (NTRS)
Jensen, Eric
2014-01-01
The relative importance of heterogeneous and homogeneous ice nucleation for cirrus formation remains an active area of debate in the cloud physics community. From a theoretical perspective, a number of modeling studies have investigated the sensitivity of ice number concentration to the nucleation mechanism and the abundance of ice nuclei. However, these studies typically only addressed ice concentration immediately after ice nucleation. Recent modeling work has shown that the high ice concentrations produced by homogeneous freezing may not persist very long, which is consistent with the low frequency of occurrence of high ice concentrations indicated by cirrus measurements. Here, I use idealized simulations to investigate the impact of ice nucleation mechanism and ice nuclei abundance on the full lifecycle of cirrus clouds. The primary modeling framework used includes different modes of ice nucleation, deposition growth/sublimation, aggregation, sedimentation, and radiation. A limited number of cloud-resolving simulations that treat radiation/dynamics interactions will also been presented. I will show that for typical synoptic situations with mesoscale waves present, the time-averaged cirrus ice crystal size distributions and bulk cloud properties are less sensitive to ice nucleation processes than might be expected from the earlier simple ice nucleation calculations. I will evaluate the magnitude of the ice nuclei impact on cirrus for a range of temperatures and mesoscale wave specifications, and I will discuss the implications for cirrus aerosol indirect effects in general.
Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway
1994-01-01
Karyogamy is the process where haploid nuclei fuse to form a diploid nucleus during yeast mating. We devised a novel genetic screen that identified five new karyogamy (KAR) genes and three new cell fusion (FUS) genes. The kar mutants fell into two classes that represent distinct events in the yeast karyogamy pathway. Class I mutations blocked congression of the nuclei due to cytoplasmic microtubule defects. In Class II mutants, nuclear congression proceeded and the membranes of apposed nuclei were closely aligned but unfused. In vitro, Class II mutant membranes were defective in a homotypic ER/nuclear membrane fusion assay. We propose that Class II mutants define components of a novel membrane fusion complex which functions during vegetative growth and is recruited for karyogamy. PMID:8051211
Update on matter radii of O-2417
NASA Astrophysics Data System (ADS)
Fortune, H. T.
2018-05-01
The appearance of new theoretical papers concerning matter radii of neutron-rich oxygen nuclei has prompted a return to this problem. New results provide no better agreement with experimental values than did previous calculations with a simple model. I maintain that there is no reason to adjust the 22O core in the 24O nucleus, and the case of 24O should be reexamined experimentally.
Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication
Zhang, Alice Tianbu; Langley, Alexander R.; Christov, Christo P.; Kheir, Eyemen; Shafee, Thomas; Gardiner, Timothy J.; Krude, Torsten
2011-01-01
Non-coding Y RNAs are required for the initiation of chromosomal DNA replication in mammalian cells. It is unknown how they perform this function or if they associate with a nuclear structure during DNA replication. Here, we investigate the association of Y RNAs with chromatin and their interaction with replication proteins during DNA replication in a human cell-free system. Our results show that fluorescently labelled Y RNAs associate with unreplicated euchromatin in late G1 phase cell nuclei before the initiation of DNA replication. Following initiation, Y RNAs are displaced locally from nascent and replicated DNA present in replication foci. In intact human cells, a substantial fraction of endogenous Y RNAs are associated with G1 phase nuclei, but not with G2 phase nuclei. Y RNAs interact and colocalise with the origin recognition complex (ORC), the pre-replication complex (pre-RC) protein Cdt1, and other proteins implicated in the initiation of DNA replication. These data support a molecular ‘catch and release’ mechanism for Y RNA function during the initiation of chromosomal DNA replication, which is consistent with Y RNAs acting as replication licensing factors. PMID:21610089
Reaction of 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl)phenoxazine with certain group II-IV metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karsanov, I.V.; Ivakhnenko, E.P.; Khandkarova, V.S.
1987-07-10
It has already been shown that 2-amino-4,6-di(tert-butyl)phenol reacts with 3,5-di(tert-butyl)-o-benzoquinone to form 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl)phenoxazine (I), which is readily reduced by alkali metals to the corresponding semiquinone anion-radical (II), and further to the diamagnetic dianion (IIA). They made use of this ability of (I) to undergo reduction to prepare anion-radical salts with different group II-IV metals in the form of their amalgams. In the EPR spectrum of the anion-radical complex (III) formed in the reduction of (I) by a thallium amalgam, the HFI constants of the unpaired electron with magnetic nuclei of the organic ligand are close to those of the K-saltmore » (II), and a substantial HFI is observed with the /sup 203,205/Tl nuclei. This unequivocally proves that the complex has a semiquinone structure, since an HFI on the /sup 203,205/Tl nuclei of such an order of magnitude is characteristic of o-benzoquinone salts with a thallium cation.« less
Hisano, Setsuji; Sawada, Kazuhiko; Kawano, Michihiro; Kanemoto, Mizuki; Xiong, Guoxiang; Mogi, Koichi; Sakata-Haga, Hiromi; Takeda, Jun; Fukui, Yoshihiro; Nogami, Haruo
2002-10-30
Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) was studied in the cerebellum and precerebellar nuclei of rats using immunohistochemistry and in situ hybridization. DNPI/VGLUT2-stained mossy fibers were principally seen in the vermis (lobules I and VIII-X) and flocculus, whereas BNPI/VGLUT1-stained mossy fibers were localized throughout the cortex. Some vermal and floccular mossy fibers were stained for both transporters. High levels of DNPI/VGLUT2 mRNA hybridization signals were demonstrated in many neurons throughout the vestibular nuclear complex as well as the lateral reticular, external cuneate, inferior olivary and deep cerebellar nuclei. Significant BNPI/VGLUT1 mRNA signals were demonstrated in the lateral reticular nucleus and vestibular nuclear complex but not in the inferior olivary nucleus, indicating that climbing fibers have DNPI/VGLUT2 only. These results show that DNPI/VGLUT2 is expressed preferentially to vestibulo-, reticulo- and cuneocerebellar neurons, some of which also possess BNPI/VGLUT1, suggesting some differential and co-operative functions between DNPI/VGLUT2 and BNPI/VGLUT1 in the cerebellum.
Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita
2016-01-01
Background and Aims Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. Methods The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G0/G1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain–nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Key Results Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Conclusions Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family. PMID:27594649
Sadhu, Abhishek; Bhadra, Sreetama; Bandyopadhyay, Maumita
2016-11-01
Cytological parameters such as chromosome numbers and genome sizes of plants are used routinely for studying evolutionary aspects of polyploid plants. Members of Zingiberaceae show a wide range of inter- and intrageneric variation in their reproductive habits and ploidy levels. Conventional cytological study in this group of plants is severely hampered by the presence of diverse secondary metabolites, which also affect their genome size estimation using flow cytometry. None of the several nuclei isolation buffers used in flow cytometry could be used very successfully for members of Zingiberaceae to isolate good quality nuclei from both shoot and root tissues. The competency of eight nuclei isolation buffers was compared with a newly formulated buffer, MB01, in six different genera of Zingiberaceae based on the fluorescence intensity of propidium iodide-stained nuclei using flow cytometric parameters, namely coefficient of variation of the G 0 /G 1 peak, debris factor and nuclei yield factor. Isolated nuclei were studied using fluorescence microscopy and bio-scanning electron microscopy to analyse stain-nuclei interaction and nuclei topology, respectively. Genome contents of 21 species belonging to these six genera were determined using MB01. Flow cytometric parameters showed significant differences among the analysed buffers. MB01 exhibited the best combination of analysed parameters; photomicrographs obtained from fluorescence and electron microscopy supported the superiority of MB01 buffer over other buffers. Among the 21 species studied, nuclear DNA contents of 14 species are reported for the first time. Results of the present study substantiate the enhanced efficacy of MB01, compared to other buffers tested, in the generation of acceptable cytograms from all species of Zingiberaceae studied. Our study facilitates new ways of sample preparation for further flow cytometric analysis of genome size of other members belonging to this highly complex polyploid family. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Current Status of Nuclear Physics Research
NASA Astrophysics Data System (ADS)
Bertulani, Carlos A.; Hussein, Mahir S.
2015-12-01
In this review, we discuss the current status of research in nuclear physics which is being carried out in different centers in the world. For this purpose, we supply a short account of the development in the area which evolved over the last nine decades, since the discovery of the neutron. The evolution of the physics of the atomic nucleus went through many stages as more data became available. We briefly discuss models introduced to discern the physics behind the experimental discoveries, such as the shell model, the collective model, the statistical model, the interacting boson model, etc., some of these models may be seemingly in conflict with each other, but this was shown to be only apparent. The richness of the ideas and abundance of theoretical models attests to the important fact that the nucleus is a really singular system in the sense that it evolves from two-body bound states such as the deuteron, to few-body bound states, such as 4He, 7Li, 9Be, etc. and up the ladder to heavier bound nuclei containing up to more than 200 nucleons. Clearly, statistical mechanics, usually employed in systems with very large number of particles, would seemingly not work for such finite systems as the nuclei, neither do other theories which are applicable to condensed matter. The richness of nuclear physics stems from these restrictions. New theories and models are presently being developed. Theories of the structure and reactions of neutron-rich and proton-rich nuclei, called exotic nuclei, halo nuclei, or Borromean nuclei, deal with the wealth of experimental data that became available in the last 35 years. Furthermore, nuclear astrophysics and stellar and Big Bang nucleosynthesis have become a more mature subject. Due to limited space, this review only covers a few selected topics, mainly those with which the authors have worked on. Our aimed potential readers of this review are nuclear physicists and physicists in other areas, as well as graduate students interested in pursuing a career in nuclear physics.
The synaptinemal complex in Rhoeo spathacea.
McQuade, H A; Wells, B
1975-03-01
The synaptinemal complex in meiocytes of Rhoeo spathacea is described. Unpaired zygotene chromosomes do not exhibit well defined axial cores under the ordinary fixations of electron microscopy and appear diffuse. However, the axial core is defined by ethanolic phosphotungstic acid (PTA) although it does not respond to uranyl-EDTA-lead. Thus the core appears to contain histone but not RNA and presents a condition which is modified later in pairing when lateral elements of the synaptinemal complex respond positively to both tests. The total number of attachments of synaptinemal complexes to the nuclear envelope was determined in several nuclei from serial sections. Eleven of the twelve possible attachments were found in one nucleus. It thus seems certain that all must be so attached. In the same manner all chromosomes can be seen to have an attachment to a chromocentre. Chromocentres are often very large and compound in that two kinds of heterochromatin can be distinguished. These states of chromatin within the chromocentre are considered to be a function of the degree of condensation. Segments of synaptinemal complexes are distributed randomly through sections of pachytene nuclei and long uncoiled segments of complexes are frequently found in or near the centres of median nuclear sections. Synaptinemal complexes are also found in chromocentres. Our findings suggest that on completion of pairing, which begins distally, homologous chromosomes in Rhoeo are paired throughout their entire lengths, rather than in small terminal segments only.
NASA Astrophysics Data System (ADS)
Sultana, S.; Islam, S.; Mamun, A. A.; Schlickeiser, R.
2018-01-01
A theoretical and numerical investigation has been carried out on amplitude modulated heavy nucleus-acoustic envelope solitons (HNAESs) in a degenerate relativistic quantum plasma (DRQP) system containing relativistically degenerate electrons and light nuclei, and non-degenerate mobile heavy nuclei. The cubic nonlinear Schrödinger equation, describing the nonlinear dynamics of the heavy nucleus-acoustic waves (HNAWs), is derived by employing a multi-scale perturbation technique. The dispersion relation for the HNAWs is derived, and the criteria for the occurrence of modulational instability of the HNAESs are analyzed. The localized structures (viz., envelope solitons and associated rogue waves) are found to be formed in the DRQP system under consideration. The basic features of the amplitude modulated HNAESs and associated rogue waves formed in realistic DRQP systems are briefly discussed.
Estimation of the alpha decay of Platinum isotopes using different versions of theoretical formula
NASA Astrophysics Data System (ADS)
Hosseini, S. S.; Hassanabadi, H.; Sobhani, H.
The alpha decay half-lives of even-even and even-odd Platinum (Pt) nuclei have been studied within the Coulomb and proximity potential model (CPPM). The present study is restricted to even-even nuclei with A = 166-198. The results are compared with other calculations such as the Semi-empirical formula (SemFIS) from Poenaru et al. based on fission theory of alpha decay, the Viola-Seaborg (VS), Royer (R) and Brown formulae. Also, the alpha decay half-lives have been calculated using the Scaling law of Brown (SLB), the Universal Decay Law (UDL) of Qi et al., the Scaling Law of Horoi et al. (SLH), and Akrawy-Dorin formula (ADF) of Akrawy and Poenaru, which are the Royer modified formula for alpha decay half-live by adding asymmetry term.
NASA Astrophysics Data System (ADS)
Collauto, A.; Feintuch, A.; Qi, M.; Godt, A.; Meade, T.; Goldfarb, D.
2016-02-01
Complexes of the Gd(III) ion are currently being established as spin labels for distance determination in biomolecules by pulse dipolar spectroscopy. Because Gd(III) is an f ion, one expects electron spin density to be localized on the Gd(III) ion - an important feature for the mentioned application. Most of the complex ligands have nitrogens as Gd(III) coordinating atoms. Therefore, measurement of the 14N hyperfine coupling gives access to information on the localization of the electron spin on the Gd(III) ion. We carried out W-band, 1D and 2D 14N and 1H ENDOR measurements on the Gd(III) complexes Gd-DOTA, Gd-538, Gd-595, and Gd-PyMTA that serve as spin labels for Gd-Gd distance measurements. The obtained 14N spectra are particularly well resolved, revealing both the hyperfine and nuclear quadrupole splittings, which were assigned using 2D Mims ENDOR experiments. Additionally, the spectral contributions of the two different types of nitrogen atoms of Gd-PyMTA, the aliphatic N atom and the pyridine N atom, were distinguishable. The 14N hyperfine interaction was found to have a very small isotropic hyperfine component of -0.25 to -0.37 MHz. Furthermore, the anisotropic hyperfine interactions with the 14N nuclei and with the non-exchangeable protons of the ligands are well described by the point-dipole approximation using distances derived from the crystal structures. We therefore conclude that the spin density is fully localized on the Gd(III) ion and that the spin density distribution over the nuclei of the ligands is rightfully ignored when analyzing distance measurements.
Brunn, Anna
2018-05-27
The original article by Winje et al., entitled "Specific labelling of myonuclei by an antibody against pericentriolar material 1 (PCM1) on skeletal muscle tissue sections" 1 , sheds new light on the issue of heterogeneity of skeletal muscle and, thus, the problem to reliably distinguish between myonuclei versus nuclei of satellite cells of the skeletal muscle which are intimately associated. At the light microscopical level this differentiation is particularly difficult since only nuclei inside the muscle fiber are defined as true myonuclei. This is a major problem in analyses that use tissue homogenates, while in situ immunohistochemical studies using appropriate antibodies usually allow differentiation of cell populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Nuclear reactions induced by high-energy alpha particles
NASA Technical Reports Server (NTRS)
Shen, B. S. P.
1974-01-01
Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.
Experimental study of nuclear fusion reactions in muonic molecular systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanova, L. N., E-mail: ludmila@itep.ru
2013-03-15
Since the pioneering discovery of the muon catalysis by Alvarez [L. W. Alvarez, K. Brander, F. S. Crawford, et al., Phys. Rev. 105, 1127 (1957)], considerable efforts were aimed at observation of various fusion processes. Results of these studies facilitated understanding the properties of lightest nuclei and dynamics of low-energy fusion reactions. There still remain unsolved theoretical and experimental problems, especially in case of pt fusion.
Forces on nuclei moving on autoionizing molecular potential energy surfaces.
Moiseyev, Nimrod
2017-01-14
Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.
Formation of {eta}-mesic nuclei by the ({pi},N) reaction and properties of N*(1535) in medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagahiro, Hideko; Jido, Daisuke; Hirenzaki, Satoru
2009-08-15
We calculate formation spectra of the {eta}-nucleus systems in the ({pi},N) reactions with nuclear targets, which can be performed at existing and/or forthcoming facilities, including the Japan Proton Accelerator Research Complex, to investigate the {eta}-nucleus interaction. Based on the N*(1535) dominance in the {eta}N system, the {eta}-mesic nuclei are suitable systems for the study of in-medium properties of the N*(1535) baryon resonance, such as reduction of the mass difference of N and N* in the nuclear medium, which affects the level structure of the {eta} and N*-hole modes. We find that clear information on the in-medium N*- and {eta}-nucleus interactionsmore » can be obtained through the formation spectra of the {eta}-mesic nuclei. We also discuss the experimental feasibilities by showing several spectra of the ({pi},N) reactions calculated with possible experimental settings. Coincident measurements of the N{pi} pairs from the N* decays in nuclei help us to reduce backgrounds.« less
Signatures for a nuclear quantum phase transition from E 0 and E 2 observables in Gd isotopes
NASA Astrophysics Data System (ADS)
Wiederhold, J.; Kern, R.; Lizarazo, C.; Pietralla, N.; Werner, V.; Jolos, R. V.; Bucurescu, D.; Florea, N.; Ghita, D.; Glodariu, T.; Lica, R.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Mitu, I. O.; Negret, A.; Nita, C.; Olacel, A.; Pascu, S.; Stroe, L.; Toma, S.; Turturica, A.
2018-05-01
Nuclei are complex quantum objects due to complex nucleon-nucleon interactions. They can undergo rather rapid changes in structure as a function of nucleon number. A well known region of such a shape transition is the rare-earth region around N = 90, where accessible nuclei range from spherical nuclei at the closed neutron shell at N = 82 to deformed nuclei. For a better understanding of this phenomenon, it is of interest to study empirical signatures like the E2 transition strength B(E2;{2}1+\\to {0}1+) or the E0 excitation strength {ρ }2(E0;{0}1+\\to {0}2+). The nuclide 152Gd with 88 neutrons is located close to the quantum phase transition at N = 90. The lifetime τ ({0}2+) of 152Gd has been measured using fast electronic scintillation timing (FEST) with an array of HPGe- and LaBr3- detectors. Excited states of 152Gd were populated via an (α,n)-reaction on a gold-backed 149Sm target. The measured lifetime of τ ({0}2+)=96(6)\\text{ps} corresponds to a reduced transition strength of B(E2;{0}2+\\to {2}1+)=111(7) W.u. and an E0 transition strength of ρ 2(E0) = 39(3) · 10‑3 to the ground state. This result provides experimental support for the validity of a correlation between E0 and E2 strengths that is a novel indicator for a quantum phase transition. This work was published as J. Wiederhold et al., Phys. Rev. C 94, 044302 (2016).
Friedrich, Victor L.; Martinelli, Giorgio P.; Prell, George D.; Holstein, Gay R.
2007-01-01
Imidazoleacetic acid-ribotide (IAA-RP) is a putative neurotransmitter/modulator recently discovered in mammalian brain. The present study examines the distribution of IAA-RP in the rat CNS using a highly specific antiserum raised in rabbit against IAA-RP with immunostaining of aldehyde-fixed rat CNS. IAA-RP-immunoreactive neurons were present throughout the neuraxis; neuroglia were not labeled. In each region, only a subset of the neuronal pool was immunostained. In the forebrain, ribotide-immunolabeled neurons were common in neocortex, in hippocampal formation, and in subcortical structures including basal ganglia, thalamus and hypothalamus. Labeling was prominent limbic areas including olfactory bulb, basal forebrain, pyriform cortex and amygdala. In the mid- and hindbrain, immunolabled neurons were concentrated in specific nuclei and, in some areas, in specific subregions of those nuclei. Structures of the motor system, including cranial nerve motor nuclei, precerebellar nuclei, the substantia nigra, and the red nucleus were clearly labeled. Staining was intense in cells and/or puncta in the rostral and caudal ventrolateral medullary reticular formation, nucleus tractus solitarius and the caudal vestibular nuclear complex. Within neurons, the ribotide was found predominantly in somata and dendrites; some myelinated axons and occasional synaptic terminals were also immunostained. These data indicate that IAA-RP contributes to the neurochemical phenotype of many neuronal populations further support our suggestion that, in autonomic structures, the IAA-RP may serve as a chemical mediator in complex circuits involved in blood pressure regulation and, more generally, sympathetic drive. PMID:17210242
Intralaminar nuclei of the thalamus in Lewy body diseases.
Brooks, Daniel; Halliday, Glenda M
2009-02-16
Although the intralaminar thalamus is a target of alpha-synuclein pathology in Parkinson's disease, the degree of neuronal loss in Lewy body diseases has not been assessed. We have used unbiased stereological techniques to quantify neuronal loss in intralaminar thalamic nuclei concentrating alpha-synuclein pathology (the anterodorsal, cucullar, parataenial, paraventricular, central medial, central lateral and centre-median/parafascicular complex) in different clinical forms of Lewy body disease (Parkinson's disease with and without dementia, and dementia with Lewy bodies, N=21) compared with controls (N=5). Associations were performed in the Lewy body cases between intralaminar cell loss and the main diagnostic clinical (parkinsonism, dementia, fluctuation in consciousness, and visual hallucinations) and pathological (Braak stage of Parkinson's disease) features of these diseases, as well as between cell loss and the scaled severity of the alpha-synuclein deposition within the intralaminar thalamus. As expected, significant alpha-synuclein accumulation occurred in the intralaminar thalamus in the cases with Lewy body disease. Pathology concentrated anteriorly and in the central lateral and paraventricular nuclei was related to the Braak stage of Parkinson's disease, ageing, and the presence of dementia. Across all types of Lewy body cases there was substantial atrophy and neuronal loss in the central lateral, cucullar and parataenial nuclei, and neuronal loss without atrophy in the centre-median/parafascicular complex. Cases with visual hallucinations showed a greater degree of atrophy of the cucullar nucleus, possibly due to amygdala denervation. The significant degeneration demonstrated in the intralaminar thalamus is likely to contribute to the movement and cognitive dysfunction observed in Lewy body disorders.
Characterization of the superior olivary complex of Canis lupus domesticus.
Fech, Tatiana; Calderón-Garcidueñas, Lilian; Kulesza, Randy J
2017-08-01
The superior olivary complex (SOC) is a collection of brainstem auditory nuclei which play essential roles in the localization of sound sources, temporal coding of vocalizations and descending modulation of the cochlea. Notwithstanding, the SOC nuclei vary considerably between species in accordance with the auditory needs of the animal. The canine SOC was subjected to anatomical and physiological examination nearly 50 years ago and was then virtually forgotten. Herein, we aimed to characterize the nuclei of the canine SOC using quantitative morphometrics, estimation of neuronal number, histochemistry for perineuronal nets and immunofluorescence for the calcium binding proteins calbindin and calretinin. We found the principal nuclei to be extremely well developed: the lateral superior olive (LSO) contained over 20,000 neurons and the medial superior olive (MSO) contained over 15,000 neurons. In nearly all non-chiropterian terrestrial mammals, the MSO exists as a thin, vertical column of neurons. The canine MSO was folded into a U-shaped contour and had associated with the ventromedial tip a small, round collection of neurons we termed the tail nucleus of the MSO. Further, we found evidence within the LSO, MSO and medial nucleus of the trapezoid body (MNTB) for significant morphological variations along the mediolateral or rostrocaudal axes. Finally, the majority of MNTB neurons were calbindin-immunopositive and associated with calretinin-immunopositive calyceal terminals. Together, these observations suggest the canine SOC complies with the basic plan of the mammalian SOC but possesses a number of unique anatomical features. Copyright © 2017 Elsevier B.V. All rights reserved.
Zickler, D; de Lares, L; Moreau, P J; Leblon, G
1985-01-01
The recessive meiotic mutant spo44 of Sordaria macrospora, with 90% ascospore abortion, exhibits striking effects on recombination (67% decrease), irregular segregation of the almost unpaired homologues, and a decrease in chiasma frequency in the few cases where bivalents are formed. Three-dimensional reconstructions of ten prophase nuclei indicate that pairing, as judged by the absence of fully formed synaptonemal complexes (SC), is not achieved although lateral elements (LE) assemble. The pairing failure is attributable to defects in the alignment of homologous chromosomes. The leptotene alignment seen in the wild type before SC formation was not observed in the spo44 nuclei. Dense material, considered to be precursor of SC central elements, was found scattered among the LE in two nuclei. The behaviour of spo44 substantiates the hypothesis that chromosome matching and SC formation are separable events. - The total length of the LE in the mutant is the same as in the wild type, but due to variable numbers and length of the individual LE, homologues cannot be lined up. Light microscopic observations indicate that the irregular length and number of LE is due to extensive chromosome breakage. The wild-type function corresponding to spo44 is required for both LE integrity and chromosome matching. Reconstructions of heterozygous nuclei reveal the presence of a supernumerary nucleolar organizer in one arm of chromosome 7. It is suggested that rDNA has been inserted into a gene whose function is involved in pairing or into a controlling sequence that interacts with the pairing process.
Roth, Jeremy A; Wilson, Timothy D; Sandig, Martin
2015-01-01
Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated with improved learning outcomes, but similar tools have not been created for histology education to visualize complex cellular structure-function relationships. This study outlines steps in creating a virtual 3D model of the renal corpuscle from serial, semi-thin, histological sections obtained from epoxy resin-embedded kidney tissue. The virtual renal corpuscle model was generated by digital segmentation to identify: Bowman's capsule, nuclei of epithelial cells in the parietal capsule, afferent arteriole, efferent arteriole, proximal convoluted tubule, distal convoluted tubule, glomerular capillaries, podocyte nuclei, nuclei of extraglomerular mesangial cells, nuclei of epithelial cells of the macula densa in the distal convoluted tubule. In addition to the imported images of the original sections the software generates, and allows for visualization of, images of virtual sections generated in any desired orientation, thus serving as a "virtual microtome". These sections can be viewed separately or with the 3D model in transparency. This approach allows for the development of interactive e-learning tools designed to enhance histology education of microscopic structures with complex cellular interrelationships. Future studies will focus on testing the efficacy of interactive virtual 3D models for histology education. © 2015 American Association of Anatomists.
Optical microwell assay of membrane transport kinetics.
Kiskin, Nikolai I; Siebrasse, Jan P; Peters, Reiner
2003-10-01
In optical single transporter recording, membranes are firmly attached to flat solid substrates containing small wells or test compartments (TC). Transport of fluorescent molecules through TC-spanning membrane patches is induced by solution change and recorded by confocal microscopy. Previously, track-etched membrane filters were used to create solid substrates containing populations of randomly distributed TCs. In this study the possibilities offered by orderly TC arrays as created by laser microdrilling were explored. A theoretical framework was developed taking the convolution of membrane transport, solution change, and diffusion into account. The optical properties of orderly TC arrays were studied and the kinetics of solution change measured. Export and import through the nuclear pore complex (NPC) was analyzed in isolated envelopes of Xenopus oocyte nuclei. In accordance with previous reports nuclear transport receptor NTF2, which binds directly to NPC proteins, was found to be translocated much faster than "inert" molecules of similar size. Unexpectedly, NXT1, a homolog of NTF2 reportedly unable to bind to NPC proteins directly, was translocated as fast as NTF2. Thus, microstructured TC arrays were shown to provide optical single transporter recording with a new basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kabir, Al Amin
2015-12-01
Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreementmore » using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q 2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.« less
Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data
Grosse, E.; Junghans, A. R.; Massarczyk, R.
2017-11-28
Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less
Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grosse, E.; Junghans, A. R.; Massarczyk, R.
Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less
Electric and Magnetic Dipole Strength at Low Energy.
Sieja, K
2017-08-04
A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ-ray strength of the ^{44}Sc isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1ℏω sd-pf-gds model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M1 strength but show quite different behavior for the E1 strength.
Status of the chiral magnetic effect and collisions of isobars
Koch, Volker; Schlichting, Soeren; Skokov, Vladimir; ...
2017-04-30
Here, we examine the current theoretical and experimental status of the chiral magnetic effect. We discuss possible future strategies for resolving uncertainties in interpretation including recommendations for theoretical work, recommendations for measurements based on data collected in the past five years, and recommendations for beam use in the coming years of RHIC. We then investigate the case for colliding nuclear isobars (nuclei with the same mass but different charge) and find the case compelling. We recommend that a program of nuclear isobar collisions to isolate the chiral magnetic effect from background sources be placed as a high priority item inmore » the strategy for completing the RHIC mission.« less
NASA Astrophysics Data System (ADS)
Kim, Yeong E.; Zubarev, Alexander L.
The most basic theoretical challenge for understanding low-energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which the large Coulomb barrier between fusing nuclei can be overcome. A unifying theory of LENR and LETR has been developed to provide possible mechanisms for the LENR and LETR processes in matters based on high-density nano-scale and micro-scale quantum plasmas. It is shown that recently developed theoretical models based on Bose-Einstein Fusion (BEF) mechanism and Quantum Plasma Nuclear Fusion (QPNF) mechanism are applicable to the results of many different types of LENR and LETR experiments.
Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps
NASA Astrophysics Data System (ADS)
Block, Michael
2017-11-01
The X. international workshop on "Application of Lasers and Storage Devices in Atomic Nuclei Research" took place in Poznan in May 2016. It addressed the latest experimental and theoretical achievements in laser and ion trap-based investigations of radionuclides, highly charged ions and antiprotons. The precise determination of atomic and nuclear properties provides a stringent benchmark for theoretical models and eventually leads to a better understanding of the underlying fundamental interactions and symmetries. This article addresses some general trends in this field and highlights select recent achievements presented at the workshop. Many of these are covered in more detail within the individual contributions to this special issue of Hyperfine Interactions.
Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images.
Xu, Jun; Xiang, Lei; Liu, Qingshan; Gilmore, Hannah; Wu, Jianzhong; Tang, Jinghai; Madabhushi, Anant
2016-01-01
Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by 1) the large number of nuclei and the size of high resolution digitized pathology images, and 2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of "Deep Learning" strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed nine other state of the art nuclear detection strategies.
Electron-Molecule Col1isions: Quantitative Approaches, and the Legacy of Aaron Temkin
NASA Technical Reports Server (NTRS)
Schneider, B.I.
2007-01-01
This article, on electron-molecule collisions, is dedicated to the legacy of my good friend and sometime collaborator, Aaron Temkin on his retirement from the NASA-Goddard Space Flight Center after many years of work at the highest intellectual level in the theoretical treatment of electron-atom and electron-molecule scattering. Aaron's contributions to the manner in which we think about electron-molecule collisions is clear to all of us who have worked in this field. I doubt that the great progress that has occurred in the computational treatment of such complex collision problems could have happened without these contributions. For a brief historical account, see the discussion of Temkin's contribution to electron-molecule scattering in the first article of this volume by Dr. A. K. Bhatia. In this article, I will concentrate on the application of the so called, non-adiabatic R-matrix theory, to vibrational excitation and dissociative attachment, although I will also present some results applying the Linear Algebraic and Kohn-Variational methods to vibrational excitation. As a starting point for almost all computationally effective approaches to electron-molecule collisions, is the fixed nuclei approximation. That is, one recognizes, just as one does with molecular bound states, that there is a separation of electronic(fast) and nuclear(s1ow) degrees of freedom. This separation makes it possible to "freeze" the nuclei in space, calculate the collision parameters for the frozen molecule and then, somehow to add back the vibrations and rotations. The manner in which this is done, depends on the details of the collision problem. It is the work of Aaron and a number of other researchers that has provided the guidance necessary to resolve these issues.
