Automatic Assessment of Complex Task Performance in Games and Simulations. CRESST Report 775
ERIC Educational Resources Information Center
Iseli, Markus R.; Koenig, Alan D.; Lee, John J.; Wainess, Richard
2010-01-01
Assessment of complex task performance is crucial to evaluating personnel in critical job functions such as Navy damage control operations aboard ships. Games and simulations can be instrumental in this process, as they can present a broad range of complex scenarios without involving harm to people or property. However, "automatic"…
Human Factors Tools for Improving Simulation Activities in Continuing Medical Education
ERIC Educational Resources Information Center
Seagull, F. Jacob
2012-01-01
Human factors (HF) is a discipline often drawn upon when there is a need to train people to perform complex, high-stakes tasks and effectively assess their performance. Complex tasks often present unique challenges for training and assessment. HF has developed specialized techniques that have been effective in overcoming several of these…
A deep learning approach for fetal QRS complex detection.
Zhong, Wei; Liao, Lijuan; Guo, Xuemei; Wang, Guoli
2018-04-20
Non-invasive foetal electrocardiography (NI-FECG) has the potential to provide more additional clinical information for detecting and diagnosing fetal diseases. We propose and demonstrate a deep learning approach for fetal QRS complex detection from raw NI-FECG signals by using a convolutional neural network (CNN) model. The main objective is to investigate whether reliable fetal QRS complex detection performance can still be obtained from features of single-channel NI-FECG signals, without canceling maternal ECG (MECG) signals. A deep learning method is proposed for recognizing fetal QRS complexes. Firstly, we collect data from set-a of the PhysioNet/computing in Cardiology Challenge database. The sample entropy method is used for signal quality assessment. Part of the bad quality signals is excluded in the further analysis. Secondly, in the proposed method, the features of raw NI-FECG signals are normalized before they are fed to a CNN classifier to perform fetal QRS complex detection. We use precision, recall, F-measure and accuracy as the evaluation metrics to assess the performance of fetal QRS complex detection. The proposed deep learning method can achieve relatively high precision (75.33%), recall (80.54%), and F-measure scores (77.85%) compared with three other well-known pattern classification methods, namely KNN, naive Bayes and SVM. the proposed deep learning method can attain reliable fetal QRS complex detection performance from the raw NI-FECG signals without canceling MECG signals. In addition, the influence of different activation functions and signal quality assessment on classification performance are evaluated, and results show that Relu outperforms the Sigmoid and Tanh on this particular task, and better classification performance is obtained with the signal quality assessment step in this study.
Combined effects of altitude and high temperature on complex performance.
DOT National Transportation Integrated Search
1971-04-01
Nine well-trained subjects were tested on a complex performance device designed to assess functions of relevance to aircrew activities. The tests, which involved tracking, monitoring, and mental arithmetic, were performed during exposure to altitude ...
ERIC Educational Resources Information Center
Kim, Ho Sung
2013-01-01
A quantitative method for estimating an expected uncertainty (reliability and validity) in assessment results arising from the relativity between four variables, viz examiner's expertise, examinee's expertise achieved, assessment task difficulty and examinee's performance, was developed for the complex assessment applicable to final…
Defining and Assessing Chinese Syntactic Complexity via TC-Units
ERIC Educational Resources Information Center
Yu, Qiaona
2016-01-01
The triad dimensions of complexity, accuracy, and fluency (CAF) has been widely used for assessing second language performance and development. Unlike accuracy and fluency, the construct of Chinese syntactic complexity has not been comprehensibly conceptualized or operationalized. Moreover, not tailored to the typological differences such as the…
Van Such, Monica B.; Nesse, Robert E.; Dilling, James A.; Swensen, Stephen J.; Thompson, Kristine M.; Orlowski, Janis M.; Santrach, Paula J.
2017-01-01
The majority of quality measures used to assess providers and hospitals are based on easily obtained data, focused on a few dimensions of quality, and developed mainly for primary/community care and population health. While this approach supports efforts focused on addressing the triple aim of health care, many current quality report cards and assessments do not reflect the breadth or complexity of many referral center practices. In this article, the authors highlight the differences between population health efforts and referral care and address issues related to value measurement and performance assessment. They discuss why measures may need to differ across the three levels of care (primary/community care, secondary care, complex care) and illustrate the need for further risk adjustment to eliminate referral bias. With continued movement toward value-based purchasing, performance measures and reimbursement schemes need to reflect the increased level of intensity required to provide complex care. The authors propose a framework to operationalize value measurement and payment for specialty care, and they make specific recommendations to improve performance measurement for complex patients. Implementing such a framework to differentiate performance measures by level of care involves coordinated efforts to change both policy and operational platforms. An essential component of this framework is a new model that defines the characteristics of patients who require complex care and standardizes metrics that incorporate those definitions. PMID:28353502
Naessens, James M; Van Such, Monica B; Nesse, Robert E; Dilling, James A; Swensen, Stephen J; Thompson, Kristine M; Orlowski, Janis M; Santrach, Paula J
2017-07-01
The majority of quality measures used to assess providers and hospitals are based on easily obtained data, focused on a few dimensions of quality, and developed mainly for primary/community care and population health. While this approach supports efforts focused on addressing the triple aim of health care, many current quality report cards and assessments do not reflect the breadth or complexity of many referral center practices.In this article, the authors highlight the differences between population health efforts and referral care and address issues related to value measurement and performance assessment. They discuss why measures may need to differ across the three levels of care (primary/community care, secondary care, complex care) and illustrate the need for further risk adjustment to eliminate referral bias.With continued movement toward value-based purchasing, performance measures and reimbursement schemes need to reflect the increased level of intensity required to provide complex care. The authors propose a framework to operationalize value measurement and payment for specialty care, and they make specific recommendations to improve performance measurement for complex patients. Implementing such a framework to differentiate performance measures by level of care involves coordinated efforts to change both policy and operational platforms. An essential component of this framework is a new model that defines the characteristics of patients who require complex care and standardizes metrics that incorporate those definitions.
Complex Burn Region Module (CBRM) update
NASA Technical Reports Server (NTRS)
Adams, Carl L.; Jenkins, Billy
1991-01-01
Presented here is a Complex Burn Region Module (CBRM) update for the Solid Rocket Internal Ballistics Module (SRIBM) Program for the Advanced Solid Rocket Motor (ASRM) design/performance assessments. The goal was to develop an improved version of the solid rocket internal ballistics module program that contains a diversified complex region model for motor grain design, performance prediction, and evaluation.
DOT National Transportation Integrated Search
1980-10-01
The present study examined a variety of possible predictors of complex monitoring performance. The criterion task was designed to resemble that of a highly automated air traffic control radar system containing computer-generated alphanumeric displays...
Mushet, David M.; Euliss, Ned H.; Shaffer, Terry L.
2002-01-01
Floristic quality assessment is potentially an important tool for conservation efforts in the northern Great Plains of North America, but it has received little rigorous evaluation. Floristic quality assessments rely on coefficients assigned to each plant species of a region’s flora based on the conservatism of each species relative to others in the region. These “coefficients of conservatism” (C values) are assigned by a panel of experts familiar with a region’s flora. The floristic quality assessment method has faced some criticism due to the subjective nature of these assignments. To evaluate the effect of this subjectivity on floristic quality assessments, we performed separate evaluations of the native plant communities in a natural wetland complex and three restored wetland complexes. In our first assessment, we used C values assigned “subjectively” by the Northern Great Plains Floristic Quality Assessment Panel. We then performed an independent assessment using the observed distributions of species among a group of wetlands that ranged from highly disturbed to largely undisturbed (data-generated C values). Using the panel-assigned C values, mean C values (C¯">C¯C¯) of the restored wetlands rarely exceeded 3.4 and never exceeded 3.9, with the highest values occurring in the oldest restored complex; all but two wetlands in the natural wetland complex had a C¯">C¯C¯ greater than 3.9. Floristic quality indices (FQI) for the restored wetlands rarely exceeded 22 and usually reached maximums closer to 19, with higher values occurring again in the oldest restored complex; only two wetlands in the natural complex had an FQI less than 22. We observed that 95% confidence limits for species richness and percent natives overlapped greatly among wetland complexes, whereas confidence limits for both C¯">C¯C¯ and FQI overlapped little. C¯">C¯C¯ and FQI values were consistently greater when we used the datagenerated C values than when we used the panel-assigned C values; nonetheless, conclusions reached based on these two independent assessment techniques were virtually identical. Our results are consistent with the opinion that coefficients assigned subjectively by expert botanists familiar with a region’s flora provide adequate information to perform accurate floristic quality assessments.
A Novel Method for Assessing Task Complexity in Outpatient Clinical-Performance Measures.
Hysong, Sylvia J; Amspoker, Amber B; Petersen, Laura A
2016-04-01
Clinical-performance measurement has helped improve the quality of health-care; yet success in attaining high levels of quality across multiple domains simultaneously still varies considerably. Although many sources of variability in care quality have been studied, the difficulty required to complete the clinical work itself has received little attention. We present a task-based methodology for evaluating the difficulty of clinical-performance measures (CPMs) by assessing the complexity of their component requisite tasks. Using Functional Job Analysis (FJA), subject-matter experts (SMEs) generated task lists for 17 CPMs; task lists were rated on ten dimensions of complexity, and then aggregated into difficulty composites. Eleven outpatient work SMEs; 133 VA Medical Centers nationwide. Clinical Performance: 17 outpatient CPMs (2000-2008) at 133 VA Medical Centers nationwide. Measure Difficulty: for each CPM, the number of component requisite tasks and the average rating across ten FJA complexity scales for the set of tasks comprising the measure. Measures varied considerably in the number of component tasks (M = 10.56, SD = 6.25, min = 5, max = 25). Measures of chronic care following acute myocardial infarction exhibited significantly higher measure difficulty ratings compared to diabetes or screening measures, but not to immunization measures ([Formula: see text] = 0.45, -0.04, -0.05, and -0.06 respectively; F (3, 186) = 3.57, p = 0.015). Measure difficulty ratings were not significantly correlated with the number of component tasks (r = -0.30, p = 0.23). Evaluating the difficulty of achieving recommended CPM performance levels requires more than simply counting the tasks involved; using FJA to assess the complexity of CPMs' component tasks presents an alternate means of assessing the difficulty of primary-care CPMs and accounting for performance variation among measures and performers. This in turn could be used in designing performance reward programs, or to match workflow to clinician time and effort.
1988-09-30
the symbolic racism research has directly assessed value attributions or measured their relation - ship to attitudes or behavior , which seems to be a...of attitude , evaluation, or emotion, while others involve the abil- ity to make complex Judgments, perform complex behaviors , or be characterized by a...adequate choice of the proper behavior to perform. Attitudes , values. Attitudes are evaluations of things, including people, objects, or behaviors
Lifespan differences in nonlinear dynamics during rest and auditory oddball performance.
Müller, Viktor; Lindenberger, Ulman
2012-07-01
Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an indicator of cortical reactivity. During rest, both nonlinear coupling and spectral alpha power decreased with age, whereas dimensional complexity increased. In contrast, when attending to the deviant stimulus, nonlinear coupling increased with age, and complexity decreased. Correlational analyses showed that nonlinear measures assessed during auditory oddball performance were reliably related to an independently assessed measure of perceptual speed. We conclude that cortical dynamics during rest and stimulus processing undergo substantial reorganization from childhood to old age, and propose that lifespan age differences in nonlinear dynamics during stimulus processing reflect lifespan changes in the functional organization of neuronal cell assemblies. © 2012 Blackwell Publishing Ltd.
Executive functioning: a scoping review of the occupational therapy literature.
Cramm, Heidi A; Krupa, Terry M; Missiuna, Cheryl A; Lysaght, Rosemary M; Parker, Kevin H
2013-06-01
Increasingly recognized as an important factor in the performance of complex, goal-directed tasks, executive functioning is understood in different ways across disciplines. The aim was to explore the ways in which executive functioning is conceptualized, discussed, described, and implied in the occupational therapy literature. A scoping review of the occupational therapy literature was conducted following Levac, Colquhoun, and O'Brien's (2010) recommended methodology. Executive functioning is described both as a set of performance component skills or processes and as the executive occupational performance inherent in complex occupations. Executive functioning is implicit in occupational performance and engagement, and some health conditions seem to be commonly associated with impaired executive functioning. Assessing executive functioning requires dynamic occupation- and performance-based assessment. Interventions targeting executive functioning are grounded in metacognitive approaches. Executive functioning is a complex construct that is conceptualized with considerable variance within the occupational therapy literature, creating barriers to effective service delivery.
Assessing performance in complex team environments.
Whitmore, Jeffrey N
2005-07-01
This paper provides a brief introduction to team performance assessment. It highlights some critical aspects leading to the successful measurement of team performance in realistic console operations; discusses the idea of process and outcome measures; presents two types of team data collection systems; and provides an example of team performance assessment. Team performance assessment is a complicated endeavor relative to assessing individual performance. Assessing team performance necessitates a clear understanding of each operator's task, both at the individual and team level, and requires planning for efficient data capture and analysis. Though team performance assessment requires considerable effort, the results can be very worthwhile. Most tasks performed in Command and Control environments are team tasks, and understanding this type of performance is becoming increasingly important to the evaluation of mission success and for overall system optimization.
ERIC Educational Resources Information Center
Kartal, Ozgul; Dunya, Beyza Aksu; Diefes-Dux, Heidi A.; Zawojewski, Judith S.
2016-01-01
Critical to many science, technology, engineering, and mathematics (STEM) career paths is mathematical modeling--specifically, the creation and adaptation of mathematical models to solve problems in complex settings. Conventional standardized measures of mathematics achievement are not structured to directly assess this type of mathematical…
Conceptualizing and Assessing Higher-Order Thinking in Reading
ERIC Educational Resources Information Center
Afflerbach, Peter; Cho, Byeong-Young; Kim, Jong-Yun
2015-01-01
Students engage in higher-order thinking as they read complex texts and perform complex reading-related tasks. However, the most consequential assessments, high-stakes tests, are currently limited in providing information about students' higher-order thinking. In this article, we describe higher-order thinking in relation to reading. We provide a…
A Nonword Repetition Task to Assess Bilingual Children's Phonology
ERIC Educational Resources Information Center
dos Santos, Christophe; Ferré, Sandrine
2018-01-01
Children with specific language impairment (SLI) are particularly sensitive to phonological complexity in their language. Their performance drops when there are specific phonological structures or when complexity increases. A nonword repetition (NWR) test, which aims to assess the phonology of bilingual speakers with and without SLI, should…
NASA Astrophysics Data System (ADS)
Kim, Ho Sung
2013-12-01
A quantitative method for estimating an expected uncertainty (reliability and validity) in assessment results arising from the relativity between four variables, viz examiner's expertise, examinee's expertise achieved, assessment task difficulty and examinee's performance, was developed for the complex assessment applicable to final year project thesis assessment including peer assessment. A guide map can be generated by the method for finding expected uncertainties prior to the assessment implementation with a given set of variables. It employs a scale for visualisation of expertise levels, derivation of which is based on quantified clarities of mental images for levels of the examiner's expertise and the examinee's expertise achieved. To identify the relevant expertise areas that depend on the complexity in assessment format, a graphical continuum model was developed. The continuum model consists of assessment task, assessment standards and criterion for the transition towards the complex assessment owing to the relativity between implicitness and explicitness and is capable of identifying areas of expertise required for scale development.
Caballero Sánchez, Carla; Barbado Murillo, David; Davids, Keith; Moreno Hernández, Francisco J
2016-06-01
This study investigated the extent to which specific interacting constraints of performance might increase or decrease the emergent complexity in a movement system, and whether this could affect the relationship between observed movement variability and the central nervous system's capacity to adapt to perturbations during balancing. Fifty-two healthy volunteers performed eight trials where different performance constraints were manipulated: task difficulty (three levels) and visual biofeedback conditions (with and without the center of pressure (COP) displacement and a target displayed). Balance performance was assessed using COP-based measures: mean velocity magnitude (MVM) and bivariate variable error (BVE). To assess the complexity of COP, fuzzy entropy (FE) and detrended fluctuation analysis (DFA) were computed. ANOVAs showed that MVM and BVE increased when task difficulty increased. During biofeedback conditions, individuals showed higher MVM but lower BVE at the easiest level of task difficulty. Overall, higher FE and lower DFA values were observed when biofeedback was available. On the other hand, FE reduced and DFA increased as difficulty level increased, in the presence of biofeedback. However, when biofeedback was not available, the opposite trend in FE and DFA values was observed. Regardless of changes to task constraints and the variable investigated, balance performance was positively related to complexity in every condition. Data revealed how specificity of task constraints can result in an increase or decrease in complexity emerging in a neurobiological system during balance performance.
The USEPA's Regional Vulnerability Assessment (ReVA) program was created to advance the scientific basis for protecting vulnerable ecosystems at a regional scale. As a first step, the ReVa program will coordinate, communicate and perform complex research that will identify vulner...
Does Formative Assessment Improve Student Learning and Performance in Soil Science?
ERIC Educational Resources Information Center
Kopittke, Peter M.; Wehr, J. Bernhard; Menzies, Neal W.
2012-01-01
Soil science students are required to apply knowledge from a range of disciplines to unfamiliar scenarios to solve complex problems. To encourage deep learning (with student performance an indicator of learning), a formative assessment exercise was introduced to a second-year soil science subject. For the formative assessment exercise, students…
Developing an Effective Instrument for Assessing the Performance of Public University Presidents
ERIC Educational Resources Information Center
Lester, Dennis
2010-01-01
Conducting a worthwhile assessment of the performance of senior leaders such as university presidents poses unique challenges for public institutions of higher education. One of the most difficult issues is determining the "content" and "format" of the assessment instrument. Due to the breadth and complexity of the job, the…
Specifying and Refining a Measurement Model for a Simulation-Based Assessment. CSE Report 619.
ERIC Educational Resources Information Center
Levy, Roy; Mislevy, Robert J.
2004-01-01
The challenges of modeling students' performance in simulation-based assessments include accounting for multiple aspects of knowledge and skill that arise in different situations and the conditional dependencies among multiple aspects of performance in a complex assessment. This paper describes a Bayesian approach to modeling and estimating…
Peng, Zhen; Genewein, Tim; Braun, Daniel A.
2014-01-01
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects' self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories. PMID:24744716
ERIC Educational Resources Information Center
Plant, Jennifer L.; Corden, Mark; Mourad, Michelle; O'Brien, Bridget C.; van Schaik, Sandrijn M.
2013-01-01
;Self-directed learning requires self-assessment of learning needs and performance, a complex process that requires collecting and interpreting data from various sources. Learners' approaches to self-assessment likely vary depending on the learner and the context. The aim of this study was to gain insight into how learners process external…
Radioactive Waste Management Complex performance assessment: Draft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.
1990-06-01
A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Resultsmore » of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.« less
Designing and Developing Assessments of Complex Thinking in Mathematics for the Middle Grades
ERIC Educational Resources Information Center
Graf, Edith Aurora; Arieli-Attali, Meirav
2015-01-01
Designing an assessment system for complex thinking in mathematics involves decisions at every stage, from how to represent the target competencies to how to interpret evidence from student performances. Beyond learning to solve particular problems in a particular area, learning mathematics with understanding involves comprehending connections…
Wolf, Timothy J; Dahl, Abigail; Auen, Colleen; Doherty, Meghan
2017-07-01
The objective of this study was to evaluate the inter-rater reliability, test-retest reliability, concurrent validity, and discriminant validity of the Complex Task Performance Assessment (CTPA): an ecologically valid performance-based assessment of executive function. Community control participants (n = 20) and individuals with mild stroke (n = 14) participated in this study. All participants completed the CTPA and a battery of cognitive assessments at initial testing. The control participants completed the CTPA at two different times one week apart. The intra-class correlation coefficient (ICC) for inter-rater reliability for the total score on the CTPA was .991. The ICCs for all of the sub-scores of the CTPA were also high (.889-.977). The CTPA total score was significantly correlated to Condition 4 of the DKEFS Color-Word Interference Test (p = -.425), and the Wechsler Test of Adult Reading (p = -.493). Finally, there were significant differences between control subjects and individuals with mild stroke on the total score of the CTPA (p = .007) and all sub-scores except interpretation failures and total items incorrect. These results are also consistent with other current executive function performance-based assessments and indicate that the CTPA is a reliable and valid performance-based measure of executive function.
Righi, Angela Weber; Wachs, Priscila; Saurin, Tarcísio Abreu
2012-01-01
Complexity theory has been adopted by a number of studies as a benchmark to investigate the performance of socio-technical systems, especially those that are characterized by relevant cognitive work. However, there is little guidance on how to assess, systematically, the extent to which a system is complex. The main objective of this study is to carry out a systematic analysis of a SAMU (Mobile Emergency Medical Service) Medical Regulation Center in Brazil, based on the core characteristics of complex systems presented by previous studies. The assessment was based on direct observations and nine interviews: three of them with regulator of emergencies medical doctor, three with radio operators and three with telephone attendants. The results indicated that, to a great extent, the core characteristics of complexity are magnified) due to basic shortcomings in the design of the work system. Thus, some recommendations are put forward with a view to reducing unnecessary complexity that hinders the performance of the socio-technical system.
ERIC Educational Resources Information Center
Rusman, Ellen; Dirkx, Kim
2017-01-01
Many schools use analytic rubrics to (formatively) assess complex, generic or transversal (21st century) skills, such as collaborating and presenting. In rubrics, performance indicators on different levels of mastering a skill (e.g., novice, practiced, advanced, talented) are described. However, the dimensions used to describe the different…
Predicting Development of Mathematical Word Problem Solving Across the Intermediate Grades
Tolar, Tammy D.; Fuchs, Lynn; Cirino, Paul T.; Fuchs, Douglas; Hamlett, Carol L.; Fletcher, Jack M.
2012-01-01
This study addressed predictors of the development of word problem solving (WPS) across the intermediate grades. At beginning of 3rd grade, 4 cohorts of students (N = 261) were measured on computation, language, nonverbal reasoning skills, and attentive behavior and were assessed 4 times from beginning of 3rd through end of 5th grade on 2 measures of WPS at low and high levels of complexity. Language skills were related to initial performance at both levels of complexity and did not predict growth at either level. Computational skills had an effect on initial performance in low- but not high-complexity problems and did not predict growth at either level of complexity. Attentive behavior did not predict initial performance but did predict growth in low-complexity, whereas it predicted initial performance but not growth for high-complexity problems. Nonverbal reasoning predicted initial performance and growth for low-complexity WPS, but only growth for high-complexity WPS. This evidence suggests that although mathematical structure is fixed, different cognitive resources may act as limiting factors in WPS development when the WPS context is varied. PMID:23325985
Performance assessment in complex individual and team tasks
NASA Technical Reports Server (NTRS)
Eddy, Douglas R.
1992-01-01
Described here is an eclectic, performance based approach to assessing cognitive performance from multiple perspectives. The experience gained from assessing the effects of antihistamines and scenario difficulty on C (exp 2) decision making performance in Airborne Warning and Control Systems (AWACS) weapons director (WD) teams can serve as a model for realistic simulations in space operations. Emphasis is placed on the flexibility of measurement, hierarchical organization of measurement levels, data collection from multiple perspectives, and the difficulty of managing large amounts of data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dverstorp, B.; Andersson, J.
1995-12-01
Performance Assessment of a nuclear waste repository implies an analysis of a complex system with many interacting processes. Even if some of these processes may be known to large detail, problems arise when combining all information, and means of abstracting information from complex detailed models into models that couple different processes are needed. Clearly, one of the major objectives of performance assessment, to calculate doses or other performance indicators, implies an enormous abstraction of information compared to all information that is used as input. Other problems are that the knowledge of different parts or processes is strongly variable and adjustments,more » interpretations, are needed when combining models from different disciplines. In addition, people as well as computers, even today, always have a limited capacity to process information and choices have to be made. However, because abstraction of information clearly is unavoidable in performance assessment the validity of choices made, always need to be scrutinized and judgements made need to be updated in an iterative process.« less
Low-Cost Robotic Assessment of Visuo-Motor Deficits in Alzheimer's Disease.
Bartoli, Eleonora; Caso, Francesca; Magnani, Giuseppe; Baud-Bovy, Gabriel
2017-07-01
A low-cost robotic interface was used to assess the visuo-motor performance of patients with Alzheimer's disease (AD). Twenty AD patients and twenty age-matched controls participated in this work. The battery of tests included simple reaction times, position tracking, and stabilization tasks performed with both hands. The regularity, velocity, visual and haptic feedback were manipulated to vary movement complexity. Reaction times and movement tracking error were analyzed. Results show a marked group effect on a subset of conditions, in particular when the patients could not rely on the visual feedback of hand movement. The visuo-motor performance correlated with the measures of global cognitive functioning and with different memory-related abilities. Our results support the hypothesis that the ability to recall and use visuo-spatial associations might underlie the impairment in complex motor behavior that has been reported in AD patients. Importantly, the patients had preserved learning effects across sessions, which might relate to visuo-motor deficits being less evident in every-day life and clinical assessments. This robotic assessment, lasting less than 1 h, provides detailed information about the integrity of visuo-motor abilities. The data can aid the understanding of the complex pattern of deficits that characterizes this pervasive disease.
Setting performance standards for medical practice: a theoretical framework.
Southgate, L; Hays, R B; Norcini, J; Mulholland, H; Ayers, B; Woolliscroft, J; Cusimano, M; McAvoy, P; Ainsworth, M; Haist, S; Campbell, M
2001-05-01
The assessment of performance in the real world of medical practice is now widely accepted as the goal of assessment at the postgraduate level. This is largely a validity issue, as it is recognised that tests of knowledge and in clinical simulations cannot on their own really measure how medical practitioners function in the broader health care system. However, the development of standards for performance-based assessment is not as well understood as in competency assessment, where simulations can more readily reflect narrower issues of knowledge and skills. This paper proposes a theoretical framework for the development of standards that reflect the more complex world in which experienced medical practitioners work. The paper reflects the combined experiences of a group of education researchers and the results of literature searches that included identifying current health system data sources that might contribute information to the measurement of standards. Standards that reflect the complexity of medical practice may best be developed through an "expert systems" analysis of clinical conditions for which desired health care outcomes reflect the contribution of several health professionals within a complex, three-dimensional, contextual model. Examples of the model are provided, but further work is needed to test validity and measurability.
Assessing Complex Academic Performance at the Group Level.
ERIC Educational Resources Information Center
Scarloss, Beth
This study was a secondary analysis of data collected by staff of the Program for Complex Instruction (PCI). The purpose of the larger study was to investigate the effect on learning gains of having students know the content and performance standards on which they will be judged as well as the effect of using evaluation criteria. This study looks…
Complex versus simple models: ion-channel cardiac toxicity prediction.
Mistry, Hitesh B
2018-01-01
There is growing interest in applying detailed mathematical models of the heart for ion-channel related cardiac toxicity prediction. However, a debate as to whether such complex models are required exists. Here an assessment in the predictive performance between two established large-scale biophysical cardiac models and a simple linear model B net was conducted. Three ion-channel data-sets were extracted from literature. Each compound was designated a cardiac risk category using two different classification schemes based on information within CredibleMeds. The predictive performance of each model within each data-set for each classification scheme was assessed via a leave-one-out cross validation. Overall the B net model performed equally as well as the leading cardiac models in two of the data-sets and outperformed both cardiac models on the latest. These results highlight the importance of benchmarking complex versus simple models but also encourage the development of simple models.
Cloud Computing for Complex Performance Codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin
This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.
ERIC Educational Resources Information Center
Angeli, Charoula; Valanides, Nicos
2013-01-01
The present study investigated the problem-solving performance of 101 university students and their interactions with a computer modeling tool in order to solve a complex problem. Based on their performance on the hidden figures test, students were assigned to three groups of field-dependent (FD), field-mixed (FM), and field-independent (FI)…
ERIC Educational Resources Information Center
Fink, C. Dennis; And Others
Recent efforts to assess complex human performances in various work settings are reviewed. The review is based upon recent psychological, educational, and industrial literature, and technical reports sponsored by the military services. A few selected military and industrial locations were also visited in order to learn about current research and…
A Conceptual Framework for Assessing Performance in Games and Simulations. CRESST Report 771
ERIC Educational Resources Information Center
Koenig, Alan D.; Lee, John J.; Iseli, Markus; Wainess, Richard
2010-01-01
The military's need for high-fidelity games and simulations is substantial, as these environments can be valuable for demonstration of essential knowledge, skills, and abilities required in complex tasks. However assessing performance in these settings can be difficult--particularly in non-linear simulations where more than one pathway to success…
NASA Astrophysics Data System (ADS)
Howard, Steven J.; Burianová, Hana; Calleia, Alysha; Fynes-Clinton, Samuel; Kervin, Lisa; Bokosmaty, Sahar
2017-08-01
Standardised educational assessments are now widespread, yet their development has given comparatively more consideration to what to assess than how to optimally assess students' competencies. Existing evidence from behavioural studies with children and neuroscience studies with adults suggest that the method of assessment may affect neural processing and performance, but current evidence remains limited. To investigate the impact of assessment methods on neural processing and performance in young children, we used functional magnetic resonance imaging to identify and quantify the neural correlates during performance across a range of current approaches to standardised spelling assessment. Results indicated that children's test performance declined as the cognitive load of assessment method increased. Activation of neural nodes associated with working memory further suggests that this performance decline may be a consequence of a higher cognitive load, rather than the complexity of the content. These findings provide insights into principles of assessment (re)design, to ensure assessment results are an accurate reflection of students' true levels of competency.
Ogourtsova, Tatiana; Archambault, Philippe; Sangani, Samir; Lamontagne, Anouk
2018-01-01
Unilateral spatial neglect (USN) is a highly prevalent and disabling poststroke impairment. USN is traditionally assessed with paper-and-pencil tests that lack ecological validity, generalization to real-life situations and are easily compensated for in chronic stages. Virtual reality (VR) can, however, counteract these limitations. We aimed to examine the feasibility of a novel assessment of USN symptoms in a functional shopping activity, the Ecological VR-based Evaluation of Neglect Symptoms (EVENS). EVENS is immersive and consists of simple and complex 3-dimensional scenes depicting grocery shopping shelves, where joystick-based object detection and navigation tasks are performed while seated. Effects of virtual scene complexity on navigational and detection abilities in patients with (USN+, n = 12) and without (USN-, n = 15) USN following a right hemisphere stroke and in age-matched healthy controls (HC, n = 9) were determined. Longer detection times, larger mediolateral deviations from ideal paths and longer navigation times were found in USN+ versus USN- and HC groups, particularly in the complex scene. EVENS detected lateralized and nonlateralized USN-related deficits, performance alterations that were dependent or independent of USN severity, and performance alterations in 3 USN- subjects versus HC. EVENS' environmental changing complexity, along with the functional tasks of far space detection and navigation can potentially be clinically relevant and warrant further empirical investigation. Findings are discussed in terms of attentional models, lateralized versus nonlateralized deficits in USN, and tasks-specific mechanisms.
Science Competencies That Go Unassessed
ERIC Educational Resources Information Center
Gilmer, Penny J.; Sherdan, Danielle M.; Oosterhof, Albert; Rohani, Faranak; Rouby, Aaron
2011-01-01
Present large-scale assessments require the use of item formats, such as multiple choice, that can be administered and scored efficiently. This limits competencies that can be measured by these assessments. An alternative approach to large-scale assessments is being investigated that would include the use of complex performance assessments. As…
Mapping the developmental constraints on working memory span performance.
Bayliss, Donna M; Jarrold, Christopher; Baddeley, Alan D; Gunn, Deborah M; Leigh, Eleanor
2005-07-01
This study investigated the constraints underlying developmental improvements in complex working memory span performance among 120 children of between 6 and 10 years of age. Independent measures of processing efficiency, storage capacity, rehearsal speed, and basic speed of processing were assessed to determine their contribution to age-related variance in complex span. Results showed that developmental improvements in complex span were driven by 2 age-related but separable factors: 1 associated with general speed of processing and 1 associated with storage ability. In addition, there was an age-related contribution shared between working memory, processing speed, and storage ability that was important for higher level cognition. These results pose a challenge for models of complex span performance that emphasize the importance of processing speed alone.
The adaption and use of research codes for performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebetrau, A.M.
1987-05-01
Models of real-world phenomena are developed for many reasons. The models are usually, if not always, implemented in the form of a computer code. The characteristics of a code are determined largely by its intended use. Realizations or implementations of detailed mathematical models of complex physical and/or chemical processes are often referred to as research or scientific (RS) codes. Research codes typically require large amounts of computing time. One example of an RS code is a finite-element code for solving complex systems of differential equations that describe mass transfer through some geologic medium. Considerable computing time is required because computationsmore » are done at many points in time and/or space. Codes used to evaluate the overall performance of real-world physical systems are called performance assessment (PA) codes. Performance assessment codes are used to conduct simulated experiments involving systems that cannot be directly observed. Thus, PA codes usually involve repeated simulations of system performance in situations that preclude the use of conventional experimental and statistical methods. 3 figs.« less
Rubin, Katrine Hass; Friis-Holmberg, Teresa; Hermann, Anne Pernille; Abrahamsen, Bo; Brixen, Kim
2013-08-01
A huge number of risk assessment tools have been developed. Far from all have been validated in external studies, more of them have absence of methodological and transparent evidence, and few are integrated in national guidelines. Therefore, we performed a systematic review to provide an overview of existing valid and reliable risk assessment tools for prediction of osteoporotic fractures. Additionally, we aimed to determine if the performance of each tool was sufficient for practical use, and last, to examine whether the complexity of the tools influenced their discriminative power. We searched PubMed, Embase, and Cochrane databases for papers and evaluated these with respect to methodological quality using the Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS) checklist. A total of 48 tools were identified; 20 had been externally validated, however, only six tools had been tested more than once in a population-based setting with acceptable methodological quality. None of the tools performed consistently better than the others and simple tools (i.e., the Osteoporosis Self-assessment Tool [OST], Osteoporosis Risk Assessment Instrument [ORAI], and Garvan Fracture Risk Calculator [Garvan]) often did as well or better than more complex tools (i.e., Simple Calculated Risk Estimation Score [SCORE], WHO Fracture Risk Assessment Tool [FRAX], and Qfracture). No studies determined the effectiveness of tools in selecting patients for therapy and thus improving fracture outcomes. High-quality studies in randomized design with population-based cohorts with different case mixes are needed. Copyright © 2013 American Society for Bone and Mineral Research.
Test Item Linguistic Complexity and Assessments for Deaf Students
ERIC Educational Resources Information Center
Cawthon, Stephanie
2011-01-01
Linguistic complexity of test items is one test format element that has been studied in the context of struggling readers and their participation in paper-and-pencil tests. The present article presents findings from an exploratory study on the potential relationship between linguistic complexity and test performance for deaf readers. A total of 64…
A Methodology for Assessing Learning in Complex and Ill-Structured Task Domains
ERIC Educational Resources Information Center
Spector, J. Michael
2006-01-01
New information and communications technologies and research in cognitive science have led to new ways to think about and implement learning environments. Among these new approaches to instruction and new methods to support learning and performance is an interest in and emphasis on complex subject matter (e.g., complex and dynamic systems…
Performance assessment techniques for Doppler radar physiological sensors.
Hafner, Noah; Lubecke, Victor
2009-01-01
This paper presents a technique for assessing the performance of continuous wave Doppler radar systems for physiological sensing. The technique includes an artificial target for testing physiological sensing radar systems with motion analogous to human heart movement and software algorithms leveraging the capabilities of this target to simply test radar system performance. The mechanical target provides simple to complex patterns of motion that are stable and repeatable. Details of radar system performance can be assessed and the effects of configuration changes that might not appear with a human target can be observed when using this mechanical target.
A Practical Approach to Programmatic Assessment Design
ERIC Educational Resources Information Center
Timmerman, A. A.; Dijkstra, J.
2017-01-01
Assessment of complex tasks integrating several competencies calls for a programmatic design approach. As single instruments do not provide the information required to reach a robust judgment of integral performance, 73 guidelines for programmatic assessment design were developed. When simultaneously applying these interrelated guidelines, it is…
Route complexity and simulated physical ageing negatively influence wayfinding.
Zijlstra, Emma; Hagedoorn, Mariët; Krijnen, Wim P; van der Schans, Cees P; Mobach, Mark P
2016-09-01
The aim of this age-simulation field experiment was to assess the influence of route complexity and physical ageing on wayfinding. Seventy-five people (aged 18-28) performed a total of 108 wayfinding tasks (i.e., 42 participants performed two wayfinding tasks and 33 performed one wayfinding task), of which 59 tasks were performed wearing gerontologic ageing suits. Outcome variables were wayfinding performance (i.e., efficiency and walking speed) and physiological outcomes (i.e., heart and respiratory rates). Analysis of covariance showed that persons on more complex routes (i.e., more floor and building changes) walked less efficiently than persons on less complex routes. In addition, simulated elderly participants perform worse in wayfinding than young participants in terms of speed (p < 0.001). Moreover, a linear mixed model showed that simulated elderly persons had higher heart rates and respiratory rates compared to young people during a wayfinding task, suggesting that simulated elderly consumed more energy during this task. Copyright © 2016 Elsevier Ltd. All rights reserved.
Case Complexity and Quality Attestation for Clinical Ethics Consultants.
Spielman, Bethany; Craig, Jana; Gorka, Christine; Miller, Keith
2015-01-01
A proposal by the American Society for Bioethics and Humanities (ASBH) to identify individuals who are qualified to perform ethics consultations neglects case complexity in candidates' portfolios. To protect patients and healthcare organizations, and to be fair to candidates, a minimum case complexity level must be clearly and publicly articulated. This proof-of-concept study supports the feasibility of assessing case complexity. Using text analytics, we developed a complexity scoring system, and retrospectively analyzed more than 500 ethics summaries of consults performed at an academic medical center during 2013. We demonstrate its use with seven case summaries that range in complexity from uncomplicated to very complicated. We encourage the ASBH to require a minimum level of case complexity, and recommend that attestation portfolios include several cases of moderate complexity and at least one very complex case. Copyright 2015 The Journal of Clinical Ethics. All rights reserved.
Vartiainen, Matti V; Holm, Anu; Lukander, Jani; Lukander, Kristian; Koskinen, Sanna; Bornstein, Robert; Hokkanen, Laura
2016-01-01
Mild traumatic brain injuries (MTBI) or concussions often result in problems with attention, executive functions, and motor control. For better identification of these diverse problems, novel approaches integrating tests of cognitive and motor functioning are needed. The aim was to characterize minor changes in motor and cognitive performance after sports-related concussions with a novel test battery, including balance tests and a computerized multilimb reaction time test. The cognitive demands of the battery gradually increase from a simple stimulus response to a complex task requiring executive attention. A total of 113 male ice hockey players (mean age = 24.6 years, SD = 5.7) were assessed before a season. During the season, nine concussed players were retested within 36 hours, four to six days after the concussion, and after the season. A control group of seven nonconcussed players from the same pool of players with comparable demographics were retested after the season. Performance was measured using a balance test and the Motor Cognitive Test battery (MotCoTe) with multilimb responses in simple reaction, choice reaction, inhibition, and conflict resolution conditions. The performance of the concussed group declined at the postconcussion assessment compared to both the baseline measurement and the nonconcussed controls. Significant changes were observed in the concussed group for the multilimb choice reaction and inhibition tests. Tapping and balance showed a similar trend, but no statistically significant difference in performance. In sports-related concussions, complex motor tests can be valuable additions in assessing the outcome and recovery. In the current study, using subtasks with varying cognitive demands, it was shown that while simple motor performance was largely unaffected, the more complex tasks induced impaired reaction times for the concussed subjects. The increased reaction times may reflect the disruption of complex and integrative cognitive function in concussions.
Economizing Education: Assessment Algorithms and Calculative Agencies
ERIC Educational Resources Information Center
O'Keeffe, Cormac
2017-01-01
International Large Scale Assessments have been producing data about educational attainment for over 60 years. More recently however, these assessments as tests have become digitally and computationally complex and increasingly rely on the calculative work performed by algorithms. In this article I first consider the coordination of relations…
Kolios, Athanasios; Jiang, Ying; Somorin, Tosin; Sowale, Ayodeji; Anastasopoulou, Aikaterini; Anthony, Edward J; Fidalgo, Beatriz; Parker, Alison; McAdam, Ewan; Williams, Leon; Collins, Matt; Tyrrel, Sean
2018-05-01
A probabilistic modelling approach was developed and applied to investigate the energy and environmental performance of an innovative sanitation system, the "Nano-membrane Toilet" (NMT). The system treats human excreta via an advanced energy and water recovery island with the aim of addressing current and future sanitation demands. Due to the complex design and inherent characteristics of the system's input material, there are a number of stochastic variables which may significantly affect the system's performance. The non-intrusive probabilistic approach adopted in this study combines a finite number of deterministic thermodynamic process simulations with an artificial neural network (ANN) approximation model and Monte Carlo simulations (MCS) to assess the effect of system uncertainties on the predicted performance of the NMT system. The joint probability distributions of the process performance indicators suggest a Stirling Engine (SE) power output in the range of 61.5-73 W with a high confidence interval (CI) of 95%. In addition, there is high probability (with 95% CI) that the NMT system can achieve positive net power output between 15.8 and 35 W. A sensitivity study reveals the system power performance is mostly affected by SE heater temperature. Investigation into the environmental performance of the NMT design, including water recovery and CO 2 /NO x emissions, suggests significant environmental benefits compared to conventional systems. Results of the probabilistic analysis can better inform future improvements on the system design and operational strategy and this probabilistic assessment framework can also be applied to similar complex engineering systems.
Süß, Heinz-Martin; Kretzschmar, André
2018-01-01
The original aim of complex problem solving (CPS) research was to bring the cognitive demands of complex real-life problems into the lab in order to investigate problem solving behavior and performance under controlled conditions. Up until now, the validity of psychometric intelligence constructs has been scrutinized with regard to its importance for CPS performance. At the same time, different CPS measurement approaches competing for the title of the best way to assess CPS have been developed. In the first part of the paper, we investigate the predictability of CPS performance on the basis of the Berlin Intelligence Structure Model and Cattell's investment theory as well as an elaborated knowledge taxonomy. In the first study, 137 students managed a simulated shirt factory ( Tailorshop ; i.e., a complex real life-oriented system) twice, while in the second study, 152 students completed a forestry scenario ( FSYS ; i.e., a complex artificial world system). The results indicate that reasoning - specifically numerical reasoning (Studies 1 and 2) and figural reasoning (Study 2) - are the only relevant predictors among the intelligence constructs. We discuss the results with reference to the Brunswik symmetry principle. Path models suggest that reasoning and prior knowledge influence problem solving performance in the Tailorshop scenario mainly indirectly. In addition, different types of system-specific knowledge independently contribute to predicting CPS performance. The results of Study 2 indicate that working memory capacity, assessed as an additional predictor, has no incremental validity beyond reasoning. We conclude that (1) cognitive abilities and prior knowledge are substantial predictors of CPS performance, and (2) in contrast to former and recent interpretations, there is insufficient evidence to consider CPS a unique ability construct. In the second part of the paper, we discuss our results in light of recent CPS research, which predominantly utilizes the minimally complex systems (MCS) measurement approach. We suggest ecologically valid microworlds as an indispensable tool for future CPS research and applications.
Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks
Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen
2014-01-01
One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine learning-based method for assessing activity quality in smart homes. To validate our approach we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We observed a statistically significant correlation (r=0.79) between automated assessment of task quality and direct observation scores. Using machine learning techniques to predict the cognitive health of the participants based on task quality is accomplished with an AUC value of 0.64. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments. PMID:25530925
Automated Cognitive Health Assessment Using Smart Home Monitoring of Complex Tasks.
Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen
2013-11-01
One of the many services that intelligent systems can provide is the automated assessment of resident well-being. We hypothesize that the functional health of individuals, or ability of individuals to perform activities independently without assistance, can be estimated by tracking their activities using smart home technologies. In this paper, we introduce a machine learning-based method for assessing activity quality in smart homes. To validate our approach we quantify activity quality for 179 volunteer participants who performed a complex, interweaved set of activities in our smart home apartment. We observed a statistically significant correlation (r=0.79) between automated assessment of task quality and direct observation scores. Using machine learning techniques to predict the cognitive health of the participants based on task quality is accomplished with an AUC value of 0.64. We believe that this capability is an important step in understanding everyday functional health of individuals in their home environments.
An analysis of relational complexity in an air traffic control conflict detection task.
Boag, Christine; Neal, Andrew; Loft, Shayne; Halford, Graeme S
2006-11-15
Theoretical analyses of air traffic complexity were carried out using the Method for the Analysis of Relational Complexity. Twenty-two air traffic controllers examined static air traffic displays and were required to detect and resolve conflicts. Objective measures of performance included conflict detection time and accuracy. Subjective perceptions of mental workload were assessed by a complexity-sorting task and subjective ratings of the difficulty of different aspects of the task. A metric quantifying the complexity of pair-wise relations among aircraft was able to account for a substantial portion of the variance in the perceived complexity and difficulty of conflict detection problems, as well as reaction time. Other variables that influenced performance included the mean minimum separation between aircraft pairs and the amount of time that aircraft spent in conflict.
ERIC Educational Resources Information Center
Kahraman, Nilufer; De Champlain, Andre; Raymond, Mark
2012-01-01
Item-level information, such as difficulty and discrimination are invaluable to the test assembly, equating, and scoring practices. Estimating these parameters within the context of large-scale performance assessments is often hindered by the use of unbalanced designs for assigning examinees to tasks and raters because such designs result in very…
Assessment Using Multi-Criteria Decision Approach for "Higher Order Skills" Learning Domains
ERIC Educational Resources Information Center
Ramakishnan, Sadhu Balasundaram; Ramadoss, Balakrishnan
2009-01-01
Over the past several decades, a wider range of assessment strategies has gained prominence in classrooms, including complex assessment items such as individual or group projects, student journals and other creative writing tasks, graphic/artistic representations of knowledge, clinical interviews, student presentations and performances, peer- and…
NASA Astrophysics Data System (ADS)
Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K.
2018-01-01
Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is < ~40 mrad. We also conduct a series of in vivo vascular imaging in animal models and human retina to verify the findings from the MC model through assessing the OCTA performance metrics of vessel connectivity, image SNR and contrast-to-noise ratio. We show that for all the metrics assessed, the complex-based algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.
Xu, Jingjiang; Song, Shaozhen; Li, Yuandong; Wang, Ruikang K
2017-12-19
Optical coherence tomography angiography (OCTA) is increasingly becoming a popular inspection tool for biomedical imaging applications. By exploring the amplitude, phase and complex information available in OCT signals, numerous algorithms have been proposed that contrast functional vessel networks within microcirculatory tissue beds. However, it is not clear which algorithm delivers optimal imaging performance. Here, we investigate systematically how amplitude and phase information have an impact on the OCTA imaging performance, to establish the relationship of amplitude and phase stability with OCT signal-to-noise ratio (SNR), time interval and particle dynamics. With either repeated A-scan or repeated B-scan imaging protocols, the amplitude noise increases with the increase of OCT SNR; however, the phase noise does the opposite, i.e. it increases with the decrease of OCT SNR. Coupled with experimental measurements, we utilize a simple Monte Carlo (MC) model to simulate the performance of amplitude-, phase- and complex-based algorithms for OCTA imaging, the results of which suggest that complex-based algorithms deliver the best performance when the phase noise is < ~40 mrad. We also conduct a series of in vivo vascular imaging in animal models and human retina to verify the findings from the MC model through assessing the OCTA performance metrics of vessel connectivity, image SNR and contrast-to-noise ratio. We show that for all the metrics assessed, the complex-based algorithm delivers better performance than either the amplitude- or phase-based algorithms for both the repeated A-scan and the B-scan imaging protocols, which agrees well with the conclusion drawn from the MC simulations.
Validity in work-based assessment: expanding our horizons.
Govaerts, Marjan; van der Vleuten, Cees P M
2013-12-01
Although work-based assessments (WBA) may come closest to assessing habitual performance, their use for summative purposes is not undisputed. Most criticism of WBA stems from approaches to validity consistent with the quantitative psychometric framework. However, there is increasing research evidence that indicates that the assumptions underlying the predictive, deterministic framework of psychometrics may no longer hold. In this discussion paper we argue that meaningfulness and appropriateness of current validity evidence can be called into question and that we need alternative strategies to assessment and validity inquiry that build on current theories of learning and performance in complex and dynamic workplace settings. Drawing from research in various professional fields we outline key issues within the mechanisms of learning, competence and performance in the context of complex social environments and illustrate their relevance to WBA. In reviewing recent socio-cultural learning theory and research on performance and performance interpretations in work settings, we demonstrate that learning, competence (as inferred from performance) as well as performance interpretations are to be seen as inherently contextualised, and can only be under-stood 'in situ'. Assessment in the context of work settings may, therefore, be more usefully viewed as a socially situated interpretive act. We propose constructivist-interpretivist approaches towards WBA in order to capture and understand contextualised learning and performance in work settings. Theoretical assumptions underlying interpretivist assessment approaches call for a validity theory that provides the theoretical framework and conceptual tools to guide the validation process in the qualitative assessment inquiry. Basic principles of rigour specific to qualitative research have been established, and they can and should be used to determine validity in interpretivist assessment approaches. If used properly, these strategies generate trustworthy evidence that is needed to develop the validity argument in WBA, allowing for in-depth and meaningful information about professional competence. © 2013 John Wiley & Sons Ltd.
Performance Assessment of Refractory Concrete Used on the Space Shuttle's Launch Pad
NASA Technical Reports Server (NTRS)
Trejo, David; Calle, Luz Marina; Halman, Ceki
2005-01-01
The John F. Kennedy Space Center (KSC) maintains several facilities for launching space vehicles. During recent launches it has been observed that the refractory concrete materials that protect the steel-framed flame duct are breaking away from this base structure and are being projected at high velocities. There is significant concern that these projected pieces can strike the launch complex or space vehicle during the launch, jeopardizing the safety of the mission. A qualification program is in place to evaluate the performance of different refractory concretes and data from these tests have been used to assess the performance of the refractory concretes. However, there is significant variation in the test results, possibly making the existing qualification test program unreliable. This paper will evaluate data from past qualification tests, identify potential key performance indicators for the launch complex, and will recommend a new qualification test program that can be used to better qualify refractory concrete.
How Can You Support RIDM/CRM/RM Through the Use of PRA
NASA Technical Reports Server (NTRS)
DoVemto. Tpmu
2011-01-01
Probabilistic Risk Assessment (PRA) is one of key Risk Informed Decision Making (RIDM) tools. It is a scenario-based methodology aimed at identifying and assessing Safety and Technical Performance risks in complex technological systems.
Targeting Transcription Elongation Machinery for Breast Cancer Therapy
2017-05-01
be performed to evaluate the pausing index for RNA Pol II. The potential role of a Super Enhancer will also be tested by knocking down the mediator...generation of all the cell lines stably knocking out the components of various P-TEFb complexes and performed some of the biochemical experiments...assessing the changes in P-TEFb complex formation upon knocking down or overexpression of various components. Funding Support: NIH Has there been a
ERIC Educational Resources Information Center
Price, Margaret; Carroll, Jude; O'Donovan, Berry; Rust, Chris
2011-01-01
Assessment is currently in the spotlight for its poor ratings in student satisfaction surveys and "under performance" in quality reviews. Consequently, a variety of initiatives and projects are being undertaken aimed at improving assessment. However, many of the concepts and theories underpinning assessment practice are complex and interrelated,…
ERIC Educational Resources Information Center
Essers, Geurt; Dielissen, Patrick; van Weel, Chris; van der Vleuten, Cees; van Dulmen, Sandra; Kramer, Anneke
2015-01-01
Communication assessment in real-life consultations is a complex task. Generic assessment instruments help but may also have disadvantages. The generic nature of the skills being assessed does not provide indications for context-specific behaviour required in practice situations; context influences are mostly taken into account implicitly. Our…
45 CFR Appendix A to Part 1210 - Standard for Examiners
Code of Federal Regulations, 2011 CFR
2011-10-01
... of: (i) The personal attributes essential to the effective performance of the duties of an Examiner... causes of complex problems and apply mature judgment in assessing the practical implications of alternative solutions to those problems; —Interpret and apply regulations and other complex written material...
45 CFR Appendix A to Part 1210 - Standard for Examiners
Code of Federal Regulations, 2010 CFR
2010-10-01
... of: (i) The personal attributes essential to the effective performance of the duties of an Examiner... causes of complex problems and apply mature judgment in assessing the practical implications of alternative solutions to those problems; —Interpret and apply regulations and other complex written material...
ERIC Educational Resources Information Center
Chapman, Randall G.
1993-01-01
A study investigated the utility of importance-performance analysis, a marketing tool for assessing marketing position and performance, in learning how college applicants perceive their chosen college in comparison with others. Findings reflect the complexity of student decisions and suggest the "average" college performs above average…
Young, Katelyn A; Lane, Samantha M; Widger, John E; Neuhaus, Nina M; Dove, James T; Fluck, Marcus; Hunsinger, Marie A; Blansfield, Joseph A; Shabahang, Mohsen M
Characterize the concordance among faculty and resident perceptions of surgical case complexity, resident technical performance, and autonomy in a diverse sample of general surgery procedures using case-specific evaluations. A prospective study was conducted in which a faculty surgeon and surgical resident independently completed a postoperative assessment examining case complexity, resident operative performance (Milestone assessment) and autonomy (Zwisch model). Pearson correlation coefficients (r) reaching statistical significance (p < 0.05) were further classified as moderate (r ≥ 0.40), strong (r ≥ 0.60), or very strong (r ≥ 0.80). This study was conducted in the General Surgery Residency Program at an academic tertiary care facility (Geisinger Medical Center, Danville, PA). Participants included 6 faculty surgeons, in addition to 5 postgraduate year (PGY) 1, 6 midlevel (PGY 2-3), and 4 chief (PGY 4-5) residents. In total, 75 surgical cases were analyzed. Midlevel residents accounted for the highest number of cases (35, 46.6%). Overall, faculty and resident perceptions of case complexity demonstrated a strong correlation (r = 0.76, p < 0.0001). Technical performance scores were also strongly correlated (r = 0.66, p < 0.0001), whereas perceptions of autonomy demonstrated a moderate correlation (r = 0.56, p < 0.0001). Subgroup analysis revealed very strong correlations among faculty perceptions of case complexity and the perceptions of PGY 1 (r = 0.80, p < 0.0001) and chief residents (r = 0.82, p < 0.0001). All other intergroup correlations were strong with 2 notable exceptions as follows: midlevel and chief residents failed to correlate with faculty perceptions of autonomy and operative performance, respectively. General surgery residents generally demonstrated high correlations with faculty perceptions of case complexity, technical performance, and operative autonomy. This generalized accord supports the use of the Milestone and Zwisch assessments in residency programs. However, discordance among perceptions of midlevel resident autonomy and chief resident operative performance suggests that these trainees may need more direct communication from the faculty. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Jackson, Douglas N.
The term "conative" is used to describe constructs that span both motivational and volitional aspects of human behavior, distinguished from constructs that emphasize cognition and affection. Among the conative constructs are achievement strivings, beliefs about self-esteem and self-efficacy, interests and attitudes about learning,…
Test item linguistic complexity and assessments for deaf students.
Cawthon, Stephanie
2011-01-01
Linguistic complexity of test items is one test format element that has been studied in the context of struggling readers and their participation in paper-and-pencil tests. The present article presents findings from an exploratory study on the potential relationship between linguistic complexity and test performance for deaf readers. A total of 64 students completed 52 multiple-choice items, 32 in mathematics and 20 in reading. These items were coded for linguistic complexity components of vocabulary, syntax, and discourse. Mathematics items had higher linguistic complexity ratings than reading items, but there were no significant relationships between item linguistic complexity scores and student performance on the test items. The discussion addresses issues related to the subject area, student proficiency levels in the test content, factors to look for in determining a "linguistic complexity effect," and areas for further research in test item development and deaf students.
DOT National Transportation Integrated Search
1985-07-01
This study assessed possible interactive effects of alcohol and a simulated altitude of 12,500 ft. Each of 17 men was trained on the various tasks that comprise the Multiple Task Performance Battery and then performed over a 2-week period in four exp...
Assessing Organizational Effectiveness: The Role of Performance Measures
ERIC Educational Resources Information Center
Matthews, Joseph R.
2011-01-01
A brief overview of the challenges associated with demonstrating organizational effectiveness and the role of performance measures as surrogates for demonstrating effectiveness are provided. The complexity of analysis and the importance of use of performance measures provide a way to review the strengths and weakness of eight different ways to…
DOT National Transportation Integrated Search
1969-04-01
Male subjects were tested after extensive training as two five-man 'crews' in an experiment designed to examine the effects of signal rate on the performance of a task involving the monitoring of a dynamic process. Performance was measured using thre...
van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W
2017-01-01
This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.
Quantitative assessment of 12-lead ECG synthesis using CAVIAR.
Scherer, J A; Rubel, P; Fayn, J; Willems, J L
1992-01-01
The objective of this study is to assess the performance of patient-specific segment-specific (PSSS) synthesis in QRST complexes using CAVIAR, a new method of the serial comparison for electrocardiograms and vectorcardiograms. A collection of 250 multi-lead recordings from the Common Standards for Quantitative Electrocardiography (CSE) diagnostic pilot study is employed. QRS and ST-T segments are independently synthesized using the PSSS algorithm so that the mean-squared error between the original and estimated waveforms is minimized. CAVIAR compares the recorded and synthesized QRS and ST-T segments and calculates the mean-quadratic deviation as a measure of error. The results of this study indicate that estimated QRS complexes are good representatives of their recorded counterparts, and the integrity of the spatial information is maintained by the PSSS synthesis process. Analysis of the ST-T segments suggests that the deviations between recorded and synthesized waveforms are considerably greater than those associated with the QRS complexes. The poorer performance of the ST-T segments is attributed to magnitude normalization of the spatial loops, low-voltage passages, and noise interference. Using the mean-quadratic deviation and CAVIAR as methods of performance assessment, this study indicates that the PSSS-synthesis algorithm accurately maintains the signal information within the 12-lead electrocardiogram.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Daniel, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de; Thiel, Walter, E-mail: escudero@kofo.mpg.de, E-mail: thiel@kofo.mpg.de
2014-05-21
We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF{sub 6} complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO{sub 4}{sup −}, Cr(CO){sub 6}, [Fe(CN){sub 6}]{sup 4−}, four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons withmore » results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.« less
Nursing care complexity in a psychiatric setting: results of an observational study.
Petrucci, C; Marcucci, G; Carpico, A; Lancia, L
2014-02-01
For nurses working in mental health service settings, it is a priority to perform patient assessments to identify patients' general and behavioural risks and nursing care complexity using objective criteria, to meet the demand for care and to improve the quality of service by reducing health threat conditions to the patients' selves or to others (adverse events). This study highlights that there is a relationship between the complexity of psychiatric patient care, which was assigned a numerical value after the nursing assessment, and the occurrence of psychiatric adverse events in the recent histories of the patients. The results suggest that nursing supervision should be enhanced for patients with high care complexity scores. © 2013 John Wiley & Sons Ltd.
Auclair-Ouellet, Noémie; Fossard, Marion; St-Pierre, Marie-Catherine; Macoir, Joël
2013-01-01
Phonological dyslexia is a written language disorder characterized by poor reading of nonwords when compared with relatively preserved ability in reading real words. In this study, we report the case of FG, a 74-year-old man with phonological dyslexia. The nature and origin of his reading impairment were assessed using tasks involving activation and explicit manipulation of phonological representations as well as reading of words and nonwords in which the nature and complexity of grapheme-to-phoneme conversion rules (GPC rules) were manipulated. FG also underwent an extensive neuropsychological assessment battery in which he showed impaired performance in tests exploring verbal working memory and executive functions. FG showed no phonological impairment, and his performance was also largely unimpaired for reading words, with no effect of concreteness, grammatical class, morphological complexity, length or nature and complexity of the GPC rules. However, he showed substantial difficulties when asked to read nonwords with contextual GPC rules. The contribution of FG’s executive deficits to his performance in reading is discussed. PMID:22713417
Diverse, high-quality test set for the validation of protein-ligand docking performance.
