Accurate complex scaling of three dimensional numerical potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerioni, Alessandro; Genovese, Luigi; Duchemin, Ivan
2013-05-28
The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scalingmore » of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.« less
Walshe, Catherine
2011-12-01
Complex, incrementally changing, context dependent and variable palliative care services are difficult to evaluate. Case study research strategies may have potential to contribute to evaluating such complex interventions, and to develop this field of evaluation research. This paper explores definitions of case study (as a unit of study, a process, and a product) and examines the features of case study research strategies which are thought to confer benefits for the evaluation of complex interventions in palliative care settings. Ten features of case study that are thought to be beneficial in evaluating complex interventions in palliative care are discussed, drawing from exemplars of research in this field. Important features are related to a longitudinal approach, triangulation, purposive instance selection, comprehensive approach, multiple data sources, flexibility, concurrent data collection and analysis, search for proving-disproving evidence, pattern matching techniques and an engaging narrative. The limitations of case study approaches are discussed including the potential for subjectivity and their complex, time consuming and potentially expensive nature. Case study research strategies have great potential in evaluating complex interventions in palliative care settings. Three key features need to be exploited to develop this field: case selection, longitudinal designs, and the use of rival hypotheses. In particular, case study should be used in situations where there is interplay and interdependency between the intervention and its context, such that it is difficult to define or find relevant comparisons.
ERIC Educational Resources Information Center
Fenton, Angela; McFarland-Piazza, Laura
2014-01-01
This article explores the potential of tailoring the inherent principles of the Strengths Approach (McCashen, 2005) for preparing early childhood educators to work with children and families with complex needs. The term "Strengths Approach" (capitalized) is presented in the article as the name of a specific approach developed by St.…
Wagner, Thomas; Zeglis, Brian M.; Groveman, Sam; Hille, Claudia; Pöthig, Alexander; Francesconi, Lynn C.; Herrmann, Wolfgang A.; Kühn, Fritz E.; Reiner, Thomas
2015-01-01
A novel approach towards the synthesis of radiolabeled organometallic rhenium complexes is presented. We successfully synthesized and analyzed the first 188Re-labeled N-heterocyclic biscarbene complex, trans-dioxobis(1,1′-methylene-bis(3,3′-diisopropylimidazolium-2-ylidene))188rhenium(V) hexafluorophosphate (188Re-4) via transmetalation using an air-stable and moisture-stable silver(I) biscarbene complex. In order to assess the viability of this complex as a potential lead structure for in vivo applications, the stability of the 188Re-NHC complex was tested in physiologically relevant media. Ultimately, our studies illustrate that the complex we synthesized dissociates rapidly and is therefore unsuitable for use in radiopharmaceuticals. However, it is clear that the transmetalation approach we have developed is a rapid, robust, and mild method for the synthesis of new 188Re-labeled carbene complexes. PMID:24889257
Complexity versus certainty in understanding species’ declines
Sundstrom, Shana M.; Allen, Craig R.
2014-01-01
Traditional approaches to predict species declines (e.g. government processes or IUCN Red Lists), may be too simplistic and may therefore misguide management and conservation. Using complex systems approaches that account for scale-specific patterns and processes have the potential to overcome these limitations.
A vector space model approach to identify genetically related diseases.
Sarkar, Indra Neil
2012-01-01
The relationship between diseases and their causative genes can be complex, especially in the case of polygenic diseases. Further exacerbating the challenges in their study is that many genes may be causally related to multiple diseases. This study explored the relationship between diseases through the adaptation of an approach pioneered in the context of information retrieval: vector space models. A vector space model approach was developed that bridges gene disease knowledge inferred across three knowledge bases: Online Mendelian Inheritance in Man, GenBank, and Medline. The approach was then used to identify potentially related diseases for two target diseases: Alzheimer disease and Prader-Willi Syndrome. In the case of both Alzheimer Disease and Prader-Willi Syndrome, a set of plausible diseases were identified that may warrant further exploration. This study furthers seminal work by Swanson, et al. that demonstrated the potential for mining literature for putative correlations. Using a vector space modeling approach, information from both biomedical literature and genomic resources (like GenBank) can be combined towards identification of putative correlations of interest. To this end, the relevance of the predicted diseases of interest in this study using the vector space modeling approach were validated based on supporting literature. The results of this study suggest that a vector space model approach may be a useful means to identify potential relationships between complex diseases, and thereby enable the coordination of gene-based findings across multiple complex diseases.