The similarity of broad iron lines in X-ray binaries and active galactic nuclei
NASA Astrophysics Data System (ADS)
Walton, D. J.; Reis, R. C.; Cackett, E. M.; Fabian, A. C.; Miller, J. M.
2012-05-01
We have compared the 2001 XMM-Newton spectra of the stellar mass black hole binary XTE J1650-500 and the active galaxy MCG-6-30-15, focusing on the broad, excess emission features at ˜4-7 keV displayed by both sources. Such features are frequently observed in both low-mass X-ray binaries and active galactic nuclei (AGN). For the former case it is generally accepted that the excess arises due to iron emission, but there is some controversy over whether their width is partially enhanced by instrumental processes, and hence also over the intrinsic broadening mechanism. Meanwhile, in the latter case, the origin of this feature is still subject to debate; physically motivated reflection and absorption interpretations are both able to reproduce the observed spectra. In this work we make use of the contemporaneous BeppoSAX data to demonstrate that the breadth of the excess observed in XTE J1650-500 is astrophysical rather than instrumental, and proceed to highlight the similarity of the excesses present in this source and MCG-6-30-15. Both optically thick accretion discs and optically thin coronae, which in combination naturally give rise to relativistically broadened iron lines when the disc extends close to the black hole, are commonly observed in both classes of object. The simplest solution is that the broad emission features present arise from a common process, which we argue must be reflection from the inner regions of an accretion disc around a rapidly rotating black hole; for XTE J1650-500 we find spin constraints of 0.84 ≤a*≤ 0.98 at the 90 per cent confidence level. Other interpretations proposed for AGN add potentially unnecessary complexities to the theoretical framework of accretion in strong gravity.
The Spin-Lattice Relaxation of Hyperpolarized 89Y Complexes
NASA Astrophysics Data System (ADS)
Jindal, Ashish; Lumata, Lloyd; Xing, Yixun; Merritt, Matthew; Zhao, Piyu; Malloy, Craig; Sherry, Dean; Kovacs, Zoltan
2011-03-01
The low sensitivity of NMR can be overcome by dynamic nuclear polarization (DNP). However, a limitation to the use of hyperpolarized materials is the signal decay due to T1 relaxation. Among NMR-active nuclei, 89 Y is potentially valuable in medical imaging because in chelated form, pH-sensitive agents can be developed. 89 Y also offers many attractive features -- 100 % abundance, a 1/2 spin, and a long T1 , up to 10 min. Yet, developing new 89 Y complexes with even longer T1 values is desirable. Designing such complexes relies upon understanding the mechanism(s) responsible for T1 relaxation. We report an approach to hyperpolarized T1 measurements that enabled an analysis of relaxation mechanisms by selective deuteration of the ligand backbone, the solvent or both. Hyperpolarized 89 Y -- DTPA, DOTA, EDTA, and deuterated EDTA complexes were studied. Results suggest that substitution of low-gamma nuclei on the ligand backbone as opposed to that of the solvent most effectively increase the 89 Y T1 . These results are encouraging for in vivo applications as the presence of bound water may not dramatically affect the T1 .
Architectonic subdivisions of the amygdalar complex of a primitive marsupial (Didelphis aurita).
Rocha-Rego, V; Canteras, N S; Anomal, R F; Volchan, E; Franca, J G
2008-05-15
The architecture of the amygdaloid complex of a marsupial, the opossum Didelphis aurita, was analyzed using classical stains like Nissl staining and myelin (Gallyas) staining, and enzyme histochemistry for acetylcholinesterase and NADPH-diaphorase. Most of the subdivisions of the amygdaloid complex described in eutherian mammals were identified in the opossum brain. NADPH-diaphorase revealed reactivity in the neuropil of nearly all amygdaloid subdivisions with different intensities, allowing the identification of the medial and lateral subdivisions of the cortical posterior nucleus and the lateral subdivision of the lateral nucleus. The lateral, central, basolateral and basomedial nuclei exhibited acetylcholinesterase positivity, which provided a useful chemoarchitectural criterion for the identification of the anterior basolateral nucleus. Myelin stain allowed the identification of the medial subdivision of the lateral nucleus, and resulted in intense staining of the medial subdivisions of the central nucleus. The medial, posterior, and cortical nuclei, as well as the amygdalopiriform area did not exhibit positivity for myelin staining. On the basis of cyto- and chemoarchitectural criteria, the present study highlights that the opossum amygdaloid complex shares similarities with that of other species, thus supporting the idea that the organization of the amygdala is part of a basic plan conserved through mammalian evolution.
Mischo, André; Ohlenschläger, Oliver; Ramachandran, Ramadurai; Görlach, Matthias
2013-04-01
The resonance assignment of an amino-terminal pyroglutamic acid containing peptide derived from the E6 protein of human papillomavirus (HPV) type 51 in complex with PDZ domain 2 of hDlg/SAP-97 is reported. The assignments include (1)H, (13)C and (15)N resonances for the protein and peptide in the complex and all of the peptide's pyroglutamic acid nuclei.
Prolactin secretion patterns: basic mechanisms and clinical implications for reproduction.
Egli, Marcel; Leeners, Brigitte; Kruger, Tillmann H C
2010-11-01
Prolactin (PRL) is one of the most versatile hormones in the mammalian body affecting reproductive, sexual, metabolic, immune, and other functions. It is therefore not surprising that the neural control of PRL secretion is complex, involving the coordinated actions of several hypothalamic nuclei. A plethora of experimental data exists on the hypothalamic control of hormone secretion under various physiological stimuli. There have been even mathematical models and computer studies published, which help to understand the complex hypothalamic-pituitary network. Nevertheless, the putative role of PRL for human reproduction still has to be clarified. Here, we review data on the underlying mechanisms controlling PRL secretion using both experimental and mathematical approaches. These investigations primarily focus on rhythmic secretion in rats during early pregnancy or pseudopregnancy, and they point to the important role of oxytocin as a crucial PRL-releasing factor. Recent data on human studies and their theoretical and clinical implications are reviewed as well. In particular, studies demonstrating a sustained PRL surge after sexual climax in males and females are presented, indicating possible implications for both sexual satiation and reproductive functions. Taking these data together, there is evidence for the hypothesis that the PRL surge induced by sexual activity, together with the altered PRL rhythmic pattern, is important for successful initialization of pregnancy not only in rodents but also possibly in humans. However, further investigations are needed to clarify such a role in humans.
DNA Damage Signals and Space Radiation Risk
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Space radiation is comprised of high-energy and charge (HZE) nuclei and protons. The initial DNA damage from HZE nuclei is qualitatively different from X-rays or gamma rays due to the clustering of damage sites which increases their complexity. Clustering of DNA damage occurs on several scales. First there is clustering of single strand breaks (SSB), double strand breaks (DSB), and base damage within a few to several hundred base pairs (bp). A second form of damage clustering occurs on the scale of a few kbp where several DSB?s may be induced by single HZE nuclei. These forms of damage clusters do not occur at low to moderate doses of X-rays or gamma rays thus presenting new challenges to DNA repair systems. We review current knowledge of differences that occur in DNA repair pathways for different types of radiation and possible relationships to mutations, chromosomal aberrations and cancer risks.
Song, Youyi; Zhang, Ling; Chen, Siping; Ni, Dong; Lei, Baiying; Wang, Tianfu
2015-10-01
In this paper, a multiscale convolutional network (MSCN) and graph-partitioning-based method is proposed for accurate segmentation of cervical cytoplasm and nuclei. Specifically, deep learning via the MSCN is explored to extract scale invariant features, and then, segment regions centered at each pixel. The coarse segmentation is refined by an automated graph partitioning method based on the pretrained feature. The texture, shape, and contextual information of the target objects are learned to localize the appearance of distinctive boundary, which is also explored to generate markers to split the touching nuclei. For further refinement of the segmentation, a coarse-to-fine nucleus segmentation framework is developed. The computational complexity of the segmentation is reduced by using superpixel instead of raw pixels. Extensive experimental results demonstrate that the proposed cervical nucleus cell segmentation delivers promising results and outperforms existing methods.
Clustering and pasta phases in nuclear density functional theory
Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold
2017-05-23
Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuetrumpf, Bastian; Zhang, Chunli; Nazarewicz, Witold
Nuclear density functional theory is the tool of choice in describing properties of complex nuclei and intricate phases of bulk nucleonic matter. It is a microscopic approach based on an energy density functional representing the nuclear interaction. An attractive feature of nuclear DFT is that it can be applied to both finite nuclei and pasta phases appearing in the inner crust of neutron stars. While nuclear pasta clusters in a neutron star can be easily characterized through their density distributions, the level of clustering of nucleons in a nucleus can often be difficult to assess. To this end, we usemore » the concept of nucleon localization. We demonstrate that the localization measure provides us with fingerprints of clusters in light and heavy nuclei, including fissioning systems. Furthermore we investigate the rod-like pasta phase using twist-averaged boundary conditions, which enable calculations in finite volumes accessible by state of the art DFT solvers.« less
HAMLET interacts with histones and chromatin in tumor cell nuclei.
Düringer, Caroline; Hamiche, Ali; Gustafsson, Lotta; Kimura, Hiroshi; Svanborg, Catharina
2003-10-24
HAMLET is a folding variant of human alpha-lactalbumin in an active complex with oleic acid. HAMLET selectively enters tumor cells, accumulates in their nuclei and induces apoptosis-like cell death. This study examined the interactions of HAMLET with nuclear constituents and identified histones as targets. HAMLET was found to bind histone H3 strongly and to lesser extent histones H4 and H2B. The specificity of these interactions was confirmed using BIAcore technology and chromatin assembly assays. In vivo in tumor cells, HAMLET co-localized with histones and perturbed the chromatin structure; HAMLET was found associated with chromatin in an insoluble nuclear fraction resistant to salt extraction. In vitro, HAMLET bound strongly to histones and impaired their deposition on DNA. We conclude that HAMLET interacts with histones and chromatin in tumor cell nuclei and propose that this interaction locks the cells into the death pathway by irreversibly disrupting chromatin organization.
Energetics of oriented nuclei in laser-produced plasma
NASA Astrophysics Data System (ADS)
Belyaev, Vadim S.
2004-06-01
The report presents principal theoretical and experimental results obtained during the first year of the ISTC project # 2155 realization. The mechanisms of high-energy electrons formation in high intensity and short laser pulse interaction with solid targets has been suggested and investigated. Neutron generation (reaction D + D --> 3He + n) from laser-produced plasma at 1017 W/cm2 intensity has been investigated. Neutron yield more than 104 per pulse was received.
Accretion in active galactic nuclei and disk-jet coupling
NASA Astrophysics Data System (ADS)
Czerny, B.; You, B.
2016-02-01
We review the current state of understanding how accretion onto a black hole proceeds and what the key elements needed to form relativistic jets are. Theoretical progress is severely undermined by the lack of thorough understanding of the microphysics involved in accretion discs and in the formation of jets, particularly in the presence of strong magnetic fields. Therefore, all proposed solutions are still models that need to be validated by observational constraints.
Spectroscopic Factors From the Single Neutron Pickup Reaction ^64Zn(d,t)
NASA Astrophysics Data System (ADS)
Leach, Kyle; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Ball, G. C.; Faestermann, T.; Krücken, R.; Wirth, H.-F.; Herten-Berger, R.
2008-10-01
A great deal of attention has recently been paid towards high precision superallowed β-decay Ft values. With the availability of extremely high precision (<0.1%) experimental data, the precision on Ft is now limited by the ˜1% theoretical corrections.ootnotetextI.S. Towner and J.C. Hardy, Phys. Rev. C 77, 025501 (2008). This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking correction calculations become more difficult due to the truncated model space. Experimental data is needed to help constrain input parameters for these calculations, and thus experimental spectroscopic factors for these nuclei are important. Preliminary results from the single-nucleon-transfer reaction ^64Zn(d,t)^63Zn will be presented, and the implications for calculations of isospin-symmetry breaking in the superallowed &+circ; decay of ^62Ga will be discussed.
NASA Astrophysics Data System (ADS)
Ito, Y.; Schury, P.; Wada, M.; Arai, F.; Haba, H.; Hirayama, Y.; Ishizawa, S.; Kaji, D.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morimoto, K.; Morita, K.; Mukai, M.; Murray, I.; Niwase, T.; Okada, K.; Ozawa, A.; Rosenbusch, M.; Takamine, A.; Tanaka, T.; Watanabe, Y. X.; Wollnik, H.; Yamaki, S.
2018-04-01
The masses of 246Es, 251Fm, and the transfermium nuclei Md-252249 and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N =152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of Md,250249 as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2 n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N =152 neutron shell closure for Md and Lr.
Ab initio results for intermediate-mass, open-shell nuclei
NASA Astrophysics Data System (ADS)
Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.
2017-01-01
A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.
Towards a self-consistent dynamical nuclear model
NASA Astrophysics Data System (ADS)
Roca-Maza, X.; Niu, Y. F.; Colò, G.; Bortignon, P. F.
2017-04-01
Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method. In this contribution, we will implement the subtraction method in our model for the first time and study its consequences.
α decay and cluster radioactivity of nuclei of interest to the synthesis of Z =119 , 120 isotopes
NASA Astrophysics Data System (ADS)
Poenaru, D. N.; Gherghescu, R. A.
2018-04-01
Super-heavy nuclei of interest for the forthcoming synthesis of the isotopes with Z =119 , 120 are investigated. One of the very interesting latest experiments was performed at the velocity filter SHIP (GSI Darmstadt) trying to produce 299120 in a fusion reaction 248Cm(54Cr,3 n )299120 . We report calculations of α -decay half-lives using four models: AKRA (Akrawy), ASAF (analytical superasymmetric fission), UNIV (universal formula), and semFIS (semi-empirical formula based on fission theory). The released energy, Q , is calculated using the theoretical model of atomic masses, WS4. For Sr,9492 cluster radioactivity of 120,302300 we predict a branching ratio relative to α decay of -0.10 and 0.49, respectively, meaning that it is worth trying to detect such kinds of decay modes in competition with α decay.
NASA Astrophysics Data System (ADS)
Al-Khalili, Jim
2017-10-01
While neutron halos were discovered 30 years ago, this is the first book written on the subject of this exotic form of nuclei that typically contain many more neutrons than stable isotopes of those elements. It provides an introductory description of the halo and outlines the discovery and evidence for its existence. It also discusses different theoretical models of the halo's structure as well as models and techniques in reaction theory that have allowed us to study the halo. This is written at the graduate student (starting at PhD) level. The author of the book, Jim Al-Khalili, is a theoretician who published some of the key papers on the structure of the halo in the mid and late 90s and was the first to determine its true size. This monograph is based on review articles he has written on the mathematical models used to determine the halo structure and the reactions used to model that structure.
NASA Astrophysics Data System (ADS)
Ali, Esam; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don
2015-10-01
We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O , N H3 , C H4 ). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p -type "peanut" shape. In this work, we examine ethane (C2H6 ) which is a molecule that has two large atoms surrounded by H nuclei, so that its HOMO has a double-peanut shape. The experiment was performed using a coplanar symmetric geometry (equal final-state energies and angles). We find the TDCS for ethane is similar to the single-center molecules at higher energies, and is similar to a diatomic molecule at lower energies.
Transfer Reactions Near the Coulomb Barrier
NASA Astrophysics Data System (ADS)
Bonaccorso, Angela
1999-05-01
In this talk I give a brief review of the latest experimental and theoretical developments towards the understanding of the nuclear surface via `quasi-elastic transfer reactions' which are among the best tools for such study since they are very localized both in energy and in impact parameter. There are also comments on how the discovery and study of the so called ``halo'' nuclei has changed or confirmed our previous understanding. The continuous transition towards more complicated reactions like two and multinucleon transfer and fusion is also discussed. Since the problem is still far from being solved I will try to point out the direction for further research, discussing the relative advantages and disadvantages of using reactions with light vs. heavy nuclei and low vs. high beam energies. Special attention is paid to the near to the barrier energies which are the main topic of the conference.
Theoretical investigation of gas-surface interactions
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.
1990-01-01
A Dirac-Hartree-Fock code was developed for polyatomic molecules. The program uses integrals over symmetry-adapted real spherical harmonic Gaussian basis functions generated by a modification of the MOLECULE integrals program. A single Gaussian function is used for the nuclear charge distribution, to ensure proper boundary conditions at the nuclei. The Gaussian primitive functions are chosen to satisfy the kinetic balance condition. However, contracted functions which do not necessarily satisfy this condition may be used. The Fock matrix is constructed in the scalar basis and transformed to a jj-coupled 2-spinor basis before diagonalization. The program was tested against numerical results for atoms with a Gaussian nucleus and diatomic molecules with point nuclei. The energies converge on the numerical values as the basis set size is increased. Full use of molecular symmetry (restricted to D sub 2h and subgroups) is yet to be implemented.
NASA Astrophysics Data System (ADS)
Fritsch, A.; Ayyad, Y.; Bazin, D.; Beceiro-Novo, S.; Bradt, J.; Carpenter, L.; Cortesi, M.; Mittig, W.; Suzuki, D.; Ahn, T.; Kolata, J. J.; Howard, A. M.; Becchetti, F. D.; Wolff, M.
Some exotic nuclei appear to exhibit α -cluster structure, which may impact nucleosynthesis reaction rates. While various theoretical models currently describe such clustering, more experimental data are needed to constrain model predictions. The Prototype Active-Target Time-Projection Chamber (PAT-TPC) has low-energy thresholds for charged-particle decay and a high detection efficiency due to its thick gaseous active target volume, making it well-suited to search for low-energy α -cluster reactions. Radioactive-ion beams produced by the TwinSol facility at the University of Notre Dame were delivered to the PAT-TPC to study 14C via α -resonant scattering. Differential cross sections and excitation functions were measured and show evidence of three-body exit channels. Additional data were measured with an updated Micromegas detector more sensitive to three-body decay. Preliminary results are presented.
Quantifying the sources of atmospheric ice nuclei from carbonaceous combustion aerosol
NASA Astrophysics Data System (ADS)
Schill, G. P.; Jathar, S.; Galang, A.; Farmer, D.; Friedman, B.; Levin, E. J.; DeMott, P. J.; Kreidenweis, S. M.
2015-12-01
Ice nucleation on particles is a fundamental atmospheric process, which governs precipitation, cloud lifetimes, and climate. Despite being a basic atmospheric process, our current understanding of ice nucleation in the atmosphere is low. One reason for this low understanding is that ice nuclei concentrations are low (only ~1 in 105 particles in the free troposphere nucleate ice), making it challenging to identify both the composition and sources of ambient ice nuclei. Carbonaceous combustion aerosol produced from biomass and fossil fuel combustion are one potential source of these ice nuclei, as they contribute to over one-third of all aerosol in the North American free troposphere. Unfortunately, previous results from field measurements in-cloud, aircraft measurements, and laboratory studies are in conflict, with estimates of the impact of combustion aerosol ranging from no effect to rivaling the well-known atmospheric ice nuclei mineral dust. It is, however, becoming clear that aerosols from combustion processes are more complex than model particles, and their ice activity depends greatly on both fuel type and combustion conditions. Given these dependencies, we propose that sampling from real-world biomass burning and fossil fuel sources would provide the most useful new information on the contribution of carbonaceous combustion aerosols to atmospheric ice nuclei particles. To determine the specific contribution of refractory black carbon (rBC) to ice nuclei concentrations, we have coupled the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. In this work, we will present recent results looking at contribution of diesel engine exhaust to ice nuclei concentrations. Sampling was done for both diesel and biodiesel on fresh emissions and emissions aged up to 18 days equivalent photochemical aging with a Potential Aerosol Mass chamber. Our results show that, for mixed-phase clouds, both fresh and aged (bio)diesel are not likely a significant source of ice nuclei.
Changes in complex spike activity during classical conditioning
Rasmussen, Anders; Jirenhed, Dan-Anders; Wetmore, Daniel Z.; Hesslow, Germund
2014-01-01
The cerebellar cortex is necessary for adaptively timed conditioned responses (CRs) in eyeblink conditioning. During conditioning, Purkinje cells acquire pause responses or “Purkinje cell CRs” to the conditioned stimuli (CS), resulting in disinhibition of the cerebellar nuclei (CN), allowing them to activate motor nuclei that control eyeblinks. This disinhibition also causes inhibition of the inferior olive (IO), via the nucleo-olivary pathway (N-O). Activation of the IO, which relays the unconditional stimulus (US) to the cortex, elicits characteristic complex spikes in Purkinje cells. Although Purkinje cell activity, as well as stimulation of the CN, is known to influence IO activity, much remains to be learned about the way that learned changes in simple spike firing affects the IO. In the present study, we analyzed changes in simple and complex spike firing, in extracellular Purkinje cell records, from the C3 zone, in decerebrate ferrets undergoing training in a conditioning paradigm. In agreement with the N-O feedback hypothesis, acquisition resulted in a gradual decrease in complex spike activity during the conditioned stimulus, with a delay that is consistent with the long N-O latency. Also supporting the feedback hypothesis, training with a short interstimulus interval (ISI), which does not lead to acquisition of a Purkinje cell CR, did not cause a suppression of complex spike activity. In contrast, observations that extinction did not lead to a recovery in complex spike activity and the irregular patterns of simple and complex spike activity after the conditioned stimulus are less conclusive. PMID:25140129
Ito, T; Inoue, K; Takada, M
2015-12-03
Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Cyto- and chemoarchitecture of the sensory trigeminal nuclei of the echidna, platypus and rat.
Ashwell, Ken W S; Hardman, Craig D; Paxinos, George
2006-02-01
We have examined the cyto- and chemoarchitecture of the trigeminal nuclei of two monotremes using Nissl staining, enzyme reactivity for cytochrome oxidase, immunoreactivity for calcium binding proteins and non-phosphorylated neurofilament (SMI-32 antibody) and lectin histochemistry (Griffonia simplicifolia isolectin B4). The principal trigeminal nucleus and the oralis and interpolaris spinal trigeminal nuclei were substantially larger in the platypus than in either the echidna or rat, but the caudalis subnucleus was similar in size in both monotremes and the rat. The numerical density of Nissl stained neurons was higher in the principal, oralis and interpolaris nuclei of the platypus relative to the echidna, but similar to that in the rat. Neuropil immunoreactivity for parvalbumin was particularly intense in the principal trigeminal, oralis and interpolaris subnuclei of the platypus, but the numerical density of parvalbumin immunoreactive neurons was not particularly high in these nuclei of the platypus. Neuropil immunoreactivity for calbindin and calretinin was relatively weak in both monotremes, although calretinin immunoreactive somata made up a large proportion of neurons in the principal, oralis and interpolaris subnuclei of the echidna. Distribution of calretinin immunoreactivity and Griffonia simplicifolia B4 isolectin reactivity suggested that the caudalis subnucleus of the echidna does not have a clearly defined gelatinosus region. Our findings indicate that the trigeminal nuclei of the echidna do not appear to be highly specialized, but that the principal, oralis and interpolaris subnuclei of the platypus trigeminal complex are highly differentiated, presumably for processing of tactile and electrosensory information from the bill.
Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J; Koch, Ursula
2016-01-01
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.
DONG, HONG-WEI; SWANSON, LARRY W.
2008-01-01
The basic structural organization of axonal projections from the small but distinct magnocellular and ventral nuclei (of the bed nuclei of the stria terminalis) were analyzed with the PHAL anterograde tract tracing method in adult male rats. The former's overall projection pattern is complex, with over 80 distinct terminal fields ipsilateral to injection sites. Innervated regions in the cerebral hemisphere and brainstem fall into 9 general functional categories: cerebral nuclei, behavior control column, orofacial motor-related, humorosensory/thirst-related, brainstem autonomic control network, neuroendocrine, hypothalamic visceromotor pattern generator network, thalamocortical feedback loops, and behavioral state control. The most novel findings indicate that the magnocellular nucleus projects to virtually all known major parts of the brain network that controls pelvic functions including micturition, defecation, and penile erection—as well as to brain networks controlling nutrient and body water homeostasis. This and other evidence suggests that the magnocellular nucleus is part of a cortico-striatopallidal differentiation modulating and coordinating pelvic functions with the maintenance of nutrient and body water homeostasis. Projections of the ventral nucleus are a subset of those generated by the magnocellular nucleus, with the obvious difference that the ventral nucleus does not project detectably to Barrington's nucleus, the subfornical organ, the median preoptic and parastrial nuclei, the neuroendocrine system, and midbrain orofacial motor-related regions. PMID:16304682
Nuclear Fuel Cycle Introductory Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpius, Peter Joseph
2017-02-02
The nuclear fuel cycle is a complex entity, with many stages and possibilities, encompassing natural resources, energy, science, commerce, and security, involving a host of nations around the world. This overview describes the process for generating nuclear power using fissionable nuclei.
NASA Astrophysics Data System (ADS)
Khaliel, A.; Mertzimekis, T. J.; Asimakopoulou, E.-M.; Kanellakopoulos, A.; Lagaki, V.; Psaltis, A.; Psyrra, I.; Mavrommatis, E.
2017-09-01
Background: One of the primary objectives of the field of Nuclear Astrophysics is the study of the elemental and isotopic abundances in the universe. Although significant progress has been made in understanding the mechanisms behind the production of a large number of nuclides in the isotopic chart, there are still many open questions regarding a number of neutron-deficient nuclei, the p nuclei. To that end, experimentally deduced nuclear reaction cross sections can provide invaluable input to astrophysical models. Purpose: The reactions Ag,109107(p ,γ )Cd,110108 have been studied at energies inside the astrophysically relevant energy window in an attempt to provide experimental data required for the testing of reaction-rate predictions in terms of the statistical model of Hauser-Feshbach around the p nucleus 108Cd. Methods: The experiments were performed with in-beam γ -ray spectroscopy with proton beams accelerated by the Tandem Van de Graaff Accelerator at NCSR "Demokritos" impinging a target of natural silver. A set of high-purity germanium detectors was employed to record the emitted radiation. Results: A first set of total cross-section measurements in radiative proton-capture reactions involving Ag,109107, producing the p -nucleus 108Cd, inside the astrophysically relevant energy window is reported. The experimental results are compared to theoretical calculations, using talys. An overall good agreement between the data and the theoretical calculations has been found. Conclusions: The results reported in this work add new information to the relatively unexplored p process. The present measurements can serve as a reference point in understanding the nuclear parameters in the related astrophysical environments and for future theoretical modeling and experimental works.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyshev, S. S.; Kuznetsov, A. A.; Stopani, K. A., E-mail: hatta@depni.sinp.msu.ru
The gamma-activation technique was used to measure the absolute yields of photonuclear reactions on the cadmium isotopes {sup 106,108}Cd. The results obtained in this way were compared with the results of the calculations based on the statistical model. For reactions on the isotope {sup 108}Cd, agreement between these theoretical and experimental results is good, but the experimental ratio of the yields of photoproton and photoneutron reactions on the isotope {sup 106}Cd differs substantially from its theoretical counterpart. The results of our present study are discussed from the point of view of the production of bypassed nuclei in the p-process ofmore » nucleosynthesis.« less
Electric and Magnetic Dipole Strength at Low Energy
NASA Astrophysics Data System (ADS)
Sieja, K.
2017-08-01
A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ -ray strength of the
Phonons in Confinement and the Boson Peak Using Nuclear Inelastic Absorption
NASA Astrophysics Data System (ADS)
Asthalter, T.; Bauer, M.; van Bürck, U.; Sergueev, I.; Franz, H.; Chumakov, A. I.
2002-12-01
We have applied nuclear inelastic absorption (NIA) to the molecular glass former dibutylphthalate/ferrocene, both in bulk and in nanoporous matrices having pore sizes of 50 and 25 Å, respectively. The quantity g(E)/E 2, where g(E) is the vibrational phonon density of states (VDOS) of the resonant nuclei, exhibits a pronounced maximum at low energies. Confinement in pores leads to a suppression of the VDOS below 1.5 meV, independent of the pore size. Also in the scaled heat capacity C(T)/T 3, we observe a decrease of the peak maximum for low temperatures. Our observations are discussed in the light of experimental and theoretical results on nanocrystals and a recent theoretical model for the boson peak.
Theoretical calculation of polarizability isotope effects.
Moncada, Félix; Flores-Moreno, Roberto; Reyes, Andrés
2017-03-01
We propose a scheme to estimate hydrogen isotope effects on molecular polarizabilities. This approach combines the any-particle molecular orbital method, in which both electrons and H/D nuclei are described as quantum waves, with the auxiliary density perturbation theory, to calculate analytically the polarizability tensor. We assess the performance of method by calculating the polarizability isotope effect for 20 molecules. A good correlation between theoretical and experimental data is found. Further analysis of the results reveals that the change in the polarizability of a X-H bond upon deuteration decreases as the electronegativity of X increases. Our investigation also reveals that the molecular polarizability isotope effect presents an additive character. Therefore, it can be computed by counting the number of deuterated bonds in the molecule.
Stanić, Davor; Dhingra, Rishi R; Dutschmann, Mathias
2018-04-01
Expression of the transcription factor FOXP2 is linked to brain circuits that control motor function and speech. Investigation of FOXP2 protein expression in respiratory areas of the ponto-medullary brainstem of adult rat revealed distinct rostro-caudal expression gradients. A high density of FOXP2 immunoreactive nuclei was observed within the rostral pontine Kölliker-Fuse nucleus, compared to low densities in caudal pontine and rostral medullary respiratory nuclei, including the: (i) noradrenergic A5 and parafacial respiratory groups; (ii) Bötzinger and pre-Bötzinger complex and; (iii) rostral ventral respiratory group. Moderate densities of FOXP2 immunoreactive nuclei were observed in the caudal ventral respiratory group and the nucleus retroambiguus, with significant density levels found in the caudal half of the dorsal respiratory group and the hypoglossal pre-motor area lateral around calamus scriptorius. FOXP2 immunoreactivity was absent in all cranial nerve motor nuclei. We conclude that FOXP2 expression in respiratory brainstem areas selectively delineates laryngeal and hypoglossal pre-motor neuron populations essential for the generation of sound and voice. Copyright © 2018 Elsevier B.V. All rights reserved.
Schmid, Volker J; Cremer, Marion; Cremer, Thomas
2017-07-01
Recent advancements of super-resolved fluorescence microscopy have revolutionized microscopic studies of cells, including the exceedingly complex structural organization of cell nuclei in space and time. In this paper we describe and discuss tools for (semi-) automated, quantitative 3D analyses of the spatial nuclear organization. These tools allow the quantitative assessment of highly resolved different chromatin compaction levels in individual cell nuclei, which reflect functionally different regions or sub-compartments of the 3D nuclear landscape, and measurements of absolute distances between sites of different chromatin compaction. In addition, these tools allow 3D mapping of specific DNA/RNA sequences and nuclear proteins relative to the 3D chromatin compaction maps and comparisons of multiple cell nuclei. The tools are available in the free and open source R packages nucim and bioimagetools. We discuss the use of masks for the segmentation of nuclei and the use of DNA stains, such as DAPI, as a proxy for local differences in chromatin compaction. We further discuss the limitations of 3D maps of the nuclear landscape as well as problems of the biological interpretation of such data. Copyright © 2017 Elsevier Inc. All rights reserved.