Hartshorn, Michael J; Verdonk, Marcel L; Chessari, Gianni; Brewerton, Suzanne C; Mooij, Wijnand T M; Mortenson, Paul N; Murray, Christopher W
2007-02-22
A procedure for analyzing and classifying publicly available crystal structures has been developed. It has been used to identify high-resolution protein-ligand complexes that can be assessed by reconstructing the electron density for the ligand using the deposited structure factors. The complexes have been clustered according to the protein sequences, and clusters have been discarded if they do not represent proteins thought to be of direct interest to the pharmaceutical or agrochemical industry. Rules have been used to exclude complexes containing non-drug-like ligands. One complex from each cluster has been selected where a structure of sufficient quality was available. The final Astex diverse set contains 85 diverse, relevant protein-ligand complexes, which have been prepared in a format suitable for docking and are to be made freely available to the entire research community (http://www.ccdc.cam.ac.uk). The performance of the docking program GOLD against the new set is assessed using a variety of protocols. Relatively unbiased protocols give success rates of approximately 80% for redocking into native structures, but it is possible to get success rates of over 90% with some protocols.
Bencke, J; Damsgaard, R; Saekmose, A; Jørgensen, P; Jørgensen, K; Klausen, K
2002-06-01
The aim of the present investigation was to study the possible effects of specificity of training on muscle strength and anaerobic power in children from different sports and at different performance levels in relation to growth and maturation status. Hundred and eighty-four children of both gender participating either in swimming, tennis, team handball or gymnastics were recruited from the best clubs in Denmark. Within each sport, the coach had divided the children into an elite (E) and non-elite (NE) group according to performance level and talent. Tanner stage assessment and body weight and height measurements were performed by a physician. The anaerobic performances were assessed by Wingate tests and jumping performance in squat jump (SJ), countermovement jump (CMJ) and drop jump (DJ) from two heights. Most of the differences between groups in Wingate performance disappeared when the data were normalised to body mass. The gymnasts were the best jumpers and their superiority were increased in the more complex motor coordination tasks like DJ. The results may indicate some influence of training specificity, especially on the more complex motor tasks as DJ and there may be an effect of training before puberty. The performance in the less complex motor tasks like cycling and SJ and CMJ may also be influenced by specific training, but not to the same extent, and heritance may be an important factor for performance in these anaerobic tasks.
Functional assessment in mental health: lessons from occupational therapy
Rogers, Joan C.; Holm, Margo B.
2016-01-01
Occupational therapists have been conducting functional assessments since World War I, and this accumulated experience has taught us several critical lessons. First, a comprehensive profile of a patient's functioning requires multiple assessment methods. Second, assessment content and measurement constructs must change with the times. Third, technology can enhance and extend functional assessment. Fourth, performance-based assessments of everyday activities can also be used to measure body functions/impairments. However, while deconstructing activities into body functions/impairments is possible, the results do not reflect patients' abilities to integrate the cognitive, motor, sensory and affective functions necessary to complete a complex activity. Finally, the differential complexity of everyday activities that a patient can master or successfully complete can also provide a ruler with which to measure progress. PMID:27489454
ERIC Educational Resources Information Center
Zhang, Xiaomeng; Bartol, Kathryn M.
2010-01-01
Integrating theories addressing attention and activation with creativity literature, we found an inverted U-shaped relationship between creative process engagement and overall job performance among professionals in complex jobs in an information technology firm. Work experience moderated the curvilinear relationship, with low-experience employees…
Gras, Laure-Lise; Mitton, David; Crevier-Denoix, Nathalie; Laporte, Sébastien
2012-01-01
Most recent finite element models that represent muscles are generic or subject-specific models that use complex, constitutive laws. Identification of the parameters of such complex, constitutive laws could be an important limit for subject-specific approaches. The aim of this study was to assess the possibility of modelling muscle behaviour in compression with a parametric model and a simple, constitutive law. A quasi-static compression test was performed on the muscles of dogs. A parametric finite element model was designed using a linear, elastic, constitutive law. A multi-variate analysis was performed to assess the effects of geometry on muscle response. An inverse method was used to define Young's modulus. The non-linear response of the muscles was obtained using a subject-specific geometry and a linear elastic law. Thus, a simple muscle model can be used to have a bio-faithful, biomechanical response.
Gymnastic judges benefit from their own motor experience as gymnasts.
Pizzera, Alexandra
2012-12-01
Gymnastic judges have the difficult task of evaluating highly complex skills. My purpose in the current study was to examine evidence that judges use their sensorimotor experiences to enhance their perceptual judgments. In a video test, 58 judges rated 31 gymnasts performing a balance beam skill. I compared decision quality between judges who could perform the skill themselves on the balance beam (specific motor experience = SME) and those who could not. Those with SME showed better performance than those without SME. These data suggest that judges use their personal experiences as information to accurately assess complex gymnastic skills. [corrected].
ERIC Educational Resources Information Center
Marcotte, Karine; McSween, Marie-Pier; Pouliot, Monica; Martineau, Sarah; Pauze, Anne-Marie; Wiseman-Hakes, Catherine; MacDonald, Sheila
2017-01-01
Purpose: The Functional Assessment of Verbal Reasoning and Executive Strategies (FAVRES; MacDonald, 2005) test was designed for use by speech-language pathologists to assess verbal reasoning, complex comprehension, discourse, and executive skills during performance on a set of challenging and ecologically valid functional tasks. A recent French…
Süß, Heinz-Martin; Kretzschmar, André
2018-01-01
The original aim of complex problem solving (CPS) research was to bring the cognitive demands of complex real-life problems into the lab in order to investigate problem solving behavior and performance under controlled conditions. Up until now, the validity of psychometric intelligence constructs has been scrutinized with regard to its importance for CPS performance. At the same time, different CPS measurement approaches competing for the title of the best way to assess CPS have been developed. In the first part of the paper, we investigate the predictability of CPS performance on the basis of the Berlin Intelligence Structure Model and Cattell’s investment theory as well as an elaborated knowledge taxonomy. In the first study, 137 students managed a simulated shirt factory (Tailorshop; i.e., a complex real life-oriented system) twice, while in the second study, 152 students completed a forestry scenario (FSYS; i.e., a complex artificial world system). The results indicate that reasoning – specifically numerical reasoning (Studies 1 and 2) and figural reasoning (Study 2) – are the only relevant predictors among the intelligence constructs. We discuss the results with reference to the Brunswik symmetry principle. Path models suggest that reasoning and prior knowledge influence problem solving performance in the Tailorshop scenario mainly indirectly. In addition, different types of system-specific knowledge independently contribute to predicting CPS performance. The results of Study 2 indicate that working memory capacity, assessed as an additional predictor, has no incremental validity beyond reasoning. We conclude that (1) cognitive abilities and prior knowledge are substantial predictors of CPS performance, and (2) in contrast to former and recent interpretations, there is insufficient evidence to consider CPS a unique ability construct. In the second part of the paper, we discuss our results in light of recent CPS research, which predominantly utilizes the minimally complex systems (MCS) measurement approach. We suggest ecologically valid microworlds as an indispensable tool for future CPS research and applications. PMID:29867627
Visuo-spatial ability in colonoscopy simulator training.
Luursema, Jan-Maarten; Buzink, Sonja N; Verwey, Willem B; Jakimowicz, J J
2010-12-01
Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques.
Pugh, Carla M; DaRosa, Debra A
2013-10-01
There is a paucity of performance-based assessments that focus on intraoperative decision making. The purpose of this article is to review the performance outcomes and usefulness of two performance-based assessments that were developed using cognitive task analysis (CTA) frameworks. Assessment-A used CTA to create a "think aloud" oral examination that was administered while junior residents (PGY 1-2's, N = 69) performed a porcine-based laparoscopic cholecystectomy. Assessment-B used CTA to create a simulation-based, formative assessment of senior residents' (PGY 4-5's, N = 29) decision making during a laparoscopic ventral hernia repair. In addition to survey-based assessments of usefulness, a multiconstruct evaluation was performed using eight variables. When comparing performance outcomes, both approaches revealed major deficiencies in residents' intraoperative decision-making skills. Multiconstruct evaluation of the two CTA approaches revealed assessment method advantages for five of the eight evaluation areas: (1) Cognitive Complexity, (2) Content Quality, (3) Content Coverage, (4) Meaningfulness, and (5) Transfer and Generalizability. The two CTA performance assessments were useful in identifying significant training needs. While there are pros and cons to each approach, the results serve as a useful blueprint for program directors seeking to develop performance-based assessments for intraoperative decision making. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
NASA Technical Reports Server (NTRS)
Korsmeyer, David; Schreiner, John
2002-01-01
This technology evaluation report documents the findings and recommendations of the Engineering for Complex Systems Program (formerly Design for Safety) PRACA Enhancement Pilot Study of the Space Shuttle Program's (SSP's) Problem Reporting and Corrective Action (PRACA) System. A team at NASA Ames Research Center (ARC) performed this Study. This Study was initiated as a follow-on to the NASA chartered Shuttle Independent Assessment Team (SIAT) review (performed in the Fall of 1999) which identified deficiencies in the current PRACA implementation. The Pilot Study was launched with an initial qualitative assessment and technical review performed during January 2000 with the quantitative formal Study (the subject of this report) started in March 2000. The goal of the PRACA Enhancement Pilot Study is to evaluate and quantify the technical aspects of the SSP PRACA systems and recommend enhancements to address deficiencies and in preparation for future system upgrades.
Radioactive Waste Management Complex low-level waste radiological performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, S.J.; Rood, A.S.; Magnuson, S.O.
This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsitemore » receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.« less
Quantifying the cognitive cost of laparo-endoscopic single-site surgeries: Gaze-based indices.
Di Stasi, Leandro L; Díaz-Piedra, Carolina; Ruiz-Rabelo, Juan Francisco; Rieiro, Héctor; Sanchez Carrion, Jose M; Catena, Andrés
2017-11-01
Despite the growing interest concerning the laparo-endoscopic single-site surgery (LESS) procedure, LESS presents multiple difficulties and challenges that are likely to increase the surgeon's cognitive cost, in terms of both cognitive load and performance. Nevertheless, there is currently no objective index capable of assessing the surgeon cognitive cost while performing LESS. We assessed if gaze-based indices might offer unique and unbiased measures to quantify LESS complexity and its cognitive cost. We expect that the assessment of surgeon's cognitive cost to improve patient safety by measuring fitness-for-duty and reducing surgeons overload. Using a wearable eye tracker device, we measured gaze entropy and velocity of surgical trainees and attending surgeons during two surgical procedures (LESS vs. multiport laparoscopy surgery [MPS]). None of the participants had previous experience with LESS. They performed two exercises with different complexity levels (Low: Pattern Cut vs. High: Peg Transfer). We also collected performance and subjective data. LESS caused higher cognitive demand than MPS, as indicated by increased gaze entropy in both surgical trainees and attending surgeons (exploration pattern became more random). Furthermore, gaze velocity was higher (exploration pattern became more rapid) for the LESS procedure independently of the surgeon's expertise. Perceived task complexity and laparoscopic accuracy confirmed gaze-based results. Gaze-based indices have great potential as objective and non-intrusive measures to assess surgeons' cognitive cost and fitness-for-duty. Furthermore, gaze-based indices might play a relevant role in defining future guidelines on surgeons' examinations to mark their achievements during the entire training (e.g. analyzing surgical learning curves). Copyright © 2017 Elsevier Ltd. All rights reserved.
Novakovic-Agopian, Tatjana; Kornblith, Erica S; Abrams, Gary; Burciaga-Rosales, Joaquin; Loya, Fred; D'Esposito, Mark; Chen, Anthony J-W
2018-05-02
Deficits in executive control functions are some of the most common and disabling consequences of both military and civilian brain injury. However, effective interventions are scant. The goal of this study was to assess whether cognitive rehabilitation training that was successfully applied in chronic civilian brain injury would be effective for military Veterans with TBI. In a prior study, participants with chronic acquired brain injury significantly improved after training in goal-oriented attentional self-regulation (GOALS) on measures of attention/executive function, functional task performance, and goal-directed control over neural processing on fMRI. The objective of this study was to assess effects of GOALS training in Veterans with chronic TBI. 33 Veterans with chronic TBI and executive difficulties in their daily life completed either five weeks of manualized Goal-Oriented Attentional Self-Regulation (GOALS) training or Brain-Health Education (BHE) matched in time and intensity. Evaluator-blinded assessments at baseline and post training included neuropsychological and complex functional task performance and self-report measures of emotional regulation. After GOALS, but not BHE training, participants significantly improved from baseline on primary outcome measures of: Overall Complex Attention/Executive Function composite neuropsychological performance score [F = 7.10, p =.01; partial 2 = .19], and on overall complex functional task performance (Goal Processing Scale Overall Performance) [F=6.92, p=.01, partial 2 =.20]. Additionally, post-GOALS participants indicated significant improvement on emotional regulation self-report measures [POMS Confusion Score F=6.05, p=.02, partial2=.20]. Training in attentional self-regulation applied to participant defined goals may improve cognitive functioning in Veterans with chronic TBI. Attention regulation training may not only impact executive control functioning in real world complex tasks, but may also improve emotional regulation and functioning. Implications for treatment of Veterans with TBI are discussed.
2014-03-14
NUMBER FA8201-09-D-0002 Overhaul Complex at Little Mountain Test Annex, Utah 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Streamline Consulting, LLC 1713 N. Sweetwater Lane Farmington, Utah 84025...Hill Air Force Base (AFB) proposes to construct a new emergency power unit overhaul complex at Little Mountain Test Annex, Utah . Buildings 2005
Lajnef, Tarek; Chaibi, Sahbi; Eichenlaub, Jean-Baptiste; Ruby, Perrine M.; Aguera, Pierre-Emmanuel; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim
2015-01-01
A novel framework for joint detection of sleep spindles and K-complex events, two hallmarks of sleep stage S2, is proposed. Sleep electroencephalography (EEG) signals are split into oscillatory (spindles) and transient (K-complex) components. This decomposition is conveniently achieved by applying morphological component analysis (MCA) to a sparse representation of EEG segments obtained by the recently introduced discrete tunable Q-factor wavelet transform (TQWT). Tuning the Q-factor provides a convenient and elegant tool to naturally decompose the signal into an oscillatory and a transient component. The actual detection step relies on thresholding (i) the transient component to reveal K-complexes and (ii) the time-frequency representation of the oscillatory component to identify sleep spindles. Optimal thresholds are derived from ROC-like curves (sensitivity vs. FDR) on training sets and the performance of the method is assessed on test data sets. We assessed the performance of our method using full-night sleep EEG data we collected from 14 participants. In comparison to visual scoring (Expert 1), the proposed method detected spindles with a sensitivity of 83.18% and false discovery rate (FDR) of 39%, while K-complexes were detected with a sensitivity of 81.57% and an FDR of 29.54%. Similar performances were obtained when using a second expert as benchmark. In addition, when the TQWT and MCA steps were excluded from the pipeline the detection sensitivities dropped down to 70% for spindles and to 76.97% for K-complexes, while the FDR rose up to 43.62 and 49.09%, respectively. Finally, we also evaluated the performance of the proposed method on a set of publicly available sleep EEG recordings. Overall, the results we obtained suggest that the TQWT-MCA method may be a valuable alternative to existing spindle and K-complex detection methods. Paths for improvements and further validations with large-scale standard open-access benchmarking data sets are discussed. PMID:26283943
Autonomous Quality Control of Joint Orientation Measured with Inertial Sensors.
Lebel, Karina; Boissy, Patrick; Nguyen, Hung; Duval, Christian
2016-07-05
Clinical mobility assessment is traditionally performed in laboratories using complex and expensive equipment. The low accessibility to such equipment, combined with the emerging trend to assess mobility in a free-living environment, creates a need for body-worn sensors (e.g., inertial measurement units-IMUs) that are capable of measuring the complexity in motor performance using meaningful measurements, such as joint orientation. However, accuracy of joint orientation estimates using IMUs may be affected by environment, the joint tracked, type of motion performed and velocity. This study investigates a quality control (QC) process to assess the quality of orientation data based on features extracted from the raw inertial sensors' signals. Joint orientation (trunk, hip, knee, ankle) of twenty participants was acquired by an optical motion capture system and IMUs during a variety of tasks (sit, sit-to-stand transition, walking, turning) performed under varying conditions (speed, environment). An artificial neural network was used to classify good and bad sequences of joint orientation with a sensitivity and a specificity above 83%. This study confirms the possibility to perform QC on IMU joint orientation data based on raw signal features. This innovative QC approach may be of particular interest in a big data context, such as for remote-monitoring of patients' mobility.
Formative feedback and scaffolding for developing complex problem solving and modelling outcomes
NASA Astrophysics Data System (ADS)
Frank, Brian; Simper, Natalie; Kaupp, James
2018-07-01
This paper discusses the use and impact of formative feedback and scaffolding to develop outcomes for complex problem solving in a required first-year course in engineering design and practice at a medium-sized research-intensive Canadian university. In 2010, the course began to use team-based, complex, open-ended contextualised problems to develop problem solving, communications, teamwork, modelling, and professional skills. Since then, formative feedback has been incorporated into: task and process-level feedback on scaffolded tasks in-class, formative assignments, and post-assignment review. Development in complex problem solving and modelling has been assessed through analysis of responses from student surveys, direct criterion-referenced assessment of course outcomes from 2013 to 2015, and an external longitudinal study. The findings suggest that students are improving in outcomes related to complex problem solving over the duration of the course. Most notably, the addition of new feedback and scaffolding coincided with improved student performance.
Peterson, Lenna X; Shin, Woong-Hee; Kim, Hyungrae; Kihara, Daisuke
2018-03-01
We report our group's performance for protein-protein complex structure prediction and scoring in Round 37 of the Critical Assessment of PRediction of Interactions (CAPRI), an objective assessment of protein-protein complex modeling. We demonstrated noticeable improvement in both prediction and scoring compared to previous rounds of CAPRI, with our human predictor group near the top of the rankings and our server scorer group at the top. This is the first time in CAPRI that a server has been the top scorer group. To predict protein-protein complex structures, we used both multi-chain template-based modeling (TBM) and our protein-protein docking program, LZerD. LZerD represents protein surfaces using 3D Zernike descriptors (3DZD), which are based on a mathematical series expansion of a 3D function. Because 3DZD are a soft representation of the protein surface, LZerD is tolerant to small conformational changes, making it well suited to docking unbound and TBM structures. The key to our improved performance in CAPRI Round 37 was to combine multi-chain TBM and docking. As opposed to our previous strategy of performing docking for all target complexes, we used TBM when multi-chain templates were available and docking otherwise. We also describe the combination of multiple scoring functions used by our server scorer group, which achieved the top rank for the scorer phase. © 2017 Wiley Periodicals, Inc.
Burger, Lucile; Uittenhove, Kim; Lemaire, Patrick; Taconnat, Laurence
2017-04-01
Efficient execution of strategies is crucial to memory performance and to age-related differences in this performance. Relative strategy complexity influences memory performance and aging effects on memory. Here, we aimed to further our understanding of the effects of relative strategy complexity by looking at the role of cognitive control functions and the time-course of the effects of relative strategy complexity. Thus, we manipulated inter-stimulus intervals (ISI) and assessed executive functions. Results showed that (a) performance as a function of the relative strategy difficulty of the current and previous trial was modulated by ISI, (b) these effects were modulated by inhibition capacities, and (c) significant age differences were found in the way ISI modulates relative strategy difficulty. These findings have important implications for understanding the relationships between aging, executive control, and strategy execution in episodic memory. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Shimoff, Eliot H.; Matthews, Byron A.
Five experiments were conducted to determine whether properties inherent in some training procedures may subtly influence the adaptability of skilled performance of complex tasks. The first two experiments assessed the insensitivity of low-rate performances. Examined in the third experiment was the issue of whether instructions that focus…
Richardson, Miles; Hunt, Thomas E; Richardson, Cassandra
2014-12-01
This paper presents a methodology to control construction task complexity and examined the relationships between construction performance and spatial and mathematical abilities in children. The study included three groups of children (N = 96); ages 7-8, 10-11, and 13-14 years. Each group constructed seven pre-specified objects. The study replicated and extended previous findings that indicated that the extent of component symmetry and variety, and the number of components for each object and available for selection, significantly predicted construction task difficulty. Results showed that this methodology is a valid and reliable technique for assessing and predicting construction play task difficulty. Furthermore, construction play performance predicted mathematical attainment independently of spatial ability.
The Impact of Feedback as Formative Assessment on Student Performance
ERIC Educational Resources Information Center
Owen, Leanne
2016-01-01
This article provides an evaluation of the redesign of a research methods course intended to enhance students' learning for understanding and transfer. Drawing on principles of formative assessment from the existing academic literature, the instructor introduced a number of increasingly complex low-stakes assignments for students to complete prior…
Design Rationale for a Complex Performance Assessment
ERIC Educational Resources Information Center
Williamson, David M.; Bauer, Malcolm; Steinberg, Linda S.; Mislevy, Robert J.; Behrens, John T.; DeMark, Sarah F.
2004-01-01
In computer-based interactive environments meant to support learning, students must bring a wide range of relevant knowledge, skills, and abilities to bear jointly as they solve meaningful problems in a learning domain. To function effectively as an assessment, a computer system must additionally be able to evoke and interpret observable evidence…
Assessing Pragmatics: DCTS and Retrospective Verbal Reports
ERIC Educational Resources Information Center
Beltrán-Palanques, Vicente
2016-01-01
Assessing pragmatic knowledge in the instructed setting is seen as a complex but necessary task, which requires the design of appropriate research methodologies to examine pragmatic performance. This study discusses the use of two different research methodologies, namely those of Discourse Completion Tests/Tasks (DCTs) and verbal reports. Research…
ERIC Educational Resources Information Center
Cai, Jinfa, And Others
1996-01-01
Presents a conceptual framework for analyzing students' mathematical understanding, reasoning, problem solving, and communication. Analyses of student responses indicated that the tasks appear to measure the complex thinking and reasoning processes that they were designed to assess. Concludes that the QUASAR assessment tasks can capture changes in…
NASA Technical Reports Server (NTRS)
Lee, Alice T.; Gunn, Todd; Pham, Tuan; Ricaldi, Ron
1994-01-01
This handbook documents the three software analysis processes the Space Station Software Analysis team uses to assess space station software, including their backgrounds, theories, tools, and analysis procedures. Potential applications of these analysis results are also presented. The first section describes how software complexity analysis provides quantitative information on code, such as code structure and risk areas, throughout the software life cycle. Software complexity analysis allows an analyst to understand the software structure, identify critical software components, assess risk areas within a software system, identify testing deficiencies, and recommend program improvements. Performing this type of analysis during the early design phases of software development can positively affect the process, and may prevent later, much larger, difficulties. The second section describes how software reliability estimation and prediction analysis, or software reliability, provides a quantitative means to measure the probability of failure-free operation of a computer program, and describes the two tools used by JSC to determine failure rates and design tradeoffs between reliability, costs, performance, and schedule.
Edwards, D. L.; Saleh, A. A.; Greenspan, S. L.
2015-01-01
Summary We performed a systematic review and meta-analysis of the performance of clinical risk assessment instruments for screening for DXA-determined osteoporosis or low bone density. Commonly evaluated risk instruments showed high sensitivity approaching or exceeding 90 % at particular thresholds within various populations but low specificity at thresholds required for high sensitivity. Simpler instruments, such as OST, generally performed as well as or better than more complex instruments. Introduction The purpose of the study is to systematically review the performance of clinical risk assessment instruments for screening for dual-energy X-ray absorptiometry (DXA)-determined osteoporosis or low bone density. Methods Systematic review and meta-analysis were performed. Multiple literature sources were searched, and data extracted and analyzed from included references. Results One hundred eight references met inclusion criteria. Studies assessed many instruments in 34 countries, most commonly the Osteoporosis Self-Assessment Tool (OST), the Simple Calculated Osteoporosis Risk Estimation (SCORE) instrument, the Osteoporosis Self-Assessment Tool for Asians (OSTA), the Osteoporosis Risk Assessment Instrument (ORAI), and body weight criteria. Meta-analyses of studies evaluating OST using a cutoff threshold of <1 to identify US postmenopausal women with osteoporosis at the femoral neck provided summary sensitivity and specificity estimates of 89 % (95%CI 82–96 %) and 41 % (95%CI 23–59 %), respectively. Meta-analyses of studies evaluating OST using a cutoff threshold of 3 to identify US men with osteoporosis at the femoral neck, total hip, or lumbar spine provided summary sensitivity and specificity estimates of 88 % (95%CI 79–97 %) and 55 % (95%CI 42–68 %), respectively. Frequently evaluated instruments each had thresholds and populations for which sensitivity for osteoporosis or low bone mass detection approached or exceeded 90 % but always with a trade-off of relatively low specificity. Conclusions Commonly evaluated clinical risk assessment instruments each showed high sensitivity approaching or exceeding 90 % for identifying individuals with DXA-determined osteoporosis or low BMD at certain thresholds in different populations but low specificity at thresholds required for high sensitivity. Simpler instruments, such as OST, generally performed as well as or better than more complex instruments. PMID:25644147
Occupations that people with late effects of polio perceive difficult to perform.
Appelin, Katja; Lexell, Jan; Månsson Lexell, Eva
2014-09-01
The aims of this study were to describe which occupations that people with late effects of polio perceive difficult to perform, which occupational area the occupations were related to and their level of complexity. The aims were also to describe their own perception of the importance, performance and satisfaction with these occupations. Sixty-two participants (mean age 61 years) were assessed with the Canadian Occupational Performance Measure. A total of 431 occupations were reported (43% self-care, 32% productivity and 25% leisure). Two subcategories, household management (27 %) and functional mobility (23 %), represented half of all the reported occupations. Ratings for prioritized occupations (N = 300) were high for importance and generally low for performance and satisfaction. A wide variety of occupations were reported, related to both occupational areas and different levels of complexity within an occupational area. The results underscore the importance of using assessment tools that can capture both the variety and complexity of occupations. By obtaining more detailed information about occupations that people with late effects of polio perceive difficult to perform, this will enable occupational therapists to offer targeted interventions that can facilitate engagement in meaningful and purposeful occupations. A larger and more heterogeneous sample may enable the results to be generalized to more people with late effects of polio. Future studies should focus on methods that can facilitate engagement in meaningful and purposeful occupations for people with late effects of polio. Copyright © 2014 John Wiley & Sons, Ltd.
Multimodal signals: ultraviolet reflectance and chemical cues in stomatopod agonistic encounters
Marshall, N. Justin; Lewis, Sara M.
2016-01-01
Complex signals are commonly used during intraspecific contests over resources to assess an opponent's fighting ability and/or aggressive state. Stomatopod crustaceans may use complex signals when competing aggressively for refuges. Before physical attacks, stomatopods assess their opponents using chemical cues and perform threat displays showing a coloured patch, the meral spot. In some species, this spot reflects UV. However, despite their complex visual system with up to 20 photoreceptor classes, we do not know if stomatopods use chromatic or achromatic signals in contests. In a field study, we found that Neogonodactylus oerstedii meral spot luminance varies with sex, habitat and, more weakly, body length. Next, we conducted an experimental manipulation which demonstrated that both chemical cues and chromatic signals are used during contests. In the absence of chemical cues, stomatopods approached an occupied refuge more quickly and performed offensive behaviours at a lower rate. When UV reflectance was absent, stomatopods performed offensive behaviours more frequently and contest duration trended towards shorter fights. These results provide new evidence that UV reflectance and/or visible spectrum luminance is used to amplify threat displays. Our results are the first to demonstrate that chemical and chromatic cues comprise a multimodal signal in stomatopod contests. PMID:27853613
STOL ride control feasibility study
NASA Technical Reports Server (NTRS)
Gordon, C. K.; Dodson, R. O.
1973-01-01
The feasibility of developing a ride-smoothing control system for a 20-passenger turboprop STOL transport was assessed. Five different ride-control system configurations with varying degrees of complexity, performance, and cost were investigated. Results indicate that a satisfactory ride-control system can be practically implemented on the aircraft with minimum flight performance degradation.
Making Learning Happen: Strategies for an Interactive Classroom.
ERIC Educational Resources Information Center
Golub, Jeffrey N.
This is a book about "conscious learning," the kind of learning that enables students to assess the current level and quality of their language performance and then work to improve that performance deliberately, enthusiastically, and with commitment. The book takes complex, sophisticated understandings and reworks them into ready-to-use…
DOT National Transportation Integrated Search
1969-08-01
This study concerned the rate of presentation of stimuli on a task involving the monitoring of a static process of the kind represented by aircraft warning light indicators. The task was performed concurrently with various combinations of tasks requi...
Performance Assessment for Pump-and-Treat Closure or Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Johnson, Christian D.; Becker, Dave J.
2015-09-29
A structured performance assessment approach is useful to evaluate pump-and-treat (P&T) groundwater remediation, which has been applied at numerous sites. Consistent with the U.S. Environmental Protection Agency’s Groundwater Road Map, performance assessment during remedy implementation may be needed, and should consider remedy optimization, transition to alternative remedies, or remedy closure. In addition, a recent National Research Council study examined groundwater remediation at complex contaminated sites and concluded that it may be beneficial to evaluate remedy performance and the potential need for transition to alternative approaches at these sites. The intent of this document is to provide a structured approach formore » assessing P&T performance to support a decision to optimize, transition, or close a P&T remedy. The process presented in this document for gathering information and performing evaluations to support P&T remedy decisions includes use of decision elements to distinguish between potential outcomes of a remedy decision. Case studies are used to augment descriptions of decision elements and to illustrate each type of outcome identified in the performance assessment approach. The document provides references to resources for tools and other guidance relevant to conducting the P&T assessment.« less
Deane-Coe, Kirsten K; Sarvary, Mark A; Owens, Thomas G
2017-01-01
In an undergraduate introductory biology laboratory course, we used a summative assessment to directly test the learning objective that students will be able to apply course material to increasingly novel and complex situations. Using a factorial framework, we developed multiple true-false questions to fall along axes of novelty and complexity, which resulted in four categories of questions: familiar content and low complexity (category A); novel content and low complexity (category B); familiar content and high complexity (category C); and novel content and high complexity (category D). On average, students scored more than 70% on all questions, indicating that the course largely met this learning objective. However, students scored highest on questions in category A, likely because they were most similar to course content, and lowest on questions in categories C and D. While we anticipated students would score equally on questions for which either novelty or complexity was altered (but not both), we observed that student scores in category C were lower than in category B. Furthermore, students performed equally poorly on all questions for which complexity was higher (categories C and D), even those containing familiar content, suggesting that application of course material to increasingly complex situations is particularly challenging to students. © 2017 K. K. Deane-Coe et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
ERIC Educational Resources Information Center
Elwood, Jannette
Since its introduction in 1988 the General Certificate of Secondary Education (GCSE), the main public examination for pupils at age 16 in England, Wales, and Northern Ireland, has become an obvious area in which to investigate gender-related differences in performance. As a complex attainment test, the GCSE is largely made up of a coursework…
ERIC Educational Resources Information Center
Nehring, Andreas; Päßler, Andreas; Tiemann, Rüdiger
2017-01-01
With regard to the moderate performance of German students in international large-scale assessments, one branch of German science education research is concerned with the construction and evaluation of competence models. Based on the theory-driven definition of competence levels, these models imply a correlation between the complexity of a…
Towards a Model of School-Based Curriculum Development and Assessment Using the SOLO Taxonomy.
ERIC Educational Resources Information Center
Biggs, John
1989-01-01
One factor preventing the wider acceptance of school-based curriculum development and assessment is the problem of comparing performances of different students, in different schools. The SOLO taxonomy is used to describe the complexity of learning outcomes in a language that is generally applicable across the curriculum. (Author/MLW)
Evaluating Multiple Perspectives: Approaching the Synthesis Task through Assessing Credibility
ERIC Educational Resources Information Center
Lafferty, Karen Elizabeth; Summers, Amy; Tanaka, Stephanie; Cavanagh, Jeanne
2016-01-01
Introduction of the Common Core State Standards and assessments like the synthesis performance task pose new challenges for secondary English teachers. As students of all ability levels engage with complex text and in tasks that target higher level cognitive skills, teachers need strategies to support their understanding. This article describes…
Kok, Maryse C; Broerse, Jacqueline E W; Theobald, Sally; Ormel, Hermen; Dieleman, Marjolein; Taegtmeyer, Miriam
2017-09-02
Health systems are social institutions, in which health worker performance is shaped by transactional processes between different actors.This analytical assessment unravels the complex web of factors that influence the performance of community health workers (CHWs) in low- and middle-income countries. It examines their unique intermediary position between the communities they serve and actors in the health sector, and the complexity of the health systems in which they operate. The assessment combines evidence from the international literature on CHW programmes with research outcomes from the 5-year REACHOUT consortium, undertaking implementation research to improve CHW performance in six contexts (two in Asia and four in Africa). A conceptual framework on CHW performance, which explicitly conceptualizes the interface role of CHWs, is presented. Various categories of factors influencing CHW performance are distinguished in the framework: the context, the health system and intervention hardware and the health system and intervention software. Hardware elements of CHW interventions comprise the supervision systems, training, accountability and communication structures, incentives, supplies and logistics. Software elements relate to the ideas, interests, relationships, power, values and norms of the health system actors. They influence CHWs' feelings of connectedness, familiarity, self-fulfilment and serving the same goals and CHWs' perceptions of support received, respect, competence, honesty, fairness and recognition.The framework shines a spotlight on the need for programmes to pay more attention to ideas, interests, relationships, power, values and norms of CHWs, communities, health professionals and other actors in the health system, if CHW performance is to improve.
Schoenmakers, Birgitte; Wens, Johan
2014-03-04
To investigate if the psychometric qualities of an OSCE consisting of more complex simulated patient encounters remain valid and reliable in the assessment of postgraduate trainees in general practice. In this intervention study without control group, the traditional OSCE was formally replaced by the new, complex version. The study population was composed by all postgraduate trainees (second and third phase) in general practice during the ongoing academic year. Data were handled and collected as part of the formal assessment program. Univariate analyses, the variance of scores and multivariate analyses were performed to assess the test qualities. A total of 340 students participated. Average final scores were slightly higher for third-phase students (t-test, p =0.05). Overall test scores were equally distributed on station level, circuit level and phase level. A multiple regression analysis revealed that test scores were dependent on the stations and circuits, but not on the master phase. In a changing learning environment, assessment and evaluation strategies require reorientation. The reliability and validity of the OSCE remain subject to discussion. In particular, when it comes to content and design, the traditional OSCE might underestimate the performance level of postgraduate trainees in general practice. A reshaping of this OSCE to a more sophisticated design with more complex patient encounters appears to restore the validity of the test results.
Hysong, Sylvia J; Thomas, Candice L; Spitzmüller, Christiane; Amspoker, Amber B; Woodard, LeChauncy; Modi, Varsha; Naik, Aanand D
2016-01-15
Team coordination within clinical care settings is a critical component of effective patient care. Less is known about the extent, effectiveness, and impact of coordination activities among professionals within VA Patient-Aligned Care Teams (PACTs). This study will address these gaps by describing the specific, fundamental tasks and practices involved in PACT coordination, their impact on performance measures, and the role of coordination task complexity. First, we will use a web-based survey of coordination practices among 1600 PACTs in the national VHA. Survey findings will characterize PACT coordination practices and assess their association with clinical performance measures. Functional job analysis, using 6-8 subject matter experts who are 3rd and 4th year residents in VA Primary Care rotations, will be utilized to identify the tasks involved in completing clinical performance measures to standard. From this, expert ratings of coordination complexity will be used to determine the level of coordinative complexity required for each of the clinical performance measures drawn from the VA External Peer Review Program (EPRP). For objective 3, data collected from the first two methods will evaluate the effect of clinical complexity on the relationships between measures of PACT coordination and their ratings on the clinical performance measures. Results from this study will support successful implementation of coordinated team-based work in clinical settings by providing knowledge regarding which aspects of care require the most complex levels of coordination and how specific coordination practices impact clinical performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downing, D.J.
1993-10-01
This paper discusses Carol Gotway`s paper, ``The Use of Conditional Simulation in Nuclear Waste Site Performance Assessment.`` The paper centers on the use of conditional simulation and the use of geostatistical methods to simulate an entire field of values for subsequent use in a complex computer model. The issues of sampling designs for geostatistics, semivariogram estimation and anisotropy, turning bands method for random field generation, and estimation of the comulative distribution function are brought out.
Affective temperament and executive functions in emergency medicine professionals.
Jaracz, Marcin; Paciorek, Przemysław; Buciński, Adam; Borkowska, Alina
2014-10-01
Recent studies indicate that choice of profession is related to differences in affective temperament, which is probably due to various predispositions needed to efficiently perform particular professions. The aim of the present study was to assess affective temperament and executive functions in a sample of emergency medicine professionals. 75 emergency medicine professionals were enrolled in the study. Affective temperament was assessed by means of TEMPS-A. Executive functions were assessed by means of Trail Making Test and Stroop Color Word Interference Test. Subjects showed significantly higher rates of hyperthymic, compared to depressive, cyclothymic, irritable and anxious temperaments. The principal component analysis revealed that hyperthymic temperament contributes to a different factor, than the remaining ones. Higher rates of depressive, cyclothymic, irritable and anxious temperaments were related to poorer performance in Trail Making Test, whereas hyperthymic temperament had the opposite effect. Due to the size of the sample, results of the present study may have lacked power to show all the relationships between tested variables. Hyperthymic temperament promotes efficient performance of complex tasks under time pressure. Depressive, cyclothymic, irritable and anxious temperaments have the opposite effect. This makes hyperthymic temperament a desirable trait in emergency medicine professionals, performing complex medical tasks under extreme conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Glickman, Neil
2007-01-01
When mental health clinicians perform mental status examinations, they examine the language patterns of patients because abnormal language patterns, sometimes referred to as language dysfluency, may indicate a thought disorder. Performing such examinations with deaf patients is a far more complex task, especially with traditionally underserved…
ERIC Educational Resources Information Center
Goldstein, Harvey; Bonnet, Gerard; Rocher, Thierry
2007-01-01
The Programme for International Student Assessment comparative study of reading performance among 15-year-olds is reanalyzed using statistical procedures that allow the full complexity of the data structures to be explored. The article extends existing multilevel factor analysis and structural equation models and shows how this can extract richer…
Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance
ERIC Educational Resources Information Center
Muller, Viktor; Lindenberger, Ulman
2012-01-01
Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…
ERIC Educational Resources Information Center
Dündar, Sefa
2015-01-01
Using multiple representations of a problem can reveal the relationship between complex concepts by expressing the same mathematical condition differently and can contribute to the meaningful learning of mathematical concepts. The purpose of this study is to assess the performances of mathematics teacher-candidates on trigonometry problems…
Complexity of physiological responses decreases in high-stress musical performance.
Williamon, Aaron; Aufegger, Lisa; Wasley, David; Looney, David; Mandic, Danilo P
2013-12-06
For musicians, performing in front of an audience can cause considerable apprehension; indeed, performance anxiety is felt throughout the profession, with wide ranging symptoms arising irrespective of age, skill level and amount of practice. A key indicator of stress is frequency-specific fluctuations in the dynamics of heart rate known as heart rate variability (HRV). Recent developments in sensor technology have made possible the measurement of physiological parameters reflecting HRV non-invasively and outside of the laboratory, opening research avenues for real-time performer feedback to help improve stress management. However, the study of stress using standard algorithms has led to conflicting and inconsistent results. Here, we present an innovative and rigorous approach which combines: (i) a controlled and repeatable experiment in which the physiological response of an expert musician was evaluated in a low-stress performance and a high-stress recital for an audience of 400 people, (ii) a piece of music with varying physical and cognitive demands, and (iii) dynamic stress level assessment with standard and state-of-the-art HRV analysis algorithms such as those within the domain of complexity science which account for higher order stress signatures. We show that this offers new scope for interpreting the autonomic nervous system response to stress in real-world scenarios, with the evolution of stress levels being consistent with the difficulty of the music being played, superimposed on the stress caused by performing in front of an audience. For an emerging class of algorithms that can analyse HRV independent of absolute data scaling, it is shown that complexity science performs a more accurate assessment of average stress levels, thus providing greater insight into the degree of physiological change experienced by musicians when performing in public.
Complexity of physiological responses decreases in high-stress musical performance
Williamon, Aaron; Aufegger, Lisa; Wasley, David; Looney, David; Mandic, Danilo P.
2013-01-01
For musicians, performing in front of an audience can cause considerable apprehension; indeed, performance anxiety is felt throughout the profession, with wide ranging symptoms arising irrespective of age, skill level and amount of practice. A key indicator of stress is frequency-specific fluctuations in the dynamics of heart rate known as heart rate variability (HRV). Recent developments in sensor technology have made possible the measurement of physiological parameters reflecting HRV non-invasively and outside of the laboratory, opening research avenues for real-time performer feedback to help improve stress management. However, the study of stress using standard algorithms has led to conflicting and inconsistent results. Here, we present an innovative and rigorous approach which combines: (i) a controlled and repeatable experiment in which the physiological response of an expert musician was evaluated in a low-stress performance and a high-stress recital for an audience of 400 people, (ii) a piece of music with varying physical and cognitive demands, and (iii) dynamic stress level assessment with standard and state-of-the-art HRV analysis algorithms such as those within the domain of complexity science which account for higher order stress signatures. We show that this offers new scope for interpreting the autonomic nervous system response to stress in real-world scenarios, with the evolution of stress levels being consistent with the difficulty of the music being played, superimposed on the stress caused by performing in front of an audience. For an emerging class of algorithms that can analyse HRV independent of absolute data scaling, it is shown that complexity science performs a more accurate assessment of average stress levels, thus providing greater insight into the degree of physiological change experienced by musicians when performing in public. PMID:24068177
Embedded performance validity testing in neuropsychological assessment: Potential clinical tools.
Rickards, Tyler A; Cranston, Christopher C; Touradji, Pegah; Bechtold, Kathleen T
2018-01-01
The article aims to suggest clinically-useful tools in neuropsychological assessment for efficient use of embedded measures of performance validity. To accomplish this, we integrated available validity-related and statistical research from the literature, consensus statements, and survey-based data from practicing neuropsychologists. We provide recommendations for use of 1) Cutoffs for embedded performance validity tests including Reliable Digit Span, California Verbal Learning Test (Second Edition) Forced Choice Recognition, Rey-Osterrieth Complex Figure Test Combination Score, Wisconsin Card Sorting Test Failure to Maintain Set, and the Finger Tapping Test; 2) Selecting number of performance validity measures to administer in an assessment; and 3) Hypothetical clinical decision-making models for use of performance validity testing in a neuropsychological assessment collectively considering behavior, patient reporting, and data indicating invalid or noncredible performance. Performance validity testing helps inform the clinician about an individual's general approach to tasks: response to failure, task engagement and persistence, compliance with task demands. Data-driven clinical suggestions provide a resource to clinicians and to instigate conversation within the field to make more uniform, testable decisions to further the discussion, and guide future research in this area.
ERIC Educational Resources Information Center
Moore, Catherine; Westwater-Wood, Sarah; Kerry, Roger
2016-01-01
Peer coaching has been associated with positive effects on learning. Specifically, these associations have been explored in complex healthcare professions. A social theory of learning has been proposed as a key component of the utility of peer coaching. Further, within the peer coaching model, assessment has been considered as an important driver.…
ERIC Educational Resources Information Center
Meyen, Ed; Poggio, John; Seok, Soonhwa; Smith, Sean
2006-01-01
One of the most significant challenges facing policy makers in education today is to ensure that state assessments designed to measure student performance across specified grade-level curriculum content standards will allow all students to demonstrate what they have learned. This challenge is made complex by the varied attributes of students with…
Geographical Education and the Environment: Assessment Situations from Cartographic Expression
ERIC Educational Resources Information Center
de Gonzalez, Monica Rodriguez
2007-01-01
Even though the appearance and spread of new technologies offer considerable challenges in the design of far reaching and complex pre-test and assessment situations which are in keeping with the trends of teaching and learning, the thematic map is still an insuperable document to value either integral training or academic performance of future…
Learning to Write: Progress-Monitoring Tools for Beginning and at-Risk Writers
ERIC Educational Resources Information Center
Ritchey, Kristen D.
2006-01-01
Teachers now have a wide range of tools to help assess the beginning reading performance of kindergarten and first-grade children. However, validated procedures for assessing the beginning writing skills of kindergarten and first-grade children are less widely available. Learning to write, like learning to read, is a complex task. The ability to…
Common Structural Design Features of Rubrics May Represent a Threat to Validity
ERIC Educational Resources Information Center
Humphry, Stephen Mark; Heldsinger, Sandra Allison
2014-01-01
Rubrics for assessing student performance are often seen as providing rich information about complex skills. Despite their widespread usage, however, little empirical research has focused on whether it is possible for rubrics to validly meet their intended purposes. The authors examine a rubric used to assess students' writing in a large-scale…
ERIC Educational Resources Information Center
Stone, Elisa M.
2014-01-01
New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific…
ERIC Educational Resources Information Center
van Zundert, M. J.; Konings, K. D.; Sluijsmans, D. M. A.; van Merrienboer, J.J.G.
2012-01-01
Instruction in peer assessment of complex task performance may cause high cognitive load, impairing learning. A stepwise instructional strategy aimed at reducing cognitive load was investigated by comparing it with a combined instructional strategy in an experiment with 128 secondary school students (mean age 14.0 years; 45.2% male) with the…
Marchal, Bruno; Hoerée, Tom; da Silveira, Valéria Campos; Van Belle, Sara; Prashanth, Nuggehalli S; Kegels, Guy
2014-04-17
Performance of health care systems is a key concern of policy makers and health service managers all over the world. It is also a major challenge, given its multidimensional nature that easily leads to conceptual and methodological confusion. This is reflected by a scarcity of models that comprehensively analyse health system performance. In health, one of the most comprehensive performance frameworks was developed by the team of Leggat and Sicotte. Their framework integrates 4 key organisational functions (goal attainment, production, adaptation to the environment, and values and culture) and the tensions between these functions.We modified this framework to better fit the assessment of the performance of health organisations in the public service domain and propose an analytical strategy that takes it into the social complexity of health organisations. The resulting multipolar performance framework (MPF) is a meta-framework that facilitates the analysis of the relations and interactions between the multiple actors that influence the performance of health organisations. Using the MPF in a dynamic reiterative mode not only helps managers to identify the bottlenecks that hamper performance, but also the unintended effects and feedback loops that emerge. Similarly, it helps policymakers and programme managers at central level to better anticipate the potential results and side effects of and required conditions for health policies and programmes and to steer their implementation accordingly.
NASA Astrophysics Data System (ADS)
Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.
2017-12-01
The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.
Improved performance of a large pig complex after sequential nursery depopulation.
Dee, S A; Joo, H S; Polson, D D
1996-01-13
An attempt was made to compare the productivity and financial benefits of nursery depopulation on five large pig farms which were all part of one complex. Each farm had been experiencing poor post weaning performance for 12 months, and had previously been infected with porcine reproductive and respiratory syndrome virus (PRRSV). A plan to depopulate each nursery sequentially was established, and the pigs were moved to fattening facilities on one of the farms (farm 3) where space was available. Over a four week period, the nurseries of farms 1, 2, 4 and 5 were emptied, cleaned and disinfected, and any changes in nursery performance, mortality and the seroprevalence of antibodies to PRRSV were then assessed for one year. The financial benefit to the entire farm complex was analysed by using partial budget methods. During the year a net benefit of $1,708,431 was assessed to the farm complex owing to the increased numbers of marketable pigs and the reduced antibiotic costs. There were highly significant improvements in nursery growth rate and decreases in mortality on farms 1, 2, 4 and 5, and antibodies to PRRSV were detected on farms 3 and 4 but not on farms 1, 2 and 5. The inability to empty the farm 3 fattening facility, which housed the pigs from the other sites, may have led to the maintenance of its PRRSV positive status and could have served as the source of virus for farm 4.
McAllister, Sue; Lincoln, Michelle; Ferguson, Allison; McAllister, Lindy
2013-01-01
Valid assessment of health science students' ability to perform in the real world of workplace practice is critical for promoting quality learning and ultimately certifying students as fit to enter the world of professional practice. Current practice in performance assessment in the health sciences field has been hampered by multiple issues regarding assessment content and process. Evidence for the validity of scores derived from assessment tools are usually evaluated against traditional validity categories with reliability evidence privileged over validity, resulting in the paradoxical effect of compromising the assessment validity and learning processes the assessments seek to promote. Furthermore, the dominant statistical approaches used to validate scores from these assessments fall under the umbrella of classical test theory approaches. This paper reports on the successful national development and validation of measures derived from an assessment of Australian speech pathology students' performance in the workplace. Validation of these measures considered each of Messick's interrelated validity evidence categories and included using evidence generated through Rasch analyses to support score interpretation and related action. This research demonstrated that it is possible to develop an assessment of real, complex, work based performance of speech pathology students, that generates valid measures without compromising the learning processes the assessment seeks to promote. The process described provides a model for other health professional education programs to trial.
Rahe-Meyer, Niels; Pawlak, Matthias; Weilbach, Christian; Osthaus, Wilhelm Alexander; Ruhschulte, Hainer; Solomon, Cristina; Piepenbrock, Siegfried; Winterhalter, Michael
2008-01-01
Background The devices used for in vivo examination of muscle contractions assess only pure force contractions and the so-called isokinetic contractions. In isokinetic experiments, the extremity and its muscle are artificially moved with constant velocity by the measuring device, while a tetanic contraction is induced in the muscle, either by electrical stimulation or by maximal voluntary activation. With these systems, experiments cannot be performed at pre-defined, constant muscle length, single contractions cannot be evaluated individually and the separate examination of the isometric and the isotonic components of single contractions is not possible. Methods The myograph presented in our study has two newly developed technical units, i.e. a). a counterforce unit which can load the muscle with an adjustable, but constant force and b). a length-adjusting unit which allows for both the stretching and the contraction length to be infinitely adjustable independently of one another. The two units support the examination of complex types of contraction and store the counterforce and length-adjusting settings, so that these conditions may be accurately reapplied in later sessions. Results The measurement examples presented show that the muscle can be brought to every possible pre-stretching length and that single isotonic or complex isometric-isotonic contractions may be performed at every length. The applied forces act during different phases of contraction, resulting into different pre- and after-loads that can be kept constant – uninfluenced by the contraction. Maximal values for force, shortening, velocity and work may be obtained for individual muscles. This offers the possibility to obtain information on the muscle status and to monitor its changes under non-invasive measurement conditions. Conclusion With the Complex Myograph, the whole spectrum of a muscle's mechanical characteristics may be assessed. PMID:18616815
Kaban, Leonard B; Cappetta, Alyssa; George, Brian C; Lahey, Edward T; Bohnen, Jordan D; Troulis, Maria J
2017-10-01
There are no universally accepted tools to evaluate operative skills of surgical residents in a timely fashion. The purpose of this study was to determine the feasibility of using a smartphone application, SIMPL (System for Improving and Measuring Procedural Learning), developed by a multi-institutional research collaborative, to achieve a high rate of timely operative evaluations and resident communication and to collect performance data. The authors hypothesized that these goals would be achieved because the process is convenient and efficient. This was a prospective feasibility and engagement study using SIMPL to evaluate residents' operative skills. SIMPL requires the attending surgeon to answer 3 multiple-choice questions: 1) What level of help (Zwisch Scale) was required by the trainee? 2) What was the level of performance? 3) How complex was the case? The evaluator also can dictate a narrative. The sample was composed of 3 faculty members and 3 volunteer senior residents. Predictor variables were the surgeons, trainees, and procedures performed. Outcome variables included number and percentage of procedures performed by faculty-and-resident pairs assessed, time required to complete assessments, time lapsed to submission, percentage of assessments with narratives, and residents' response rates. From March through June 2016, 151 procedures were performed in the operating room by the faculty-and-resident teams. There were 107 assessments submitted (71%). Resident response (self-assessment) to faculty evaluations was 81%. Recorded time to complete assessments (n = 75 of 107) was shorter than 2 minutes. The time lapsed to submission was shorter than 72 hours (100%). Dictations were submitted for 35 evaluations (33%). Data for the type of help, performance, and complexity of cases were collected for each resident. SIMPL facilitates timely intraoperative evaluations of surgical skills, engagement by faculty and residents, and collection of detailed procedural data. Additional prospective trials to assess this tool further are planned. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
The Effect of Script on Poor Readers' Sensitivity to Dynamic Visual Stimuli
ERIC Educational Resources Information Center
Kim, Jeesun; Davis, Chris; Burnham, Denis; Luksaneeyanawin, Sudaporn
2004-01-01
The current research examined performance of good and poor readers of Thai on two tasks that assess sensitivity to dynamic visual displays. Readers of Thai, a complex alphabetic script that nonetheless has a regular orthography, were chosen in order to contrast patterns of performance with readers of Korean Hangul (a similarly regular language but…
Development and evaluation of a predictive algorithm for telerobotic task complexity
NASA Technical Reports Server (NTRS)
Gernhardt, M. L.; Hunter, R. C.; Hedgecock, J. C.; Stephenson, A. G.
1993-01-01
There is a wide range of complexity in the various telerobotic servicing tasks performed in subsea, space, and hazardous material handling environments. Experience with telerobotic servicing has evolved into a knowledge base used to design tasks to be 'telerobot friendly.' This knowledge base generally resides in a small group of people. Written documentation and requirements are limited in conveying this knowledge base to serviceable equipment designers and are subject to misinterpretation. A mathematical model of task complexity based on measurable task parameters and telerobot performance characteristics would be a valuable tool to designers and operational planners. Oceaneering Space Systems and TRW have performed an independent research and development project to develop such a tool for telerobotic orbital replacement unit (ORU) exchange. This algorithm was developed to predict an ORU exchange degree of difficulty rating (based on the Cooper-Harper rating used to assess piloted operations). It is based on measurable parameters of the ORU, attachment receptacle and quantifiable telerobotic performance characteristics (e.g., link length, joint ranges, positional accuracy, tool lengths, number of cameras, and locations). The resulting algorithm can be used to predict task complexity as the ORU parameters, receptacle parameters, and telerobotic characteristics are varied.
Urbina, Angel; Mahadevan, Sankaran; Paez, Thomas L.
2012-03-01
Here, performance assessment of complex systems is ideally accomplished through system-level testing, but because they are expensive, such tests are seldom performed. On the other hand, for economic reasons, data from tests on individual components that are parts of complex systems are more readily available. The lack of system-level data leads to a need to build computational models of systems and use them for performance prediction in lieu of experiments. Because their complexity, models are sometimes built in a hierarchical manner, starting with simple components, progressing to collections of components, and finally, to the full system. Quantification of uncertainty inmore » the predicted response of a system model is required in order to establish confidence in the representation of actual system behavior. This paper proposes a framework for the complex, but very practical problem of quantification of uncertainty in system-level model predictions. It is based on Bayes networks and uses the available data at multiple levels of complexity (i.e., components, subsystem, etc.). Because epistemic sources of uncertainty were shown to be secondary, in this application, aleatoric only uncertainty is included in the present uncertainty quantification. An example showing application of the techniques to uncertainty quantification of measures of response of a real, complex aerospace system is included.« less
ERIC Educational Resources Information Center
Hellweg, Rainer; Huber, Roman; Kuhl, Alexander; Riepe, Matthias W.; Lohmann, Peter
2006-01-01
Impairment of hippocampal function precedes frontal and parietal cortex impairment in human Alzheimer's disease(AD). Neurotrophins are critical for behavioral performance and neuronal survival in AD. We used complex and radial mazes to assess spatial orientation and learning in wild-type and B6-Tg(ThylAPP)23Sdz (APP23) animals, a transgenic mouse…
PERFORMANCE ASSESSMENT ASSISTANCE ACTIVITIES IN THE DOE COMPLEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, R.
2012-01-23
The United States Department of Energy Office of Environmental Management (DOE-EM) has established a Performance Assessment Community of Practice (PA CoP) to foster the sharing of information among performance assessment (PA) and risk assessment practitioners, regulators and oversight personnel. The general intent is to contribute to continuous improvement in the consistency, technical adequacy and quality of implementation of PAs and risk assessments around the DOE Complex. The PA CoP activities have involved commercial disposal facilities and international participants to provide a global perspective. The PA CoP has also sponsored annual technical exchanges as a means to foster improved communication andmore » to share lessons learned from on-going modelling activities. The PA CoP encourages activities to provide programmatic and technical assistance in the form of sharing experience and lessons learned with practitioners during the development of PAs and risk assessments. This assistance complements DOE-EM reviews through the Low-Level Waste Disposal Facility Federal Review Group (LFRG) that are conducted after modelling efforts are completed. Such up-front assistance is providing additional value in terms of improving consistency and sharing of information. There has been a substantial increase in the amount of assistance being provided. The assistance has been well received by practitioners and regulators that have been involved. The paper highlights assistance and sharing of information that has been conducted in the last two years to support activities underway in support of proposed disposal facilities at Paducah, Portsmouth, and the Idaho National Laboratory and tank closure at Hanford.« less
Blind predictions of protein interfaces by docking calculations in CAPRI.
Lensink, Marc F; Wodak, Shoshana J
2010-11-15
Reliable prediction of the amino acid residues involved in protein-protein interfaces can provide valuable insight into protein function, and inform mutagenesis studies, and drug design applications. A fast-growing number of methods are being proposed for predicting protein interfaces, using structural information, energetic criteria, or sequence conservation or by integrating multiple criteria and approaches. Overall however, their performance remains limited, especially when applied to nonobligate protein complexes, where the individual components are also stable on their own. Here, we evaluate interface predictions derived from protein-protein docking calculations. To this end we measure the overlap between the interfaces in models of protein complexes submitted by 76 participants in CAPRI (Critical Assessment of Predicted Interactions) and those of 46 observed interfaces in 20 CAPRI targets corresponding to nonobligate complexes. Our evaluation considers multiple models for each target interface, submitted by different participants, using a variety of docking methods. Although this results in a substantial variability in the prediction performance across participants and targets, clear trends emerge. Docking methods that perform best in our evaluation predict interfaces with average recall and precision levels of about 60%, for a small majority (60%) of the analyzed interfaces. These levels are significantly higher than those obtained for nonobligate complexes by most extant interface prediction methods. We find furthermore that a sizable fraction (24%) of the interfaces in models ranked as incorrect in the CAPRI assessment are actually correctly predicted (recall and precision ≥50%), and that these models contribute to 70% of the correct docking-based interface predictions overall. Our analysis proves that docking methods are much more successful in identifying interfaces than in predicting complexes, and suggests that these methods have an excellent potential of addressing the interface prediction challenge. © 2010 Wiley-Liss, Inc.