Muegge, I; Martin, Y C
1999-03-11
A fast, simplified potential-based approach is presented that estimates the protein-ligand binding affinity based on the given 3D structure of a protein-ligand complex. This general, knowledge-based approach exploits structural information of known protein-ligand complexes extracted from the Brookhaven Protein Data Bank and converts it into distance-dependent Helmholtz free interaction energies of protein-ligand atom pairs (potentials of mean force, PMF). The definition of an appropriate reference state and the introduction of a correction term accounting for the volume taken by the ligand were found to be crucial for deriving the relevant interaction potentials that treat solvation and entropic contributions implicitly. A significant correlation between experimental binding affinities and computed score was found for sets of diverse protein-ligand complexes and for sets of different ligands bound to the same target. For 77 protein-ligand complexes taken from the Brookhaven Protein Data Bank, the calculated score showed a standard deviation from observed binding affinities of 1.8 log Ki units and an R2 value of 0.61. The best results were obtained for the subset of 16 serine protease complexes with a standard deviation of 1.0 log Ki unit and an R2 value of 0.86. A set of 33 inhibitors modeled into a crystal structure of HIV-1 protease yielded a standard deviation of 0.8 log Ki units from measured inhibition constants and an R2 value of 0.74. In contrast to empirical scoring functions that show similar or sometimes better correlation with observed binding affinities, our method does not involve deriving specific parameters that fit the observed binding affinities of protein-ligand complexes of a given training set. We compared the performance of the PMF score, Böhm's score (LUDI), and the SMOG score for eight different test sets of protein-ligand complexes. It was found that for the majority of test sets the PMF score performs best. The strength of the new approach presented here lies in its generality as no knowledge about measured binding affinities is needed to derive atomic interaction potentials. The use of the new scoring function in docking studies is outlined.
Traditional Chinese medicine: potential approaches from modern dynamical complexity theories.
Ma, Yan; Zhou, Kehua; Fan, Jing; Sun, Shuchen
2016-03-01
Despite the widespread use of traditional Chinese medicine (TCM) in clinical settings, proving its effectiveness via scientific trials is still a challenge. TCM views the human body as a complex dynamical system, and focuses on the balance of the human body, both internally and with its external environment. Such fundamental concepts require investigations using system-level quantification approaches, which are beyond conventional reductionism. Only methods that quantify dynamical complexity can bring new insights into the evaluation of TCM. In a previous article, we briefly introduced the potential value of Multiscale Entropy (MSE) analysis in TCM. This article aims to explain the existing challenges in TCM quantification, to introduce the consistency of dynamical complexity theories and TCM theories, and to inspire future system-level research on health and disease.
USDA-ARS?s Scientific Manuscript database
Detailed knowledge of the composition and toxigenic potential of the Fusarium graminearum species complex affecting maize crops in Brazil is lacking. A multilocus genotype approach was used to identify 539 isolates from three sub-collections: 1) maize kernels (n= 110) from five states spanning sout...
Ethical analysis in HTA of complex health interventions.
Lysdahl, Kristin Bakke; Oortwijn, Wija; van der Wilt, Gert Jan; Refolo, Pietro; Sacchini, Dario; Mozygemba, Kati; Gerhardus, Ansgar; Brereton, Louise; Hofmann, Bjørn
2016-03-22
In the field of health technology assessment (HTA), there are several approaches that can be used for ethical analysis. However, there is a scarcity of literature that critically evaluates and compares the strength and weaknesses of these approaches when they are applied in practice. In this paper, we analyse the applicability of some selected approaches for addressing ethical issues in HTA in the field of complex health interventions. Complex health interventions have been the focus of methodological attention in HTA. However, the potential methodological challenges for ethical analysis are as yet unknown. Six of the most frequently described and applied ethical approaches in HTA were critically assessed against a set of five characteristics of complex health interventions: multiple and changing perspectives, indeterminate phenomena, uncertain causality, unpredictable outcomes, and ethical complexity. The assessments are based on literature and the authors' experiences of developing, applying and assessing the approaches. The Interactive, participatory HTA approach is by its nature and flexibility, applicable across most complexity characteristics. Wide Reflective Equilibrium is also flexible and its openness to different perspectives makes it better suited for complex health interventions than more rigid conventional approaches, such as Principlism and Casuistry. Approaches developed for HTA purposes are fairly applicable for complex health interventions, which one could expect because they include various ethical perspectives, such as the HTA Core Model® and the Socratic approach. This study shows how the applicability for addressing ethical issues in HTA of complex health interventions differs between the selected ethical approaches. Knowledge about these differences may be helpful when choosing and applying an approach for ethical analyses in HTA. We believe that the study contributes to increasing awareness and interest of the ethical aspects of complex health interventions in general.
ERIC Educational Resources Information Center
Glanville, Ranulph
2007-01-01
This article considers the nature of complexity and design, as well as relationships between the two, and suggests that design may have much potential as an approach to improving human performance in situations seen as complex. It is developed against two backgrounds. The first is a world view that derives from second order cybernetics and radical…
Vectorization of copper complexes via biocompatible and biodegradable PLGA nanoparticles.
Courant, T; Roullin, V G; Cadiou, C; Delavoie, F; Molinari, M; Andry, M C; Gafa, V; Chuburu, F
2010-04-23
A double emulsion-solvent diffusion approach with fully biocompatible materials was used to encapsulate copper complexes within biodegradable nanoparticles, for which the release kinetics profiles have highlighted their potential use for a prolonged circulating administration.
Optical trapping for complex fluid microfluidics
NASA Astrophysics Data System (ADS)
Vestad, Tor; Oakey, John; Marr, David W. M.
2004-10-01
Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.
Nanobiotechnology for hemoglobin-based blood substitutes.