Lilienfeld Prize Talk: How do massive black holes grow?
NASA Astrophysics Data System (ADS)
Rees, Martin
2017-01-01
The supermassive black holes in galactic nuclei evolve in symbiosis with their hosts. This paper will review how they grow, with particular emphasis on mergers, and on the complex phenomena associated with the tidal capture and disruption of stars.
Pauli Principle and Pion Scattering
DOE R&D Accomplishments Database
Bethe, H. A.
1972-10-01
It is pointed out that if the Pauli principle is taken into account in the discussion of pion scattering by complex nuclei (as it ought, of course, to be) some rather implausible consequences of some earlier treatments of this problem can be avoided. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolfe, R.M.
1976-12-01
The goal of the research was to investigate proton scattering on nuclei at intermediate energies and in particular to investigate proton scattering on helium. A theoretical investigation of the helium nucleus and the nature of the intermediate energy interaction, design and optimization of an energy-loss spectrometer facility for proton-nucleus scattering, and the unique superfluid helium target and experimental design are discussed.
On the Mass of Atoms in Molecules: Beyond the Born-Oppenheimer Approximation
NASA Astrophysics Data System (ADS)
Scherrer, Arne; Agostini, Federica; Sebastiani, Daniel; Gross, E. K. U.; Vuilleumier, Rodolphe
2017-07-01
Describing the dynamics of nuclei in molecules requires a potential energy surface, which is traditionally provided by the Born-Oppenheimer or adiabatic approximation. However, we also need to assign masses to the nuclei. There, the Born-Oppenheimer picture does not account for the inertia of the electrons, and only bare nuclear masses are considered. Nowadays, experimental accuracy challenges the theoretical predictions of rotational and vibrational spectra and requires the participation of electrons in the internal motion of the molecule. More than 80 years after the original work of Born and Oppenheimer, this issue has still not been solved, in general. Here, we present a theoretical and numerical framework to address this problem in a general and rigorous way. Starting from the exact factorization of the electron-nuclear wave function, we include electronic effects beyond the Born-Oppenheimer regime in a perturbative way via position-dependent corrections to the bare nuclear masses. This maintains an adiabaticlike point of view: The nuclear degrees of freedom feel the presence of the electrons via a single potential energy surface, whereas the inertia of electrons is accounted for and the total mass of the system is recovered. This constitutes a general framework for describing the mass acquired by slow degrees of freedom due to the inertia of light, bounded particles; thus, it is applicable not only in electron-nuclear systems but in light-heavy nuclei or ions as well. We illustrate this idea with a model of proton transfer, where the light particle is the proton and the heavy particles are the oxygen atoms to which the proton is bounded. Inclusion of the light-particle inertia allows us to gain orders of magnitude in accuracy. The electron-nuclear perspective is adopted, instead, to calculate position-dependent mass corrections using density functional theory for a few polyatomic molecules at their equilibrium geometry. These data can serve as input for the computation of high-precision molecular spectra.
NASA Astrophysics Data System (ADS)
Martini, M.; Péru, S.; Hilaire, S.; Goriely, S.; Lechaftois, F.
2016-07-01
Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we present large-scale calculations of the E 1 γ -ray strength function obtained in the framework of the axially symmetric deformed quasiparticle random-phase approximation based on the finite-range Gogny force. This approach is applied to even-even nuclei, the strength function for odd nuclei being derived by interpolation. The convergence with respect to the adopted number of harmonic oscillator shells and the cutoff energy introduced in the 2-quasiparticle (2 -q p ) excitation space is analyzed. The calculations performed with two different Gogny interactions, namely D1S and D1M, are compared. A systematic energy shift of the E 1 strength is found for D1M relative to D1S, leading to a lower energy centroid and a smaller energy-weighted sum rule for D1M. When comparing with experimental photoabsorption data, the Gogny-QRPA predictions are found to overestimate the giant dipole energy by typically ˜2 MeV. Despite the microscopic nature of our self-consistent Hartree-Fock-Bogoliubov plus QRPA calculation, some phenomenological corrections need to be included to take into account the effects beyond the standard 2 -q p QRPA excitations and the coupling between the single-particle and low-lying collective phonon degrees of freedom. For this purpose, three prescriptions of folding procedure are considered and adjusted to reproduce experimental photoabsorption data at best. All of them are shown to lead to somewhat similar predictions of the E 1 strength, both at low energies and for exotic neutron-rich nuclei. Predictions of γ -ray strength functions and Maxwellian-averaged neutron capture rates for the whole Sn isotopic chain are also discussed and compared with previous theoretical calculations.
Refining mass formulas for astrophysical applications: A Bayesian neural network approach
NASA Astrophysics Data System (ADS)
Utama, R.; Piekarewicz, J.
2017-10-01
Background: Exotic nuclei, particularly those near the drip lines, are at the core of one of the fundamental questions driving nuclear structure and astrophysics today: What are the limits of nuclear binding? Exotic nuclei play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy elements. Purpose: Our aim is to refine existing mass models through the training of an artificial neural network that will mitigate the large model discrepancies far away from stability. Methods: The basic paradigm of our two-pronged approach is an existing mass model that captures as much as possible of the underlying physics followed by the implementation of a Bayesian neural network (BNN) refinement to account for the missing physics. Bayesian inference is employed to determine the parameters of the neural network so that model predictions may be accompanied by theoretical uncertainties. Results: Despite the undeniable quality of the mass models adopted in this work, we observe a significant improvement (of about 40%) after the BNN refinement is implemented. Indeed, in the specific case of the Duflo-Zuker mass formula, we find that the rms deviation relative to experiment is reduced from σrms=0.503 MeV to σrms=0.286 MeV. These newly refined mass tables are used to map the neutron drip lines (or rather "drip bands") and to study a few critical r -process nuclei. Conclusions: The BNN approach is highly successful in refining the predictions of existing mass models. In particular, the large discrepancy displayed by the original "bare" models in regions where experimental data are unavailable is considerably quenched after the BNN refinement. This lends credence to our approach and has motivated us to publish refined mass tables that we trust will be helpful for future astrophysical applications.
Azzouzi, Imane; Moest, Hansjoerg; Wollscheid, Bernd; Schmugge, Markus; Eekels, Julia J M; Speer, Oliver
2015-05-01
During maturation, erythropoietic cells extrude their nuclei but retain their ability to respond to oxidant stress by tightly regulating protein translation. Several studies have reported microRNA-mediated regulation of translation during terminal stages of erythropoiesis, even after enucleation. In the present study, we performed a detailed examination of the endogenous microRNA machinery in human red blood cells using a combination of deep sequencing analysis of microRNAs and proteomic analysis of the microRNA-induced silencing complex. Among the 197 different microRNAs detected, miR-451a was the most abundant, representing more than 60% of all read sequences. In addition, miR-451a and its known target, 14-3-3ζ mRNA, were bound to the microRNA-induced silencing complex, implying their direct interaction in red blood cells. The proteomic characterization of endogenous Argonaute 2-associated microRNA-induced silencing complex revealed 26 cofactor candidates. Among these cofactors, we identified several RNA-binding proteins, as well as motor proteins and vesicular trafficking proteins. Our results demonstrate that red blood cells contain complex microRNA machinery, which might enable immature red blood cells to control protein translation independent of de novo nuclei information. Copyright © 2015 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Nuclear equation of state from ground and collective excited state properties of nuclei
NASA Astrophysics Data System (ADS)
Roca-Maza, X.; Paar, N.
2018-07-01
This contribution reviews the present status on the available constraints to the nuclear equation of state (EoS) around saturation density from nuclear structure calculations on ground and collective excited state properties of atomic nuclei. It concentrates on predictions based on self-consistent mean-field calculations, which can be considered as an approximate realization of an exact energy density functional (EDF). EDFs are derived from effective interactions commonly fitted to nuclear masses, charge radii and, in many cases, also to pseudo-data such as nuclear matter properties. Although in a model dependent way, EDFs constitute nowadays a unique tool to reliably and consistently access bulk ground state and collective excited state properties of atomic nuclei along the nuclear chart as well as the EoS. For comparison, some emphasis is also given to the results obtained with the so called ab initio approaches that aim at describing the nuclear EoS based on interactions fitted to few-body data only. Bridging the existent gap between these two frameworks will be essential since it may allow to improve our understanding on the diverse phenomenology observed in nuclei. Examples on observations from astrophysical objects and processes sensitive to the nuclear EoS are also briefly discussed. As the main conclusion, the isospin dependence of the nuclear EoS around saturation density and, to a lesser extent, the nuclear matter incompressibility remain to be accurately determined. Experimental and theoretical efforts in finding and measuring observables specially sensitive to the EoS properties are of paramount importance, not only for low-energy nuclear physics but also for nuclear astrophysics applications.
The study of structure in 224-234 thorium nuclei within the framework IBM
NASA Astrophysics Data System (ADS)
Lee, Su Youn; Lee, Young Jun; Lee, J. H.
2017-09-01
An investigation has been made of the behaviour of nuclear structure as a function of an increase in neutron number from 224Th to 234Th. Thorium of mass number 234 is a typical rotor nucleus that can be explained by the SU(3) limit of the interacting boson model(IBM) in the algebraic nuclear model. Furthermore, 224-232Th lie on the path of the symmetry-breaking phase transition. Moreover, the nuclear structure of 224Th can be explained using X(5) symmetry. However, as 226-230Th nuclei are not fully symmetrical nuclei, they can be represented by adding a perturbed term to express symmetry breaking. Through the following three calculation steps, we identified the tendency of change in nuclear structure. Firstly, the structure of 232Th is described using the matrix elements of the Hamiltonian and the electric quadrupole operator between basis states of the SU(3) limit in IBM. Secondly, the low-lying energy levels and E2 transition ratios corresponding to the observable physical values are calculated by adding a perturbed term with the first-order Casimir operator of the U(5) limit to the SU(3) Hamiltonian in IBM. We compared the results with experimental data of 224-234Th. Lastly, the potential of the Bohr Hamiltonian is represented by a harmonic oscillator, as a result of which the structure of 224-234Th could be expressed in closed form by an approximate separation of variables. The results of these theoretical predictions clarify nuclear structure changes in Thorium nuclei over mass numbers of practical significance.
Statistical and dynamical modeling of heavy-ion fusion-fission reactions
NASA Astrophysics Data System (ADS)
Eslamizadeh, H.; Razazzadeh, H.
2018-02-01
A modified statistical model and a four dimensional dynamical model based on Langevin equations have been used to simulate the fission process of the excited compound nuclei 207At and 216Ra produced in the fusion 19F + 188Os and 19F + 197Au reactions. The evaporation residue cross section, the fission cross section, the pre-scission neutron, proton and alpha multiplicities and the anisotropy of fission fragments angular distribution have been calculated for the excited compound nuclei 207At and 216Ra. In the modified statistical model the effects of spin K about the symmetry axis and temperature have been considered in calculations of the fission widths and the potential energy surfaces. It was shown that the modified statistical model can reproduce the above mentioned experimental data by using appropriate values of the temperature coefficient of the effective potential equal to λ = 0.0180 ± 0.0055, 0.0080 ± 0.0030 MeV-2 and the scaling factor of the fission barrier height equal to rs = 1.0015 ± 0.0025, 1.0040 ± 0.0020 for the compound nuclei 207At and 216Ra, respectively. Three collective shape coordinates plus the projection of total spin of the compound nucleus on the symmetry axis, K, were considered in the four dimensional dynamical model. In the dynamical calculations, dissipation was generated through the chaos weighted wall and window friction formula. Comparison of the theoretical results with the experimental data showed that two models make it possible to reproduce satisfactorily the above mentioned experimental data for the excited compound nuclei 207At and 216Ra.
On the Physical Environment in the Galactic Nuclei. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Beall, J. H.
1979-01-01
Galactic nuclei and quasars emit radiation over the entire electromagnetic spectrum. This suggests that concurrent observations over a wide frequency range may provide useful information in determining appropriate models for the physical environment in which the radiation is produced. In conjunction with observations by the high energy spectrometer on OSO-8, four sources have been studied in this manner; the nucleus of the elliptical galaxy, Centaurus A (NGG 5128); the quasar, 30273; the Seyfert galaxy, NGC 4151 and the nucleus of the Milky Way (GCX). Concurrent observations are used to construct the composite spectra (from radio to X-ray) for Cen A and NGC 4151 while the composite spectra of 30273 and GCX are derived from the OSO-8 data and from other observers. A skymap technique used to analyze observations of the galactic center region yielded data consistent with a significant, hard X-ray source at the radio and infrared position of the nucleus of the Milky Way. A theoretical analysis of the temporal variability of the Cen A data is undertaken and its implications discussed. Similarities between the composite spectra of the observed sources suggest that radio-bright and radio-quiet quasars may represent the emission from galactic nuclei with elliptical and Seyfert-like morphologies, respectively.
Experimental study of the lifetime and phase transition in neutron-rich
NASA Astrophysics Data System (ADS)
Ansari, S.; Régis, J.-M.; Jolie, J.; Saed-Samii, N.; Warr, N.; Korten, W.; Zielińska, M.; Salsac, M.-D.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; Drouet, F.; Vancraeyenest, A.; de France, G.; Clément, E.; Stezowski, O.; Ur, C. A.; Urban, W.; Regan, P. H.; Podolyák, Zs.; Larijani, C.; Townsley, C.; Carroll, R.; Wilson, E.; Mach, H.; Fraile, L. M.; Paziy, V.; Olaizola, B.; Vedia, V.; Bruce, A. M.; Roberts, O. J.; Smith, J. F.; Scheck, M.; Kröll, T.; Hartig, A.-L.; Ignatov, A.; Ilieva, S.; Lalkovski, S.; Mǎrginean, N.; Otsuka, T.; Shimizu, N.; Togashi, T.; Tsunoda, Y.
2017-11-01
Rapid shape changes are observed for neutron-rich nuclei with A around 100. In particular, a sudden onset of ground-state deformation is observed in the Zr and Sr isotopic chains at N = 60: Low-lying states in N ≤58 nuclei are nearly spherical, while those with N ≥60 have a rotational character. Nuclear lifetimes as short as a few picoseconds can be measured using fast-timing techniques with LaBr3(Ce) scintillators, yielding a key ingredient in the systematic study of the shape evolution in this region. We used neutron-induced fission of 241Pu and 235U to study lifetimes of excited states in fission fragments in the A ˜100 region with the EXILL-FATIMA array located at the PF1B cold neutron beam line at the Institut Laue-Langevin. In particular, we applied the generalized centroid difference method to deduce lifetimes of low-lying states for the nuclei 98Zr (N = 58), 100Zr, and 102Zr (N ≥60 ). The results are discussed in the context of the presumed phase transition in the Zr chain by comparing the experimental transition strengths with the theoretical calculations using the interacting boson model and the Monte Carlo shell model.
NASA Astrophysics Data System (ADS)
Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.
2017-10-01
Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.
Enhancement of fusion at near-barrier energies for neutron-rich light nuclei: 19O +12 C
NASA Astrophysics Data System (ADS)
Singh, Varinderjit; Vadas, J.; Steinbach, T. K.; Wiggins, B. B.; Hudan, S.; Desouza, R. T.; Baby, L. T.; Kuvin, S. A.; Tripathi, Vandana; Wiedenhover, I.; Umar, A. S.
2017-01-01
Measuring the fusion excitation function for an isotopic chain of projectile nuclei provides a sensitive test of a microscopic description of fusion. To investigate the theoretically predicted fusion enhancement for neutron-rich light nuclei, an experiment was performed to measure the fusion excitation functions for 19 O +12 C and 18 O +12 C . Using the 18O(d,p) reaction and the RESOLUT mass spectrometer at Florida State University, a beam of 19O was produced with an intensity of 2-4 x 103 p/s. This beam bombarded a 100 μg/cm2 carbon target. Using an approach optimized for the measurement of fusion with a low-intensity beam, evaporation residues (ERs) resulting from the de-excitation of the fusion product were measured. The ERs were identified by measuring their energy and time-of-flight. At near-barrier energies, an enhancement of fusion by a factor of three has been observed for 19 O +12 C in comparison to 18 O +12 C . Comparison of the experimental results with the predictions of a density constrained time-dependent Hartree-Fock (DC-TDHF) model provide evidence for the importance of pairing in the fusion process. Supported by the US DOE under Grant No. DEFG02-88ER-40404.
The intrinsic organization of the vestibular complex: evidence for internuclear connectivity.
Rubertone, J A; Mehler, W R; Cox, G E
1983-03-14
The HRP anterograde and retrograde labeling techniques provide evidence for extensive internuclear connectivity within the vestibular complex. Specifically: (1) the superior vestibular nucleus is topographically and reciprocally related to the spinal (spr) and medial vestibular nuclei (mv); (2) the lateral vestibular nucleus (lv) is reciprocally related to the mv, and (3) the lv receives afferent fibers from the spv but does not reciprocate this input.
The 'seven-sister' BCG - A tale of a cD galaxy in the making?
NASA Astrophysics Data System (ADS)
Lal, Dharam
2015-09-01
We propose Chandra observations of the most complex known multiple-nucleus system, the peculiar "inner nuclei" in the poor cluster A407. This object has many compact nuclei embedded in a luminous matrix; and provides us with a case of a cD galaxy in the making. We are fortunate to have found it! Our proposed 45 ks Chandra observation will provide definitive answers about the origin of such objects. Additionally, we will probe the gas properties, make estimates of temperatures and matallicities, search for substructures or surface brightness edges and correlate them with radio morphology, etc. for A407.
Effects of cerebellar nuclear inactivation on the learning of a complex forelimb movement in cats.
Wang, J J; Shimansky, Y; Bracha, V; Bloedel, J R
1998-05-01
The purpose of this study was to determine the effects of inactivating concurrently the cerebellar interposed and dentate nuclei on the capacity of cats to acquire and retain a complex, goal-directed forelimb movement. To assess the effects on acquisition, cats were required to learn to move a vertical manipulandum bar through a two-segment template with a shape approximating an inverted "L" after the injection of muscimol (saline for the control group) in the interposed and dentate cerebellar nuclei. During training periods, they were exposed progressively to more difficult templates, which were created by decreasing the angle between the two segments of the template. After determining the most difficult template the injected animals could learn within the specified time and performance constraints, the retraining phase of the experiment was initiated in which the cats were required to execute the same sequence of templates in the absence of any injection. This stage of the experiment assessed retention and determined the extent of any relearning required to execute the task at criterion levels. Next, the animals were overtrained without any injection on the most difficult template they could perform. Finally, to determine the effects of nuclear inactivation on retention after extensive retraining, their capacity to perform the same template was determined after muscimol injection in the interposed and dentate nuclei. The findings show that during the inactivation of the dentate and interposed nuclei the animals could learn to execute the more difficult templates. However, when required to execute the most difficult template learned under muscimol on the day after injections were discontinued, the cats had to "relearn" (reacquire) the movement. Finally, when the cerebellar nuclei were inactivated after the animals learned the task in the absence of any injections during the retraining phase, retention was not blocked. The data indicate that the intermediate and lateral cerebellum are not required either for learning this type of complex voluntary movement or for retaining the capacity to perform the task once it is learned. Nevertheless, when the cerebellum becomes available for executing a task learned in the absence of this structure, reacquisition of the behavior usually is necessary. It is hypothesized that the relearning observed after acquisition during muscimol inactivation reflects the tendency of the system to incorporate the cerebellum into the interactions responsible for the learning and performance of a motor sequence that is optimal for executing the task.
A brief review of intruder rotational bands and magnetic rotation in the A = 110 mass region
NASA Astrophysics Data System (ADS)
Banerjee, P.
2018-05-01
Nuclei in the A ∼ 110 mass region exhibit interesting structural features. One of these relates to the process by which specific configurations, built on the excitation of one or more protons across the Z = 50 shell-gap, manifest as collective rotational bands at intermediate spins and gradually lose their collectivity with increase in spin and terminate in a non-collective state at the maximum spin which the configuration can support. These bands are called terminating bands that co-exist with spherical states. Some of these bands are said to terminate smoothly underlining the continuous character of the process by which the band evolves from significant collectivity at low spin to a pure particle-hole non-collective state at the highest spin. The neutron-deficient A ∼ 110 mass region provides the best examples of smoothly terminating bands. The present experimental and theoretical status of such bands in several nuclei with 48 ≤ Z ≤ 52 spanning the 106 ≤ A ≤ 119 mass region have been reviewed in this article. The other noteworthy feature of nuclei in the A ∼ 110 mass region is the observation of regular rotation-like sequences of strongly enhanced magnetic dipole transitions in near-spherical nuclei. These bands, unlike the well-studied rotational sequences in deformed nuclei, arise from a spontaneous symmetry breaking by the anisotropic currents of a few high-j excited particles and holes. This mode of excitation is called magnetic rotation and was first reported in the Pb region. Evidence in favor of the existence of such structures, also called shears bands, are reported in the literature for a large number of Cd, In, Sn and Sb isotope with A ∼ 110. The present article provides a general overview of these reported structures across this mass region. The review also discusses antimagnetic rotation bands and a few cases of octupole correlations in the A = 110 mass region.
Ground states of larger nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieper, S.C.; Wiringa, R.B.; Pandharipande, V.R.
1995-08-01
The methods used for the few-body nuclei require operations on the complete spin-isospin vector; the size of this vector makes such methods impractical for nuclei with A > 8. During the last few years we developed cluster expansion methods that do not require operations on the complete vector. We use the same Hamiltonians as for the few-body nuclei and variational wave functions of form similar to the few-body wave functions. The cluster expansions are made for the noncentral parts of the wave functions and for the operators whose expectation values are being evaluated. The central pair correlations in the wavemore » functions are treated exactly and this requires the evaluation of 3A-dimensional integrals which are done with Monte Carlo techniques. Most of our effort was on {sup 16}O, other p-shell nuclei, and {sup 40}Ca. In 1993 the Mathematics and Computer Science Division acquired a 128-processor IBM SP which has a theoretical peak speed of 16 Gigaflops (GFLOPS). We converted our program to run on this machine. Because of the large memory on each node of the SP, it was easy to convert the program to parallel form with very low communication overhead. Considerably more effort was needed to restructure the program from one oriented towards long vectors for the Cray computers at NERSC to one that makes efficient use of the cache of the RS6000 architecture. The SP made possible complete five-body cluster calculations of {sup 16}O for the first time; previously we could only do four-body cluster calculations. These calculations show that the expectation value of the two-body potential is converging less rapidly than we had thought, while that of the three-body potential is more rapidly convergent; the net result is no significant change to our predicted binding energy for {sup 16}O using the new Argonne v{sub 18} potential and the Urbana IX three-nucleon potential. This result is in good agreement with experiment.« less
Bright, Fiona M; Vink, Robert; Byard, Roger W; Duncan, Jhodie R; Krous, Henry F; Paterson, David S
2017-01-01
Sudden infant death syndrome (SIDS) involves failure of arousal to potentially life threatening events, including hypoxia, during sleep. While neuronal dysfunction and abnormalities in neurotransmitter systems within the medulla oblongata have been implicated, the specific pathways associated with autonomic and cardiorespiratory failure are unknown. The neuropeptide substance P (SP) and its tachykinin neurokinin-1 receptor (NK1R) have been shown to play an integral role in the modulation of homeostatic function in the medulla, including regulation of respiratory rhythm generation, integration of cardiovascular control, and modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may therefore result in autonomic dysfunction during sleep and contribute to SIDS deaths. [125I] Bolton Hunter SP autoradiography was used to map the distribution and density of the SP, NK1R to 13 specific nuclei intimately related to cardiorespiratory function and autonomic control in the human infant medulla of 55 SIDS and 21 control (non-SIDS) infants. Compared to controls, SIDS cases exhibited a differential, abnormal developmental profile of the SP/NK1R system in the medulla. Furthermore the study revealed significantly decreased NK1R binding within key medullary nuclei in SIDS cases, principally in the nucleus tractus solitarii (NTS) and all three subdivisions of the inferior portion of the olivo-cerebellar complex; the principal inferior olivary complex (PIO), medial accessory olive (MAO) and dorsal accessory olive (DAO). Altered NK1R binding was significantly influenced by prematurity and male sex, which may explain the increased risk of SIDS in premature and male infants. Abnormal NK1R binding in these medullary nuclei may contribute to the defective interaction of critical medullary mechanisms with cerebellar sites, resulting in an inability of a SIDS infant to illicit appropriate respiratory and motor responses to life threatening challenges during sleep. These observations support the concept that abnormalities in a multi-neurotransmitter network within key nuclei of the medullary homeostatic system may underlie the pathogenesis of a subset of SIDS cases.
Vink, Robert; Byard, Roger W.; Duncan, Jhodie R.; Krous, Henry F.; Paterson, David S.
2017-01-01
Sudden infant death syndrome (SIDS) involves failure of arousal to potentially life threatening events, including hypoxia, during sleep. While neuronal dysfunction and abnormalities in neurotransmitter systems within the medulla oblongata have been implicated, the specific pathways associated with autonomic and cardiorespiratory failure are unknown. The neuropeptide substance P (SP) and its tachykinin neurokinin-1 receptor (NK1R) have been shown to play an integral role in the modulation of homeostatic function in the medulla, including regulation of respiratory rhythm generation, integration of cardiovascular control, and modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in response to hypoxia. Abnormalities in SP neurotransmission may therefore result in autonomic dysfunction during sleep and contribute to SIDS deaths. [125I] Bolton Hunter SP autoradiography was used to map the distribution and density of the SP, NK1R to 13 specific nuclei intimately related to cardiorespiratory function and autonomic control in the human infant medulla of 55 SIDS and 21 control (non-SIDS) infants. Compared to controls, SIDS cases exhibited a differential, abnormal developmental profile of the SP/NK1R system in the medulla. Furthermore the study revealed significantly decreased NK1R binding within key medullary nuclei in SIDS cases, principally in the nucleus tractus solitarii (NTS) and all three subdivisions of the inferior portion of the olivo-cerebellar complex; the principal inferior olivary complex (PIO), medial accessory olive (MAO) and dorsal accessory olive (DAO). Altered NK1R binding was significantly influenced by prematurity and male sex, which may explain the increased risk of SIDS in premature and male infants. Abnormal NK1R binding in these medullary nuclei may contribute to the defective interaction of critical medullary mechanisms with cerebellar sites, resulting in an inability of a SIDS infant to illicit appropriate respiratory and motor responses to life threatening challenges during sleep. These observations support the concept that abnormalities in a multi-neurotransmitter network within key nuclei of the medullary homeostatic system may underlie the pathogenesis of a subset of SIDS cases. PMID:28931039
Wullimann, Mario F.; Mueller, Thomas; Distel, Martin; Babaryka, Andreas; Grothe, Benedikt; Köster, Reinhard W.
2011-01-01
This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes) share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP) giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells) and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei). As for the lower rhombic lip (LRL), gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins) and partially primary auditory nuclei (likely convergently evolved) from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of) the inferior olive (climbing fiber origin) and (inhibitory cells of ) cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologs (i.e., eurydendroid cells) from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogs and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei) in jawless fishes PMID:21559349
NASA Technical Reports Server (NTRS)
Gonzalo-Ruiz, A.; Alonso, A.; Sanz, J. M.; Llinas, R. R.
1992-01-01
The presence and distribution of dopaminergic neurons and terminals in the hypothalamus of the rat were studied by tyrosine hydroxylase (TH) immunohistochemistry. Strongly labelled TH-immunoreactive neurons were seen in the dorsomedial hypothalamic nucleus, periventricular region, zona incerta, arcuate nucleus, and supramammillary nucleus. A few TH-positive neurons were also identified in the dorsal and ventral premammillary nucleus, as well as the lateral hypothalamic area. TH-immunoreactive fibres and terminals were unevenly distributed in the mammillary nuclei; small, weakly labelled terminals were scattered in the medial mammillary nucleus, while large, strongly labelled, varicose terminals were densely concentrated in the internal part of the lateral mammillary nucleus. A few dorsoventrally oriented TH-positive axon bundles were also identified in the lateral mammillary nucleus. A dopaminergic projection to the mammillary nuclei from the supramammillary nucleus and lateral hypothalamic area was identified by double labelling with retrograde transport of wheat germ agglutinin-horseradish peroxidase and TH-immunohistochemistry. The lateral mammillary nucleus receives a weak dopaminergic projection from the medial, and stronger projections from the lateral, caudal supramammillary nucleus. The double-labelled neurons in the lateral supramammillary nucleus appear to encapsulate the caudal end of the mammillary nuclei. The medial mammillary nucleus receives a very light dopaminergic projection from the caudal lateral hypothalamic area. These results suggest that the supramammillary nucleus is the principal source of the dopaminergic input to the mammillary nuclei, establishing a local TH-pathway in the mammillary complex. The supramammillary cell groups are able to modulate the limbic system through its dopaminergic input to the mammillary nuclei as well as through its extensive dopaminergic projection to the lateral septal nucleus.
Spore development and nuclear inheritance in arbuscular mycorrhizal fungi
2011-01-01
Background A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. Results We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. Conclusions We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage. PMID:21349193
Spore development and nuclear inheritance in arbuscular mycorrhizal fungi.
Marleau, Julie; Dalpé, Yolande; St-Arnaud, Marc; Hijri, Mohamed
2011-02-24
A conventional tenet of classical genetics is that progeny inherit half their genome from each parent in sexual reproduction instead of the complete genome transferred to each daughter during asexual reproduction. The transmission of hereditary characteristics from parents to their offspring is therefore predictable, although several exceptions are known. Heredity in microorganisms, however, can be very complex, and even unknown as is the case for coenocytic organisms such as Arbuscular Mycorrhizal Fungi (AMF). This group of fungi are plant-root symbionts, ubiquitous in most ecosystems, which reproduce asexually via multinucleate spores for which sexuality has not yet been observed. We examined the number of nuclei per spore of four AMF taxa using high Z-resolution live confocal microscopy and found that the number of nuclei was correlated with spore diameter. We show that AMF have the ability, through the establishment of new symbioses, to pass hundreds of nuclei to subsequent generations of multinucleated spores. More importantly, we observed surprising heterogeneity in the number of nuclei among sister spores and show that massive nuclear migration and mitosis are the mechanisms by which AMF spores are formed. We followed spore development of Glomus irregulare from hyphal swelling to spore maturity and found that the spores reached mature size within 30 to 60 days, and that the number of nuclei per spores increased over time. We conclude that the spores used for dispersal of AMF contain nuclei with two origins, those that migrate into the spore and those that arise by mitosis in the spore. Therefore, these spores do not represent a stage in the life cycle with a single nucleus, raising the possibility that AMF, unlike all other known eukaryotic organisms, lack the genetic bottleneck of a single-nucleus stage.
Proxy-SU(3) symmetry in heavy deformed nuclei
NASA Astrophysics Data System (ADS)
Bonatsos, Dennis; Assimakis, I. E.; Minkov, N.; Martinou, Andriana; Cakirli, R. B.; Casten, R. F.; Blaum, K.