Aragón, Alfredo S; Kalberg, Wendy O; Buckley, David; Barela-Scott, Lindsey M; Tabachnick, Barbara G; May, Philip A
2008-12-01
Although a large body of literature exists on cognitive functioning in alcohol-exposed children, it is unclear if there is a signature neuropsychological profile in children with Fetal Alcohol Spectrum Disorders (FASD). This study assesses cognitive functioning in children with FASD from several American Indian reservations in the Northern Plains States, and it applies a hierarchical model of simple versus complex information processing to further examine cognitive function. We hypothesized that complex tests would discriminate between children with FASD and culturally similar controls, while children with FASD would perform similar to controls on relatively simple tests. Our sample includes 32 control children and 24 children with a form of FASD [fetal alcohol syndrome (FAS) = 10, partial fetal alcohol syndrome (PFAS) = 14]. The test battery measures general cognitive ability, verbal fluency, executive functioning, memory, and fine-motor skills. Many of the neuropsychological tests produced results consistent with a hierarchical model of simple versus complex processing. The complexity of the tests was determined "a priori" based on the number of cognitive processes involved in them. Multidimensional scaling was used to statistically analyze the accuracy of classifying the neurocognitive tests into a simple versus complex dichotomy. Hierarchical logistic regression models were then used to define the contribution made by complex versus simple tests in predicting the significant differences between children with FASD and controls. Complex test items discriminated better than simple test items. The tests that conformed well to the model were the Verbal Fluency, Progressive Planning Test (PPT), the Lhermitte memory tasks, and the Grooved Pegboard Test (GPT). The FASD-grouped children, when compared with controls, demonstrated impaired performance on letter fluency, while their performance was similar on category fluency. On the more complex PPT trials (problems 5 to 8), as well as the Lhermitte logical tasks, the FASD group performed the worst. The differential performance between children with FASD and controls was evident across various neuropsychological measures. The children with FASD performed significantly more poorly on the complex tasks than did the controls. The identification of a neurobehavioral profile in children with prenatal alcohol exposure will help clinicians identify and diagnose children with FASD.
Petersen, Laura A; Woodard, Lechauncy D; Henderson, Louise M; Urech, Tracy H; Pietz, Kenneth
2009-06-16
There is concern that performance measures, patient ratings of their care, and pay-for-performance programs may penalize healthcare providers of patients with multiple chronic coexisting conditions. We examined the impact of coexisting conditions on the quality of care for hypertension and patient perception of overall quality of their health care. We classified 141 609 veterans with hypertension into 4 condition groups: those with hypertension-concordant (diabetes mellitus, ischemic heart disease, dyslipidemia) and/or -discordant (arthritis, depression, chronic obstructive pulmonary disease) conditions or neither. We measured blood pressure control at the index visit, overall good quality of care for hypertension, including a follow-up interval, and patient ratings of satisfaction with their care. Associations between condition type and number of coexisting conditions on receipt of overall good quality of care were assessed with logistic regression. The relationship between patient assessment and objective measures of quality was assessed. Of the cohort, 49.5% had concordant-only comorbidities, 8.7% had discordant-only comorbidities, 25.9% had both, and 16.0% had none. Odds of receiving overall good quality after adjustment for age were higher for those with concordant comorbidities (odds ratio, 1.78; 95% confidence interval, 1.70 to 1.87), discordant comorbidities (odds ratio, 1.32; 95% confidence interval, 1.23 to 1.41), or both (odds ratio, 2.25; 95% confidence interval, 2.13 to 2.38) compared with neither. Findings did not change after adjustment for illness severity and/or number of primary care and specialty care visits. Patient assessment of quality did not vary by the presence of coexisting conditions and was not related to objective ratings of quality of care. Contrary to expectations, patients with greater complexity had higher odds of receiving high-quality care for hypertension. Subjective ratings of care did not vary with the presence or absence of comorbid conditions. Our findings should be reassuring to those who care for the most medically complex patients and are concerned that they will be penalized by performance measures or patient ratings of their care.
The Role of Simulation in Microsurgical Training.
Evgeniou, Evgenios; Walker, Harriet; Gujral, Sameer
Simulation has been established as an integral part of microsurgical training. The aim of this study was to assess and categorize the various simulation models in relation to the complexity of the microsurgical skill being taught and analyze the assessment methods commonly employed in microsurgical simulation training. Numerous courses have been established using simulation models. These models can be categorized, according to the level of complexity of the skill being taught, into basic, intermediate, and advanced. Microsurgical simulation training should be assessed using validated assessment methods. Assessment methods vary significantly from subjective expert opinions to self-assessment questionnaires and validated global rating scales. The appropriate assessment method should carefully be chosen based on the simulation modality. Simulation models should be validated, and a model with appropriate fidelity should be chosen according to the microsurgical skill being taught. Assessment should move from traditional simple subjective evaluations of trainee performance to validated tools. Future studies should assess the transferability of skills gained during simulation training to the real-life setting. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Surflex-Dock: Docking benchmarks and real-world application
NASA Astrophysics Data System (ADS)
Spitzer, Russell; Jain, Ajay N.
2012-06-01
Benchmarks for molecular docking have historically focused on re-docking the cognate ligand of a well-determined protein-ligand complex to measure geometric pose prediction accuracy, and measurement of virtual screening performance has been focused on increasingly large and diverse sets of target protein structures, cognate ligands, and various types of decoy sets. Here, pose prediction is reported on the Astex Diverse set of 85 protein ligand complexes, and virtual screening performance is reported on the DUD set of 40 protein targets. In both cases, prepared structures of targets and ligands were provided by symposium organizers. The re-prepared data sets yielded results not significantly different than previous reports of Surflex-Dock on the two benchmarks. Minor changes to protein coordinates resulting from complex pre-optimization had large effects on observed performance, highlighting the limitations of cognate ligand re-docking for pose prediction assessment. Docking protocols developed for cross-docking, which address protein flexibility and produce discrete families of predicted poses, produced substantially better performance for pose prediction. Performance on virtual screening performance was shown to benefit by employing and combining multiple screening methods: docking, 2D molecular similarity, and 3D molecular similarity. In addition, use of multiple protein conformations significantly improved screening enrichment.
Wesson, Jacqueline; Clemson, Lindy; Crawford, John D; Kochan, Nicole A; Brodaty, Henry; Reppermund, Simone
2017-05-01
To explore the validity of the Large Allen's Cognitive Level Screen-5 (LACLS-5) as a performance-based measure of functional cognition, representing an ability to perform complex everyday activities in older adults with mild cognitive impairment (MCI) and mild dementia living in the community. Using cross-sectional data from the Sydney Memory and Ageing Study, 160 community-dwelling older adults with normal cognition (CN; N = 87), MCI (N = 43), or dementia (N = 30) were studied. Functional cognition (LACLS-5), complex everyday activities (Disability Assessment for Dementia [DAD]), Assessment of Motor and Process Skills [AMPS]), and neuropsychological measures were used. Participants with dementia performed worse than CN on all clinical measures, and MCI participants were intermediate. Correlational analyses showed that LACLS-5 was most strongly related to AMPS Process scores, DAD instrumental activities of daily living subscale, Mini-Mental State Exam, Block Design, Logical Memory, and Trail Making Test B. Multiple regression analysis indicated that both cognitive (Block Design) and functional measures (AMPS Process score) and sex predicted LACLS-5 performance. Finally, LACLS-5 was able to adequately discriminate between CN and dementia and between MCI and dementia but was unable to reliably distinguish between CN and MCI. Construct validity, including convergent and discriminative validity, was supported. LACLS-5 is a valid performance-based measure for evaluating functional cognition. Discriminativevalidity is acceptable for identifying mild dementia but requires further refinement for detecting MCI. Copyright © 2017 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Resch, Christine; Keulers, Esther; Martens, Rosa; van Heugten, Caroline; Hurks, Petra
2018-04-05
Providing children with organizational strategy instruction on the Rey Osterrieth Complex Figure (ROCF) has previously been found to improve organizational and accuracy performance on this task. It is unknown whether strategy instruction on the ROCF would also transfer to performance improvement on copying and the recall of another complex figure. Participants were 98 typically developing children (aged 9.5-12.6 years, M = 10.6). Children completed the ROCF (copy and recall) as a pretest. Approximately a month later, they were randomized to complete the ROCF with strategy instruction in the form of a stepwise administration of the ROCF or again in the standard format. All children then copied and recalled the Modified Taylor Complex Figure (MTCF). All productions were assessed in terms of organization, accuracy and completion time. Organization scores for the MTCF did not differ for the two groups for the copy production, but did differ for the recall production, indicating transfer. Accuracy and completion times did not differ between groups. Performance on all measures, except copy accuracy, improved between pretest ROCF and posttest MTCF production for both groups, suggesting practice effects. Findings indicate that transfer of strategy instruction from one complex figure to another is only present for organization of recalled information. The increase in RCF-OSS scores did not lead to a higher accuracy or a faster copy or recall.
Neethling, William M L; Strange, Geoff; Firth, Laura; Smit, Francis E
2013-10-01
This study evaluated the safety, efficacy and clinical performance of the tissue-engineered ADAPT® bovine pericardial patch (ABPP) in paediatric patients with a range of congenital cardiac anomalies. In this single-centre, prospective, non-randomized clinical study, paediatric patients underwent surgery for insertion of the ABPP. Primary efficacy measures included early (<30 day) morbidity; incidence of device-related complications; haemodynamic performance derived from echocardiography assessment at 6- and 12-month follow-up and magnetic resonance imaging findings in 10 randomly selected patients at 12 months. Secondary measures included device-handling characteristics; shape and sizing characteristics and perioperative implant complications. The Aristotle complexity scoring system was used to score the complexity level of all surgical procedures. Patients completing the 12-month study were eligible to enter a long-term evaluation study. Between April 2008 and September 2009, the ABPP was used in 30 paediatric patients. In the 30-day postoperative period, no graft-related morbidity was observed. In total, there were 5 deaths (2 in the 30-day postoperative period and 3 within the first 6 postoperative months). All deaths were deemed due to comorbid non-graft-related events. Echocardiography assessment at 6 and 12 months revealed intact anatomical and haemodynamically stable repairs without any visible calcification of the patch. Magnetic resonance imaging assessment in 10 patients at 12 months revealed no signs of calcification. Fisher's exact test demonstrated that patients undergoing more complex, higher risk surgical repairs (Aristotle complexity score >8) were significantly more likely to die (P = 0.0055, 58% survival compared with 100% survival for less complex surgical repairs). In 19 patients, echocardiographic data were available at 18-36 months with no evidence of device calcification, infection, thromboembolic events or device failure. This study demonstrates the safety and efficacy of this engineered bovine pericardial patch as a cardiovascular substitute for surgical repair of both simple and more complex congenital cardiac defects.
An Analytical Study on an Orthodontic Index: Index of Complexity, Outcome and Need (ICON)
Torkan, Sepide; Pakshir, Hamid Reza; Fattahi, Hamid Reza; Oshagh, Morteza; Momeni Danaei, Shahla; Salehi, Parisa; Hedayati, Zohreh
2015-01-01
Statement of the Problem The validity of the Index of Complexity, Outcome and Need (ICON) which is an orthodontic index developed and introduced in 2000 should be studied in different ethnic groups. Purpose The aim of this study was to perform an analysis on the ICON and to verify whether this index is valid for assessing both the need and complexity of orthodontic treatment in Iran. Materials and Method Five orthodontists were asked to score pre-treatment diagnostic records of 100 patients with a uniform distribution of different types of malocclusions determined by Dental Health Component of the Index of Treatment Need. A calibrated examiner also assessed the need for orthodontic treatment and complexity of the cases based on the ICON index as well as the Index of Orthodontic Treatment Need (IOTN). 10 days later, 25% of the cases were re-scored by the panel of experts and the calibrated orthodontist. Results The weighted kappa revealed the inter-examiner reliability of the experts to be 0.63 and 0.51 for the need and complexity components, respectively. ROC curve was used to assess the validity of the index. A new cut-off point was adjusted at 35 in lieu of 43 as the suggested cut-off point. This cut-off point showed the highest level of sensitivity and specificity in our society for orthodontic treatment need (0.77 and 0.78, respectively), but it failed to define definite ranges for the complexity of treatment. Conclusion ICON is a valid index in assessing the need for treatment in Iran when the cut-off point is adjusted to 35. As for complexity of treatment, the index is not validated for our society. It seems that ICON is a well-suited substitute for the IOTN index. PMID:26331142
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaylock, B.P.; Legg, J.; Travis, C.C.
1995-06-01
This document describes a worker health risk evaluation methodology for assessing risks associated with Environmental Restoration (ER) and Waste Management (WM). The methodology is appropriate for estimating worker risks across the Department of Energy (DOE) Complex at both programmatic and site-specific levels. This document supports the worker health risk methodology used to perform the human health risk assessment portion of the DOE Programmatic Environmental Impact Statement (PEIS) although it has applications beyond the PEIS, such as installation-wide worker risk assessments, screening-level assessments, and site-specific assessments.
Pohjola, Mikko V; Pohjola, Pasi; Tainio, Marko; Tuomisto, Jouni T
2013-06-26
The calls for knowledge-based policy and policy-relevant research invoke a need to evaluate and manage environment and health assessments and models according to their societal outcomes. This review explores how well the existing approaches to assessment and model performance serve this need. The perspectives to assessment and model performance in the scientific literature can be called: (1) quality assurance/control, (2) uncertainty analysis, (3) technical assessment of models, (4) effectiveness and (5) other perspectives, according to what is primarily seen to constitute the goodness of assessments and models. The categorization is not strict and methods, tools and frameworks in different perspectives may overlap. However, altogether it seems that most approaches to assessment and model performance are relatively narrow in their scope. The focus in most approaches is on the outputs and making of assessments and models. Practical application of the outputs and the consequential outcomes are often left unaddressed. It appears that more comprehensive approaches that combine the essential characteristics of different perspectives are needed. This necessitates a better account of the mechanisms of collective knowledge creation and the relations between knowledge and practical action. Some new approaches to assessment, modeling and their evaluation and management span the chain from knowledge creation to societal outcomes, but the complexity of evaluating societal outcomes remains a challenge.
Leone, Frank T; Evers-Casey, Sarah; Graden, Sarah; Schnoll, Robert; Mallya, Giridhar
2015-06-01
Tobacco use disproportionately affects the poor, who are, in turn, least likely to receive cessation treatment from providers. Providers caring for low-income populations perform simple components of tobacco use treatment (e.g., assessing tobacco use) with reasonable frequency. However, performance of complex treatment behaviors, such as pharmacologic prescription and follow-up arrangement, remains suboptimal. Evaluate the influence of academic detailing (AD), a university-based, noncommercial, educational outreach intervention, on primary care physicians' complex treatment practice behaviors within an urban care setting. Trained academic detailers made in-person visits to targeted primary care practices, delivering verbal and written instruction emphasizing three key messages related to tobacco treatment. Physicians' self-reported frequency of simple and complex treatment behaviors were assessed using a seven-item questionnaire, before and 2 months after AD. Between May 2011 and March 2012, baseline AD visits were made to 217 physicians, 109 (50%) of whom also received follow-up AD. Mean frequency scores for complex behaviors increased significantly, from 2.63 to 2.92, corresponding to a clinically significant 30% increase in the number of respondents who endorsed "almost always" or "always" (P < 0.001). Improvement in mean simple behavior frequency scores was also noted (3.98 vs. 4.13; P = 0.035). Sex and practice type appear to influence reported complex behavior frequency at baseline, whereas only practice type influenced improvement in complex behavior scores at follow up. This study demonstrates the feasibility and potential effectiveness of a low-cost and highly disseminable intervention to improve clinician behavior in the context of treating nicotine dependence in underserved communities.
Thrive or overload? The effect of task complexity on novices' simulation-based learning.
Haji, Faizal A; Cheung, Jeffrey J H; Woods, Nicole; Regehr, Glenn; de Ribaupierre, Sandrine; Dubrowski, Adam
2016-09-01
Fidelity is widely viewed as an important element of simulation instructional design based on its purported relationship with transfer of learning. However, higher levels of fidelity may increase task complexity to a point at which novices' cognitive resources become overloaded. In this experiment, we investigate the effects of variations in task complexity on novices' cognitive load and learning during simulation-based procedural skills training. Thirty-eight medical students were randomly assigned to simulation training on a simple or complex lumbar puncture (LP) task. Participants completed four practice trials on this task (skill acquisition). After 10 days of rest, all participants completed one additional trial on their assigned task (retention) and one trial on a 'very complex' simulation designed to be similar to the complex task (transfer). We assessed LP performance and cognitive load on each trial using multiple measures. In both groups, LP performance improved significantly during skill acquisition (p ≤ 0.047, f = 0.29-0.96) and was maintained at retention. The simple task group demonstrated superior performance compared with the complex task group throughout these phases (p ≤ 0.002, d = 1.13-2.31). Cognitive load declined significantly in the simple task group (p < 0.009, f = 0.48-0.76), but not in the complex task group during skill acquisition, and remained lower at retention (p ≤ 0.024, d = 0.78-1.39). Between retention and transfer, LP performance declined and cognitive load increased in the simple task group, whereas both remained stable in the complex task group. At transfer, no group differences were observed in LP performance and cognitive load, except that the simple task group made significantly fewer breaches of sterility (p = 0.023, d = 0.80). Reduced task complexity was associated with superior LP performance and lower cognitive load during skill acquisition and retention, but mixed results on transfer to a more complex task. These results indicate that task complexity is an important factor that may mediate (via cognitive overload) the relationship between instructional design elements (e.g. fidelity) and simulation-based learning outcomes. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
ERIC Educational Resources Information Center
Ahmadi, Alireza; Sadeghi, Elham
2016-01-01
In the present study we investigated the effect of test format on oral performance in terms of test scores and discourse features (accuracy, fluency, and complexity). Moreover, we explored how the scores obtained on different test formats relate to such features. To this end, 23 Iranian EFL learners participated in three test formats of monologue,…
Senese, Vincenzo Paolo; De Lucia, Natascia; Conson, Massimiliano
2015-01-01
Cognitive models of drawing are mainly based on assessment of copying performance of adults, whereas only a few studies have verified these models in young children. Moreover, developmental investigations have only rarely performed a systematic examination of the contribution of perceptual and representational visuo-spatial processes to copying and drawing from memory. In this study we investigated the role of visual perception and mental representation in both copying and drawing from memory skills in a sample of 227 typically developing children (53% females) aged 7-10 years. Participants underwent a neuropsychological assessment and the Rey-Osterrieth Complex Figure (ROCF). The fit and invariance of the predictive model considering visuo-spatial abilities, working memory, and executive functions were tested by means of hierarchical regressions and path analysis. Results showed that, in a gender invariant way, visual perception abilities and spatial mental representation had a direct effect on copying performance, whereas copying performance was the only specific predictor for drawing from memory. These effects were independent from age and socioeconomic status, and showed that cognitive models of drawing built up for adults could be considered for predicting copying and drawing from memory in children.
Integrated performance and reliability specification for digital avionics systems
NASA Technical Reports Server (NTRS)
Brehm, Eric W.; Goettge, Robert T.
1995-01-01
This paper describes an automated tool for performance and reliability assessment of digital avionics systems, called the Automated Design Tool Set (ADTS). ADTS is based on an integrated approach to design assessment that unifies traditional performance and reliability views of system designs, and that addresses interdependencies between performance and reliability behavior via exchange of parameters and result between mathematical models of each type. A multi-layer tool set architecture has been developed for ADTS that separates the concerns of system specification, model generation, and model solution. Performance and reliability models are generated automatically as a function of candidate system designs, and model results are expressed within the system specification. The layered approach helps deal with the inherent complexity of the design assessment process, and preserves long-term flexibility to accommodate a wide range of models and solution techniques within the tool set structure. ADTS research and development to date has focused on development of a language for specification of system designs as a basis for performance and reliability evaluation. A model generation and solution framework has also been developed for ADTS, that will ultimately encompass an integrated set of analytic and simulated based techniques for performance, reliability, and combined design assessment.
NASA Technical Reports Server (NTRS)
Coates, G. D.; Alluisi, E. A.
1975-01-01
The effects of aircraft noise on human performance is considered. Progress is reported in the following areas: (1) review of the literature to identify the methodological and stimulus parameters involved in the study of noise effects on human performance; (2) development of a theoretical framework to provide working hypotheses as to the effects of noise on complex human performance; and (3) data collection on the first of several experimental investigations designed to provide tests of the hypotheses.
NASA Technical Reports Server (NTRS)
1975-01-01
The results are presented of a risk assessment study conducted on two technology aircraft. The aircraft system components were reviewed and assessed for risk based on: (1) complexity relative to state-of-the-art, (2) manufacturing and qualification testing, (3) availability and delays, and (4) cost/schedule impact. These assessments were based on five risk nomenclatures: low, minor, moderate, high, and extreme. Each aircraft system was assigned an overall risk rating depending upon its contribution to the capability of the aircraft to achieve the performance goals. The slightly lower Sabreliner performance margin is due to the restricted flight envelope, the fixed landing gear, and internal fuel capacity. The Sabreliner with retractable gear and allowed to fly at its best speed and altitude would reflect performance margins similar to the New Airframe. These significant margins, inherent with the MCAIR three gas generator/three fan propulsion system, are major modifiers to risk assessment of both aircraft. The estimated risk and the associated key system and performance areas are tabulated.
Comparison of Laminar and Linear Eddy Model Closures for Combustion Instability Simulations
2015-07-01
14. ABSTRACT Unstable liquid rocket engines can produce highly complex dynamic flowfields with features such as rapid changes in temperature and...applicability. In the present study, the linear eddy model (LEM) is applied to an unstable single element liquid rocket engine to assess its performance and to...Sankaran‡ Air Force Research Laboratory, Edwards AFB, CA, 93524 Unstable liquid rocket engines can produce highly complex dynamic flowfields with features
Cornwell, Brittany L; Brockmann, Laurie M; Lasky, Elaine C; Mach, Jennifer; McCarthy, John F
2018-06-01
The Veterans Health Administration (VHA) has achieved substantial national implementation of primary care-mental health integration (PC-MHI) services. However, little is known regarding program characteristics, variation in characteristics across settings, or associations between program fidelity and performance. This study identified core elements of PC-MHI services and evaluated their associations with program characteristics and performance. A principal-components analysis (PCA) of reports from 349 sites identified factors associated with PC-MHI fidelity. Analyses assessed the correlation among factors and between each factor and facility type (medical center or community-based outpatient clinic), primary care population size, and performance indicators (receipt of PC-MHI services, same-day access to mental health and primary care services, and extended duration of services). PCA identified seven factors: core implementation, care management (CM) assessments and supervision, CM supervision receipt, colocated collaborative care (CCC) by prescribing providers, CCC by behavioral health providers, participation in patient aligned care teams (PACTs) for special populations, and treatment of complex mental health conditions. Sites serving larger populations had greater core implementation scores. Medical centers and sites serving larger populations had greater scores for CCC by prescribing providers, CM assessments and supervision, and participation in PACTs. Greater core implementation scores were associated with greater same-day access. Sites with greater scores for CM assessments and supervision had lower scores for treatment of complex conditions. Outpatient clinics and sites serving smaller populations experienced challenges in integrated care implementation. To enhance same-day access, VHA should continue to prioritize PC-MHI implementation. Providing brief, problem-focused care may enhance CM implementation.
An introduction to the partial credit model for developing nursing assessments.
Fox, C
1999-11-01
The partial credit model, which is a special case of the Rasch measurement model, was presented as a useful way to develop and refine complex nursing assessments. The advantages of the Rasch model over the classical psychometric model were presented including the lack of bias in the measurement process, the ability to highlight those items in need of refinement, the provision of information on congruence between the data and the model, and feedback on the usefulness of the response categories. The partial credit model was introduced as a way to develop complex nursing assessments such as performance-based assessments, because of the model's ability to accommodate a variety of scoring procedures. Finally, an application of the partial credit model was illustrated using the Practical Knowledge Inventory for Nurses, a paper-and-pencil instrument that measures on-the-job decision-making for nurses.
An Additive Definition of Molecular Complexity.
Böttcher, Thomas
2016-03-28
A framework for molecular complexity is established that is based on information theory and consistent with chemical knowledge. The resulting complexity index Cm is derived from abstracting the information content of a molecule by the degrees of freedom in the microenvironments on a per-atom basis, allowing the molecular complexity to be calculated in a simple and additive way. This index allows the complexity of any molecule to be universally assessed and is sensitive to stereochemistry, heteroatoms, and symmetry. The performance of this complexity index is evaluated and compared against the current state of the art. Its additive character gives consistent values also for very large molecules and supports direct comparisons of chemical reactions. Finally, this approach may provide a useful tool for medicinal chemistry in drug design and lead selection, as demonstrated by correlating molecular complexities of antibiotics with compound-specific parameters.
2014-01-01
Background Performance of health care systems is a key concern of policy makers and health service managers all over the world. It is also a major challenge, given its multidimensional nature that easily leads to conceptual and methodological confusion. This is reflected by a scarcity of models that comprehensively analyse health system performance. Discussion In health, one of the most comprehensive performance frameworks was developed by the team of Leggat and Sicotte. Their framework integrates 4 key organisational functions (goal attainment, production, adaptation to the environment, and values and culture) and the tensions between these functions. We modified this framework to better fit the assessment of the performance of health organisations in the public service domain and propose an analytical strategy that takes it into the social complexity of health organisations. The resulting multipolar performance framework (MPF) is a meta-framework that facilitates the analysis of the relations and interactions between the multiple actors that influence the performance of health organisations. Summary Using the MPF in a dynamic reiterative mode not only helps managers to identify the bottlenecks that hamper performance, but also the unintended effects and feedback loops that emerge. Similarly, it helps policymakers and programme managers at central level to better anticipate the potential results and side effects of and required conditions for health policies and programmes and to steer their implementation accordingly. PMID:24742181
Coblation vertebroplasty for complex vertebral insufficiency fractures.
Wilson, David J; Owen, Sara; Corkill, Rufus A
2013-07-01
Coblation to create a cavity in the affected vertebral body was performed for complex fractures and/or when there was a posterior wall defect. This permitted a low-pressure injection and potentially reduces the risk of extravasation of cement into the spinal canal. Prospective audit for outcome measures and complications allowed retrospective review of cases treated by coblation. A commercial wand inserted via a wide-bore vertebroplasty needle created a cavity before inserting cement. A visual analogue scale assessed pain and Roland Morris scoring assessed mobility. Thirty-two coblation procedures were performed. Primary diagnoses were myeloma, metastases, osteoporosis and trauma. Outcome measures were recorded with a 56 % success rate, 6 % no change and 32 % with mixed but mainly positive results; 6 % died before follow-up. No complications were observed; in particular no patient suffered neurological damage and none have developed subsequent fractures at the treated levels. This technique makes possible cementation of patients who would otherwise be unsuitable for vertebroplasty. The modest pain and disability improvement is partly due to our stringent criteria as well as fracture complexity. Further work will assess the efficacy of the method compared with conservative measures. • Treatment of vertebral compression fractures with possible posterior wall defects is controversial. • Coblation before vertebroplasty allows a low-pressure injection into fractured vertebrae. • This technique reduces risk of extravasation of cement. • No serious complication of our coblation procedures was observed.
NASA Technical Reports Server (NTRS)
Depenbrock, Brett T.; Balint, Tibor S.; Sheehy, Jeffrey A.
2014-01-01
Research and development organizations that push the innovation edge of technology frequently encounter challenges when attempting to identify an investment strategy and to accurately forecast the cost and schedule performance of selected projects. Fast moving and complex environments require managers to quickly analyze and diagnose the value of returns on investment versus allocated resources. Our Project Assessment Framework through Design (PAFTD) tool facilitates decision making for NASA senior leadership to enable more strategic and consistent technology development investment analysis, beginning at implementation and continuing through the project life cycle. The framework takes an integrated approach by leveraging design principles of useability, feasibility, and viability and aligns them with methods employed by NASA's Independent Program Assessment Office for project performance assessment. The need exists to periodically revisit the justification and prioritization of technology development investments as changes occur over project life cycles. The framework informs management rapidly and comprehensively about diagnosed internal and external root causes of project performance.
NASA Astrophysics Data System (ADS)
Azadeh, A.; Foroozan, H.; Ashjari, B.; Motevali Haghighi, S.; Yazdanparast, R.; Saberi, M.; Torki Nejad, M.
2017-10-01
ISs and ITs play a critical role in large complex gas corporations. Many factors such as human, organisational and environmental factors affect IS in an organisation. Therefore, investigating ISs success is considered to be a complex problem. Also, because of the competitive business environment and the high amount of information flow in organisations, new issues like resilient ISs and successful customer relationship management (CRM) have emerged. A resilient IS will provide sustainable delivery of information to internal and external customers. This paper presents an integrated approach to enhance and optimise the performance of each component of a large IS based on CRM and resilience engineering (RE) in a gas company. The enhancement of the performance can help ISs to perform business tasks efficiently. The data are collected from standard questionnaires. It is then analysed by data envelopment analysis by selecting the optimal mathematical programming approach. The selected model is validated and verified by principle component analysis method. Finally, CRM and RE factors are identified as influential factors through sensitivity analysis for this particular case study. To the best of our knowledge, this is the first study for performance assessment and optimisation of large IS by combined RE and CRM.
Devaki, Pallaki Baby; Chandra, Ranjit K; Geisser, Peter
2009-01-01
To assess the effects of iron supplementation on iron status, cognitive function, affective behavior and scholastic performance in adolescents with varying iron status. Adolescents of both sexes with varying iron status were allocated to four treatment groups by using inclusion criteria. Three of the four groups (iron deficient anemic, iron deficient and control supplement) received iron(III) hydroxide polymaltose complex (IPC, Maltofer) containing 100 mg of elemental iron 6 days a week for 8 months, while the fourth group (control placebo) was given a placebo. Hematological parameters, cognitive function, affective behavior and scholastic performance were assessed at baseline, 4 months and 8 months of supplementation. Cognitive and scholastic performance test scores for the three supplemented groups increased from baseline to 4 months and from 4 months to 8 months (with concomitant increases in hematological parameters), whereas no increase was observed in the placebo group. No increase was seen in affective behavior scores for any of the groups during or after supplementation. IPC supplementation for eight months yielded significant improvements in cognitive function and scholastic performance in Indian adolescents with and without iron deficiency and anemia.
Moorthy, Arun S; Eberl, Hermann J
2014-04-01
Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Washburn, David A.; Rumbaugh, Duane M.
1991-01-01
Social isolation has been demonstrated to produce profound and lasting psychological effects in young primates. In the present investigation, two adult rhesus monkeys (Macaca mulatta) were isolated from one another for up to 6 days and tested on 7 video tasks designed to assess psychomotor and cognitive functioning. Both the number and quality (i.e., speed and accuracy) of responses were significantly compromised in the social isolation condition relative to levels in which the animals were tested together. It is argued that adult rhesus are susceptible to performance disruption by even relatively brief social isolation, and that these effects can best be assessed by a battery of complex and sensitive measures.
The qualitative assessment of pneumatic actuators operation in terms of vibration criteria
NASA Astrophysics Data System (ADS)
Hetmanczyk, M. P.; Michalski, P.
2015-11-01
The work quality of pneumatic actuators can be assessed in terms of multiple criteria. In the case of complex systems with pneumatic actuators retained at end positions (with occurrence of piston impact in cylinder covers) the vibration criteria constitute the most reliable indicators. The paper presents an impact assessment on the operating condition of the rodless pneumatic cylinder regarding to selected vibrational symptoms. On the basis of performed analysis the authors had shown meaningful premises allowing an evaluation of the performance and tuning of end position damping piston movement with usage the most common diagnostic tools (portable vibration analyzers). The presented method is useful in tuning of parameters in industrial conditions.
Land, Sally; Zhou, Julian; Cunningham, Philip; Sohn, Annette H; Singtoroj, Thida; Katzenstein, David; Mann, Marita; Sayer, David; Kantor, Rami
2013-01-01
Background The TREAT Asia Quality Assessment Scheme (TAQAS) was developed as a quality assessment programme through expert education and training, for laboratories in the Asia-Pacific and Africa that perform HIV drug-resistance (HIVDR) genotyping. We evaluated the programme performance and factors associated with high-quality HIVDR genotyping. Methods Laboratories used their standard protocols to test panels of human immunodeficiency virus (HIV)-positive plasma samples or electropherograms. Protocols were documented and performance was evaluated according to a newly developed scoring system, agreement with panel-specific consensus sequence, and detection of drug-resistance mutations (DRMs) and mixtures of wild-type and resistant virus (mixtures). High-quality performance was defined as detection of ≥95% DRMs. Results Over 4.5 years, 23 participating laboratories in 13 countries tested 45 samples (30 HIV-1 subtype B; 15 non-B subtypes) in nine panels. Median detection of DRMs was 88–98% in plasma panels and 90–97% in electropherogram panels. Laboratories were supported to amend and improve their test outcomes as appropriate. Three laboratories that detected <80% DRMs in early panels demonstrated subsequent improvement. Sample complexity factors – number of DRMs (p<0.001) and number of DRMs as mixtures (p<0.001); and laboratory performance factors – detection of mixtures (p<0.001) and agreement with consensus sequence (p<0.001), were associated with high performance; sample format (plasma or electropherogram), subtype and genotyping protocol were not. Conclusion High-quality HIVDR genotyping was achieved in the TAQAS collaborative laboratory network. Sample complexity and detection of mixtures were associated with performance quality. Laboratories conducting HIVDR genotyping are encouraged to participate in quality assessment programmes. PMID:23845227
ERIC Educational Resources Information Center
Turnbull, O.H.; Evans, C.E.Y.; Bunce, A.; Carzolio, B.; O'Connor, J.
2005-01-01
The role of emotion in complex decision-making can be assessed on the Iowa Gambling Task (IGT), a widely used neuropsychological measure that may tap a different aspect of executive function than that assessed by conventional measures. Most notably, the 'feeling' about which decks are good or bad, often described in relation to IGT performance,…
ERIC Educational Resources Information Center
Marcus, Jon
2017-01-01
Unlike conventional colleges and universities, Western Governors doesn't require students to spend a set number of hours in a classroom, average out their performance on assignments and tests, then hand out letter grades and credits. Using a complex system of assessments developed over the two decades the university has been operating, WGU's…
ERIC Educational Resources Information Center
Tan, Kelvin Heng Kiat
2017-01-01
The recent focus on AfL has shifted from defining its scope and extent to understanding its implementation, and research has revealed AfL implementation to be complex and contested. AfL implementation is especially challenging in national contexts that emphasise high stakes examination performance and grades. One such example is the nation state…
Prasad, M S Raghu; Manivannan, Muniyandi; Manoharan, Govindan; Chandramohan, S M
2016-01-01
Most of the commercially available virtual reality-based laparoscopic simulators do not effectively evaluate combined psychomotor and force-based laparoscopic skills. Consequently, the lack of training on these critical skills leads to intraoperative errors. To assess the effectiveness of the novel virtual reality-based simulator, this study analyzed the combined psychomotor (i.e., motion or movement) and force skills of residents and expert surgeons. The study also examined the effectiveness of real-time visual force feedback and tool motion during training. Bimanual fundamental (i.e., probing, pulling, sweeping, grasping, and twisting) and complex tasks (i.e., tissue dissection) were evaluated. In both tasks, visual feedback on applied force and tool motion were provided. The skills of the participants while performing the early tasks were assessed with and without visual feedback. Participants performed 5 repetitions of fundamental and complex tasks. Reaction force and instrument acceleration were used as metrics. Surgical Gastroenterology, Government Stanley Medical College and Hospital; Institute of Surgical Gastroenterology, Madras Medical College and Rajiv Gandhi Government General Hospital. Residents (N = 25; postgraduates and surgeons with <2 years of laparoscopic surgery) and expert surgeons (N = 25; surgeons with >4 and ≤10 years of laparoscopic surgery). Residents applied large forces compared with expert surgeons and performed abrupt tool movements (p < 0.001). However, visual + haptic feedback improved the performance of residents (p < 0.001). In complex tasks, visual + haptic feedback did not influence the applied force of expert surgeons, but influenced their tool motion (p < 0.001). Furthermore, in complex tissue sweeping task, expert surgeons applied more force, but were within the tissue damage limits. In both groups, exertion of large forces and abrupt tool motion were observed during grasping, probing or pulling, and tissue sweeping maneuvers (p < 0.001). Modern day curriculum-based training should evaluate the skills of residents with robust force and psychomotor-based exercises for proficient laparoscopy. Visual feedback on force and motion during training has the potential to enhance the learning curve of residents. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Earthquake fragility assessment of curved and skewed bridges in Mountain West region.
DOT National Transportation Integrated Search
2016-09-01
Reinforced concrete (RC) bridges with both skew and curvature are common in areas with : complex terrains. Skewed and/or curved bridges were found in existing studies to exhibit more : complicated seismic performance than straight bridges, however th...
A qualitative and quantitative assessment for a bone marrow harvest simulator.
Machado, Liliane S; Moraes, Ronei M
2009-01-01
Several approaches to perform assessment in training simulators based on virtual reality have been proposed. There are two kinds of assessment methods: offline and online. The main requirements related to online training assessment methodologies applied to virtual reality systems are the low computational complexity and the high accuracy. In the literature it can be found several approaches for general cases which can satisfy such requirements. An inconvenient about those approaches is related to an unsatisfactory solution for specific cases, as in some medical procedures, where there are quantitative and qualitative information available to perform the assessment. In this paper, we present an approach to online training assessment based on a Modified Naive Bayes which can manipulate qualitative and quantitative variables simultaneously. A special medical case was simulated in a bone marrow harvest simulator. The results obtained were satisfactory and evidenced the applicability of the method.
Screening tests for hazard classification of complex waste materials - Selection of methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weltens, R., E-mail: reinhilde.weltens@vito.be; Vanermen, G.; Tirez, K.
In this study we describe the development of an alternative methodology for hazard characterization of waste materials. Such an alternative methodology for hazard assessment of complex waste materials is urgently needed, because the lack of a validated instrument leads to arbitrary hazard classification of such complex waste materials. False classification can lead to human and environmental health risks and also has important financial consequences for the waste owner. The Hazardous Waste Directive (HWD) describes the methodology for hazard classification of waste materials. For mirror entries the HWD classification is based upon the hazardous properties (H1-15) of the waste which canmore » be assessed from the hazardous properties of individual identified waste compounds or - if not all compounds are identified - from test results of hazard assessment tests performed on the waste material itself. For the latter the HWD recommends toxicity tests that were initially designed for risk assessment of chemicals in consumer products (pharmaceuticals, cosmetics, biocides, food, etc.). These tests (often using mammals) are not designed nor suitable for the hazard characterization of waste materials. With the present study we want to contribute to the development of an alternative and transparent test strategy for hazard assessment of complex wastes that is in line with the HWD principles for waste classification. It is necessary to cope with this important shortcoming in hazardous waste classification and to demonstrate that alternative methods are available that can be used for hazard assessment of waste materials. Next, by describing the pros and cons of the available methods, and by identifying the needs for additional or further development of test methods, we hope to stimulate research efforts and development in this direction. In this paper we describe promising techniques and argument on the test selection for the pilot study that we have performed on different types of waste materials. Test results are presented in a second paper. As the application of many of the proposed test methods is new in the field of waste management, the principles of the tests are described. The selected tests tackle important hazardous properties but refinement of the test battery is needed to fulfil the a priori conditions.« less
Analysing wind farm efficiency on complex terrains
NASA Astrophysics Data System (ADS)
Castellani, Francesco; Astolfi, Davide; Terzi, Ludovico; Schaldemose Hansen, Kurt; Sanz Rodrigo, Javier
2014-06-01
Actual performances of onshore wind farms are deeply affected both by wake interactions and terrain complexity: therefore monitoring how the efficiency varies with the wind direction is a crucial task. Polar efficiency plot is therefore a useful tool for monitoring wind farm performances. The approach deserves careful discussion for onshore wind farms, where orography and layout commonly affect performance assessment. The present work deals with three modern wind farms, owned by Sorgenia Green, located on hilly terrains with slopes from gentle to rough. Further, onshore wind farm of Nprrekffir Enge has been analysed as a reference case: its layout is similar to offshore wind farms and the efficiency is mainly driven by wakes. It is shown and justified that terrain complexity imposes a novel and more consistent way for defining polar efficiency. Dependency of efficiency on wind direction, farm layout and orography is analysed and discussed. Effects of atmospheric stability have been also investigated through MERRA reanalysis data from NASA satellites. Monin-Obukhov Length has been used to discriminate climate regimes.
An evaluation of the accuracy and performance of lightweight GPS collars in a suburban environment.
Adams, Amy L; Dickinson, Katharine J M; Robertson, Bruce C; van Heezik, Yolanda
2013-01-01
The recent development of lightweight GPS collars has enabled medium-to-small sized animals to be tracked via GPS telemetry. Evaluation of the performance and accuracy of GPS collars is largely confined to devices designed for large animals for deployment in natural environments. This study aimed to assess the performance of lightweight GPS collars within a suburban environment, which may be different from natural environments in a way that is relevant to satellite signal acquisition. We assessed the effects of vegetation complexity, sky availability (percentage of clear sky not obstructed by natural or artificial features of the environment), proximity to buildings, and satellite geometry on fix success rate (FSR) and location error (LE) for lightweight GPS collars within a suburban environment. Sky availability had the largest affect on FSR, while LE was influenced by sky availability, vegetation complexity, and HDOP (Horizontal Dilution of Precision). Despite the complexity and modified nature of suburban areas, values for FSR (mean= 90.6%) and LE (mean = 30.1 m) obtained within the suburban environment are comparable to those from previous evaluations of GPS collars designed for larger animals and within less built-up environments. Due to fine-scale patchiness of habitat within urban environments, it is recommended that resource selection methods that are not reliant on buffer sizes be utilised for selection studies.
NASA Astrophysics Data System (ADS)
Tonnis, Dorothy Ann
The goals of this interpretive study were to examine selected Wisconsin science teachers' perceptions of teaching and learning science, to describe the scope of classroom performance assessment practices, and to gain an understanding of teachers' personal and professional experiences that influenced their belief systems of teaching, learning and assessment. The study was designed to answer the research questions: (1) How does the integration of performance assessment relate to the teachers' views of teaching and learning? (2) How are the selected teachers integrating performance assessment in their teaching? (3) What past personal and professional experiences have influenced teachers' attitudes and beliefs related to their classroom performance assessment practices? Purposeful sampling was used to select seven Wisconsin elementary, middle and high school science teachers who participated in the WPADP initiative from 1993-1995. Data collection methods included a Teaching Practices Inventory (TPI), semi-structured interviews, teacher developed portfolios, portfolio conferences, and classroom observations. Four themes and multiple categories emerged through data analysis to answer the research questions and to describe the results. Several conclusions were drawn from this research. First, science teachers who appeared to effectively integrate performance assessment, demonstrated transformational thinking in their attitudes and beliefs about teaching and learning science. In addition, these teachers viewed assessment and instructional practices as interdependent. Third, transformational teachers generally used well defined criteria to judge student work and made it public to the students. Transformational teachers provided students with real-world performance assessment tasks that were also learning events. Furthermore, student task responses informed the transformational teachers about effectiveness of instruction, students' complex thinking skills, quality of assessment instruments, students' creativity, and students' self-assessment skills. Finally, transformational teachers maintained integration of performance assessment practices through sustaining teacher support networks, engaging in professional development programs, and reflecting upon past personal and professional experiences related to teaching, learning and assessment. Salient conflicts overcome or minimized by transformational teachers include the conflict between assessment scoring and grading issues, validity and reliability concerns about the performance assessment tasks used, and the difficulty for teachers to consistently provide public criteria to students before task administration.
Performance Prediction of a MongoDB-Based Traceability System in Smart Factory Supply Chains
Kang, Yong-Shin; Park, Il-Ha; Youm, Sekyoung
2016-01-01
In the future, with the advent of the smart factory era, manufacturing and logistics processes will become more complex, and the complexity and criticality of traceability will further increase. This research aims at developing a performance assessment method to verify scalability when implementing traceability systems based on key technologies for smart factories, such as Internet of Things (IoT) and BigData. To this end, based on existing research, we analyzed traceability requirements and an event schema for storing traceability data in MongoDB, a document-based Not Only SQL (NoSQL) database. Next, we analyzed the algorithm of the most representative traceability query and defined a query-level performance model, which is composed of response times for the components of the traceability query algorithm. Next, this performance model was solidified as a linear regression model because the response times increase linearly by a benchmark test. Finally, for a case analysis, we applied the performance model to a virtual automobile parts logistics. As a result of the case study, we verified the scalability of a MongoDB-based traceability system and predicted the point when data node servers should be expanded in this case. The traceability system performance assessment method proposed in this research can be used as a decision-making tool for hardware capacity planning during the initial stage of construction of traceability systems and during their operational phase. PMID:27983654
Performance Prediction of a MongoDB-Based Traceability System in Smart Factory Supply Chains.
Kang, Yong-Shin; Park, Il-Ha; Youm, Sekyoung
2016-12-14
In the future, with the advent of the smart factory era, manufacturing and logistics processes will become more complex, and the complexity and criticality of traceability will further increase. This research aims at developing a performance assessment method to verify scalability when implementing traceability systems based on key technologies for smart factories, such as Internet of Things (IoT) and BigData. To this end, based on existing research, we analyzed traceability requirements and an event schema for storing traceability data in MongoDB, a document-based Not Only SQL (NoSQL) database. Next, we analyzed the algorithm of the most representative traceability query and defined a query-level performance model, which is composed of response times for the components of the traceability query algorithm. Next, this performance model was solidified as a linear regression model because the response times increase linearly by a benchmark test. Finally, for a case analysis, we applied the performance model to a virtual automobile parts logistics. As a result of the case study, we verified the scalability of a MongoDB-based traceability system and predicted the point when data node servers should be expanded in this case. The traceability system performance assessment method proposed in this research can be used as a decision-making tool for hardware capacity planning during the initial stage of construction of traceability systems and during their operational phase.
Neurobiology of rodent self-grooming and its value for translational neuroscience
Kalueff, Allan V.; Stewart, Adam Michael; Song, Cai; Berridge, Kent C.; Graybiel, Ann M.; Fentress, John C.
2016-01-01
Self-grooming is a complex innate behaviour with an evolutionary conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders — including models of autism spectrum disorder and obsessive compulsive disorder — that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action. PMID:26675822
Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.
2015-01-01
Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also be useful in predicting the acquisition of skill in complex tasks, such as strategy-based video games. Twenty older adults were trained for over 20 hours to play Rise of Nations, a complex real-time strategy game. These adults showed substantial improvements over the training period in game performance. MRI scans obtained prior to training revealed that the volume of a number of brain regions, which have been previously associated with subsets of the trained skills, predicted a substantial amount of variance in learning on the complex game. Thus, regional differences in brain volume can predict learning in complex tasks that entail the use of a variety of perceptual, cognitive and motor processes. PMID:21546146
Basak, Chandramallika; Voss, Michelle W; Erickson, Kirk I; Boot, Walter R; Kramer, Arthur F
2011-08-01
Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also be useful in predicting the acquisition of skill in complex tasks, such as strategy-based video games. Twenty older adults were trained for over 20 h to play Rise of Nations, a complex real-time strategy game. These adults showed substantial improvements over the training period in game performance. MRI scans obtained prior to training revealed that the volume of a number of brain regions, which have been previously associated with subsets of the trained skills, predicted a substantial amount of variance in learning on the complex game. Thus, regional differences in brain volume can predict learning in complex tasks that entail the use of a variety of perceptual, cognitive and motor processes. Copyright © 2011 Elsevier Inc. All rights reserved.
Statistical assessment of the learning curves of health technologies.
Ramsay, C R; Grant, A M; Wallace, S A; Garthwaite, P H; Monk, A F; Russell, I T
2001-01-01
(1) To describe systematically studies that directly assessed the learning curve effect of health technologies. (2) Systematically to identify 'novel' statistical techniques applied to learning curve data in other fields, such as psychology and manufacturing. (3) To test these statistical techniques in data sets from studies of varying designs to assess health technologies in which learning curve effects are known to exist. METHODS - STUDY SELECTION (HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW): For a study to be included, it had to include a formal analysis of the learning curve of a health technology using a graphical, tabular or statistical technique. METHODS - STUDY SELECTION (NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH): For a study to be included, it had to include a formal assessment of a learning curve using a statistical technique that had not been identified in the previous search. METHODS - DATA SOURCES: Six clinical and 16 non-clinical biomedical databases were searched. A limited amount of handsearching and scanning of reference lists was also undertaken. METHODS - DATA EXTRACTION (HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW): A number of study characteristics were abstracted from the papers such as study design, study size, number of operators and the statistical method used. METHODS - DATA EXTRACTION (NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH): The new statistical techniques identified were categorised into four subgroups of increasing complexity: exploratory data analysis; simple series data analysis; complex data structure analysis, generic techniques. METHODS - TESTING OF STATISTICAL METHODS: Some of the statistical methods identified in the systematic searches for single (simple) operator series data and for multiple (complex) operator series data were illustrated and explored using three data sets. The first was a case series of 190 consecutive laparoscopic fundoplication procedures performed by a single surgeon; the second was a case series of consecutive laparoscopic cholecystectomy procedures performed by ten surgeons; the third was randomised trial data derived from the laparoscopic procedure arm of a multicentre trial of groin hernia repair, supplemented by data from non-randomised operations performed during the trial. RESULTS - HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW: Of 4571 abstracts identified, 272 (6%) were later included in the study after review of the full paper. Some 51% of studies assessed a surgical minimal access technique and 95% were case series. The statistical method used most often (60%) was splitting the data into consecutive parts (such as halves or thirds), with only 14% attempting a more formal statistical analysis. The reporting of the studies was poor, with 31% giving no details of data collection methods. RESULTS - NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH: Of 9431 abstracts assessed, 115 (1%) were deemed appropriate for further investigation and, of these, 18 were included in the study. All of the methods for complex data sets were identified in the non-clinical literature. These were discriminant analysis, two-stage estimation of learning rates, generalised estimating equations, multilevel models, latent curve models, time series models and stochastic parameter models. In addition, eight new shapes of learning curves were identified. RESULTS - TESTING OF STATISTICAL METHODS: No one particular shape of learning curve performed significantly better than another. The performance of 'operation time' as a proxy for learning differed between the three procedures. Multilevel modelling using the laparoscopic cholecystectomy data demonstrated and measured surgeon-specific and confounding effects. The inclusion of non-randomised cases, despite the possible limitations of the method, enhanced the interpretation of learning effects. CONCLUSIONS - HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW: The statistical methods used for assessing learning effects in health technology assessment have been crude and the reporting of studies poor. CONCLUSIONS - NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH: A number of statistical methods for assessing learning effects were identified that had not hitherto been used in health technology assessment. There was a hierarchy of methods for the identification and measurement of learning, and the more sophisticated methods for both have had little if any use in health technology assessment. This demonstrated the value of considering fields outside clinical research when addressing methodological issues in health technology assessment. CONCLUSIONS - TESTING OF STATISTICAL METHODS: It has been demonstrated that the portfolio of techniques identified can enhance investigations of learning curve effects. (ABSTRACT TRUNCATED)
NASA Astrophysics Data System (ADS)
Srivastava, Ruby
2015-06-01
Density functional theory (DFT) and time-dependent density functional theory (TDDFT) are used to analyse theoretically the optoelectronic, photophysical properties and organic light-emitting diode performance of a series of fac-mer blue-emitting Iridium (III) carbene complexes. Swain-Lupton constant is used to discuss the substituents effect. 5d-orbital splitting and d-d* transitions are calculated to assess the efficiency of the studied complexes. The reorganisation energies (λ), transfer integrals, mobilities, radiative decay rate (kr), and triplet exciton generation fraction (χT) are also calculated. Due to the higher χT of these complexes, the formation of triplet exciton will be more and it will cause a faster intersystem crossing. Two host materials are proposed and host-guest match (Dexter-Förster energy) is also discussed. We hope that this unified work will surely help to design new blue-emitting phosphorescent materials in future.
Keating, C; Cysneiros, D; Mahony, T; O'Flaherty, V
2013-01-01
In this study, the ability of various sludges to digest a diverse range of cellulose and cellulose-derived substrates was assessed at different temperatures to elucidate the factors affecting hydrolysis. For this purpose, the biogas production was monitored and the specific biogas activity (SBA) of the sludges was employed to compare the performance of three anaerobic sludges on the degradation of a variety of complex cellulose sources, across a range of temperatures. The sludge with the highest performance on complex substrates was derived from a full-scale bioreactor treating sewage at 37 °C. Hydrolysis was the rate-limiting step during the degradation of complex substrates. No activity was recorded for the synthetic cellulose compound carboxymethylcellulose (CMC) using any of the sludges tested. Increased temperature led to an increase in hydrolysis rates and thus SBA values. The non-granular nature of the mesophilic sludge played a positive role in the hydrolysis of solid substrates, while the granular sludges proved more effective on the degradation of soluble compounds.
Kizony, R; Zeilig, G; Krasovsky, T; Bondi, M; Weiss, P L; Kodesh, E; Kafri, M
2017-01-01
Navigation skills are required for performance of functional complex tasks and may decline due to aging. Investigation of navigation skills should include measurement of cognitive-executive and motor aspects, which are part of complex tasks. to compare young and older healthy adults in navigation within a simulated environment with and without a functional-cognitive task. Ten young adults (25.6±4.3 years) and seven community dwelling older men (69.9±3.8 years) were tested during a single session. After training on a self-paced treadmill to navigate in a non-functional simulation, they performed the Virtual Multiple Errands Test (VMET) in a mall simulation. Outcome measures included cognitive-executive aspects of performance and gait parameters. Younger adults' performance of the VMET was more efficient (1.8±1.0) than older adults (5.3±2.7; p < 0.05) and faster (younger 478.1±141.5 s, older 867.6±393.5 s; p < 0.05). There were no differences between groups in gait parameters. Both groups walked slower in the mall simulation. The shopping simulation provided a paradigm to assess the interplay between motor and cognitive aspects involved in the efficient performance of a complex task. The study emphasized the role of the cognitive-executive aspect of task performance in healthy older adults.
NASA Technical Reports Server (NTRS)
Coates, G. D.; Alluisi, E. A.; Adkins, C. J., Jr.
1977-01-01
Literature on the effects of general noise on human performance is reviewed in an attempt to identify (1) those characteristics of noise that have been found to affect human performance; (2) those characteristics of performance most likely to be affected by the presence of noise, and (3) those characteristics of the performance situation typically associated with noise effects. Based on the characteristics identified, a theoretical framework is proposed that will permit predictions of possible effects of time-varying aircraft-type noise on complex human performance. An annotated bibliography of 50 articles is included.
NASA Astrophysics Data System (ADS)
Mitchell, Mary A.
This study analyzed English language learner (ELL) performance on the June 2012 Biology MCAS, namely on item attributes of domain, cognitive skill, and linguistic complexity. It examined the impact of English proficiency, Latinate first language, first language orthography, and late-entry ELL status. The results indicated that English proficiency was a strong predictor of performance and that ELLs at higher levels of English proficiency overwhelmingly passed. The results further indicated that English proficiency introduced a construct-irrelevant variance on the Biology MCAS and raised validity issues for using this assessment at lower levels of English proficiency. This study also found that ELLs with a Latinate first language consistently had statistically significant lower performance. Late-entry ELL status did not predict Biology MCAS performance.
Sunwook, Kim; Nussbaum, Maury A; Quandt, Sara A; Laurienti, Paul J; Arcury, Thomas A
2016-02-01
The aim of the study was to assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control.
Sunwook, Kim; Nussbaum, Maury A.; Quandt, Sara A.; Laurienti, Paul J.; Arcury, Thomas A.
2015-01-01
Objective Assess potential chronic effects of pesticide exposure on postural control, by examining postural balance of farmworkers and non-farmworkers diverse self-reported lifetime exposures. Methods Balance was assessed during quiet upright stance under four experimental conditions (2 visual × 2 cognitive difficulty). Results Significant differences in baseline balance performance (eyes open without cognitive task) between occupational groups were apparent in postural sway complexity. When adding a cognitive task to the eyes open condition, the influence of lifetime exposure on complexity ratios appeared different between occupational groups. Removing visual information revealed a negative association of lifetime exposure with complexity ratios. Conclusions Farmworkers and non-farmworkers may use different postural control strategies even when controlling for the level of lifetime pesticide exposure. Long-term exposure can affect somatosensory/vestibular sensory systems and the central processing of sensory information for postural control. PMID:26849257
Shevlin, Mark; Hyland, Philip; Roberts, Neil P.; Bisson, Jonathan I.; Brewin, Chris R; Cloitre, Marylene
2018-01-01
ABSTRACT Background: Two ‘sibling disorders’ have been proposed for the 11th version of the International Classification of Diseases (ICD-11): Posttraumatic Stress Disorder (PTSD) and Complex PTSD (CPTSD). To date, no research has attempted to identify the optimal symptom indicators for the ‘Disturbances in Self-Organization’ (DSO) symptom cluster. Objective: The aim of the current study was to assess the psychometric performance of scores of 16 potential DSO symptom indicators from the International Trauma Questionnaire (ITQ). Criteria relating to score variability and their ability to discriminate were employed. Method: Participants (N = 1839) were a nationally representative household sample of non-institutionalized adults currently residing in the US. Item scores from the ITQ were examined in relation to basic criteria associated with interpretability, variability, homogeneity, and association with functional impairment. The performance of the DSO symptoms was also assessed using 1- and 2-parameter item response theory (IRT) models. Results: The distribution of responses for all DSO indicators met the criteria associated with interpretability, variability, homogeneity, and association with functional impairment. The 1-parameter graded response model was considered the best model and indicated that each set of indictors performed very similarly. Conclusions: The ITQ contains 16 DSO symptom indicators and they perform well in measuring their respective symptom cluster. There was no evidence that particular indicators were ‘better’ than others, and it was concluded that the indicators are essentially interchangeable. PMID:29372014
Shevlin, Mark; Hyland, Philip; Roberts, Neil P; Bisson, Jonathan I; Brewin, Chris R; Cloitre, Marylene
2018-01-01
Background : Two 'sibling disorders' have been proposed for the 11 th version of the International Classification of Diseases (ICD-11): Posttraumatic Stress Disorder (PTSD) and Complex PTSD (CPTSD). To date, no research has attempted to identify the optimal symptom indicators for the 'Disturbances in Self-Organization' (DSO) symptom cluster. Objective : The aim of the current study was to assess the psychometric performance of scores of 16 potential DSO symptom indicators from the International Trauma Questionnaire (ITQ). Criteria relating to score variability and their ability to discriminate were employed. Method : Participants ( N = 1839) were a nationally representative household sample of non-institutionalized adults currently residing in the US. Item scores from the ITQ were examined in relation to basic criteria associated with interpretability, variability, homogeneity, and association with functional impairment. The performance of the DSO symptoms was also assessed using 1- and 2-parameter item response theory (IRT) models. Results : The distribution of responses for all DSO indicators met the criteria associated with interpretability, variability, homogeneity, and association with functional impairment. The 1-parameter graded response model was considered the best model and indicated that each set of indictors performed very similarly. Conclusions : The ITQ contains 16 DSO symptom indicators and they perform well in measuring their respective symptom cluster. There was no evidence that particular indicators were 'better' than others, and it was concluded that the indicators are essentially interchangeable.
NASA Astrophysics Data System (ADS)
Soltanzadeh, Iman; Bonnardot, Valérie; Sturman, Andrew; Quénol, Hervé; Zawar-Reza, Peyman
2017-08-01
Global warming has implications for thermal stress for grapevines during ripening, so that wine producers need to adapt their viticultural practices to ensure optimum physiological response to environmental conditions in order to maintain wine quality. The aim of this paper is to assess the ability of the Weather Research and Forecasting (WRF) model to accurately represent atmospheric processes at high resolution (500 m) during two events during the grapevine ripening period in the Stellenbosch Wine of Origin district of South Africa. Two case studies were selected to identify areas of potentially high daytime heat stress when grapevine photosynthesis and grape composition were expected to be affected. The results of high-resolution atmospheric model simulations were compared to observations obtained from an automatic weather station (AWS) network in the vineyard region. Statistical analysis was performed to assess the ability of the WRF model to reproduce spatial and temporal variations of meteorological parameters at 500-m resolution. The model represented the spatial and temporal variation of meteorological variables very well, with an average model air temperature bias of 0.1 °C, while that for relative humidity was -5.0 % and that for wind speed 0.6 m s-1. Variation in model performance varied between AWS and with time of day, as WRF was not always able to accurately represent effects of nocturnal cooling within the complex terrain. Variations in performance between the two case studies resulted from effects of atmospheric boundary layer processes in complex terrain under the influence of the different synoptic conditions prevailing during the two periods.