Chang, T M S
2009-04-01
Nanobiotechnology is the assembling of biological molecules into nanodimension complexes. This has been used for the preparation of polyhemoglobin formed by the assembling of hemoglobin molecules into a soluble nanodimension complex. New generations of this approach include the nanobiotechnological assembly of hemoglobin, catalase, and superoxide dismutase into a soluble nanodimension complex. This acts as an oxygen carrier and an antioxidant for those conditions with potential for ischemiareperfusion injuries. Another recent novel approach is the assembling of hemoglobin and fibrinogen into a soluble nanodimension polyhemoglobin-fibrinogen complex that acts as an oxygen carrier with platelet-like activity. This is potentially useful in cases of extensive blood loss requiring massive replacement using blood substitutes, resulting in the need for the replacement of platelets and clotting factors. A further step is the preparation of nanodimension artificial red blood cells that contain hemoglobin and all the enzymes present in red blood cells.
Zevin, Jason D; Miller, Brett
Reading research is increasingly a multi-disciplinary endeavor involving more complex, team-based science approaches. These approaches offer the potential of capturing the complexity of reading development, the emergence of individual differences in reading performance over time, how these differences relate to the development of reading difficulties and disability, and more fully understanding the nature of skilled reading in adults. This special issue focuses on the potential opportunities and insights that early and richly integrated advanced statistical and computational modeling approaches can provide to our foundational (and translational) understanding of reading. The issue explores how computational and statistical modeling, using both observed and simulated data, can serve as a contact point among research domains and topics, complement other data sources and critically provide analytic advantages over current approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; ...
2017-10-06
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
Metagenomic approaches are providing rapid and more robust means to investigate the composition and functional genetic potential of complex microbial communities. In this study, we utilized a metagenomic approach to further understand the functional diversity of the swine gut. To...
Marshall, Jamie L; Kwok, Yukwah; McMorran, Brian J; Baum, Linda G; Crosbie-Watson, Rachelle H
2013-09-01
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein-replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important potential therapeutic target. Here, we review current protein-replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. © 2013 FEBS.
Petticrew, Mark; Rehfuess, Eva; Noyes, Jane; Higgins, Julian P T; Mayhew, Alain; Pantoja, Tomas; Shemilt, Ian; Sowden, Amanda
2013-11-01
Although there is increasing interest in the evaluation of complex interventions, there is little guidance on how evidence from complex interventions may be reviewed and synthesized, and the relevance of the plethora of evidence synthesis methods to complexity is unclear. This article aims to explore how different meta-analytical approaches can be used to examine aspects of complexity; describe the contribution of various narrative, tabular, and graphical approaches to synthesis; and give an overview of the potential choice of selected qualitative and mixed-method evidence synthesis approaches. The methodological discussions presented here build on a 2-day workshop held in Montebello, Canada, in January 2012, involving methodological experts from the Campbell and Cochrane Collaborations and from other international review centers (Anderson L, Petticrew M, Chandler J, et al. systematic reviews of complex interventions. In press). These systematic review methodologists discussed the broad range of existing methods and considered the relevance of these methods to reviews of complex interventions. The evidence from primary studies of complex interventions may be qualitative or quantitative. There is a wide range of methodological options for reviewing and presenting this evidence. Specific contributions of statistical approaches include the use of meta-analysis, meta-regression, and Bayesian methods, whereas narrative summary approaches provide valuable precursors or alternatives to these. Qualitative and mixed-method approaches include thematic synthesis, framework synthesis, and realist synthesis. A suitable combination of these approaches allows synthesis of evidence for understanding complex interventions. Reviewers need to consider which aspects of complex interventions should be a focus of their review and what types of quantitative and/or qualitative studies they will be including, and this will inform their choice of review methods. These may range from standard meta-analysis through to more complex mixed-method synthesis and synthesis approaches that incorporate theory and/or user's perspectives. Copyright © 2013 Elsevier Inc. All rights reserved.
Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States
Anne G. Andreu; Dan Shea; Bernard R. Parresol; Roger D. Ottmar
2012-01-01
Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed...
Energy minimization for self-organized structure formation and actuation
NASA Astrophysics Data System (ADS)
Kofod, Guggi; Wirges, Werner; Paajanen, Mika; Bauer, Siegfried
2007-02-01
An approach for creating complex structures with embedded actuation in planar manufacturing steps is presented. Self-organization and energy minimization are central to this approach, illustrated with a model based on minimization of the hyperelastic free energy strain function of a stretched elastomer and the bending elastic energy of a plastic frame. A tulip-shaped gripper structure illustrates the technological potential of the approach. Advantages are simplicity of manufacture, complexity of final structures, and the ease with which any electroactive material can be exploited as means of actuation.
NASA Astrophysics Data System (ADS)
Yarevsky, E.; Yakovlev, S. L.; Larson, Å; Elander, N.
2015-06-01
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three-body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrödinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.
12 CFR 324.153 - Internal models approach (IMA).
Code of Federal Regulations, 2014 CFR
2014-01-01
... potential decline in value of its modeled equity exposures; (ii) Are commensurate with the size, complexity... produce an estimate of potential losses for its modeled equity exposures that is no less than the estimate of potential losses produced by a VaR methodology employing a 99th percentile one-tailed confidence...