2017-06-01
Background: Microscopic calculations of heavy nuclei face considerable difficulties due to the sizes of the matrices that need to be solved. Various approximation schemes have been invoked, for example by truncating the spaces, imposing seniority limits, or appealing to various symmetry schemes such as pseudo-SU(3). This paper proposes a new symmetry scheme also based on SU(3). This proxy-SU(3) can be applied to well-deformed nuclei, is simple to use, and can yield analytic predictions. Purpose: To present the new scheme and its microscopic motivation, and to test it using a Nilsson model calculation with the original shell model orbits and with the new proxy set. Method: We invoke an approximate, analytic, treatment of the Nilsson model, that allows the above vetting and yet is also transparent in understanding the approximations involved in the new proxy-SU(3). Results: It is found that the new scheme yields a Nilsson diagram for well-deformed nuclei that is very close to the original Nilsson diagram. The specific levels of approximation in the new scheme are also shown, for each major shell. Conclusions: The new proxy-SU(3) scheme is a good approximation to the full set of orbits in a major shell. Being able to replace a complex shell model calculation with a symmetry-based description now opens up the possibility to predict many properties of nuclei analytically and often in a parameter-free way. The new scheme works best for heavier nuclei, precisely where full microscopic calculations are most challenged. Some cases in which the new scheme can be used, often analytically, to make specific predictions, are shown in a subsequent paper.
Rüb, Udo; Stratmann, Katharina; Heinsen, Helmut; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; den Dunnen, Wilfred; Korf, Horst-Werner
2016-01-01
In spite of considerable progress in neuropathological research on Alzheimer's disease (AD), knowledge regarding the exact pathoanatomical distribution of the tau cytoskeletal pathology in the thalamus of AD patients in the advanced Braak and Braak AD stages V or VI of the cortical cytoskeletal pathology is still fragmentary. Investigation of serial 100 μm-thick brain tissue sections through the thalamus of clinically diagnosed AD patients with Braak and Braak AD stage V or VI cytoskeletal pathologies immunostained with the anti-tau AT8 antibody, along with the affection of the extraterritorial reticular nucleus of the thalamus, reveals a consistent and severe tau immunoreactive cytoskeletal pathology in the limbic nuclei of the thalamus (e.g., paraventricular, anterodorsal and laterodorsal nuclei, limitans-suprageniculate complex). The thalamic nuclei integrated into the associative networks of the human brain (e.g., ventral anterior and mediodorsal nuclei) are only mildly affected, while its motor precerebellar (ventral lateral nucleus) and sensory nuclei (e.g., lateral and medial geniculate bodies, ventral posterior medial and lateral nuclei, parvocellular part of the ventral posterior medial nucleus) are more or less spared. The highly stereotypical and characteristic thalamic distribution pattern of the AD-related tau cytoskeletal pathology represents an anatomical mirror of the hierarchical topographic distribution of the cytoskeletal pathology in the interconnected regions of the cerebral cortex of AD patients. These pathoanatomical parallels support the pathophysiological concept of a transneuronal spread of the disease process of AD along anatomical pathways. The AD-related tau cytoskeletal pathology in the thalamus most likely contributes substantially to the neuropsychiatric disease symptoms (e.g., dementia), attention deficits, oculomotor dysfunctions, altered non-discriminative aspects of pain experience of AD patients, and the disruption of their waking and sleeping patterns.
Schwarz, C; Thier, P
1996-12-16
Dendritic features of identified projection neurons in two precerebellar nuclei, the pontine nuclei (PN) and the nucleus reticularis tegmenti pontis (NRTP) were established by using a combination of retrograde tracing (injection of fluorogold or rhodamine labelled latex micro-spheres into the cerebellum) with subsequent intracellular filling (lucifer yellow) in fixed slices of pontine brainstem. A multivariate analysis revealed that parameters selected to characterize the dendritic tree such as size of dendritic field, number of branching points, and length of terminal dendrites did not deviate significantly between different regions of the PN and the NRTP. On the other hand, projection neurons in ventral regions of the PN were characterized by an irregular coverage of their distal dendrites by appendages while those in the dorsal PN and the NRTP were virtually devoid of them. The NRTP, dorsal, and medial PN tended to display larger somata and more primary dendrites than ventral regions of the PN. These differences, however, do not allow the differentiation of projection neurons within the PN from those in the NRTP. They rather reflect a dorso-ventral gradient ignoring the border between the nuclei. Accordingly, a cluster analysis did not differentiate distinct types of projection neurons within the total sample. In both nuclei, multiple linear regression analysis revealed that the size of dendritic fields was strongly correlated with the length of terminal dendrites while it did not depend on other parameters of the dendritic field. Thus, larger dendritic fields seem not to be accompanied by a higher complexity but rather may be used to extend the reach of a projection neuron within the arrangement of afferent terminals. We suggest that these similarities within dendritic properties in PN and NRTP projection neurons reflect similar processing of afferent information in both precerebellar nuclei.
NASA Astrophysics Data System (ADS)
Sullivan, Christopher James
Weak interactions involving atomic nuclei are critical components in a broad range of as- trophysical phenomenon. As allowed Gamow-Teller transitions are the primary path through which weak interactions in nuclei operate in astrophysical contexts, the constraint of these nuclear transitions is an important goal of nuclear astrophysics. In this work, the charged current nuclear weak interaction known as electron capture is studied in the context of stellar core-collapse supernovae (CCSNe). Specifically, the sensitivity of the core-collapse and early post-bounce phases of CCSNe to nuclear electron capture rates are examined. Electron capture rates are adjusted by factors consistent with uncer- tainties indicated by comparing theoretical rates to those deduced from charge-exchange and beta-decay measurements. With the aide of such sensitivity studies, the diverse role of electron capture on thousands of nuclear species is constrained to a few tens of nuclei near N 50 and A 80 which dictate the primary response of CCSNe to nuclear electron capture. As electron capture is shown to be a leading order uncertainty during the core-collapse phase of CCSNe, future experimental and theoretical efforts should seek to constrain the rates of nuclei in this region. Furthermore, neutral current neutrino-nuclear interactions in the tens-of-MeV energy range are important in a variety of astrophysical environments including core-collapse super- novae as well as in the synthesis of some of the solar systems rarest elements. Estimates for inelastic neutrino scattering on nuclei are also important for neutrino detector construction aimed at the detection of astrophysical neutrinos. Due to the small cross sections involved, direct measurements are rare and have only been performed on a few nuclei. For this rea- son, indirect measurements provide a unique opportunity to constrain the nuclear transition strength needed to infer inelastic neutrino-nucleus cross sections. Herein the (6Li, 6Li‧) inelastic scattering reaction at 100 MeV/u is shown to indirectly select the relevant transitions for inelastic neutrino-nucleus scattering. Specifically, the probes unique selectivity of isovector- spin transfer excitations (Delta S = 1, DeltaT = 1, DeltaTz = 0) is demonstrated, thereby allowing the extraction of Gamow-Teller transition strength in the inelastic channel. Finally, the development and performance of a newly established technique for the sub- field of artificial intelligence known as neuroevolution is described. While separate from the physics that is discussed, these algorithmic advancements seek to improve the adoption of machine learning in the scientific domain by enabling neuroevolution to take advantage of modern heterogeneous compute architectures. Because the evolution of neural network pop- ulations offloads the choice of specific details about the neural networks to an evolutionary search algorithm, neuroevolution can increase the accessibility of machine learning. However, the evolution of neural networks through parameter and structural space presents a novel di- vergence problem when mapping the evaluation of these networks to many-core architectures. The principal focus of the algorithm optimizations described herein are on improving the feed-forward evaluation time when tens-to-hundreds of thousands of heterogeneous neural networks are evaluated concurrently.
Fos-defined activity in rat brainstem following centripetal acceleration.
Kaufman, G D; Anderson, J H; Beitz, A J
1992-11-01
To identify rat brainstem nuclei involved in the initial, short-term response to a change in gravito-inertial force, adult Long-Evans rats were rotated in the horizontal plane for 90 min in complete darkness after they were eccentrically positioned off the axis of rotation (off-axis) causing a centripetal acceleration of 2 g. Neural activation was defined by the brainstem distribution of the c-fos primary response gene protein, Fos, using immunohistochemistry. The Fos labeling in off-axis animals was compared with that of control animals who were rotated on the axis of rotation (on-axis) with no centripetal acceleration, or who were restrained but not rotated. In the off-axis animals there was a significant labeling of neurons: in the inferior, medial, and y-group subnuclei of the vestibular complex; in subnuclei of the inferior olive, especially the dorsomedial cell column; in midbrain nuclei, including the interstitial nucleus of Cajal, nucleus of Darkschewitsch, Edinger-Westphal nucleus, and dorsolateral periaqueductal gray; in autonomic centers including the solitary nucleus, area postrema, and locus coeruleus; and in reticular nuclei including the lateral reticular nucleus and the lateral parabrachial nucleus. Also, there was greater Fos expression in the dorsomedial cell column, the principal inferior olive subnuclei, inferior vestibular nucleus, the dorsolateral central gray, and the locus coeruleus in animals who had their heads restrained compared to animals whose heads were not restrained. As one control, the vestibular neuroepithelium was destroyed by injecting sodium arsanilate into the middle ear, bilaterally. This resulted in a complete lack of Fos labeling in the vestibular nuclei and the inferior olive, and a significant reduction in labeling in other nuclei in the off-axis condition, indicating that these nuclei have a significant labyrinth-sensitive component to their Fos labeling. The data indicate that several novel brainstem regions, including the dorsomedial cell column of the inferior olive and the periaqueductal gray, as well as more traditional brainstem nuclei including vestibular and oculomotor related nuclei, respond to otolith activation during a sustained centripetal acceleration.
Guffei, Amanda; Sarkar, Rahul; Klewes, Ludger; Righolt, Christiaan; Knecht, Hans; Mai, Sabine
2010-12-01
Hodgkin's lymphoma is characterized by the presence of mono-nucleated Hodgkin cells and bi- to multi-nucleated Reed-Sternberg cells. We have recently shown telomere dysfunction and aberrant synchronous/asynchronous cell divisions during the transition of Hodgkin cells to Reed-Sternberg cells.1 To determine whether overall changes in nuclear architecture affect genomic instability during the transition of Hodgkin cells to Reed-Sternberg cells, we investigated the nuclear organization of chromosomes in these cells. Three-dimensional fluorescent in situ hybridization revealed irregular nuclear positioning of individual chromosomes in Hodgkin cells and, more so, in Reed-Sternberg cells. We characterized an increasingly unequal distribution of chromosomes as mono-nucleated cells became multi-nucleated cells, some of which also contained chromosome-poor 'ghost' cell nuclei. Measurements of nuclear chromosome positions suggested chromosome overlaps in both types of cells. Spectral karyotyping then revealed both aneuploidy and complex chromosomal rearrangements: multiple breakage-bridge-fusion cycles were at the origin of the multiple rearranged chromosomes. This conclusion was challenged by super resolution three-dimensional structured illumination imaging of Hodgkin and Reed-Sternberg nuclei. Three-dimensional super resolution microscopy data documented inter-nuclear DNA bridges in multi-nucleated cells but not in mono-nucleated cells. These bridges consisted of chromatids and chromosomes shared by two Reed-Sternberg nuclei. The complexity of chromosomal rearrangements increased as Hodgkin cells developed into multi-nucleated cells, thus indicating tumor progression and evolution in Hodgkin's lymphoma, with Reed-Sternberg cells representing the highest complexity in chromosomal rearrangements in this disease. This is the first study to demonstrate nuclear remodeling and associated genomic instability leading to the generation of Reed-Sternberg cells of Hodgkin's lymphoma. We defined nuclear remodeling as a key feature of Hodgkin's lymphoma, highlighting the relevance of nuclear architecture in cancer.
de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Ferreira, Célio Marcos Dos Reis; Coimbra, Norberto Cysne
2006-09-01
The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and men. In this interesting post-ictal behavioral response, endogenous opioid peptides-mediated mechanisms, as well as cholinergic-mediated antinociceptive processes, have been suggested. However, considering that many serotonergic descending pathways have been implicated in antinociceptive reactions, the aim of the present work is to investigate the involvement of 5-HT(2)-serotonergic receptor subfamily in the post-ictal antinociception. The analgesia was measured by the tail-flick test in seven or eight Wistar rats per group. Convulsions were followed by statistically significant increase in the tail-flick latencies (TFL), at least for 120 min of the post-ictal period. Male Wistar rats were submitted to stereotaxic surgery for introduction of a guide-cannula in the rhombencephalon, aiming either the nucleus raphe magnus (NRM) or the gigantocellularis complex. In independent groups of animals, these nuclei were neurochemically lesioned with a unilateral microinjection of ibotenic acid (1.0 microg/0.2 microL). The neuronal damage of either the NRM or nucleus reticularis gigantocellularis/paragigantocellularis complex decreased the post-ictal analgesia. Also, in other independent groups, central administration of ritanserin (5.0 microg/0.2 microL) or physiological saline into each of the reticular formation nuclei studied caused a statistically significant decrease in the TFL of seizing animals, as compared to controls, in all post-ictal periods studied. These results indicate that serotonin input-connected neurons of the pontine and medullarly reticular nuclei may be involved in the post-ictal analgesia.
Gamberini, Michela; Bakola, Sophia; Passarelli, Lauretta; Burman, Kathleen J; Rosa, Marcello G P; Fattori, Patrizia; Galletti, Claudio
2016-04-01
The medial posterior parietal cortex of the primate brain includes different functional areas, which have been defined based on the functional properties, cyto- and myeloarchitectural criteria, and cortico-cortical connections. Here, we describe the thalamic projections to two of these areas (V6 and V6A), based on 14 retrograde neuronal tracer injections in 11 hemispheres of 9 Macaca fascicularis. The injections were placed either by direct visualisation or using electrophysiological guidance, and the location of injection sites was determined post mortem based on cyto- and myeloarchitectural criteria. We found that the majority of the thalamic afferents to the visual area V6 originate in subdivisions of the lateral and inferior pulvinar nuclei, with weaker inputs originating from the central densocellular, paracentral, lateral posterior, lateral geniculate, ventral anterior and mediodorsal nuclei. In contrast, injections in both the dorsal and ventral parts of the visuomotor area V6A revealed strong inputs from the lateral posterior and medial pulvinar nuclei, as well as smaller inputs from the ventrolateral complex and from the central densocellular, paracentral, and mediodorsal nuclei. These projection patterns are in line with the functional properties of injected areas: "dorsal stream" extrastriate area V6 receives information from visuotopically organised subdivisions of the thalamus; whereas visuomotor area V6A, which is involved in the sensory guidance of arm movement, receives its primary afferents from thalamic nuclei that provide high-order somatic and visual input.
Pinabiaux, Charlotte; Hertz-Pannier, Lucie; Chiron, Catherine; Rodrigo, Sébastian; Jambaqué, Isabelle; Noulhiane, Marion
2013-01-01
Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8-12 years) and adolescents (n = 12; 13-17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated.
Pinabiaux, Charlotte; Hertz-Pannier, Lucie; Chiron, Catherine; Rodrigo, Sébastian; Jambaqué, Isabelle; Noulhiane, Marion
2013-01-01
Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8–12 years) and adolescents (n = 12; 13–17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated. PMID:24399958
Coherent production of ρ - mesons in charged current antineutrino-neon interactions in BEBC
NASA Astrophysics Data System (ADS)
Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Katz, U. F.; Klein, H.; Matsinos, E.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Schmitz, N.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.
1987-09-01
Coherent production of ρ - mesons in charged current antineutrino interactions on neon nuclei is studied in the BEBC bubble chamber exposed to the CERN SPS wide band beam. The cross section is measured to be (95±25)·10-40 cm2 per neon nucleus, averaged over the beam energy spectrum. The distributions of kinematical variables and the absolute value of the cross section are in agreement with theoretical predictions based on the CVC hypothesis and the vector meson dominance model.
Manipulation of the spin memory of electrons in n-GaAs.
Dzhioev, R I; Korenev, V L; Merkulov, I A; Zakharchenya, B P; Gammon, D; Efros, Al L; Katzer, D S
2002-06-24
We report on the optical manipulation of the electron spin relaxation time in a GaAs-based heterostructure. Experimental and theoretical study shows that the average electron spin relaxes through hyperfine interaction with the lattice nuclei, and that the rate can be controlled by electron-electron interactions. This time has been changed from 300 ns down to 5 ns by variation of the laser frequency. This modification originates in the optically induced depletion of an n-GaAs layer.
Glimpsing Colour in a World of Black and White
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Pennington
2012-09-01
The past 40 years have taught us that nucleons are built of constituents that carry colour charges with interactions governed by Quantum Chromodynamics (QCD). How experiments (past, present and future) at Jefferson Lab probe colourless nuclei to map out these internal colour degrees of freedom is presented. When combined with theoretical calculations, these will paint a picture of how the confinement of quarks and gluons, and the structure of the QCD vacuum, determine the properties of all (light) strongly interacting states.
Possible complementary cosmic-ray systems: Nuclei and antinuclei
NASA Technical Reports Server (NTRS)
Buck, Warren W.; Wilson, John W.; Townsend, Lawrence W.; Norbury, John W.
1987-01-01
Arguments are presented for the possible existence of antinuclei of charge Absolute Value of Z greater than 2 and particularly galactic cosmic antinuclei. Theoretical antinucleus-nucleus optical model cross sections are calculated and presented for the first time. A brief review of the nucleon-antinucleon interaction is also presented and its connection with the antinucleus-nucleus interaction is made. The predicted cross sections are smooth and show no structure. Finally, the findings are tied together with the formation of microlesions in living tissue.
Criterions for condensation-free flow in supersonic tunnels
NASA Technical Reports Server (NTRS)
Burgess, Warren C; Seashore, Ferris L
1949-01-01
The results of an investigation of water-vapor condensation shocks in the air passing through supersonic tunnels are presented. Criterions for condensation-free flow are established by correlating experimental observations with the Volmer theory of nuclei formation. Experimental observations were made at Mach numbers up to 2.01. The criterions are presented in a form independent of tunnel-inlet stagnation pressure and are extended theoretically to a Mach number of 4.00. Preliminary evidence of the effect of tunnel size on the criterion is presented.
Selective nuclear export of specific classes of mRNA from mammalian nuclei is promoted by GANP
Wickramasinghe, Vihandha O.; Andrews, Robert; Ellis, Peter; Langford, Cordelia; Gurdon, John B.; Stewart, Murray; Venkitaraman, Ashok R.; Laskey, Ronald A.
2014-01-01
The nuclear phase of the gene expression pathway culminates in the export of mature messenger RNAs (mRNAs) to the cytoplasm through nuclear pore complexes. GANP (germinal- centre associated nuclear protein) promotes the transfer of mRNAs bound to the transport factor NXF1 to nuclear pore complexes. Here, we demonstrate that GANP, subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex, promotes selective nuclear export of a specific subset of mRNAs whose transport depends on NXF1. Genome-wide gene expression profiling showed that half of the transcripts whose nuclear export was impaired following NXF1 depletion also showed reduced export when GANP was depleted. GANP-dependent transcripts were highly expressed, yet short-lived, and were highly enriched in those encoding central components of the gene expression machinery such as RNA synthesis and processing factors. After injection into Xenopus oocyte nuclei, representative GANP-dependent transcripts showed faster nuclear export kinetics than representative transcripts that were not influenced by GANP depletion. We propose that GANP promotes the nuclear export of specific classes of mRNAs that may facilitate rapid changes in gene expression. PMID:24510098
Light clusters in nuclear matter: Excluded volume versus quantum many-body approaches
NASA Astrophysics Data System (ADS)
Hempel, Matthias; Schaffner-Bielich, Jürgen; Typel, Stefan; Röpke, Gerd
2011-11-01
The formation of clusters in nuclear matter is investigated, which occurs, e.g., in low-energy heavy-ion collisions or core-collapse supernovae. In astrophysical applications, the excluded volume concept is commonly used for the description of light clusters. Here we compare a phenomenological excluded volume approach to two quantum many-body models, the quantum statistical model and the generalized relativistic mean-field model. All three models contain bound states of nuclei with mass number A≤4. It is explored to which extent the complex medium effects can be mimicked by the simpler excluded volume model, regarding the chemical composition and thermodynamic variables. Furthermore, the role of heavy nuclei and excited states is investigated by use of the excluded volume model. At temperatures of a few MeV the excluded volume model gives a poor description of the medium effects on the light clusters, but there the composition is actually dominated by heavy nuclei. At larger temperatures there is a rather good agreement, whereas some smaller differences and model dependencies remain.
Structural bases for neurophysiological investigations of amygdaloid complex of the brain
NASA Astrophysics Data System (ADS)
Kalimullina, Liliya B.; Kalkamanov, Kh. A.; Akhmadeev, Azat V.; Zakharov, Vadim P.; Sharafullin, Ildus F.
2015-11-01
Amygdala (Am) as a part of limbic system of the brain defines such important functions as adaptive behavior of animals, formation of emotions and memory, regulation of endocrine and visceral functions. We worked out, with the help of mathematic modelling of the pattern recognition theory, principles for organization of neurophysiological and neuromorphological studies of Am nuclei, which take into account the existing heterogeneity of its formations and optimize, to a great extent, the protocol for carrying out of such investigations. The given scheme of studies of Am’s structural-functional organization at its highly-informative sections can be used as a guide for precise placement of electrodes’, cannulae’s and microsensors into particular Am nucleus in the brain with the registration not only the nucleus itself, but also its extensions. This information is also important for defining the number of slices covering specific Am nuclei which must be investigated to reveal the physiological role of a particular part of amygdaloid complex.
Developmental changes of morphology in the basolateral complex of the rabbit amygdala.
Jagalska-Majewska, Hanna; Luczyńska, Anna; Wójcik, Sławomir; Dziewiatkowski, Jerzy; Kurlapska, Renata; Moryś, Janusz
2003-01-01
The aim of the present study is to follow topographical and morphological changes in the development of the amygdaloid basolateral complex (BLC) in the rabbit. The material consists of 35 brains of New Zealand rabbits of both sexes, divided into 7 age groups (P2-P90). In cresyl violet preparations BLC is already well visible on P2 and is composed of the lateral (divided into dorsolateral and ventromedial divisions), basolateral and homogenous basomedial nuclei. On about the 7th postnatal day it is possible to divide the basomedial nucleus (BM) into dorsal (Bmd) and ventral (BMv) divisions. The topography and subdivisions set on P7 are maintained in further periods of life. The morphology of neurons (shape, dendrites, staining) changes significantly until P21 in all BLC nuclei. Our results indicate that BLC achieves morphological maturity relatively late, which is probably connected with a long creation of emotional memory and regulation of emotional behaviour.
Lovinskaya, A V; Kolumbayeva, S Zh; Abilev, S K; Kolomiets, O L
2016-01-01
There was performed an assessment of genotoxic effects of rocket fuel component--unsymmetrical dimethylhydrazine (UDMH, heptyl)--on forming germ cells of male mice. Immunocytochemically there was studied the structure of meiotic nuclei at different times after the intraperitoneal administration of UDMH to male mice. There were revealed following types of disturbances of the structure of synaptonemal complexes (SCs) of meiotic chromosomes: single and multiple fragments of SCs associations of autosomes with a sex bivalent, atypical structure of the SCs with a frequency higher than the reference level. In addition, there were found the premature desinapsis of sex bivalents, the disorder offormation of the genital corpuscle and ring SCs. Established disorders in SCs of spermatocytes, analyzed at 38th day after the 10-days intoxication of animal by the component of rocket fuel, attest to the risk of permanent persistence of chromosomal abnormalities occurring in the pool of stem cells.
Nuclear spin circular dichroism.
Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia
2014-04-07
Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.
Theoretical Modeling and Electromagnetic Response of Complex Metamaterials
2017-03-06
AFRL-AFOSR-VA-TR-2017-0042 Theoretical Modeling and Electromagnetic Response of Complex Metamaterials Andrea Alu UNIVERSITY OF TEXAS AT AUSTIN Final...Nov 2016 4. TITLE AND SUBTITLE Theoretical Modeling and Electromagnetic Response of Complex Metamaterials 5a. CONTRACT NUMBER 5b. GRANT NUMBER...based on parity-time symmetric metasurfaces, and various advances in electromagnetic and acoustic theory and applications. Our findings have opened
Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya
2008-11-01
During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.
NASA Astrophysics Data System (ADS)
Gareev, F. A.; Zhidkova, I. E.
2007-03-01
We come to the conclusion that all atomic models based on either the Newton equation and the Kepler laws, or the Maxwell equations, or the Schrodinger and Dirac equations are in reasonable agreement with experimental data. We can only suspect that these equations are grounded on the same fundamental principle(s) which is (are) not known or these equations can be transformed into each other. We proposed a new mechanism of LENR: cooperative processes in the whole system nuclei + atoms + condensed matter - nuclear reactions in plasma - can occur at smaller threshold energies than the corresponding ones on free constituents. We were able to quantize phenomenologically the first time the differences between atomic and nuclear rest masses by the formula: δδM =n1/n2 X 0.0076294 (in MeV/ c^2), ni=1,2,3,.... Note that this quantization rule is justified for atoms and nuclei with different A, N and Z and the nuclei and atoms represent a coherent synchronized systems - a complex of coupled oscillators (resonators). The cooperative resonance synchronization mechanisms can explain how electron volt (atomic-) scale processes can induce and control nuclear MeV (nuclear-) scale processes and reactions., F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/ 0610002 2006.
Zach, Bernhard; Hofer, Ernst; Asslaber, Martin; Ahammer, Helmut
2016-01-01
The human heart has a heterogeneous structure, which is characterized by different cell types and their spatial configurations. The physical structure, especially the fibre orientation and the interstitial fibrosis, determines the electrical excitation and in further consequence the contractility in macroscopic as well as in microscopic areas. Modern image processing methods and parameters could be used to describe the image content and image texture. In most cases the description of the texture is not satisfying because the fibre orientation, detected with common algorithms, is biased by elements such as fibrocytes or endothelial nuclei. The goal of this work is to figure out if cardiac tissue can be analysed and classified on a microscopic level by automated image processing methods with a focus on an accurate detection of the fibre orientation. Quantitative parameters for identification of textures of different complexity or pathological attributes inside the heart were determined. The focus was set on the detection of the fibre orientation, which was calculated on the basis of the cardiomyocytes' nuclei. It turned out that the orientation of these nuclei corresponded with a high precision to the fibre orientation in the image plane. Additionally, these nuclei also indicated very well the inclination of the fibre.
Spatiotemporal expression of Ezh2 in the developing mouse cochlear sensory epithelium.
Chen, Yan; Li, Wenyan; Li, Wen; Chai, Renjie; Li, Huawei
2016-09-01
The enhancer of zeste 2 polycomb repressive complex 2 subunit (Ezh2) is a histone-lysine Nmethyltransferase enzyme that participates in DNA methylation. Ezh2 has also been reported to play crucial roles in stem cell proliferation and differentiation. However, the detailed expression profile of Ezh2 during mouse cochlear development has not been investigated. Here, we examined the spatiotemporal expression of Ezh2 in the cochlea during embryonic and postnatal development. Ezh2 expression began to be observed in the whole otocyst nuclei at embryonic day 9.5 (E9.5). At E12.5, Ezh2 was expressed in the nuclei of the cochlear prosensory epithelium. At E13.5 and E15.5, Ezh2 was expressed from the apical to the basal turns in the nuclei of the differentiating cochlear epithelium. At postnatal day (P) 0 and 7, the Ezh2 expression was located in the nuclei of the cochlear epithelium in all three turns and could be clearly seen in outer and inner hair cells, supporting cells, the stria vascularis, and spiral ganglion cells. Ezh2 continued to be expressed in the cochlear epithelium of adult mice. Our results provide the basic Ezh2 expression pattern and might be useful for further investigating the detailed role of Ezh2 during cochlear development.
Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model
Luque, Niceto R.; Garrido, Jesús A.; Naveros, Francisco; Carrillo, Richard R.; D'Angelo, Egidio; Ros, Eduardo
2016-01-01
Deep cerebellar nuclei neurons receive both inhibitory (GABAergic) synaptic currents from Purkinje cells (within the cerebellar cortex) and excitatory (glutamatergic) synaptic currents from mossy fibers. Those two deep cerebellar nucleus inputs are thought to be also adaptive, embedding interesting properties in the framework of accurate movements. We show that distributed spike-timing-dependent plasticity mechanisms (STDP) located at different cerebellar sites (parallel fibers to Purkinje cells, mossy fibers to deep cerebellar nucleus cells, and Purkinje cells to deep cerebellar nucleus cells) in close-loop simulations provide an explanation for the complex learning properties of the cerebellum in motor learning. Concretely, we propose a new mechanistic cerebellar spiking model. In this new model, deep cerebellar nuclei embed a dual functionality: deep cerebellar nuclei acting as a gain adaptation mechanism and as a facilitator for the slow memory consolidation at mossy fibers to deep cerebellar nucleus synapses. Equipping the cerebellum with excitatory (e-STDP) and inhibitory (i-STDP) mechanisms at deep cerebellar nuclei afferents allows the accommodation of synaptic memories that were formed at parallel fibers to Purkinje cells synapses and then transferred to mossy fibers to deep cerebellar nucleus synapses. These adaptive mechanisms also contribute to modulate the deep-cerebellar-nucleus-output firing rate (output gain modulation toward optimizing its working range). PMID:26973504
Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments.
Cheng, Bingqing; Behler, Jörg; Ceriotti, Michele
2016-06-16
One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water.
Color fluctuations in hadrons and proton coherent diffractive dissociation on helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strikman, M.; Guzey, V.