Analytic network process model for sustainable lean and green manufacturing performance indicator
NASA Astrophysics Data System (ADS)
Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik
2014-09-01
Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.
C3 generic workstation: Performance metrics and applications
NASA Technical Reports Server (NTRS)
Eddy, Douglas R.
1988-01-01
The large number of integrated dependent measures available on a command, control, and communications (C3) generic workstation under development are described. In this system, embedded communications tasks will manipulate workload to assess the effects of performance-enhancing drugs (sleep aids and decongestants), work/rest cycles, biocybernetics, and decision support systems on performance. Task performance accuracy and latency will be event coded for correlation with other measures of voice stress and physiological functioning. Sessions will be videotaped to score non-verbal communications. Physiological recordings include spectral analysis of EEG, ECG, vagal tone, and EOG. Subjective measurements include SWAT, fatigue, POMS and specialized self-report scales. The system will be used primarily to evaluate the effects on performance of drugs, work/rest cycles, and biocybernetic concepts. Performance assessment algorithms will also be developed, including those used with small teams. This system provides a tool for integrating and synchronizing behavioral and psychophysiological measures in a complex decision-making environment.
Hermassi, Souhail; Chelly, Mohamed-Souhaiel; Wollny, Rainer; Hoffmeyer, Birgit; Fieseler, Georg; Schulze, Stephan; Irlenbusch, Lars; Delank, Karl-Stefan; Shephard, Roy J; Bartels, Thomas; Schwesig, René
2018-06-01
This study assessed the validity of the handball-specific complex test (HBCT) and two non-specific field tests in professional elite handball athletes, using the match performance score (MPS) as the gold standard of performance. Thirteen elite male handball players (age: 27.4±4.8 years; premier German league) performed the HBCT, the Yo-Yo Intermittent Recovery (YYIR) test and a repeated shuttle sprint ability (RSA) test at the beginning of pre-season training. The RSA results were evaluated in terms of best time, total time, and fatigue decrement. Heart rates (HR) were assessed at selected times throughout all tests; the recovery HR was measured immediately post-test and 10 minutes later. The match performance score was based on various handball specific parameters (e.g., field goals, assists, steals, blocks, and technical mistakes) as seen during all matches of the immediately subsequent season (2015/2016). The parameters of run 1, run 2, and HR recovery at minutes 6 and 10 of the RSA test all showed a variance of more than 10% (range: 11-15%). However, the variance of scores for the YYIR test was much smaller (range: 1-7%). The resting HR (r2=0.18), HR recovery at minute 10 (r2=0.10), lactate concentration at rest (r2=0.17), recovery of heart rate from 0 to 10 minutes (r2=0.15), and velocity of second throw at first trial (r2=0.37) were the most valid HBCT parameters. Much effort is necessary to assess MPS and to develop valid tests. Speed and the rate of functional recovery seem the best predictors of competitive performance for elite handball players.
Performance in complex motor tasks deteriorates in hyperthermic humans.
Piil, Jacob F; Lundbye-Jensen, Jesper; Trangmar, Steven J; Nybo, Lars
2017-01-01
Heat stress, leading to elevations in whole-body temperature, has a marked impact on both physical performance and cognition in ecological settings. Lab experiments confirm this for physically demanding activities, whereas observations are inconsistent for tasks involving cognitive processing of information or decision-making prior to responding. We hypothesized that divergences could relate to task complexity and developed a protocol consisting of 1) simple motor task [TARGET_pinch], 2) complex motor task [Visuo-motor tracking], 3) simple math task [MATH_type], 4) combined motor-math task [MATH_pinch]. Furthermore, visuo-motor tracking performance was assessed both in a separate- and a multipart protocol (complex motor tasks alternating with the three other tasks). Following familiarization, each of the 10 male subjects completed separate and multipart protocols in randomized order in the heat (40°C) or control condition (20°C) with testing at baseline (seated rest) and similar seated position, following exercise-induced hyperthermia (core temperature ∼ 39.5°C in the heat and 38.2°C in control condition). All task scores were unaffected by control exercise or passive heat exposure, but visuo-motor tracking performance was reduced by 10.7 ± 6.5% following exercise-induced hyperthermia when integrated in the multipart protocol and 4.4 ± 5.7% when tested separately (both P < 0.05 ). TARGET_pinch precision declined by 2.6 ± 1.3% ( P < 0.05 ), while no significant changes were observed for the math tasks. These results indicate that heat per se has little impact on simple motor or cognitive test performance, but complex motor performance is impaired by hyperthermia and especially so when multiple tasks are combined.
Evers-Casey, Sarah; Graden, Sarah; Schnoll, Robert; Mallya, Giridhar
2015-01-01
Rationale: Tobacco use disproportionately affects the poor, who are, in turn, least likely to receive cessation treatment from providers. Providers caring for low-income populations perform simple components of tobacco use treatment (e.g., assessing tobacco use) with reasonable frequency. However, performance of complex treatment behaviors, such as pharmacologic prescription and follow-up arrangement, remains suboptimal. Objectives: Evaluate the influence of academic detailing (AD), a university-based, noncommercial, educational outreach intervention, on primary care physicians’ complex treatment practice behaviors within an urban care setting. Methods: Trained academic detailers made in-person visits to targeted primary care practices, delivering verbal and written instruction emphasizing three key messages related to tobacco treatment. Physicians’ self-reported frequency of simple and complex treatment behaviors were assessed using a seven-item questionnaire, before and 2 months after AD. Results: Between May 2011 and March 2012, baseline AD visits were made to 217 physicians, 109 (50%) of whom also received follow-up AD. Mean frequency scores for complex behaviors increased significantly, from 2.63 to 2.92, corresponding to a clinically significant 30% increase in the number of respondents who endorsed “almost always” or “always” (P < 0.001). Improvement in mean simple behavior frequency scores was also noted (3.98 vs. 4.13; P = 0.035). Sex and practice type appear to influence reported complex behavior frequency at baseline, whereas only practice type influenced improvement in complex behavior scores at follow up. Conclusions: This study demonstrates the feasibility and potential effectiveness of a low-cost and highly disseminable intervention to improve clinician behavior in the context of treating nicotine dependence in underserved communities. PMID:25867533
Bojan, Mirela; Gerelli, Sébastien; Gioanni, Simone; Pouard, Philippe; Vouhé, Pascal
2011-04-01
The Aristotle Comprehensive Complexity (ACC) score has been proposed for complexity adjustment in the analysis of outcome after congenital heart surgery. The score is the sum of the Aristotle Basic Complexity score, largely used but poorly related to mortality and morbidity, and of the Comprehensive Complexity items accounting for comorbidities and procedure-specific and anatomic variability. This study aims to demonstrate the ability of the ACC score to predict 30-day mortality and morbidity assessed by the length of the intensive care unit (ICU) stay. We retrospectively enrolled patients undergoing congenital heart surgery in our institution. We modeled the ACC score as a continuous variable, mortality as a binary variable, and length of ICU stay as a censored variable. For each mortality and morbidity model we performed internal validation by bootstrapping and assessed overall performance by R(2), calibration by the calibration slope, and discrimination by the c index. Among all 1,454 patients enrolled, 30-day mortality rate was 3.4% and median length of ICU stay was 3 days. The ACC score strongly related to mortality, but related to length of ICU stay only during the first postoperative week. For the mortality model, R(2) = 0.24, calibration slope = 0.98, c index = 0.86, and 95% confidence interval was 0.82 to 0.91. For the morbidity model, R(2) = 0.094, calibration slope = 0.94, c index = 0.64, and 95% confidence interval was 0.62 to 0.66. The ACC score predicts 30-day mortality and length of ICU stay during the first postoperative week. The score is an adequate tool for complexity adjustment in the analysis of outcome after congenital heart surgery. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Pohjola, Mikko V.; Pohjola, Pasi; Tainio, Marko; Tuomisto, Jouni T.
2013-01-01
The calls for knowledge-based policy and policy-relevant research invoke a need to evaluate and manage environment and health assessments and models according to their societal outcomes. This review explores how well the existing approaches to assessment and model performance serve this need. The perspectives to assessment and model performance in the scientific literature can be called: (1) quality assurance/control, (2) uncertainty analysis, (3) technical assessment of models, (4) effectiveness and (5) other perspectives, according to what is primarily seen to constitute the goodness of assessments and models. The categorization is not strict and methods, tools and frameworks in different perspectives may overlap. However, altogether it seems that most approaches to assessment and model performance are relatively narrow in their scope. The focus in most approaches is on the outputs and making of assessments and models. Practical application of the outputs and the consequential outcomes are often left unaddressed. It appears that more comprehensive approaches that combine the essential characteristics of different perspectives are needed. This necessitates a better account of the mechanisms of collective knowledge creation and the relations between knowledge and practical action. Some new approaches to assessment, modeling and their evaluation and management span the chain from knowledge creation to societal outcomes, but the complexity of evaluating societal outcomes remains a challenge. PMID:23803642
Medication Regimen Complexity Measured by MRCI: A Systematic Review to Identify Health Outcomes.
Alves-Conceição, Vanessa; Rocha, Kérilin Stancine Santos; Silva, Fernanda Vilanova Nascimento; Silva, Rafaella Oliveira Santos; Silva, Daniel Tenório da; Lyra-Jr, Divaldo Pereira de
2018-05-01
To perform a systematic review to identify health outcomes related to medication regimen complexity as measured by the Medication Regimen Complexity Index (MRCI) instrument. Cochrane Library, LILACS, PubMed, Scopus, EMBASE, Open Thesis, and Web of Science were searched from January 1, 2004, until April 02, 2018, using the following search terms: outcome assessment, drug therapy, and Medication Regimen Complexity Index and their synonyms in different combinations. Studies that used the MRCI instrument to measure medication regimen complexity and related it to clinical, humanistic, and/or economic outcomes were evaluated. Two reviewers independently carried out the analysis of the titles, abstracts, and complete texts according to the eligibility criteria, performed data extraction, and evaluated study quality. A total of 23 studies met the inclusion criteria; 18 health outcomes related to medication regimen complexity were found. The health outcomes most influenced by medication regimen complexity were hospital readmission, medication adherence, hospitalization, adverse drug events, and emergency sector visit. Only one study related medication regimen complexity with humanistic outcomes, and no study related medication regimen complexity to economic outcomes. Most of the studies were of good methodological quality. Relevance to Patient Care and Clinical Practice: Health care professionals should pay attention to medication regimen complexity of the patients because this may influence health outcomes. This study identified some health outcomes that may be influenced by medication regimen complexity: hospitalization, hospital readmission, and medication adherence were more prevalent, showing a significant association between MRCI increase and these health outcomes.
Use of a Tracing Task to Assess Visuomotor Performance: Effects of Age, Sex, and Handedness
2013-01-01
Background. Visuomotor abnormalities are common in aging and age-related disease, yet difficult to quantify. This study investigated the effects of healthy aging, sex, and handedness on the performance of a tracing task. Participants (n = 150, aged 21–95 years, 75 females) used a stylus to follow a moving target around a circle on a tablet computer with their dominant and nondominant hands. Participants also performed the Trail Making Test (a measure of executive function). Methods. Deviations from the circular path were computed to derive an “error” time series. For each time series, absolute mean, variance, and complexity index (a proposed measure of system functionality and adaptability) were calculated. Using the moving target and stylus coordinates, the percentage of task time within the target region and the cumulative micropause duration (a measure of motion continuity) were computed. Results. All measures showed significant effects of aging (p < .0005). Post hoc age group comparisons showed that with increasing age, the absolute mean and variance of the error increased, complexity index decreased, percentage of time within the target region decreased, and cumulative micropause duration increased. Only complexity index showed a significant difference between dominant versus nondominant hands within each age group (p < .0005). All measures showed relationships to the Trail Making Test (p < .05). Conclusions. Measures derived from a tracing task identified performance differences in healthy individuals as a function of age, sex, and handedness. Studies in populations with specific neuromotor syndromes are warranted to test the utility of measures based on the dynamics of tracking a target as a clinical assessment tool. PMID:23388876
Gilboa, Yafit; Jansari, Ashok; Kerrouche, Bernadette; Uçak, Emel; Tiberghien, Anne; Benkhaled, Ouarda; Aligon, Delphine; Mariller, Aude; Verdier, Valentine; Mintegui, Amaia; Abada, Geneviève; Canizares, Céline; Goldstein, Andrew; Chevignard, Mathilde
2017-12-28
The Jansari assessment of Executive Functions for Children (JEF-C © ) is a new non-immersive computerised assessment of executive functions. The objectives of the study were to test the feasibility and validity of JEF-C © in children and adolescents with acquired brain injury (ABI). Twenty-nine patients with ABI aged 10-18 years and 30 age-and gender-matched controls were tested. Participants performed JEF-C © , Wechsler Abbreviated Scale of Intelligence (WASI) and the Behavioural Assessment of the Dysexecutive Syndrome for Children (BADS-C), while parents completed the Behaviour Rating Inventory of Executive Function (BRIEF) questionnaire. The JEF-C © task proved feasible in patients with ABI. The internal consistency was medium (Cronbach's alpha = 0.62 and significant intercorrelations between individual JEF-C © constructs). Patients performed significantly worse than controls on most of the JEF-C © subscales and total score, with 41.4% of participants with ABI classified as having severe executive dysfunction. No significant correlations were found between JEF-C © total score, the BRIEF indices, and the BADS-C. Significant correlations were found between JEF-C © and demographic characteristics of the sample and intellectual ability, but not with severity/medical variables. JEF-C © is a playful complex task that appears to be a sensitive and ecologically valid assessment tool, especially for relatively high-functioning individuals.
Green, J Marshall; Sabino, Jennifer; Fleming, Mark; Valerio, Ian
2015-03-01
In the recent Iraq and Afghanistan conflicts, survival rates from complex battlefield injuries have continued to improve. The resulting war-related wounds are challenging, with confounding issues making assessment of tissue perfusion subjective and variable. This review discusses the utility of intraoperative fluorescence angiography, and its usefulness as an objective tool to evaluate the perfusion of tissues in the face of complex war-related injuries. A retrospective review of all war-related traumatic and reconstructive cases employing intraoperative indocyanine green laser angiography (ICGLA) was performed. Data analyzed included indication for use, procedure success/failure rates, modifications performed, and perfusion-related complications. Anatomical regions assessed were extremity, head and neck, truncal, and intra-abdominal viscera. The endpoint of specific interest involved the decision for additional debridement of poorly perfused tissue, as based on the ICGLA findings. Over a 3-year period, this study examined 123 extremity soft tissue flaps, 41 extremity injuries including amputation and/or amputation revision cases, 13 craniofacial flaps, and 9 truncal/abdomen/gastrointestinal cases in which ICGLA was utilized to assess tissue perfusion and viability. A total of 35 (18.8%) of cases employing ICGLA required intraoperative modifications to address perfusion-related issues. Intraoperative fluorescent angiography is an objective, useful tool to assess various war-related traumatic injuries. This study expands on prior cited indications for ICGLA to include (1) guiding debridement in heavily contaminated wounds, (2) providing improved assessment of avulsion soft tissue injuries, (3) allowing for rapid detection of vascular and/or microvascular compromise in soft tissue and osseous flap reconstructions, (4) reducing and preventing perfusion-related complications in trauma, amputation closures, and reconstruction procedures, (5) contributing to better outcomes in certain complex orthopedic and composite tissue injuries, and (6) enabling improved postoperative wound and reconstruction assessment in those cases of perfusion-related issues that arise within a delayed setting. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
NASA Astrophysics Data System (ADS)
Verechagin, V.; Kris, R.; Schwarzband, I.; Milstein, A.; Cohen, B.; Shkalim, A.; Levy, S.; Price, D.; Bal, E.
2018-03-01
Over the years, mask and wafers defects dispositioning has become an increasingly challenging and time consuming task. With design rules getting smaller, OPC getting complex and scanner illumination taking on free-form shapes - the probability of a user to perform accurate and repeatable classification of defects detected by mask inspection tools into pass/fail bins is reducing. The critical challenging of mask defect metrology for small nodes ( < 30 nm) was reviewed in [1]. While Critical Dimension (CD) variation measurement is still the method of choice for determining a mask defect future impact on wafer, the high complexity of OPCs combined with high variability in pattern shapes poses a challenge for any automated CD variation measurement method. In this study, a novel approach for measurement generalization is presented. CD variation assessment performance is evaluated on multiple different complex shape patterns, and is benchmarked against an existing qualified measurement methodology.
Wang, Bing; Westerhoff, Lance M.; Merz, Kenneth M.
2008-01-01
We have generated docking poses for the FKBP-GPI complex using eight docking programs, and compared their scoring functions with scoring based on NMR chemical shift perturbations (NMRScore). Because the chemical shift perturbation (CSP) is exquisitely sensitive on the orientation of ligand inside the binding pocket, NMRScore offers an accurate and straightforward approach to score different poses. All scoring functions were inspected by their abilities to highly rank the native-like structures and separate them from decoy poses generated for a protein-ligand complex. The overall performance of NMRScore is much better than that of energy-based scoring functions associated with docking programs in both aspects. In summary, we find that the combination of docking programs with NMRScore results in an approach that can robustly determine the binding site structure for a protein-ligand complex, thereby, providing a new tool facilitating the structure-based drug discovery process. PMID:17867664
The effects of monitoring environment on problem-solving performance.
Laird, Brian K; Bailey, Charles D; Hester, Kim
2018-01-01
While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.
Baktoft, Henrik; Zajicek, Petr; Klefoth, Thomas; Svendsen, Jon C.; Jacobsen, Lene; Pedersen, Martin Wæver; March Morla, David; Skov, Christian; Nakayama, Shinnosuke; Arlinghaus, Robert
2015-01-01
Acoustic positional telemetry systems (APTs) represent a novel approach to study the behaviour of free ranging aquatic animals in the wild at unprecedented detail. System manufactures promise remarkably high temporal and spatial resolution. However, the performance of APTs has rarely been rigorously tested at the level of entire ecosystems. Moreover, the effect of habitat structure on system performance has only been poorly documented. Two APTs were deployed to cover two small lakes and a series of standardized stationary tests were conducted to assess system performance. Furthermore, a number of tow tests were conducted to simulate moving fish. Based on these data, we quantified system performance in terms of data yield, accuracy and precision as a function of structural complexity in relation to vegetation. Mean data yield of the two systems was 40 % (Lake1) and 60 % (Lake2). Average system accuracy (acc) and precision (prec) were Lake1: acc = 3.1 m, prec = 1.1 m; Lake2: acc = 1.0 m, prec = 0.2 m. System performance was negatively affected by structural complexity, i.e., open water habitats yielded far better performance than structurally complex vegetated habitats. Post-processing greatly improved data quality, and sub-meter accuracy and precision were, on average, regularly achieved in Lake2 but remained the exception in the larger and structurally more complex Lake1. Moving transmitters were tracked well by both systems. Whereas overestimation of moved distance is inevitable for stationary transmitters due to accumulation of small tracking errors, moving transmitters can result in both over- and underestimation of distances depending on circumstances. Both deployed APTs were capable of providing high resolution positional data at the scale of entire lakes and are suitable systems to mine the reality of free ranging fish in their natural environment. This opens important opportunities to advance several fields of study such as movement ecology and animal social networks in the wild. It is recommended that thorough performance tests are conducted in any study utilizing APTs. The APTs tested here appear best suited for studies in structurally simple ecosystems or for studying pelagic species. In such situations, the data quality provided by the APTs is exceptionally high. PMID:26000459
Computed Tomography Inspection and Analysis for Additive Manufacturing Components
NASA Technical Reports Server (NTRS)
Beshears, Ronald D.
2017-01-01
Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws and geometric features were inspected using a 2-megavolt linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed to determine the impact of additive manufacturing on inspectability of objects with complex geometries.
A thematic review of life cycle assessment (LCA) applied to pig production
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAuliffe, Graham A., E-mail: g.a.mcauliffe@umail.ucc.ie; School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork; Chapman, Deborah V.
Commercial livestock production is known to have significant impacts on the environment. Pig production is a complex system which involves the production of animal feed, transportation, animal rearing and waste management. One tool for assessing the environmental performance of such complex systems is life cycle assessment (LCA). LCA has been applied to pig production considerably to date. This paper provides a chronological review of state-of-the-art pig production LCAs under three themes: feed production; entire-system livestock rearing; and waste management. The study considers how LCA applications have addressed technological improvements in animal husbandry, and highlights methodological limitations, particularly related to cross-studymore » comparisons. Recent research demonstrates crude protein reduction in feed and anaerobic treatment of pig excreta resulting in bioenergy production are the key targets for environmental performance improvements related to pig production. - Highlights: • An extensive review of LCA applied to pig production is provided chronologically over the past decade. • Individual studies have been categorised into feed, whole-system pig production and waste management themes. • We consider how LCAs have addressed state-of-the-art pig husbandry. • We offer a discussion on key findings, limitations and future research.« less
Carpinteri, Alberto; Lacidogna, Giuseppe; Invernizzi, Stefano; Accornero, Federico
2013-01-01
We examine an application of Acoustic Emission (AE) technique for a probabilistic analysis in time and space of earthquakes, in order to preserve the valuable Italian Renaissance Architectural Complex named "The Sacred Mountain of Varallo." Among the forty-five chapels of the Renaissance Complex, the structure of the Chapel XVII is of particular concern due to its uncertain structural condition and due to the level of stress caused by the regional seismicity. Therefore, lifetime assessment, taking into account the evolution of damage phenomena, is necessary to preserve the reliability and safety of this masterpiece of cultural heritage. A continuous AE monitoring was performed to assess the structural behavior of the Chapel. During the monitoring period, a correlation between peaks of AE activity in the masonry of the "Sacred Mountain of Varallo" and regional seismicity was found. Although the two phenomena take place on very different scales, the AE in materials and the earthquakes in Earth's crust, belong to the same class of invariance. In addition, an accurate finite element model, performed with DIANA finite element code, is presented to describe the dynamic behavior of Chapel XVII structure, confirming visual and instrumental inspections of regional seismic effects.
"The caterpillar": a novel reading passage for assessment of motor speech disorders.
Patel, Rupal; Connaghan, Kathryn; Franco, Diana; Edsall, Erika; Forgit, Dory; Olsen, Laura; Ramage, Lianna; Tyler, Emily; Russell, Scott
2013-02-01
A review of the salient characteristics of motor speech disorders and common assessment protocols revealed the need for a novel reading passage tailored specifically to differentiate between and among the dysarthrias (DYSs) and apraxia of speech (AOS). "The Caterpillar" passage was designed to provide a contemporary, easily read, contextual speech sample with specific tasks (e.g., prosodic contrasts, words of increasing length and complexity) targeted to inform the assessment of motor speech disorders. Twenty-two adults, 15 with DYS or AOS and 7 healthy controls (HC), were recorded reading "The Caterpillar" passage to demonstrate its utility in examining motor speech performance. Analysis of performance across a subset of segmental and prosodic variables illustrated that "The Caterpillar" passage showed promise for extracting individual profiles of impairment that could augment current assessment protocols and inform treatment planning in motor speech disorders.
VMSoar: a cognitive agent for network security
NASA Astrophysics Data System (ADS)
Benjamin, David P.; Shankar-Iyer, Ranjita; Perumal, Archana
2005-03-01
VMSoar is a cognitive network security agent designed for both network configuration and long-term security management. It performs automatic vulnerability assessments by exploring a configuration"s weaknesses and also performs network intrusion detection. VMSoar is built on the Soar cognitive architecture, and benefits from the general cognitive abilities of Soar, including learning from experience, the ability to solve a wide range of complex problems, and use of natural language to interact with humans. The approach used by VMSoar is very different from that taken by other vulnerability assessment or intrusion detection systems. VMSoar performs vulnerability assessments by using VMWare to create a virtual copy of the target machine then attacking the simulated machine with a wide assortment of exploits. VMSoar uses this same ability to perform intrusion detection. When trying to understand a sequence of network packets, VMSoar uses VMWare to make a virtual copy of the local portion of the network and then attempts to generate the observed packets on the simulated network by performing various exploits. This approach is initially slow, but VMSoar"s learning ability significantly speeds up both vulnerability assessment and intrusion detection. This paper describes the design and implementation of VMSoar, and initial experiments with Windows NT and XP.
Collection of family health history for assessment of chronic disease risk in primary care.
Powell, Karen P; Christianson, Carol A; Hahn, Susan E; Dave, Gaurav; Evans, Leslie R; Blanton, Susan H; Hauser, Elizabeth; Agbaje, Astrid; Orlando, Lori A; Ginsburg, Geoffrey S; Henrich, Vincent C
2013-01-01
Family health history can predict a patient's risk for common complex diseases. This project assessed the completeness of family health history data in medical charts and evaluated the utility of these data for performing risk assessments in primary care. Family health history data were collected and analyzed to determine the presence of quality indicators that are necessary for effective and accurate assessment of disease risk. More than 99% of the 390 paper charts analyzed contained information about family health history, which was usually scattered throughout the chart. Information on the health of the patient's parents was collected more often than information on the health of other relatives. Key information that was often not collected included age of disease onset, affected side of the family, and second-degree relatives affected. Less than 4% of patient charts included family health histories that were informative enough to accurately assess risk for common complex diseases. Limitations of this study include the small number of charts reviewed per provider, the fact that the sample consisted of primary care providers in a single geographic location, and the inability to assess ethnicity, consanguinity, and other indicators of the informativeness of family health history. The family health histories collected in primary care are usually not complete enough to assess the patient's risk for common complex diseases. This situation could be improved with use of tools that analyze the family health history information collected and provide risk-stratified decision support recommendations for primary care.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Adam, Abdel Majid A.; Sharshar, T.; Saad, Hosam A.; Eldaroti, Hala H.
2014-03-01
In this work, structural, thermal, morphological, pharmacological screening and positron annihilation lifetime measurements were performed on the interactions between a N-(1-Naphthyl)ethylenediamine dihydrochloride (NEDA·2HCl) donor and three types of acceptors to characterize these CT complexes. The three types of acceptors include π-acceptors (quinol and picric acid), σ-acceptors (iodine) and vacant orbital acceptors (tin(IV) tetrachloride and zinc chloride). The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, the power of acceptors and molecular weight of the CT complexes. The positron annihilation lifetime spectroscopy can be used as a probe for the formation of charge-transfer (CT) complexes.
Greco, Todd M.; Guise, Amanda J.; Cristea, Ileana M.
2016-01-01
In biological systems, proteins catalyze the fundamental reactions that underlie all cellular functions, including metabolic processes and cell survival and death pathways. These biochemical reactions are rarely accomplished alone. Rather, they involve a concerted effect from many proteins that may operate in a directed signaling pathway and/or may physically associate in a complex to achieve a specific enzymatic activity. Therefore, defining the composition and regulation of protein complexes is critical for understanding cellular functions. In this chapter, we describe an approach that uses quantitative mass spectrometry (MS) to assess the specificity and the relative stability of protein interactions. Isolation of protein complexes from mammalian cells is performed by rapid immunoaffinity purification, and followed by in-solution digestion and high-resolution mass spectrometry analysis. We employ complementary quantitative MS workflows to assess the specificity of protein interactions using label-free MS and statistical analysis, and the relative stability of the interactions using a metabolic labeling technique. For each candidate protein interaction, scores from the two workflows can be correlated to minimize nonspecific background and profile protein complex composition and relative stability. PMID:26867737
Feedforward object-vision models only tolerate small image variations compared to human
Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi
2014-01-01
Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986
Ab initio calculations, structure, NBO and NCI analyses of Xsbnd H⋯π interactions
NASA Astrophysics Data System (ADS)
Wu, Qiyang; Su, He; Wang, Hongyan; Wang, Hui
2018-02-01
The performance of ab initio methods (MP2, DFT/B3LYP, random-phase approximation (RPA), CCSD(T) and QCISD(T)) in predicting interaction energy of Xsbnd H⋯π (Xsbnd H = HCCH, HCl, HF; π = C2H2, C2H4, C6H6) hydrogen complexes are assessed systematically. The CCSD(T)/CBS benchmarks of interaction energy are reported. It is found that RPA agrees well with CCSD(T)/CBS benchmarks and experimental results. CCSD(T) and QCISD(T) perform the best only when compared with CCSD(T)/CBS benchmarks, MP2 performs well only for experimental data. B3LYP provides the worst accuracy. Additionally, the equilibrium structure, interaction type of Xsbnd H⋯π hydrogen complexes are investigated by the natural bond orbital (NBO) and the non-covalent interaction index (NCI).
Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, e...
Success in Community College: Do Institutions Differ?
ERIC Educational Resources Information Center
Clotfelter, Charles T.; Ladd, Helen F.; Muschkin, Clara G.; Vigdor, Jacob L.
2013-01-01
Community colleges are complex organizations and assessing their performance, though important, is difficult. Compared to 4-year colleges and universities, community colleges serve a more diverse population and provide a wider variety of educational programs that include continuing education and technical training for adults, and diplomas,…
Gaze entropy reflects surgical task load.
Di Stasi, Leandro L; Diaz-Piedra, Carolina; Rieiro, Héctor; Sánchez Carrión, José M; Martin Berrido, Mercedes; Olivares, Gonzalo; Catena, Andrés
2016-11-01
Task (over-)load imposed on surgeons is a main contributing factor to surgical errors. Recent research has shown that gaze metrics represent a valid and objective index to asses operator task load in non-surgical scenarios. Thus, gaze metrics have the potential to improve workplace safety by providing accurate measurements of task load variations. However, the direct relationship between gaze metrics and surgical task load has not been investigated yet. We studied the effects of surgical task complexity on the gaze metrics of surgical trainees. We recorded the eye movements of 18 surgical residents, using a mobile eye tracker system, during the performance of three high-fidelity virtual simulations of laparoscopic exercises of increasing complexity level: Clip Applying exercise, Cutting Big exercise, and Translocation of Objects exercise. We also measured performance accuracy and subjective rating of complexity. Gaze entropy and velocity linearly increased with increased task complexity: Visual exploration pattern became less stereotyped (i.e., more random) and faster during the more complex exercises. Residents performed better the Clip Applying exercise and the Cutting Big exercise than the Translocation of Objects exercise and their perceived task complexity differed accordingly. Our data show that gaze metrics are a valid and reliable surgical task load index. These findings have potential impacts to improve patient safety by providing accurate measurements of surgeon task (over-)load and might provide future indices to assess residents' learning curves, independently of expensive virtual simulators or time-consuming expert evaluation.
Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation
Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.
2015-01-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.
Development of Android apps for cognitive assessment of dementia and delirium.
Weir, Alexander J; Paterson, Craig A; Tieges, Zoe; MacLullich, Alasdair M; Parra-Rodriguez, Mario; Della Sala, Sergio; Logie, Robert H
2014-01-01
The next generation of medical technology applications for hand-held portable platforms will provide a core change in performance and sophistication, transforming the way health care professionals interact with patients. This advance is particularly apparent in the delivery of cognitive patient assessments, where smartphones and tablet computers are being used to assess complex neurological conditions to provide objective, accurate and reproducible test results. This paper reports on two such applications (apps) that have been developed to assist healthcare professionals with the detection and diagnosis of dementia and delirium.
Oudkerk Pool, Andrea; Govaerts, Marjan J B; Jaarsma, Debbie A D C; Driessen, Erik W
2018-05-01
While portfolios are increasingly used to assess competence, the validity of such portfolio-based assessments has hitherto remained unconfirmed. The purpose of the present research is therefore to further our understanding of how assessors form judgments when interpreting the complex data included in a competency-based portfolio. Eighteen assessors appraised one of three competency-based mock portfolios while thinking aloud, before taking part in semi-structured interviews. A thematic analysis of the think-aloud protocols and interviews revealed that assessors reached judgments through a 3-phase cyclical cognitive process of acquiring, organizing, and integrating evidence. Upon conclusion of the first cycle, assessors reviewed the remaining portfolio evidence to look for confirming or disconfirming evidence. Assessors were inclined to stick to their initial judgments even when confronted with seemingly disconfirming evidence. Although assessors reached similar final (pass-fail) judgments of students' professional competence, they differed in their information-processing approaches and the reasoning behind their judgments. Differences sprung from assessors' divergent assessment beliefs, performance theories, and inferences about the student. Assessment beliefs refer to assessors' opinions about what kind of evidence gives the most valuable and trustworthy information about the student's competence, whereas assessors' performance theories concern their conceptualizations of what constitutes professional competence and competent performance. Even when using the same pieces of information, assessors furthermore differed with respect to inferences about the student as a person as well as a (future) professional. Our findings support the notion that assessors' reasoning in judgment and decision-making varies and is guided by their mental models of performance assessment, potentially impacting feedback and the credibility of decisions. Our findings also lend further credence to the assertion that portfolios should be judged by multiple assessors who should, moreover, thoroughly substantiate their judgments. Finally, it is suggested that portfolios be designed in such a way that they facilitate the selection of and navigation through the portfolio evidence.
Performance-based classrooms: A case study of two elementary teachers of mathematics and science
NASA Astrophysics Data System (ADS)
Jones, Kenneth W.
This case study depicts how two elementary teachers develop classrooms devoted to performance-based instruction in mathematics and science. The purpose is to develop empirical evidence of classroom practices that leads to a conceptual framework about the nature of performance-based instruction. Performance-based assessment and instruction are defined from the literature to entail involving students in tasks that are complex and engaging, requiring them to apply knowledge and skills in authentic contexts. In elementary mathematics and science, such an approach emphasizes problem solving, exploration, inquiry, and reasoning. The body of the work examines teacher beliefs, curricular orientations, instructional strategies, assessment approaches, management and organizational skills, and interpersonal relationships. The focus throughout is on those aspects that foster student performance in elementary mathematics and science. The resulting framework describes five characteristics that contribute to performance-based classrooms: a caring classroom community, a connectionist learning theory, a thinking and doing curriculum, diverse opportunities for learning, and ongoing assessment, feedback, and adjustment. The conclusion analyzes factors external to the classroom that support or constrain the development of performance-based classrooms and discusses the implications for educational policy and further research.
Rajasekaran, S; Bhushan, Manindra; Aiyer, Siddharth; Kanna, Rishi; Shetty, Ajoy Prasad
2018-01-09
To develop a classification based on the technical complexity encountered during pedicle screw insertion and to evaluate the performance of AIRO ® CT navigation system based on this classification, in the clinical scenario of complex spinal deformity. 31 complex spinal deformity correction surgeries were prospectively analyzed for performance of AIRO ® mobile CT-based navigation system. Pedicles were classified according to complexity of insertion into five types. Analysis was performed to estimate the accuracy of screw placement and time for screw insertion. Breach greater than 2 mm was considered for analysis. 452 pedicle screws were inserted (T1-T6: 116; T7-T12: 171; L1-S1: 165). The average Cobb angle was 68.3° (range 60°-104°). We had 242 grade 2 pedicles, 133 grade 3, and 77 grade 4, and 44 pedicles were unfit for pedicle screw insertion. We noted 27 pedicle screw breach (medial: 10; lateral: 16; anterior: 1). Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Among lateral breach (n = 16), ten screws were planned for in-out-in pedicle screw insertion. Average screw insertion time was 1.76 ± 0.89 min. After accounting for planned breach, the effective breach rate was 3.8% resulting in 96.2% accuracy for pedicle screw placement. This classification helps compare the accuracy of screw insertion in range of conditions by considering the complexity of screw insertion. Considering the clinical scenario of complex pedicle anatomy in spinal deformity AIRO ® navigation showed an excellent accuracy rate of 96.2%.
Park, Subok; Clarkson, Eric
2010-01-01
The Bayesian ideal observer is optimal among all observers and sets an absolute upper bound for the performance of any observer in classification tasks [Van Trees, Detection, Estimation, and Modulation Theory, Part I (Academic, 1968).]. Therefore, the ideal observer should be used for objective image quality assessment whenever possible. However, computation of ideal-observer performance is difficult in practice because this observer requires the full description of unknown, statistical properties of high-dimensional, complex data arising in real life problems. Previously, Markov-chain Monte Carlo (MCMC) methods were developed by Kupinski et al. [J. Opt. Soc. Am. A 20, 430(2003) ] and by Park et al. [J. Opt. Soc. Am. A 24, B136 (2007) and IEEE Trans. Med. Imaging 28, 657 (2009) ] to estimate the performance of the ideal observer and the channelized ideal observer (CIO), respectively, in classification tasks involving non-Gaussian random backgrounds. However, both algorithms had the disadvantage of long computation times. We propose a fast MCMC for real-time estimation of the likelihood ratio for the CIO. Our simulation results show that our method has the potential to speed up ideal-observer performance in tasks involving complex data when efficient channels are used for the CIO. PMID:19884916
Sczyrba, Alexander; Hofmann, Peter; Belmann, Peter; Koslicki, David; Janssen, Stefan; Dröge, Johannes; Gregor, Ivan; Majda, Stephan; Fiedler, Jessika; Dahms, Eik; Bremges, Andreas; Fritz, Adrian; Garrido-Oter, Ruben; Jørgensen, Tue Sparholt; Shapiro, Nicole; Blood, Philip D.; Gurevich, Alexey; Bai, Yang; Turaev, Dmitrij; DeMaere, Matthew Z.; Chikhi, Rayan; Nagarajan, Niranjan; Quince, Christopher; Meyer, Fernando; Balvočiūtė, Monika; Hansen, Lars Hestbjerg; Sørensen, Søren J.; Chia, Burton K. H.; Denis, Bertrand; Froula, Jeff L.; Wang, Zhong; Egan, Robert; Kang, Dongwan Don; Cook, Jeffrey J.; Deltel, Charles; Beckstette, Michael; Lemaitre, Claire; Peterlongo, Pierre; Rizk, Guillaume; Lavenier, Dominique; Wu, Yu-Wei; Singer, Steven W.; Jain, Chirag; Strous, Marc; Klingenberg, Heiner; Meinicke, Peter; Barton, Michael; Lingner, Thomas; Lin, Hsin-Hung; Liao, Yu-Chieh; Silva, Genivaldo Gueiros Z.; Cuevas, Daniel A.; Edwards, Robert A.; Saha, Surya; Piro, Vitor C.; Renard, Bernhard Y.; Pop, Mihai; Klenk, Hans-Peter; Göker, Markus; Kyrpides, Nikos C.; Woyke, Tanja; Vorholt, Julia A.; Schulze-Lefert, Paul; Rubin, Edward M.; Darling, Aaron E.; Rattei, Thomas; McHardy, Alice C.
2018-01-01
In metagenome analysis, computational methods for assembly, taxonomic profiling and binning are key components facilitating downstream biological data interpretation. However, a lack of consensus about benchmarking datasets and evaluation metrics complicates proper performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on datasets of unprecedented complexity and realism. Benchmark metagenomes were generated from ~700 newly sequenced microorganisms and ~600 novel viruses and plasmids, including genomes with varying degrees of relatedness to each other and to publicly available ones and representing common experimental setups. Across all datasets, assembly and genome binning programs performed well for species represented by individual genomes, while performance was substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below the family level. Parameter settings substantially impacted performances, underscoring the importance of program reproducibility. While highlighting current challenges in computational metagenomics, the CAMI results provide a roadmap for software selection to answer specific research questions. PMID:28967888
Automated assessment of cognitive health using smart home technologies.
Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen; Parsey, Carolyn
2013-01-01
The goal of this work is to develop intelligent systems to monitor the wellbeing of individuals in their home environments. This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve=0.80, g-mean=0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained.
Automated Assessment of Cognitive Health Using Smart Home Technologies
Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Parsey, Carolyn
2014-01-01
BACKGROUND The goal of this work is to develop intelligent systems to monitor the well being of individuals in their home environments. OBJECTIVE This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. METHODS This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. RESULTS Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve = 0.80, g-mean = 0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. CONCLUSIONS The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained. PMID:23949177
A first assessment of Sentinel-3 SAR altimetry over ice sheets
NASA Astrophysics Data System (ADS)
McMillan, M.; Muir, A. S.; Shepherd, A.
2017-12-01
The first Sentinel-3 satellite was launched in 2016 and carries onboard a Ku-band Synthetic Aperture Radar (SAR) altimeter. With coverage up to a latitude of 81.5 degrees and a repeat period of 27 days, it offers the opportunity to measure surface topography and elevation change across much of the Antarctic and Greenland Ice Sheets, therefore continuing the existing 25 year radar altimeter record. The global operation of Sentinel-3 in SAR mode differs from all past Ku-band instruments; for the first time SAR measurements are routinely acquired across the interiors of the ice sheets; however unlike CryoSat-2 it does not carry an interferometer to aid signal retrieval in regions of complex coastal terrain. In view of these differences and the novel characteristics of the Sentinel-3 system, assessments of the performance of the instrument are required, to evaluate the satellite's utility for monitoring Earth's Polar regions. Here, we analyse data acquired during the first year of routine operations, to assess the performance of the Sentinel-3 SAR altimeter to date. We focus both on inland ice sheet regions, where Sentinel-3 provides the first operational SAR altimeter measurements, and also on coastal areas with more complex topography. We investigate SAR waveforms and retrieved elevations in both regions, and through comparison to measurements from earlier missions examine the impact of the different modes of operation. We also conduct a high level evaluation of the data, by comparing it to reference airborne altimetry, to provide an assessment of Sentinel-3 performance to date over ice sheets.
Congenital heart surgery: surgical performance according to the Aristotle complexity score.
Arenz, Claudia; Asfour, Boulos; Hraska, Viktor; Photiadis, Joachim; Haun, Christoph; Schindler, Ehrenfried; Sinzobahamvya, Nicodème
2011-04-01
Aristotle score methodology defines surgical performance as 'complexity score times hospital survival'. We analysed how this performance evolved over time and in correlation with case volume. Aristotle basic and comprehensive complexity scores and corresponding basic and comprehensive surgical performances were determined for primary (main) procedures carried out from 2006 to 2009. Surgical case volume performance described as unit performance was estimated as 'surgical performance times the number of primary procedures'. Basic and comprehensive complexity scores for the whole cohort of procedures (n=1828) were 7.74±2.66 and 9.89±3.91, respectively. With an early survival of 97.5% (1783/1828), mean basic and comprehensive surgical performances reached 7.54±2.54 and 9.64±3.81, respectively. Basic surgical performance varied little over the years: 7.46±2.48 in 2006, 7.43±2.58 in 2007, 7.50±2.76 in 2008 and 7.79±2.54 in 2009. Comprehensive surgical performance decreased from 9.56±3.91 (2006) to 9.22±3.94 (2007), and then to 9.13±3.77 (2008), thereafter increasing up to 10.62±3.67 (2009). No significant change of performance was observed for low comprehensive complexity levels 1-3. Variation concerned level 4 (p=0.048) which involved the majority of procedures (746, or 41% of cases) and level 6 (p<0.0001) which included a few cases (20, or 1%), whereas for level 5, statistical significance was almost attained: p=0.079. With a mean annual number of procedures of 457, mean basic and comprehensive unit performance was estimated at 3447±362 and 4405±577, respectively. Basic unit performance increased year to year from 3036 (2006, 100%) to 3254 (2007, 107.2%), then 3720 (2008, 122.5%), up to 3793 (2009, 124.9%). Comprehensive unit performance also increased: from 3891 (2006, 100%) to 4038 (2007, 103.8%), 4528 (2008, 116.4%) and 5172 (2009, 132.9%). Aristotle scoring of surgical performance allows quality assessment of surgical management of congenital heart disease over time. The newly defined unit performance appears to well reflect the trend of activity and efficiency of a congenital heart surgery department. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Tan, Liang See; Koh, Elizabeth; Lee, Shu Shing; Ponnusamy, Letchmi Devi; Tan, Keith Chiu Kian
2017-01-01
Singapore's strong performance in international benchmarking studies--Trends in International Mathematics and Science Study (TIMSS) and Programme for International Student Assessment (PISA)--poses a conundrum to researchers who view Singapore's pedagogy as characterized by the teaching of facts and procedures, and lacking in constructivist…
Assessment of Language Comprehension of 6-Year-Old Deaf Children.
ERIC Educational Resources Information Center
Geffner, Donna S.; Freeman, Lisa Rothman
1980-01-01
Results show that comprehension of word types (nouns, verbs, etc.) and linguistic structure can be orderly, producing a hierarchy of complexity similar to that found in normally hearing children. However, performance was about three years behind that of normally hearing peers. Journal availability: Elsevier North Holland, Inc., 52 Vanderbilt…
Turnarounds to Transfer: Design beyond the Modes
ERIC Educational Resources Information Center
Eddy, Jennifer
2014-01-01
In "Turnarounds to Transfer," teachers design a collection of tasks toward the summative performance goal but go beyond the Communicative mode criteria: they must assess for transfer. Transfer design criteria must include a complexity or variation that make learners engage critical thinking skills and call upon a repertoire of knowledge…
Barannikov, V G; Kirichenko, L V; Rusanova, E A; Dement'ev, S V; Vaĭsman, Ia I
2015-01-01
The performed comparative physiological-hygienic assessment of the conditions of the internal environment of salt sylvinite structures allowed to establish the complex of physical factors that have a favorable influence on the functional condition of the basic systems of the organism of patients.
ERIC Educational Resources Information Center
Harik, Polina; Baldwin, Peter; Clauser, Brian
2013-01-01
Growing reliance on complex constructed response items has generated considerable interest in automated scoring solutions. Many of these solutions are described in the literature; however, relatively few studies have been published that "compare" automated scoring strategies. Here, comparisons are made among five strategies for…
Effects of Noun Phrase Type on Sentence Complexity
ERIC Educational Resources Information Center
Gordon, Peter C.; Hendrick, Randall; Johnson, Marcus
2004-01-01
A series of self-paced reading time experiments was performed to assess how characteristics of noun phrases (NPs) contribute to the difference in processing difficulty between object- and subject-extracted relative clauses. Structural semantic characteristics of the NP in the embedded clause (definite vs. indefinite and definite vs. generic) did…
Estimating School Efficiency: A Comparison of Methods Using Simulated Data.
ERIC Educational Resources Information Center
Bifulco, Robert; Bretschneider, Stuart
2001-01-01
Uses simulated data to assess the adequacy of two econometric and linear-programming techniques (data-envelopment analysis and corrected ordinary least squares) for measuring performance-based school reform. In complex data sets (simulated to contain measurement error and endogeneity), these methods are inadequate efficiency measures. (Contains 40…
Managing patient deterioration: assessing teamwork and individual performance.
Cooper, Simon; Cant, Robyn; Porter, Jo; Missen, Karen; Sparkes, Louise; McConnell-Henry, Tracy; Endacott, Ruth
2013-05-01
To assess the ability of rural Australian nurse teams to manage deteriorating patients. This quasi-experimental design used pre- and post-intervention assessments and observation to evaluate nurses' simulated clinical performance. Registered nurses (n=44) from two hospital wards completed a formative knowledge assessment and three team-based video recorded scenarios (Objective Structured Clinical Examinations (OSCE)). Trained patient actors simulated deteriorating patients. Skill performance and situation awareness were measured and team performance was rated using the Team Emergency Assessment Measure. Knowledge in relation to patient deterioration management varied (mean 63%, range 27-100%) with a median score of 64%. Younger nurses with a greater number of working hours scored the highest (p=0.001). OSCE performance was generally low with a mean performance of 54%, but performance was maintained despite the increasing complexity of the scenarios. Situation awareness was generally low (median 50%, mean 47%, range 17-83%, SD 14.03) with significantly higher levels in younger participants (r=-0.346, p=0.021). Teamwork ratings averaged 57% with significant associations between the subscales (Leadership, Teamwork and Task Management) (p<0.006), the global rating scale (p<0.001) and two of the OSCE measures (p<0.049). Feedback from participants following the programme indicated significant improvements in knowledge, confidence and competence (p<0.001). Despite a satisfactory knowledge base, the application of knowledge was low with notable performance deficits in these demanding and stressful situations. The identification and management of patient deterioration needs to be taught in professional development programmes incorporating high fidelity simulation techniques. The Team Emergency assessment tool proved to be a valid measure of team performance in patient deterioration scenarios.
Computed Tomography Inspection and Analysis for Additive Manufacturing Components
NASA Technical Reports Server (NTRS)
Beshears, Ronald D.
2016-01-01
Computed tomography (CT) inspection was performed on test articles additively manufactured from metallic materials. Metallic AM and machined wrought alloy test articles with programmed flaws were inspected using a 2MeV linear accelerator based CT system. Performance of CT inspection on identically configured wrought and AM components and programmed flaws was assessed using standard image analysis techniques to determine the impact of additive manufacturing on inspectability of objects with complex geometries.
Environmental Assessment (EA) for Construct Base Civil Engineering Complex at McConnell AFB
2003-07-14
Engineer Squadron (22 CES/ CEVA ),53000 Hutchinson Street, Suite 109,McConnell AFB,KS,67221-3617 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...Command Air Refueling Group Air Refueling Squadron Air Refueling Wing Bird Aircraft Strike Hazard Base Civil Engineer Best Management Practices...1991, in an "Economic Analysis", performed by Wilson and Company , dated 14 October 1993, and a repeat "Economic Analysis", dated 10 February 2000
Decision Making and Ratio Processing in Patients with Mild Cognitive Impairment.
Pertl, Marie-Theres; Benke, Thomas; Zamarian, Laura; Delazer, Margarete
2015-01-01
Making advantageous decisions is important in everyday life. This study aimed at assessing how patients with mild cognitive impairment (MCI) make decisions under risk. Additionally, it investigated the relationship between decision making, ratio processing, basic numerical abilities, and executive functions. Patients with MCI (n = 22) were compared with healthy controls (n = 29) on a complex task of decision making under risk (Game of Dice Task-Double, GDT-D), on two tasks evaluating basic decision making under risk, on a task of ratio processing, and on several neuropsychological background tests. Patients performed significantly lower than controls on the GDT-D and on ratio processing, whereas groups performed comparably on basic decision tasks. Specifically, in the GDT-D, patients obtained lower net scores and lower mean expected values, which indicate a less advantageous performance relative to that of controls. Performance on the GDT-D correlated significantly with performance in basic decision tasks, ratio processing, and executive-function measures when the analysis was performed on the whole sample. Patients with MCI make sub-optimal decisions in complex risk situations, whereas they perform at the same level as healthy adults in simple decision situations. Ratio processing and executive functions have an impact on the decision-making performance of both patients and healthy older adults. In order to facilitate advantageous decisions in complex everyday situations, information should be presented in an easily comprehensible form and cognitive training programs for patients with MCI should focus--among other abilities--on executive functions and ratio processing.
Modelling Complex Fenestration Systems using physical and virtual models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanachareonkit, Anothai; Scartezzini, Jean-Louis
2010-04-15
Physical or virtual models are commonly used to visualize the conceptual ideas of architects, lighting designers and researchers; they are also employed to assess the daylighting performance of buildings, particularly in cases where Complex Fenestration Systems (CFS) are considered. Recent studies have however revealed a general tendency of physical models to over-estimate this performance, compared to those of real buildings; these discrepancies can be attributed to several reasons. In order to identify the main error sources, a series of comparisons in-between a real building (a single office room within a test module) and the corresponding physical and virtual models wasmore » undertaken. The physical model was placed in outdoor conditions, which were strictly identical to those of the real building, as well as underneath a scanning sky simulator. The virtual model simulations were carried out by way of the Radiance program using the GenSky function; an alternative evaluation method, named Partial Daylight Factor method (PDF method), was also employed with the physical model together with sky luminance distributions acquired by a digital sky scanner during the monitoring of the real building. The overall daylighting performance of physical and virtual models were assessed and compared. The causes of discrepancies between the daylighting performance of the real building and the models were analysed. The main identified sources of errors are the reproduction of building details, the CFS modelling and the mocking-up of the geometrical and photometrical properties. To study the impact of these errors on daylighting performance assessment, computer simulation models created using the Radiance program were also used to carry out a sensitivity analysis of modelling errors. The study of the models showed that large discrepancies can occur in daylighting performance assessment. In case of improper mocking-up of the glazing for instance, relative divergences of 25-40% can be found in different room locations, suggesting that more light is entering than actually monitored in the real building. All these discrepancies can however be reduced by making an effort to carefully mock up the geometry and photometry of the real building. A synthesis is presented in this article which can be used as guidelines for daylighting designers to avoid or estimate errors during CFS daylighting performance assessment. (author)« less
Quantifying Contextual Interference and Its Effect on Skill Transfer in Skilled Youth Tennis Players
Buszard, Tim; Reid, Machar; Krause, Lyndon; Kovalchik, Stephanie; Farrow, Damian
2017-01-01
The contextual interference effect is a well-established motor learning phenomenon. Most of the contextual interference effect literature has addressed simple skills, while less is known about the role of contextual interference in complex sport skill practice, particularly with respect to skilled performers. The purpose of this study was to assess contextual interference when practicing the tennis serve. Study 1 evaluated tennis serve practice of nine skilled youth tennis players using a novel statistical metric developed specifically to measure between-skill and within-skill variability as sources of contextual interference. This metric highlighted that skilled tennis players typically engaged in serve practice that featured low contextual interference. In Study 2, 16 skilled youth tennis players participated in 10 practice sessions that aimed to improve serving “down the T.” Participants were stratified into a low contextual interference practice group (Low CI) and a moderate contextual interference practice group (Moderate CI). Pre- and post-tests were conducted 1 week before and 1 week after the practice period. Testing involved a skill test, which assessed serving performance in a closed setting, and a transfer test, which assessed serving performance in a match-play setting. No significant contextual interference differences were observed with respect to practice performance. However, analysis of pre- and post-test serve performance revealed significant Group × Time interactions. The Moderate CI group showed no change in serving performance (service displacement from the T) from pre- to post-test in the skill test, but did display improvements in the transfer test. Conversely, the Low CI group improved serving performance (service displacement from the T) in the skill test but not the transfer test. Results suggest that the typical contextual interference effect is less clear when practicing a complex motor skill, at least with the tennis serve skill evaluated here. We encourage researchers and applied sport scientists to use our statistical metric to measure contextual interference. PMID:29163306
Zhang, Xiaomeng; Bartol, Kathryn M
2010-09-01
Integrating theories addressing attention and activation with creativity literature, we found an inverted U-shaped relationship between creative process engagement and overall job performance among professionals in complex jobs in an information technology firm. Work experience moderated the curvilinear relationship, with low-experience employees generally exhibiting higher levels of overall job performance at low to moderate levels of creative process engagement and high-experience employees demonstrating higher overall performance at moderate to high levels of creative process engagement. Creative performance partially mediated the relationship between creative process engagement and job performance. These relationships were tested within a moderated mediation framework. Copyright 2010 APA, all rights reserved
Cognitive Performance Effects of Bilastine 20 mg During 6 Hours at 8000 ft Cabin Altitude.
Valk, Pierre J L; Simons, Ries; Jetten, Andrea M; Valiente, Román; Labeaga, Luis
2016-07-01
Bilastine is a new oral, second generation antihistamine used in the symptomatic treatment of allergic rhinoconjunctivitis and urticaria. It is considered a nonsedating antihistamine and might be recommended for use in pilots, pending research on the effects on flying-related performance under hypobaric conditions that prevail in an airliner. We assessed the effects of a single dose of bilastine 20 mg on alertness and complex task performance of healthy volunteers in a hypobaric chamber at 75.2 kPa (8000 ft/2438 m cabin altitude). In a randomized, double-blind, crossover study, 24 volunteers received a single dose of bilastine 20 mg, hydroxyzine 50 mg (active control), and placebo. Using the Vigilance and Tracking Task, Multi-Attribute Task Battery, and Stanford Sleepiness Scale, assessments were made before and up to 6 h after intake of the study medication. Bilastine 20 mg had no impairing effects on sleepiness levels, vigilance, or complex task performance for up to 6 h post-dose. Hydroxyzine 50 mg (active control) was associated with significant sleepiness and impaired performance across this time period, confirming the sensitivity of the tests. Bilastine 20 mg did not cause sleepiness or impaired performance on tasks related to flying. It is anticipated that a single dose of bilastine 20 mg will not affect flying performance. Bilastine may provide a safe therapeutic alternative for pilots suffering from allergic rhinitis or urticaria. Our findings might also have implications for the treatment of allergic disorders of personnel involved in other safety-sensitive jobs. Valk PJL, Simons R, Jetten AM, Valiente R, Labeaga L. Cognitive performance effects of bilastine 20 mg during 6 hours at 8000 ft cabin altitude. Aerosp Med Hum Perform. 2016; 87(7):622-627.
Tawfik-Shukor, Ali R; Klazinga, Niek S; Arah, Onyebuchi A
2007-01-01
Background Given the proliferation and the growing complexity of performance measurement initiatives in many health systems, the Netherlands and Ontario, Canada expressed interests in cross-national comparisons in an effort to promote knowledge transfer and best practise. To support this cross-national learning, a study was undertaken to compare health system performance approaches in The Netherlands with Ontario, Canada. Methods We explored the performance assessment framework and system of each constituency, the embeddedness of performance data in management and policy processes, and the interrelationships between the frameworks. Methods used included analysing governmental strategic planning and policy documents, literature and internet searches, comparative descriptive tables, and schematics. Data collection and analysis took place in Ontario and The Netherlands. A workshop to validate and discuss the findings was conducted in Toronto, adding important insights to the study. Results Both Ontario and The Netherlands conceive health system performance within supportive frameworks. However they differ in their assessment approaches. Ontario's Scorecard links performance measurement with strategy, aimed at health system integration. The Dutch Health Care Performance Report (Zorgbalans) does not explicitly link performance with strategy, and focuses on the technical quality of healthcare by measuring dimensions of quality, access, and cost against healthcare needs. A backbone 'five diamond' framework maps both frameworks and articulates the interrelations and overlap between their goals, themes, dimensions and indicators. The workshop yielded more contextual insights and further validated the comparative values of each constituency's performance assessment system. Conclusion To compare the health system performance approaches between The Netherlands and Ontario, Canada, several important conceptual and contextual issues must be addressed, before even attempting any future content comparisons and benchmarking. Such issues would lend relevant interpretational credibility to international comparative assessments of the two health systems. PMID:17319947
Evaluation as a critical factor of success in local public health accreditation programs.
Tremain, Beverly; Davis, Mary; Joly, Brenda; Edgar, Mark; Kushion, Mary L; Schmidt, Rita
2007-01-01
This article presents the variety of approaches used to conduct evaluations of performance improvement or accreditation systems, while illustrating the complexity of conducting evaluations to inform local public health practice. We, in addition, hope to inform the Exploring Accreditation Program about relevant experiences involving accreditation and performance assessment processes, specifically evaluation, as it debates and discusses a national voluntary model. A background of each state is given. To further explore these issues, interviews were conducted with each state's evaluator to gain more in-depth information on the many different evaluation strategies and approaches used. On the basis of the interviews, the authors provide several overall themes, which suggest that evaluation is a critical tool and success factor for performance assessment or accreditation programs.
Assessing cognition following petrol sniffing for Indigenous Australians.