González, Janneth; Gálvez, Angela; Morales, Ludis; Barreto, George E.; Capani, Francisco; Sierra, Omar; Torres, Yolima
2013-01-01
Three-dimensional models of the alpha- and beta-1 subunits of the calcium-activated potassium channel (BK) were predicted by threading modeling. A recursive approach comprising of sequence alignment and model building based on three templates was used to build these models, with the refinement of non-conserved regions carried out using threading techniques. The complex formed by the subunits was studied by means of docking techniques, using 3D models of the two subunits, and an approach based on rigid-body structures. Structural effects of the complex were analyzed with respect to hydrogen-bond interactions and binding-energy calculations. Potential interaction sites of the complex were determined by referencing a study of the difference accessible surface area (DASA) of the protein subunits in the complex. PMID:23492851
Qi, Xiao-Wen; Zhang, Jun-Ling; Zhao, Shu-Ping; Liang, Chang-Yong
2017-10-02
In order to be prepared against potential balance-breaking risks affecting economic development, more and more countries have recognized emergency response solutions evaluation (ERSE) as an indispensable activity in their governance of sustainable development. Traditional multiple criteria group decision making (MCGDM) approaches to ERSE have been facing simultaneous challenging characteristics of decision hesitancy and prioritization relations among assessing criteria, due to the complexity in practical ERSE problems. Therefore, aiming at the special type of ERSE problems that hold the two characteristics, we investigate effective MCGDM approaches by hiring interval-valued dual hesitant fuzzy set (IVDHFS) to comprehensively depict decision hesitancy. To exploit decision information embedded in prioritization relations among criteria, we firstly define an fuzzy entropy measure for IVDHFS so that its derivative decision models can avoid potential information distortion in models based on classic IVDHFS distance measures with subjective supplementing mechanism; further, based on defined entropy measure, we develop two fundamental prioritized operators for IVDHFS by extending Yager's prioritized operators. Furthermore, on the strength of above methods, we construct two hesitant fuzzy MCGDM approaches to tackle complex scenarios with or without known weights for decision makers, respectively. Finally, case studies have been conducted to show effectiveness and practicality of our proposed approaches.
Qi, Xiao-Wen; Zhang, Jun-Ling; Zhao, Shu-Ping; Liang, Chang-Yong
2017-01-01
In order to be prepared against potential balance-breaking risks affecting economic development, more and more countries have recognized emergency response solutions evaluation (ERSE) as an indispensable activity in their governance of sustainable development. Traditional multiple criteria group decision making (MCGDM) approaches to ERSE have been facing simultaneous challenging characteristics of decision hesitancy and prioritization relations among assessing criteria, due to the complexity in practical ERSE problems. Therefore, aiming at the special type of ERSE problems that hold the two characteristics, we investigate effective MCGDM approaches by hiring interval-valued dual hesitant fuzzy set (IVDHFS) to comprehensively depict decision hesitancy. To exploit decision information embedded in prioritization relations among criteria, we firstly define an fuzzy entropy measure for IVDHFS so that its derivative decision models can avoid potential information distortion in models based on classic IVDHFS distance measures with subjective supplementing mechanism; further, based on defined entropy measure, we develop two fundamental prioritized operators for IVDHFS by extending Yager’s prioritized operators. Furthermore, on the strength of above methods, we construct two hesitant fuzzy MCGDM approaches to tackle complex scenarios with or without known weights for decision makers, respectively. Finally, case studies have been conducted to show effectiveness and practicality of our proposed approaches. PMID:28974045
Omics/systems biology and cancer cachexia.
Gallagher, Iain J; Jacobi, Carsten; Tardif, Nicolas; Rooyackers, Olav; Fearon, Kenneth
2016-06-01
Cancer cachexia is a complex syndrome generated by interaction between the host and tumour cells with a background of treatment effects and toxicity. The complexity of the physiological pathways likely involved in cancer cachexia necessitates a holistic view of the relevant biology. Emergent properties are characteristic of complex systems with the result that the end result is more than the sum of its parts. Recognition of the importance of emergent properties in biology led to the concept of systems biology wherein a holistic approach is taken to the biology at hand. Systems biology approaches will therefore play an important role in work to uncover key mechanisms with therapeutic potential in cancer cachexia. The 'omics' technologies provide a global view of biological systems. Genomics, transcriptomics, proteomics, lipidomics and metabolomics approaches all have application in the study of cancer cachexia to generate systems level models of the behaviour of this syndrome. The current work reviews recent applications of these technologies to muscle atrophy in general and cancer cachexia in particular with a view to progress towards integration of these approaches to better understand the pathology and potential treatment pathways in cancer cachexia. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Cong, Jin; Liu, Haitao
2014-12-01
Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.
The sleeping brain as a complex system.
Olbrich, Eckehard; Achermann, Peter; Wennekers, Thomas
2011-10-13
'Complexity science' is a rapidly developing research direction with applications in a multitude of fields that study complex systems consisting of a number of nonlinear elements with interesting dynamics and mutual interactions. This Theme Issue 'The complexity of sleep' aims at fostering the application of complexity science to sleep research, because the brain in its different sleep stages adopts different global states that express distinct activity patterns in large and complex networks of neural circuits. This introduction discusses the contributions collected in the present Theme Issue. We highlight the potential and challenges of a complex systems approach to develop an understanding of the brain in general and the sleeping brain in particular. Basically, we focus on two topics: the complex networks approach to understand the changes in the functional connectivity of the brain during sleep, and the complex dynamics of sleep, including sleep regulation. We hope that this Theme Issue will stimulate and intensify the interdisciplinary communication to advance our understanding of the complex dynamics of the brain that underlies sleep and consciousness.