The differential cross section of inelastic coherent diffractive dissociation off nuclei {ital p}+{sup 4}He {r_arrow}{ital X}+{sup 4}He is expressed in terms of the relative cumulants of the cross-section distribution {ital P}{sub {ital N}}({sigma}). The theoretical result for the ratio {ital r}=({ital d}{sigma}{sub diff}/{ital dt}){sub {ital t}=0}{sup {ital p}He}/({ital d}{sigma}{sub diff}/{ital dt}) {sub {ital t}=0}{sup {ital pp}}=6.8--7.6 is close to the value {ital r}=7.1{plus_minus}0.7 which we extracted from the FNAL data. These are the only {ital A}{gt}2 data of this kind. The comparison provides the first confirmation of the color/cross-section fluctuation approach to the description of the absolute value of themore » inelastic diffraction cross section off nuclei. It provides also a new constraint on the first four cumulants of the cross-section distribution.« less
Hadronization Studies via π 0 Electroproduction off D, C, Fe, and Pb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineeva, Taisiya
2013-12-01
Propagation of partons and formation of hadrons is a topic of interest to multiple communities. New data available from Drell-Yan measurements at FermiLab, heavy ion collisions in RHIC and LHC, SIDIS measurements from HERMES at DESY and Jefferson Lab, all bring different types of information on short distance processes. DIS data obtained in the well understood nuclear medium provide direct information on hadron formation, essential to lay the groundwork for testing theoretical tools. A series of semi-inclusive DIS measurements were performed on D, C, Fe, Pb nuclei. The data were collected during the EG2 run period using the CLAS at Jefferson Lab. A double-target system consisting of liquid deuterium and one of the solid targets was exposed to a 5.014 GeV electron beam. The goal of the experiment is to extract hadronic multiplicity ratios (Rmore » $$h\\atop{A}$$) off nuclei of varying size. These are believed to have sensitivity to the parton fragmentation as well as in-medium hadronization.« less
Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudek, Jozef; Melnitchouk, Wally
GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theorymore » Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.« less
Production of twin /Λ-hypernuclei from Ξ- hyperon capture at rest
NASA Astrophysics Data System (ADS)
Ichikawa, A.; Ahn, J. K.; Akikawa, H.; Aoki, S.; Arai, K.; Bahk, S. Y.; Baik, K. M.; Bassalleck, B.; Chung, J. H.; Chung, M. S.; Hoshino, K.; Ieiri, M.; Imai, K.; Iwata, Y. H.; Iwata, Y. S.; Kanda, H.; Kaneko, M.; Kawai, T.; Kim, C. O.; Kim, J. Y.; Kim, S. J.; Kim, S. H.; Kondo, Y.; Kouketsu, T.; Lee, Y. L.; McNabb, J. W. C.; Mitsuhara, M.; Nagase, Y.; Nagoshi, C.; Nakazawa, K.; Noumi, H.; Ogawa, S.; Okabe, H.; Oyama, K.; Park, H. M.; Park, I. G.; Parker, J.; Ra, Y. S.; Rhee, J. T.; Rusek, A.; Shibuya, H.; Sim, K. S.; Saha, P. K.; Seki, D.; Sekimoto, M.; Song, J. S.; Takahashi, H.; Takahashi, T.; Takeutchi, F.; Tanaka, H.; Tanida, K.; Tojo, J.; Torii, H.; Torikai, S.; Ushida, N.; Yamamoto, K.; Yasuda, N.; Yang, J. T.; Yoon, C. J.; Yoon, C. S.; Yosoi, M.; Yoshida, T.; Zhu, L.
2001-02-01
A hybrid emulsion experiment was carried out to study double-strangeness nuclei produced via Ξ- hyperon capture at rest with the expectation of ten times larger statistics than previous experiments. We have analyzed 5% of the total emulsion and found one ``twin-hypernuclei'' event involving the emission of two single-/Λ hypernuclei and a nuclear fragment from a Ξ- hyperon stopping point. The event is interpreted as the decay of a Ξ-+14N atomic system to 5
NASA Astrophysics Data System (ADS)
Aidala, C.; Akiba, Y.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bandara, N. S.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kline, P.; Koblesky, T.; Kotov, D.; Kudo, S.; Kurita, K.; Kwon, Y.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, S.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Lökös, S.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Metzger, W. J.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Murakami, T.; Murata, J.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Radzevich, P. V.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Safonov, A. S.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takeda, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wong, C. P.; Woody, C. L.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration
2018-01-01
During 2015, the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized p +p collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in p +p collisions predicts only a moderate atomic-mass-number (A ) dependence. In contrast, the asymmetries observed at RHIC in p +A collisions showed a surprisingly strong A dependence in inclusive forward neutron production. The observed asymmetry in p +Al collisions is much smaller, while the asymmetry in p +Au collisions is a factor of 3 larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed A dependence.
Kundla, Enn
2007-04-01
The evolution of the magnetic polarization of an ensemble of paired spin(-1/2) nuclei in an MAS NMR (nuclear magnetic resonance) experiment and the induced spectrum are described theoretically by means of a Liouville-von Neumann equation representation in a wobbling rotating frame in combination with the averaged Hamiltonian theory. In this method, the effect of a high-intensity external static magnetic field and the effects of the leftover interaction components of the Hamiltonian that commute with the approximate Hamiltonian are taken into account simultaneously and equivalently. This method reproduces details that really exist in the recorded spectra, caused by secular terms in the Hamiltonian, which might otherwise be smoothed out owing to the approximate treatment of the effects of the secular terms. Complete analytical expressions, which describe the whole NMR spectrum including the rotational sideband sets, and which consider all the relevant intermolecular interactions, are obtained.
Dielectronic Recombination In Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Lukic, D. V.; Schnell, M.; Savin, D. W.; Altun, Z.; Badnell, N.; Brandau, C.; Schmidt, E. W.; Mueller, A.; Schippers, S.; Sprenger, F.;
2006-01-01
XMM-Newton and Chandra observations of active galactic nuclei (AGN) show rich spectra of X-ray absorption lines. These observations have detected a broad unresolved transition array (UTA) between approx. 15-17 A. This is attributed to inner-shell photoexcitation of M-shell iron ions. Modeling these UTA features is currently limited by uncertainties in the low-temperature dielectronic recombination (DR) data for M-shell iron. In order to resolve this issue, and to provide reliable iron M-shell DR data for plasma modeling, we are carrying out a series of laboratory measurements using the heavy-ion Test Storage Ring (TSR) at the Max-Plank-Institute for Nuclear Physics in Heidelberg, Germany. Currently, laboratory measurements of low temperature DR can only be performed at storage rings. We use the DR data obtained at TSR, to calculate rate coefficients for plasma modeling and to benchmark theoretical DR calculations. Here we report our recent experimental results for DR of Fe XIV forming Fe XIII.
Aidala, C; Akiba, Y; Alfred, M; Andrieux, V; Aoki, K; Apadula, N; Asano, H; Ayuso, C; Azmoun, B; Babintsev, V; Bagoly, A; Bandara, N S; Barish, K N; Bathe, S; Bazilevsky, A; Beaumier, M; Belmont, R; Berdnikov, A; Berdnikov, Y; Blau, D S; Boer, M; Bok, J S; Brooks, M L; Bryslawskyj, J; Bumazhnov, V; Butler, C; Campbell, S; Canoa Roman, V; Cervantes, R; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Citron, Z; Connors, M; Cronin, N; Csanád, M; Csörgő, T; Danley, T W; Daugherity, M S; David, G; DeBlasio, K; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Dion, A; Dixit, D; Do, J H; Drees, A; Drees, K A; Dumancic, M; Durham, J M; Durum, A; Elder, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fan, W; Feege, N; Fields, D E; Finger, M; Finger, M; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukuda, Y; Gal, C; Gallus, P; Garg, P; Ge, H; Giordano, F; Goto, Y; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Guragain, H; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamilton, H F; Han, S Y; Hanks, J; Hasegawa, S; Haseler, T O S; He, X; Hemmick, T K; Hill, J C; Hill, K; Hollis, R S; Homma, K; Hong, B; Hoshino, T; Hotvedt, N; Huang, J; Huang, S; Imai, K; Imrek, J; Inaba, M; Iordanova, A; Isenhower, D; Ito, Y; Ivanishchev, D; Jacak, B V; Jezghani, M; Ji, Z; Jiang, X; Johnson, B M; Jorjadze, V; Jouan, D; Jumper, D S; Kang, J H; Kapukchyan, D; Karthas, S; Kawall, D; Kazantsev, A V; Khachatryan, V; Khanzadeev, A; Kim, C; Kim, D J; Kim, E-J; Kim, M; Kim, M H; Kincses, D; Kistenev, E; Klatsky, J; Kline, P; Koblesky, T; Kotov, D; Kudo, S; Kurita, K; Kwon, Y; Lajoie, J G; Lallow, E O; Lebedev, A; Lee, S; Leitch, M J; Leung, Y H; Lewis, N A; Li, X; Lim, S H; Liu, L D; Liu, M X; Loggins, V-R; Lökös, S; Lovasz, K; Lynch, D; Majoros, T; Makdisi, Y I; Makek, M; Malaev, M; Manko, V I; Mannel, E; Masuda, H; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Mendoza, M; Metzger, W J; Mignerey, A C; Mihalik, D E; Milov, A; Mishra, D K; Mitchell, J T; Mitsuka, G; Miyasaka, S; Mizuno, S; Montuenga, P; Moon, T; Morrison, D P; Morrow, S I M; Murakami, T; Murata, J; Nagai, K; Nagashima, K; Nagashima, T; Nagle, J L; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakano, K; Nattrass, C; Niida, T; Nouicer, R; Novák, T; Novitzky, N; Novotny, R; Nyanin, A S; O'Brien, E; Ogilvie, C A; Orjuela Koop, J D; Osborn, J D; Oskarsson, A; Ottino, G J; Ozawa, K; Pantuev, V; Papavassiliou, V; Park, J S; Park, S; Pate, S F; Patel, M; Peng, W; Perepelitsa, D V; Perera, G D N; Peressounko, D Yu; PerezLara, C E; Perry, J; Petti, R; Phipps, M; Pinkenburg, C; Pisani, R P; Pun, A; Purschke, M L; Radzevich, P V; Read, K F; Reynolds, D; Riabov, V; Riabov, Y; Richford, D; Rinn, T; Rolnick, S D; Rosati, M; Rowan, Z; Runchey, J; Safonov, A S; Sakaguchi, T; Sako, H; Samsonov, V; Sarsour, M; Sato, K; Sato, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seidl, R; Sen, A; Seto, R; Sexton, A; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shioya, T; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Singh, B K; Singh, C P; Singh, V; Skoby, M J; Slunečka, M; Smith, K L; Snowball, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stoll, S P; Sugitate, T; Sukhanov, A; Sumita, T; Sun, J; Syed, S; Sziklai, J; Takeda, A; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarnai, G; Tieulent, R; Timilsina, A; Todoroki, T; Tomášek, M; Towell, C L; Towell, R S; Tserruya, I; Ueda, Y; Ujvari, B; van Hecke, H W; Vazquez-Carson, S; Velkovska, J; Virius, M; Vrba, V; Vukman, N; Wang, X R; Wang, Z; Watanabe, Y; Watanabe, Y S; Wong, C P; Woody, C L; Xu, C; Xu, Q; Xue, L; Yalcin, S; Yamaguchi, Y L; Yamamoto, H; Yanovich, A; Yin, P; Yoo, J H; Yoon, I; Yu, H; Yushmanov, I E; Zajc, W A; Zelenski, A; Zharko, S; Zou, L
2018-01-12
During 2015, the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized p+p collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in p+p collisions predicts only a moderate atomic-mass-number (A) dependence. In contrast, the asymmetries observed at RHIC in p+A collisions showed a surprisingly strong A dependence in inclusive forward neutron production. The observed asymmetry in p+Al collisions is much smaller, while the asymmetry in p+Au collisions is a factor of 3 larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed A dependence.
Mass predictions of atomic nuclei in the infinite nuclear matter model
NASA Astrophysics Data System (ADS)
Nayak, R. C.; Satpathy, L.
2012-07-01
We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and α-particle separation energies of 6727 nuclei in the ranges 4≤Z≤120 and 8≤A≤303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the η-differential equations of the INM model. The local energy η's supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact η-systematics reveal new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around 31Na and 62Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.
NASA Astrophysics Data System (ADS)
Ordenes-Briceño, Yasna; Puzia, Thomas H.; Eigenthaler, Paul; Taylor, Matthew A.; Muñoz, Roberto P.; Zhang, Hongxin; Alamo-Martínez, Karla; Ribbeck, Karen X.; Grebel, Eva K.; Ángel, Simón; Côté, Patrick; Ferrarese, Laura; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan W.; Rong, Yu; Sánchez-Janssen, Ruben
2018-06-01
We present the analysis of 61 nucleated dwarf galaxies in the central regions (≲R vir/4) of the Fornax galaxy cluster. The galaxies and their nuclei are studied as part of the Next Generation Fornax Survey using optical imaging obtained with the Dark Energy Camera mounted at Blanco/Cerro Tololo Inter-American Observatory and near-infrared data obtained with VIRCam at VISTA/ESO. We decompose the nucleated dwarfs in nucleus and spheroid, after subtracting the surface brightness profile of the spheroid component and studying the nucleus using point source photometry. In general, nuclei are consistent with colors of confirmed metal-poor globular clusters, but with significantly smaller dispersion than other confirmed compact stellar systems in Fornax. We find a bimodal nucleus mass distribution with peaks located at {log}({{ \\mathcal M }}* /{M}ȯ )≃ 5.4 and ∼6.3. These two nucleus subpopulations have different stellar population properties: the more massive nuclei are older than ∼2 Gyr and have metal-poor stellar populations (Z ≤ 0.02 Z ⊙), while the less massive nuclei are younger than ∼2 Gyr with metallicities in the range 0.02 < Z/Z ⊙ ≤ 1. We find that the nucleus mass ({{ \\mathcal M }}nuc}) versus galaxy mass ({{ \\mathcal M }}gal}) relation becomes shallower for less massive galaxies starting around 108 M ⊙, and the mass ratio {η }n={{ \\mathcal M }}nuc}/{{ \\mathcal M }}gal} shows a clear anticorrelation with {{ \\mathcal M }}gal} for the lowest masses, reaching 10%. We test current theoretical models of nuclear cluster formation and find that they cannot fully reproduce the observed trends. A likely mixture of in situ star formation and star cluster mergers seems to be acting during nucleus growth over cosmic time.
New effects of a long-lived negatively charged massive particle on big bang nucleosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusakabe, Motohiko; Kim, K. S.; Cheoun, Myung-Ki
Primordial {sup 7}Li abundance inferred from observations of metal-poor stars is a factor of about 3 lower than the theoretical value of standard big bang nucleosynthesis (BBN) model. One of the solutions to the Li problem is {sup 7}Be destruction during the BBN epoch caused by a long-lived negatively charged massive particle, X{sup −}. The particle can bind to nuclei, and X-bound nuclei (X-nuclei) can experience new reactions. The radiative X{sup −} capture by {sup 7}Be nuclei followed by proton capture of the bound state of {sup 7}Be and X{sup −} ({sup 7}Be{sub x}) is a possible {sup 7}Be destructionmore » reaction. Since the primordial abundance of {sup 7}Li originates mainly from {sup 7}Li produced via the electron capture of {sup 7}Be after BBN, the {sup 7}Be destruction provides a solution to the {sup 7}Li problem. We suggest a new route of {sup 7}Be{sub x} formation, that is the {sup 7}Be charge exchange at the reaction of {sup 7}Be{sup 3+} ion and X{sup −}. The formation rate depends on the ionization fraction of {sup 7}Be{sup 3+} ion, the charge exchange cross section of {sup 7}Be{sup 3+}, and the probability that excited states {sup 7}Be{sub x}* produced at the charge exchange are converted to the ground state. We find that this reaction can be equally important as or more important than ordinary radiative recombination of {sup 7}Be and X{sup −}. The effect of this new route is shown in a nuclear reaction network calculation.« less
Proton-decaying, light nuclei accessed via the invariant-mass method
NASA Astrophysics Data System (ADS)
Brown, Kyle
2017-01-01
Two-nucleon decay is the most recently discovered nuclear decay mode. For proton-rich nuclei, the majority of multi-proton decays occur via sequential steps of one-proton emission. Direct two-proton (2p) decay was believed to occur only in even-Z nuclei beyond the proton drip line where one-proton decay is energy forbidden. This has been observed for the ground states of around a dozen nuclei including 6Be, the lightest case, and 54Zn, the heaviest case. Direct 2p decay has also recently been observed for isobaric analog states where all possible 1p intermediates are either isospin allowed and energy forbidden, or energy-allowed and isospin forbidden. For light proton emitters, the lifetimes are short enough that the invariant-mass technique is ideal for measuring the decay energy, intrinsic width and, for multi-proton decays, the momentum correlations between the fragments. I will describe recent measurements of proton emitters using the invariant-mass technique with the High Resolution Array (HiRA). I will present a new, high-statistics measurement on the sequential 2p decay of excited states in 17Ne. Measuring the momentum correlations between the decay fragments allow us to determine the 1p intermediate state through which the decay proceeds. I will present data on the isobaric-analog pair 8C and 8BIAS, which highlight the two known types of direct 2p decay. I will also present the first observation of 17Na, which is unbound with respect to three-proton emission. Finally I will present a new measurement on the width of the first-excited state of 9C and compare to recent theoretical calculations.
Wendland, M F; Stevens, T H; Buttlaire, D H; Everett, G W; Himes, R H
1983-02-15
Using nuclear magnetic resonance techniques, we have measured the internuclear distances separating the nucleotide-bound metal from the carbon and hydrogen nuclei of formate as well as the carbon of methylammonium cation when bound to formyltetrahydrofolate synthetase. Measurements were made of the paramagnetic effect on the spin-lattice relaxation rates (1/T1) of 13C and 1H nuclei arising from the replacement of Mg2+ with Mn2+, which binds to the enzyme in the form of a metal-nucleotide complex. Distances from Mn2+ to the formate carbon and proton were found to be 6.3 and 7.4 A, respectively, in the E . ATP . Mn2+ . formate complex and 6.0 and 7.1 A, respectively, in the E . ADP . Mn2+ . formate complex. When tetrahydrofolate was added to the latter complex, the exchange of formate was greatly reduced and became rate limiting for relaxation. These results are consistent with substantial conformational effects produced by the binding of the cofactor. The distance from Mn2+ to the methylammonium carbon in the E . ADP . Mn2+ . CH3NH+3, E . ADP . Mn2+ . formate . CH3NH3+, and E . ADP . Mn2+ . tetrahydrofolate . CH3NH3+ complexes was estimated to be in the range of 7.4-12 A. However, in the E . ADP . Mn2+ formate . tetrahydrofolate . CH3NH3+ complex, the data suggest that exchange of cation contributes significantly to relaxation. These results, combined with other known features of the enzyme, suggest that there may be a monovalent cation site within the active site of the enzyme.
The Correlation Entropy as a Measure of the Complexity of High-Lying Single-Particle Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoyanov, Chavdar; Zelevinsky, Vladimir; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1321
Highly-excited single-particle states in nuclei are coupled with the excitations of a more complex character, first of all with collective phonon-like modes of the core. In the framework of the quasiparticle-phonon model we consider the structure of resulting complex configurations using the 1k17/2 orbital in 209Pb as an example. The eigenstates of the model carry significant degree of complexity that can be quantified with the aid of correlational invariant entropy. With artificially enhanced particle-core coupling, the system undergoes the doubling phase transition with the quasiparticle strength concentrated in two repelling peaks.
Precortical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology
Stratmann, Katharina; Heinsen, Helmut; Korf, Horst-Werner; Del Turco, Domenico; Ghebremedhin, Estifanos; Seidel, Kay; Bouzrou, Mohamed; Grinberg, Lea T.; Bohl, Jürgen; Wharton, Stephen B; den Dunnen, Wilfred; Rüb, Udo
2015-01-01
Alzheimer’s disease (AD) represents the most frequent progressive neuropsychiatric disorder worldwide leading to dementia and accounts for 60 to 70% of demented individuals. In view of the early appearance of neuronal deposits of the hyperphosphorylated cytoskeletal protein tau in the transentorhinal and entorhinal regions of the allocortex (i.e. in Braak and Braak AD stage I in the evolution of the AD-related cortical tau cytoskeletal pathology) it has been believed for a long time that these allocortical regions represent the first brain targets of the AD-related tau cytoskeletal pathology. However, recent pathoanatomical studies suggested that the subcortical brain nuclei that send efferent projections to the transentorhinal and entorhinal regions may also comprise AD-related cytoskeletal changes already at very early Braak and Braak AD stages. In order to corroborate these initial results we systematically investigated the presence and extent of the AD-related cytoskeletal pathology in serial thick tissue sections through all the subcortical nuclei known to send efferent projections to these vulnerable allocortical regions of three individuals with Braak and Braak AD stage 0 and fourteen individuals with Braak and Braak AD stage I by means of immunostainings with the anti-tau antibody AT8. These investigations revealed consistent AT8 immunoreactive neuronal tau cytoskeletal pathology in a subset of these subcortical nuclei (i.e. medial septal nucleus, nuclei of the vertical and horizontal limbs of the diagonal band of Broca, basal nucleus of Meynert; claustrum; hypothalamic ventromedial, tuberomamillary and supramamillary nuclei, perifornical region and lateral area; thalamic central medial, laterodorsal, subparafascicular, and central lateral nuclei, medial pulvinar and limitans-suprageniculate complex; peripeduncular nucleus, dopaminergic substantia nigra and ventral tegmental area, periaqueductal gray, midbrain and pontine dorsal raphe nuclei, locus coeruleus, and parabrachial nuclei) in the Braak and Braak AD stage 0 individuals and in all of these subcortical nuclei in the Braak and Braak AD stage I individuals. The widespread affection of the subcortical nuclei in our Braak and Braak AD stage I individuals shows that the extent of the subcortical tau cytoskeletal pathology in this AD stage has been considerably underestimated during the last decades. In addition, our novel findings in the Braak and Braak AD stage 0 individuals support the concept that subcortical nuclei become already affected during an early ‘pre-cortical’ evolutional phase before the first AD-related cytoskeletal changes occur in the well-known cortical predilection sites of the mediobasal temporal lobe (i.e. transentorhinal and entorhinal regions). In addition, our new findings indicate that the AD-related tau cytoskeletal pathology by no means is confined to single subcortical nuclei of Braak and Braak AD stage 0 individuals, but may develop in a large variety of their subcortical nuclei interconnected with the allocortical entorhinal and transentorhinal regions. Accordingly, these very early involved subcortical brain regions may represent the origin of the AD-related tau cytoskeletal pathology, from where the neuronal cytoskeletal pathology takes an ascending course towards the secondarily affected allocortex and spreads transneuronally along anatomical pathways and interconnectivities in predictable and stereotypical sequences PMID:26193084
Complete magnetic field dependence of SABRE-derived polarization.
Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L
2018-07-01
Signal amplification by reversible exchange (SABRE) is a promising hyperpolarization technique, which makes use of spin-order transfer from parahydrogen (the H 2 molecule in its singlet spin state) to a to-be-polarized substrate in a transient organometallic complex, termed the SABRE complex. In this work, we present an experimental method for measuring the magnetic field dependence of the SABRE effect over an ultrawide field range, namely, from 10 nT to 10 T. This approach gives a way to determine the complete magnetic field dependence of SABRE-derived polarization. Here, we focus on SABRE polarization of spin-1/2 hetero-nuclei, such as 13 C and 15 N and measure their polarization in the entire accessible field range; experimental studies are supported by calculations of polarization. Features of the field dependence of polarization can be attributed to level anticrossings in the spin system of the SABRE complex. Features at magnetic fields of the order of 100 nT-1 μT correspond to "strong coupling" of protons and hetero-nuclei, whereas features found in the mT field range stem from "strong coupling" of the proton system. Our approach gives a way to measuring and analyzing the complete SABRE field dependence, to probing NMR parameters of SABRE complexes and to optimizing the polarization value. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Moraes, F. C.; Alvarenga, E. S.; Demuner, A. J.; Viana, V. M.
2018-07-01
Considering the potential biological application of isobenzofuranones, especially as agrochemical defensives, two novel epoxides, (1aR,2R,2aR,5S,5aS,6S,6aS)-5-(hydroxymethyl)hexahydro-2,6-methanooxireno[2,3-f]isobenzofuran-3(1aH)-one (9), and (1aS,2S,2aR,5S,5aS,6R,6aR)-5-(hydroxymethyl)hexahydro-2,6-methanooxireno[2,3-f]isobenzofuran-3(1aH)-one (10), were synthesized from the readily available D-mannitol in six steps. The multiplicities of the hydrogens located at the bridge of the bicycle are distinct for epoxides 9 and 10 due to W coupling, and this feature was employed to confirm the assignment of these nuclei. Besides analyses of the 2D NMR spectra, the assignments of the nuclei at the epoxide ring were also inferred from information obtained by theoretical calculations. The calculated 1H and 13C NMR chemical shifts for eight candidate structures were compared with the experimental chemical shifts of 9 and 10 by measuring the mean absolute errors (MAE) and by the DP4 statistical analysis. The structures and relative configurations of 9, and 10 were determined via NMR spectroscopy assisted with theoretical calculations. As consequence of the enantioselective syntheses starting from a natural polyol, the absolute configurations of the epoxides 9 and 10 were also defined.
NASA Astrophysics Data System (ADS)
Feng, Liqiang; Chu, Tianshu
2017-10-01
Intensity distributions and isolated attosecond pulse generation from the molecular high-order harmonic generation (MHHG) in H2+ and T2+ driven by the nonhomogeneous field have been theoretically investigated. (i) Generally speaking, the intensities of the harmonics driven by the homogeneous field can be enhanced as the initial vibrational state increases and much more intense harmonics can be obtained from the light nuclei. However, with the introduction of the nonhomogeneous effect, the enhanced ratios of the harmonic yields are decreased as the initial vibrational state increases. Moreover, the intensities of the harmonics from H2+ and T2+ are very sensitive to the nonhomogeneous effect of the laser field. (ii) The contributions of the MHHG from the two-H nuclei present the periodic variation as a function of the laser phase for the case of the symmetric nonhomogeneous field. However, for the case of the positive and the negative asymmetric nonhomogeneous fields, the left-H and the right-H play the dominating role in the MHHG, respectively. Moreover, as the angle between the laser polarization direction and the molecular axis increases, the intensity differences of the harmonics from the two-H nuclei are increased. (iii) By properly adding a half-cycle pulse into the positive asymmetric nonhomogeneous field, a supercontinuum with the bandwidth of 279 eV and an isolated 25 as pulse can be obtained.
NASA Astrophysics Data System (ADS)
Imandoust, Aidin; Barrett, Christopher D.; Al-Samman, Talal; Tschopp, Mark A.; Essadiqi, Elhachmi; Hort, Norbert; El Kadiri, Haitham
2018-03-01
The origin of texture components often associated with rare-earth element (REE) additions in wrought magnesium alloys is a long-standing problem in magnesium technology. While their influence on the texture is unquestionable, it is not yet clear why certain texture components, such as < 11\\bar{2}1 > ||{extrusion}{direction}, are favored over other components typically observed in traditional magnesium alloys. The objective of this research is to identify the mechanisms accountable for these RE textures during early stages of recrystallization. Electron backscattered diffraction and transmission electron microscopy analyses reveal that REEs in zinc-containing magnesium alloys corroborate discontinuous dynamic recrystallization. REEs promote isotropic growth for all nuclei generated through the bulging mechanism. During nucleation, the effect of REEs on orientation selection was explained by the diversified activity of both < 10\\bar{1}0 > and [0001] Taylor axes in the same grain with a marked preference for [0001] rotations to occur first. During nuclei growth, no growth preference was observed when sufficient REEs are added in the zinc-containing magnesium alloys, instead isotropic nuclei growth across all grain orientations occurs. This phenomenon is attributed to REEs segregating to grain boundaries (GBs), in agreement with prior computational and theoretical results (Barrett et al., Scripta Mater 146:46-50, 2018) that show a more isotropic GB energy and mobility after segregation.
Atomic-scale investigation of nuclear quantum effects of surface water: Experiments and theory
NASA Astrophysics Data System (ADS)
Guo, Jing; Li, Xin-Zheng; Peng, Jinbo; Wang, En-Ge; Jiang, Ying
2017-12-01
Quantum behaviors of protons in terms of tunneling and zero-point motion have significant effects on the macroscopic properties, structure, and dynamics of water even at room temperature or higher. In spite of tremendous theoretical and experimental efforts, accurate and quantitative description of the nuclear quantum effects (NQEs) is still challenging. The main difficulty lies in that the NQEs are extremely susceptible to the structural inhomogeneity and local environments, especially when interfacial systems are concerned. In this review article, we will highlight the recent advances of scanning tunneling microscopy and spectroscopy (STM/S), which allows the access to the quantum degree of freedom of protons both in real and energy space. In addition, we will also introduce recent development of ab initio path-integral molecular dynamics (PIMD) simulations at surfaces/interfaces, in which both the electrons and nuclei are treated as quantum particles in contrast to traditional ab initio molecular dynamics (MD). Then we will discuss how the combination of STM/S and PIMD are used to directly visualize the concerted quantum tunneling of protons within the water clusters and quantify the impact of zero-point motion on the strength of a single hydrogen bond (H bond) at a water/solid interface. Those results may open up the new possibility of exploring the exotic quantum states of light nuclei at surfaces, as well as the quantum coupling between the electrons and nuclei.
NASA Astrophysics Data System (ADS)
Banik, Prabir; Bhadra, Arunava
2017-06-01
It is widely believed that Galactic cosmic rays are originated in supernova remnants (SNRs), where they are accelerated by a diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. In recent theoretical developments of the DSA theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are the true generators of cosmic rays, they should accelerate not only protons but also heavier nuclei with the right proportions, and the maximum energy of the heavier nuclei should be the atomic number (Z ) times the mass of the proton. In this work, we investigate the implications of the acceleration of heavier nuclei in SNRs on energetic gamma rays produced in the hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition compared to that of pure protons to explain observations. In addition, the gamma-ray flux above a few tens of TeV would be significantly higher if cosmic ray particles could attain energies Z times the knee energy in lieu of 200 TeV, as suggested earlier for nonamplified magnetic fields. The two stated maximum energy paradigms will be discriminated in the future by upcoming gamma-ray experiments like the Cherenkov telescope array (CTA).
Perras, Frédéric A; Bryce, David L
2014-05-01
The theory describing homonuclear indirect nuclear spin-spin coupling (J) interactions between pairs of quadrupolar nuclei is outlined and supported by numerical calculations. The expected first-order multiplets for pairs of magnetically equivalent (A2), chemically equivalent (AA'), and non-equivalent (AX) quadrupolar nuclei are given. The various spectral changeovers from one first-order multiplet to another are investigated with numerical simulations using the SIMPSON program and the various thresholds defining each situation are given. The effects of chemical equivalence, as well as quadrupolar coupling, chemical shift differences, and dipolar coupling on double-rotation (DOR) and J-resolved NMR experiments for measuring homonuclear J coupling constants are investigated. The simulated J coupling multiplets under DOR conditions largely resemble the ideal multiplets predicted for single crystals, and a characteristic multiplet is expected for each of the A2, AA', and AX cases. The simulations demonstrate that it should be straightforward to distinguish between magnetic inequivalence and equivalence using J-resolved NMR, as was speculated previously. Additionally, it is shown that the second-order quadrupolar-dipolar cross-term does not affect the splittings in J-resolved experiments. Overall, the homonuclear J-resolved experiment for half-integer quadrupolar nuclei is demonstrated to be robust with respect to the effects of first- and second-order quadrupolar coupling, dipolar coupling, and chemical shift differences. Copyright © 2014 Elsevier Inc. All rights reserved.
Microscopic study of heavy-ion reactions with n-rich nuclei: dynamic excitation energy and capture
NASA Astrophysics Data System (ADS)
Oberacker, Volker; Umar, A. S.
2010-11-01
Heavy-ion reactions at RIB facilities allow us to form new exotic neutron-rich nuclei. These experiments present numerous challenges for a microscopic theoretical description. We study reactions between neutron-rich ^132Sn nuclei and ^96Zr within a dynamic microscopic theory, and we compare the properties to those of the stable system ^124Sn+^96Zr. The calculations are carried out on a 3-D lattice using the density-constrained Time-Dependent Hartree-Fock (DC-TDHF) method [1- 3]. In particular, we calculate the dynamic excitation energy E^*(t) and the quadrupole moment of the dinuclear system Q20(t) during the initial stages of the collision. Regarding the heavy-ion interaction potential V(R), we find that the fusion barrier height and width increase dramatically with increasing beam energy. The fusion barriers of the neutron-rich system ^132Sn+^96Zr are systematically 1-2 MeV higher than those of the stable system. Large differences (9 MeV) are found in the interaction barriers of the two systems. Capture cross sections are analyzed in terms of dynamic effects and a comparison with recently measured capture-fission data is given. [1] Umar and Oberacker, PRC 76, 014614 (2007). [2] Umar, Oberacker, Maruhn, and Reinhard, PRC 80, 041601(R) (2009). [3] Umar, Maruhn, Itagaki, and Oberacker, PRL 104, 212503 (2010).