Dingwall, Kylie M; Lewis, Matthew S; Maruff, Paul; Cairney, Sheree
2010-07-01
Chronic petrol inhalation can be associated with significant cognitive impairment. While rehabilitation programs can rely on such skills to educate clients and achieve treatment outcomes, cognitive function is rarely assessed on admission. This is particularly true for Indigenous populations where standard assessments are not appropriate. This paper describes a process for assessing cognition in Indigenous Australians. Two studies investigate firstly the demographic factors impacting on cognition for healthy Indigenous Australians and secondly the utility of the assessment process for detecting petrol sniffing related cognitive impairments. Study One assessed a naturalistic sample of healthy Indigenous Australians from the Northern Territory (N = 206; mean age = 28.03) on computerised tests of psychomotor speed, visual attention, memory, learning, spatial awareness and executive functions. Multiple regression analyses determined the unique contributions of six factors (age, education, gender, familiarity with computers, regular long term cannabis use and locality) to the variance in performance for this group. Study Two examined group differences in cognitive performance on the same tests between healthy Indigenous Australians (N = 96) and Indigenous petrol sniffers (N = 50; both age restricted to < 26 years) while controlling those factors found to impact on performance from Study One. Age, computer familiarity, and education significantly contributed to the variance in performance measures. While controlling these factors, petrol abuse was associated with poorer performance on complex tasks of psychomotor, visual attention, memory, learning, spatial awareness and executive function. This assessment process is useful for detecting substance abuse related impairments in Indigenous Australians and when using this assessment process, age and computer familiarity in particular should be controlled for.
Human behavioral complexity peaks at age 25
Brugger, Peter
2017-01-01
Random Item Generation tasks (RIG) are commonly used to assess high cognitive abilities such as inhibition or sustained attention. They also draw upon our approximate sense of complexity. A detrimental effect of aging on pseudo-random productions has been demonstrated for some tasks, but little is as yet known about the developmental curve of cognitive complexity over the lifespan. We investigate the complexity trajectory across the lifespan of human responses to five common RIG tasks, using a large sample (n = 3429). Our main finding is that the developmental curve of the estimated algorithmic complexity of responses is similar to what may be expected of a measure of higher cognitive abilities, with a performance peak around 25 and a decline starting around 60, suggesting that RIG tasks yield good estimates of such cognitive abilities. Our study illustrates that very short strings of, i.e., 10 items, are sufficient to have their complexity reliably estimated and to allow the documentation of an age-dependent decline in the approximate sense of complexity. PMID:28406953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Fifield, Leonard S.; Gandhi, Umesh N.
This project proposed to integrate, optimize and validate the fiber orientation and length distribution models previously developed and implemented in the Autodesk Simulation Moldflow Insight (ASMI) package for injection-molded long-carbon-fiber thermoplastic composites into a cohesive prediction capability. The current effort focused on rendering the developed models more robust and efficient for automotive industry part design to enable weight savings and cost reduction. The project goal has been achieved by optimizing the developed models, improving and integrating their implementations in ASMI, and validating them for a complex 3D LCF thermoplastic automotive part (Figure 1). Both PP and PA66 were used asmore » resin matrices. After validating ASMI predictions for fiber orientation and fiber length for this complex part against the corresponding measured data, in collaborations with Toyota and Magna PNNL developed a method using the predictive engineering tool to assess LCF/PA66 complex part design in terms of stiffness performance. Structural three-point bending analyses of the complex part and similar parts in steel were then performed for this purpose, and the team has then demonstrated the use of stiffness-based complex part design assessment to evaluate weight savings relative to the body system target (≥ 35%) set in Table 2 of DE-FOA-0000648 (AOI #1). In addition, starting from the part-to-part analysis, the PE tools enabled an estimated weight reduction for the vehicle body system using 50 wt% LCF/PA66 parts relative to the current steel system. Also, from this analysis an estimate of the manufacturing cost including the material cost for making the equivalent part in steel has been determined and compared to the costs for making the LCF/PA66 part to determine the cost per “saved” pound.« less
Hume, Patria A; Theadom, Alice; Lewis, Gwyn N; Quarrie, Kenneth L; Brown, Scott R; Hill, Rosamund; Marshall, Stephen W
2017-06-01
This study investigated differences in cognitive function between former rugby and non-contact-sport players, and assessed the association between concussion history and cognitive function. Overall, 366 former players (mean ± standard deviation [SD] age 43.3 ± 8.2 years) were recruited from October 2012 to April 2014. Engagement in sport, general health, sports injuries and concussion history, and demographic information were obtained from an online self-report questionnaire. Cognitive functioning was assessed using the online CNS Vital Signs neuropsychological test battery. Cohen's d effect size statistics were calculated for comparisons across player groups, concussion groups (one or more self-reported concussions versus no concussions) and between those groups with CNS Vital Signs age-matched norms (US norms). Individual differences within groups were represented as SDs. The elite-rugby group (n = 103) performed worse on tests of complex attention, processing speed, executive functioning, and cognitive flexibility than the non-contact-sport group (n = 65), and worse than the community-rugby group (n = 193) on complex attention. The community-rugby group performed worse than the non-contact group on executive functioning and cognitive flexibility. Compared with US norms, all three former player groups performed worse on verbal memory and reaction time; rugby groups performed worse on processing speed, cognitive flexibility and executive functioning; and the community-rugby group performed worse on composite memory. The community-rugby group and non-contact-sport group performed slightly better than US norms on complex attention, as did the elite-rugby group for motor speed. All three player groups had greater individual differences than US norms on composite memory, verbal memory and reaction time. The elite-rugby group had greater individual differences on processing speed and complex attention, and the community-rugby group had greater individual differences on psychomotor speed and motor speed. The average number of concussions recalled per player was greater for elite rugby and community rugby than non-contact sport. Former players who recalled one or more concussions (elite rugby, 85 %; community rugby, 77 %; non-contact sport, 23 %) had worse scores on cognitive flexibility, executive functioning, and complex attention than players who did not recall experiencing a concussion. Past participation in rugby or a history of concussion were associated with small to moderate neurocognitive deficits (as indicated by worse CNS Vital Signs scores) in athletes post retirement from competitive sport.
Permutation entropy analysis of financial time series based on Hill's diversity number
NASA Astrophysics Data System (ADS)
Zhang, Yali; Shang, Pengjian
2017-12-01
In this paper the permutation entropy based on Hill's diversity number (Nn,r) is introduced as a new way to assess the complexity of a complex dynamical system such as stock market. We test the performance of this method with simulated data. Results show that Nn,r with appropriate parameters is more sensitive to the change of system and describes the trends of complex systems clearly. In addition, we research the stock closing price series from different data that consist of six indices: three US stock indices and three Chinese stock indices during different periods, Nn,r can quantify the changes of complexity for stock market data. Moreover, we get richer information from Nn,r, and obtain some properties about the differences between the US and Chinese stock indices.
Javidi, Soroush; Mandic, Danilo P.; Took, Clive Cheong; Cichocki, Andrzej
2011-01-01
A new class of complex domain blind source extraction algorithms suitable for the extraction of both circular and non-circular complex signals is proposed. This is achieved through sequential extraction based on the degree of kurtosis and in the presence of non-circular measurement noise. The existence and uniqueness analysis of the solution is followed by a study of fast converging variants of the algorithm. The performance is first assessed through simulations on well understood benchmark signals, followed by a case study on real-time artifact removal from EEG signals, verified using both qualitative and quantitative metrics. The results illustrate the power of the proposed approach in real-time blind extraction of general complex-valued sources. PMID:22319461
Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1997-01-01
Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.
Cross-cultural differences for three visual memory tasks in Brazilian children.
Santos, F H; Mello, C B; Bueno, O F A; Dellatolas, G
2005-10-01
Norms for three visual memory tasks, including Corsi's block tapping test and the BEM 144 complex figures and visual recognition, were developed for neuropsychological assessment in Brazilian children. The tasks were measured in 127 children ages 7 to 10 years from rural and urban areas of the States of São Paulo and Minas Gerais. Analysis indicated age-related but not sex-related differences. A cross-cultural effect was observed in relation to copying and recall of Complex pictures. Different performances between rural and urban children were noted.
Kixmiller, J S; Verfaellie, M M; Mather, M M; Cermak, L S
2000-04-01
To examine the contribution of visual-perceptual and visual-organizational factors to visual memory in amnesia, Korsakoff, medial temporal, and anterior communicating artery (ACoA) aneurysm amnesics' copy, organization, and recall performance on the Rey-Osterrieth Complex Figure was assessed. Korsakoff patients were matched to medial temporal patients in terms of severity of amnesia, while the ACoA group, which was less severely amnesic, was matched to the Korsakoff patients on performance on executive tasks. Results indicated that while both the ACoA and Korsakoff groups had poorer copy accuracy and organization than controls, only the Korsakoff patients' copy accuracy was worse than the other two amnesic groups. While the Korsakoff patient's visuoperceptual deficits could partially explain this group's poor performance at immediate recall, the Korsakoff group's comparatively worse performance at delayed recall could not be accounted for by poor copy accuracy, reduced visual organization, or even the combined influence of these two factors.
Burk, Joshua A.; Fleckenstein, Katarina; Kozikowski, C. Teal
2018-01-01
The current work examined the unique contribution that autistic traits and social anxiety have on tasks examining attention and emotion processing. In Study 1, 119 typically-developing college students completed a flanker task assessing the control of attention to target faces and away from distracting faces during emotion identification. In Study 2, 208 typically-developing college students performed a visual search task which required identification of whether a series of 8 or 16 emotional faces depicted the same or different emotions. Participants with more self-reported autistic traits performed more slowly on the flanker task in Study 1 than those with fewer autistic traits when stimuli depicted complex emotions. In Study 2, participants higher in social anxiety performed less accurately on trials showing all complex faces; participants with autistic traits showed no differences. These studies suggest that traits related to autism and to social anxiety differentially impact social cognitive processing. PMID:29596523
Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo
2013-01-01
We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.
NASA Technical Reports Server (NTRS)
Sinha, Neeraj; Brinckman, Kevin; Jansen, Bernard; Seiner, John
2011-01-01
A method was developed of obtaining propulsive base flow data in both hot and cold jet environments, at Mach numbers and altitude of relevance to NASA launcher designs. The base flow data was used to perform computational fluid dynamics (CFD) turbulence model assessments of base flow predictive capabilities in order to provide increased confidence in base thermal and pressure load predictions obtained from computational modeling efforts. Predictive CFD analyses were used in the design of the experiments, available propulsive models were used to reduce program costs and increase success, and a wind tunnel facility was used. The data obtained allowed assessment of CFD/turbulence models in a complex flow environment, working within a building-block procedure to validation, where cold, non-reacting test data was first used for validation, followed by more complex reacting base flow validation.
RELIABILITY OF ANKLE-FOOT MORPHOLOGY, MOBILITY, STRENGTH, AND MOTOR PERFORMANCE MEASURES.
Fraser, John J; Koldenhoven, Rachel M; Saliba, Susan A; Hertel, Jay
2017-12-01
Assessment of foot posture, morphology, intersegmental mobility, strength and motor control of the ankle-foot complex are commonly used clinically, but measurement properties of many assessments are unclear. To determine test-retest and inter-rater reliability, standard error of measurement, and minimal detectable change of morphology, joint excursion and play, strength, and motor control of the ankle-foot complex. Reliability study. 24 healthy, recreationally-active young adults without history of ankle-foot injury were assessed by two clinicians on two occasions, three to ten days apart. Measurement properties were assessed for foot morphology (foot posture index, total and truncated length, width, arch height), joint excursion (weight-bearing dorsiflexion, rearfoot and hallux goniometry, forefoot inclinometry, 1 st metatarsal displacement) and joint play, strength (handheld dynamometry), and motor control rating during intrinsic foot muscle (IFM) exercises. Clinician order was randomized using a Latin Square. The clinicians performed independent examinations and did not confer on the findings for the duration of the study. Test-retest and inter-tester reliability and agreement was assessed using intraclass correlation coefficients (ICC 2,k ) and weighted kappa ( K w ). Test-retest reliability ICC were as follows: morphology: .80-1.00, joint excursion: .58-.97, joint play: -.67-.84, strength: .67-.92, IFM motor rating: K W -.01-.71. Inter-rater reliability ICC were as follows: morphology: .81-1.00, joint excursion: .32-.97, joint play: -1.06-1.00, strength: .53-.90, and IFM motor rating: K w .02-.56. Measures of ankle-foot posture, morphology, joint excursion, and strength demonstrated fair to excellent test-retest and inter-rater reliability. Test-retest reliability for rating of perceived difficulty and motor performance was good to excellent for short-foot, toe-spread-out, and hallux exercises and poor to fair for lesser toe extension. Joint play measures had poor to fair reliability overall. The findings of this study should be considered when choosing methods of clinical assessment and outcome measures in practice and research. 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKinnon, Robert J.; Kuhlman, Kristopher L
2016-05-01
We present a method of control variates for calculating improved estimates for mean performance quantities of interest, E(PQI) , computed from Monte Carlo probabilistic simulations. An example of a PQI is the concentration of a contaminant at a particular location in a problem domain computed from simulations of transport in porous media. To simplify the presentation, the method is described in the setting of a one- dimensional elliptical model problem involving a single uncertain parameter represented by a probability distribution. The approach can be easily implemented for more complex problems involving multiple uncertain parameters and in particular for application tomore » probabilistic performance assessment of deep geologic nuclear waste repository systems. Numerical results indicate the method can produce estimates of E(PQI)having superior accuracy on coarser meshes and reduce the required number of simulations needed to achieve an acceptable estimate.« less
Yandrapu, Harathi; Elhanafi, Sherif; Chowdhury, Farhanaz; Liu, Jiayang; Onate, Eduardo J; Dwivedi, Alok; Othman, Mohamed O
2017-01-01
Endoscopic ultrasound (EUS) is commonly used to examine pancreaticobiliary disorders. We hypothesize that the introduction of EUS service may change the pattern and the complexity of endoscopic retrograde cholangiopancreatographies (ERCPs) performed. The aim of this study is to assess the impact of introducing EUS on the volume, success, and complexity of ERCP. This is a single-center retrospective data review of ERCP procedures done "before" and "after" the introduction of EUS (before EUS and after EUS). Patients' demographics, ERCP indications, types of sedation, therapeutic interventions, outcomes, complications, and complexity of ERCP were collected. The categorical and continuous variables were compared using Fisher's exact test and the unpaired t-test, respectively. Multivariable logistic regression analysis was used to compare ERCP outcomes. A total of 945 ERCPs performed over a 3-year period between January 2010 and January 2013 (411 and 534 in the "before EUS" and "after EUS" time periods, respectively) were included in this study. There was a 30% relative increase in the volume of ERCPs after the introduction of EUS. ERCP success rate was higher after the introduction of EUS, even after adjusting the complexity grade [odds ratio (OR) = 4.54, P = 0.001]. Significant increase in the complexity of ERCP was observed after the introduction of EUS service. The OR of performing grade 4 ERCP was 4.44 (P = 0.0005) after the introduction of EUS. The introduction of a new EUS service in our tertiary referral university medical center is associated with an increase in the volume, success, and complexity of ERCP procedures. EUS expertise may be valuable for better ERCP outcomes.
Zhou, Junhong; Habtemariam, Daniel; Iloputaife, Ikechukwu; Lipsitz, Lewis A; Manor, Brad
2017-06-07
Standing postural control is complex, meaning that it is dependent upon numerous inputs interacting across multiple temporal-spatial scales. Diminished physiologic complexity of postural sway has been linked to reduced ability to adapt to stressors. We hypothesized that older adults with lower postural sway complexity would experience more falls in the future. 738 adults aged ≥70 years completed the Short Physical Performance Battery test (SPPB) test and assessments of single and dual-task standing postural control. Postural sway complexity was quantified using multiscale entropy. Falls were subsequently tracked for 48 months. Negative binomial regression demonstrated that older adults with lower postural sway complexity in both single and dual-task conditions had higher future fall rate (incident rate ratio (IRR) = 0.98, p = 0.02, 95% Confidence Limits (CL) = 0.96-0.99). Notably, participants in the lowest quintile of complexity during dual-task standing suffered 48% more falls during the four-year follow-up as compared to those in the highest quintile (IRR = 1.48, p = 0.01, 95% CL = 1.09-1.99). Conversely, traditional postural sway metrics or SPPB performance did not associate with future falls. As compared to traditional metrics, the degree of multi-scale complexity contained within standing postural sway-particularly during dual task conditions- appears to be a better predictor of future falls in older adults.
NASA Technical Reports Server (NTRS)
Gibson, Robert H.; Wilhelm, John
1989-01-01
A performance appraisal was conducted at a Fortune 500 airline. Evaluations of each manager were taken from his or her management, peers and subordinates. These ratings were related to personality clusters revealing patterns for males similar to those found between personality and performance in pilot populations. A case is made that piloting aircraft requires similar skills to managing other complex enterprises and that similar profiles predict success in each.
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
The complexity of daily occupations in multiple sclerosis.
Lexell, Eva Månsson; Iwarsson, Susanne; Lexell, Jan
2006-12-01
The aims of this study were to describe which self-care, productivity, and leisure occupations individuals with multiple sclerosis (MS) perceive as difficult to perform on admission to rehabilitation and the individuals' own perception of the importance of, performance of, and satisfaction with these occupations. Whether the reported self-care, productivity, and leisure occupations were related to sex, age, disease severity, and living arrangements was also investigated. Forty-seven men and women (mean age 49.4 years) were assessed with the Canadian Occupational Performance Measure (COPM) on admission to rehabilitation. The individuals reported 366 occupations (median 8, range 3-15), which were categorized as self-care (51%), productivity (30%), and leisure (19%). Three COPM subcategories--household management (26%), personal care (21%), and functional mobility (20%)--accounted for two-thirds of the reported occupations. All prioritized occupations (n = 238; (median 5, range 2-7) had high ratings for importance and the ratings for performance and satisfaction were generally low. Men reported significantly more occupations related to self-care than women, but no significant difference between the sexes could be found for productivity and leisure. No significant differences between the occupational areas were found when age, disease severity, or/and living arrangements were included in the analysis. In conclusion, individuals with MS perceive difficulties with occupations related to all aspects of daily life. This underscores the need to use assessment tools that capture the complexity of daily occupations.
Nardelli, M; Del Piccolo, L; Danzi, Op; Perlini, C; Tedeschi, F; Greco, A; Scilingo, Ep; Valenza, G
2017-07-01
Emphatic doctor-patient communication has been associated with an improved psycho-physiological well-being involving cardiovascular and neuroendocrine responses. Nevertheless, a comprehensive assessment of heartbeat linear and nonlinear/complex dynamics throughout the communication of a life-threatening disease has not been performed yet. To this extent, we here study heart rate variability (HRV) series gathered from 17 subjects while watching a video where an oncologist discloses the diagnosis of a cancer metastasis to a patient. Further 17 subjects watched the same video including additional affective emphatic contents. For the assessment of the two groups, linear heartbeat dynamics was quantified through measures defined in the time and frequency domains, whereas nonlinear/complex dynamics referred to measures of entropy, and combined Lagged Poincare Plots (LPP) and symbolic analyses. Considering differences between the beginning and the end of the video, results from non-parametric statistical tests demonstrated that the group watching emphatic contents showed HRV changes in the LF/HF ratio exclusively. Conversely, the group watching the purely informative video showed changes in vagal activity (i.e., HF power), LF/HF ratio, as well as LPP measures. Additionally, a Support Vector Machine algorithm including HRV nonlinear/complex information was able to automatically discern between groups with an accuracy of 76.47%. We therefore propose the use of heartbeat nonlinear/complex dynamics to objectively assess the empathy level of healthy women.
Buyer Beware: Lessons Learned from EdTPA Implementation in New York State
ERIC Educational Resources Information Center
Greenblatt, Deborah; O'Hara, Kate E.
2015-01-01
As states across the country continue their implementation of the Teacher Performance Assessment Portfolio (edTPA), a complex and high-stakes certification requirement for teacher certification, there are important lessons for educators and education advocates to learn from New York State's implementation. As Linda Darling-Hammond, developer and…
Measuring Learning Progressions Using Bayesian Modeling in Complex Assessments
ERIC Educational Resources Information Center
Rutstein, Daisy Wise
2012-01-01
This research examines issues regarding model estimation and robustness in the use of Bayesian Inference Networks (BINs) for measuring Learning Progressions (LPs). It provides background information on LPs and how they might be used in practice. Two simulation studies are performed, along with real data examples. The first study examines the case…
Linguistic Simplification of Mathematics Items: Effects for Language Minority Students in Germany
ERIC Educational Resources Information Center
Haag, Nicole; Heppt, Birgit; Roppelt, Alexander; Stanat, Petra
2015-01-01
In large-scale assessment studies, language minority students typically obtain lower test scores in mathematics than native speakers. Although this performance difference was related to the linguistic complexity of test items in some studies, other studies did not find linguistically demanding math items to be disproportionally more difficult for…
A Complementary Measure of Heterogeneity on Mathematical Skills
ERIC Educational Resources Information Center
Fedriani, Eugenio M.; Moyano, Rafael
2012-01-01
Finding educational truths is an inherently multivariate problem. There are many factors affecting each student and their performances. Because of this, both measuring of skills and assessing students are always complex processes. This is a well-known problem, and a number of solutions have been proposed by specialists. One of its ramifications is…
Smith, Erin; Cusack, Tara; Cunningham, Caitriona; Blake, Catherine
2017-10-01
This review examines the effect of a dual task on the gait parameters of older adults with a mean gait speed of 1.0 m/s or greater, and the effect of type and complexity of task. A systematic review of Web of Science, PubMed, SCOPUS, Embase, and PsycINFO was performed in July 2016. Twenty-three studies (28 data sets) were reviewed and pooled for meta-analysis. The effect size on seven gait parameters was measured as the raw mean difference between single- and dual-task performance. Gait speed significantly reduced with the addition of a dual task, with increasing complexity showing greater decrements. Cadence, stride time, and measures of gait variability were all negatively affected under the dual-task condition. In older adults, the addition of a dual task significantly reduces gait speed and cadence, with possible implications for the assessment of older people, as the addition of a dual task may expose deficits not observed under single-task assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, R.W.; Wilson, M.L.; Dockery, H.A.
1992-07-01
This report describes an assessment of the long-term performance of a repository system that contains deeply buried highly radioactive waste; the system is assumed to be located at the potential site at Yucca Mountain, Nevada. The study includes an identification of features, events, and processes that might affect the potential repository, a construction of scenarios based on this identification, a selection of models describing these scenarios (including abstraction of appropriate models from detailed models), a selection of probability distributions for the parameters in the models, a stochastic calculation of radionuclide releases for the scenarios, and a derivation of complementary cumulativemore » distribution functions (CCDFs) for the releases. Releases and CCDFs are calculated for four categories of scenarios: aqueous flow (modeling primarily the existing conditions at the site, with allowances for climate change), gaseous flow, basaltic igneous activity, and human intrusion. The study shows that models of complex processes can be abstracted into more simplified representations that preserve the understanding of the processes and produce results consistent with those of more complex models.« less
Carpinteri, Alberto; Invernizzi, Stefano; Accornero, Federico
2013-01-01
We examine an application of Acoustic Emission (AE) technique for a probabilistic analysis in time and space of earthquakes, in order to preserve the valuable Italian Renaissance Architectural Complex named “The Sacred Mountain of Varallo.” Among the forty-five chapels of the Renaissance Complex, the structure of the Chapel XVII is of particular concern due to its uncertain structural condition and due to the level of stress caused by the regional seismicity. Therefore, lifetime assessment, taking into account the evolution of damage phenomena, is necessary to preserve the reliability and safety of this masterpiece of cultural heritage. A continuous AE monitoring was performed to assess the structural behavior of the Chapel. During the monitoring period, a correlation between peaks of AE activity in the masonry of the “Sacred Mountain of Varallo” and regional seismicity was found. Although the two phenomena take place on very different scales, the AE in materials and the earthquakes in Earth's crust, belong to the same class of invariance. In addition, an accurate finite element model, performed with DIANA finite element code, is presented to describe the dynamic behavior of Chapel XVII structure, confirming visual and instrumental inspections of regional seismic effects. PMID:24381511
Alterations of motor performance and brain cortex mitochondrial function during ethanol hangover.
Bustamante, Juanita; Karadayian, Analia G; Lores-Arnaiz, Silvia; Cutrera, Rodolfo A
2012-08-01
Ethanol has been known to affect various behavioral parameters in experimental animals, even several hours after ethanol (EtOH) is absent from blood circulation, in the period known as hangover. The aim of this study was to assess the effects of acute ethanol hangover on motor performance in association with the brain cortex energetic metabolism. Evaluation of motor performance and brain cortex mitochondrial function during alcohol hangover was performed in mice 6 hours after a high ethanol dose (hangover onset). Animals were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Ethanol hangover group showed a bad motor performance compared with control animals (p < .05). Oxygen uptake in brain cortex mitochondria from hangover animals showed a 34% decrease in the respiratory control rate as compared with the control group. Mitochondrial complex activities were decreased being the complex I-III the less affected by the hangover condition; complex II-III was markedly decreased by ethanol hangover showing 50% less activity than controls. Complex IV was 42% decreased as compared with control animals. Hydrogen peroxide production was 51% increased in brain cortex mitochondria from the hangover group, as compared with the control animals. Quantification of the mitochondrial transmembrane potential indicated that ethanol injected animals presented 17% less ability to maintain the polarized condition as compared with controls. These results indicate that a clear decrease in proton motive force occurs in brain cortex mitochondria during hangover conditions. We can conclude that a decreased motor performance observed in the hangover group of animals could be associated with brain cortex mitochondrial dysfunction and the resulting impairment of its energetic metabolism. Copyright © 2012 Elsevier Inc. All rights reserved.
GP pain management: what are the 'Ps' and 'As' of pain management?
Wan, Aston
2014-08-01
Pain is one common reason for clinical encounters in primary care. The complex nature of chronic pain syndromes can make assessment and management daunting at times. This article presents an easy scheme to help general practitioners efficiently assess, manage and review/follow up patients with chronic pain. The mnemonic presented for assessment is the '4Ps' (pain, other pathology/past medical history, performance/function and psychological/psychiatric status). For management, we can also use '4Ps' (physical, psychological, pharmacological and procedural) and for review there are the '6As' (activities, analgesia, adverse effects, aberrance behaviours, affects and adequate documentation).
Bret-Zurita, Montserrat; Cuesta, Emilio; Cartón, Antonio; Díez, Jesús; Aroca, Ángel; Oliver, José M; Gutiérrez-Larraya, Federico
2014-11-01
Although congenital heart defects are the most common major congenital abnormalities, the associated mortality has been decreasing due to improvements in their diagnosis and treatment. We assessed the usefulness of 64-multidetector computed tomography in the diagnosis and management of these patients. This 5-year observational, analytical, retrospective, cohort study included a total of 222 tomographic studies of patients with congenital heart disease. Computed tomography scans were read twice and medical records were reviewed. We assessed the complexity of the disease, patient, and radiological technique, and evaluated the contribution of new data in relation to clinical suspicion and diagnostic change. A confidence interval was set at 95% and a P value of<.05 was used as the cutoff for statistical significance. In 35.1% of patients, the treatment procedure was performed after computed tomography without other tests. Additional diagnostic catheterization was performed in 12.5% of patients. There were new findings in 77% of patients (82.9% with complex disease), which prompted a change in patient management in 35.6%. All unexpected reports described new findings. No significant differences were found by age, sex, study period, urgency of the test order, patient complexity, or difficulty of the technique. Use of 64-detector computed tomography yields good diagnostic performance in congenital heart disease, prompts changes in management in more than one-third of patients, and reveals new findings in relation to the presumed diagnosis in 77% of patients. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Aroca, Angel; Polo, Luz; Pérez-Farinós, Napoleón; González, Ana E; Bret, Montserrat; Aguilar, Elizabeth; Oliver, José M
2014-01-01
To assess the association between mortality in surgery of congenital heart disease in adults, and factors related to patients and operations. Descriptive study of operations performed by specialized surgeons in congenital heart surgery (238), adult acquired surgery (117), and specialty residents (108). The association of mortality with surgical risk and complexity, specialization of surgeon, cardiopulmonary by-pass and aortic cross clamping was assessed fitting logistic regression models. A total of 463 operations were included (442 with cardiopulmonary by-pass) in the study performed between 1991 and 2012. Median age at surgery: 34; 52.8% were women. First surgery: 295, reoperation: 168. Median score of Aristotle was 6.8, with significantly higher complexity since 2001, after restructuring the Unit. Overall hospital mortality was 3.9%. Mortality was significantly associated to number of previous surgeries (OR: 5.02; 95%CI: 1.44-17.52), operations by acquired heart disease surgeons (OR: 3.53; 95%CI: 1.14-10.98), higher Aristotle (OR: 1,64; 95%CI: 1.18-2.29), and high cardiopulmonary by-pass time (OR: 1.13; 95%CI: 1.07-1.19). Surgery of congenital heart disease in adults has been performed with low mortality. High complexity interventions, prolonged cardiopulmonary by-pass times and multiple reoperations were associated to higher mortality. Participation of cardiac surgeons specialized in congenital heart disease is associated with better outcomes. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Driving Comparisons Between Young Adults with Autism Spectrum Disorder and Typical Development.
Patrick, Kristina E; Hurewitz, Felicia; McCurdy, Mark D; Agate, Frederic Taylor; Daly, Brian P; Tarazi, Reem A; Chute, Douglas L; Schultheis, Maria T
2018-05-18
Many individuals with autism spectrum disorder (ASD) are reluctant to pursue driving because of concerns about their ability to drive safely. This study aimed to assess differences in simulated driving performance in young adults with ASD and typical development, examining relationships between driving performance and the level of experience (none, driver's permit, licensed) across increasingly difficult driving environments. Participants included 50 English-speaking young adults (16-26 years old) with ASD matched for sex, age, and licensure with 50 typically-developing (TD) peers. Participants completed a structured driving assessment using a virtual-reality simulator that included increasingly complex environmental demands. Differences in mean speed and speed and lane variability by diagnostic group and driving experience were analyzed using multilevel linear modeling. Young adults with ASD demonstrated increased variability in speed and lane positioning compared with controls, even during low demand tasks. When driving demands became more complex, group differences were moderated by driving experience such that licensed drivers with ASD drove similarly to TD licensed drivers for most tasks, whereas unlicensed drivers with ASD had more difficulty with speed and lane management than TD drivers. Findings suggest that young adults with ASD may have more difficulty with basic driving skills than peers, particularly in the early stages of driver training. Increased difficulty compared with peers increases as driving demands become more complex, suggesting that individuals with ASD may benefit from a slow and gradual approach to driver training. Future studies should evaluate predictors of driving performance, on-road driving, and ASD-specific driving interventions.
Binder, Harald; Sauerbrei, Willi; Royston, Patrick
2013-06-15
In observational studies, many continuous or categorical covariates may be related to an outcome. Various spline-based procedures or the multivariable fractional polynomial (MFP) procedure can be used to identify important variables and functional forms for continuous covariates. This is the main aim of an explanatory model, as opposed to a model only for prediction. The type of analysis often guides the complexity of the final model. Spline-based procedures and MFP have tuning parameters for choosing the required complexity. To compare model selection approaches, we perform a simulation study in the linear regression context based on a data structure intended to reflect realistic biomedical data. We vary the sample size, variance explained and complexity parameters for model selection. We consider 15 variables. A sample size of 200 (1000) and R(2) = 0.2 (0.8) is the scenario with the smallest (largest) amount of information. For assessing performance, we consider prediction error, correct and incorrect inclusion of covariates, qualitative measures for judging selected functional forms and further novel criteria. From limited information, a suitable explanatory model cannot be obtained. Prediction performance from all types of models is similar. With a medium amount of information, MFP performs better than splines on several criteria. MFP better recovers simpler functions, whereas splines better recover more complex functions. For a large amount of information and no local structure, MFP and the spline procedures often select similar explanatory models. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Katpatal, Yashwant B.; Rishma, C.; Singh, Chandan K.
2018-05-01
The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50-90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.
The Fishery Performance Indicators: A Management Tool for Triple Bottom Line Outcomes
Anderson, James L.; Anderson, Christopher M.; Chu, Jingjie; Meredith, Jennifer; Asche, Frank; Sylvia, Gil; Smith, Martin D.; Anggraeni, Dessy; Arthur, Robert; Guttormsen, Atle; McCluney, Jessica K.; Ward, Tim; Akpalu, Wisdom; Eggert, Håkan; Flores, Jimely; Freeman, Matthew A.; Holland, Daniel S.; Knapp, Gunnar; Kobayashi, Mimako; Larkin, Sherry; MacLauchlin, Kari; Schnier, Kurt; Soboil, Mark; Tveteras, Sigbjorn; Uchida, Hirotsugu; Valderrama, Diego
2015-01-01
Pursuit of the triple bottom line of economic, community and ecological sustainability has increased the complexity of fishery management; fisheries assessments require new types of data and analysis to guide science-based policy in addition to traditional biological information and modeling. We introduce the Fishery Performance Indicators (FPIs), a broadly applicable and flexible tool for assessing performance in individual fisheries, and for establishing cross-sectional links between enabling conditions, management strategies and triple bottom line outcomes. Conceptually separating measures of performance, the FPIs use 68 individual outcome metrics—coded on a 1 to 5 scale based on expert assessment to facilitate application to data poor fisheries and sectors—that can be partitioned into sector-based or triple-bottom-line sustainability-based interpretative indicators. Variation among outcomes is explained with 54 similarly structured metrics of inputs, management approaches and enabling conditions. Using 61 initial fishery case studies drawn from industrial and developing countries around the world, we demonstrate the inferential importance of tracking economic and community outcomes, in addition to resource status. PMID:25946194
AlZhrani, Gmaan; Alotaibi, Fahad; Azarnoush, Hamed; Winkler-Schwartz, Alexander; Sabbagh, Abdulrahman; Bajunaid, Khalid; Lajoie, Susanne P; Del Maestro, Rolando F
2015-01-01
Assessment of neurosurgical technical skills involved in the resection of cerebral tumors in operative environments is complex. Educators emphasize the need to develop and use objective and meaningful assessment tools that are reliable and valid for assessing trainees' progress in acquiring surgical skills. The purpose of this study was to develop proficiency performance benchmarks for a newly proposed set of objective measures (metrics) of neurosurgical technical skills performance during simulated brain tumor resection using a new virtual reality simulator (NeuroTouch). Each participant performed the resection of 18 simulated brain tumors of different complexity using the NeuroTouch platform. Surgical performance was computed using Tier 1 and Tier 2 metrics derived from NeuroTouch simulator data consisting of (1) safety metrics, including (a) volume of surrounding simulated normal brain tissue removed, (b) sum of forces utilized, and (c) maximum force applied during tumor resection; (2) quality of operation metric, which involved the percentage of tumor removed; and (3) efficiency metrics, including (a) instrument total tip path lengths and (b) frequency of pedal activation. All studies were conducted in the Neurosurgical Simulation Research Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada. A total of 33 participants were recruited, including 17 experts (board-certified neurosurgeons) and 16 novices (7 senior and 9 junior neurosurgery residents). The results demonstrated that "expert" neurosurgeons resected less surrounding simulated normal brain tissue and less tumor tissue than residents. These data are consistent with the concept that "experts" focused more on safety of the surgical procedure compared with novices. By analyzing experts' neurosurgical technical skills performance on these different metrics, we were able to establish benchmarks for goal proficiency performance training of neurosurgery residents. This study furthers our understanding of expert neurosurgical performance during the resection of simulated virtual reality tumors and provides neurosurgical trainees with predefined proficiency performance benchmarks designed to maximize the learning of specific surgical technical skills. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
A system performance throughput model applicable to advanced manned telescience systems
NASA Technical Reports Server (NTRS)
Haines, Richard F.
1990-01-01
As automated space systems become more complex, autonomous, and opaque to the flight crew, it becomes increasingly difficult to determine whether the total system is performing as it should. Some of the complex and interrelated human performance measurement issues are addressed that are related to total system validation. An evaluative throughput model is presented which can be used to generate a human operator-related benchmark or figure of merit for a given system which involves humans at the input and output ends as well as other automated intelligent agents. The concept of sustained and accurate command/control data information transfer is introduced. The first two input parameters of the model involve nominal and off-nominal predicted events. The first of these calls for a detailed task analysis while the second is for a contingency event assessment. The last two required input parameters involving actual (measured) events, namely human performance and continuous semi-automated system performance. An expression combining these four parameters was found using digital simulations and identical, representative, random data to yield the smallest variance.
Training improves laparoscopic tasks performance and decreases operator workload.
Hu, Jesse S L; Lu, Jirong; Tan, Wee Boon; Lomanto, Davide
2016-05-01
It has been postulated that increased operator workload during task performance may increase fatigue and surgical errors. The National Aeronautics and Space Administration-Task Load Index (NASA-TLX) is a validated tool for self-assessment for workload. Our study aims to assess the relationship of workload and performance of novices in simulated laparoscopic tasks of different complexity levels before and after training. Forty-seven novices without prior laparoscopic experience were recruited in a trial to investigate whether training improves task performance as well as mental workload. The participants were tested on three standard tasks (ring transfer, precision cutting and intracorporeal suturing) in increasing complexity based on the Fundamentals of Laparoscopic Surgery (FLS) curriculum. Following a period of training and rest, participants were tested again. Test scores were computed from time taken and time penalties for precision errors. Test scores and NASA-TLX scores were recorded pre- and post-training and analysed using paired t tests. One-way repeated measures ANOVA was used to analyse differences in NASA-TLX scores between the three tasks. NASA-TLX score was lowest with ring transfer and highest with intracorporeal suturing. This was statistically significant in both pre-training (p < 0.001) and post-training (p < 0.001). NASA-TLX scores mirror the changes in test scores for the three tasks. Workload scores decreased significantly after training for all three tasks (ring transfer = 2.93, p < 0.001, precision cutting = 3.74, p < 0.001, intracorporeal suturing = 2.98, p < 0.001). NASA-TLX score is an accurate reflection of the complexity of simulated laparoscopic tasks in the FLS curriculum. This also correlates with the relationship of test scores between the three tasks. Simulation training improves both performance score and workload score across the tasks.
Giladi, Aviram M; Shanmugakrishnan, R Raja; Venkatramani, Hari; Raja Sekaran, S; Chung, Kevin C; Sabapathy, S Raja
2017-06-01
At Ganga Hospital in Coimbatore, India, a unique approach is applied to treat massive upper limb injuries. However, long-term outcomes of complex reconstruction performed in the resource-limited setting are not known. This hinders understanding of outcomes and disability from these injuries and prevents systematically addressing care delivery around upper extremity trauma in the developing world. This project aims to analyze the details of the unique Ganga Hospital reconstruction experience and use patient-reported outcome measures for the first time in this patient population to evaluate post-injury recovery and disability . Forty-six patients were evaluated 6 months or more after massive proximal upper extremity reconstruction at Ganga Hospital. Patients completed functional tests, Jebsen-Taylor test (JTT), and patient-reported outcomes (PROs)-Michigan Hand Questionnaire (MHQ), Disability of Arm, Shoulder, and Hand questionnaire (DASH), and Short-Form 36 (SF-36). Correlations between metrics were assessed with Pearson's correlation coefficients. Linear regression modeling evaluated associations between severity, reconstruction, and outcomes. MHQ and DASH results correlated with functional test performance, JTT performance, and SF-36 scores (Pearson's coefficients all ≥0.33, p ≤ 0.05). In this cohort, mean MHQ score was 79 ± 15 and mean DASH score was 13 ± 15, which are not significantly different than scores for long-term outcomes after other complex upper extremity procedures. The following factors predicted PROs and functional performance after reconstruction: extent of soft tissue reconstruction, multi-segmental ulna fractures, median nerve injury, and ability for patients to return to work and maintain their job after injury. Complex proximal upper extremity salvage can be performed in the resource-limited setting with excellent long-term functional and patient-reported outcomes. PRO questionnaires are useful for reporting outcomes that correlate to functional and sensory testing and may be used to assess post-traumatic disability.
A wind tunnel study on the effects of complex topography on wind turbine performance
NASA Astrophysics Data System (ADS)
Howard, Kevin; Hu, Stephen; Chamorro, Leonardo; Guala, Michele
2012-11-01
A set of wind tunnel experiments were conducted to study the response of a wind turbine under flow conditions typically observed at the wind farm scale, in complex terrain. A scale model wind turbine was placed in a fully developed turbulent boundary layer flow obtained in the SAFL Wind Tunnel. Experiments focused on the performance of a turbine model, under the effects induced by a second upwind turbine or a by three-dimensional, sinusoidal hill, peaking at the turbine hub height. High frequency measurements of fluctuating streamwise and wall normal velocities were obtained with a X-wire anemometer simultaneously with the rotor angular velocity and the turbine(s) voltage output. Velocity measurements in the wake of the first turbine and of the hill were used to determine the inflow conditions for the downwind test turbine. Turbine performance was inferred by the mean and fluctuating voltage statistics. Specific experiments were devoted to relate the mean voltage to the mean hub velocity, and the fluctuating voltage to the unsteadiness in the rotor kinematics induced by the perturbed (hill or turbine) or unperturbed (boundary layer) large scales of the incoming turbulent flow. Results show that the voltage signal can be used to assess turbine performance in complex flows.
Wester, Anne E; Verster, Joris C; Volkerts, Edmund R; Böcker, Koen B E; Kenemans, J Leon
2010-09-01
Driving is a complex task and is susceptible to inattention and distraction. Moreover, alcohol has a detrimental effect on driving performance, possibly due to alcohol-induced attention deficits. The aim of the present study was to assess the effects of alcohol on simulated driving performance and attention orienting and allocation, as assessed by event-related potentials (ERPs). Thirty-two participants completed two test runs in the Divided Attention Steering Simulator (DASS) with blood alcohol concentrations (BACs) of 0.00%, 0.02%, 0.05%, 0.08% and 0.10%. Sixteen participants performed the second DASS test run with a passive auditory oddball to assess alcohol effects on involuntary attention shifting. Sixteen other participants performed the second DASS test run with an active auditory oddball to assess alcohol effects on dual-task performance and active attention allocation. Dose-dependent impairments were found for reaction times, the number of misses and steering error, even more so in dual-task conditions, especially in the active oddball group. ERP amplitudes to novel irrelevant events were also attenuated in a dose-dependent manner. The P3b amplitude to deviant target stimuli decreased with blood alcohol concentration only in the dual-task condition. It is concluded that alcohol increases distractibility and interference from secondary task stimuli, as well as reduces attentional capacity and dual-task integrality.
Assessing Low-Intensity Relationships in Complex Networks
Spitz, Andreas; Gimmler, Anna; Stoeck, Thorsten; Zweig, Katharina Anna; Horvát, Emőke-Ágnes
2016-01-01
Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes. PMID:27096435
NASA Astrophysics Data System (ADS)
Cai, Z.; Wilson, R. D.
2009-05-01
Techniques for optimizing the removal of NAPL mass in source zones have advanced at a more rapid rate than strategies to assess treatment performance. Informed selection of remediation approaches would be easier if measurements of performance were more directly transferable. We developed a number of methods based on data generated from multilevel sampler (MLS) transects to assess the effectiveness of a bioaugmentation/biostimulation trial in a TCE source residing in a terrace gravel aquifer in the East Midlands, UK. In this spatially complex aquifer, treatment inferred from long screen monitoring well data was not as reliable as that from consideration of mass flux changes across transects installed in and downgradient of the source. Falling head tests were conducted in the MLS ports to generate the necessary hydraulic conductivity (K) data. Combining K with concentration provides a mass flux map that allows calculation of mass turnover and an assessment of where in the complex geology the greatest turnover occurred. Five snapshots over a 600-day period indicate a marked reduction in TCE flux, suggesting a significant reduction in DNAPL mass over that expected due to natural processes. However, persistence of daughter products suggested that complete dechlorination did not occur. The MLS fence data also revealed that delivery of both carbon source and pH buffer were not uniform across the test zone. This may have lead to the generation of niches of iron(III) and sulphate reduction as well as methanogenesis, which impacted on dechlorination processes. In the absence of this spatial data, it is difficult to reconcile apparent treatment as indicated in monitoring well data to on-going processes.
Assessing Low-Intensity Relationships in Complex Networks.
Spitz, Andreas; Gimmler, Anna; Stoeck, Thorsten; Zweig, Katharina Anna; Horvát, Emőke-Ágnes
2016-01-01
Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes.
Field Assessment of Energy Audit Tools for Retrofit Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J.; Bohac, D.; Nelson, C.
2013-07-01
This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home’s energy performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Rating systems based on energy performance models, the focus of this report, can establish a home’s achievable energy efficiency potential and provide a quantitative assessment of energy savings after retrofits are completed, although their accuracy needs to be verified by actual measurement or billing data. Ratings can also showmore » homeowners where they stand compared to their neighbors, thus creating social pressure to conform to or surpass others. This project field-tested three different building performance models of varying complexity, in order to assess their value as rating systems in the context of a residential retrofit program: Home Energy Score, SIMPLE, and REM/Rate.« less
Ronot, Maxime; Lambert, Simon A.; Wagner, Mathilde; Garteiser, Philippe; Doblas, Sabrina; Albuquerque, Miguel; Paradis, Valérie; Vilgrain, Valérie; Sinkus, Ralph; Van Beers, Bernard E.
2014-01-01
Objective To assess in a high-resolution model of thin liver rat slices which viscoelastic parameter at three-dimensional multifrequency MR elastography has the best diagnostic performance for quantifying liver fibrosis. Materials and Methods The study was approved by the ethics committee for animal care of our institution. Eight normal rats and 42 rats with carbon tetrachloride induced liver fibrosis were used in the study. The rats were sacrificed, their livers were resected and three-dimensional MR elastography of 5±2 mm liver slices was performed at 7T with mechanical frequencies of 500, 600 and 700 Hz. The complex shear, storage and loss moduli, and the coefficient of the frequency power law were calculated. At histopathology, fibrosis and inflammation were assessed with METAVIR score, fibrosis was further quantified with morphometry. The diagnostic value of the viscoelastic parameters for assessing fibrosis severity was evaluated with simple and multiple linear regressions, receiver operating characteristic analysis and Obuchowski measures. Results At simple regression, the shear, storage and loss moduli were associated with the severity of fibrosis. At multiple regression, the storage modulus at 600 Hz was the only parameter associated with fibrosis severity (r = 0.86, p<0.0001). This parameter had an Obuchowski measure of 0.89+/−0.03. This measure was significantly larger than that of the loss modulus (0.78+/−0.04, p = 0.028), but not than that of the complex shear modulus (0.88+/−0.03, p = 0.84). Conclusion Our high resolution, three-dimensional multifrequency MR elastography study of thin liver slices shows that the storage modulus is the viscoelastic parameter that has the best association with the severity of liver fibrosis. However, its diagnostic performance does not differ significantly from that of the complex shear modulus. PMID:24722733
Mathematical model and coordination algorithms for ensuring complex security of an organization
NASA Astrophysics Data System (ADS)
Novoseltsev, V. I.; Orlova, D. E.; Dubrovin, A. S.; Irkhin, V. P.
2018-03-01
The mathematical model of coordination when ensuring complex security of the organization is considered. On the basis of use of a method of casual search three types of algorithms of effective coordination adequate to mismatch level concerning security are developed: a coordination algorithm at domination of instructions of the coordinator; a coordination algorithm at domination of decisions of performers; a coordination algorithm at parity of interests of the coordinator and performers. Assessment of convergence of the algorithms considered above it was made by carrying out a computing experiment. The described algorithms of coordination have property of convergence in the sense stated above. And, the following regularity is revealed: than more simply in the structural relation the algorithm, for the smaller number of iterations is provided to those its convergence.
Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization
NASA Technical Reports Server (NTRS)
Baker, Robert L.
1993-01-01
The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28.
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467
Mostaghimi, Arash; Wanat, Karolyn; Crotty, Bradley H; Rosenbach, Misha
2015-10-16
In response to a perceived erosion of medical dermatology, combined internal medicine and dermatology programs (med/derm) programs have been developed that aim to train dermatologists who take care of medically complex patients. Despite the investment in these programs, there is currently no data with regards to the potential impact of these trainees on the dermatology workforce. To determine the experiences, motivations, and future plans of residents in combined med/derm residency programs. We surveyed residents at all United States institutions with both categorical and combined training programs in spring of 2012. Respondents used visual analog scales to rate clinical interests, self-assessed competency, career plans, and challenges. The primary study outcomes were comfort in taking care of patients with complex disease, future practice plans, and experience during residency. Twenty-eight of 31 med/derm residents (87.5%) and 28 of 91 (31%) categorical residents responded (overall response rate 46%). No significant differences were seen in self-assessed dermatology competency, or comfort in performing inpatient consultations, cosmetic procedures, or prescribing systemic agents. A trend toward less comfort in general dermatology was seen among med/derm residents. Med/derm residents were more likely to indicate career preferences for performing inpatient consultation and taking care of medically complex patients. Categorical residents rated their programs and experiences more highly. Med/derm residents have stronger interests in serving medically complex patients. Categorical residents are more likely to have a positive experience during residency. Future work will be needed to ascertain career choices among graduates once data are available.
Nair, Ajay K; Sasidharan, Arun; John, John P; Mehrotra, Seema; Kutty, Bindu M
2016-01-01
The present study describes the development of a neurocognitive paradigm: "Assessing Neurocognition via Gamified Experimental Logic" (ANGEL), for performing the parametric evaluation of multiple neurocognitive functions simultaneously. ANGEL employs an audiovisual sensory motor design for the acquisition of multiple event related potentials (ERPs)-the C1, P50, MMN, N1, N170, P2, N2pc, LRP, P300, and ERN. The ANGEL paradigm allows assessment of 10 neurocognitive variables over the course of three "game" levels of increasing complexity ranging from simple passive observation to complex discrimination and response in the presence of multiple distractors. The paradigm allows assessment of several levels of rapid decision making: speeded up response vs. response-inhibition; responses to easy vs. difficult tasks; responses based on gestalt perception of clear vs. ambiguous stimuli; and finally, responses with set shifting during challenging tasks. The paradigm has been tested using 18 healthy participants from both sexes and the possibilities of varied data analyses have been presented in this paper. The ANGEL approach provides an ecologically valid assessment (as compared to existing tools) that quickly yields a very rich dataset and helps to assess multiple ERPs that can be studied extensively to assess cognitive functions in health and disease conditions.
Nair, Ajay K.; Sasidharan, Arun; John, John P.; Mehrotra, Seema; Kutty, Bindu M.
2016-01-01
The present study describes the development of a neurocognitive paradigm: “Assessing Neurocognition via Gamified Experimental Logic” (ANGEL), for performing the parametric evaluation of multiple neurocognitive functions simultaneously. ANGEL employs an audiovisual sensory motor design for the acquisition of multiple event related potentials (ERPs)—the C1, P50, MMN, N1, N170, P2, N2pc, LRP, P300, and ERN. The ANGEL paradigm allows assessment of 10 neurocognitive variables over the course of three “game” levels of increasing complexity ranging from simple passive observation to complex discrimination and response in the presence of multiple distractors. The paradigm allows assessment of several levels of rapid decision making: speeded up response vs. response-inhibition; responses to easy vs. difficult tasks; responses based on gestalt perception of clear vs. ambiguous stimuli; and finally, responses with set shifting during challenging tasks. The paradigm has been tested using 18 healthy participants from both sexes and the possibilities of varied data analyses have been presented in this paper. The ANGEL approach provides an ecologically valid assessment (as compared to existing tools) that quickly yields a very rich dataset and helps to assess multiple ERPs that can be studied extensively to assess cognitive functions in health and disease conditions. PMID:26858586
Lennert, Barb; Farrelly, Eileen; Sacco, Patricia; Pira, Geraldine; Frost, Michael
2013-04-01
Seizures are a hallmark manifestation of tuberous sclerosis complex, yet data characterizing resource utilization are lacking. This retrospective chart review was performed to assess the economic burden of tuberous sclerosis complex with neurologic manifestations. Demographic and resource utilization data were collected for 95 patients for up to 5 years after tuberous sclerosis complex diagnosis. Mean age at diagnosis was 3.1 years, with complex partial and infantile spasms as the most common seizure types. In the first 5 years post-diagnosis, 83.2% required hospitalization, 30.5% underwent surgery, and the majority of patients (90.5%) underwent ≥3 testing procedures. In 79 patients with a full 5 years of data, hospitalizations, intensive care unit stays, diagnostic testing, and rehabilitation services decreased over the 5-year period. Resource utilization is cost-intensive in children with tuberous sclerosis complex and associated seizures during the first few years following diagnosis. Improving seizure control and reducing health care costs in this population remain unmet needs.
Maurer, Max; Lienert, Judit
2017-01-01
We compare the use of multi-criteria decision analysis (MCDA)–or more precisely, models used in multi-attribute value theory (MAVT)–to integrated assessment (IA) models for supporting long-term water supply planning in a small town case study in Switzerland. They are used to evaluate thirteen system scale water supply alternatives in four future scenarios regarding forty-four objectives, covering technical, social, environmental, and economic aspects. The alternatives encompass both conventional and unconventional solutions and differ regarding technical, spatial and organizational characteristics. This paper focuses on the impact assessment and final evaluation step of the structured MCDA decision support process. We analyze the performance of the alternatives for ten stakeholders. We demonstrate the implications of model assumptions by comparing two IA and three MAVT evaluation model layouts of different complexity. For this comparison, we focus on the validity (ranking stability), desirability (value), and distinguishability (value range) of the alternatives given the five model layouts. These layouts exclude or include stakeholder preferences and uncertainties. Even though all five led us to identify the same best alternatives, they did not produce identical rankings. We found that the MAVT-type models provide higher distinguishability and a more robust basis for discussion than the IA-type models. The needed complexity of the model, however, should be determined based on the intended use of the model within the decision support process. The best-performing alternatives had consistently strong performance for all stakeholders and future scenarios, whereas the current water supply system was outperformed in all evaluation layouts. The best-performing alternatives comprise proactive pipe rehabilitation, adapted firefighting provisions, and decentralized water storage and/or treatment. We present recommendations for possible ways of improving water supply planning in the case study and beyond. PMID:28481881
Golden, Julia C; Goethe, John W; Woolley, Stephen B
2017-10-15
It is common for patients with bipolar disorder (BP) to receive multiple psychotropics, but few studies have assessed demographic and clinical features associated with risk for receiving complex psychotropic polypharmacy. This longitudinal cohort study examined 2712 inpatients with a DSM-IV clinical diagnosis of BP to assess associations between complex polypharmacy (defined as ≥4 psychotropics) and demographic and clinical features; associations with risk of rehospitalization were also examined. Logistic regressions were performed with the sample as a whole and with each of four DSM-IV BP subtypes individually. Complex polypharmacy was present in 21.0%. BP-I depressed patients were more likely to receive complex regimens than BP-I manic, BP-I mixed or BP-II patients. In the sample as a whole, variables significantly associated with complex polypharmacy included female, white, psychotic features and a co-diagnosis of borderline personality, post-traumatic stress or another anxiety disorder. The only examined medication not significantly associated with complex polypharmacy was lithium, although only in BP-I depressed and BP-I mixed. Complex polypharmacy was associated with rehospitalization in BP-I mania within 15 and 30days post index hospitalization. All data were from one clinical facility; results may not generalize to other settings and patient populations. BP-I depression may pose a greater treatment challenge than the other BP subtypes. Lithium may confer an overall advantage compared to other medications in BP-I depressed and BP-I mixed. Further research is needed to guide pharmacotherapy decisions in BP patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Barrett, R. F.; Crozier, P. S.; Doerfler, D. W.; ...
2014-09-28
Computational science and engineering application programs are typically large, complex, and dynamic, and are often constrained by distribution limitations. As a means of making tractable rapid explorations of scientific and engineering application programs in the context of new, emerging, and future computing architectures, a suite of miniapps has been created to serve as proxies for full scale applications. Each miniapp is designed to represent a key performance characteristic that does or is expected to significantly impact the runtime performance of an application program. In this paper we introduce a methodology for assessing the ability of these miniapps to effectively representmore » these performance issues. We applied this methodology to four miniapps, examining the linkage between them and an application they are intended to represent. Herein we evaluate the fidelity of that linkage. This work represents the initial steps required to begin to answer the question, ''Under what conditions does a miniapp represent a key performance characteristic in a full app?''« less
Integrated source and channel encoded digital communication system design study
NASA Technical Reports Server (NTRS)
Alem, W. K.; Huth, G. K.; Simon, M. K.
1978-01-01
The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop.
Inconsistency of residents' communication performance in challenging consultations.
Wouda, Jan C; van de Wiel, Harry B M
2013-12-01
Communication performance inconsistency between consultations is usually regarded as a measurement error that jeopardizes the reliability of assessments. However, inconsistency is an important phenomenon, since it indicates that physicians' communication may be below standard in some consultations. Fifty residents performed two challenging consultations. Residents' communication competency was assessed with the CELI instrument. Residents' background in communication skills training (CST) was also established. We used multilevel analysis to explore communication performance inconsistency between the two consultations. We also established the relationships between inconsistency and average performance quality, the type of consultation, and CST background. Inconsistency accounted for 45.5% of variance in residents' communication performance. Inconsistency was dependent on the type of consultation. The effect of CST background training on performance quality was case specific. Inconsistency and average performance quality were related for those consultation combinations dissimilar in goals, structure, and required skills. CST background had no effect on inconsistency. Physician communication performance should be of high quality, but also consistent regardless of the type and complexity of the consultation. In order to improve performance quality and reduce performance inconsistency, communication education should offer ample opportunities to practice a wide variety of challenging consultations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Electrodermal complexity during the Stroop colour word test.
Svetlak, Miroslav; Bob, Petr; Cernik, Michal; Kukleta, Miloslav
2010-01-15
Several recent studies suggest that quantitative description of signal complexity using algorithms of nonlinear analysis could uncover new information about the autonomic system that is not reflected using common methods applied to measures of autonomic activity. With this aim we have performed complexity analysis of electrodermal activity (EDA) assessed in 106 healthy university students during rest conditions and non-conflicting and conflicting Stroop task. Complexity analysis applied to EDA was performed using Skinner's algorithm for pointwise correlation dimension (PD2). Results have shown that EDA responses during the Stroop Colour Word test are related to significantly increased or decreased complexity. Particularly significant result is that PD2 has a unique ability to predict to an extent the change in EDA response to stress i.e. that subjects with low initial PD2 tended to respond to experimental stress by its increase and subjects with high initial PD2 values tended to respond by its decrease. This response was not found in EDA measures where increase of the EDA presented predominant response to experimental stress in majority of the subjects. These findings suggest that PD2 is more sensitive to subtle aspects of functionally and spatially distributed modulatory influences of various parts of the brain that are involved in the EDA modulation and provides novel information in comparison to traditional methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yao; Balaprakash, Prasanna; Meng, Jiayuan
We present Raexplore, a performance modeling framework for architecture exploration. Raexplore enables rapid, automated, and systematic search of architecture design space by combining hardware counter-based performance characterization and analytical performance modeling. We demonstrate Raexplore for two recent manycore processors IBM Blue- Gene/Q compute chip and Intel Xeon Phi, targeting a set of scientific applications. Our framework is able to capture complex interactions between architectural components including instruction pipeline, cache, and memory, and to achieve a 3–22% error for same-architecture and cross-architecture performance predictions. Furthermore, we apply our framework to assess the two processors, and discover and evaluate a list ofmore » architectural scaling options for future processor designs.« less
Role of HPC in Advancing Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2004-01-01
On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.
1987-03-01
3/4 hours. Performance tests evaluated simple and choice reaction time to visual stimuli, vigilance, and processing of symbolic, numerical, verbal...minimize the adverse consequences of these stressors. Tyrosine enhanced performance (e.g. complex information processing , vigilance, and reaction time... processes inherent in many real-world tasks. For example, Map Compass requires association of Wsi PL AFCm uA O-SV CHETCLtISS) direction and degree
Inertial Sensor Error Reduction through Calibration and Sensor Fusion.