NASA Astrophysics Data System (ADS)
Pournamdari, M.; Hashim, M.
2014-02-01
Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.
Approximate median regression for complex survey data with skewed response.
Fraser, Raphael André; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett M; Pan, Yi
2016-12-01
The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling, and weighting. In this article, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS)'based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. © 2016, The International Biometric Society.
Approximate Median Regression for Complex Survey Data with Skewed Response
Fraser, Raphael André; Lipsitz, Stuart R.; Sinha, Debajyoti; Fitzmaurice, Garrett M.; Pan, Yi
2016-01-01
Summary The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling and weighting. In this paper, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS) based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. PMID:27062562
The research approached the large number and complexity of the analytes as four separate groups: technical toxaphene, toxaphene congeners (eight in number), chlordane, and organochlorine pesticides. This approach was advantageous because it eliminated potential interferences amon...
Machine Learning Approaches for Predicting Human Skin Sensitization Hazard
One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary for a substance to elicit a skin sensitization reaction suggests that no single in chemico, in vit...
Marionneau, Céline; Townsend, R Reid; Nerbonne, Jeanne M
2011-04-01
Voltage-gated K(+) (Kv) channels are key determinants of membrane excitability in the nervous and cardiovascular systems, functioning to control resting membrane potentials, shape action potential waveforms and influence the responses to neurotransmitters and neurohormones. Consistent with this functional diversity, multiple types of Kv currents, with distinct biophysical properties and cellular/subcellular distributions, have been identified. Rapidly activating and inactivating Kv currents, typically referred to as I(A) (A-type) in neurons, for example, regulate repetitive firing rates, action potential back-propagation (into dendrites) and modulate synaptic responses. Currents with similar properties, referred to as I(to,f) (fast transient outward), expressed in cardiomyocytes, control the early phase of myocardial action potential repolarization. A number of studies have demonstrated critical roles for pore-forming (α) subunits of the Kv4 subfamily in the generation of native neuronal I(A) and cardiac I(to,f) channels. Studies in heterologous cells have also suggested important roles for a number of Kv channel accessory and regulatory proteins in the generation of functional I(A) and I(to,f) channels. Quantitative mass spectrometry-based proteomic analysis is increasingly recognized as a rapid and, importantly, unbiased, approach to identify the components of native macromolecular protein complexes. The recent application of proteomic approaches to identify the components of native neuronal (and cardiac) Kv4 channel complexes has revealed even greater complexity than anticipated. The continued emphasis on development of improved biochemical and analytical proteomic methods seems certain to accelerate progress and to provide important new insights into the molecular determinants of native ion channel protein complexes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Heinemann, M; Larraza, A; Smith, K B
2003-06-01
The most difficult problem in shallow underwater acoustic communications is considered to be the time-varying multipath propagation because it impacts negatively on data rates. At high data rates the intersymbol interference requires adaptive algorithms on the receiver side that lead to computationally intensive and complex signal processing. A novel technique called time-reversal acoustics (TRA) can environmentally adapt the acoustic propagation effects of a complex medium in order to focus energy at a particular target range and depth. Using TRA, the multipath structure is reduced because all the propagation paths add coherently at the intended target location. This property of time-reversal acoustics suggests a potential application in the field of noncoherent acoustic communications. This work presents results of a tank scale experiment using an algorithm for rapid transmission of binary data in a complex underwater environment with the TRA approach. A simple 15-symbol code provides an example of the simplicity and feasibility of the approach. Covert coding due to the inherent scrambling induced by the environment at points other than the intended receiver is also investigated. The experiments described suggest a high potential in data rate for the time-reversal approach in underwater acoustic communications while keeping the computational complexity low.
Molecular Risk Factors for Schizophrenia.
Modai, Shira; Shomron, Noam
2016-03-01
Schizophrenia (SZ) is a complex and strongly heritable mental disorder, which is also associated with developmental-environmental triggers. As opposed to most diagnosable diseases (yet similar to other mental disorders), SZ diagnosis is commonly based on psychiatric evaluations. Recently, large-scale genetic and epigenetic approaches have been applied to SZ research with the goal of potentially improving diagnosis. Increased computational analyses and applied statistical algorithms may shed some light on the complex genetic and epigenetic pathways contributing to SZ pathogenesis. This review discusses the latest advances in molecular risk factors and diagnostics for SZ. Approaches such as these may lead to a more accurate definition of SZ and assist in creating extended and reliable clinical diagnoses with the potential for personalized treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterizing time series: when Granger causality triggers complex networks
NASA Astrophysics Data System (ADS)
Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong
2012-08-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.
Marshall, Jamie L.; Kwok, Yukwah; McMorran, Brian; Baum, Linda G.; Crosbie-Watson, Rachelle H.