Color-coded Live Imaging of Heterokaryon Formation and Nuclear Fusion of Hybridizing Cancer Cells.
Suetsugu, Atsushi; Matsumoto, Takuro; Hasegawa, Kosuke; Nakamura, Miki; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M
2016-08-01
Fusion of cancer cells has been studied for over half a century. However, the steps involved after initial fusion between cells, such as heterokaryon formation and nuclear fusion, have been difficult to observe in real time. In order to be able to visualize these steps, we have established cancer-cell sublines from the human HT-1080 fibrosarcoma, one expressing green fluorescent protein (GFP) linked to histone H2B in the nucleus and a red fluorescent protein (RFP) in the cytoplasm and the other subline expressing RFP in the nucleus (mCherry) linked to histone H2B and GFP in the cytoplasm. The two reciprocal color-coded sublines of HT-1080 cells were fused using the Sendai virus. The fused cells were cultured on plastic and observed using an Olympus FV1000 confocal microscope. Multi-nucleate (heterokaryotic) cancer cells, in addition to hybrid cancer cells with single-or multiple-fused nuclei, including fused mitotic nuclei, were observed among the fused cells. Heterokaryons with red, green, orange and yellow nuclei were observed by confocal imaging, even in single hybrid cells. The orange and yellow nuclei indicate nuclear fusion. Red and green nuclei remained unfused. Cell fusion with heterokaryon formation and subsequent nuclear fusion resulting in hybridization may be an important natural phenomenon between cancer cells that may make them more malignant. The ability to image the complex processes following cell fusion using reciprocal color-coded cancer cells will allow greater understanding of the genetic basis of malignancy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Daniel C.F.; Trindade, Daniel M.; Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP
2008-06-10
FEZ1 (Fasciculation and elongation protein zeta 1) is an ortholog of the Caenorhabditis elegans protein UNC-76, involved in neuronal development and axon outgrowth, in that worm. Mammalian FEZ1 has already been reported to cooperate with PKC-zeta in the differentiation and polarization of PC12 neuronal cells. Furthermore, FEZ1 is associated with kinesin 1 and JIP1 to form a cargo-complex responsible for microtubule based transport of mitochondria along axons. FEZ1 can also be classified as a hub protein, since it was reported to interact with over 40 different proteins in yeast two-hybrid screens, including at least nine nuclear proteins. Here, we transientlymore » over-expressed GFP-FEZ1full in human HEK293 and HeLa cells in order to study the sub-cellular localization of GFP-FEZ1. We observed that over 40% of transiently transfected cells at 3 days post-transfection develop multi-lobulated nuclei, which are also called flower-like nuclei. We further demonstrated that GFP-FEZ1 localizes either to the cytoplasm or the nuclear fraction, and that the appearance of the flower-like nuclei depends on intact microtubule function. Finally, we show that FEZ1 co-localizes with both, {alpha}- and especially with {gamma}-tubulin, which localizes as a centrosome like structure at the center of the multiple lobules. In summary, our data suggest that FEZ1 has an important centrosomal function and supply new mechanistic insights to the formation of flower-like nuclei, which are a phenotypical hallmark of human leukemia cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feye-Treimer, U., E-mail: feye-treimer@helmholtz-berlin.de; Treimer, W.
Purpose: This theoretical work contains a detailed investigation of the potential and sensitivity of phase-based x-ray scattering for cancer detection in biopsies if cancer is in a very early stage of development. Methods: Cancer cells in their early stage of development differ from healthy ones mainly due to their faster growing cell nuclei and the enlargement of their densities. This growth is accompanied by an altered nucleus–plasma relation for the benefit of the cell nuclei, that changes the physical properties especially the index of refraction of the cell and the one of the cell nuclei. Interaction of radiation with mattermore » is known to be highly sensitive to small changes of the index of refraction of matter; therefore a detection of such changes of volume and density of cell nuclei by means of high angular resolved phase-based scattering of x rays might provide a technique to distinguish malignant cells from healthy ones ifthe cell–cell nucleus system is considered as a coherent phase shifting object. Then one can observe from a thin biopsy which represents a monolayer of cells (no multiple scattering) that phase-based x-ray scattering curves from healthy cells differ from those of cancer cells in their early stage of development. Results: Detailed calculations of x-ray scattering patterns from healthy and cancer cell nuclei yield graphs and numbers with which one can distinguish healthy cells from cancer ones, taking into account that both kinds of cells occur in a tissue within a range of size and density. One important result is the role and the influence of the (lateral) coherence width of the radiation on the scattering curves and the sensitivity of phase-based scattering for cancer detection. A major result is that a larger coherence width yields a larger sensitivity for cancer detection. Further import results are calculated limits for critical sizes and densities of cell nuclei in order to attribute the investigated tissue to be healthy or diseased. Conclusions: With this proposed method it should be in principle possible to detect cancer cells in apparently healthy tissues in biopsies and/or in samples of the far border region of abscised or excised tissues. Thus this method could support established methods in diagnostics of cancer-suspicious samples.« less
NASA Astrophysics Data System (ADS)
Furusawa, S.; Togashi, H.; Nagakura, H.; Sumiyoshi, K.; Yamada, S.; Suzuki, H.; Takano, M.
2017-09-01
We have constructed a nuclear equation of state (EOS) that includes a full nuclear ensemble for use in core-collapse supernova simulations. It is based on the EOS for uniform nuclear matter that two of the authors derived recently, applying a variational method to realistic two- and three-body nuclear forces. We have extended the liquid drop model of heavy nuclei, utilizing the mass formula that accounts for the dependences of bulk, surface, Coulomb and shell energies on density and/or temperature. As for light nuclei, we employ a quantum-theoretical mass evaluation, which incorporates the Pauli- and self-energy shifts. In addition to realistic nuclear forces, the inclusion of in-medium effects on the full ensemble of nuclei makes the new EOS one of the most realistic EOSs, which covers a wide range of density, temperature and proton fraction that supernova simulations normally encounter. We make comparisons with the FYSS EOS, which is based on the same formulation for the nuclear ensemble but adopts the relativistic mean field theory with the TM1 parameter set for uniform nuclear matter. The new EOS is softer than the FYSS EOS around and above nuclear saturation densities. We find that neutron-rich nuclei with small mass numbers are more abundant in the new EOS than in the FYSS EOS because of the larger saturation densities and smaller symmetry energy of nuclei in the former. We apply the two EOSs to 1D supernova simulations and find that the new EOS gives lower electron fractions and higher temperatures in the collapse phase owing to the smaller symmetry energy. As a result, the inner core has smaller masses for the new EOS. It is more compact, on the other hand, due to the softness of the new EOS and bounces at higher densities. It turns out that the shock wave generated by core bounce is a bit stronger initially in the simulation with the new EOS. The ensuing outward propagations of the shock wave in the outer core are very similar in the two simulations, which may be an artifact, though, caused by the use of the same tabulated electron capture rates for heavy nuclei ignoring differences in the nuclear composition between the two EOSs in these computations.
Multiple forebrain systems converge on motor neurons innervating the thyroarytenoid muscle
Van Daele, Douglas J.; Cassell, Martin D.
2009-01-01
The present study investigated the central connections of motor neurons innervating the thyroarytenoid laryngeal muscle that is active in swallowing, respiration and vocalization. In both intact and sympathectomized rats, the pseudorabies virus (PRV) was inoculated into the muscle. After initial infection of laryngomotor neurons in the ipsilateral loose division of the nucleus ambiguous (NA) by 3 days post-inoculation., PRV spread to the ipsilateral compact portion of the NA, the central and intermediate divisions of the nucleus tractus solitarii (NTS), the Botzinger complex, and the parvocellular reticular formation by 4 days. Infection was subsequently expanded to include the ipsilateral granular and dysgranular parietal insular cortex, the ipsilateral medial division of the central nucleus of the amygdala, the lateral, paraventricular, ventrolateral and medial preoptic nuclei of the hypothalamus (generally bilaterally), the lateral periaqueductal gray, the A7 and oral and caudal pontine nuclei. At the latest time points sampled post-inoculation (5 days), infected neurons were identified in the ipsilateral agranular insular cortex, the caudal parietal insular cortex, the anterior cingulate cortex, and the contralateral motor cortex. In the amygdala, infection had spread to the lateral central nucleus and the parvocellular portion of the basolateral nucleus. Hypothalamic infection was largely characterized by an increase in the number of infected cells in earlier infected regions though the posterior, dorsomedial, tuberomammillary and mammillary nuclei contained infected cells. Comparison with previous connectional data suggest PRV followed three interconnected systems originating in the forebrain; a bilateral system including the ventral anterior cingulate cortex, periaqueductal gray and ventral respiratory group; an ipsilateral system involving the parietal insular cortex, central nucleus of the amygdala and parvicellular reticular formation, and a minor contralateral system originating in motor cortex. Hypothalamic innervation involved several functionally specific nuclei. Overall, the data imply complex central nervous system control over the multi-functional thyroarytenoid muscle.[297 words] PMID:19426785
Nagy, James I.; Bautista, Wendy; Blakley, Brian; Rash, John E.
2013-01-01
Axon terminals forming mixed chemical/electrical synapses in the lateral vestibular nucleus of rat were described over forty years ago. Because gap junctions formed by connexins are the morphological correlate of electrical synapses, and with demonstrations of widespread expression of the gap junction protein connexin36 (Cx36) in neurons, we investigated the distribution and cellular localization of electrical synapses in the adult and developing rodent vestibular nuclear complex, using immunofluorescence detection of Cx36 as a marker for these synapses. In addition, we examined Cx36 localization in relation to that of the nerve terminal marker vesicular glutamate transporter-1 (vglut-1). An abundance of immunolabelling for Cx36 in the form of Cx36-puncta was found in each of the four major vestibular nuclei of adult rat and mouse. Immunolabelling was associated with somata and initial dendrites of medium and large neurons, and was absent in vestibular nuclei of Cx36 knockout mice. Cx36-puncta were seen either dispersed or aggregated into clusters on the surface of neurons, and were never found to occur intracellularly. Nearly all Cx36-puncta were localized to large nerve terminals immunolabelled for vglut-1. These terminals and their associated Cx36-puncta were substantially depleted after labyrinthectomy. Developmentally, labelling for Cx36 was already present in the vestibular nuclei at postnatal day 5, where it was only partially co-localized with vglut-1, and did not become fully associated with vglut-1-positive terminals until postnatal day 20 to 25. The results show that vglut-1-positive primary afferent nerve terminals form mixed synapses throughout the vestibular nuclear complex, that the gap junction component of these synapses contain Cx36, that multiple Cx36-containing gap junctions are associated with individual vglut-1 terminals and that the development of these mixed synapses is protracted over several postnatal weeks. PMID:23912039
2016-12-22
assumptions of behavior. This research proposes an information theoretic methodology to discover such complex network structures and dynamics while overcoming...the difficulties historically associated with their study. Indeed, this was the first application of an information theoretic methodology as a tool...1 Research Objectives and Questions..............................................................................2 Methodology
Uncertainties in modeling low-energy neutrino-induced reactions on iron-group nuclei
NASA Astrophysics Data System (ADS)
Paar, N.; Suzuki, T.; Honma, M.; Marketin, T.; Vretenar, D.
2011-10-01
Charged-current neutrino-nucleus cross sections for 54,56Fe and 58,60Ni are calculated and compared using frameworks based on relativistic and Skyrme energy-density functionals and on the shell model. The current theoretical uncertainties in modeling neutrino-nucleus cross sections are assessed in relation to the predicted Gamow-Teller transition strength and available data, to multipole decomposition of the cross sections, and to cross sections averaged over the Michel flux and Fermi-Dirac distribution. By employing different microscopic approaches and models, the decay-at-rest (DAR) neutrino-56Fe cross section and its theoretical uncertainty are estimated to be <σ>th=(258±57)×10-42cm2, in very good agreement with the experimental value <σ>exp=(256±108±43)×10-42cm2.
Cluster formation in precompound nuclei in the time-dependent framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuetrumpf, B.; Nazarewicz, W.
Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less
Cluster formation in precompound nuclei in the time-dependent framework
Schuetrumpf, B.; Nazarewicz, W.
2017-12-15
Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less
Coulomb excitation of 206Hg at relativistic energies
NASA Astrophysics Data System (ADS)
Alexander, Tom
The region of the nuclear chart surrounding the doubly-magic nucleus 208Pb provides a key area to constrain and develop contemporary nuclear structure models. One aspect of particular interest is the transition strength of the first excited 2+ state in even-even nuclei; this work describes the measurement of this value for the case of 206Hg, where the Z=80 line meets the N=126 shell closure. The nuclei of interest were synthesized using relativistic-energy projectile fragmentation at the GSI facility in Germany. They were produced in the fragmentation of a primary 208Pb beam at an energy of 1 GeV per nucleon, and separated and identifed using the Fragment Separator. The secondary beams with an energy of 140 MeV per nucleon were Coulomb excited on a secondary target of 400 mg/cm. 2 gold. Gamma-rays were detected with the Advanced GAmma Tracking Array (AGATA). The precise scattering angle for Doppler-correction was determined with position information from the Lund-York-Cologne-CAlorimeter(LYCCA). Using the sophisticated tracking algorithm native to AGATA in conjunction with pulse-shape analysis, a precise Doppler-correction is performed on the gamma spectra, and using a complex n-dimensional analysis, the B(E2) value for 206Hg is extracted relative to the known value also measured in 206Pb. A total of 409 million 206Hg particles were measured, and a cross-section of 50 mb was determined for the 2+ state at 1068 keV. The measurement of the B(E2) transition strength was found to be 1.109 W.u. This result is compared to a number of theoretical calculations, including two Gogny forces, and a modified shell model parametrization and is found to be smaller than all calculated estimations, implying that the first excited 2. + state in . {206}Hg is uncollective in nature.
Ultrafast outflows in radio-loud active galactic nuclei
NASA Astrophysics Data System (ADS)
Tombesi, F.; Tazaki, F.; Mushotzky, R. F.; Ueda, Y.; Cappi, M.; Gofford, J.; Reeves, J. N.; Guainazzi, M.
2014-09-01
Recent X-ray observations show absorbing winds with velocities up to mildly relativistic values of the order of ˜0.1c in a limited sample of six broad-line radio galaxies. They are observed as blueshifted Fe XXV-XXVI K-shell absorption lines, similarly to the ultrafast outflows (UFOs) reported in Seyferts and quasars. In this work we extend the search for such Fe K absorption lines to a larger sample of 26 radio-loud active galactic nuclei (AGN) observed with XMM-Newton and Suzaku. The sample is drawn from the Swift Burst Alert Telescope 58-month catalogue and blazars are excluded. X-ray bright Fanaroff-Riley Class II radio galaxies constitute the majority of the sources. Combining the results of this analysis with those in the literature we find that UFOs are detected in >27 per cent of the sources. However, correcting for the number of spectra with insufficient signal-to-noise ratio, we can estimate that the incidence of UFOs is this sample of radio-loud AGN is likely in the range f ≃ (50 ± 20) per cent. A photoionization modelling of the absorption lines with XSTAR allows us to estimate the distribution of their main parameters. The observed outflow velocities are broadly distributed between vout ≲ 1000 km s-1 and vout ≃ 0.4c, with mean and median values of vout ≃ 0.133c and vout ≃ 0.117c, respectively. The material is highly ionized, with an average ionization parameter of logξ ≃ 4.5 erg s-1 cm, and the column densities are larger than NH > 1022 cm-2. Overall, these characteristics are consistent with the presence of complex accretion disc winds in a significant fraction of radio-loud AGN and demonstrate that the presence of relativistic jets does not preclude the existence of winds, in accordance with several theoretical models.
Cluster formation in precompound nuclei in the time-dependent framework
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Nazarewicz, W.
2017-12-01
Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N =Z . Furthermore, we study reactions with oxygen and carbon ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O,40Ca + 16O, 40Ca + 40Ca, and O,1816 + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12C - 12C-α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of O,1816 + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. The localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.
[A preparative method for isolating the synaptonemal complexes from mammalian spermatocytes].
Dadashev, S Ia; Bogdanov, Iu F; Gorach, G G; Kolomiets, O L; Karpova, O I
1993-01-01
A method of isolation of synaptonemal complexes (SC) from mouse, rat and Syrian hamster spermatocytes is described. A fraction of pachytene spermatocyte nuclei was obtained by centrifugation of the testis homogenate in stepwise sucrose gradient and then lysed. The resulting chromatine was hydrolysed with DNAse II, and a fraction of isolated SCs was obtained by ultracentrifugation of the hydrolysate. The method can be applied for obtaining the SC fraction from spermatocytes sufficient for cytological, biochemical and molecular biology studies.
Ducka, Anna M; Joel, Peteranne; Popowicz, Grzegorz M; Trybus, Kathleen M; Schleicher, Michael; Noegel, Angelika A; Huber, Robert; Holak, Tad A; Sitar, Tomasz
2010-06-29
Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, "side-to-side" and "straight-longitudinal," which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament.
Ducka, Anna M.; Joel, Peteranne; Popowicz, Grzegorz M.; Trybus, Kathleen M.; Schleicher, Michael; Noegel, Angelika A.; Huber, Robert; Holak, Tad A.; Sitar, Tomasz
2010-01-01
Three classes of proteins are known to nucleate new filaments: the Arp2/3 complex, formins, and the third group of proteins that contain ca. 25 amino acid long actin-binding Wiskott-Aldrich syndrome protein homology 2 domains, called the WH2 repeats. Crystal structures of the complexes between the actin-binding WH2 repeats of the Spire protein and actin were determined for the Spire single WH2 domain D, the double (SpirCD), triple (SpirBCD), quadruple (SpirABCD) domains, and an artificial Spire WH2 construct comprising three identical D repeats (SpirDDD). SpirCD represents the minimal functional core of Spire that can nucleate actin filaments. Packing in the crystals of the actin complexes with SpirCD, SpirBCD, SpirABCD, and SpirDDD shows the presence of two types of assemblies, “side-to-side” and “straight-longitudinal,” which can serve as actin filament nuclei. The principal feature of these structures is their loose, open conformations, in which the sides of actins that normally constitute the inner interface core of a filament are flipped inside out. These Spire structures are distant from those seen in the filamentous nuclei of Arp2/3, formins, and in the F-actin filament. PMID:20538977
NASA Astrophysics Data System (ADS)
Tselyaev, V.; Lyutorovich, N.; Speth, J.; Krewald, S.; Reinhard, P.-G.
2016-09-01
We present results of the time blocking approximation (TBA) for giant resonances in light-, medium-, and heavy-mass nuclei. The TBA is an extension of the widely used random-phase approximation (RPA) adding complex configurations by coupling to phonon excitations. A new method for handling the single-particle continuum is developed and applied in the present calculations. We investigate in detail the dependence of the numerical results on the size of the single-particle space and the number of phonons as well as on nuclear matter properties. Our approach is self-consistent, based on an energy-density functional of Skyrme type where we used seven different parameter sets. The numerical results are compared with experimental data.
NASA Astrophysics Data System (ADS)
Kisiel, Z.; Pszczólkowski, L.; Fowler, P. W.; Legon, A. C.
1997-09-01
Rotational spectra of the most abundant isotopic species of the weakly bound dimer formed between dinitrogen and hydrogen chloride were investigated. Spectroscopic constants for 14N 2 · H 37Cl were determined for the first time and those for 14N 2 · H 35Cl improved. Analysis of observed nuclear quadrupole spliting patterns within the framework of coupling of three nonequivalent nuclear spins allowed determination of splitting constants for both nuclei in the complexed dinitrogen molecule. Electric field gradient calculations at the SCF supermolecule level for the dimer are presented and account for the observed values of the nitrogen splitting constants.
Creation of the precision magnetic spectrometer SCAN-3
NASA Astrophysics Data System (ADS)
Afanasiev, S. V.; Anisimov, Yu. S.; Baldin, A. A.; Berlev, A. I.; Dryablov, D. K.; Dubinchik, B. V.; Elishev, A. F.; Fateev, O. V.; Igamkulov, Z. A.; Krechetov, Yu. F.; Kudashkin, I. V.; Kuznechov, S. N.; Malakhov, A. I.; Smirnov, V. A.; Shimansky, S. S.; Kliman, J.; Matousek, V.; Gmutsa, S.; Turzo, I.; Cruceru, I.; Cruceru, M.; Constantin, F.; Niolescu, G.; Ciolacu, L.; Paraipan, M.; Vokál, S.; Vrláková, J.; Baskov, V. A.; Lebedev, A. I.; L'vov, A. I.; Pavlyuchenko, L. N.; Polyansky, V. V.; Rzhanov, E. V.; Sidorin, S. S.; Sokol, G. A.; Glavanakov, I. V.; Tabachenko, A. N.; Jomurodov, D. M.; Bekmirzaev, R. N.; Ibadov, R. M.; Sultanov, M. U.
2017-03-01
The new JINR project [1] is aimed at studies of highly excited nuclear matter created in nuclei by a high-energy deuteron beam. The matter is studied through observation of its particular decay products - pairs of energetic particles with a wide opening angle, close to 180°. The new precision hybrid magnetic spectrometer SCAN-3 is to be built for detecting charged (π±, K±, p) and neutral (n) particles produced at the JINR Nuclotron internal target in dA collisions. One of the main and complex tasks is a study of low-energy ηA interaction and a search for η-bound states (η-mesic nuclei). Basic elements of the spectrometer and its characteristics are discussed in the article.
NASA Astrophysics Data System (ADS)
Aygun, M.; Kucuk, Y.; Boztosun, I.; Ibraheem, Awad A.
2010-12-01
The elastic scattering angular distributions of 6He projectile on different medium and heavy mass target nuclei including 12C, 27Al, 58Ni, 64Zn, 65Cu, 197Au, 208Pb and 209Bi have been examined by using the few-body and Gaussian-shaped density distributions at various energies. The microscopic real parts of the complex nuclear optical potential have been obtained by using the double-folding model for each of the density distributions and the phenomenological imaginary potentials have been taken as the Woods-Saxon type. Comparative results of the few-body and Gaussian-shaped density distributions together with the experimental data are presented within the framework of the optical model.
NeuRad detector prototype pulse shape study
NASA Astrophysics Data System (ADS)
Muzalevsky, I.; Chudoba, V.; Belogurov, S.; Kiselev, O.; Bezbakh, A.; Fomichev, A.; Krupko, S.; Slepnev, R.; Kostyleva, D.; Gorshkov, A.; Ovcharenko, E.; Schetinin, V.
2018-04-01
The EXPERT setup located at the Super-FRS facility, the part of the FAIR complex in Darmstadt, Germany, is intended for investigation of properties of light exotic nuclei. One of its modules, the high granularity neutron detector NeuRad assembled from a large number of the scintillating fiber is intended for registration of neutrons emitted by investigated nuclei in low-energy decays. Feasibility of the detector strongly depends on its timing properties defined by the spatial distribution of ionization, light propagation inside the fibers, light emission kinetics and transition time jitter in the multi-anode photomultiplier tube. The first attempt of understanding the pulse formation in the prototype of the NeuRad detector by comparing experimental results and Monte Carlo (MC) simulations is reported in this paper.
Vibrational excitation of water by electron impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M. A.; Winstead, C.; McKoy, V.
2009-05-15
Experimental and calculated differential cross sections (DCSs) for electron-impact excitation of the (010) bending mode and unresolved (100) symmetric and (001) antisymmetric stretching modes of water are presented. Measurements are reported at incident energies of 1-100 eV and scattering angles of 10 deg. - 130 deg. and are normalized to the elastic-scattering DCSs for water determined earlier by our group. The calculated cross sections are obtained in the adiabatic approximation from fixed-nuclei, electronically elastic scattering calculations using the Schwinger multichannel method. The present results are compared to available experimental and theoretical data.
Schoen, K; Snow, W M; Kaiser, H; Werner, S A
2005-01-01
The neutron index of refraction is generally derived theoretically in the Fermi approximation. However, the Fermi approximation neglects the effects of the binding of the nuclei of a material as well as multiple scattering. Calculations by Nowak introduced correction terms to the neutron index of refraction that are quadratic in the scattering length and of order 10(-3) fm for hydrogen and deuterium. These correction terms produce a small shift in the final value for the coherent scattering length of H2 in a recent neutron interferometry experiment.
Liu, Qiuli; Wong-Riley, Margaret T.T.
2012-01-01
Previously, we reported that in rats, GABAA and glycine receptor immunoreactivity increased markedly in multiple brain stem respiratory nuclei around postnatal days (P) 12–13, a critical period when abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory network and when the system is under greater inhibition than excitation. Since Na+-K+-2Cl− co-transporter 1 (NKCC1) and K+-Cl− co-transporter 2 (KCC2) play pivotal roles in determining the responses of GABAA and glycine receptors, we hypothesized that NKCC1 and KCC2 undergo significant changes during the critical period. An in-depth immunohistochemical and single neuron optical densitometric study of neurons in seven respiratory-related nuclei (the pre-Bötzinger complex [PBC], nucleus ambiguus [Amb], hypoglossal nucleus [XII], ventrolateral subnucleus of solitary tract nucleus [NTSVL], retrotrapezoid nucleus/parafacial respiratory group [RTN/pFRG], dorsal motor nucleus of the vagus nerve [DMNX], and inferior olivary nucleus [IO]) and a non-respiratory cuneate nucleus (CN, an internal control) was undertaken in P0–21 rats. Our data revealed that: (1) NKCC1 immunoreactivity exhibited a developmental decrease from P0 to P21 in all eight nuclei examined, being relatively high during the first 1½ postnatal weeks and decreased thereafter. The decrease was abrupt and statistically significant at P12 in the PBC, Amb, and XII; (2) KCC2 immunoreactivity in these eight nuclei showed a developmental increase from P0 to P21; and (3) the significant reduction in NKCC1 and the greater dominance of KCC2 around P12 in multiple respiratory nuclei of the brain stem may form the basis of an enhanced inhibition in the respiratory network during the critical period before the system stabilizes to a more mature state. PMID:22441038
Kedinger, C; Brison, O; Perrin, F; Wilhelm, J
1978-01-01
Deoxyribonucleoprotein complexes released 17 h postinfection from adenovirus type 1 (Ad2)-infected HeLa cell nuclei were shown by electron microscopy to contain filaments much thicker (about 200 A [20 nm]) than double-stranded DNA (about 20 A [2 nm]). The complexes were partially purified through a linear sucrose gradient, concentrated, and further purified in a metrizamide gradient. The major protein present in the complexes was identified as the 72,000-dalton (72K), adenovirus-coded single-stranded DNA-binding protein (72K DBP). Three types of complexes have been visualized by electron microscopy. Some linear complexes were uniformly thick, and their length corresponded roughly to that of the adenovirus genome. Other linear genome-length complexes appeared to consist of a thick filament connected to a thinner filament with the diameter of double-stranded DNA. Forked complexes consisting of one thick filament connected to a genome-length, thinner double-stranded DNA filament were also visualized. Both thick and thin filaments were sensitive to DNase and not to RNase, but only the thick filaments were digested by the single-strand-specific Neurospora crassa nuclease, indicating that they correspond to a complex of 72K DBP and Ad2 single-stranded DNA. Experiments with anti-72K DBP immunoglobulins indicated that these nucleoprotein complexes, containing the 72K DBP, correspond to replicative intermediates. Both strands of the Ad2 genome were found associated to the 72K DBP. Altogether, our results establish the in vivo association of the 72K DBP with adenovirus single-stranded DNA, as previously suggested from in vitro studies, and support a strand displacement mechanism for Ad2 DNA replication, in which both strands can be displaced. In addition, our results indicate that, late in infection, histones are not bound to adenovirus DNA in the form of a nucleosomal chromatine-like structure. Images PMID:207893
Kedinger, C; Brison, O; Perrin, F; Wilhelm, J
1978-05-01
Deoxyribonucleoprotein complexes released 17 h postinfection from adenovirus type 1 (Ad2)-infected HeLa cell nuclei were shown by electron microscopy to contain filaments much thicker (about 200 A [20 nm]) than double-stranded DNA (about 20 A [2 nm]). The complexes were partially purified through a linear sucrose gradient, concentrated, and further purified in a metrizamide gradient. The major protein present in the complexes was identified as the 72,000-dalton (72K), adenovirus-coded single-stranded DNA-binding protein (72K DBP). Three types of complexes have been visualized by electron microscopy. Some linear complexes were uniformly thick, and their length corresponded roughly to that of the adenovirus genome. Other linear genome-length complexes appeared to consist of a thick filament connected to a thinner filament with the diameter of double-stranded DNA. Forked complexes consisting of one thick filament connected to a genome-length, thinner double-stranded DNA filament were also visualized. Both thick and thin filaments were sensitive to DNase and not to RNase, but only the thick filaments were digested by the single-strand-specific Neurospora crassa nuclease, indicating that they correspond to a complex of 72K DBP and Ad2 single-stranded DNA. Experiments with anti-72K DBP immunoglobulins indicated that these nucleoprotein complexes, containing the 72K DBP, correspond to replicative intermediates. Both strands of the Ad2 genome were found associated to the 72K DBP. Altogether, our results establish the in vivo association of the 72K DBP with adenovirus single-stranded DNA, as previously suggested from in vitro studies, and support a strand displacement mechanism for Ad2 DNA replication, in which both strands can be displaced. In addition, our results indicate that, late in infection, histones are not bound to adenovirus DNA in the form of a nucleosomal chromatine-like structure.
Correlation Filters for Detection of Cellular Nuclei in Histopathology Images.
Ahmad, Asif; Asif, Amina; Rajpoot, Nasir; Arif, Muhammad; Minhas, Fayyaz Ul Amir Afsar
2017-11-21
Nuclei detection in histology images is an essential part of computer aided diagnosis of cancers and tumors. It is a challenging task due to diverse and complicated structures of cells. In this work, we present an automated technique for detection of cellular nuclei in hematoxylin and eosin stained histopathology images. Our proposed approach is based on kernelized correlation filters. Correlation filters have been widely used in object detection and tracking applications but their strength has not been explored in the medical imaging domain up till now. Our experimental results show that the proposed scheme gives state of the art accuracy and can learn complex nuclear morphologies. Like deep learning approaches, the proposed filters do not require engineering of image features as they can operate directly on histopathology images without significant preprocessing. However, unlike deep learning methods, the large-margin correlation filters developed in this work are interpretable, computationally efficient and do not require specialized or expensive computing hardware. A cloud based webserver of the proposed method and its python implementation can be accessed at the following URL: http://faculty.pieas.edu.pk/fayyaz/software.html#corehist .
NMR of insensitive nuclei enhanced by dynamic nuclear polarization.