Lambrecht, Stefan; Nogueira, Samuel L; Bortole, Magdo; Siqueira, Adriano A G; Terra, Marco H; Rocon, Eduardo; Pons, José L
2016-02-17
This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scrucca, Flavio; Severi, Claudio; Galvan, Nicola
Nowadays an increasing attention of public and private agencies to the sustainability performance of events is observed, since it is recognized as a key issue in the context of sustainable development. Assessing the sustainability performance of events involves environmental, social and economic aspects; their impacts are complex and a quantitative assessment is often difficult. This paper presents a new quali-quantitative method developed to measure the sustainability of events, taking into account all its potential impacts. The 2014 World Orienteering Championship, held in Italy, was selected to test the proposed evaluation methodology. The total carbon footprint of the event was 165.34more » tCO{sub 2}eq and the avoided emissions were estimated as being 46 tCO{sub 2}eq. The adopted quali-quantitative method resulted to be efficient in assessing the sustainability impacts and can be applied for the evaluation of similar events. - Highlights: • A quali-quantitative method to assess events' sustainability is presented. • All the methodological issues related to the method are explained. • The method is used to evaluate the sustainability of an international sports event. • The method resulted to be valid to assess the event's sustainability level. • The carbon footprint of the event has been calculated.« less
Impact of video game genre on surgical skills development: a feasibility study.
de Araujo, Thiago Bozzi; Silveira, Filipe Rodrigues; Souza, Dante Lucas Santos; Strey, Yuri Thomé Machado; Flores, Cecilia Dias; Webster, Ronaldo Scholze
2016-03-01
The playing of video games (VGs) was previously shown to improve surgical skills. This is the first randomized, controlled study to assess the impact of VG genre on the development of basic surgical skills. Twenty first-year, surgically inexperienced medical students attended a practical course on surgical knots, suturing, and skin-flap technique. Later, they were randomized into four groups: control and/or nongaming (ContG), first-person-shooter game (ShotG), racing game (RaceG), and surgery game (SurgG). All participants had 3 wk of Nintendo Wii training. Surgical and VG performances were assessed by two independent, blinded surgeons who evaluated basal performance (time 0) and performance after 1 wk (time 1) and 3 wk (time 2) of training. The training time of RaceG was longer than that of ShotG and SurgG (P = 0.045). Compared to SurgG and RaceG, VG scores for ShotG improved less between times 0 and 1 (P = 0.010) but more between times 1 and 2 (P = 0.004). Improvement in mean surgical performance scores versus time differed in each VG group (P = 0.011). At time 2, surgical performance scores were significantly higher in ShotG (P = 0.002) and SurgG (P = 0.022) than in ContG. The surgical performance scores of RaceG were not significantly different from the score achieved by ContG (P = 0.279). Different VG genres may differentially impact the development of surgical skills by medical students. More complex games seem to improve performance even if played less. Although further studies are needed, surgery-related VGs with sufficient complexity and playability could be a feasible adjuvant to improving surgical skills. Copyright © 2016 Elsevier Inc. All rights reserved.
Mnatsakanyan, Mariam; Stevenson, Paul G; Shock, David; Conlan, Xavier A; Goodie, Tiffany A; Spencer, Kylie N; Barnett, Neil W; Francis, Paul S; Shalliker, R Andrew
2010-09-15
Differences between alkyl, dipole-dipole, hydrogen bonding, and pi-pi selective surfaces represented by non-resonance and resonance pi-stationary phases have been assessed for the separation of 'Ristretto' café espresso by employing 2DHPLC techniques with C18 phase selectivity detection. Geometric approach to factor analysis (GAFA) was used to measure the detected peaks (N), spreading angle (beta), correlation, practical peak capacity (n(p)) and percentage usage of the separations space, as an assessment of selectivity differences between regional quadrants of the two-dimensional separation plane. Although all tested systems were correlated to some degree to the C18 dimension, regional measurement of separation divergence revealed that performance of specific systems was better for certain sample components. The results illustrate that because of the complexity of the 'real' sample obtaining a truly orthogonal two-dimensional system for complex samples of natural origin may be practically impossible. Copyright (c) 2010 Elsevier B.V. All rights reserved.
A practical tool for maximal information coefficient analysis.
Albanese, Davide; Riccadonna, Samantha; Donati, Claudio; Franceschi, Pietro
2018-04-01
The ability of finding complex associations in large omics datasets, assessing their significance, and prioritizing them according to their strength can be of great help in the data exploration phase. Mutual information-based measures of association are particularly promising, in particular after the recent introduction of the TICe and MICe estimators, which combine computational efficiency with superior bias/variance properties. An open-source software implementation of these two measures providing a complete procedure to test their significance would be extremely useful. Here, we present MICtools, a comprehensive and effective pipeline that combines TICe and MICe into a multistep procedure that allows the identification of relationships of various degrees of complexity. MICtools calculates their strength assessing statistical significance using a permutation-based strategy. The performances of the proposed approach are assessed by an extensive investigation in synthetic datasets and an example of a potential application on a metagenomic dataset is also illustrated. We show that MICtools, combining TICe and MICe, is able to highlight associations that would not be captured by conventional strategies.
Kim Tiam, Sandra; Fauvelle, Vincent; Morin, Soizic; Mazzella, Nicolas
2016-01-01
Complexity of contaminants exposure needs to be taking in account for an appropriate evaluation of risks related to mixtures of pesticides released in the ecosystems. Toxicity assessment of such mixtures can be made through a variety of toxicity tests reflecting different level of biological complexity. This paper reviews the recent developments of passive sampling techniques for polar compounds, especially Polar Organic Chemical Integrative Samplers (POCIS) and Chemcatcher® and the principal assessment techniques using microalgae in laboratory experiments. The progresses permitted by the coupled use of such passive samplers and ecotoxicology testing as well as their limitations are presented. Case studies combining passive sampling devices (PSD) extracts and toxicity assessment toward microorganisms at different biological scales from single organisms to communities level are presented. These case studies, respectively, aimed (i) at characterizing the “toxic potential” of waters using dose-response curves, and (ii) at performing microcosm experiments with increased environmental realism in the toxicant exposure in term of cocktail composition and concentration. Finally perspectives and limitations of such approaches for future applications in the area of environmental risk assessment are discussed. PMID:27667986
Bertolo, Riccardo; Fiori, Cristian; Piramide, Federico; Amparore, Daniele; Barrera, Monica; Sardo, Diego; Veltri, Andrea; Porpiglia, Francesco
2018-05-14
To evaluate the correlation between the loss of renal function as assessed by Tc99MAG-3 renal scan and the loss of renal volume as calculated by volumetric assessment on CT-scan in patients who underwent minimally-invasive partial nephrectomy (PN). PN prospectively-maintained database was retrospectively queried for patients who underwent minimally-invasive PN (2012-2017) for renal mass
Panzitta, Michele; Bruno, Giorgio; Giovagnoli, Stefano; Mendicino, Francesca R; Ricci, Maurizio
2015-11-30
Health Technology Assessment (HTA) is a multidisciplinary health political instrument that evaluates the consequences, mainly clinical and economical, of a health care technology; the HTA aim is to produce and spread information on scientific and technological innovation for health political decision making process. Drug delivery systems (DDS), such as nanocarriers, are technologically complex but they have pivotal relevance in therapeutic innovation. The HTA process, as commonly applied to conventional drug evaluation, should upgrade to a full pharmaceutical assessment, considering the DDS complexity. This is useful to study more in depth the clinical outcome and to broaden its critical assessment toward pharmaceutical issues affecting the patient and not measured by the current clinical evidence approach. We draw out the expertise necessary to perform the pharmaceutical assessment and we propose a format to evaluate the DDS technological topics such as formulation and mechanism of action, physicochemical characteristics, manufacturing process. We integrated the above-mentioned three points in the Evidence Based Medicine approach, which is data source for any HTA process. In this regard, the introduction of a Pharmaceutics Expert figure in the HTA could be fundamental to grant a more detailed evaluation of medicine product characteristics and performances and to help optimizing DDS features to overcome R&D drawbacks. Some aspects of product development, such as manufacturing processes, should be part of the HTA as innovative manufacturing processes allow new products to reach more effectively patient bedside. HTA so upgraded may encourage resource allocating payers to invest in innovative technologies and providers to focus on innovative material properties and manufacturing processes, thus contributing to bring more medicines in therapy in a sustainable manner. Copyright © 2015 Elsevier B.V. All rights reserved.
Alves-Conceição, Vanessa; Silva, Daniel Tenório da; Santana, Vanessa Lima de; Santos, Edileide Guimarães Dos; Santos, Lincoln Marques Cavalcante; Lyra, Divaldo Pereira de
2017-07-25
Polypharmacy is a reality in long-term care facilities. However, number of medications used by the patient should not be the only predictor of a complex pharmacotherapy. Although the level of complexity of pharmacotherapy is considered an important factor that may lead to side effects, there are few studies in this field. The aim of this study was to evaluate the complexity of pharmacotherapy in residents of three long-term care facilities. A cross-sectional study was performed to evaluate the complexity of pharmacotherapy using the protocols laid out in the Medication Regimen Complexity Index instrument in three long-term care facilities in northeastern Brazil. As a secondary result, potential drug interactions, potentially inappropriate medications, medication duplication, and polypharmacy were evaluated. After the assessment, the association among these variables and the Medication Regimen Complexity Index was performed. In this study, there was a higher prevalence of women (64.4%) with a high mean age among the study population of 81.8 (±9.7) years. The complexity of pharmacotherapy obtained a mean of 15.1 points (±9.8), with a minimum of 2 and a maximum of 59. The highest levels of complexity were associated with dose frequency, with a mean of 5.5 (±3.6), followed by additional instructions of use averaging 4.9 (±3.7) and by the dosage forms averaging 4.6 (±3.0). The present study evaluated some factors that complicate the pharmacotherapy of geriatric patients. Although polypharmacy was implicated as a factor directly related to complexity, other indicators such as drug interactions, potentially inappropriate medications, and therapeutic duplication can also make the use of pharmacotherapy in such patients more difficult.
Pasquali, Sara K; Wallace, Amelia S; Gaynor, J William; Jacobs, Marshall L; O'Brien, Sean M; Hill, Kevin D; Gaies, Michael G; Romano, Jennifer C; Shahian, David M; Mayer, John E; Jacobs, Jeffrey P
2016-11-01
Performance assessment in congenital heart surgery is challenging due to the wide heterogeneity of disease. We describe current case mix across centers, evaluate methodology inclusive of all cardiac operations versus the more homogeneous subset of Society of Thoracic Surgeons benchmark operations, and describe implications regarding performance assessment. Centers (n = 119) participating in the Society of Thoracic Surgeons Congenital Heart Surgery Database (2010 through 2014) were included. Index operation type and frequency across centers were described. Center performance (risk-adjusted operative mortality) was evaluated and classified when including the benchmark versus all eligible operations. Overall, 207 types of operations were performed during the study period (112,140 total cases). Few operations were performed across all centers; only 25% were performed at least once by 75% or more of centers. There was 7.9-fold variation across centers in the proportion of total cases comprising high-complexity cases (STAT 5). In contrast, the benchmark operations made up 36% of cases, and all but 2 were performed by at least 90% of centers. When evaluating performance based on benchmark versus all operations, 15% of centers changed performance classification; 85% remained unchanged. Benchmark versus all operation methodology was associated with lower power, with 35% versus 78% of centers meeting sample size thresholds. There is wide variation in congenital heart surgery case mix across centers. Metrics based on benchmark versus all operations are associated with strengths (less heterogeneity) and weaknesses (lower power), and lead to differing performance classification for some centers. These findings have implications for ongoing efforts to optimize performance assessment, including choice of target population and appropriate interpretation of reported metrics. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Assessing and Promoting Functional Resilience in Flight Crews During Exploration Missions
NASA Technical Reports Server (NTRS)
Shelhamer, M.
2015-01-01
The NASA Human Research Program works to mitigate risks to health and performance on extended missions. However, research should be directed not only to mitigating known risks, but also to providing crews with tools to assess and enhance resilience, as a group and individually. We can draw on ideas from complexity theory to assess resilience. The entire crew or the individual crewmember can be viewed as a complex system composed of subsystems; the interactions between subsystems are of crucial importance. Understanding the interactions can provide important information even in the absence of complete information on the component subsystems. Enabled by advances in noninvasive measurement of physiological and behavioral parameters, subsystem monitoring can be implemented within a mission and during training to establish baselines. Coupled with mathematical modeling, this can provide assessment of health and function. Since the web of physiological systems (and crewmembers) can be interpreted as a network in mathematical terms, we can draw on recent work that relates the structure of such networks to their resilience (ability to self-organize in the face of perturbation). Some of the many parameters and interactions to choose from include: sleep cycles, coordination of work and meal times, cardiorespiratory rhythms, circadian rhythms and body temperature, stress markers and cognition, sleep and performance, immune function and nutritional status. Tools for resilience are then the means to measure and analyze these parameters, incorporate them into models of normal variability and interconnectedness, and recognize when parameters or their couplings are outside of normal limits.
Ada and software management in NASA: Assessment and recommendations
NASA Technical Reports Server (NTRS)
1989-01-01
Recent NASA missions have required software systems that are larger, more complex, and more critical than NASA software systems of the past. The Ada programming language and the software methods and support environments associated with it are seen as potential breakthroughs in meeting NASA's software requirements. The findings of a study by the Ada and Software Management Assessment Working Group (ASMAWG) are presented. The study was chartered to perform three tasks: (1) assess the agency's ongoing and planned Ada activities; (2) assess the infrastructure (standards, policies, and internal organizations) supporting software management and the Ada activities; and (3) present an Ada implementation and use strategy appropriate for NASA over the next 5 years.
[Usefulness of the comprehensive geriatric assessment for evaluating the health of older adults].
Gálvez-Cano, Miguel; Chávez-Jimeno, Helver; Aliaga-Diaz, Elizabeth
2016-06-01
Older adults comprise a heterogeneous population group that usually has a high disease burden, comorbidities, and, in many cases, subclinical conditions that compromise their health and quality of life. In addition to the physical component, the health conditions of elderly individuals are significantly influenced by cognitive and affective components, social and family factors such as abandonment, and functional factors including the ability to perform everyday activities. In response to this complex scenario, the comprehensive geriatric evaluation constitutes a multidimensional and interdisciplinary diagnostic tool that assesses the health of older adults in all of its complexity by considering the physical, mental, social/family, and functional needs to obtain full knowledge of older person's health status and creating a plan that consists of appropriate and individualized interventions that considers the preferences and values of older individuals and their families.
2017-04-01
The reporting of research in a manner that allows reproduction in subsequent investigations is important for scientific progress. Several details of the recent study by Patrizi et al., 'Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics', are absent from the published manuscript and make reproduction of findings impossible. As new and complex technologies with great promise for ergonomics develop, new but surmountable challenges for reporting investigations using these technologies in a reproducible manner arise. Practitioner Summary: As with traditional methods, scientific reporting of new and complex ergonomics technologies should be performed in a manner that allows reproduction in subsequent investigations and supports scientific advancement.
NASA Technical Reports Server (NTRS)
Podest, Erika; McDonald, Kyle; Kimball, John; Randerson, James
2003-01-01
We characterize differences in radar-derived freeze/thaw state, examining transitions over complex terrain and landscape disturbance regimes. In areas of complex terrain, we explore freezekhaw dynamics related to elevation, slope aspect and varying landcover. In the burned regions, we explore the timing of seasonal freeze/thaw transition as related to the recovering landscape, relative to that of a nearby control site. We apply in situ biophysical measurements, including flux tower measurements to validate and interpret the remotely sensed parameters. A multi-scale analysis is performed relating high-resolution SAR backscatter and moderate resolution scatterometer measurements to assess trade-offs in spatial and temporal resolution in the remotely sensed fields.
A Latent Profile Analysis of Math Achievement, Numerosity, and Math Anxiety in Twins
ERIC Educational Resources Information Center
Hart, Sara A.; Logan, Jessica A. R.; Thompson, Lee; Kovas, Yulia; McLoughlin, Gráinne; Petrill, Stephen A.
2016-01-01
Underperformance in math is a problem with increasing prevalence, complex etiology, and severe repercussions. This study examined the etiological heterogeneity of math performance in a sample of 264 pairs of 12-year-old twins assessed on measures of math achievement, numerosity, and math anxiety. Latent profile analysis indicated 5 groupings of…
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
ERIC Educational Resources Information Center
Troncoso, Patricio; Pampaka, Maria; Olsen, Wendy
2016-01-01
School value-added studies have largely demonstrated the effects of socioeconomic and demographic characteristics of the schools and the pupils on performance in standardised tests. Traditionally, these studies have assessed the variation coming only from the schools and the pupils. However, recent studies have shown that the analysis of academic…
Theater and Psychological Development: Assessing Socio-Cognitive Complexity in the Domain of Theater
ERIC Educational Resources Information Center
Silva, José Eduardo; Ferreira, Pedro; Coimbra, Joaquim Luís; Menezes, Isabel
2017-01-01
Theater is a millenary art form that has stably maintained its minimum indispensable elements over the years. Yet, not much is known about the psychological impact of this performing art. A literature review shows a broad and sometimes contradictory spectrum of theoretical and empirical evidence. In the last few decades, however, interdisciplinary…
NASA Astrophysics Data System (ADS)
Erener, A.
2013-04-01
Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all kinds of challenges, such as high dense build up areas, regions with bare soil, and small and large buildings with different rooftops, such as concrete, brick, and metal. Using the pixel based accuracy assessment it was shown that the percent building detection (PBD) and quality percent (QP) of the MLC and SVM depend on the complexity and texture variation of the region. Generally, PBD values range between 70% and 90% for the MLC and SVM, respectively. No substantial improvements were observed when the SVM and MLC classifications were developed by the addition of more variables, instead of the use of only four bands. In the evaluation of object based accuracy assessment, it was demonstrated that while MLC and SVM provide higher rates of correct detection, they also provide higher rates of false alarms.
Yang, Guanxue; Wang, Lin; Wang, Xiaofan
2017-06-07
Reconstruction of networks underlying complex systems is one of the most crucial problems in many areas of engineering and science. In this paper, rather than identifying parameters of complex systems governed by pre-defined models or taking some polynomial and rational functions as a prior information for subsequent model selection, we put forward a general framework for nonlinear causal network reconstruction from time-series with limited observations. With obtaining multi-source datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and directionality of complex networked systems, namely group lasso nonlinear conditional granger causality. Specially, our method can exploit different sets of radial basis functions to approximate the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables selection. The performance characteristic of our approach is firstly assessed with two types of simulated datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity are also discussed. All of the results demonstrate that the proposed method performs better in terms of higher area under precision-recall curve.
Numerical and Experimental Methods for Wake Flow Analysis in Complex Terrain
NASA Astrophysics Data System (ADS)
Castellani, Francesco; Astolfi, Davide; Piccioni, Emanuele; Terzi, Ludovico
2015-06-01
Assessment and interpretation of the quality of wind farms power output is a non-trivial task, which poses at least three main challenges: reliable comprehension of free wind flow, which is stretched to the limit on very complex terrains, realistic model of how wake interactions resemble on the wind flow, awareness of the consequences on turbine control systems, including alignment patterns to the wind and, consequently, power output. The present work deals with an onshore wind farm in southern Italy, which has been a test case of IEA- Task 31 Wakebench project: 17 turbines, with 2.3 MW of rated power each, are sited on a very complex terrain. A cluster of machines is investigated through numerical and experimental methods: CFD is employed for simulating wind fields and power extraction, as well as wakes, are estimated through the Actuator Disc model. SCADA data mining techniques are employed for comparison between models and actual performances. The simulations are performed both on the real terrain and on flat terrain, in order to disentangle the effects of complex flow and wake effects. Attention is devoted to comparison between actual alignment patterns of the cluster of turbines and predicted flow deviation.
Reiman, Michael P; Manske, Robert C
2012-01-01
Assessment of an individual’s functional ability can be complex. This assessment should also be individualized and adaptable to changes in functional status. In the first article of this series, we operationally defined function, discussed the construct of function, examined the evidence as it relates to assessment methods of various aspects of function, and explored the multi-dimensional nature of the concept of function. In this case report, we aim to demonstrate the utilization of a multi-dimensional assessment method (functional performance testing) as it relates to a high-level athlete presenting with pain in the low back and groin. It is our intent to demonstrate how the clinician should continually adapt their assessment dependent on the current functional abilities of the patients. PMID:23633887
TDRSS telecommunications system, PN code analysis
NASA Technical Reports Server (NTRS)
Dixon, R.; Gold, R.; Kaiser, F.
1976-01-01
The pseudo noise (PN) codes required to support the TDRSS telecommunications services are analyzed and the impact of alternate coding techniques on the user transponder equipment, the TDRSS equipment, and all factors that contribute to the acquisition and performance of these telecommunication services is assessed. Possible alternatives to the currently proposed hybrid FH/direct sequence acquisition procedures are considered and compared relative to acquisition time, implementation complexity, operational reliability, and cost. The hybrid FH/direct sequence technique is analyzed and rejected in favor of a recommended approach which minimizes acquisition time and user transponder complexity while maximizing probability of acquisition and overall link reliability.
Effects of noise frequency on performance and annoyance. M.S. Thesis - Georgia Inst. of Tech.
NASA Technical Reports Server (NTRS)
Key, K. F.
1979-01-01
Using a complex psychomotor task performed for 50 minutes in the presence of low frequency noise, high frequency noise, or ambient noise, annoyance ratings were obtained for noises of various frequencies by the method of magnitude estimation. The results suggest that high frequency noise affects female performance to a greater extent than male performance. Contrasted to these performance effects, the sexes did not differ in their annoyance ratings. A monotonically increasing relationship between annoyance and noise frequency was found (except for a decrease in annoyance at 8,000 Hz). It is concluded that both performance and annoyance responses may need to be assessed in certain situations to adequately describe human reaction to noise.
The composite complex span: French validation of a short working memory task.
Gonthier, Corentin; Thomassin, Noémylle; Roulin, Jean-Luc
2016-03-01
Most studies in individual differences in the field of working memory research use complex span tasks to measure working memory capacity. Various complex span tasks based on different materials have been developed, and these tasks have proven both reliable and valid; several complex span tasks are often combined to provide a domain-general estimate of working memory capacity with even better psychometric properties. The present work sought to address two issues. Firstly, having participants perform several full-length complex span tasks in succession makes for a long and tedious procedure. Secondly, few complex span tasks have been translated and validated in French. We constructed a French working memory task labeled the Composite Complex Span (CCS). The CCS includes shortened versions of three classic complex span tasks: the reading span, symmetry span, and operation span. We assessed the psychometric properties of the CCS, including test-retest reliability and convergent validity, with Raven's Advanced Progressive Matrices and with an alpha span task; the CCS demonstrated satisfying qualities in a sample of 1,093 participants. This work provides evidence that shorter versions of classic complex span tasks can yield valid working memory estimates. The materials and normative data for the CCS are also included.
Fluorescent quantification of melanin.
Fernandes, Bruno; Matamá, Teresa; Guimarães, Diana; Gomes, Andreia; Cavaco-Paulo, Artur
2016-11-01
Melanin quantification is reportedly performed by absorption spectroscopy, commonly at 405 nm. Here, we propose the implementation of fluorescence spectroscopy for melanin assessment. In a typical in vitro assay to assess melanin production in response to an external stimulus, absorption spectroscopy clearly overvalues melanin content. This method is also incapable of distinguishing non-melanotic/amelanotic control cells from those that are actually capable of performing melanogenesis. Therefore, fluorescence spectroscopy is the best method for melanin quantification as it proved to be highly specific and accurate, detecting even small variations in the synthesis of melanin. This method can also be applied to the quantification of melanin in more complex biological matrices like zebrafish embryos and human hair. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cheung, Carol C; Torlakovic, Emina E; Chow, Hung; Snover, Dale C; Asa, Sylvia L
2015-03-01
Pathologists provide diagnoses relevant to the disease state of the patient and identify specific tissue characteristics relevant to response to therapy and prognosis. As personalized medicine evolves, there is a trend for increased demand of tissue-derived parameters. Pathologists perform increasingly complex analyses on the same 'cases'. Traditional methods of workload assessment and reimbursement, based on number of cases sometimes with a modifier (eg, the relative value unit (RVU) system used in the United States), often grossly underestimate the amount of work needed for complex cases and may overvalue simple, small biopsy cases. We describe a new approach to pathologist workload measurement that aligns with this new practice paradigm. Our multisite institution with geographically diverse partner institutions has developed the Automatable Activity-Based Approach to Complexity Unit Scoring (AABACUS) model that captures pathologists' clinical activities from parameters documented in departmental laboratory information systems (LISs). The model's algorithm includes: 'capture', 'export', 'identify', 'count', 'score', 'attribute', 'filter', and 'assess filtered results'. Captured data include specimen acquisition, handling, analysis, and reporting activities. Activities were counted and complexity units (CUs) generated using a complexity factor for each activity. CUs were compared between institutions, practice groups, and practice types and evaluated over a 5-year period (2008-2012). The annual load of a clinical service pathologist, irrespective of subspecialty, was ∼40,000 CUs using relative benchmarking. The model detected changing practice patterns and was appropriate for monitoring clinical workload for anatomical pathology, neuropathology, and hematopathology in academic and community settings, and encompassing subspecialty and generalist practices. AABACUS is objective, can be integrated with an LIS and automated, is reproducible, backwards compatible, and future adaptable. It can be applied as a robust decision support tool for the assessment of overall and targeted staffing needs as well as utilization analyses for resource allocation.
Zinner, Christoph; Sperlich, Billy; Krueger, Malte; Focke, Tim; Reed, Jennifer; Mester, Joachim
2015-01-01
The purpose of this study was threefold: 1) to assess the eggbeater kick and throwing performance using a number of water polo specific tests, 2) to explore the relation between the eggbeater kick and throwing performance, and 3) to investigate the relation between the eggbeater kick in the water and strength tests performed in a controlled laboratory setting in elite water polo players. Fifteen male water polo players of the German National Team completed dynamic and isometric strength tests for muscle groups (adductor, abductor, abdominal, pectoralis) frequently used during water polo. After these laboratory strength tests, six water polo specific in-water tests were conducted. The eggbeater kick assessed leg endurance and agility, maximal throwing velocity and jump height. A 400 m test and a sprint test examined aerobic and anaerobic performance. The strongest correlation was found between jump height and arm length (p < 0.001, r = 0.89). The laboratory diagnostics of important muscles showed positive correlations with the results of the in-water tests (p < 0.05, r = 0.52–0.70). Muscular strength of the adductor, abdominal and pectoralis muscles was positively related to in-water endurance agility as assessed by the eggbeater kick (p < 0.05; r = 0.53–0.66). Findings from the current study emphasize the need to assess indices of water polo performance both in and out of the water as well as the relation among these parameters to best assess the complex profile of water polo players. PMID:25964818
Moore, Catherine; Westwater-Wood, Sarah; Kerry, Roger
2016-03-01
Peer coaching has been associated with positive effects on learning. Specifically, these associations have been explored in complex healthcare professions. A social theory of learning has been proposed as a key component of the utility of peer coaching. Further, within the peer coaching model, assessment has been considered as an important driver. Empirical support for these dimensions of the model is lacking. To quantify assessment achievements and explore emergent attitudes and beliefs about learning related to a specific peer coaching model with integrated assessment. A longitudinal study based in a UK Higher Education Institute recorded assessment achievements and surveyed attitudes and beliefs in consecutive Year 1 undergraduate (physiotherapy) students (n = 560) between 2002 and 2012. A 6% improvement in academic achievement was demonstrated following the introduction of a peer coaching learning model. This was increased by a further 5% following the implementation of an integrated assessment. The improvement related to an overall averaged increase of one marking band. Students valued the strategy, and themes relating to the importance of social learning emerged from survey data. Peer coaching is an evidence-based teaching and learning strategy which can facilitate learning in complex subject areas. The strategy is underpinned by social learning theory which is supported by emergent student-reported attitudes.
Cognitive-motor dual-task ability of athletes with and without intellectual impairment.
Van Biesen, Debbie; Jacobs, Lore; McCulloch, Katina; Janssens, Luc; Vanlandewijck, Yves C
2018-03-01
Cognition is important in many sports, for example, making split-second-decisions under pressure, or memorising complex movement sequences. The dual-task (DT) paradigm is an ecologically valid approach for the assessment of cognitive function in conjunction with motor demands. This study aimed to determine the impact of impaired intelligence on DT performance. The motor task required balancing on one leg on a beam, and the cognitive task was a multiple-object-tracking (MOT) task assessing dynamic visual-search capacity. The sample included 206 well-trained athletes with and without intellectual impairment (II), matched for sport, age and training volume (140 males, 66 females, M age = 23.2 ± 4.1 years, M training experience = 12.3 ± 5.7 years). In the single-task condition, II-athletes showed reduced balance control (F = 55.9, P < .001, η 2 = .23) and reduced MOT (F = 86.3, P < .001, η 2 = .32) compared to the control group. A mixed-model ANCOVA revealed significant differences in DT performance for the balance and the MOT task between both groups. The DT costs were significantly larger for the II-athletes (-8.28% versus -1.34% for MOT and -33.13% versus -12.89% for balance). The assessment of MOT in a DT paradigm provided insight in how impaired intelligence constrains the ability of II-athletes to successfully perform at the highest levels in the complex and dynamical sport-environment.
Iranian Expert Opinion about Necessary Criteria for Hospitals Management Performance Assessments
Dadgar, Elham; Janati, Ali; Tabrizi, Jafar Sadegh; Asghari-Jafarabadi, Mohammad; Barati, Omid
2012-01-01
Background: Managers in the hospital should have enough managerial skill to be coordinated with the complex environment. Defining a competency framework assessment for hospital man-agement will help to establish core competencies for hospital managers. The aim of this study was to develop concrete and suitable performance assessment criteria using expert's view. Methods: In this qualitative study in total, 20 professionals participated in the interview and Fo¬cus Group Discussions (FGD). Two of informants were interviewed and 18 professionals par¬ticipants in three focus group discussions. Discussions and interviews were well planned, the FGD environments were suitable and after interviews completion the notes were checked with participant for completeness. Thematic analysis method was used for the analysis of qualitative data. Results: Findings from 3 FGDs and 2 semi structured interviews done with 20 professionals were categorized accordance to themes. The findings were classified in 7 major and 41 sub themes. The major themes include competency related to planning, organization and staff per-formance management, leadership, information management, and clinical governance and per-formance indicators. Conclusion: All participants had hospital administration experience; so their explanation impor¬tant in identifying the criteria and developing hospital managers’ performance assessment tool. In addition to professional perspectives and studies done in other countries, in order to design this kind of tools, it is necessary to adopt the obtained findings to the local hospital conditions. PMID:24688938
Validating the psycholinguistic aspects of LITMUS-CLT: Evidence from Polish and Norwegian.
Hansen, Pernille; Simonsen, Hanne Gram; Łuniewska, Magdalena; Haman, Ewa
2017-01-01
The novel assessment tool Cross-Linguistic Lexical Tasks (LITMUS-CLT) aims for comparable cross-linguistic assessment of multilingual children's lexical skills by basing each language version on two language-specific variables: age of acquisition (AoA) and complexity index (CI), a novel measure related to phonology, morphology, exposure and etymology. This article investigates the validity of this methodology, asking whether the underlying properties are robust predictors of children's performance. The Polish and Norwegian CLTs were used to assess 32 bilingual Polish-Norwegian, 34 monolingual Norwegian and 36 monolingual Polish children. The effects of AoA and CI were contrasted with frequency in child directed speech (CDS) and imageability, two known predictors of lexical development. AoA was a reliable predictor of performance within all parts of CLT, in contrast to CI. Apart from AoA, only exposure and CDS frequency had a significant effect within both monolinguals and bilinguals. These results indicate that CLT assesses lexical skills in a cross-linguistically comparable manner, but suggest a revision of the CI measure.
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2005-01-01
Feasibility assessment of pressure casting of ceramic-aluminum composites for NASA% propulsion applications is summarized. A combination of several demonstration projects to produce three unique components for liquid hydrogen-oxygen rocket engine% flanges, valves and turbo-pump housing are conducted. These components are made from boron carbide, silicon carbide and alumina powders fabricated into complex net shaped parts using dry green powder compaction, slip casting or a novel 3D ink-jet printing process, followed by sintering to produce performs that can be pressure cast by infiltration with molten aluminum. I n addition, joining techniques are also explored to insure that these components can be assembled into a structure without degrading their highly tailored properties. The feasibility assessment was made to determine if these new materials could provide a significant weight savings, thereby reducing vehicle launch costs, while being durable materials to increase safety and performance for propulsion system.
Liang, Xianrui; Zhao, Cui; Su, Weike
2015-11-01
An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method integrating multi-constituent determination and fingerprint analysis has been established for quality assessment and control of Scutellaria indica L. The optimized method possesses the advantages of speediness, efficiency, and allows multi-constituents determination and fingerprint analysis in one chromatographic run within 11 min. 36 compounds were detected, and 23 of them were unequivocally identified or tentatively assigned. The established fingerprint method was applied to the analysis of ten S. indica samples from different geographic locations. The quality assessment was achieved by using principal component analysis. The proposed method is useful and reliable for the characterization of multi-constituents in a complex chemical system and the overall quality assessment of S. indica. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harvey, Philip D; Stone, Laura; Lowenstein, David; Czaja, Sara J; Heaton, Robert K; Twamley, Elizabeth W; Patterson, Thomas L
2013-06-01
Despite multiple lines of evidence suggesting that people with schizophrenia tend to overestimate their ability to perform everyday tasks such as money management, self-report methods are still widely used to assess functioning. In today's technology driven financial world patients are faced with increasingly complex financial management tasks. To meet these challenges adequate financial skills are required. Thus, accurate assessments of these abilities are critical to decisions regarding a patient's need for support such as a financial trustee. As part of the larger VALERO study, 195 patients with schizophrenia were asked to self-report their everyday financial skills (five common financial tasks) with the Independent Living Skills Survey (ILSS). They were also assessed with performance-based measures of neuro-cognition and functional capacity with a focus on financial skills. In addition, a friend, relative, or clinician informant was interviewed with the ILSS and a best estimate rating of functioning was generated. Scores on the performance-based measures of financial skills and neuropsychological tests were uncorrelated with self-reported financial activities. Interviewer and all informant judgments of financial abilities were also minimally correlated with performance on functional skill tests. Discrete financial skills appear to be challenging for clinicians to rate with accuracy without the use of direct assessments. Direct assessment of financial skills seems prudent when making determinations about the need for guardianship or other financial supervision. Copyright © 2013 Elsevier B.V. All rights reserved.
Harvey, Philip D.; Stone, Laura; Lowenstein, David; Czaja, Sara J.; Heaton, Robert K.; Patterson, Thomas L
2013-01-01
Despite multiple lines of evidence suggesting that people with schizophrenia tend to overestimate their ability to perform everyday tasks such as money management, self-report methods are still widely used to assess functioning. In today’s technology driven financial world patients are faced with increasingly complex financial management tasks. To meet these challenges adequate financial skills are required. Thus, accurate assessments of these abilities are critical to decisions regarding a patient’s need for support such as a financial trustee. As part of the larger VALERO study, 195 patients with schizophrenia were asked to self-report their everyday financial skills (five common financial tasks) with the Independent Living Skills Survey (ILSS). They were also assessed with performance-based measures of neuro-cognition and functional capacity with a focus on financial skills. In addition, a friend, relative, or clinician informant was interviewed with the ILSS and a best estimate rating of functioning was generated. Scores on the performance-based measures of financial skills and neuropsychological tests were uncorrelated with self-reported financial activities. Interviewer and all informant judgments of financial abilities were also minimally correlated with performance on functional skills tests. Discrete financial skills appear to be challenging for clinicians to rate with accuracy without the use of direct assessments. Direct assessment of financial skills seems prudent when making determinations about the need for guardianship or other financial supervision. PMID:23537475
Measuring cognitive load: performance, mental effort and simulation task complexity.
Haji, Faizal A; Rojas, David; Childs, Ruth; de Ribaupierre, Sandrine; Dubrowski, Adam
2015-08-01
Interest in applying cognitive load theory in health care simulation is growing. This line of inquiry requires measures that are sensitive to changes in cognitive load arising from different instructional designs. Recently, mental effort ratings and secondary task performance have shown promise as measures of cognitive load in health care simulation. We investigate the sensitivity of these measures to predicted differences in intrinsic load arising from variations in task complexity and learner expertise during simulation-based surgical skills training. We randomly assigned 28 novice medical students to simulation training on a simple or complex surgical knot-tying task. Participants completed 13 practice trials, interspersed with computer-based video instruction. On trials 1, 5, 9 and 13, knot-tying performance was assessed using time and movement efficiency measures, and cognitive load was assessed using subjective rating of mental effort (SRME) and simple reaction time (SRT) on a vibrotactile stimulus-monitoring secondary task. Significant improvements in knot-tying performance (F(1.04,24.95) = 41.1, p < 0.001 for movements; F(1.04,25.90) = 49.9, p < 0.001 for time) and reduced cognitive load (F(2.3,58.5) = 57.7, p < 0.001 for SRME; F(1.8,47.3) = 10.5, p < 0.001 for SRT) were observed in both groups during training. The simple-task group demonstrated superior knot tying (F(1,24) = 5.2, p = 0.031 for movements; F(1,24) = 6.5, p = 0.017 for time) and a faster decline in SRME over the first five trials (F(1,26) = 6.45, p = 0.017) compared with their peers. Although SRT followed a similar pattern, group differences were not statistically significant. Both secondary task performance and mental effort ratings are sensitive to changes in intrinsic load among novices engaged in simulation-based learning. These measures can be used to track cognitive load during skills training. Mental effort ratings are also sensitive to small differences in intrinsic load arising from variations in the physical complexity of a simulation task. The complementary nature of these subjective and objective measures suggests their combined use is advantageous in simulation instructional design research. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Coyne, Kevin Anthony
The safe operation of complex systems such as nuclear power plants requires close coordination between the human operators and plant systems. In order to maintain an adequate level of safety following an accident or other off-normal event, the operators often are called upon to perform complex tasks during dynamic situations with incomplete information. The safety of such complex systems can be greatly improved if the conditions that could lead operators to make poor decisions and commit erroneous actions during these situations can be predicted and mitigated. The primary goal of this research project was the development and validation of a cognitive model capable of simulating nuclear plant operator decision-making during accident conditions. Dynamic probabilistic risk assessment methods can improve the prediction of human error events by providing rich contextual information and an explicit consideration of feedback arising from man-machine interactions. The Accident Dynamics Simulator paired with the Information, Decision, and Action in a Crew context cognitive model (ADS-IDAC) shows promise for predicting situational contexts that might lead to human error events, particularly knowledge driven errors of commission. ADS-IDAC generates a discrete dynamic event tree (DDET) by applying simple branching rules that reflect variations in crew responses to plant events and system status changes. Branches can be generated to simulate slow or fast procedure execution speed, skipping of procedure steps, reliance on memorized information, activation of mental beliefs, variations in control inputs, and equipment failures. Complex operator mental models of plant behavior that guide crew actions can be represented within the ADS-IDAC mental belief framework and used to identify situational contexts that may lead to human error events. This research increased the capabilities of ADS-IDAC in several key areas. The ADS-IDAC computer code was improved to support additional branching events and provide a better representation of the IDAC cognitive model. An operator decision-making engine capable of responding to dynamic changes in situational context was implemented. The IDAC human performance model was fully integrated with a detailed nuclear plant model in order to realistically simulate plant accident scenarios. Finally, the improved ADS-IDAC model was calibrated, validated, and updated using actual nuclear plant crew performance data. This research led to the following general conclusions: (1) A relatively small number of branching rules are capable of efficiently capturing a wide spectrum of crew-to-crew variabilities. (2) Compared to traditional static risk assessment methods, ADS-IDAC can provide a more realistic and integrated assessment of human error events by directly determining the effect of operator behaviors on plant thermal hydraulic parameters. (3) The ADS-IDAC approach provides an efficient framework for capturing actual operator performance data such as timing of operator actions, mental models, and decision-making activities.
Goldin, Ilya M; Pinkus, Rosa Lynn; Ashley, Kevin
2015-06-01
Assessment in ethics education faces a challenge. From the perspectives of teachers, students, and third-party evaluators like the Accreditation Board for Engineering and Technology and the National Institutes of Health, assessment of student performance is essential. Because of the complexity of ethical case analysis, however, it is difficult to formulate assessment criteria, and to recognize when students fulfill them. Improvement in students' moral reasoning skills can serve as the focus of assessment. In previous work, Rosa Lynn Pinkus and Claire Gloeckner developed a novel instrument for assessing moral reasoning skills in bioengineering ethics. In this paper, we compare that approach to existing assessment techniques, and evaluate its validity and reliability. We find that it is sensitive to knowledge gain and that independent coders agree on how to apply it.
Cholinesterase Inhibitors Improve Both Memory and Complex Learning in Aged Beagle Dogs
Araujo, Joseph A.; Greig, Nigel H.; Ingram, Donald K.; Sandin, Johan; de Rivera, Christina; Milgram, Norton W.
2016-01-01
Similar to patients with Alzheimer’s disease (AD), dogs exhibit age-dependent cognitive decline, amyloid-β (Aβ) pathology, and evidence of cholinergic hypofunction. The present study sought to further investigate the role of cholinergic hypofunction in the canine model by examining the effect of the cholinesterase inhibitors phenserine and donepezil on performance of two tasks, a delayed non-matching-to-position task (DNMP) designed to assess working memory, and an oddity discrimination learning task designed to assess complex learning, in aged dogs. Phenserine (0.5 mg/kg; PO) significantly improved performance on the DNMP at the longest delay compared to wash-out and partially attenuated scopolamine-induced deficits (15 μg/kg; SC). Phenserine also improved learning on a difficult version of an oddity discrimination task compared to placebo, but had no effect on an easier version. We also examined the effects of three doses of donepezil (0.75, 1.5, and 6 mg/kg; PO) on performance of the DNMP. Similar to the results with phenserine, 1.5 mg/kg of donepezil improved performance at the longest delay compared to baseline and wash-out, indicative of memory enhancement. These results further extend the findings of cholinergic hypofunction in aged dogs and provide pharmacological validation of the canine model with a cholinesterase inhibitor approved for use in AD. Collectively, these studies support utilizing the aged dog in future screening of therapeutics for AD, as well as for investigating the links among cholinergic function, Aβ pathology, and cognitive decline. PMID:21593569
Fischer, Julia; Schwiecker, Kati; Bittner, Verena; Heinze, Hans-Jochen; Voges, Jürgen; Galazky, Imke; Zaehle, Tino
2015-07-01
Low-frequency electrical stimulation of the pedunculopontine nucleus (PPN) is a therapeutic approach aiming to improve motor symptoms such as freezing of gate and postural instability in parkinsonian disorders. Because the PPN is a component of the reticular activating system, we tested whether PPN stimulation directly affects attention and consciousness. Eight patients with parkinsonian disorders and implanted with electrodes in the bilateral PPN underwent computerized assessment of attention. Performance in 3 standard reaction time (RT) tasks was assessed at 5 different stimulation frequencies in 5 consecutive sessions. Stimulation of the PPN at low (8 Hz) and therapeutic (20 Hz) frequencies led to a significant improvement of performance in a simple RT task. Patients' RTs were significantly faster at stimulation frequencies of 8 Hz and 20 Hz relative to no stimulation. Stimulation did not affect patients' performance in more complex attentional tasks. Low-frequent stimulation of PPN improves basal attentional processing in patients with parkinsonian disorders, leading to an improved tonic alertness. As successful performance in this task requires the intrinsic ability to build up and keep a certain level of attention, this might be interpreted as attentional augmentation related to stimulation features. Stimulation had no effect on more complex attentional processing. Our results suggest an influence of the PPN on certain aspects of attention, supporting attentional augmentation as one possible mechanism to improve motor action and gait in patients with parkinsonian disorders. (c) 2015 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Volume VIII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the risk assessment documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.
Board self-evaluation: the Bayside Health experience.
Duncan-Marr, Alison; Duckett, Stephen J
2005-08-01
Board evaluation is a critical component of good governance in any organisation. This paper describes the board self-evaluation process used by Bayside Health, a public health service in Melbourne. The question of how governing boards can assess their performance has received increasing attention over the past decade. In particular, the increasing demand for accountability to shareholders and regulators experienced by corporate sector Boards has resulted in greater scrutiny of board performance, with the market and the balance sheet providing some basis for assessment. Performance evaluation of governing boards in the public sector has been more challenging. Performance evaluation is complex in a sector that is not simply driven by the bottom line, where the stakeholders involve both government and the broader community, and where access to, and the quality and safety of the services provided, are often the major public criteria by which performance may be judged. While some practices from the corporate sector can be applied successfully in the public sector, this is not always the case, and public sector boards such as the Board of Directors of Bayside Health have been developing ways to evaluate and improve their performance.
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Sadlej, Joanna
2018-01-01
The letter reports a comparative assessment of the usefulness of the two different Grimme's corrections for evaluating dispersion interaction (DFT-D3 and DFT-D3BJ) for the representative molecules of the family of noble-gas hydrides HXeY and their complexes with the HZ molecules, where Y and Z are F/Cl/OH/SH. with special regard to the dispersion term calculated by means of the symmetry-adapted perturbation theory (at the SAPT0 level). The results indicate that despite differences in the total interactions energy (DFT + corrections) versus SAPT0 results, the sequence of contributions of the individual dispersion terms is still maintained. Both dispersion corrections perform similarly and they improve the results suggesting that it is worthwhile to include them in calculations.
An Approach to Experimental Design for the Computer Analysis of Complex Phenomenon
NASA Technical Reports Server (NTRS)
Rutherford, Brian
2000-01-01
The ability to make credible system assessments, predictions and design decisions related to engineered systems and other complex phenomenon is key to a successful program for many large-scale investigations in government and industry. Recently, many of these large-scale analyses have turned to computational simulation to provide much of the required information. Addressing specific goals in the computer analysis of these complex phenomenon is often accomplished through the use of performance measures that are based on system response models. The response models are constructed using computer-generated responses together with physical test results where possible. They are often based on probabilistically defined inputs and generally require estimation of a set of response modeling parameters. As a consequence, the performance measures are themselves distributed quantities reflecting these variabilities and uncertainties. Uncertainty in the values of the performance measures leads to uncertainties in predicted performance and can cloud the decisions required of the analysis. A specific goal of this research has been to develop methodology that will reduce this uncertainty in an analysis environment where limited resources and system complexity together restrict the number of simulations that can be performed. An approach has been developed that is based on evaluation of the potential information provided for each "intelligently selected" candidate set of computer runs. Each candidate is evaluated by partitioning the performance measure uncertainty into two components - one component that could be explained through the additional computational simulation runs and a second that would remain uncertain. The portion explained is estimated using a probabilistic evaluation of likely results for the additional computational analyses based on what is currently known about the system. The set of runs indicating the largest potential reduction in uncertainty is then selected and the computational simulations are performed. Examples are provided to demonstrate this approach on small scale problems. These examples give encouraging results. Directions for further research are indicated.
NASA Astrophysics Data System (ADS)
Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.
2017-12-01
Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.
How the brain attunes to sentence processing: Relating behavior, structure, and function
Fengler, Anja; Meyer, Lars; Friederici, Angela D.
2016-01-01
Unlike other aspects of language comprehension, the ability to process complex sentences develops rather late in life. Brain maturation as well as verbal working memory (vWM) expansion have been discussed as possible reasons. To determine the factors contributing to this functional development, we assessed three aspects in different age-groups (5–6 years, 7–8 years, and adults): first, functional brain activity during the processing of increasingly complex sentences; second, brain structure in language-related ROIs; and third, the behavioral comprehension performance on complex sentences and the performance on an independent vWM test. At the whole-brain level, brain functional data revealed a qualitatively similar neural network in children and adults including the left pars opercularis (PO), the left inferior parietal lobe together with the posterior superior temporal gyrus (IPL/pSTG), the supplementary motor area, and the cerebellum. While functional activation of the language-related ROIs PO and IPL/pSTG predicted sentence comprehension performance for all age-groups, only adults showed a functional selectivity in these brain regions with increased activation for more complex sentences. The attunement of both the PO and IPL/pSTG toward a functional selectivity for complex sentences is predicted by region-specific gray matter reduction while that of the IPL/pSTG is additionally predicted by vWM span. Thus, both structural brain maturation and vWM expansion provide the basis for the emergence of functional selectivity in language-related brain regions leading to more efficient sentence processing during development. PMID:26777477
Serious games and blended learning; effects on performance and motivation in medical education.
Dankbaar, Mary
2017-02-01
More efficient, flexible training models are needed in medical education. Information technology offers the tools to design and develop effective and more efficient training. The aims of this thesis were: 1) Compare the effectiveness of blended versus classroom training for the acquisition of knowledge; 2) Investigate the effectiveness and critical design features of serious games for performance improvement and motivation. Five empirical studies were conducted to answer the research questions and a descriptive study on an evaluation framework to assess serious games was performed. The results of the research studies indicated that: 1) For knowledge acquisition, blended learning is equally effective and attractive for learners as classroom learning; 2) A serious game with realistic, interactive cases improved complex cognitive skills for residents, with limited self-study time. Although the same game was motivating for inexperienced medical students and stimulated them to study longer, it did not improve their cognitive skills, compared with what they learned from an instructional e‑module. This indicates an 'expertise reversal effect', where a rich learning environment is effective for experts, but may be contra-productive for novices (interaction of prior knowledge and complexity of format). A blended design is equally effective and attractive as classroom training. Blended learning facilitates adaptation to the learners' knowledge level, flexibility in time and scalability of learning. Games may support skills learning, provided task complexity matches the learner's competency level. More design-based research is needed on the effects of task complexity and other design features on performance improvement, for both novices and experts.
Greiff, Samuel; Wüstenberg, Sascha; Goetz, Thomas; Vainikainen, Mari-Pauliina; Hautamäki, Jarkko; Bornstein, Marc H
2015-01-01
Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving skills. However, few studies have employed higher-order thinking skills such as complex problem solving (CPS) as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex). We assessed working memory (WM) and fluid reasoning (FR) at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students' CPS performance 3 years later as a developmental outcome (N = 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male). Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that FR was a strong predictor of both CPS dimensions, whereas WM exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves FR and, to a lesser extent, WM in childhood and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence.
Greiff, Samuel; Wüstenberg, Sascha; Goetz, Thomas; Vainikainen, Mari-Pauliina; Hautamäki, Jarkko; Bornstein, Marc H.
2015-01-01
Scientists have studied the development of the human mind for decades and have accumulated an impressive number of empirical studies that have provided ample support for the notion that early cognitive performance during infancy and childhood is an important predictor of later cognitive performance during adulthood. As children move from childhood into adolescence, their mental development increasingly involves higher-order cognitive skills that are crucial for successful planning, decision-making, and problem solving skills. However, few studies have employed higher-order thinking skills such as complex problem solving (CPS) as developmental outcomes in adolescents. To fill this gap, we tested a longitudinal developmental model in a sample of 2,021 Finnish sixth grade students (M = 12.41 years, SD = 0.52; 1,041 female, 978 male, 2 missing sex). We assessed working memory (WM) and fluid reasoning (FR) at age 12 as predictors of two CPS dimensions: knowledge acquisition and knowledge application. We further assessed students’ CPS performance 3 years later as a developmental outcome (N = 1696; M = 15.22 years, SD = 0.43; 867 female, 829 male). Missing data partly occurred due to dropout and technical problems during the first days of testing and varied across indicators and time with a mean of 27.2%. Results revealed that FR was a strong predictor of both CPS dimensions, whereas WM exhibited only a small influence on one of the two CPS dimensions. These results provide strong support for the view that CPS involves FR and, to a lesser extent, WM in childhood and from there evolves into an increasingly complex structure of higher-order cognitive skills in adolescence. PMID:26283992
Structured assessment of microsurgery skills in the clinical setting.
Chan, WoanYi; Niranjan, Niri; Ramakrishnan, Venkat
2010-08-01
Microsurgery is an essential component in plastic surgery training. Competence has become an important issue in current surgical practice and training. The complexity of microsurgery requires detailed assessment and feedback on skills components. This article proposes a method of Structured Assessment of Microsurgery Skills (SAMS) in a clinical setting. Three types of assessment (i.e., modified Global Rating Score, errors list and summative rating) were incorporated to develop the SAMS method. Clinical anastomoses were recorded on videos using a digital microscope system and were rated by three consultants independently and in a blinded fashion. Fifteen clinical cases of microvascular anastomoses performed by trainees and a consultant microsurgeon were assessed using SAMS. The consultant had consistently the highest scores. Construct validity was also demonstrated by improvement of SAMS scores of microsurgery trainees. The overall inter-rater reliability was strong (alpha=0.78). The SAMS method provides both formative and summative assessment of microsurgery skills. It is demonstrated to be a valid, reliable and feasible assessment tool of operating room performance to provide systematic and comprehensive feedback as part of the learning cycle. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Have clinicians adopted the use of brain MRI for patients with TIA and minor stroke?
Chaturvedi, Seemant; Ofner, Susan; Baye, Fitsum; Myers, Laura J; Phipps, Mike; Sico, Jason J; Damush, Teresa; Miech, Edward; Reeves, Mat; Johanning, Jason; Williams, Linda S; Arling, Greg; Cheng, Eric; Yu, Zhangsheng; Bravata, Dawn
2017-01-17
Use of MRI with diffusion-weighted imaging (DWI) can identify infarcts in 30%-50% of patients with TIA. Previous guidelines have indicated that MRI-DWI is the preferred imaging modality for patients with TIA. We assessed the frequency of MRI utilization and predictors of MRI performance. A review of TIA and minor stroke patients evaluated at Veterans Affairs hospitals was conducted with regard to medical history, use of diagnostic imaging within 2 days of presentation, and in-hospital care variables. Chart abstraction was performed in a subset of hospitals to assess clinical variables not available in the administrative data. A total of 7,889 patients with TIA/minor stroke were included. Overall, 6,694 patients (84.9%) had CT or MRI, with 3,396/6,694 (50.7%) having MRI. Variables that were associated with increased odds of CT performance were age >80 years, prior stroke, history of atrial fibrillation, heart failure, coronary artery disease, anxiety, and low hospital complexity, while blood pressure >140/90 mm Hg and high hospital complexity were associated with increased likelihood of MRI. Diplopia (87% had MRI, p = 0.03), neurologic consultation on the day of presentation (73% had MRI, p < 0.0001), and symptom duration of >6 hours (74% had MRI, p = 0.0009) were associated with MRI performance. Within a national health system, about 40% of patients with TIA/minor stroke had MRI performed within 2 days. Performance of MRI appeared to be influenced by several patient and facility-level variables, suggesting that there has been partial acceptance of the previous guideline that endorsed MRI for patients with TIA. © 2016 American Academy of Neurology.
Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.
Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A
2015-12-01
The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.
Moreira, Pedro Silva; Santos, Nadine Correia; Sousa, Nuno
2015-01-01
Executive functioning (EF), which is considered to govern complex cognition, and verbal memory (VM) are constructs assumed to be related. However, it is not known the magnitude of the association between EF and VM, and how sociodemographic and psychological factors may affect this relationship, including in normal aging. In this study, we assessed different EF and VM parameters, via a battery of neurocognitive/psychological tests, and performed a Canonical Correlation Analysis (CCA) to explore the connection between these constructs, in a sample of middle-aged and older healthy individuals without cognitive impairment (N = 563, 50+ years of age). The analysis revealed a positive and moderate association between EF and VM independently of gender, age, education, global cognitive performance level, and mood. These results confirm that EF presents a significant association with VM performance. PMID:28138465
First-order error budgeting for LUVOIR mission
NASA Astrophysics Data System (ADS)
Lightsey, Paul A.; Knight, J. Scott; Feinberg, Lee D.; Bolcar, Matthew R.; Shaklan, Stuart B.
2017-09-01
Future large astronomical telescopes in space will have architectures that will have complex and demanding requirements to meet the science goals. The Large UV/Optical/IR Surveyor (LUVOIR) mission concept being assessed by the NASA/Goddard Space Flight Center is expected to be 9 to 15 meters in diameter, have a segmented primary mirror and be diffraction limited at a wavelength of 500 nanometers. The optical stability is expected to be in the picometer range for minutes to hours. Architecture studies to support the NASA Science and Technology Definition teams (STDTs) are underway to evaluate systems performance improvements to meet the science goals. To help define the technology needs and assess performance, a first order error budget has been developed. Like the JWST error budget, the error budget includes the active, adaptive and passive elements in spatial and temporal domains. JWST performance is scaled using first order approximations where appropriate and includes technical advances in telescope control.
Duane, B G; Humphris, G; Richards, D; Okeefe, E J; Gordon, K; Freeman, R
2014-12-01
To assess the use of the WCMT in two Scottish health boards and to consider the impact of simplifying the tool to improve efficient use. A retrospective analysis of routine WCMT data (47,276 cases). Public Dental Service (PDS) within NHS Lothian and Highland. The WCMT consists of six criteria. Each criterion is measured independently on a four-point scale to assess patient complexity and the dental care for the disabled/impaired patient. Psychometric analyses on the data-set were conducted. Conventional internal consistency coefficients were calculated. Latent variable modelling was performed to assess the 'fit' of the raw data to a pre-specified measurement model. A Confirmatory Factor Analysis (CFA) was used to test three potential changes to the existing WCMT that included, the removal of the oral risk factor question, the removal of original weightings for scoring the Tool, and collapsing the 4-point rating scale to three categories. The removal of the oral risk factor question had little impact on the reliability of the proposed simplified CMT to discriminate between levels of patient complexity. The removal of weighting and collapsing each item's rating scale to three categories had limited impact on reliability of the revised tool. The CFA analysis provided strong evidence that a new, proposed simplified Case Mix Tool (sCMT) would operate closely to the pre-specified measurement model (the WMCT). A modified sCMT can demonstrate, without reducing reliability, a useful measure of the complexity of patient care. The proposed sCMT may be implemented within primary care dentistry to record patient complexity as part of an oral health assessment.
Gorselink, M; Drost, M R; de Louw, J; Willems, P J; Hesselink, M K; Dekkers, E C; Rosielle, N; van der Vusse, G J
2001-05-01
The availability of animal models with disrupted genes has increased the need for small-scale measurement devices. Recently, we developed an experimental device to assess in situ mechanical properties of isometric contractions of intact muscle complexes of the mouse. Although this apparatus provides valuable information on muscle mechanical performance, it is not appropriate for determining contractile properties during shortening and lengthening contractions. In the present study we therefore developed and evaluated an experimental apparatus for assessment of shortening and lengthening contractile properties of intact plantar and dorsal flexors of the mouse. The current through a custom-built, low-inertia servomotor was measured to assess contractile muscular torque ranging from -50 to mN.m. Evaluation of the fixation procedure of the animal to the apparatus via 3-D monitoring of the muscle-tendon complex length showed that the additional shortening in length due to a contraction with maximal torque output has only minor effects on the measured torque. Furthermore, misalignment of the axis of rotation of the apparatus relative to the axis of rotation in the ankle joint, i.e. eccentricity, during a routine experiment was estimated to be less than 1.0 mm and hence did not influence the measured torque output under our experimental conditions. Peak power per unit muscle mass (mean +/- SD) of intact dorsal and plantar flexors was 0.27 +/- 0.02 and 0.19 +/- 0.03 W.g-1, respectively. The angular velocity at maximal peak power generated by the dorsal flexor complex and the plantar flexor complex was 1100 +/- 190 and 700 +/- 90 degrees.s-1, respectively.
Abou, Seraphin C
2012-03-01
In this paper, a new interpretation of intuitionistic fuzzy sets in the advanced framework of the Dempster-Shafer theory of evidence is extended to monitor safety-critical systems' performance. Not only is the proposed approach more effective, but it also takes into account the fuzzy rules that deal with imperfect knowledge/information and, therefore, is different from the classical Takagi-Sugeno fuzzy system, which assumes that the rule (the knowledge) is perfect. We provide an analytical solution to the practical and important problem of the conceptual probabilistic approach for formal ship safety assessment using the fuzzy set theory that involves uncertainties associated with the reliability input data. Thus, the overall safety of the ship engine is investigated as an object of risk analysis using the fuzzy mapping structure, which considers uncertainty and partial truth in the input-output mapping. The proposed method integrates direct evidence of the frame of discernment and is demonstrated through references to examples where fuzzy set models are informative. These simple applications illustrate how to assess the conflict of sensor information fusion for a sufficient cooling power system of vessels under extreme operation conditions. It was found that propulsion engine safety systems are not only a function of many environmental and operation profiles but are also dynamic and complex. Copyright © 2011 Elsevier Ltd. All rights reserved.