2013-01-01
Three adhesion complexes span the sarcolemma and facilitate critical connections between the extracellular matrix and the actin cytoskeleton: the dystrophin- and utrophin-glycoprotein complexes and α7β1 integrin. Loss of individual protein components results in a loss of the entire protein complex and muscular dystrophy. Muscular dystrophy is a progressive, lethal wasting disease characterized by repetitive cycles of myofiber degeneration and regeneration. Protein replacement therapy offers a promising approach for the treatment of muscular dystrophy. Recently, we demonstrated that sarcospan facilitates protein-protein interactions amongst the adhesion complexes and is an important therapeutic target. Here, we review current protein replacement strategies, discuss the potential benefits of sarcospan expression, and identify important experiments that must be addressed for sarcospan to move to the clinic. PMID:23601082
LIFE-STAGE DEPENDENT DOSIMETRY AND POTENTIAL IMPACTS ON RISK ASSESSMENT APPROACHES
Increasingly reproductive and developmental toxicity studies are utilized in assessing the potential for adverse affects in pregnant women, nursing infants, and children. These studies largely have been utilized based upon the dose to the mother due to the complexity of describi...
Forward genetics by sequencing EMS variation-induced inbred lines
USDA-ARS?s Scientific Manuscript database
The dramatic increase in throughput of sequencing techniques enables gene cloning through pre-existing forward genetics approaches. We show that it also brings with it the potential to change the crossing designs and approach of forward genetics. To achieve this for eukaryotic organisms with complex...
Metal–organic complexation in the marine environment
Luther, George W; Rozan, Timothy F; Witter, Amy; Lewis, Brent
2001-01-01
We discuss the voltammetric methods that are used to assess metal–organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV) and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE). These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III) organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal–ligand complex(es) in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal–ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal–ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample. PMID:16759421
A Cystems Approach to Training and Complexity
ERIC Educational Resources Information Center
Kennedy, Bob
2005-01-01
Purpose: This paper aims to explore the quality profession's fascination with various models to depict complex interactive systems. Building on these and the outcome of a four-year action research programme, it provides a model which has potential for use by other professions. It has been tailored here to suit training and learning systems.…
Tissue engineering: Dentin - pulp complex regeneration approaches (A review).
Hashemi-Beni, Batool; Khoroushi, Maryam; Foroughi, Mohammad Reza; Karbasi, Saeed; Khademi, Abbas Ali
2017-10-01
Dental pulp is a highly specialized tissue that preserves teeth. It is important to maintain the capabilities of dental pulp before a pulpectomy by creating a local restoration of the dentin-pulp complex from residual dental pulp. The articles identified were selected by two reviewers based on entry and exit criteria. All relevant articles indexed in PubMed, Springer, Science Direct, and Scopus with no limitations from 1961 to 2016 were searched. Factors investigated in the selected articles included the following key words: Dentin-Pulp Complex, Regeneration, Tissue Engineering, Scaffold, Stem Cell, and Growth Factors. Of the 233 abstracts retrieved, the papers which were selected had evaluated the clinical aspects of the application of dentin-pulp regeneration. Generally, this study has introduced a new approach to provoke the regeneration of the dentin-pulp complex after a pulpectomy, so that exogenous growth factors and the scaffold are able to induce cells and blood vessels from the residual dental pulp in the tooth root canal. This study further presents a new strategy for local regeneration therapy of the dentin-pulp complex. This review summarizes the current knowledge of the potential beneficial effects derived from the interaction of dental materials with the dentin-pulp complex as well as potential future developments in this exciting field. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chia, Robert
2017-01-01
Purpose: This paper aims to articulate a practice-based, non-cognitivist approach to organizational learning. Design/methodology/approach: This paper explores the potential contribution of a process-based "practice turn" in social theory for understanding organizational learning. Findings: In complex, turbulent environments, robust…
Ion-exchange chromatography is the most often used analytical approach for arsenic
speciation, due to the weak-acid nature of several of its species. However, no single
technique can determine all potentially occurring arsenic species, especially in complex
e...
Distributed control systems with incomplete and uncertain information
NASA Astrophysics Data System (ADS)
Tang, Jingpeng
Scientific and engineering advances in wireless communication, sensors, propulsion, and other areas are rapidly making it possible to develop unmanned air vehicles (UAVs) with sophisticated capabilities. UAVs have come to the forefront as tools for airborne reconnaissance to search for, detect, and destroy enemy targets in relatively complex environments. They potentially reduce risk to human life, are cost effective, and are superior to manned aircraft for certain types of missions. It is desirable for UAVs to have a high level of intelligent autonomy to carry out mission tasks with little external supervision and control. This raises important issues involving tradeoffs between centralized control and the associated potential to optimize mission plans, and decentralized control with great robustness and the potential to adapt to changing conditions. UAV capabilities have been extended several ways through armament (e.g., Hellfire missiles on Predator UAVs), increased endurance and altitude (e.g., Global Hawk), and greater autonomy. Some known barriers to full-scale implementation of UAVs are increased communication and control requirements as well as increased platform and system complexity. One of the key problems is how UAV systems can handle incomplete and uncertain information in dynamic environments. Especially when the system is composed of heterogeneous and distributed UAVs, the overall system complexity is increased under such conditions. Presented through the use of published papers, this dissertation lays the groundwork for the study of methodologies for handling incomplete and uncertain information for distributed control systems. An agent-based simulation framework is built to investigate mathematical approaches (optimization) and emergent intelligence approaches. The first paper provides a mathematical approach for systems of UAVs to handle incomplete and uncertain information. The second paper describes an emergent intelligence approach for UAVs, again in handling incomplete and uncertain information. The third paper combines mathematical and emergent intelligence approaches.
Dynamically reconfigurable complex emulsions via tunable interfacial tensions
Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.