Miéville, Pascal; Jannin, Sami; Helm, Lothar; Bodenhausen, Geoffrey
2011-01-01
Despite the powerful spectroscopic information it provides, Nuclear Magnetic Resonance (NMR) spectroscopy suffers from a lack of sensitivity, especially when dealing with nuclei other than protons. Even though NMR can be applied in a straightforward manner when dealing with abundant protons of organic molecules, it is very challenging to address biomolecules in low concentration and/or many other nuclei of the periodic table that do not provide as intense signals as protons. Dynamic Nuclear Polarization (DNP) is an important technique that provides a way to dramatically increase signal intensities in NMR. It consists in transferring the very high electron spin polarization of paramagnetic centers (usually at low temperature) to the surrounding nuclear spins with appropriate microwave irradiation. DNP can lead to an enhancement of the nuclear spin polarization by up to four orders of magnitude. We present in this article some basic concepts of DNP, describe the DNP apparatus at EPFL, and illustrate the interest of the technique for chemical applications by reporting recent measurements of the kinetics of complexation of 89Y by the DOTAM ligand.
O'Rahilly, R; Müller, F; Hutchins, G M; Moore, G W
1988-08-01
The sequence of events in the development of the brain in human embryos, already published for stages 8-17, is here continued for stages 18 and 19. With the aid of a computerized bubble-sort algorithm, 58 individual embryos were ranked in ascending order of the features present. The increasing structural complexity provided 40 new features in these two stages. The chief characteristics of stage 18 (approximately 44 postovulatory days) are rapidly growing basal nuclei; appearance of the extraventricular bulge of the cerebellum (flocculus), of the superior cerebellar peduncle, and of follicles in the epiphysis cerebri; and the presence of vomeronasal organ and ganglion, of the bucconasal membrane, and of isolated semicircular ducts. The main features of stage 19 (approximately 48 days) are the cochlear nuclei, the ganglion of the nervus terminalis, nuclei of the prosencephalic septum, the appearance of the subcommissural organ, the presence of villi in the choroid plexuses of the fourth and lateral ventricles, and the stria medullaris thalami.
Nuclear migration events throughout development
Bone, Courtney R.
2016-01-01
ABSTRACT Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders. PMID:27182060
Shimansky, Yury; Wang, Jian-Jun; Bauer, Richard A; Bracha, Vlastislav; Bloedel, James R
2004-03-01
Although the cerebellum has been shown to be critical for the acquisition and retention of adaptive modifications in certain reflex behaviors, this structure's role in the learning of motor skills required to execute complex voluntary goal-directed movements still is unclear. This study explores this issue by analyzing the effects of inactivating the interposed and dentate cerebellar nuclei on the adaptation required to compensate for an external elastic load applied during a reaching movement. We show that cats with these nuclei inactivated can adapt to predictable perturbations of the forelimb during a goal-directed reach by including a compensatory component in the motor plan prior to movement initiation. In contrast, when comparable compensatory modifications must be triggered on-line because the perturbations are applied in randomized trials (i.e., unpredictably), such adaptive responses cannot be executed or reacquired after the interposed and dentate nuclei are inactivated. These findings provide the first demonstration of the condition-dependent nature of the cerebellum's contribution to the learning of a specific volitional task.
Abnormalities of thalamic activation and cognition in schizophrenia.
Andrews, Jessica; Wang, Lei; Csernansky, John G; Gado, Mokhtar H; Barch, Deanna M
2006-03-01
Functional and structural magnetic resonance imaging (MRI) was used to investigate relationships among structure, functional activation, and cognitive deficits related to the thalamus in individuals with schizophrenia and healthy comparison subjects. Thirty-six schizophrenia subjects and 28 healthy comparison subjects matched by age, gender, race, and parental socioeconomic status underwent structural and functional MRI while performing a series of memory tasks, including an N-back task (working memory), intentional memorization of a series of pictures or words (episodic encoding), and a yes/no recognition task. Functional activation magnitudes in seven regions of interest within the thalamic complex, as defined by anatomical and functional criteria, were computed for each group. Participants with schizophrenia exhibited decreased activation within the whole thalamus, the anterior nuclei, and the medial dorsal nucleus. These nuclei overlap with subregions of the thalamic surface that the authors previously reported to exhibit morphological abnormalities in schizophrenia. However, there were no significant correlations between specific dimensions of thalamic shape variation (i.e., eigenvectors) and the activation patterns within thalamic regions of interest. Better performance on the working memory task among individuals with schizophrenia was significantly associated with increased activation in the anterior nuclei, the centromedian nucleus, the pulvinar, and the ventrolateral nuclei. These results suggest that there are limited relationships between morphological and functional abnormalities of the thalamus in schizophrenia subjects and highlight the importance of investigating relationships between brain structure and function.
Esteves, Adriana; Knoll-Gellida, Anja; Canclini, Lucia; Silvarrey, Maria Cecilia; André, Michèle; Babin, Patrick J.
2016-01-01
Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC12 but not BODIPY-FLC5 to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC12 to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC12 was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity. PMID:26658423
Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan
2017-01-01
Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed. PMID:27845895
Hsu, Li-Jin; Hong, Qunying; Chen, Shur-Tzu; Kuo, Hsiang-Lin; Schultz, Lori; Heath, John; Lin, Sing-Ru; Lee, Ming-Hui; Li, Dong-Zhang; Li, Zih-Ling; Cheng, Hui-Ching; Armand, Gerard; Chang, Nan-Shan
2017-03-21
Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-β), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-β binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.
Functionalized active-nucleus complex sensor
Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth
2003-11-25
A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.
Investigation of Laser-Induced Retinal Damage: Wavelength and Pulsewidth Dependent Mechanisms
1994-06-30
Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991;1072:129-57. 2. Artuc M, Ramshad M, Kappus H. Studies...M, Reinhold C, Kappus H. DNA damage caused by laser light activated hematoporphyrin derivatives in isolated nuclei of human melanoma cells. Arch
Neurophysiology of Hunger and Satiety
ERIC Educational Resources Information Center
Smith, Pauline M.; Ferguson, Alastair V.
2008-01-01
Hunger is defined as a strong desire or need for food while satiety is the condition of being full or gratified. The maintenance of energy homeostasis requires a balance between energy intake and energy expenditure. The regulation of food intake is a complex behavior. It requires discrete nuclei within the central nervous system (CNS) to detect…
Molas, J
2001-01-01
Experiments were carried out on the effect of nickel as an inorganic compound (NiSO4.7H2O) and organic Ni(II) complexes (i.e. Ni(II)-Glu and Ni(II)-EDTA) in concentrations of 20, 40 and 85 ?M dm-3 on meristematic cells of root tips of Brassica oleracea L. cv. Sława from Enkhouizen. All three tested chemical forms of nickel had a mitodepressive effect and inhibited root elongation. With respect to the degree of root elongation inhibition and mitodepressive effect, the tested forms of nickel can be put in the following order: Ni(II)-Glu NiSO4.7H2O Ni(II)-EDTA. In all three tested forms, nickel caused disturbances in mitotic divisions, resulting in anaphase bridges and binuclear cells, whose nuclei were joined by a bridge of condensed chromatin or separated. Inorganic nickel and Ni(II)-Glu in higher concentrations damaged nuclei (the amount of condensed chromatin increased), nucleoli (their structure became more condensed and vacuolisation was observed), endoplasmic reticulum (fragmentation, swelling of cisternae) and mitochondria (structure condensation).
[Memorandum prevention research - research areas and methods].
Walter, U; Nöcker, G; Plaumann, M; Linden, S; Pott, E; Koch, U; Pawils, S; Altgeld, T; Dierks, M L; Frahsa, A; Jahn, I; Krauth, C; Pomp, M; Rehaag, R; Robra, B P; Süß, W; Töppich, J; Trojan, A; von Unger, H; Wildner, M; Wright, M
2012-10-01
From 2004 to 2012, the German Ministry of Education and Research (BMBF) established its first funding programme for the promotion of prevention research. 60 projects on primary prevention and health promotion and the meta-project entitled "Cooperation for Sustainable Prevention Research" (KNP) received BMBF grants under this programme during this period. The experience and knowledge gained and recommendations arising from the research funded under this programme are compiled in memorandum format. The "Memorandum on Prevention Research - Research Areas and Methods" highlights 5 research areas that are considered to be especially relevant from the perspective of the involved scientists and practice partners.The promotion of structural development and sustainability enhancement in disease prevention and health promotion are central areas that should branch out from existing nuclei of crystallization. Improving the health competence of the population and of specific subpopulations is another major area. Research in these areas should contribute to the development of theoretical concepts and to the empirical testing of these concepts. The transfer of knowledge for effective use of developed disease prevention and health promotion programmes and measures is still a scarcely researched area. Among other things, studies of the transfer of programmes from one context to another, analyses of the coop-eration between politics and science, and the continued theoretical and conceptual development of transfer research are needed. Long-term data on the effects of intervention studies are also needed for proper evaluation of sustainability. The latter dem-onstrates the importance of method development in disease prevention and health promotion research as an area that should receive separate funding and support. This research should include, in particular, studies of the efficacy of complex interventions, health economic analyses, and participative health research. © Georg Thieme Verlag KG Stuttgart · New York.
α -decay chains of the superheavy nuclei Rg-350255
NASA Astrophysics Data System (ADS)
Santhosh, K. P.; Nithya, C.
2017-05-01
The decay modes and half-lives of 96 isotopes of the superheavy element roentgenium (Rg) within the range of 255 ≤A ≤350 come under investigation in the present paper. The isotopes which lie beyond the proton drip line are identified by calculating the one-proton and two-proton separation energies. The α -decay half-lives are calculated using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). For a theoretical comparison the α half-lives are also evaluated using the Viola-Seaborg semiempirical relation, the universal curve of Poenaru et al., the analytical formula of Royer, and the universal decay law of Qi et al. Spontaneous fission half-lives are computed with the shell-effect-dependent formula of Santhosh and Nithya and the semiempirical formula of Xu et al. The decay modes are predicted by comparing the α -decay half-lives within the CPPMDN with the corresponding spontaneous fission half-lives computed by the shell-effect-dependent formula of Santhosh and Nithya. In our paper it is seen that the isotopes 255-271,273Rg lie beyond the proton drip line and hence decay through proton emission. The isotopes 272,274-277Rg exhibit long α chains. Three α chains are predicted from the isotopes Rg-282278. The isotopes Rg-345283 decay through spontaneous fission. The isotopes Rg-350346 are found to be stable against α decay. The theoretical results are compared with the available experimental results and are seen to be matching well. We hope that our predictions will be useful in future experimental investigations.
NASA Astrophysics Data System (ADS)
Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru
2008-04-01
Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al. -- Thermal pairing in nuclei / N. D. Dang -- Molecular-orbital and di-nuclei states in Ne and F isotopes / M. Kimura -- Low-momentum interactions for nuclei / A. Schwenk -- Nonrelativistic nuclear energy functionals including the tensor force / G. Colo et al. -- New aspects on dynamics in nuclei described by covariant density functional theory / P. Ring, D. Pena -- Theoretical studies on ground-state properties of superheavy nuclei / Z. Z. Ren et al. -- New results in the study of superfluid nuclei: many-body effects, spectroscopic factors / P. F. Bortignon et al. -- New Effective nucleon-nucleon interaction for the mean-field approximation / V. K. Au et al. -- Linear response calculations with the time-dependent Skyrme density functional / T. Nakatsukasa et al. -- Dissipative dynamics with exotic beams / M. Di Toro et al. -- Exploring the symmetry energy of asymmetric nuclear matter with heavy ion reactions / M. B. Tsang -- Invariant mass spectroscopy of halo nuclei / T. Nakamura et al. -- Core [symbol] structures in [symbol]C, [symbol]C and [symbol]C up to high excitation energies / H. G. Bohlen et al. -- Light neutron-rich nuclei studied by alpha-induced reactions / S. Shimoura -- Fusion and direct reactions around the Coulomb barrier for the system [symbol]He + [symbol]Zn / V. Scuderi et al. -- Analyzing power measurement for proton elastic scattering on [symbol]He / S. Sakaguchi et al. -- Knockout reaction spectroscopy of exotic nuclei / J. A. Tostevin -- Exotic nuclei, quantum phase transitions, and the evolution of structure / R. F. Casten -- Structure of exotic nuclei in the medium mass region / T. Otsuka -- Pairing correlations in halo nuclei / H. Sagawa, K. Hagino -- Experimental approach to high-temperature Stellar reactions with low-energy RI beams / S. Kubono et al. -- Transition to quark matter in neutron stars / G. X. Peng et al. -- Research at VATLY: main themes and recent results / P. N. Diep et al. -- Study of the astrophysical reaction [symbol]C([symbol], n)[symbol]O by the transfer reaction [symbol]C([symbol]Li, t)[symbol]O / F. Hammache et al. -- SPIRAL2 at GANIL: a world of leading ISOL facility for the physics of exotic nuclei / S. Gales -- Magnetic properties of light neutron-rich nuclei and shell evolution / T. Suzuki, T. Otsuka -- Multiple scattering effects in elastic and quasi free proton scattering from halo nuclei / R. Crespo et al. -- The dipole response of neutron halos and skins / T. Aumann -- Giant and pygmy resonances within axially-symmetric-deformed QRPA with the Gogny force / S. Péru, H. Goutte -- Soft K[symbol] = O+ modes unique to deformed neutron-rich unstable nuclei / K. Yoshida et al. -- Synthesis, decay properties, and identification of superheavy nuclei produced in [symbol]Ca-induced reactions / Yu. Ts. Oganessian et al. -- Highlights of the Brazilian RIB facility and its first results and hindrance of fusion cross section induced by [symbol]He / P. R. S. Gomes et al. -- Search for long fission times of super-heavy elements with Z = 114 / M. Morjean et al. -- Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara et al. -- [symbol]-cluster states and 4[symbol]-particle condensation in [symbol]O / Y. Funaki et al. -- Evolution of the N = 28 shell closure far from stability / O. Sorlin et al. -- Continuum QRPA approach and the surface di-neutron modes in nuclei near the neutron drip-line / M. Matsuo et al. -- Deformed relativistic Hartree-Bogoliubov model for exotic nuclei / S. G. Zhou et al. -- Two- and three-body correlations in three-body resonances and continuum states / K. Katō, K. Ikeda -- Pion- and Rho-Meson effects in relativistic Hartree-Fock and RPA / N. V. Giai et al. -- Study of the structure of neutron rich nuclei by using [symbol]-delayed neutron and gamma emission method / Y. Ye et al. -- Production of secondary radioactive [symbol] Na beam for the study of [symbol]Na([symbol], p)[symbol]Mg stellar reaction / D. N. Binh et al. -- Asymmetric nuclear matter properties within the Brueckner theory / W. Zuo et al. -- Study of giant dipole resonance in continuum relativistic random phase approximation / D. Yang et al. -- Chiral bands for quasi-proton and quasi-neutron coupling with a triaxial rotor / B. Qi et al. -- Continuum properties of the Hartree-Fock mean field with finite-range interactions / H. S. Than et al. -- A study of pairing interaction in a separable form / Y. Tian et al. -- Microscopic study of the inelastic [symbol]+[symbol]C scattering / D. C. Cuong, D. T. Khoa -- Probing the high density behavior of the symmetry energy / F. Zhang et al. -- Microscopic calculations based on a Skyrme functional plus the pairing contribution / J. Li et al. -- In-medium cross sections in Dirac-Brueckner-Hartree-Fock approach / L. Peiyan et al. -- The effect of the tensor force on single-particle states and on the isotope shift / W. Zou et al. -- [symbol]Ne excited states two-proton decay / M. De Napoli et al. -- The isomeric ratio and angular momentum of fragment [symbol]Xe in photofission of heavy nuclei / T. D. Thiep et al. -- Search for correlated two-nucleon systems in [symbol]Li and [symbol]He nuclei via one-nucleon exchange reaction / N. T. Khai et al. -- Summary talk of ISPUN07 / N. Alamanos.
Toward Predictive Theories of Nuclear Reactions Across the Isotopic Chart: Web Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escher, J. E.; Blackmon, J.; Elster, C.
Recent years have seen exciting new developments and progress in nuclear structure theory, reaction theory, and experimental techniques, that allow us to move towards a description of exotic systems and environments, setting the stage for new discoveries. The purpose of the 5-week program was to bring together physicists from the low-energy nuclear structure and reaction communities to identify avenues for achieving reliable and predictive descriptions of reactions involving nuclei across the isotopic chart. The 4-day embedded workshop focused on connecting theory developments to experimental advances and data needs for astrophysics and other applications. Nuclear theory must address phenomena from laboratorymore » experiments to stellar environments, from stable nuclei to weakly-bound and exotic isotopes. Expanding the reach of theory to these regimes requires a comprehensive understanding of the reaction mechanisms involved as well as detailed knowledge of nuclear structure. A recurring theme throughout the program was the desire to produce reliable predictions rooted in either ab initio or microscopic approaches. At the same time it was recognized that some applications involving heavy nuclei away from stability, e.g. those involving fi ssion fragments, may need to rely on simple parameterizations of incomplete data for the foreseeable future. The goal here, however, is to subsequently improve and refine the descriptions, moving to phenomenological, then microscopic approaches. There was overarching consensus that future work should also focus on reliable estimates of errors in theoretical descriptions.« less
Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming
Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less
Thouless-Valatin rotational moment of inertia from linear response theory
NASA Astrophysics Data System (ADS)
Petrík, Kristian; Kortelainen, Markus
2018-03-01
Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.
NASA Astrophysics Data System (ADS)
Aumann, T.; Bertulani, C. A.; Schindler, F.; Typel, S.
2017-12-01
An experimentally constrained equation of state of neutron-rich matter is fundamental for the physics of nuclei and the astrophysics of neutron stars, mergers, core-collapse supernova explosions, and the synthesis of heavy elements. To this end, we investigate the potential of constraining the density dependence of the symmetry energy close to saturation density through measurements of neutron-removal cross sections in high-energy nuclear collisions of 0.4 to 1 GeV /nucleon . We show that the sensitivity of the total neutron-removal cross section is high enough so that the required accuracy can be reached experimentally with the recent developments of new detection techniques. We quantify two crucial points to minimize the model dependence of the approach and to reach the required accuracy: the contribution to the cross section from inelastic scattering has to be measured separately in order to allow a direct comparison of experimental cross sections to theoretical cross sections based on density functional theory and eikonal theory. The accuracy of the reaction model should be investigated and quantified by the energy and target dependence of various nucleon-removal cross sections. Our calculations explore the dependence of neutron-removal cross sections on the neutron skin of medium-heavy neutron-rich nuclei, and we demonstrate that the slope parameter L of the symmetry energy could be constrained down to ±10 MeV by such a measurement, with a 2% accuracy of the measured and calculated cross sections.
Experimentally Determining β-Decay Intensities for 103,104Nb to Improve R-process Calculations
NASA Astrophysics Data System (ADS)
Gombas, J.; Deyoung, P. D.; Spyrou, A.; Dombos, A. C.; Lyons, S.; SuN Collaboration
2017-09-01
The rapid neutron capture process (r-process) is responsible for the formation of nuclei heavier than iron. This process is theorized to occur in supernovas and/or neutron star mergers. R-process calculations require the accurate knowledge of a significant amount of nuclear properties, the majority of which are not known experimentally. Nuclear masses, β-decay properties and neutron-capture reactions are all input ingredients into r-process models. This present study focuses on the β decay of 103Nb and 104Nb. The β decay of 103Nb and 104Nb, two nuclei found in the r-process, were observed at the NSCL using the Summing NaI (SuN) detector. An unstable beam implanted inside SuN. The γ rays were measured in coincidence with the emitted electrons. The β-decay intensity function was then extracted. The experimentally determined functions for 103Nb and 104Nb will be compared to predictions made by the Quasi Random Phase Approximation (QRPA) model. These theoretical calculations are used in astrophysical models of the r-process. This comparison will lead to a better understanding of the nuclear structure for 103Nb and 104Nb. A more dependable prediction of the formation of heavier nuclei birthed from supernovas or neutron star mergers can then be made. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1613188 and PHY-1306074, and by the Hope College Department of Physics Guess Research Fund.
Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions
Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; ...
2017-09-22
Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less
NASA Astrophysics Data System (ADS)
Datta, Asim Sagar; (Chattaraj), Seema Bagchi; Chakrabortty, Ashutosh; Lahiri, Sujit Chandra
2015-07-01
Spectrophotometric, FTIR and theoretical studies of the charge-transfer complexes between mild narcotic drug papaverine and the acceptors chloranilic acid (Cl-A), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetracyanoethylene (TCNE) in acetonitrile, their association constants, thermodynamic (ΔG0, ΔH0 and ΔS0) and other related properties had been described. Papaverine was found to form colored charge-transfer complexes with Cl-A, DDQ and TCNE in acetonitrile. The absorption maxima of the complexes were 518.5, 584.0 and 464.0 nm for Cl-A complex, DDQ complex, and TCNE complex respectively. The compositions of the papaverine complexes were determined to be 1:1 from Job's method of continuous variation. Solid complexes formed between papaverine and the acceptors were isolated. Comparison of the FTIR spectra of the solid complexes between papaverine and the acceptors and their constituents showed considerable shift in absorption peaks, changes in intensities of the peaks and formation of the new bands on complexation. However, no attempt has been made to purify the complexes and study the detailed spectra both theoretically and experimentally. The energies hνCT of the charge-transfer complexes were compared with the theoretical values of hνCT of the complexes obtained from HOMO and LUMO of the donor and the acceptors. The reasons for the differences in hνCT values were explained. Density function theory was used for calculation. hνCT (experimental) values of the transition energies of the complexes in acetonitrile differed from hνCT (theoretical) values. IDV value of papaverine was calculated. Charge-transfer complexes were assumed to be partial electrovalent compounds with organic dative ions D+ and A- (in the excited state) and attempts had been made to correlate the energy changes for the formation of the complexes with the energy changes for the formation of electrovalent compounds between M+ and X- ions.
Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances
NASA Technical Reports Server (NTRS)
Leung, Chun Ming
1995-01-01
Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Zhong -Bo; Vitev, Ivan Mateev; Xing, Hongxi
Here, vector-boson-tagged jet production in collisions of heavy nuclei opens new opportunities to study parton shower formation and propagation in strongly interacting matter. It has been argued to provide a golden channel that can constrain the energy loss of jets in the quark-gluon plasma created in heavy ion reactions. We present theoretical results for isolated-photon-tagged and Z 0-boson-tagged jet production in Pb + Pb collisions with √s NN = 5.02TeV at the LHC. Specifically, we evaluate the transverse momentum imbalance x JV distribution and nuclear modification factor I AA of tagged jets and compare our theoretical calculations to recent experimentalmore » measurements by ATLAS and CMS collaborations. Our analysis, which includes both collisional and radiative energy losses, sheds light on their relative importance versus the strength of jet-medium interactions and helps quantify the amount of out-of-cone radiation of predominantly prompt quark-initiated jets.« less
Systematics of intermediate-energy single-nucleon removal cross sections
NASA Astrophysics Data System (ADS)
Tostevin, J. A.; Gade, A.
2014-11-01
There is now a large and increasing body of experimental data and theoretical analyses for reactions that remove a single nucleon from an intermediate-energy beam of neutron- or proton-rich nuclei. In each such measurement, one obtains the inclusive cross section for the population of all bound final states of the mass A -1 reaction residue. These data, from different regions of the nuclear chart, and that involve weakly and strongly bound nucleons, are compared with theoretical expectations. These calculations include an approximate treatment of the reaction dynamics and shell-model descriptions of the projectile initial state, the bound final states of the residues, and the single-particle strengths computed from their overlap functions. The results are discussed in the light of recent data, more exclusive tests of the eikonal dynamical description, and calculations that take input from more microscopic nuclear structure models.
Opportunities in cosmic-ray physics and astrophysics
NASA Technical Reports Server (NTRS)
1995-01-01
The Board on Physics and Astronomy of the National Research Council established the Committee on Cosmic-Ray Physics to prepare a review of the field that addresses both experimental and theoretical aspects of the origin of cosmic radiation from outside the heliosphere. The following recommendations are made: NASA should provide the opportunity to measure cosmic-ray electrons, positrons, ultraheavy nuclei, isotopes, and antiparticles in space; NASA, the National Science Foundation (NSF), and the Department of Energy (DOE) should facilitate direct and indirect measurement of the elemental composition to as high an energy as possible, for which the support of long-duration ballooning and hybrid ground arrays will be needed; NSF and DOE should support the new Fly's Eye and provide for U.S. participation in the big projects on the horizon, which include giant arrays, ground-based gamma-ray astronomy, and neutrino telescopes; and NASA, NSF, and DOE should support a strong program of relevant theoretical investigations.
Spectroscopic Factors from the Single Neutron Pickup ^64Zn(d,t)
NASA Astrophysics Data System (ADS)
Leach, Kyle; Garrett, P. E.; Demand, G. A.; Finlay, P.; Green, K. L.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Towner, I. S.; Ball, G. C.; Faestermann, T.; Krücken, R.; Hertenberger, R.; Wirth, H.-F.
2010-11-01
A great deal of attention has recently been paid towards high-precision superallowed β-decay Ft values. With the availability of extremely high-precision (<0.1%) experimental data, precision on the individual Ft values are now dominated by the ˜1% theoretical corrections. This limitation is most evident in heavier superallowed nuclei (e.g. ^62Ga) where the isospin-symmetry-breaking (ISB) correction calculations become more difficult due to the truncated model space. Experimental spectroscopic factors for these nuclei are important for the identification of the relevant orbitals that should be included in the model space of the calculations. Motivated by this need, the single-nucleon transfer reaction ^64Zn(d,t)^63Zn was conducted at the Maier-Leibnitz-Laboratory (MLL) of TUM/LMU in Munich, Germany, using a 22 MeV polarized deuteron beam from the tandem Van de Graaff accelerator and the TUM/LMU Q3D magnetic spectrograph, with angular distributions from 10^o to 60^o. Results from this experiment will be presented and implications for calculations of ISB corrections in the superallowed ° decay of ^62Ga will be discussed.
NASA Astrophysics Data System (ADS)
Liu, Fei; Wang, Jiang; Liu, Chen; Li, Huiyan; Deng, Bin; Fietkiewicz, Chris; Loparo, Kenneth A.
2016-12-01
An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network. Moreover, it is shown that the generation and frequency of these pathological beta oscillations are varied by the coupling strength and the intrinsic characteristics of the basal ganglia. Simulation results reveal that increase of the coupling strength induces the generation of the beta oscillation, as well as enhances the oscillation frequency. However, for the intrinsic properties of each nucleus in the excitatory-inhibitory network, the STN primarily influences the generation of the beta oscillation while the GPe mainly determines its frequency. Interestingly, describing function analysis applied on this model theoretically explains the mechanism of pathological beta oscillations.
Temperature Dependence in Homogeneous and Heterogeneous Nucleation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGraw R. L.; Winkler, P. M.; Wagner, P. E.
2017-08-01
Heterogeneous nucleation on stable (sub-2 nm) nuclei aids the formation of atmospheric cloud condensation nuclei (CCN) by circumventing or reducing vapor pressure barriers that would otherwise limit condensation and new particle growth. Aerosol and cloud formation depend largely on the interaction between a condensing liquid and the nucleating site. A new paper published this year reports the first direct experimental determination of contact angles as well as contact line curvature and other geometric properties of a spherical cap nucleus at nanometer scale using measurements from the Vienna Size Analyzing Nucleus Counter (SANC) (Winkler et al., 2016). For water nucleating heterogeneouslymore » on silver oxide nanoparticles we find contact angles around 15 degrees compared to around 90 degrees for the macroscopically measured equilibrium angle for water on bulk silver. The small microscopic contact angles can be attributed via the generalized Young equation to a negative line tension that becomes increasingly dominant with increasing curvature of the contact line. These results enable a consistent theoretical description of heterogeneous nucleation and provide firm insight to the wetting of nanosized objects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varlamov, V. V., E-mail: Varlamov@depni.sinp.msu.ru; Ishkhanov, B. S.; Orlin, V. N.
2016-07-15
Basic methods for determining cross sections for photoneutron partial reactions are examined. They are obtained directly in experiments with quasimonoeneregetic annihilation photons or from the cross section for the (γ, xn) = (γ, 1n) + 2(γ, 2n) + 3(γ, 3n) +... neutron-yield reaction in experiments with bremsstrahlung photons by introducing corrections based on statistical nuclear-reaction theory. The difference in the conditions of these experiments, which leads to discrepancies between their results because of sizable systematic errors, is analyzed. Physical criteria are used to study the reliability of data on the photodisintegration of {sup 133}Cs, {sup 138}Ba, and {sup 209}Bi nuclei.more » The cross sections for partial and total reactions satisfying the reliability criteria are evaluated within the experimental–theoretical method (σ{sup eval}(γ, in) = F{sub i}{sup theor} × σ{sup expt}(γ, xn)) on the basis of the experimental cross sections σ{sup expt}(γ, xn) and the results of the calculations within the combined model of photonuclear reactions.« less
NASA Astrophysics Data System (ADS)
Laporta, V.; Celiberto, R.; Tennyson, J.
2013-04-01
Resonant vibrational-excitation cross sections and rate constants for electron scattering by molecular oxygen are presented. Transitions between all 42 vibrational levels of O_2({X}\\, ^3\\Sigma_g^{-}) are considered. Molecular rotations are parametrized by the rotational quantum number J, which is considered in the range 1-151. The lowest four resonant states of O_2^- , 2Πg, 2Πu, ^4\\Sigma_u^- and ^2\\Sigma_u^- are taken into account. The calculations are performed using the fixed-nuclei R-matrix approach to determine the resonance positions and widths, and the boomerang model to characterize the nuclei motion. Two energy regions below and above 4 eV are investigated: the first one is characterized by sharp structures in the cross section and the second by a broad resonance peaked at 10 eV. The computed cross sections are compared with theoretical and experimental results available in the literature for both energy regions, and are made available for use by modelers. The effect of including rotational motion is found to be non-negligible.
The nuclear Thomas-Fermi model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, W.D.; Swiatecki, W.J.
1994-08-01
The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear mattermore » and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.« less
Half-life measurements of isomeric states populated in projectile fragmentation
NASA Astrophysics Data System (ADS)
Bowry, M.; Podolyák, Zs.; Kurcewicz, J.; Pietri, S.; Bunce, M.; Regan, P. H.; Farinon, F.; Geissel, H.; Nociforo, C.; Prochazka, A.; Weick, H.; Allegro, P.; Benlliure, J.; Benzoni, G.; Boutachkov, P.; Gerl, J.; Gorska, M.; Gottardo, A.; Gregor, N.; Janik, R.; Knöbel, R.; Kojouharov, I.; Kubo, T.; Litvinov, Y. A.; Merchan, E.; Mukha, I.; Naqvi, F.; Pfeiffer, B.; Pfützner, M.; Plaß, W.; Pomorski, M.; Riese, B.; Ricciardi, M. V.; Schmidt, K.-H.; Schaffner, H.; Kurz, N.; Denis Bacelar, A. M.; Bruce, A. M.; Farrelly, G. F.; Alkhomashi, N.; Al-Dahan, N.; Scheidenberger, C.; Sitar, B.; Spiller, P.; Stadlmann, J.; Strmen, P.; Sun, B.; Takeda, H.; Tanihata, I.; Terashima, S.; Valiente Dobon, J. J.; Winfield, J. S.; Wollersheim, H.-J.; Woods, P. J.