Essers, Geurt; Dielissen, Patrick; van Weel, Chris; van der Vleuten, Cees; van Dulmen, Sandra; Kramer, Anneke
2015-03-01
Communication assessment in real-life consultations is a complex task. Generic assessment instruments help but may also have disadvantages. The generic nature of the skills being assessed does not provide indications for context-specific behaviour required in practice situations; context influences are mostly taken into account implicitly. Our research questions are: 1. What factors do trained raters observe when rating workplace communication? 2. How do they take context factors into account when rating communication performance with a generic rating instrument? Nineteen general practitioners (GPs), trained in communication assessment with a generic rating instrument (the MAAS-Global), participated in a think-aloud protocol reflecting concurrent thought processes while assessing videotaped real-life consultations. They were subsequently interviewed to answer questions explicitly asking them to comment on the influence of predefined contextual factors on the assessment process. Results from both data sources were analysed. We used a grounded theory approach to untangle the influence of context factors on GP communication and on communication assessment. Both from the think-aloud procedure and from the interviews we identified various context factors influencing communication, which were categorised into doctor-related (17), patient-related (13), consultation-related (18), and education-related factors (18). Participants had different views and practices on how to incorporate context factors into the GP(-trainee) communication assessment. Raters acknowledge that context factors may affect communication in GP consultations, but struggle with how to take contextual influences into account when assessing communication performance in an educational context. To assess practice situations, raters need extra guidance on how to handle specific contextual factors.
The role of respiratory measures to assess mental load in pilot selection.
Grassmann, Mariel; Vlemincx, Elke; von Leupoldt, Andreas; Van den Bergh, Omer
2016-06-01
While cardiovascular measures have a long tradition of being used to determine operator load, responsiveness of the respiratory system to mental load has rarely been investigated. In this study, we assessed basic and variability measures of respiration rate (RR), partial pressure of end-tidal carbon dioxide (petCO2) as well as performance measures in 63 male pilot candidates during completion of a complex cognitive task and subsequent recovery. Mental load was associated with an increase in RR and a decrease in respiratory variability. A significant decrease was also found for petCO2. RR and respiratory variability showed partial and complete effects of recovery, respectively, whereas petCO2 did not return to baseline level. Overall, a good performance was related to a stronger reactivity in RR. Our findings suggest that respiratory parameters would be a useful supplement to common measures for the assessment of mental load in pilot selection. Practitioner Summary: Respiratory measures are a promising yet poorly investigated approach to monitor operator load. For pilot selection, we assessed respiration in response to multitasking in 63 candidates. Task-related changes as well as covariation with performance strongly support the consideration of respiratory parameters when evaluating reactivity to mental load.
A further assessment of decision-making in anorexia nervosa.
Adoue, C; Jaussent, I; Olié, E; Beziat, S; Van den Eynde, F; Courtet, P; Guillaume, S
2015-01-01
Anorexia nervosa (AN) may be associated with impaired decision-making. Cognitive processes underlying this impairment remain unclear, mainly because previous assessments of this complex cognitive function were completed with a single test. Furthermore, clinical features such as mood status may impact this association. We aim to further explore the hypothesis of altered decision-making in AN. Sixty-three adult women with AN and 49 female controls completed a clinical assessment and were assessed by three tasks related to decision-making [Iowa Gambling Task (IGT), Balloon Analogue Risk Task (BART), Probabilistic Reversal Learning Task (PRLT)]. People with AN had poorer performance on the IGT and made less risky choices on the BART, whereas performances were not different on PRLT. Notably, AN patients with a current major depressive disorder showed similar performance to those with no current major depressive disorder. These results tend to confirm an impaired decision making-process in people with AN and suggest that various cognitive processes such as inhibition to risk-taking or intolerance of uncertainty may underlie this condition Furthermore, these impairments seem unrelated to the potential co-occurent major depressive disorders. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Competency assessment of microbiology medical laboratory technologists in Ontario, Canada.
Desjardins, Marc; Fleming, Christine Ann
2014-08-01
Accreditation in Ontario, Canada, requires that licensed clinical laboratories participate in external quality assessment (also known as proficiency testing) and perform competency evaluation of their staff. To assess the extent of ongoing competency assessment practices, the Quality Management Program--Laboratory Services (QMP-LS) Microbiology Committee surveyed all 112 licensed Ontario microbiology laboratories. The questionnaire consisted of a total of 21 questions that included yes/no, multiple-choice, and short-answer formats. Participants were asked to provide information about existing programs, the frequency of testing, what areas are evaluated, and how results are communicated to the staff. Of the 111 responding laboratories, 6 indicated they did not have a formal evaluation program since they perform only limited bacteriology testing. Of the remaining 105 respondents, 87% perform evaluations at least annually or every 2 years, and 61% include any test or task performed, whereas 16% and 10% focus only on problem areas and high-volume complex tasks, respectively. The most common methods of evaluation were review of external quality assessment (EQA) challenges, direct observation, and worksheet review. With the exception of one participant, all communicate results to staff, and most take remedial action to correct the deficiencies. Although most accredited laboratories have a program to assess the ongoing competency of their staff, the methods used are not standardized or consistently applied, indicating that there is room for improvement. The survey successfully highlighted potential areas for improvement and allowed the QMP-LS Microbiology Committee to provide guidance to Ontario laboratories for establishing or improving existing microbiology-specific competency assessment programs. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Competency Assessment of Microbiology Medical Laboratory Technologists in Ontario, Canada
Fleming, Christine Ann
2014-01-01
Accreditation in Ontario, Canada, requires that licensed clinical laboratories participate in external quality assessment (also known as proficiency testing) and perform competency evaluation of their staff. To assess the extent of ongoing competency assessment practices, the Quality Management Program—Laboratory Services (QMP-LS) Microbiology Committee surveyed all 112 licensed Ontario microbiology laboratories. The questionnaire consisted of a total of 21 questions that included yes/no, multiple-choice, and short-answer formats. Participants were asked to provide information about existing programs, the frequency of testing, what areas are evaluated, and how results are communicated to the staff. Of the 111 responding laboratories, 6 indicated they did not have a formal evaluation program since they perform only limited bacteriology testing. Of the remaining 105 respondents, 87% perform evaluations at least annually or every 2 years, and 61% include any test or task performed, whereas 16% and 10% focus only on problem areas and high-volume complex tasks, respectively. The most common methods of evaluation were review of external quality assessment (EQA) challenges, direct observation, and worksheet review. With the exception of one participant, all communicate results to staff, and most take remedial action to correct the deficiencies. Although most accredited laboratories have a program to assess the ongoing competency of their staff, the methods used are not standardized or consistently applied, indicating that there is room for improvement. The survey successfully highlighted potential areas for improvement and allowed the QMP-LS Microbiology Committee to provide guidance to Ontario laboratories for establishing or improving existing microbiology-specific competency assessment programs. PMID:24899030
Imaging complex objects using learning tomography
NASA Astrophysics Data System (ADS)
Lim, JooWon; Goy, Alexandre; Shoreh, Morteza Hasani; Unser, Michael; Psaltis, Demetri
2018-02-01
Optical diffraction tomography (ODT) can be described using the scattering process through an inhomogeneous media. An inherent nonlinearity exists relating the scattering medium and the scattered field due to multiple scattering. Multiple scattering is often assumed to be negligible in weakly scattering media. This assumption becomes invalid as the sample gets more complex resulting in distorted image reconstructions. This issue becomes very critical when we image a complex sample. Multiple scattering can be simulated using the beam propagation method (BPM) as the forward model of ODT combined with an iterative reconstruction scheme. The iterative error reduction scheme and the multi-layer structure of BPM are similar to neural networks. Therefore we refer to our imaging method as learning tomography (LT). To fairly assess the performance of LT in imaging complex samples, we compared LT with the conventional iterative linear scheme using Mie theory which provides the ground truth. We also demonstrate the capacity of LT to image complex samples using experimental data of a biological cell.
Chasing the silver bullet: measuring driver fatigue using simple and complex tasks.
Baulk, S D; Biggs, S N; Reid, K J; van den Heuvel, C J; Dawson, D
2008-01-01
Driver fatigue remains a significant cause of motor-vehicle accidents worldwide. New technologies are increasingly utilised to improve road safety, but there are no effective on-road measures for fatigue. While simulated driving tasks are sensitive, and simple performance tasks have been used in industrial fatigue management systems (FMS) to quantify risk, little is known about the relationship between such measures. Establishing a simple, on-road measure of fatigue, as a fitness-to-drive tool, is an important issue for road safety and accident prevention, particularly as many fatigue related accidents are preventable. This study aimed to measure fatigue-related performance decrements using a simple task (reaction time - RT) and a complex task (driving simulation), and to determine the potential for a link between such measures, thus improving FMS success. Fifteen volunteer participants (7 m, 8 f) aged 22-56 years (mean 33.6 years), underwent 26 h of supervised wakefulness before an 8h recovery sleep opportunity. Participants were tested using a 30-min interactive driving simulation test, bracketed by a 10-min psychomotor vigilance task (PVT) at 4, 8, 18 and 24h of wakefulness, and following recovery sleep. Extended wakefulness caused significant decrements in PVT and driving performance. Although these measures are clearly linked, our analyses suggest that driving simulation cannot be replaced by a simple PVT. Further research is needed to closely examine links between performance measures, and to facilitate accurate management of fitness to drive, which requires more complex assessments of performance than RT alone.
Amanzi: An Open-Source Multi-process Simulator for Environmental Applications
NASA Astrophysics Data System (ADS)
Moulton, J. D.; Molins, S.; Johnson, J. N.; Coon, E.; Lipnikov, K.; Day, M.; Barker, E.
2014-12-01
The Advanced Simulation Capabililty for Environmental Management (ASCEM) program is developing an approach and open-source tool suite for standardized risk and performance assessments at legacy nuclear waste sites. These assessments begin with simplified models, and add geometric and geologic complexity as understanding is gained. The Platform toolsets (Akuna) generates these conceptual models and Amanzi provides the computational engine to perform the simulations, returning the results for analysis and visualization. In this presentation we highlight key elements of the design, algorithms and implementations used in Amanzi. In particular, the hierarchical and modular design is aligned with the coupled processes being sumulated, and naturally supports a wide range of model complexity. This design leverages a dynamic data manager and the synergy of two graphs (one from the high-level perspective of the models the other from the dependencies of the variables in the model) to enable this flexible model configuration at run time. Moreover, to model sites with complex hydrostratigraphy, as well as engineered systems, we are developing a dual unstructured/structured capability. Recently, these capabilities have been collected in a framework named Arcos, and efforts have begun to improve interoperability between the unstructured and structured AMR approaches in Amanzi. To leverage a range of biogeochemistry capability from the community (e.g., CrunchFlow, PFLOTRAN, etc.), a biogeochemistry interface library was developed called Alquimia. To ensure that Amanzi is truly an open-source community code we require a completely open-source tool chain for our development. We will comment on elements of this tool chain, including the testing and documentation development tools such as docutils, and Sphinx. Finally, we will show simulation results from our phased demonstrations, including the geochemically complex Savannah River F-Area seepage basins.
Mehri, Azar; Ghorbani, Askar; Darzi, Ali; Jalaie, Shohreh; Ashayeri, Hassan
2016-01-05
Cerebrovascular disease leading to stroke is the most common cause of aphasia. Speakers with agrammatic non-fluent aphasia have difficulties in production of movement-derived sentences such as passive sentences, topicalized constituents, and Wh-questions. To assess the production of complex sentences, some passive, topicalized and focused sentences were designed for patients with non-fluent Persian aphasic. Afterwards, patients' performance in sentence production was tested and compared with healthy non-damaged subjects. In this cross sectional study, a task was designed to assess the different types of sentences (active, passive, topicalized and focused) adapted to Persian structures. Seven Persian patients with post-stroke non-fluent agrammatic aphasia (5 men and 2 women) and seven healthy non-damaged subjects participated in this study. The computed tomography (CT) scan or magnetic resonance imaging (MRI) showed that all the patients had a single left hemisphere lesion involved middle cerebral artery (MCA), Broca`s area and in its white matter. In addition, based on Bedside version of Persian Western Aphasia Battery (P-WAB-1), all of them were diagnosed with moderate Broca aphasia. Then, the production task of Persian complex sentences was administered. There was a significant difference between four types of sentences in patients with aphasia [Degree of freedom (df) = 3, P < 0.001]. All the patients showed worse performance than the healthy participants in all the four types of sentence production (P < 0.050). In general, it is concluded that topicalized and focused sentences as non-canonical complex sentences in Persian are very difficult to produce for patients with agrammatic non-fluent aphasia. It seems that sentences with A-movement are simpler for the patients than sentences involving A`-movement; since they include shorter movements in compare to topicalized and focused sentences.
Prenestini, Anna; Lega, Federico
2013-01-01
Healthcare organizations are often characterized by diffuse power, ambiguous goals, and a plurality of actors. In this complex and pluralistic context, senior healthcare managers are expected to provide strategic direction and lead their organizations toward their goals and performance targets. The present work explores the relationship between senior management team culture and performance by investigating Italian public healthcare organizations in the Tuscany region. Our assessment of senior management culture was accomplished through the use of an established framework and a corresponding tool, the competing values framework, which supports the idea that specific aspects of performance are related to a dominant management culture. Organizational performance was assessed using a wide range of measures collected by a multidimensional performance evaluation system, which was developed in Tuscany to measure the performance of its 12 local health authorities (LHAs) and four teaching hospitals (THs). Usable responses were received from 80 senior managers of 11 different healthcare organizations (two THs and nine LHAs). Our findings show that Tuscan healthcare organizations are characterized by various dominant cultures: developmental, clan, rational, and hierarchical. These variations in dominant culture were associated with performance measures. The implications for management theory, professional practice, and public policy are discussed.
A review of materials for spectral design coatings in signature management applications
NASA Astrophysics Data System (ADS)
Andersson, Kent E.; Škerlind, Christina
2014-10-01
The current focus in Swedish policy towards national security and high-end technical systems, together with a rapid development in multispectral sensor technology, adds to the utility of developing advanced materials for spectral design in signature management applications. A literature study was performed probing research databases for advancements. Qualitative text analysis was performed using a six-indicator instrument: spectrally selective reflectance; low gloss; low degree of polarization; low infrared emissivity; non-destructive properties in radar and in general controllability of optical properties. Trends are identified and the most interesting materials and coating designs are presented with relevant performance metrics. They are sorted into categories in the order of increasing complexity: pigments and paints, one-dimensional structures, multidimensional structures (including photonic crystals), and lastly biomimic and metamaterials. The military utility of the coatings is assessed qualitatively. The need for developing a framework for assessing the military utility of incrementally increasing the performance of spectrally selective coatings is identified.
ERIC Educational Resources Information Center
Basak, Chandramallika; Voss, Michelle W.; Erickson, Kirk I.; Boot, Walter R.; Kramer, Arthur F.
2011-01-01
Previous studies have found that differences in brain volume among older adults predict performance in laboratory tasks of executive control, memory, and motor learning. In the present study we asked whether regional differences in brain volume as assessed by the application of a voxel-based morphometry technique on high resolution MRI would also…
ERIC Educational Resources Information Center
Kunina-Habenicht, Olga; Rupp, Andre A.; Wilhelm, Oliver
2012-01-01
Using a complex simulation study we investigated parameter recovery, classification accuracy, and performance of two item-fit statistics for correct and misspecified diagnostic classification models within a log-linear modeling framework. The basic manipulated test design factors included the number of respondents (1,000 vs. 10,000), attributes (3…
FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.
2010-01-01
This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.
HPA Axis Function Alters Development of Working Memory in Boys with FXS
Scherr, Jessica F.; Hahn, Laura J.; Hooper, Stephen R.; Hatton, Deborah; Roberts, Jane E.
2016-01-01
The present study examines verbal working memory over time in boys with fragile X syndrome (FXS) compared to nonverbal mental-age (NVMA) matched, typically developing (TD) boys. Concomitantly, the relationship between cortisol—a physiological marker for stress—and verbal working memory performance over time is examined to understand the role of physiological mechanisms in cognitive development in FXS. Participants were assessed between one and three times over a 2-year time frame using two verbal working memory tests that differ in complexity: memory for words and auditory working memory with salivary cortisol collected at the beginning and end of each assessment. Multilevel modeling results indicate specific deficits over time on the memory for words task in boys with FXS compared to TD controls that is exacerbated by elevated baseline cortisol. Similar increasing rates of growth over time were observed for boys with FXS and TD controls on the more complex auditory working memory task, but only boys with FXS displayed an association of increased baseline cortisol and lower performance. This study highlights the benefit of investigations of how dynamic biological and cognitive factors interact and influence cognitive development over time. PMID:26760450
Nott, Melissa T; Chapparo, Christine
2008-09-01
Agitation following traumatic brain injury is characterised by a heightened state of activity with disorganised information processing that interferes with learning and achieving functional goals. This study aimed to identify information processing problems during task performance of a severely agitated adult using the Perceive, Recall, Plan and Perform (PRPP) System of Task Analysis. Second, this study aimed to examine the sensitivity of the PRPP System to changes in task performance over a short period of rehabilitation, and third, to evaluate the guidance provided by the PRPP in directing intervention. A case study research design was employed. The PRPP System of Task Analysis was used to assess changes in task embedded information processing capacity during occupational therapy intervention with a severely agitated adult in a rehabilitation context. Performance is assessed on three selected tasks over a one-month period. Information processing difficulties during task performance can be clearly identified when observing a severely agitated adult following a traumatic brain injury. Processing skills involving attention, sensory processing and planning were most affected at this stage of rehabilitation. These processing difficulties are linked to established descriptions of agitated behaviour. Fluctuations in performance across three tasks of differing processing complexity were evident, leading to hypothesised relationships between task complexity, environment and novelty with information processing errors. Changes in specific information processing capacity over time were evident based on repeated measures using the PRPP System of Task Analysis. This lends preliminary support for its utility as an outcome measure, and raises hypotheses about the type of therapy required to enhance information processing in people with severe agitation. The PRPP System is sensitive to information processing changes in severely agitated adults when used to reassess performance over short intervals and can provide direct guidance to occupational therapy intervention to improve task embedded information processing by categorising errors under four stages of an information processing model: Perceive, Recall, Plan and Perform.
Decision Making in the Airplane
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Shafto, Michael G. (Technical Monitor)
1995-01-01
The Importance of decision-making to safety in complex, dynamic environments like mission control centers, aviation, and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment. Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. Yet laboratory research on decision making has not proven especially helpful In improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multi-dimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking In response to a problem, This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for training will be discussed.
Decision Making in Action: Applying Research to Practice
NASA Technical Reports Server (NTRS)
Orasanu, Judith; Hart, Sandra G. (Technical Monitor)
1994-01-01
The importance of decision-making to safety in complex, dynamic environments like mission control centers, aviation, and offshore installations has been well established. NASA-ARC has a program of research dedicated to fostering safe and effective decision-making in the manned spaceflight environment: Because access to spaceflight is limited, environments with similar characteristics, including aviation and nuclear power plants, serve as analogs from which space-relevant data can be gathered and theories developed. Analyses of aviation accidents cite crew judgement and decision making as causes or contributing factors in over half of all accidents. Yet laboratory research on decision making has not proven especially helpful in improving the quality of decisions in these kinds of environments. One reason is that the traditional, analytic decision models are inappropriate to multi-dimensional, high-risk environments, and do not accurately describe what expert human decision makers do when they make decisions that have consequences. A new model of dynamic, naturalistic decision making is offered that may prove useful for improving decision making in complex, isolated, confined and high-risk environments. Based on analyses of crew performance in full-mission simulators and accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good good decisions are appropriate to the demands of the situation. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relations between leadership, communication, decision making and overall crew performance. Implications of these findings for training will be discussed.
A Security Assessment Mechanism for Software-Defined Networking-Based Mobile Networks.
Luo, Shibo; Dong, Mianxiong; Ota, Kaoru; Wu, Jun; Li, Jianhua
2015-12-17
Software-Defined Networking-based Mobile Networks (SDN-MNs) are considered the future of 5G mobile network architecture. With the evolving cyber-attack threat, security assessments need to be performed in the network management. Due to the distinctive features of SDN-MNs, such as their dynamic nature and complexity, traditional network security assessment methodologies cannot be applied directly to SDN-MNs, and a novel security assessment methodology is needed. In this paper, an effective security assessment mechanism based on attack graphs and an Analytic Hierarchy Process (AHP) is proposed for SDN-MNs. Firstly, this paper discusses the security assessment problem of SDN-MNs and proposes a methodology using attack graphs and AHP. Secondly, to address the diversity and complexity of SDN-MNs, a novel attack graph definition and attack graph generation algorithm are proposed. In order to quantify security levels, the Node Minimal Effort (NME) is defined to quantify attack cost and derive system security levels based on NME. Thirdly, to calculate the NME of an attack graph that takes the dynamic factors of SDN-MN into consideration, we use AHP integrated with the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as the methodology. Finally, we offer a case study to validate the proposed methodology. The case study and evaluation show the advantages of the proposed security assessment mechanism.
A Security Assessment Mechanism for Software-Defined Networking-Based Mobile Networks
Luo, Shibo; Dong, Mianxiong; Ota, Kaoru; Wu, Jun; Li, Jianhua
2015-01-01
Software-Defined Networking-based Mobile Networks (SDN-MNs) are considered the future of 5G mobile network architecture. With the evolving cyber-attack threat, security assessments need to be performed in the network management. Due to the distinctive features of SDN-MNs, such as their dynamic nature and complexity, traditional network security assessment methodologies cannot be applied directly to SDN-MNs, and a novel security assessment methodology is needed. In this paper, an effective security assessment mechanism based on attack graphs and an Analytic Hierarchy Process (AHP) is proposed for SDN-MNs. Firstly, this paper discusses the security assessment problem of SDN-MNs and proposes a methodology using attack graphs and AHP. Secondly, to address the diversity and complexity of SDN-MNs, a novel attack graph definition and attack graph generation algorithm are proposed. In order to quantify security levels, the Node Minimal Effort (NME) is defined to quantify attack cost and derive system security levels based on NME. Thirdly, to calculate the NME of an attack graph that takes the dynamic factors of SDN-MN into consideration, we use AHP integrated with the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) as the methodology. Finally, we offer a case study to validate the proposed methodology. The case study and evaluation show the advantages of the proposed security assessment mechanism. PMID:26694409
Strategic planning for MyRA performance: A causal loop diagram approach
NASA Astrophysics Data System (ADS)
Abidin, Norhaslinda Zainal; Zaibidi, Nerda Zura; Karim, Khairah Nazurah
2017-10-01
The nexus of research and innovation in higher education are continually receiving worldwide priority attention. Hence, Malaysia has taken its move to enhance public universities as a center of excellence by introducing the status of Research University (RU). To inspire all universities towards becoming a research university, The Ministry of Higher Education (MoHE) had revised an assessment called Malaysian Research Assessment Instrument (MyRA) to evaluate the performance of existence RUs, and other potential higher education institutions. The available spreadsheet tool to access MyRA performance is inadequate to support strategic planning. Since, higher education management is a complex system, in which components and their interactions are ever changing over time, there is a need to for an efficient approach to investigate system behavior and devise research management policies for the benefit of the institution itself and the higher education system. In this paper, we proposed a system dynamics simulation model to evaluate the impact of policies for obtaining the highest performance in MyRA assessment. Causal loop diagram is developed to investigate the relationship of various elements in research management, their inter-relationship that link together and their evolution of behavior over time.
Ayaz, Hasan; Onaral, Banu; Izzetoglu, Kurtulus; Shewokis, Patricia A.; McKendrick, Ryan; Parasuraman, Raja
2013-01-01
Functional near infrared spectroscopy (fNIRS) is a non-invasive, safe, and portable optical neuroimaging method that can be used to assess brain dynamics during skill acquisition and performance of complex work and everyday tasks. In this paper we describe neuroergonomic studies that illustrate the use of fNIRS in the examination of training-related brain dynamics and human performance assessment. We describe results of studies investigating cognitive workload in air traffic controllers, acquisition of dual verbal-spatial working memory skill, and development of expertise in piloting unmanned vehicles. These studies used conventional fNIRS devices in which the participants were tethered to the device while seated at a workstation. Consistent with the aims of mobile brain imaging (MoBI), we also describe a compact and battery-operated wireless fNIRS system that performs with similar accuracy as other established fNIRS devices. Our results indicate that both wired and wireless fNIRS systems allow for the examination of brain function in naturalistic settings, and thus are suitable for reliable human performance monitoring and training assessment. PMID:24385959
Trotta, Annarita; Cardamone, Emma; Cavallaro, Giusy; Mauro, Marianna
2013-01-01
Teaching hospitals (THs) simultaneously serve three different roles: offering medical treatment, teaching future doctors and promoting research. The international literature recognises such organisations as 'peaks of excellence' and highlights their economic function in the health system. In addition, the literature describes the urgent need to manage the complex dynamics and inefficiency issues that threaten the survival of teaching hospitals worldwide. In this context, traditional performance measurement systems that focus only on accounting and financial measures appear to be inadequate. Given that THs are highly specific and complex, a multidimensional system of performance measurement, such as the Balanced Scorecard (BSC), may be more appropriate because of the multitude of stakeholders, each of whom seek a specific type of accountability. The aim of the paper was twofold: (i) to review the literature on the BSC and its applications in teaching hospitals and (ii) to propose a scorecard framework that is suitable for assessing the performance of THs and serving as a guide for scholars and practitioners. In addition, this research will contribute to the ongoing debate on performance evaluation systems by suggesting a revised BSC framework and proposing specific performance indicators for THs. Copyright © 2012 John Wiley & Sons, Ltd.
Use of performance indicators to assess the solid waste management of health services.
Assis, Mayara C; Gomes, Vanielle A P; Balista, Wagner C; Freitas, Rodrigo R DE
2017-01-01
Modern society faces serious challenges, among them, the complexity of environmental problems. Thus, there are several possible sources of environmental degradation, however, the waste produced by health services have an important peculiarity due to its toxic or pathogenic characteristics, since when managed improperly provide also health risk public. The involvement of solid waste from healthcare services environmental impact integrates matters a little more complex, because in addition to environmental health, they also interfere with the healthiness of environments that generate, with the consequences of nosocomial infections, occupational health and public. Thus, the management has become an urgent need, especially when we see no use of performance indicators management in healthcare environments in the city of São Mateus, ES. For this, we used the Analytic Hierarchy Process Method to prioritize such indicators as the potential improvement in health services waste management process - WHS and thus environmental analysis was performed with the use of a template for SWOT analysis. The results showed that the performance indicator training strategies developed with employees has the greatest potential to assist in improvements in WHS (Health Services Waste) management process followed indicator knowledge of the regulations associated with procedures performed by employees and importance of biosafety regulations.
Findings from an Organizational Network Analysis to Support Local Public Health Management
Caldwell, Michael; Rockoff, Maxine L.; Gebbie, Kristine; Carley, Kathleen M.; Bakken, Suzanne
2008-01-01
We assessed the feasibility of using organizational network analysis in a local public health organization. The research setting was an urban/suburban county health department with 156 employees. The goal of the research was to study communication and information flow in the department and to assess the technique for public health management. Network data were derived from survey questionnaires. Computational analysis was performed with the Organizational Risk Analyzer. Analysis revealed centralized communication, limited interdependencies, potential knowledge loss through retirement, and possible informational silos. The findings suggested opportunities for more cross program coordination but also suggested the presences of potentially efficient communication paths and potentially beneficial social connectedness. Managers found the findings useful to support decision making. Public health organizations must be effective in an increasingly complex environment. Network analysis can help build public health capacity for complex system management. PMID:18481183
Understanding Risk Tolerance and Building an Effective Safety Culture
NASA Technical Reports Server (NTRS)
Loyd, David
2018-01-01
Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.
Aguirre, Erik; Arpón, Javier; Azpilicueta, Leire; López, Peio; de Miguel, Silvia; Ramos, Victoria; Falcone, Francisco
2014-12-01
In this article, the impact of topology as well as morphology of a complex indoor environment such as a commercial aircraft in the estimation of dosimetric assessment is presented. By means of an in-house developed deterministic 3D ray-launching code, estimation of electric field amplitude as a function of position for the complete volume of a commercial passenger airplane is obtained. Estimation of electromagnetic field exposure in this environment is challenging, due to the complexity and size of the scenario, as well as to the large metallic content, giving rise to strong multipath components. By performing the calculation with a deterministic technique, the complete scenario can be considered with an optimized balance between accuracy and computational cost. The proposed method can aid in the assessment of electromagnetic dosimetry in the future deployment of embarked wireless systems in commercial aircraft.
Dissociation between facial and bodily expressions in emotion recognition: A case study.
Leiva, Samanta; Margulis, Laura; Micciulli, Andrea; Ferreres, Aldo
2017-12-21
Existing single-case studies have reported deficit in recognizing basic emotions through facial expression and unaffected performance with body expressions, but not the opposite pattern. The aim of this paper is to present a case study with impaired emotion recognition through body expressions and intact performance with facial expressions. In this single-case study we assessed a 30-year-old patient with autism spectrum disorder, without intellectual disability, and a healthy control group (n = 30) with four tasks of basic and complex emotion recognition through face and body movements, and two non-emotional control tasks. To analyze the dissociation between facial and body expressions, we used Crawford and Garthwaite's operational criteria, and we compared the patient and the control group performance with a modified one-tailed t-test designed specifically for single-case studies. There were no statistically significant differences between the patient's and the control group's performances on the non-emotional body movement task or the facial perception task. For both kinds of emotions (basic and complex) when the patient's performance was compared to the control group's, statistically significant differences were only observed for the recognition of body expressions. There were no significant differences between the patient's and the control group's correct answers for emotional facial stimuli. Our results showed a profile of impaired emotion recognition through body expressions and intact performance with facial expressions. This is the first case study that describes the existence of this kind of dissociation pattern between facial and body expressions of basic and complex emotions.
Clay, Olivio J; Wadley, Virginia G; Edwards, Jerri D; Roth, David L; Roenker, Daniel L; Ball, Karlene K
2005-08-01
Driving is a complex behavior that requires the utilization of a wide range of individual abilities. Identifying assessments that not only capture individual differences, but also are related to older adults' driving performance would be beneficial. This investigation examines the relationship between the Useful Field of View (UFOV) assessment and objective measures of retrospective or concurrent driving performance, including state-recorded accidents, on-road driving, and driving simulator performance. The PubMed and PsycINFO databases were searched to retrieve eight studies that reported bivariate relationships between UFOV and these objective driving measures. Cumulative meta-analysis techniques were used to combine the effect sizes in an attempt to determine whether the strength of the relationship was stable across studies and to assess whether a sufficient number of studies have been conducted to validate the relationship between UFOV and driving performance. A within-group homogeneity of effect sizes test revealed that the samples could be thought of as being drawn from the same population, Q [7] = 11.29, p (one-tailed) = 0.13. Therefore, the effect sizes of eight studies were combined for the present cumulative meta-analysis. The weighted mean effect size across the studies revealed a large effect (Cohen's d = 0.945), with poorer UFOV performance associated with negative driving outcomes. This relationship was robust across multiple indices of driving performance and several research laboratories. This convergence of evidence across numerous studies using different methodologies confirms the importance of the UFOV assessment as a valid and reliable index of driving performance and safety. Recent prospective studies have confirmed a relationship between UFOV performance and future crashes, further supporting the use of this instrument as a potential screening measure for at-risk older drivers.
Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures.
Méndez, Raúl; Leplae, Raphaël; Lensink, Marc F; Wodak, Shoshana J
2005-08-01
The current status of docking procedures for predicting protein-protein interactions starting from their three-dimensional (3D) structure is reassessed by evaluating blind predictions, performed during 2003-2004 as part of Rounds 3-5 of the community-wide experiment on Critical Assessment of PRedicted Interactions (CAPRI). Ten newly determined structures of protein-protein complexes were used as targets for these rounds. They comprised 2 enzyme-inhibitor complexes, 2 antigen-antibody complexes, 2 complexes involved in cellular signaling, 2 homo-oligomers, and a complex between 2 components of the bacterial cellulosome. For most targets, the predictors were given the experimental structures of 1 unbound and 1 bound component, with the latter in a random orientation. For some, the structure of the free component was derived from that of a related protein, requiring the use of homology modeling. In some of the targets, significant differences in conformation were displayed between the bound and unbound components, representing a major challenge for the docking procedures. For 1 target, predictions could not go to completion. In total, 1866 predictions submitted by 30 groups were evaluated. Over one-third of these groups applied completely novel docking algorithms and scoring functions, with several of them specifically addressing the challenge of dealing with side-chain and backbone flexibility. The quality of the predicted interactions was evaluated by comparison to the experimental structures of the targets, made available for the evaluation, using the well-agreed-upon criteria used previously. Twenty-four groups, which for the first time included an automatic Web server, produced predictions ranking from acceptable to highly accurate for all targets, including those where the structures of the bound and unbound forms differed substantially. These results and a brief survey of the methods used by participants of CAPRI Rounds 3-5 suggest that genuine progress in the performance of docking methods is being achieved, with CAPRI acting as the catalyst.
An adaptive framework to differentiate receiving water quality impacts on a multi-scale level.
Blumensaat, F; Tränckner, J; Helm, B; Kroll, S; Dirckx, G; Krebs, P
2013-01-01
The paradigm shift in recent years towards sustainable and coherent water resources management on a river basin scale has changed the subject of investigations to a multi-scale problem representing a great challenge for all actors participating in the management process. In this regard, planning engineers often face an inherent conflict to provide reliable decision support for complex questions with a minimum of effort. This trend inevitably increases the risk to base decisions upon uncertain and unverified conclusions. This paper proposes an adaptive framework for integral planning that combines several concepts (flow balancing, water quality monitoring, process modelling, multi-objective assessment) to systematically evaluate management strategies for water quality improvement. As key element, an S/P matrix is introduced to structure the differentiation of relevant 'pressures' in affected regions, i.e. 'spatial units', which helps in handling complexity. The framework is applied to a small, but typical, catchment in Flanders, Belgium. The application to the real-life case shows: (1) the proposed approach is adaptive, covers problems of different spatial and temporal scale, efficiently reduces complexity and finally leads to a transparent solution; and (2) water quality and emission-based performance evaluation must be done jointly as an emission-based performance improvement does not necessarily lead to an improved water quality status, and an assessment solely focusing on water quality criteria may mask non-compliance with emission-based standards. Recommendations derived from the theoretical analysis have been put into practice.
Virtual planning for craniomaxillofacial surgery--7 years of experience.
Adolphs, Nicolai; Haberl, Ernst-Johannes; Liu, Weichen; Keeve, Erwin; Menneking, Horst; Hoffmeister, Bodo
2014-07-01
Contemporary computer-assisted surgery systems more and more allow for virtual simulation of even complex surgical procedures with increasingly realistic predictions. Preoperative workflows are established and different commercially software solutions are available. Potential and feasibility of virtual craniomaxillofacial surgery as an additional planning tool was assessed retrospectively by comparing predictions and surgical results. Since 2006 virtual simulation has been performed in selected patient cases affected by complex craniomaxillofacial disorders (n = 8) in addition to standard surgical planning based on patient specific 3d-models. Virtual planning could be performed for all levels of the craniomaxillofacial framework within a reasonable preoperative workflow. Simulation of even complex skeletal displacements corresponded well with the real surgical result and soft tissue simulation proved to be helpful. In combination with classic 3d-models showing the underlying skeletal pathology virtual simulation improved planning and transfer of craniomaxillofacial corrections. Additional work and expenses may be justified by increased possibilities of visualisation, information, instruction and documentation in selected craniomaxillofacial procedures. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Čegovnik, Tomaž; Stojmenova, Kristina; Jakus, Grega; Sodnik, Jaka
2018-04-01
This paper presents a driving simulator study in which we investigated whether the Eye Tribe eye tracker (ET) is capable of assessing changes in the cognitive load of drivers through oculography and pupillometry. In the study, participants were asked to drive a simulated vehicle and simultaneously perform a set of secondary tasks with different cognitive complexity levels. We measured changes in eye properties, such as the pupil size, blink rate and fixation time. We also performed a measurement with a Detection Response Task (DRT) to validate the results and to prove a steady increase of cognitive load with increasing secondary task difficulty. The results showed that the ET precisely recognizes an increasing pupil diameter with increasing secondary task difficulty. In addition, the ET shows increasing blink rates, decreasing fixation time and narrowing of the attention field with increasing secondary task difficulty. The results were validated with the DRT method and the secondary task performance. We conclude that the Eye Tribe ET is a suitable device for assessing a driver's cognitive load. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ingwersen, Wesley W.
Life cycle assessment (LCA) is an internationally standardized framework for assessing the environmental impacts of products that is rapidly evolving to improve understanding and quantification of how complex product systems depend upon and affect the environment. This dissertation contributes to that evolution through the development of new methods for measuring impacts, estimating the uncertainty of impacts, and measuring ranges of environmental performance, with a focus on product systems in non-OECD countries that have not been well characterized. The integration of a measure of total energy use, emergy, is demonstrated in an LCA of gold from the Yanacocha mine in Peru in the second chapter. A model for estimating the accuracy of emergy results is proposed in the following chapter. The fourth chapter presents a template for LCA-based quantification of the range of environmental performance for tropical agricultural products using the example of fresh pineapple production for export in Costa Rica that can be used to create product labels with environmental information. The final chapter synthesizes how each methodological contribution will together improve the science of measuring product environmental performance.
ESH assessment of advanced lithography materials and processes
NASA Astrophysics Data System (ADS)
Worth, Walter F.; Mallela, Ram
2004-05-01
The ESH Technology group at International SEMATECH is conducting environment, safety, and health (ESH) assessments in collaboration with the lithography technologists evaluating the performance of an increasing number of new materials and technologies being considered for advanced lithography such as 157nm photresist and extreme ultraviolet (EUV). By performing data searches for 75 critical data types, emissions characterizations, and industrial hygiene (IH) monitoring during the use of the resist candidates, it has been shown that the best performing resist formulations, so far, appear to be free of potential ESH concerns. The ESH assessment of the EUV lithography tool that is being developed for SEMATECH has identified several features of the tool that are of ESH concern: high energy consumption, poor energy conversion efficiency, tool complexity, potential ergonomic and safety interlock issues, use of high powered laser(s), generation of ionizing radiation (soft X-rays), need for adequate shielding, and characterization of the debris formed by the extreme temperature of the plasma. By bringing these ESH challenges to the attention of the technologists and tool designers, it is hoped that the processes and tools can be made more ESH friendly.
Madaoui, Hocine; Guerois, Raphaël
2008-01-01
Protein surfaces are under significant selection pressure to maintain interactions with their partners throughout evolution. Capturing how selection pressure acts at the interfaces of protein–protein complexes is a fundamental issue with high interest for the structural prediction of macromolecular assemblies. We tackled this issue under the assumption that, throughout evolution, mutations should minimally disrupt the physicochemical compatibility between specific clusters of interacting residues. This constraint drove the development of the so-called Surface COmplementarity Trace in Complex History score (SCOTCH), which was found to discriminate with high efficiency the structure of biological complexes. SCOTCH performances were assessed not only with respect to other evolution-based approaches, such as conservation and coevolution analyses, but also with respect to statistically based scoring methods. Validated on a set of 129 complexes of known structure exhibiting both permanent and transient intermolecular interactions, SCOTCH appears as a robust strategy to guide the prediction of protein–protein complex structures. Of particular interest, it also provides a basic framework to efficiently track how protein surfaces could evolve while keeping their partners in contact. PMID:18511568
ERIC Educational Resources Information Center
Toker, Yonca; Ackerman, Phillip L.
2012-01-01
With an aim to improve vocational interest assessments geared toward the Science, Technology, Engineering, and Mathematics (STEM) areas, we developed a new assessment by incorporating occupational complexity levels. Occupations which correspond to Holland's realistic and investigative themes were identified together with their complexity levels…
Rethinking Validation in Complex High-Stakes Assessment Contexts
ERIC Educational Resources Information Center
Koch, Martha J.; DeLuca, Christopher
2012-01-01
In this article we rethink validation within the complex contexts of high-stakes assessment. We begin by considering the utility of existing models for validation and argue that these models tend to overlook some of the complexities inherent to assessment use, including the multiple interpretations of assessment purposes and the potential…
Anomalous subjective experience and psychosis risk in young depressed patients.
Szily, Erika; Kéri, Szabolcs
2009-01-01
Help-seeking young people often display depressive symptoms. In some patients, these symptoms may co-exist with clinically high-risk mental states for psychosis. The aim of this study was to determine differences in subjective experience and social perception in young depressed patients with and without psychosis risk. Participants were 68 young persons with major depressive disorder. Twenty-six patients also met the criteria of attenuated or brief limited intermittent psychotic symptoms according to the Comprehensive Assessment of At Risk Mental States (CAARMS) criteria. Subjective experiences were assessed with the Bonn Scale for the Assessment of Basic Symptoms (BSABS). Recognition of complex social emotions and mental states was assessed using the 'Reading the Mind in the Eyes' test. Perplexity, self-disorder, and diminished affectivity significantly predicted psychosis risk. Depressed patients without psychosis risk displayed impaired recognition performance for negative social emotions, whereas patients with psychosis risk were also impaired in the recognition of cognitive expressions. In the high-risk group, self-disorder was associated with impaired recognition of facial expressions. These results suggest that anomalous subjective experience and impaired recognition of complex emotions may differentiate between young depressed patients with and without psychosis risk. 2009 S. Karger AG, Basel.
Moek, Felix; Poe, Poe; Charunwatthana, Prakaykaew; Pan-Ngum, Wirichada; Wattanagoon, Yupaporn; Chierakul, Wirongrong
2018-05-19
The clinical examination alone is widely considered unreliable when assessing fluid responsiveness in critically ill patients. Little evidence exists on the performance of the clinical examination to predict other hemodynamic derangements or more complex hemodynamic states. Patients with acute febrile illness were assessed on admission, both clinically and per non-invasive hemodynamic measurement. Correlations between clinical signs and hemodynamics patterns were analyzed, and the predictive capacity of the clinical signs was examined. Seventy-one patients were included; the most common diagnoses were bacterial sepsis, scrub typhus and dengue infection. Correlations between clinical signs and hemodynamic parameters were only statistically significant for Cardiac Index (r=0.75, p-value <0.01), Systemic Vascular Resistance Index (r=0.79, p-value <0.01) and flow time corrected (r=0.44, p-value 0.03). When assessing the predictive accuracy of clinical signs, the model identified only 62% of hemodynamic states correctly, even less if there was more than one hemodynamic abnormality. The clinical examination is not reliable to assess a patient's hemodynamic status in acute febrile illness. Fluid responsiveness, cardiodepression and more complex hemodynamic states are particularly easily missed.
Zhang, Li; Wu, Wei-Chun; Ma, Hong; Wang, Hao
2016-11-15
Layer-specific strain allows the assessment of the function of every layer of myocardium. To evaluate the changes of non-ST-segment elevation acute coronary syndrome(NSTE-ACS) patients with and without complex coronary artery disease(CAD) by layer-specific strain and determine if myocardial strain can identify complex CAD and assess the severity of coronary lesions as defined by Syntax score (SS). A total of 139 patients undergoing coronary angiography due to suspected NSTE-ACS were prospectively enrolled. Echocardiography was performed 1h before angiography. Global longitudinal strain (GLS), territorial longitudinal strain (TLS), global circumferential strain (GCS) and territorial circumferential strain (TCS) of the three layers of LV wall were assessed by two-dimensional (2D) speckle tracking echocardiography (STE) with layer-specific myocardial deformation quantitative analysis based on the perfusion territories of the three major coronary arteries in an 18-segment model of LV. SS was used for predicting the severity of coronary lesions in patients with complex CAD. 78 had complex CAD, 32 had 1- or 2-vessel disease and 29 had no significant coronary stenosis confirmed by coronary angiography. According to SS value, 78 complex CAD subjects were subdivided into three groups, 24 in group SS 1 (SS≤22), 26 in group SS 2 (SS 23-32) and 28 in group SS 3 (SS≥33). Compared to the other two groups without complex CAD, patients with NSTE-ACS due to complex CAD had worse function in all 3 myocardial layers assessed by GLS, TLS, GCS and TCS. Endocardial GLS and TLS (all, P<0.01) were most affected. The absolute differences between endocardial and epicardial GLS and TLS were lower in magnitude in patients with complex CAD than in those without (all, P<0.001), and the more complex of coronary lesion, the lower magnitude of the parameters(all, P<0.001). Endocardial GLS and TLS were closely correlated with SS value(r=-0.751 and r=-0.753, respectively; P<0.001). By receiver-operating characteristic curve analysis, endocardial GLS and TLS demonstrated the highest area under curve, showing better diagnostic accuracy (endocardial GLS: value<-21.35% had 72% sensitivity, 84% specificity and area under the curve ¼0.846; endocardial TLS: value<-20.15% had 72% sensitivity, 88% specificity and area under the curve ¼0.852) than GCS, TCS, mid-myocardial and epicardial GLS, and TLS(all, P<0.05). Strains, particularly endocardial GLS and TLS measurement by 2DSTE might enable a non-invasive method to identify complex CAD and predict the severity of coronary lesions in patients with NSTE-ACS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Enhanced pure-tone pitch discrimination among persons with autism but not Asperger syndrome.
Bonnel, Anna; McAdams, Stephen; Smith, Bennett; Berthiaume, Claude; Bertone, Armando; Ciocca, Valter; Burack, Jacob A; Mottron, Laurent
2010-07-01
Persons with Autism spectrum disorders (ASD) display atypical perceptual processing in visual and auditory tasks. In vision, Bertone, Mottron, Jelenic, and Faubert (2005) found that enhanced and diminished visual processing is linked to the level of neural complexity required to process stimuli, as proposed in the neural complexity hypothesis. Based on these findings, Samson, Mottron, Jemel, Belin, and Ciocca (2006) proposed to extend the neural complexity hypothesis to the auditory modality. They hypothesized that persons with ASD should display enhanced performance for simple tones that are processed in primary auditory cortical regions, but diminished performance for complex tones that require additional processing in associative auditory regions, in comparison to typically developing individuals. To assess this hypothesis, we designed four auditory discrimination experiments targeting pitch, non-vocal and vocal timbre, and loudness. Stimuli consisted of spectro-temporally simple and complex tones. The participants were adolescents and young adults with autism, Asperger syndrome, and typical developmental histories, all with IQs in the normal range. Consistent with the neural complexity hypothesis and enhanced perceptual functioning model of ASD (Mottron, Dawson, Soulières, Hubert, & Burack, 2006), the participants with autism, but not with Asperger syndrome, displayed enhanced pitch discrimination for simple tones. However, no discrimination-thresholds differences were found between the participants with ASD and the typically developing persons across spectrally and temporally complex conditions. These findings indicate that enhanced pure-tone pitch discrimination may be a cognitive correlate of speech-delay among persons with ASD. However, auditory discrimination among this group does not appear to be directly contingent on the spectro-temporal complexity of the stimuli. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Park, Jin-Young; Woon, David E.
2004-01-01
Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.
Park, George D; Reed, Catherine L
2015-02-01
Researchers acknowledge the interplay between action and attention, but typically consider action as a response to successful attentional selection or the correlation of performance on separate action and attention tasks. We investigated how concurrent action with spatial monitoring affects the distribution of attention across the visual field. We embedded a functional field of view (FFOV) paradigm with concurrent central object recognition and peripheral target localization tasks in a simulated driving environment. Peripheral targets varied across 20-60 deg eccentricity at 11 radial spokes. Three conditions assessed the effects of visual complexity and concurrent action on the size and shape of the FFOV: (1) with no background, (2) with driving background, and (3) with driving background and vehicle steering. The addition of visual complexity slowed task performance and reduced the FFOV size but did not change the baseline shape. In contrast, the addition of steering produced not only shrinkage of the FFOV, but also changes in the FFOV shape. Nonuniform performance decrements occurred in proximal regions used for the central task and for steering, independent of interference from context elements. Multifocal attention models should consider the role of action and account for nonhomogeneities in the distribution of attention. © 2015 SAGE Publications.
Responses to music and movement in the development of children with Down's syndrome.
Stratford, B; Ching, E Y
1989-02-01
Physical responses to rhythmic stimuli and music, of different degrees of complexity were registered from 25 children with Down's syndrome and 25 other mentally handicapped children. Required performances were taught and then recorded on video-tape, after which they were assessed by experienced teacher/judges. Whilst there were no overall significant differences between the groups, important differences were detected between the children in different schools with attendant implications for differential treatment. Apart from an overall and general assessment of performance, analysis was made of demographic variables, for example, sex, intelligence, age and social development. It is concluded that specific teaching approaches can significantly effect the development of children with Down's syndrome in such creative aspects of the curriculum as music, movement and dance.
Ballard, J C
1996-12-01
In a sample of 163 college undergraduates, the effects of task demand, noise, and anxiety on Continuous Performance Test (CPT) errors were evaluated with multiple regression and multivariate analysis of variance. Results indicated significantly more omission errors on the difficult task. Complex interaction effects of noise and self-reported anxiety yielded more omissions in quiet intermittent white noise, particularly for high-anxious subjects performing the difficult task. Anxiety levels tended to increase from pretest to posttest, particularly for low-anxious subjects in the quiet, difficult-task condition, while a decrease was seen for high-anxious subjects in the loud, easy-task condition. Commission errors were unrelated to any predictor variables, suggesting that "attention" cannot be considered a unitary phenomenon. The variety of direct and interactive effects on vigilance performance underscore the need for clinicians to use a variety of measures to assess attentional skills, to avoid diagnosis of attention deficits on the basis of a single computerized task performance, and to rule out anxiety and other contributors to poor vigilance task performance.
Prescott-Clements, L E; van der Vleuten, C P M; Schuwirth, L; Gibb, E; Hurst, Y; Rennie, J S
2011-08-01
For health professionals, the development of insight into their performance is vital for safe practice, professional development and self-regulation. This study investigates whether the development of dental trainees' insight, when provided with external feedback on performance, can be assessed using a single criterion on a simple global ratings form such as the Longitudinal Evaluation of Performance or Mini Clinical Evaluation Exercise. Postgraduate dental trainees (N = 139) were assessed using this tool on a weekly basis for 6 months. Regression analysis of the data was carried out using SPSS, and a short trainer questionnaire was implemented to investigate feasibility. Ratings for insight were shown to increase with time in a similar manner to the growth observed in other essential skills. The gradient of the slope for growth of insight was slightly less than that of the other observed skills. Trainers were mostly positive about the new criterion assessing trainees' insight, although the importance of training for trainers in this process was highlighted. Our data suggest that practitioners' insight into their performance can be developed with experience and regular feedback. However, this is most likely a complex skill dependent on a number of intrinsic and external factors. The development of trainees' insight into their performance can be assessed using a single criterion on a simple global ratings form. The process involves no additional burden on evaluators in terms of their time or cost, and promotes best practice in the provision of feedback for trainees. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Gamor, Keysha Ingram
This paper contains a research study that investigated the relative efficacy of using both a traditional paper-and-pencil assessment instrument and an alternative, virtual reality (VR) assessment instrument to assist educators and/or instructional designers in measuring learning in a virtual reality learning environment. To this end, this research study investigated assessment in VR, with the goal of analyzing aspects of student learning in VR that are feasible to access or capture by traditional assessments and alternative assessments. The researcher also examined what additional types of learning alternative assessments may offer. More specifically, this study compared the effectiveness of a traditional method with an alternative (performance-based) method of assessment that was used to examine the ability of the tools to accurately evidence the levels of students' understanding and learning. The domain area was electrostatics, a complex, abstract multidimensional concept, with which students often experience difficulty. Outcomes of the study suggest that, in the evaluation of learning in an immersive VR learning environment, assessments would most accurately manifest student learning if the assessment measure matched the learning environment itself. In this study, learning and assessing in the VR environment yielded higher final test scores than learning in VR and testing with traditional paper-and-pencil. Being able to transfer knowledge from a VR environment to other situations is critical in demonstrating the overall level of understanding of a concept. For this reason, the researcher recommends a combination of testing measures to enhance understanding of complex, abstract concepts.
Parts and Components Reliability Assessment: A Cost Effective Approach
NASA Technical Reports Server (NTRS)
Lee, Lydia
2009-01-01
System reliability assessment is a methodology which incorporates reliability analyses performed at parts and components level such as Reliability Prediction, Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) to assess risks, perform design tradeoffs, and therefore, to ensure effective productivity and/or mission success. The system reliability is used to optimize the product design to accommodate today?s mandated budget, manpower, and schedule constraints. Stand ard based reliability assessment is an effective approach consisting of reliability predictions together with other reliability analyses for electronic, electrical, and electro-mechanical (EEE) complex parts and components of large systems based on failure rate estimates published by the United States (U.S.) military or commercial standards and handbooks. Many of these standards are globally accepted and recognized. The reliability assessment is especially useful during the initial stages when the system design is still in the development and hard failure data is not yet available or manufacturers are not contractually obliged by their customers to publish the reliability estimates/predictions for their parts and components. This paper presents a methodology to assess system reliability using parts and components reliability estimates to ensure effective productivity and/or mission success in an efficient manner, low cost, and tight schedule.
Probabilistic Analysis of Large-Scale Composite Structures Using the IPACS Code
NASA Technical Reports Server (NTRS)
Lemonds, Jeffrey; Kumar, Virendra
1995-01-01
An investigation was performed to ascertain the feasibility of using IPACS (Integrated Probabilistic Assessment of Composite Structures) for probabilistic analysis of a composite fan blade, the development of which is being pursued by various industries for the next generation of aircraft engines. A model representative of the class of fan blades used in the GE90 engine has been chosen as the structural component to be analyzed with IPACS. In this study, typical uncertainties are assumed in the level, and structural responses for ply stresses and frequencies are evaluated in the form of cumulative probability density functions. Because of the geometric complexity of the blade, the number of plies varies from several hundred at the root to about a hundred at the tip. This represents a extremely complex composites application for the IPACS code. A sensitivity study with respect to various random variables is also performed.
Setko, A G; Trishina, S P; Timoshenko, E P
2014-01-01
In the work there was performed the assessment of the actual nutrition of high school pupils, its impact on the nutritional status and efficiency of the implementation in the modern educational process certified vitamin-mineral complexes as a health-saving component of the optimization of rations. The introduction of additional vitamin-mineral complexes into the food of high school pupils was established to lead to the optimization of nutrition content by most of macro- and micronutrients, which in turn contributed to the increase in the number of children with an adequate supply of the body with vitamins and also contributed to the increase of students with a satisfactory adaptation by 44.3%, cases having sufficient performance reserves by 48.4% and the decrease of the number of children with sharply reduced functional reserves by 4 times.
An, Yan; Zou, Zhihong; Li, Ranran
2014-01-01
A large number of parameters are acquired during practical water quality monitoring. If all the parameters are used in water quality assessment, the computational complexity will definitely increase. In order to reduce the input space dimensions, a fuzzy rough set was introduced to perform attribute reduction. Then, an attribute recognition theoretical model and entropy method were combined to assess water quality in the Harbin reach of the Songhuajiang River in China. A dataset consisting of ten parameters was collected from January to October in 2012. Fuzzy rough set was applied to reduce the ten parameters to four parameters: BOD5, NH3-N, TP, and F. coli (Reduct A). Considering that DO is a usual parameter in water quality assessment, another reduct, including DO, BOD5, NH3-N, TP, TN, F, and F. coli (Reduct B), was obtained. The assessment results of Reduct B show a good consistency with those of Reduct A, and this means that DO is not always necessary to assess water quality. The results with attribute reduction are not exactly the same as those without attribute reduction, which can be attributed to the α value decided by subjective experience. The assessment results gained by the fuzzy rough set obviously reduce computational complexity, and are acceptable and reliable. The model proposed in this paper enhances the water quality assessment system. PMID:24675643
Martial Art Training and Cognitive Performance in Middle-Aged Adults.
Douris, Peter; Douris, Christopher; Balder, Nicole; LaCasse, Michael; Rand, Amir; Tarapore, Freya; Zhuchkan, Aleskey; Handrakis, John
2015-09-29
Cognitive performance includes the processes of attention, memory, processing speed, and executive functioning, which typically declines with aging. Previous research has demonstrated that aerobic and resistance exercise improves cognitive performance immediately following exercise. However, there is limited research examining the effect that a cognitively complex exercise such as martial art training has on these cognitive processes. Our study compared the acute effects of 2 types of martial art training to aerobic exercise on cognitive performance in middle-aged adults. We utilized a repeated measures design with the order of the 3 exercise conditions randomly assigned and counterbalanced. Ten recreational middle-aged martial artists (mean age = 53.5 ± 8.6 years) participated in 3 treatment conditions: a typical martial art class, an atypical martial art class, and a one-hour walk at a self-selected speed. Cognitive performance was assessed by the Stroop Color and Word test. While all 3 exercise conditions improved attention and processing speed, only the 2 martial art conditions improved the highest order of cognitive performance, executive function. The effect of the 2 martial art conditions on executive function was not different. The improvement in executive function may be due to the increased cortical demand required by the more complex, coordinated motor tasks of martial art exercise compared to the more repetitive actions of walking.
Martial Art Training and Cognitive Performance in Middle-Aged Adults
Douris, Peter; Douris, Christopher; Balder, Nicole; LaCasse, Michael; Rand, Amir; Tarapore, Freya; Zhuchkan, Aleskey; Handrakis, John
2015-01-01
Cognitive performance includes the processes of attention, memory, processing speed, and executive functioning, which typically declines with aging. Previous research has demonstrated that aerobic and resistance exercise improves cognitive performance immediately following exercise. However, there is limited research examining the effect that a cognitively complex exercise such as martial art training has on these cognitive processes. Our study compared the acute effects of 2 types of martial art training to aerobic exercise on cognitive performance in middle-aged adults. We utilized a repeated measures design with the order of the 3 exercise conditions randomly assigned and counterbalanced. Ten recreational middle-aged martial artists (mean age = 53.5 ± 8.6 years) participated in 3 treatment conditions: a typical martial art class, an atypical martial art class, and a one-hour walk at a self-selected speed. Cognitive performance was assessed by the Stroop Color and Word test. While all 3 exercise conditions improved attention and processing speed, only the 2 martial art conditions improved the highest order of cognitive performance, executive function. The effect of the 2 martial art conditions on executive function was not different. The improvement in executive function may be due to the increased cortical demand required by the more complex, coordinated motor tasks of martial art exercise compared to the more repetitive actions of walking. PMID:26672872
Novel Behavioral and Neural Evidences for Age-Related changes in Force complexity.
Chen, Yi-Ching; Lin, Linda L; Hwang, Ing-Shiou
2018-02-17
This study investigated age-related changes in behavioral and neural complexity for a polyrhythmic movement, which appeared to be an exception to the loss of complexity hypothesis. Young (n = 15; age = 24.2 years) and older (15; 68.1 years) adults performed low-level force-tracking with isometric index abduction to couple a compound sinusoidal target. Multi-scale entropy (MSE) of tracking force and inter-spike interval (ISI) of motor unit (MU) in the first dorsal interosseus muscle were assessed. The MSE area of tracking force at shorter time scales of older adults was greater (more complex) than that of young adults, whereas an opposite trend (less complex for the elders) was noted at longer time scales. The MSE area of force fluctuations (the stochastic component of the tracking force) were generally smaller (less complex) for older adults. Along with greater mean and coefficient of ISI, the MSE area of the cumulative discharge rate of elders tended to be lower (less complex) than that of young adults. In conclusion, age-related complexity changes in polyrhythmic force-tracking depended on the time scale. The adaptive behavioral consequences could be multi-factorial origins of the age-related impairment in rate coding, increased discharge noises, and lower discharge complexity of pooled MUs.