2015-01-01
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including multiple emulsions and Janus droplets which contain hemispheres of differing material, are of increasing importance1 in pharmaceuticals and medical diagnostics2, in the fabrication of microparticles and capsules3–5 for food6, in chemical separations7, in cosmetics8, and in dynamic optics9. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes10, to small-volume but more precise microfluidic methods11,12. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have greatly increased utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials. PMID:25719669
Dynamically reconfigurable complex emulsions via tunable interfacial tensions.
Zarzar, Lauren D; Sresht, Vishnu; Sletten, Ellen M; Kalow, Julia A; Blankschtein, Daniel; Swager, Timothy M
2015-02-26
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.
Dynamically reconfigurable complex emulsions via tunable interfacial tensions
NASA Astrophysics Data System (ADS)
Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.
2015-02-01
Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with controllably reconfigurable morphologies and the potential to create a wide range of responsive materials.
Hettinger, Lawrence J.; Kirlik, Alex; Goh, Yang Miang; Buckle, Peter
2015-01-01
Accurate comprehension and analysis of complex sociotechnical systems is a daunting task. Empirically examining, or simply envisioning the structure and behaviour of such systems challenges traditional analytic and experimental approaches as well as our everyday cognitive capabilities. Computer-based models and simulations afford potentially useful means of accomplishing sociotechnical system design and analysis objectives. From a design perspective, they can provide a basis for a common mental model among stakeholders, thereby facilitating accurate comprehension of factors impacting system performance and potential effects of system modifications. From a research perspective, models and simulations afford the means to study aspects of sociotechnical system design and operation, including the potential impact of modifications to structural and dynamic system properties, in ways not feasible with traditional experimental approaches. This paper describes issues involved in the design and use of such models and simulations and describes a proposed path forward to their development and implementation. Practitioner Summary: The size and complexity of real-world sociotechnical systems can present significant barriers to their design, comprehension and empirical analysis. This article describes the potential advantages of computer-based models and simulations for understanding factors that impact sociotechnical system design and operation, particularly with respect to process and occupational safety. PMID:25761227
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies.
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies. PMID:26325291
"Choose, Explore, Analyze": A Multi-Tiered Approach to Social Media in the Classroom
ERIC Educational Resources Information Center
Rosatelli, Meghan
2015-01-01
In this essay, social media are presented as complex tools that require student involvement from potential classroom implementation to the post-mortem. The "choose, explore, analyze" approach narrows social media options for the classroom based on student feedback and allows students and teachers to work together to understand why and…
Cao, Huaqiang; Zheng, He; Liu, Kaiyu; Warner, Jamie H
2010-02-01
Constructing complex nanostructures has become increasingly important in the development of hydrogen storage, self-cleaning materials, and the formation of chiral branched nanowires. Several approaches have been developed to generate complex nanostructures, which have led to novel applications. Combining biology and nanotechnology through the utilization of biomolecules to chemically template the growth of complex nanostructures during synthesis has aroused great interest. Herein, we use a biomolecule-assisted hydrothermal method to synthesize beta-phase Ni(OH)(2) peony-like complex nanostructures with second-order structure nanoplate structure. The novel beta-Ni(OH)(2) nanostructures exhibit high-power Ni/MH battery performance, close to the theoretical capacity of Ni(OH)(2), as well as controlled wetting behavior. We demonstrate that this bioinspired route to generate a complex nanostructure has applications in environmental protection and green secondary cells. This approach opens up opportunities for the synthesis and potential applications of new kinds of nanostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.
2013-01-01
A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited tomore » provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.« less
Hanafy, Amira S; Farid, Ragwa M; ElGamal, Safaa S
2015-01-01
Complexation was investigated as an approach to enhance the entrapment of the cationic neurotherapeutic drug, galantamine hydrobromide (GH) into cationic chitosan nanoparticles (CS-NPs) for Alzheimer's disease management intranasally. Biodegradable CS-NPs were selected due to their low production cost and simple preparation. The effects of complexation on CS-NPs physicochemical properties and uptake in rat brain were examined. Placebo CS-NPs were prepared by ionic gelation, and the parameters affecting their physicochemical properties were screened. The complex formed between GH and chitosan was detected by the FT-IR study. GH/chitosan complex nanoparticles (GH-CX-NPs) were prepared by ionic gelation, and characterized in terms of particle size, zeta potential, entrapment efficiency, in vitro release and stability for 4 and 25 °C for 3 months. Both placebo CS-NPs and GH-CX-NPs were visualized by transmission electron microscopy. Rhodamine-labeled GH-CX-NPs were prepared, administered to male Wistar rats intranasally, and their delivery to different brain regions was detected 1 h after administration using fluorescence microscopy and software-aided image processing. Optimized placebo CS-NPs and GH-CX-NPs had a diameter 182 and 190 nm, and a zeta potential of +40.4 and +31.6 mV, respectively. GH encapsulation efficiency and loading capacity were 23.34 and 9.86%, respectively. GH/chitosan complexation prolonged GH release (58.07% ± 6.67 after 72 h), improved formulation stability at 4 °C in terms of drug leakage and particle size, and showed insignificant effects on the physicochemical properties of the optimized placebo CS-NPs (p > 0.05). Rhodamine-labeled GH-CX-NPs were detected in the olfactory bulb, hippocampus, orbitofrontal and parietal cortices. Complexation is a promising approach to enhance the entrapment of cationic GH into the CS-NPs. It has insignificant effect on the physicochemical properties of CS-NPs. GH-CX-NPs were successfully delivered to different brain regions shortly after intranasal administration suggesting their potential as a delivery system for Alzheimer's disease management.