2012-10-01
The half-lives of excited isomeric states observed in 195Au, 201Tl and 215Rn are reported for the first time. Delayed γ-rays were correlated with nuclei produced in the projectile fragmentation of relativistic 238U ions, unambiguously identified in terms of their atomic number (Z) and mass-to-charge ratio (A/Q) after traversing an in-flight separator. The observation of a long-lived isomeric state in 195Au with t1/2 = 16-4+8 μs is presented. Two shorter-lived isomeric states were detected in 201Tl and 215Rn with t1/2 = 95-21+39 and 57-12+21 ns respectively. In total 24 isomeric states were identified in different nuclei from Pt to Rn (A ˜ 200) during the current study, the majority of which were previously reported. The wealth of spectroscopic data provides the opportunity to determine the isomeric ratios over a wide range of Z, A and angular momentum (I ħ) of the reaction products. In particular, high-spin states with I ≳ 18 ħ provide a robust test of theoretical models of fragmentation.
Chiavazza, Enrico; Kubala, Eugen; Gringeri, Concetta V; Düwel, Stephan; Durst, Markus; Schulte, Rolf F; Menzel, Marion I
2013-02-01
Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner. Copyright © 2012 Elsevier Inc. All rights reserved.
Spin-lattice relaxation of optically polarized nuclei in p -type GaAs
NASA Astrophysics Data System (ADS)
Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Cherbunin, R. V.; Sokolov, P. S.; Yakovlev, D. R.; Bayer, M.; Suter, D.; Kavokin, K. V.
2018-04-01
Spin-lattice relaxation of the nuclear spin system in p -type GaAs is studied using a three-stage experimental protocol including optical pumping and measuring the difference of the nuclear spin polarization before and after a dark interval of variable length. This method allows us to measure the spin-lattice relaxation time T1 of optically pumped nuclei "in the dark," that is, in the absence of illumination. The measured T1 values fall into the subsecond time range, being three orders of magnitude shorter than in earlier studied n -type GaAs. The drastic difference is further emphasized by magnetic-field and temperature dependencies of T1 in p -GaAs, showing no similarity to those in n -GaAs. This unexpected behavior finds its explanation in the spatial selectivity of the optical pumping in p -GaAs, that is only efficient in the vicinity of shallow donors, together with the quadrupole relaxation of nuclear spins, which is induced by electric fields within closely spaced donor-acceptor pairs. The developed theoretical model explains the whole set of experimental results.
Branching ratios of α-decay to ground and excited states of Fm, Cf, Cm and Pu
NASA Astrophysics Data System (ADS)
Hassanabadi, H.; Hosseini, S. S.
2018-06-01
We use the well-known Wentzel-Kramers-Brillouin (WKB) barrier penetration probability to calculate α-decay branching ratios for ground and excited states of heavy even-even nuclei of Fermium (248-254Fm), Californium (244-252Cf), Curium (238-248Cm) and Plutonium (234-244Pu) with 94 ≤Zp ≤100. We obtained the branching ratios for the excited states of daughter nucleus by the α-decay energy (Qα), the angular momentum of α-particle (ℓα), and the excitation probability of the daughter nucleus with the excitation energy of state ℓ in the daughter nucleus (i.e. Eℓ*). α-Decay half-lives have been evaluated by using the proximity potential model for the heavy even-even nuclei. We have reported the half-lives and compared the results with the experimental data. The theoretical branching ratios of α-transitions in our calculation are found to agree with the available experimental data well for 0+→ 0+, 0+→ 2+, 0+→ 4+, 0+→ 6+ and 0+ → 8+α-transitions.
The Nuclear Thomas-Fermi Model
DOE R&D Accomplishments Database
Myers, W. D.; Swiatecki, W. J.
1994-08-01
The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
2018-03-22
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
NASA Astrophysics Data System (ADS)
Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.
2018-05-01
One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.
Cloning of ES cells and mice by nuclear transfer.
Wakayama, Sayaka; Kishigami, Satoshi; Wakayama, Teruhiko
2009-01-01
We have been able to develop a stable nuclear transfer (NT) method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although the piezo unit is a complex tool, once mastered it is of great help not only in NT experiments, but also in almost all other forms of micromanipulation. Using this technique, embryonic stem (ntES) cell lines established from somatic cell nuclei can be generated relatively easily from a variety of mouse genotypes and cell types. Such ntES cells can be used not only for experimental models of human therapeutic cloning but also as a means of preserving mouse genomes instead of preserving germ cells. Here, we describe our most recent protocols for mouse cloning.
NRV web knowledge base on low-energy nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpov, V., E-mail: karpov@jinr.ru; Denikin, A. S.; Alekseev, A. P.
Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it tomore » the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.« less
Mesoscale features of urban rainfall enhancement
F. A. Huff
1977-01-01
Analyses of data from the first 4 years of a 5-year research project at St. Louis indicate a substantial enhancement of summer rainfall downwind of the urban-industrial complex. This anomaly appears to be caused primarily by the intensification of naturally occurring storm systems through the addition of heat and raindrop nuclei from the urban area. Most of the...
Theoretical uncertainties in the calculation of supersymmetric dark matter observables
NASA Astrophysics Data System (ADS)
Bergeron, Paul; Sandick, Pearl; Sinha, Kuver
2018-05-01
We estimate the current theoretical uncertainty in supersymmetric dark matter predictions by comparing several state-of-the-art calculations within the minimal supersymmetric standard model (MSSM). We consider standard neutralino dark matter scenarios — coannihilation, well-tempering, pseudoscalar resonance — and benchmark models both in the pMSSM framework and in frameworks with Grand Unified Theory (GUT)-scale unification of supersymmetric mass parameters. The pipelines we consider are constructed from the publicly available software packages SOFTSUSY, SPheno, FeynHiggs, SusyHD, micrOMEGAs, and DarkSUSY. We find that the theoretical uncertainty in the relic density as calculated by different pipelines, in general, far exceeds the statistical errors reported by the Planck collaboration. In GUT models, in particular, the relative discrepancies in the results reported by different pipelines can be as much as a few orders of magnitude. We find that these discrepancies are especially pronounced for cases where the dark matter physics relies critically on calculations related to electroweak symmetry breaking, which we investigate in detail, and for coannihilation models, where there is heightened sensitivity to the sparticle spectrum. The dark matter annihilation cross section today and the scattering cross section with nuclei also suffer appreciable theoretical uncertainties, which, as experiments reach the relevant sensitivities, could lead to uncertainty in conclusions regarding the viability or exclusion of particular models.
NASA Astrophysics Data System (ADS)
Yang, Run-Qiu; Niu, Chao; Zhang, Cheng-Yong; Kim, Keun-Young
2018-02-01
We compute the time-dependent complexity of the thermofield double states by four different proposals: two holographic proposals based on the "complexity-action" (CA) conjecture and "complexity-volume" (CV) conjecture, and two quantum field theoretic proposals based on the Fubini-Study metric (FS) and Finsler geometry (FG). We find that four different proposals yield both similarities and differences, which will be useful to deepen our understanding on the complexity and sharpen its definition. In particular, at early time the complexity linearly increase in the CV and FG proposals, linearly decreases in the FS proposal, and does not change in the CA proposal. In the late time limit, the CA, CV and FG proposals all show that the growth rate is 2 E/(πℏ) saturating the Lloyd's bound, while the FS proposal shows the growth rate is zero. It seems that the holographic CV conjecture and the field theoretic FG method are more correlated.
Mass predictions of atomic nuclei in the infinite nuclear matter model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, R.C., E-mail: rcnayak00@yahoo.com; Satpathy, L., E-mail: satpathy@iopb.res.in
We present here the mass excesses, binding energies, one- and two-neutron, one- and two-proton and {alpha}-particle separation energies of 6727 nuclei in the ranges 4{<=}Z{<=}120 and 8{<=}A{<=}303 calculated in the infinite nuclear matter model. Compared to our predictions of 1999 mass table, the present ones are obtained using larger data base of 2003 mass table of Wapstra and Audi and resorting to higher accuracy in the solutions of the {eta}-differential equations of the INM model. The local energy {eta}'s supposed to carry signature of the characteristic properties of nuclei are found to possess the predictive capability. In fact {eta}-systematics revealmore » new magic numbers in the drip-line regions giving rise to new islands of stability supported by relativistic mean field theoretic calculations. This is a manifestation of a new phenomenon where shell-effect overcomes the instability due to repulsive components of the nucleon-nucleon force broadening the stability peninsula. The two-neutron separation energy-systematics derived from the present mass predictions reveal a general new feature for the existence of islands of inversion in the exotic neutron-rich regions of nuclear landscape, apart from supporting the presently known islands around {sup 31}Na and {sup 62}Ti. The five global parameters representing the properties of infinite nuclear matter, the surface, the Coulomb and the pairing terms are retained as per our 1999 mass table. The root-mean-square deviation of the present mass-fit to 2198 known masses is 342 keV, while the mean deviation is 1.3 keV, reminiscent of no left-over systematic effects. This is a substantive improvement over our 1999 mass table having rms deviation of 401 keV and mean deviation of 9 keV for 1884 data nuclei.« less
Ashbrook, Sharon E; Wimperis, Stephen
2009-11-21
Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and (27)Al.
Beta-decay rate and beta-delayed neutron emission probability of improved gross theory
NASA Astrophysics Data System (ADS)
Koura, Hiroyuki
2014-09-01
A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. This work is a result of Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high-burn up reactors entrusted to Tokyo Institute of Technology by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Enol tautomers of Watson-Crick base pair models are metastable because of nuclear quantum effects.
Pérez, Alejandro; Tuckerman, Mark E; Hjalmarson, Harold P; von Lilienfeld, O Anatole
2010-08-25
Intermolecular enol tautomers of Watson-Crick base pairs could emerge spontaneously via interbase double proton transfer. It has been hypothesized that their formation could be facilitated by thermal fluctuations and proton tunneling, and possibly be relevant to DNA damage. Theoretical and computational studies, assuming classical nuclei, have confirmed the dynamic stability of these rare tautomers. However, by accounting for nuclear quantum effects explicitly through Car-Parrinello path integral molecular dynamics calculations, we find the tautomeric enol form to be dynamically metastable, with lifetimes too insignificant to be implicated in DNA damage.
NASA Astrophysics Data System (ADS)
Chernysheva, E. V.; Rodin, A. M.; Belozerov, A. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Novoselov, A. S.; Oganessian, Yu. Ts.; Salamatin, V. S.; Stepantsov, S. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Krupa, L.; Kliman, J.; Motycak, S.; Sivacek, I.
2015-06-01
The evaporation residues excitation functions for the reactions 40Ar+144Sm→184Hg and 40Ar+166Er→206Rn were measured at the energies below and above the Coulomb barrier (Elab=142-207 MeV) using a mass-separator MASHA. The experimental data were compared with theoretical calculations using a Channel Coupling Model. The influence of experimental beam energy spread on the excitation functions was taking into account. It was found that structure of xn-cross sections correlate strongly with the nuclear structure of colliding nuclei.
Testing of models of VVH particle sources and propagation
NASA Technical Reports Server (NTRS)
Blanford, G. E., Jr.; Friedlander, M. W.; Hoppe, M.; Klarmann, J.; Walker, R. M.; Wefel, J. P.
1974-01-01
For comparisons between theoretical and observed charge spectra of VVH particles to be meaningful, at least two conditions must be met. First, charge resolution must be adequate to separate important groups of nuclei, and there should be no significant systematic errors in the charge scale developed. Second, there must be adequate rejection of slower particles of smaller Z, which have been observed in several flights. Within these conditions, it has been shown that observed features of the charge spectrum are not accidents of the analysis but reflect real variations in the relative abundances that must be explained by any successful model.
NASA Astrophysics Data System (ADS)
Hamada, Sh.
2018-03-01
Available experimental data for protons elastically scattered from 14N and 16O target nuclei are reanalyzed within the framework of single folding optical potential (SFOP) model. In this model, the real part of the potential is derived on the basis of single folding potential. The renormalization factor N r is extracted for the two aforementioned nuclear systems. Theoretical calculations fairly reproduce the experimental data in the whole angular range. Energy dependence of real and imaginary volume integrals as well as reaction cross sections are discussed.
The age of the Galactic disk - Inflow, chemical evolution, astration, and radioactivity
NASA Technical Reports Server (NTRS)
Clayton, Donald D.
1989-01-01
Theoretical models of Galactic evolution and observational data on the age of the Galaxy are compared, with a focus on recent results. Topics addressed include the infall of material and its effects on the age-metallicity relation, the distribution of metallicity, the present gas fraction and metallicity, and the age spectrum of interstellar nuclei; the chemical evolution of the solar neighborhood; the key results of nuclear cosmochronology; and astration effects on Galactic age. It is found that both nuclear cosmochronology and detailed stellar and Galactic evolution models tend to support an age of 12-16 Gyr.
Marín-Luna, Marta; Alkorta, Ibon; Elguero, José
2018-03-01
This paper compares the absolute shieldings obtained by gauge-including-projected-augmented-wave (GIPAW) to those obtained by gauge-invariant atomic orbital/Becke, 3-parameter, Lee-Yang-Parr (GIAO/B3LYP)/6-311++G(d,p)-polarizable continuum model (PCM, dimethyl sulfoxide) for nine benzazoles (benzimidazoles, indazoles, and benzotriazoles) recorded in the solid-state. Three nuclei were explored, 13 C, 15 N, and 19 F, and the gauge-including-projected-augmented-wave approach only proved better for 15 N MAS NMR. Copyright © 2017 John Wiley & Sons, Ltd.
First Measurement of Several β-Delayed Neutron Emitting Isotopes Beyond N=126.
Caballero-Folch, R; Domingo-Pardo, C; Agramunt, J; Algora, A; Ameil, F; Arcones, A; Ayyad, Y; Benlliure, J; Borzov, I N; Bowry, M; Calviño, F; Cano-Ott, D; Cortés, G; Davinson, T; Dillmann, I; Estrade, A; Evdokimov, A; Faestermann, T; Farinon, F; Galaviz, D; García, A R; Geissel, H; Gelletly, W; Gernhäuser, R; Gómez-Hornillos, M B; Guerrero, C; Heil, M; Hinke, C; Knöbel, R; Kojouharov, I; Kurcewicz, J; Kurz, N; Litvinov, Yu A; Maier, L; Marganiec, J; Marketin, T; Marta, M; Martínez, T; Martínez-Pinedo, G; Montes, F; Mukha, I; Napoli, D R; Nociforo, C; Paradela, C; Pietri, S; Podolyák, Zs; Prochazka, A; Rice, S; Riego, A; Rubio, B; Schaffner, H; Scheidenberger, Ch; Smith, K; Sokol, E; Steiger, K; Sun, B; Taín, J L; Takechi, M; Testov, D; Weick, H; Wilson, E; Winfield, J S; Wood, R; Woods, P; Yeremin, A
2016-07-01
The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.
Multiconfiguration calculations of electronic isotope shift factors in Al i
NASA Astrophysics Data System (ADS)
Filippin, Livio; Beerwerth, Randolf; Ekman, Jörgen; Fritzsche, Stephan; Godefroid, Michel; Jönsson, Per
2016-12-01
The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of electronic isotope shift factors for a set of transitions between low-lying levels of neutral aluminium. These electronic quantities together with observed isotope shifts between different pairs of isotopes provide the changes in mean-square charge radii of the atomic nuclei. Two computational approaches are adopted for the estimation of the mass- and field-shift factors. Within these approaches, different models for electron correlation are explored in a systematic way to determine a reliable computational strategy and to estimate theoretical error bars of the isotope shift factors.
Hadron production in 200 GeV μ-copper and μ-carbon deep inelastic interactions
NASA Astrophysics Data System (ADS)
Arvidson, A.; Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; Crespo, J. M.; D'Agostini, G.; Dalpiaz, P. F.; Dalpiaz, P.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Massonnet, L.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration
1984-11-01
The measurements of the z and pT2 distribution of hadrons produced in the interactions of 200 GeV muons with copper and carbon nuclei are shown in different xBj and virtual photon energy intervals. Effects of the jet scattering are seen at the lowest virtual photon energies while for energies above 70 GeV there is no evidence of these effects. Comparison with a theoretical model indicates that at high jet energies the parton fragmentation distance is greater than the nuclear radius and that the parton absorption cross section is less than 10 mb.
Costello, M. Joseph; Brennan, Lisa A.; Gilliland, Kurt O.; Johnsen, Sönke; Kantorow, Marc
2016-01-01
An unresolved issue in structural biology is how the encapsulated lens removes membranous organelles to carry out its role as a transparent optical element. In this ultrastructural study, we establish a mechanism for nuclear elimination in the developing chick lens during the formation of the organelle-free zone. Day 12–15 chick embryo lenses were examined by high-resolution confocal light microscopy and thin section transmission electron microscopy (TEM) following fixation in 10% formalin and 4% paraformaldehyde, and then processing for confocal or TEM as described previously. Examination of developing fiber cells revealed normal nuclei with dispersed chromatin and clear nucleoli typical of cells in active ribosome production to support protein synthesis. Early signs of nuclear degradation were observed about 300 μm from the lens capsule in Day 15 lenses where the nuclei display irregular nuclear stain and prominent indentations that sometimes contained a previously undescribed macromolecular aggregate attached to the nuclear envelope. We have termed this novel structure the nuclear excisosome. This complex by confocal is closely adherent to the nuclear envelope and by TEM appears to degrade the outer leaflet of the nuclear envelope, then the inner leaflet up to 500 μm depth. The images suggest that the nuclear excisosome separates nuclear membrane proteins from lipids, which then form multilamellar assemblies that stain intensely in confocal and in TEM have 5 nm spacing consistent with pure lipid bilayers. The denuded nucleoplasm then degrades by condensation and loss of structure in the range 600 to 700 μm depth producing pyknotic nuclear remnants. None of these stages display any classic autophagic vesicles or lysosomes associated with nuclei. Uniquely, the origin of the nuclear excisosome is from filopodial-like projections of adjacent lens fiber cells that initially contact, and then appear to fuse with the outer nuclear membrane. These filopodial-like projections appear to be initiated with a clathrin-like coat and driven by an internal actin network. In summary, a specialized cellular organelle, the nuclear excisosome, generated in part by adjacent fiber cells degrades nuclei during fiber cell differentiation and maturation. PMID:27536868
Efficient Time Propagation Technique for MAS NMR Simulation: Application to Quadrupolar Nuclei.
Charpentier; Fermon; Virlet
1998-06-01
The quantum mechanical Floquet theory is investigated in order to derive an efficient way of performing numerical calculations of the dynamics of nuclear spin systems in MAS NMR experiments. Here, we take advantage of time domain integration of the quantum evolution over one period as proposed by Eden et al. (1). But a full investigation of the propagator U(t, t0), and especially its dependence with respect to t and t0 within a formalized approach, leads to further simplifications and to a substantial reduction in computation time when performing powder averaging for any complex sequence. Such an approximation is suitable for quadrupolar nuclei (I > 1/2) and can be applied to the simulation of the RIACT (rotational induced adiabatic coherence transfer) phenomenon that occurs under special experimental conditions in spin locking experiments (2-4). The present method is also compared to the usual infinite dimensional Floquet space approach (5, 6), which is shown to be rather inefficient. As far as we know, it has never been reported for quadrupolar nuclei with I >/= 3/2 in spin locking experiments. The method can also be easily extended to other areas of spectroscopy. Copyright 1998 Academic Press.
Simulation of Asia Dust and Cloud Interaction Over Pacific Ocean During Pacdex
NASA Astrophysics Data System (ADS)
Long, X.; Huang, J.; Cheng, C.; Wang, W.
2007-12-01
The effect of dust plume on the Pacific cloud systems and the associated radiative forcing is an outstanding problem for understanding climate change. Many studies showing that dust aerosol might be a good absorber for solar radiation, at the same time dust aerosols could affect the cloud's formation and precipitation by its capability as cloud condensation nuclei (CCN) and ice forming nuclei (IFN). But the role of aerosols in clouds and precipitation is very complex. Simulation of interaction between cloud and dust aerosols requires recognition that the aerosol cloud system comprises coupled components of dynamics, aerosol and cloud microphysics, radiation processes. In this study, we investigated the interaction between dust aerosols and cloud with WRF which coupled with detailed cloud microphysics processes and dust process. The observed data of SACOL (Semi-Arid Climate and Environment Observatory of Lanzhou University) and PACDEX (Pacific Dust Experiment) is used as the initialization which include the vertical distributions and concentration of dust particles. Our results show that dust aerosol not only impacts cloud microphysical processes but also cloud microstructure; Dust aerosols can act as effective ice nuclei and intensify the ice-forming processes.
Biggs, M J P; Richards, R G; Wilkinson, C D W; Dalby, M J
2008-07-01
Current understanding of the mechanisms involved in osseointegration following implantation of a biomaterial has led to adhesion quantification being implemented as an assay of cytocompatibility. Such measurement can be hindered by intra-sample variation owing to morphological changes associated with the cell cycle. Here we report on a new scanning electron microscopical method for the simultaneous immunogold labelling of cellular focal adhesions and S-phase nuclei identified by BrdU incorporation. Prior to labelling, cellular membranes are removed by tritonization and antigens of non-interest blocked by serum incubation. Adhesion plaque-associated vinculin and S-phase nuclei were both separately labelled with a 1.4 nm gold colloid and visualized by subsequent colloid enhancement via silver deposition. This study is specifically concerned with the effects microgroove topographies have on adhesion formation in S-phase osteoblasts. By combining backscattered electron (BSE) imaging with secondary electron (SE) imaging it was possible to visualize S-phase nuclei and the immunogold-labelled adhesion sites in one energy 'plane' and the underlying nanotopography in another. Osteoblast adhesion to these nanotopographies was ascertained by quantification of adhesion complex formation.
Neutron-antineutron oscillations in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dover, C.B.; Gal, A.; Richard, J.M.
1983-03-01
We present calculations of the neutron-antineutron (n-n-bar) annihilation lifetime T in deuterium, /sup 16/O, and /sup 56/Fe in terms of the free-space oscillation time tau/sub n/n-bar. The coupled Schroedinger equations for the n and n-bar wave functions in a nucleus are solved numerically, using a realistic shell-model potential which fits the empirical binding energies of the neu- p tron orbits, and a complex n-bar-nucleus optical potential obtained from fits to p-bar-atom level shifts. Most previous estimates of T in nuclei, which exhibit large variations, are found to be quite inaccurate. When the nuclear-physics aspects of the problem are handled properlymore » (in particular, the finite neutron binding, the nuclear radius, and the surface diffuseness), the results are found to be rather stable with respect to allowable changes in the parameters of the nuclear model. We conclude that experimental limits on T in nuclei can be used to give reasonably precise constraints on tau/sub n/n-bar: T>10/sup 30/ or 10/sup 31/ yr leads to tau/sub n/n-bar>(1.5--2) x 10/sup 7/ or (5--6) x 10/sup 7/ sec, respectively.« less
Fundamental Studies of Crystal Growth of Microporous Materials
NASA Technical Reports Server (NTRS)
Singh, Ramsharan; Doolittle, John, Jr.; Payra, Pramatha; Dutta, Prabir K.; George, Michael A.; Ramachandran, Narayanan; Schoeman, Brian J.
2003-01-01
Microporous materials are framework structures with well-defined porosity, often of molecular dimensions. Zeolites contain aluminum and silicon atoms in their framework and are the most extensively studied amongst all microporous materials. Framework structures with P, Ga, Fe, Co, Zn, B, Ti and a host of other elements have also been made. Typical synthesis of microporous materials involve mixing the framework elements (or compounds, thereof) in a basic solution, followed by aging in some cases and then heating at elevated temperatures. This process is termed hydrothermal synthesis, and involves complex chemical and physical changes. Because of a limited understanding of this process, most synthesis advancements happen by a trial and error approach. There is considerable interest in understanding the synthesis process at a molecular level with the expectation that eventually new framework structures will be built by design. The basic issues in the microporous materials crystallization process include: (a) Nature of the molecular units responsible for the crystal nuclei formation; (b) Nature of the nuclei and nucleation process; (c) Growth process of the nuclei into crystal; (d) Morphological control and size of the resulting crystal; (e) Surface structure of the resulting crystals; and (f) Transformation of frameworks into other frameworks or condensed structures.
Sopova, I Iu; Zamorskiĭ, I I
2011-03-01
The effect of acute hypoxia on the intensity of free radical processes in the basal nuclei (the nucleus caudatus, globus pallidus. nucleus accumbens. amygdaloid complex) of the brain, and the rat behaviour in the open field test has been studied under conditions of altered photoperiod. It has been shown that constant darkness levels the effect of acute hypoxia on the intensity of lipid peroxidation, preserves the activity of superoxide dismutase and catalase at a higher level, lowers the activity of glutathione peroxidase. Under light, the sensitivity of basal nuclei neurons to acute hypoxia is enhanced, the latter being reflected in intensification of lipid peroxidation at the expense of increased formation of dien conjugates. The activity of catalase at that considerably exceeds the level of even intact rats in all the structures. It has been established that an altered photoperiod modulates the effect of acute hypoxia on the parameters of rat's activity in the open field, the character of their change depending on the nature of a photophase change.
Kamgoue, Alain; Normand, Christophe; Léger-Silvestre, Isabelle; Mangeat, Thomas
2016-01-01
ABSTRACT How spatial organization of the genome depends on nuclear shape is unknown, mostly because accurate nuclear size and shape measurement is technically challenging. In large cell populations of the yeast Saccharomyces cerevisiae, we assessed the geometry (size and shape) of nuclei in three dimensions with a resolution of 30 nm. We improved an automated fluorescence localization method by implementing a post-acquisition correction of the spherical microscopic aberration along the z-axis, to detect the three dimensional (3D) positions of nuclear pore complexes (NPCs) in the nuclear envelope. Here, we used a method called NucQuant to accurately estimate the geometry of nuclei in 3D throughout the cell cycle. To increase the robustness of the statistics, we aggregated thousands of detected NPCs from a cell population in a single representation using the nucleolus or the spindle pole body (SPB) as references to align nuclei along the same axis. We could detect asymmetric changes of the nucleus associated with modification of nucleolar size. Stereotypical modification of the nucleus toward the nucleolus further confirmed the asymmetric properties of the nuclear envelope. PMID:27831493
Wolf, Rainer
1969-03-01
Kinematics and ultrastructure of centrifuged and untreated eggs fromWachtliella persicariae were investigated for the micromorphological properties of ooplasmic factor regions and their role in early developmental processes by means of time-lapse motion pictures and electron microscopic analysis (see part I).After centrifugation the eggs show up to five different layers, among them a pole of fatty yolk with lipid droplets, a region of clear plasm (rich in ground plasm) which itself may become subdivided into a centripetal region with nuclei and endoplasmic reticulum, followed by a centrifugal part with mitochondria and ribosomes, another region containing orange clods of proteid yolk and finally a cup of glycogen. Displacement of pole plasm from the posterior pole always is accompanied by dislocation of the basophilic oosome material contained therein. At sufficient r.p.m. both of them enter the centripetal area of clear plasm. Structures of "di-polar density" type are orientated by centrifugation. The initial phase till the centrifuge reaches its final r.p.m. may act decicively upon the site of certain egg components after centrifugation as upon the nuclei, and thus may essentially influence the experimental results. In case centrifugation coincides with certain dividing phases of energides, the nuclear envelope becomes fragmented. The fragments then may appear piled up to form annulated membranes which have been recognized as pathological structures in centrifuged eggs. Besides lamellar cytosomes are often found. In centrifuged as well as in untreated eggs the nuclear envelope either consists of two layers as usual or may be of the complex multi-layered type (see part I). As for the movement of nuclei, the possible role of the complex nuclear envelope is not yet clear. The pigment halo of cleavage nuclei does not play an active part in nuclear migration. In centrifuged eggs yolk nuclei are of the usual type i.e. either roundish, horse-shoe-shaped or multi-lobed. They mostly appear in parts of the entoplasm which are poor in yolk. A surrounding rich in yolk does not seem to be essential for transforming normal cleavage nuclei into vitellophagues. For their changing into the multi-lobed type yolk nuclei must be surrounded by a sufficient amount of ground plasm.Pole cells have been found in the posterior pole region only. Their formation requires an abundant amount of ground plasm, the presence of cleavage energides, as well as pole plasm and oosome material, if not either of the two latter systems. Since in centrifuged eggs pole plasm and basophilic oosome material are always shifted together into the region of clear plasm, contrary to the opinion of other authors (p. 42; part I, p. 124) the technique of centrifugation does not permit any decision as to which of both ooplasmic systems controls the karyotic differentiation of the germ line or the formation of pole cells, respectively, or whether both systems are essential to promote these processes.The oolemma may also become invaginated to form cell membranes when no nuclei are present ("pseudoblastoderm"), the formation occurring in regions with sufficient amounts of ground plasm only. For that reason the formation of pole cells is restricted to the posterior pole rich in ground plasm, whereas blastoderm cells exclusively occur in the area of preblastoderm plasm. The ground plasm plays a decisive part in the dynamics of cell membrane formation. As for blastoderm cells, the nuclei seem to be necessary only to control their regular shape. In contradiction to the opinion of other authors (p. 42, part I, p. 124), the periplasm of young eggs cannot range among the essential prerequisites of blastoderm formation. During centrifugation it does not stay at the surface of the egg poles where nevertheless a blastoderm may be formed. Yet blastoderm formation is only possible if, in spite of the compact condition of polar yolk material, the egg poles become covered with preblastoderm plasm from the region of clear plasm, rich in ground plasm, and thus replacing sufficient amounts of periplasm and ground plasm shifted by centrifugation.
Chojnacka, Dominika; Isler, Karin; Barski, Jaroslaw Jerzy; Bshary, Redouan
2015-01-01
It is currently widely accepted that the complexity of a species’ social life is a major determinant of its brain complexity, as predicted by the social brain hypothesis. However, it remains a challenge to explain what social complexity exactly is and what the best corresponding measures of brain anatomy are. Absolute and relative size of the brain and of the neocortex have often been used as a proxy to predict cognitive performance. Here, we apply the logic of the social brain hypothesis to marine cleaning mutualism involving the genus Labroides. These wrasses remove ectoparasites from ‘client’ reef fish. Conflict occurs as wrasse prefer client mucus over ectoparasites, where mucus feeding constitutes cheating. As a result of this conflict, cleaner wrasse show remarkable Machiavellian-like behaviour. Using own data as well as available data from the literature, we investigated whether the general brain anatomy of Labroides provides any indication that their Machiavellian behaviour is associated with a more complex brain. Neither data set provided evidence for an increased encephalisation index compared to other wrasse species. Published data on relative sizes of brain parts in 25 species of the order Perciformes suggests that only the diencephalon is relatively enlarged in Labroides dimidiatus. This part contains various nuclei of the social decision making network. In conclusion, gross brain anatomy yields little evidence for the hypothesis that strategic behaviour in cleaning selects for larger brains, while future research should focus on more detailed aspects like the sizes of specific nuclei as well as their cryoarchitectonic structure and connectivity. PMID:26263490