NASA Astrophysics Data System (ADS)
Zavala, G. J.; Lopez, S.; Ebinger, C. J.; Pando, M. A.; Lambert, C.; Morales, R.; Uceda, S.; Perucchio, R.; Castaneda, B.; Aguilar, R.
2014-12-01
This paper presents results of near surface geophysical tests to help assess the geotechnical conditions of the archaeological complex of Huaca de la Luna located near the coastal city of Trujillo, Peru. This area of Peru has experienced damaging earthquakes and tsunamis in historic time. The huaca complex is a massive adobe temple progressively built by the Moche civilization from 100 AD to 650 AD. The geophysical tests carried out included Ground Penetrating Radar (GPR), magnetic gradiometer, and Multichannel Analysis of Surface Waves (MASW) to help assess geotechnical conditions such as buried cavities and hallways, thickness and elastic properties of sand sediments, and the depth to the underlying granitic bedrock. The tests were performed to help with the investigation of structural damage observed along a massive adobe wall (north façade) which has shown signs of distress including fissures, settlements, and other damage. The geophysical results together with detailed Lidar surveying are being used as part of this investigation and highlight the usefulness of these non-destructive techniques for archaeological and historical sites.
Cognitive skills assessment during robot-assisted surgery: separating the wheat from the chaff.
Guru, Khurshid A; Esfahani, Ehsan T; Raza, Syed J; Bhat, Rohit; Wang, Katy; Hammond, Yana; Wilding, Gregory; Peabody, James O; Chowriappa, Ashirwad J
2015-01-01
To investigate the utility of cognitive assessment during robot-assisted surgery (RAS) to define skills in terms of cognitive engagement, mental workload, and mental state; while objectively differentiating between novice and expert surgeons. In all, 10 surgeons with varying operative experience were assigned to beginner (BG), combined competent and proficient (CPG), and expert (EG) groups based on the Dreyfus model. The participants performed tasks for basic, intermediate and advanced skills on the da Vinci Surgical System. Participant performance was assessed using both tool-based and cognitive metrics. Tool-based metrics showed significant differences between the BG vs CPG and the BG vs EG, in basic skills. While performing intermediate skills, there were significant differences only on the instrument-to-instrument collisions between the BG vs CPG (2.0 vs 0.2, P = 0.028), and the BG vs EG (2.0 vs 0.1, P = 0.018). There were no significant differences between the CPG and EG for both basic and intermediate skills. However, using cognitive metrics, there were significant differences between all groups for the basic and intermediate skills. In advanced skills, there were no significant differences between the CPG and the EG except time (1116 vs 599.6 s), using tool-based metrics. However, cognitive metrics revealed significant differences between both groups. Cognitive assessment of surgeons may aid in defining levels of expertise performing complex surgical tasks once competence is achieved. Cognitive assessment may be used as an adjunct to the traditional methods for skill assessment during RAS. © 2014 The Authors. BJU International © 2014 BJU International.
Synthetic bioactive novel ether based Schiff bases and their copper(II) complexes
NASA Astrophysics Data System (ADS)
Shabbir, Muhammad; Akhter, Zareen; Ismail, Hammad; Mirza, Bushra
2017-10-01
Novel ether based Schiff bases (HL1- HL4) were synthesized from 5-chloro-2-hydroxy benzaldehyde and primary amines (1-amino-4-phenoxybenzene, 4-(4-aminophenyloxy) biphenyl, 1-(4-aminophenoxy) naphthalene and 2-(4-aminophenoxy) naphthalene). From these Schiff bases copper(II) complexes (Cu(L1)2-Cu(L4)2)) were synthesized and characterized by elemental analysis and spectroscopic (FTIR, NMR) techniques. The synthesized Schiff bases and copper(II) complexes were further assessed for various biological studies. In brine shrimp assay the copper(II) complexes revealed 4-fold higher activity (LD50 3.8 μg/ml) as compared with simple ligands (LD50 12.4 μg/ml). Similar findings were observed in potato disc antitumor assay with higher activities for copper(II) complexes (IC50 range 20.4-24.1 μg/ml) than ligands (IC50 range 40.5-48.3 μg/ml). DPPH assay was performed to determine the antioxidant potential of the compounds. Significant antioxidant activity was shown by the copper(II) complexes whereas simple ligands have shown no activity. In DNA protection assay significant protection behavior was exhibited by simple ligand molecules while copper(II) complexes showed neutral behavior (neither protective nor damaging).
Assessment, Change, and Complexity.
ERIC Educational Resources Information Center
Salem, Philip
2002-01-01
Describes three types of communication assessment: structural assessment; functional assessment; and process assessment. Contends that these traditional approaches are inappropriate for assessing organizational change. Proposes that complexity theory explicitly focuses on evolutionary processes and thus is a more appropriate foundation for…
Dodier, Philippe; Frischer, Josa M; Wang, Wei-Te; Auzinger, Thomas; Mallouhi, Ammar; Serles, Wolfgang; Gruber, Andreas; Knosp, Engelbert; Bavinzski, Gerhard
2018-05-01
To report long-term results after Pipeline Embolization Device (PED) implantation, characterize complex and standard aneurysms comprehensively, and introduce a modified flow disruption scale. We retrospectively reviewed a consecutive series of 40 patients harboring 59 aneurysms treated with 54 PEDs. Aneurysm complexity was assessed using our proposed classification. Immediate angiographic results were analyzed using previously published grading scales and our novel flow disruption scale. According to our new definition, 46 (78%) aneurysms were classified as complex. Most PED interventions were performed in the paraophthalmic and cavernous internal carotid artery segments. Excellent neurologic outcome (modified Rankin Scale 0 and 1) was observed in 94% of patients. Our data showed low permanent procedure-related mortality (0%) and morbidity (3%) rates. Long-term angiographic follow-up showed complete occlusion in 81% and near-total obliteration in a further 14%. Complete obliteration after deployment of a single PED was achieved in all standard aneurysms with 1-year follow-up. Our new scale was an independent predictor of aneurysm occlusion in a multivariable analysis. All aneurysms with a high flow disruption grade showed complete occlusion at follow-up regardless of PED number or aneurysm complexity. Treatment with the PED should be recognized as a primary management strategy for a highly selected cohort with predominantly complex intracranial aneurysms. We further show that a priori assessment of aneurysm complexity and our new postinterventional angiographic flow disruption scale predict occlusion probability and may help to determine the adequate number of per-aneurysm devices. Copyright © 2018 Elsevier Inc. All rights reserved.
Valenza, Gaetano; Iozzia, Luca; Cerina, Luca; Mainardi, Luca; Barbieri, Riccardo
2018-05-01
There is a fast growing interest in the use of non-contact devices for health and performance assessment in humans. In particular, the use of non-contact videophotoplethysmography (vPPG) has been recently demonstrated as a feasible way to extract cardiovascular information. Nevertheless, proper validation of vPPG-derived heartbeat dynamics is still missing. We aim to an in-depth validation of time-varying, linear and nonlinear/complex dynamics of the pulse rate variability extracted from vPPG. We apply inhomogeneous pointprocess nonlinear models to assess instantaneous measures defined in the time, frequency, and bispectral domains as estimated through vPPG and standard ECG. Instantaneous complexity measures, such as the instantaneous Lyapunov exponents and the recently defined inhomogeneous point-process approximate and sample entropy, were estimated as well. Video recordings were processed using our recently proposed method based on zerophase principal component analysis. Experimental data were gathered from 60 young healthy subjects (age: 24±3 years) undergoing postural changes (rest-to-stand maneuver). Group averaged results show that there is an overall agreement between linear and nonlinear/complexity indices computed from ECG and vPPG during resting state conditions. However, important differences are found, particularly in the bispectral and complexity domains, in recordings where the subjects has been instructed to stand up. Although significant differences exist between cardiovascular estimates from vPPG and ECG, it is very promising that instantaneous sympathovagal changes, as well as time-varying complex dynamics, were correctly identified, especially during resting state. In addition to a further improvement of the video signal quality, more research is advocated towards a more precise estimation of cardiovascular dynamics by a comprehensive nonlinear/complex paradigm specifically tailored to the non-contact quantification. Schattauer GmbH.
Shah, P R; Gupta, V; Haray, P N
2011-03-01
Laparoscopic colorectal surgery includes a range of operations with differing technical difficulty, and traditional parameters, such as conversion and complication rates, may not be sensitive enough to assess the complexity of these procedures. This study aims to define a reproducible and reliable tool for quantifying the total workload and the complexity of the case mix. This is a review of a single surgeon's 10-year experience. The intermediate equivalent value scoring system was used to code complexity of cases. To assess changes in the workload and case mix, the period has been divided into five phases. Three hundred and forty-nine laparoscopic operations were performed, of which there were 264 (75.6%) resections. The overall conversion rate was 17.8%, with progressive improvement over the phases. Complex major operation (CMO), as defined in the British United Provident Association (BUPA) schedule of procedures, accounted for 35% of the workload. In spite of similar numbers of cases in each phase, there was a steady increase in the workload score, correlating with the increasing complexity of the case mix. There was no significant difference in the conversion and complications rates between CMO and non-CMO. The paradoxical increase in the mean operating time with increasing experience corresponded to the progressive increase in the workload score, reflecting the increasing complexity of the case mix. This article establishes a reliable and reproducible tool for quantifying the total laparoscopic colorectal workload of an individual surgeon or of an entire department, while at the same time providing a measure of the complexity of the case mix. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.
Reinders, Jörg; Schröder, Josef; Dietl, Alexander; Schmid, Peter M.; Jungbauer, Carsten; Resch, Markus; Maier, Lars S.; Luchner, Andreas; Birner, Christoph
2017-01-01
Background Inhibitors of the renin angiotensin system and neprilysin (RAS-/NEP-inhibitors) proved to be extraordinarily beneficial in systolic heart failure. Furthermore, compelling evidence exists that impaired mitochondrial pathways are causatively involved in progressive left ventricular (LV) dysfunction. Consequently, we aimed to assess whether RAS-/NEP-inhibition can attenuate mitochondrial adaptations in experimental heart failure (HF). Methods and Results By progressive right ventricular pacing, distinct HF stages were induced in 15 rabbits, and 6 animals served as controls (CTRL). Six animals with manifest HF (CHF) were treated with the RAS-/NEP-inhibitor omapatrilat. Echocardiographic studies and invasive blood pressure measurements were undertaken during HF progression. Mitochondria were isolated from LV tissue, respectively, and further worked up for proteomic analysis using the SWATH technique. Enzymatic activities of citrate synthase and the electron transfer chain (ETC) complexes I, II, and IV were assessed. Ultrastructural analyses were performed by transmission electron microscopy. During progression to overt HF, intricate expression changes were mainly detected for proteins belonging to the tricarboxylic acid cycle, glucose and fat metabolism, and the ETC complexes, even though ETC complex I, II, or IV enzymatic activities were not significantly influenced. Treatment with a RAS-/NEP-inhibitor then reversed some maladaptive metabolic adaptations, positively influenced the decline of citrate synthase activity, and altered the composition of each respiratory chain complex, even though this was again not accompanied by altered ETC complex enzymatic activities. Finally, ultrastructural evidence pointed to a reduction of autophagolytic and degenerative processes with omapatrilat-treatment. Conclusions This study describes complex adaptations of the mitochondrial proteome in experimental tachycardia-induced heart failure and shows that a combined RAS-/NEP-inhibition can beneficially influence mitochondrial key pathways. PMID:28076404
NASA Astrophysics Data System (ADS)
Caenen, Annette; Pernot, Mathieu; Peirlinck, Mathias; Mertens, Luc; Swillens, Abigail; Segers, Patrick
2018-04-01
Shear wave elastography (SWE) is a potential tool to non-invasively assess cardiac muscle stiffness. This study focused on the effect of the orthotropic material properties and mechanical loading on the performance of cardiac SWE, as it is known that these factors contribute to complex 3D anisotropic shear wave propagation. To investigate the specific impact of these complexities, we constructed a finite element model with an orthotropic material law subjected to different uniaxial stretches to simulate SWE in the stressed cardiac wall. Group and phase speed were analyzed in function of tissue thickness and virtual probe rotation angle. Tissue stretching increased the group and phase speed of the simulated shear wave, especially in the direction of the muscle fiber. As the model provided access to the true fiber orientation and material properties, we assessed the accuracy of two fiber orientation extraction methods based on SWE. We found a higher accuracy (but lower robustness) when extracting fiber orientations based on the location of maximal shear wave speed instead of the angle of the major axis of the ellipsoidal group speed surface. Both methods had a comparable performance for the center region of the cardiac wall, and performed less well towards the edges. Lastly, we also assessed the (theoretical) impact of pathology on shear wave physics and characterization in the model. It was found that SWE was able to detect changes in fiber orientation and material characteristics, potentially associated with cardiac pathologies such as myocardial fibrosis. Furthermore, the model showed clearly altered shear wave patterns for the fibrotic myocardium compared to the healthy myocardium, which forms an initial but promising outcome of this modeling study.
ERIC Educational Resources Information Center
Pino, Maria Chiara; Mazza, Monica; Mariano, Melania; Peretti, Sara; Dimitriou, Dagmara; Masedu, Francesco; Valenti, Marco; Franco, Fabia
2017-01-01
Theory of mind (ToM) is impaired in individuals with autism spectrum disorders (ASD). The aims of this study were to: (i) examine the developmental trajectories of ToM abilities in two different mentalizing tasks in children with ASD compared to TD children; and (ii) to assess if a ToM simple test known as eyes-test could predict performance on…
Susan Hummel; Maureen Kennedy; E. Ashley Steel
2012-01-01
Given that resource managers rely on computer simulation models when it is difficult or expensive to obtain vital information directly, it is important to evaluate how well a particular model satisfies applications for which it is designed. The Forest Vegetation Simulator (FVS) is used widely for forest management in the US, and its scope and complexity continue to...
2007-09-01
20047 20434 20615 20092 21630 20091 20072 20773 20100 20027 20771 20062 20645 20740 20625 20018 20769 21624 20191 20449 20626 22001 20168 20677 20016...20027 20771 20062 20645 20740 20625 27141 20769 21624 27146 27149 27143 27151 27154 27148 27158 27157 27152 20191 27137 27163 27156 20449 27125 27136
Spacecraft software training needs assessment research
NASA Technical Reports Server (NTRS)
Ratcliff, Shirley; Golas, Katharine
1990-01-01
The problems were identified, along with their causes and potential solutions, that the management analysts were encountering in performing their jobs. It was concluded that sophisticated training applications would provide the most effective solution to a substantial portion of the analysts' problems. The remainder could be alleviated through the introduction of tools that could help make retrieval of the needed information from the vast and complex information resources feasible.
EMDS 3.0: A modeling framework for coping with complexity in environmental assessment and planning.
K.M. Reynolds
2006-01-01
EMDS 3.0 is implemented as an ArcMap® extension and integrates the logic engine of NetWeaver® to perform landscape evaluations, and the decision modeling engine of Criterium DecisionPlus® for evaluating management priorities. Key features of the system's evaluation component include abilities to (1) reason about large, abstract, multifaceted ecosystem management...
Communication Needs Assessment for Distributed Turbine Engine Control (Postprint)
2008-07-01
and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a...must be integrated into the communication network.10 These could include new sensors, actuators, or even complex subsystems for more advanced...No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
Innovative Tools to Assess Systems Thinking Ability
2017-12-01
simplicity and predictive behavior. The Journal of Abnormal and Social Psychology , 51, 263-268. Bieri, J. (1966). Cognitive complexity and personality...keyman relations on combat crew effectiveness. The Journal of Abnormal and Social Psychology , 51, 227. Fiedler, F. E., & Meuwese, W. A. T. (1963...Leader’s contribution to task performance in cohesive and uncohesive groups. The Journal of Abnormal and Social Psychology , 67, 83. Fiedler, F. E
Mirelman, Anat; Maidan, Inbal; Herman, Talia; Deutsch, Judith E; Giladi, Nir; Hausdorff, Jeffrey M
2011-02-01
Gait and cognitive disturbances are common in Parkinson's disease (PD). These deficits exacerbate fall risk and difficulties with mobility, especially during complex or dual-task walking. Traditional gait training generally fails to fully address these complex gait activities. Virtual reality (VR) incorporates principles of motor learning while delivering engaging and challenging training in complex environments. We hypothesized that VR may be applied to address the multifaceted deficits associated with fall risk in PD. Twenty patients received 18 sessions (3 per week) of progressive intensive treadmill training with virtual obstacles (TT + VR). Outcome measures included gait under usual-walking and dual-task conditions and while negotiating physical obstacles. Cognitive function and functional performance were also assessed. Patients were 67.1 ± 6.5 years and had a mean disease duration of 9.8 ± 5.6 years. Posttraining, gait speed significantly improved during usual walking, during dual task, and while negotiating overground obstacles. Dual-task gait variability decreased (ie, improved) and Trail Making Test times (parts A and B) improved. Gains in functional performance measures and retention effects, 1 month later, were also observed. To our knowledge, this is the first time that TT + VR has been used for gait training in PD. The results indicate that TT + VR is viable in PD and may significantly improve physical performance, gait during complex challenging conditions, and even certain aspects of cognitive function. These findings have important implications for understanding motor learning in the presence of PD and for treating fall risk in PD, aging, and others who share a heightened risk of falls.
Abrahamsen, Jenny Foss; Haugland, Cathrine; Ranhoff, Anette Hylen
2016-01-01
The objective of the present study was to investigate 1) the role of different admission diagnoses and 2) the degree of functional loss, on the rate of recovery of older patients after acute hospitalization. Furthermore, to compare the predictive value of simple assessments that can be carried out in a hospital lacking geriatric service, with assessments including geriatric screening tests. Prospective, observational cohort study, including 961community dwelling patients aged ≥ 70 years, transferred from medical, cardiac, pulmonary and orthopedic acute hospital departments to intermediate care in nursing home. Functional assessment with Barthel index (BI) was performed at admission to the nursing home and further geriatric assessment tests was performed during the first week. Logistic regression models with and without geriatric assessment were compared concerning the patients having 1) slow recovery (nursing home stay up to 2 months before return home) or, 2) poor recovery (dead or still in nursing home at 2 months). Slow recovery was independently associated with a diagnosis of non-vertebral fracture, BI subgroups 50-79 and <50, and, in the model including geriatric assessment, also with cognitive impairment. Poor recovery was more complex, and independently associated both with BI < 50, receiving home care before admission, higher age, admission with a non-vertebral fracture, and in the geriatric assessment model, cognitive impairment. Geriatric assessment is optimal for determining the recovery potential of older patients after acute hospitalization. As some hospitals lack geriatric services and ability to perform geriatric screening tests, a simpler assessment based on admission diagnoses and ADL function (BI), gives good information regarding the possible rehabilitation time and possibility to return home.
An Analysis of the Text Complexity of Leveled Passages in Four Popular Classroom Reading Assessments
ERIC Educational Resources Information Center
Toyama, Yukie; Hiebert, Elfrieda H.; Pearson, P. David
2017-01-01
This study investigated the complexity of leveled passages used in four classroom reading assessments. A total of 167 passages leveled for Grades 1-6 from these assessments were analyzed using four analytical tools of text complexity. More traditional, two-factor measures of text complexity found a general trend of fairly consistent across-grade…
Ziemann, Alexandra; Fouillet, Anne; Brand, Helmut; Krafft, Thomas
2016-01-01
Introduction Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors. Materials and Methods We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events. Results We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness. Conclusions We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings. PMID:27182731
Ziemann, Alexandra; Fouillet, Anne; Brand, Helmut; Krafft, Thomas
2016-01-01
Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors. We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events. We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness. We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings.
NASA Astrophysics Data System (ADS)
Dirnbeck, Matthew R.
Biological systems pose a challenge both for learners and teachers because they are complex systems mediated by feedback loops; networks of cause-effect relationships; and non-linear, hierarchical, and emergent properties. Teachers and scientists routinely use models to communicate ideas about complex systems. Model-based pedagogies engage students in model construction as a means of practicing higher-order reasoning skills. One such modeling paradigm describes systems in terms of their structures, behaviors, and functions (SBF). The SBF framework is a simple modeling language that has been used to teach about complex biological systems. Here, we used student-generated SBF models to assess students' causal reasoning in the context of a novel biological problem on an exam. We compared students' performance on the modeling problem, their performance on a set of knowledge/comprehension questions, and their performance on a set of scientific reasoning questions. We found that students who performed well on knowledge and understanding questions also constructed more networked, higher quality models. Previous studies have shown that learners' mental maps increase in complexity with increased expertise. We wanted to investigate if biology students with varying levels of training in biology showed a similar pattern when constructing system models. In a pilot study, we administered the same modeling problem to two additional groups of students: 1) an animal physiology course for students pursuing a major in biology (n=37) and 2) an exercise physiology course for non-majors (n=27). We found that there was no significant difference in model organization across the three student populations, but there was a significant difference in the ability to represent function between the three populations. Between the three groups the non-majors had the lowest function scores, the introductory majors had the middle function scores, and the upper division majors had the highest function scores.
Rajaraman, Gopalan; Totti, Federico; Bencini, Alessandro; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante
2009-05-07
Density functional calculations have been performed on a [Gd(iii)Cu(ii)] complex [L(1)CuGd(O(2)CCF(3))(3)(C(2)H(5)OH)(2)] () (where L(1) is N,N'-bis(3-ethoxy-salicylidene)-1,2-diamino-2-methylpropanato) with an aim of assessing a suitable functional within the DFT formalism to understand the mechanism of magnetic coupling and also to develop magneto-structural correlations. Encouraging results have been obtained in our studies where the application of B3LYP on the crystal structure of yields a ferromagnetic J value of -5.8 cm(-1) which is in excellent agreement with the experimental value of -4.42 cm(-1) (H = JS(Gd).S(Cu)). After testing varieties of functional for the method assessment we recommend the use of B3LYP with a combination of an effective core potential basis set. For all electron basis sets the relativistic effects should be incorporated either via the Douglas-Kroll-Hess (DKH) or zeroth-order regular approximation (ZORA) methods. A breakdown approach has been adopted where the calculations on several model complexes of have been performed. Their wave functions have been analysed thereafter (MO and NBO analysis) in order to gain some insight into the coupling mechanism. The results suggest, unambiguously, that the empty Gd(iii) 5d orbitals have a prominent role on the magnetic coupling. These 5d orbitals gain partial occupancy via Cu(ii) charge transfer as well as from the Gd(iii) 4f orbitals. A competing 4f-3d interaction associated with the symmetry of the complex has also been observed. The general mechanism hence incorporates both contributions and sets forth rather a prevailing mechanism for the 3d-4f coupling. The magneto-structural correlations reveal that there is no unique parameter which the J values are strongly correlated with, but an exponential relation to the J value found for the O-Cu-O-Gd dihedral angle parameter is the most credible correlation.
A methodology for spacecraft technology insertion analysis balancing benefit, cost, and risk
NASA Astrophysics Data System (ADS)
Bearden, David Allen
Emerging technologies are changing the way space missions are developed and implemented. Technology development programs are proceeding with the goal of enhancing spacecraft performance and reducing mass and cost. However, it is often the case that technology insertion assessment activities, in the interest of maximizing performance and/or mass reduction, do not consider synergistic system-level effects. Furthermore, even though technical risks are often identified as a large cost and schedule driver, many design processes ignore effects of cost and schedule uncertainty. This research is based on the hypothesis that technology selection is a problem of balancing interrelated (and potentially competing) objectives. Current spacecraft technology selection approaches are summarized, and a Methodology for Evaluating and Ranking Insertion of Technology (MERIT) that expands on these practices to attack otherwise unsolved problems is demonstrated. MERIT combines the modern techniques of technology maturity measures, parametric models, genetic algorithms, and risk assessment (cost and schedule) in a unique manner to resolve very difficult issues including: user-generated uncertainty, relationships between cost/schedule and complexity, and technology "portfolio" management. While the methodology is sufficiently generic that it may in theory be applied to a number of technology insertion problems, this research focuses on application to the specific case of small (<500 kg) satellite design. Small satellite missions are of particular interest because they are often developed under rigid programmatic (cost and schedule) constraints and are motivated to introduce advanced technologies into the design. MERIT is demonstrated for programs procured under varying conditions and constraints such as stringent performance goals, not-to-exceed costs, or hard schedule requirements. MERIT'S contributions to the engineering community are its: unique coupling of the aspects of performance, cost, and schedule; assessment of system level impacts of technology insertion; procedures for estimating uncertainties (risks) associated with advanced technology; and application of heuristics to facilitate informed system-level technology utilization decisions earlier in the conceptual design phase. MERIT extends the state of the art in technology insertion assessment selection practice and, if adopted, may aid designers in determining the configuration of complex systems that meet essential requirements in a timely, cost-effective manner.
ERIC Educational Resources Information Center
Ercikan, Kadriye; Oliveri, María Elena
2016-01-01
Assessing complex constructs such as those discussed under the umbrella of 21st century constructs highlights the need for a principled assessment design and validation approach. In our discussion, we made a case for three considerations: (a) taking construct complexity into account across various stages of assessment development such as the…
NASA Technical Reports Server (NTRS)
Fear, J. S.
1983-01-01
An assessment is made of the results of Phase 1 screening testing of current and advanced combustion system concepts using several broadened-properties fuels. The severity of each of several fuels-properties effects on combustor performance or liner life is discussed, as well as design techniques with the potential to offset these adverse effects. The selection of concepts to be pursued in Phase 2 refinement testing is described. This selection takes into account the relative costs and complexities of the concepts, the current outlook on pollutant emissions control, and practical operational problems.
NASA Astrophysics Data System (ADS)
Betta, G.; Capriglione, D.; Ferrigno, L.; Laracca, M.
2009-10-01
Power line telecommunication (PLT) technology offers cheap and fast ways for providing in-home broadband services and local area networking. Its main advantage is due to the possibility of using the pre-existing electrical grid as a communication channel. Nevertheless, technical challenges arise from the difficulty of operating on a hostile medium, not designed for communication purposes, characterized by complex channel modeling and by varying time response. These aspects put practical problems for designers and testers in the assessment of network quality of service performance parameters such as the throughput, the latency, the jitter, and the reliability. The measurement of these parameters has not yet been standardized so that there do not exist reference test set-ups and measurement methodologies (i.e. the type of isolation from the ac main, the observation time and the number of experiments, the measurement uncertainty and so on). Consequently, experiments executed by adopting different methods may lead to incompatible measurement results, thus making it also impossible to have reliable comparisons of different PLT modems. Really, the development of standard procedures is a very difficult task because the scenarios in which the PLT modems can work are very wide and then the application of an exhaustive approach (in which all the parameters influencing the PLT performance should be considered) would be very complex and time consuming, thus making the modem characterization very expensive. In this paper, the authors propose a methodological approach to develop an efficient measurement procedure able to reliably assess the performance of PLT modems (in terms of network quality of service parameters) with a minimum number of experiments. It is based on both creating a reconfigurable grid to which real disturbing loads are connected and implementing an original design of the experiment technique based on the effects of the uncertainty of the measurement results. Methods are also provided to analyze measurement results and to estimate the measurement uncertainty.
QMU as an approach to strengthening the predictive capabilities of complex models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Genetha Anne.; Boggs, Paul T.; Grace, Matthew D.
2010-09-01
Complex systems are made up of multiple interdependent parts, and the behavior of the entire system cannot always be directly inferred from the behavior of the individual parts. They are nonlinear and system responses are not necessarily additive. Examples of complex systems include energy, cyber and telecommunication infrastructures, human and animal social structures, and biological structures such as cells. To meet the goals of infrastructure development, maintenance, and protection for cyber-related complex systems, novel modeling and simulation technology is needed. Sandia has shown success using M&S in the nuclear weapons (NW) program. However, complex systems represent a significant challenge andmore » relative departure from the classical M&S exercises, and many of the scientific and mathematical M&S processes must be re-envisioned. Specifically, in the NW program, requirements and acceptable margins for performance, resilience, and security are well-defined and given quantitatively from the start. The Quantification of Margins and Uncertainties (QMU) process helps to assess whether or not these safety, reliability and performance requirements have been met after a system has been developed. In this sense, QMU is used as a sort of check that requirements have been met once the development process is completed. In contrast, performance requirements and margins may not have been defined a priori for many complex systems, (i.e. the Internet, electrical distribution grids, etc.), particularly not in quantitative terms. This project addresses this fundamental difference by investigating the use of QMU at the start of the design process for complex systems. Three major tasks were completed. First, the characteristics of the cyber infrastructure problem were collected and considered in the context of QMU-based tools. Second, UQ methodologies for the quantification of model discrepancies were considered in the context of statistical models of cyber activity. Third, Bayesian methods for optimal testing in the QMU framework were developed. This completion of this project represent an increased understanding of how to apply and use the QMU process as a means for improving model predictions of the behavior of complex systems. 4« less
Learning strategies during clerkships and their effects on clinical performance.
van Lohuizen, M T; Kuks, J B M; van Hell, E A; Raat, A N; Cohen-Schotanus, J
2009-11-01
Previous research revealed relationships between learning strategies and knowledge acquisition. During clerkships, however, students' focus widens beyond mere knowledge acquisition as they further develop overall competence. This shift in focus can influence learning strategy use. We explored which learning strategies were used during clerkships and their relationship to clinical performance. Participants were 113 (78%) clerks at the university hospital or one of six affiliated hospitals. Learning strategies were assessed using the 'Approaches to Learning at Work Questionnaire' (deep, surface-rational and surface-disorganised learning). Clinical performance was calculated by taking the mean of clinical assessment marks. The relationship between learning strategies and clinical performance was explored using regression analysis. Most students (89%) did not clearly prefer a single learning strategy. No relationship was found between learning strategies and clinical performance. Since overall competence comprises integration of knowledge, skills and professional behaviour, we assume that students without a clear preference use more than one learning strategy. Finding no relationship between learning strategies and clinical performance reflects the complexity of clinical learning. Depending on circumstances it may be important to obtain relevant information quickly (surface-rational) or understand material thoroughly (deep). In future research we will examine when and why students use different learning strategies.
Marshall, Gad A; Aghjayan, Sarah L; Dekhtyar, Maria; Locascio, Joseph J; Jethwani, Kamal; Amariglio, Rebecca E; Johnson, Keith A; Sperling, Reisa A; Rentz, Dorene M
2017-01-01
Impairment in activities of daily living is a major burden to both patients and caregivers. Mild impairment in instrumental activities of daily living is often seen at the stage of mild cognitive impairment. The field of Alzheimer's disease is moving toward earlier diagnosis and intervention and more sensitive and ecologically valid assessments of instrumental or complex activities of daily living are needed. The Harvard Automated Phone Task, a novel performance-based activities of daily living instrument, has the potential to fill this gap. To further validate the Harvard Automated Phone Task by assessing its longitudinal relationship to global cognition and specific cognitive domains in clinically normal elderly and individuals with mild cognitive impairment. In a longitudinal study, the Harvard Automated Phone Task was associated with cognitive measures using mixed effects models. The Harvard Automated Phone Task's ability to discriminate across diagnostic groups at baseline was also assessed. Academic clinical research center. Two hundred and seven participants (45 young normal, 141 clinically normal elderly, and 21 mild cognitive impairment) were recruited from the community and the memory disorders clinics at Brigham and Women's Hospital and Massachusetts General Hospital. Participants performed the three tasks of the Harvard Automated Phone Task, which consist of navigating an interactive voice response system to refill a prescription (APT-Script), select a new primary care physician (APT-PCP), and make a bank account transfer and payment (APT-Bank). The 3 tasks were scored based on time, errors, repetitions, and correct completion of the task. The primary outcome measure used for each of the tasks was total time adjusted for correct completion. The Harvard Automated Phone Task discriminated well between young normal, clinically normal elderly, and mild cognitive impairment participants (APT-Script: p<0.001; APT-PCP: p<0.001; APT-Bank: p=0.04). Worse baseline Harvard Automated Phone Task performance or worsening Harvard Automated Phone Task performance over time tracked with overall worse performance or worsening performance over time in global cognition, processing speed, executive function, and episodic memory. Prior cross-sectional and current longitudinal analyses have demonstrated the utility of the Harvard Automated Phone Task, a new performance-based activities of daily living instrument, in the assessment of early changes in complex activities of daily living in non-demented elderly at risk for Alzheimer's disease. Future studies will focus on cross-validation with other sensitive activities of daily living tests and Alzheimer's disease biomarkers.
Marshall, Gad A.; Aghjayan, Sarah L.; Dekhtyar, Maria; Locascio, Joseph J.; Jethwani, Kamal; Amariglio, Rebecca E.; Johnson, Keith A.; Sperling, Reisa A.; Rentz, Dorene M.
2017-01-01
Background Impairment in activities of daily living is a major burden to both patients and caregivers. Mild impairment in instrumental activities of daily living is often seen at the stage of mild cognitive impairment. The field of Alzheimer’s disease is moving toward earlier diagnosis and intervention and more sensitive and ecologically valid assessments of instrumental or complex activities of daily living are needed. The Harvard Automated Phone Task, a novel performance-based activities of daily living instrument, has the potential to fill this gap. Objective To further validate the Harvard Automated Phone Task by assessing its longitudinal relationship to global cognition and specific cognitive domains in clinically normal elderly and individuals with mild cognitive impairment. Design In a longitudinal study, the Harvard Automated Phone Task was associated with cognitive measures using mixed effects models. The Harvard Automated Phone Task’s ability to discriminate across diagnostic groups at baseline was also assessed. Setting Academic clinical research center. Participants Two hundred and seven participants (45 young normal, 141 clinically normal elderly, and 21 mild cognitive impairment) were recruited from the community and the memory disorders clinics at Brigham and Women’s Hospital and Massachusetts General Hospital. Measurements Participants performed the three tasks of the Harvard Automated Phone Task, which consist of navigating an interactive voice response system to refill a prescription (APT-Script), select a new primary care physician (APT-PCP), and make a bank account transfer and payment (APT-Bank). The 3 tasks were scored based on time, errors, repetitions, and correct completion of the task. The primary outcome measure used for each of the tasks was total time adjusted for correct completion. Results The Harvard Automated Phone Task discriminated well between young normal, clinically normal elderly, and mild cognitive impairment participants (APT-Script: p<0.001; APT-PCP: p<0.001; APT-Bank: p=0.04). Worse baseline Harvard Automated Phone Task performance or worsening Harvard Automated Phone Task performance over time tracked with overall worse performance or worsening performance over time in global cognition, processing speed, executive function, and episodic memory. Conclusions Prior cross-sectional and current longitudinal analyses have demonstrated the utility of the Harvard Automated Phone Task, a new performance-based activities of daily living instrument, in the assessment of early changes in complex activities of daily living in non-demented elderly at risk for Alzheimer’s disease. Future studies will focus on cross-validation with other sensitive activities of daily living tests and Alzheimer’s disease biomarkers. PMID:29124043
Jorm, Christine; Nisbet, Gillian; Roberts, Chris; Gordon, Christopher; Gentilcore, Stacey; Chen, Timothy F
2016-08-08
More and better interprofessional practice is predicated to be necessary to deliver good care to the patients of the future. However, universities struggle to create authentic learning activities that enable students to experience the dynamic interprofessional interactions common in healthcare and that can accommodate large interprofessional student cohorts. We investigated a large-scale mandatory interprofessional learning (IPL) activity for health professional students designed to promote social learning. A mixed methods research approach determined feasibility, acceptability and the extent to which student IPL outcomes were met. We developed an IPL activity founded in complexity theory to prepare students for future practice by engaging them in a self-directed (self-organised) learning activity with a diverse team, whose assessable products would be emergent creations. Complicated but authentic clinical cases (n = 12) were developed to challenge student teams (n = 5 or 6). Assessment consisted of a written management plan (academically marked) and a five-minute video (peer marked) designed to assess creative collaboration as well as provide evidence of integrated collective knowledge; the cohesive patient-centred management plan. All students (including the disciplines of diagnostic radiology, exercise physiology, medicine, nursing, occupational therapy, pharmacy, physiotherapy and speech pathology), completed all tasks successfully. Of the 26 % of students who completed the evaluation survey, 70 % agreed or strongly agreed that the IPL activity was worthwhile, and 87 % agreed or strongly agreed that their case study was relevant. Thematic analysis found overarching themes of engagement and collaboration-in-action suggesting that the IPL activity enabled students to achieve the intended learning objectives. Students recognised the contribution of others and described negotiation, collaboration and creation of new collective knowledge after working together on the complicated patient case studies. The novel video assessment was challenging to many students and contextual issues limited engagement for some disciplines. We demonstrated the feasibility and acceptability of a large scale IPL activity where design of cases, format and assessment tasks was founded in complexity theory. This theoretically based design enabled students to achieve complex IPL outcomes relevant to future practice. Future research could establish the psychometric properties of assessments of student performance in large-scale IPL events.
Removal of Cr(VI) from Aqueous Environments Using Micelle-Clay Adsorption
Qurie, Mohannad; Khamis, Mustafa; Manassra, Adnan; Ayyad, Ibrahim; Nir, Shlomo; Scrano, Laura; Bufo, Sabino A.; Karaman, Rafik
2013-01-01
Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques. PMID:24222757
Golan, Ofer; Baron-Cohen, Simon; Golan, Yael
2008-09-01
Children with autism spectrum conditions (ASC) have difficulties recognizing others' emotions. Research has mostly focused on basic emotion recognition, devoid of context. This study reports the results of a new task, assessing recognition of complex emotions and mental states in social contexts. An ASC group (n = 23) was compared to a general population control group (n = 24). Children with ASC performed lower than controls on the task. Using task scores, more than 87% of the participants were allocated to their group. This new test quantifies complex emotion and mental state recognition in life-like situations. Our findings reveal that children with ASC have residual difficulties in this aspect of empathy. The use of language-based compensatory strategies for emotion recognition is discussed.
A Framework to Guide the Assessment of Human-Machine Systems.
Stowers, Kimberly; Oglesby, James; Sonesh, Shirley; Leyva, Kevin; Iwig, Chelsea; Salas, Eduardo
2017-03-01
We have developed a framework for guiding measurement in human-machine systems. The assessment of safety and performance in human-machine systems often relies on direct measurement, such as tracking reaction time and accidents. However, safety and performance emerge from the combination of several variables. The assessment of precursors to safety and performance are thus an important part of predicting and improving outcomes in human-machine systems. As part of an in-depth literature analysis involving peer-reviewed, empirical articles, we located and classified variables important to human-machine systems, giving a snapshot of the state of science on human-machine system safety and performance. Using this information, we created a framework of safety and performance in human-machine systems. This framework details several inputs and processes that collectively influence safety and performance. Inputs are divided according to human, machine, and environmental inputs. Processes are divided into attitudes, behaviors, and cognitive variables. Each class of inputs influences the processes and, subsequently, outcomes that emerge in human-machine systems. This framework offers a useful starting point for understanding the current state of the science and measuring many of the complex variables relating to safety and performance in human-machine systems. This framework can be applied to the design, development, and implementation of automated machines in spaceflight, military, and health care settings. We present a hypothetical example in our write-up of how it can be used to aid in project success.
Oculometric Assessment of Dynamic Visual Processing
NASA Technical Reports Server (NTRS)
Liston, Dorion Bryce; Stone, Lee
2014-01-01
Eye movements are the most frequent (3 per second), shortest-latency (150-250 ms), and biomechanically simplest (1 joint, no inertial complexities) voluntary motor behavior in primates, providing a model system to assess sensorimotor disturbances arising from trauma, fatigue, aging, or disease states (e.g., Diefendorf and Dodge, 1908). We developed a 15-minute behavioral tracking protocol consisting of randomized stepramp radial target motion to assess several aspects of the behavioral response to dynamic visual motion, including pursuit initiation, steadystate tracking, direction-tuning, and speed-tuning thresholds. This set of oculomotor metrics provide valid and reliable measures of dynamic visual performance (Stone and Krauzlis, 2003; Krukowski and Stone, 2005; Stone et al, 2009; Liston and Stone, 2014), and may prove to be a useful assessment tool for functional impairments of dynamic visual processing.
Using Risk Assessment Methodologies to Meet Management Objectives
NASA Technical Reports Server (NTRS)
DeMott, D. L.
2015-01-01
Corporate and program objectives focus on desired performance and results. ?Management decisions that affect how to meet these objectives now involve a complex mix of: technology, safety issues, operations, process considerations, employee considerations, regulatory requirements, financial concerns and legal issues. ?Risk Assessments are a tool for decision makers to understand potential consequences and be in a position to reduce, mitigate or eliminate costly mistakes or catastrophic failures. Using a risk assessment methodology is only a starting point. ?A risk assessment program provides management with important input in the decision making process. ?A pro-active organization looks to the future to avoid problems, a reactive organization can be blindsided by risks that could have been avoided. ?You get out what you put in, how useful your program is will be up to the individual organization.
Patel, Amar A; Alhandi, Ali A; Milne, Edward; Dy, Christopher J; Latta, Loren L; Ouellette, E Anne
2016-03-01
To assess ulnocarpal joint stability after treatment of a peripheral triangular fibrocartilage complex (TFCC) injury with all-inside arthroscopic suture repair (SR), extensor retinaculum capsulorrhaphy with the Herbert sling (HS), and a combination of both (SR+HS). Twelve fresh-frozen, age-matched, upper-extremity specimens intact from the distal humerus were prepared. Nondestructive mechanical testing was performed to assess native ulnocarpal joint stability and load-displacement curves were recorded. A peripheral, ulnar-sided TFCC injury was created with arthroscopic assistance, and mechanical testing was performed. Each specimen was treated with SR or HS and testing was repeated. The 6 specimens treated with SR were then treated with HS (SR+HS), and testing was repeated. We used paired Student t tests for statistical analysis within cohorts. For all cohorts, there was an average increase in ulnar translation after the creation of a peripheral TFCC injury and an average decrease after repair. Herbert sling decreased translation by 21%, SR decreased translation by 12%, and SR+HS decreased translation by 26%. Suture repair plus HS and HS reduce ulnar translation the most after a peripheral TFCC injury, followed by SR alone. Ulnocarpal joint stability should be assessed clinically in patients with peripheral TFCC injury, and consideration should be made for using extensor capsulorrhaphy in isolation or as an adjunct to SR as a treatment option. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Cleland, Jennifer
2017-12-19
Medical schools typically assess how good their selection process is using metrics such as students' assessment performance and the academic success of alumni on later indicators of academic ability and clinical competence, such as Royal College of Physicians or specialty board examinations. To address global issues with the maldistribution of doctors and increasing numbers of new medical school graduates choosing not to work in a clinical context requires different measurements of medical school admissions processes, like those related to graduates' career outcomes (e.g., working in underserved regions and/or working in certain specialties). This shift in focus is not straightforward. Medical education is a complex social system where, intentionally or not, medical schools focus on reproducing cultural, historical, and social norms. Simple solutions are often proposed but they are insufficient to address these complex drivers. Instead it is time to step back and think very differently about medical school admissions. In this Invited Commentary, the author proposes new solutions to address these issues, including: bringing in to the medical school selection process the perspectives of other key stakeholders; increasing collaboration and dialogue across these stakeholder groups; changing the performance metrics by which medical schools are assessed in the global education marketplace; and developing and evaluating new selection processes and tools. Medical schools must engage more reflectively and collaboratively in debates about how to align medical school admissions and meeting the health care needs of the public.
Mühlbacher, Axel C; Kaczynski, Anika
2016-02-01
Healthcare decision making is usually characterized by a low degree of transparency. The demand for transparent decision processes can be fulfilled only when assessment, appraisal and decisions about health technologies are performed under a systematic construct of benefit assessment. The benefit of an intervention is often multidimensional and, thus, must be represented by several decision criteria. Complex decision problems require an assessment and appraisal of various criteria; therefore, a decision process that systematically identifies the best available alternative and enables an optimal and transparent decision is needed. For that reason, decision criteria must be weighted and goal achievement must be scored for all alternatives. Methods of multi-criteria decision analysis (MCDA) are available to analyse and appraise multiple clinical endpoints and structure complex decision problems in healthcare decision making. By means of MCDA, value judgments, priorities and preferences of patients, insurees and experts can be integrated systematically and transparently into the decision-making process. This article describes the MCDA framework and identifies potential areas where MCDA can be of use (e.g. approval, guidelines and reimbursement/pricing of health technologies). A literature search was performed to identify current research in healthcare. The results showed that healthcare decision making is addressing the problem of multiple decision criteria and is focusing on the future development and use of techniques to weight and score different decision criteria. This article emphasizes the use and future benefit of MCDA.
Bohari, Mohammed H; Sastry, G Narahari
2012-09-01
Efficient drug discovery programs can be designed by utilizing existing pools of knowledge from the already approved drugs. This can be achieved in one way by repositioning of drugs approved for some indications to newer indications. Complex of drug to its target gives fundamental insight into molecular recognition and a clear understanding of putative binding site. Five popular docking protocols, Glide, Gold, FlexX, Cdocker and LigandFit have been evaluated on a dataset of 199 FDA approved drug-target complexes for their accuracy in predicting the experimental pose. Performance for all the protocols is assessed at default settings, with root mean square deviation (RMSD) between the experimental ligand pose and the docked pose of less than 2.0 Å as the success criteria in predicting the pose. Glide (38.7 %) is found to be the most accurate in top ranked pose and Cdocker (58.8 %) in top RMSD pose. Ligand flexibility is a major bottleneck in failure of docking protocols to correctly predict the pose. Resolution of the crystal structure shows an inverse relationship with the performance of docking protocol. All the protocols perform optimally when a balanced type of hydrophilic and hydrophobic interaction or dominant hydrophilic interaction exists. Overall in 16 different target classes, hydrophobic interactions dominate in the binding site and maximum success is achieved for all the docking protocols in nuclear hormone receptor class while performance for the rest of the classes varied based on individual protocol.
Kalfa, David; Chai, Paul; Bacha, Emile
2014-08-01
A significant inverse relationship of surgical institutional and surgeon volumes to outcome has been demonstrated in many high-stakes surgical specialties. By and large, the same results were found in pediatric cardiac surgery, for which a more thorough analysis has shown that this relationship depends on case complexity and type of surgical procedures. Lower-volume programs tend to underperform larger-volume programs as case complexity increases. High-volume pediatric cardiac surgeons also tend to have better results than low-volume surgeons, especially at the more complex end of the surgery spectrum (e.g., the Norwood procedure). Nevertheless, this trend for lower mortality rates at larger centers is not universal. All larger programs do not perform better than all smaller programs. Moreover, surgical volume seems to account for only a small proportion of the overall between-center variation in outcome. Intraoperative technical performance is one of the most important parts, if not the most important part, of the therapeutic process and a critical component of postoperative outcome. Thus, the use of center-specific, risk-adjusted outcome as a tool for quality assessment together with monitoring of technical performance using a specific score may be more reliable than relying on volume alone. However, the relationship between surgical volume and outcome in pediatric cardiac surgery is strong enough that it ought to support adapted and well-balanced health care strategies that take advantage of the positive influence that higher center and surgeon volumes have on outcome.
What can we learn from PISA?: Investigating PISA's approach to scientific literacy
NASA Astrophysics Data System (ADS)
Schwab, Cheryl Jean
This dissertation is an investigation of the relationship between the multidimensional conception of scientific literacy and its assessment. The Programme for International Student Assessment (PISA), developed under the auspices of the Organization for Economic Cooperation and Development (OECD), offers a unique opportunity to evaluate the assessment of scientific literacy. PISA developed a continuum of performance for scientific literacy across three competencies (i.e., process, content, and situation). Foundational to the interpretation of PISA science assessment is PISA's definition of scientific literacy, which I argue incorporates three themes drawn from history: (a) scientific way of thinking, (b) everyday relevance of science, and (c) scientific literacy for all students. Three coordinated studies were conducted to investigate the validity of PISA science assessment and offer insight into the development of items to assess scientific 2 literacy. Multidimensional models of the internal structure of the PISA 2003 science items were found not to reflect the complex character of PISA's definition of scientific literacy. Although the multidimensional models across the three competencies significantly decreased the G2 statistic from the unidimensional model, high correlations between the dimensions suggest that the dimensions are similar. A cognitive analysis of student verbal responses to PISA science items revealed that students were using competencies of scientific literacy, but the competencies were not elicited by the PISA science items at the depth required by PISA's definition of scientific literacy. Although student responses contained only knowledge of scientific facts and simple scientific concepts, students were using more complex skills to interpret and communicate their responses. Finally the investigation of different scoring approaches and item response models illustrated different ways to interpret student responses to assessment items. These analyses highlighted the complexities of students' responses to the PISA science items and the use of the ordered partition model to accommodate different but equal item responses. The results of the three investigations are used to discuss ways to improve the development and interpretation of PISA's science items.
NASA Astrophysics Data System (ADS)
Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio
2017-07-01
The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.
Does linear separability really matter? Complex visual search is explained by simple search
Vighneshvel, T.; Arun, S. P.
2013-01-01
Visual search in real life involves complex displays with a target among multiple types of distracters, but in the laboratory, it is often tested using simple displays with identical distracters. Can complex search be understood in terms of simple searches? This link may not be straightforward if complex search has emergent properties. One such property is linear separability, whereby search is hard when a target cannot be separated from its distracters using a single linear boundary. However, evidence in favor of linear separability is based on testing stimulus configurations in an external parametric space that need not be related to their true perceptual representation. We therefore set out to assess whether linear separability influences complex search at all. Our null hypothesis was that complex search performance depends only on classical factors such as target-distracter similarity and distracter homogeneity, which we measured using simple searches. Across three experiments involving a variety of artificial and natural objects, differences between linearly separable and nonseparable searches were explained using target-distracter similarity and distracter heterogeneity. Further, simple searches accurately predicted complex search regardless of linear separability (r = 0.91). Our results show that complex search is explained by simple search, refuting the widely held belief that linear separability influences visual search. PMID:24029822
Navarro, Xavier
2016-02-01
Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Role of natural analogs in performance assessment of nuclear waste repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagar, B.; Wittmeyer, G.W.
1995-09-01
Mathematical models of the flow of water and transport of radionuclides in porous media will be used to assess the ability of deep geologic repositories to safely contain nuclear waste. These models must, in some sense, be validated to ensure that they adequately describe the physical processes occurring within the repository and its geologic setting. Inasmuch as the spatial and temporal scales over which these models must be applied in performance assessment are very large, validation of these models against laboratory and small-scale field experiments may be considered inadequate. Natural analogs may provide validation data that are representative of physico-chemicalmore » processes that occur over spatial and temporal scales as large or larger than those relevant to repository design. The authors discuss the manner in which natural analog data may be used to increase confidence in performance assessment models and conclude that, while these data may be suitable for testing the basic laws governing flow and transport, there is insufficient control of boundary and initial conditions and forcing functions to permit quantitative validation of complex, spatially distributed flow and transport models. The authors also express their opinion that, for collecting adequate data from natural analogs, resources will have to be devoted to them that are much larger than are devoted to them at present.« less
Wright, Regina S; Cole, Angela P; Ali, Mana K; Skinner, Jeannine; Whitfield, Keith E; Mwendwa, Denée T
2016-02-01
The objectives of the study were to examine whether measures of total obesity (body mass index [BMI]) and central obesity (waist circumference [WC] and waist-to-hip ratio [WHR]) are associated with cognitive function in African Americans, and whether sex moderates these associations. A sample of 194 African Americans, with a mean age of 58.97 years, completed a battery of cognitive tests and a self-reported health questionnaire. Height, weight, waist and hip circumference, and blood pressure were assessed. Linear regression analyses were run. Results suggested lower performance on measures of verbal fluency and complex attention/cognitive flexibility was accounted for by higher levels of central adiposity. Among men, higher WHR was more strongly related to complex attention/cognitive flexibility performance, but for women, WC was a salient predictor. Higher BMI was associated with poorer verbal memory performance among men, but poorer nonverbal memory performance among women. Findings suggest a need for healthy lifestyle interventions for African Americans to maintain healthy weight and cognitive function. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lam, Max; Eng, Goi Khia; Rapisarda, Attilio; Subramaniam, Mythily; Kraus, Michael; Keefe, Richard S E; Collinson, Simon Lowes
2013-03-01
The complex interplay of education, age, and cognitive performance on various neuropsychological tests is examined in the current study. New education indices were formulated and further investigated to reveal how age and education variances work together to account for performance on neuropsychological tests. Participants were 830 English-speaking ethnic Chinese. Neuropsychological measures such as Verbal Memory, Digit Sequencing, Token Motor Task, Semantic Fluency, Symbol Coding, Tower of London, Judgment of Line Orientation, and Matrix Reasoning of the Wechsler Adult Intelligence Scale were administered. Education was measured by total years of education and adjusted years of education, as well as ratios of both measures with age. Age and education were associated with neuropsychological performance. Adjusted years of education was associated with fluency and higher cognitive processes, while the ratio between adjusted years of education and age was associated with tasks implicating working memory. Changes in education modalities implicated tasks requiring language abilities. Education and age represent key neurodevelopmental milestones. In light of our findings, special consideration should to be given when neuropsychological assessments are carried out in cross-cultural contexts and in societies where educational systems and pedagogy tend to be complex. PsycINFO Database Record (c) 2013 APA, all rights reserved.
pFlogger: The Parallel Fortran Logging Utility
NASA Technical Reports Server (NTRS)
Clune, Tom; Cruz, Carlos A.
2017-01-01
In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or 'logger)' similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger - a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.
Plant, Jennifer L; Corden, Mark; Mourad, Michelle; O'Brien, Bridget C; van Schaik, Sandrijn M
2013-05-01
Self-directed learning requires self-assessment of learning needs and performance, a complex process that requires collecting and interpreting data from various sources. Learners' approaches to self-assessment likely vary depending on the learner and the context. The aim of this study was to gain insight into how learners process external information and apply their interpretation of this information to their self-assessment and learning during a structured educational activity. The study combined quantitative performance data with qualitative interview data. Pediatric residents led video-recorded simulated resuscitations and rated their crisis resource management skills on a validated 6-item instrument. Three independent observers rated the videos using the same instrument. During semi-structured interviews, each resident reviewed the video, rerated performance, discussed the self-assessment process, and interpreted feedback and observer scores. Transcripts were analyzed for themes. Sixteen residents participated. Residents' self-assessed scores ranged widely but usually fell within two points of the observers. They almost universally lowered their scores when self-assessing after the video review. Five major themes emerged from qualitative analysis of their interviews: (1) residents found self-assessment important and useful in certain contexts and conditions; (2) residents varied in their self-directed learning behaviors after the simulated resuscitation; (3) quantitative observer assessment had limited usefulness; (4) video review was difficult but useful; and (5) residents focused on their weaknesses and felt a need for constructive feedback to enhance learning. The residents in our study almost uniformly embraced the importance of self-assessment for all medical professionals. Even though video review had a negative impact on their self-assessment scores and was perceived as painful, residents saw this as the most useful aspect of the study exercises residents. They were less accepting of the quantitative assessment by observers. Residents explained their tendency to focus on weaknesses as a way to create an incentive for learning, demonstrating that self-assessment is closely linked to self-directed learning. How learners can use video review and external assessment most effectively to guide their self-directed learning deserves further study.
Optimal Sensor Selection for Health Monitoring Systems
NASA Technical Reports Server (NTRS)
Santi, L. Michael; Sowers, T. Shane; Aguilar, Robert B.
2005-01-01
Sensor data are the basis for performance and health assessment of most complex systems. Careful selection and implementation of sensors is critical to enable high fidelity system health assessment. A model-based procedure that systematically selects an optimal sensor suite for overall health assessment of a designated host system is described. This procedure, termed the Systematic Sensor Selection Strategy (S4), was developed at NASA John H. Glenn Research Center in order to enhance design phase planning and preparations for in-space propulsion health management systems (HMS). Information and capabilities required to utilize the S4 approach in support of design phase development of robust health diagnostics are outlined. A merit metric that quantifies diagnostic performance and overall risk reduction potential of individual sensor suites is introduced. The conceptual foundation for this merit metric is presented and the algorithmic organization of the S4 optimization process is described. Representative results from S4 analyses of a boost stage rocket engine previously under development as part of NASA's Next Generation Launch Technology (NGLT) program are presented.
NASA Astrophysics Data System (ADS)
El Kenawy, Ahmed M.; Lopez-Moreno, Juan I.; McCabe, Matthew F.; Vicente-Serrano, Sergio M.
2015-10-01
The performance of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA)-3B42 version 7 product is assessed over north-eastern Iberia, a region with considerable topographical gradients and complexity. Precipitation characteristics from a dense network of 656 rain gauges, spanning the period from 1998 to 2009, are used to evaluate TMPA-3B42 estimates on a daily scale. A set of accuracy estimators, including the relative bias, mean absolute error (MAE), root mean square error (RMSE) and Spearman coefficient was used to evaluate the results. The assessment indicates that TMPA-3B42 product is capable of describing the seasonal characteristics of the observed precipitation over most of the study domain. In particular, TMPA-3B42 precipitation agrees well with in situ measurements, with MAE less than 2.5 mm.day- 1, RMSE of 6.4 mm.day- 1 and Spearman correlation coefficients generally above 0.6. TMPA-3B42 provides improved accuracies in winter and summer, whereas it performs much worse in spring and autumn. Spatially, the retrieval errors show a consistent trend, with a general overestimation in regions of low altitude and underestimation in regions of heterogeneous terrain. TMPA-3B42 generally performs well over inland areas, while showing less skill in the coastal regions. A set of skill metrics, including a false alarm ratio [FAR], frequency bias index [FBI], the probability of detection [POD] and threat score [TS], is also used to evaluate TMPA performance under different precipitation thresholds (1, 5, 10, 25 and 50 mm.day- 1). The results suggest that TMPA-3B42 retrievals perform well in specifying moderate rain events (5-25 mm.day- 1), but show noticeably less skill in producing both light (< 1 mm.day- 1) and heavy rainfall thresholds (more than 50 mm.day- 1). Given the complexity of the terrain and the associated high spatial variability of precipitation in north-eastern Iberia, the results reveal that TMPA-3B42 data provide an informative addition to the spatial and temporal coverage of rain gauges in the domain, offering insights into characteristics of average precipitation and their spatial patterns. However, the satellite-based precipitation data should be used cautiously for monitoring extreme precipitation events, particularly over complex terrain. An improvement in precipitation algorithms is still needed to more accurately reproduce high precipitation events in areas of heterogeneous topography over this region.
Tracking Activities in Complex Settings Using Smart Environment Technologies.
Singla, Geetika; Cook, Diane J; Schmitter-Edgecombe, Maureen
2009-01-01
The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. A primary challenge that needs to be tackled to meet this need is the ability to recognize and track functional activities that people perform in their own homes and everyday settings. In this paper we look at approaches to perform real-time recognition of Activities of Daily Living. We enhance other related research efforts to develop approaches that are effective when activities are interrupted and interleaved. To evaluate the accuracy of our recognition algorithms we assess them using real data collected from participants performing activities in our on-campus smart apartment testbed.
Child care and parenting issues for the young stroke survivor.
Culler, Kathleen Hilko; Jasch, Christine; Scanlan, Susan
1994-03-01
Parenting is a complex and challenging task for any parent and it becomes even more complicated for an individual who experiences a disability. Literature addressing the parenting role for individuals who have experienced a stroke is limited. This article provides information on evaluation tools available for assessing an individual's ability to perform child care tasks and intervention strategies such as adaptive techniques and equipment for maximizing ability and promoting safe performance of child care tasks by the individual who has experienced a stroke. Product and literature resources that can be used by either the health professional or the parent with a stroke to facilitate parenting and child care task performance are included.