Complex adaptive systems: A new approach for understanding health practices.
Gomersall, Tim
2018-06-22
This article explores the potential of complex adaptive systems theory to inform behaviour change research. A complex adaptive system describes a collection of heterogeneous agents interacting within a particular context, adapting to each other's actions. In practical terms, this implies that behaviour change is 1) socially and culturally situated; 2) highly sensitive to small baseline differences in individuals, groups, and intervention components; and 3) determined by multiple components interacting "chaotically". Two approaches to studying complex adaptive systems are briefly reviewed. Agent-based modelling is a computer simulation technique that allows researchers to investigate "what if" questions in a virtual environment. Applied qualitative research techniques, on the other hand, offer a way to examine what happens when an intervention is pursued in real-time, and to identify the sorts of rules and assumptions governing social action. Although these represent very different approaches to complexity, there may be scope for mixing these methods - for example, by grounding models in insights derived from qualitative fieldwork. Finally, I will argue that the concept of complex adaptive systems offers one opportunity to gain a deepened understanding of health-related practices, and to examine the social psychological processes that produce health-promoting or damaging actions.
NASA Astrophysics Data System (ADS)
Pandiyan, Vimal Prabhu; Khare, Kedar; John, Renu
2017-09-01
A constrained optimization approach with faster convergence is proposed to recover the complex object field from a near on-axis digital holography (DH). We subtract the DC from the hologram after recording the object beam and reference beam intensities separately. The DC-subtracted hologram is used to recover the complex object information using a constrained optimization approach with faster convergence. The recovered complex object field is back propagated to the image plane using the Fresnel back-propagation method. The results reported in this approach provide high-resolution images compared with the conventional Fourier filtering approach and is 25% faster than the previously reported constrained optimization approach due to the subtraction of two DC terms in the cost function. We report this approach in DH and digital holographic microscopy using the U.S. Air Force resolution target as the object to retrieve the high-resolution image without DC and twin image interference. We also demonstrate the high potential of this technique in transparent microelectrode patterned on indium tin oxide-coated glass, by reconstructing a high-resolution quantitative phase microscope image. We also demonstrate this technique by imaging yeast cells.
Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops.
Hammer, Graeme L; van Oosterom, Erik; McLean, Greg; Chapman, Scott C; Broad, Ian; Harland, Peter; Muchow, Russell C
2010-05-01
Progress in molecular plant breeding is limited by the ability to predict plant phenotype based on its genotype, especially for complex adaptive traits. Suitably constructed crop growth and development models have the potential to bridge this predictability gap. A generic cereal crop growth and development model is outlined here. It is designed to exhibit reliable predictive skill at the crop level while also introducing sufficient physiological rigour for complex phenotypic responses to become emergent properties of the model dynamics. The approach quantifies capture and use of radiation, water, and nitrogen within a framework that predicts the realized growth of major organs based on their potential and whether the supply of carbohydrate and nitrogen can satisfy that potential. The model builds on existing approaches within the APSIM software platform. Experiments on diverse genotypes of sorghum that underpin the development and testing of the adapted crop model are detailed. Genotypes differing in height were found to differ in biomass partitioning among organs and a tall hybrid had significantly increased radiation use efficiency: a novel finding in sorghum. Introducing these genetic effects associated with plant height into the model generated emergent simulated phenotypic differences in green leaf area retention during grain filling via effects associated with nitrogen dynamics. The relevance to plant breeding of this capability in complex trait dissection and simulation is discussed.
[New approaches in pharmacology: numerical modelling and simulation].
Boissel, Jean-Pierre; Cucherat, Michel; Nony, Patrice; Dronne, Marie-Aimée; Kassaï, Behrouz; Chabaud, Sylvie
2005-01-01
The complexity of pathophysiological mechanisms is beyond the capabilities of traditional approaches. Many of the decision-making problems in public health, such as initiating mass screening, are complex. Progress in genomics and proteomics, and the resulting extraordinary increase in knowledge with regard to interactions between gene expression, the environment and behaviour, the customisation of risk factors and the need to combine therapies that individually have minimal though well documented efficacy, has led doctors to raise new questions: how to optimise choice and the application of therapeutic strategies at the individual rather than the group level, while taking into account all the available evidence? This is essentially a problem of complexity with dimensions similar to the previous ones: multiple parameters with nonlinear relationships between them, varying time scales that cannot be ignored etc. Numerical modelling and simulation (in silico investigations) have the potential to meet these challenges. Such approaches are considered in drug innovation and development. They require a multidisciplinary approach, and this will involve modification of the way research in pharmacology is conducted.
NASA Astrophysics Data System (ADS)
Lorang, M. S.; Stanford, J.; Steele, B.
2009-12-01
In this research we take a systems ecology approach to the evaluation of river floodplains by ranking them according to their energetic complexity at or near base flow conditions. The underlying hypothesis is that energetic complexity equates to a higher potential for sustaining maximum biological diversity, in particular as it relates to Salmonids. Fr number is a hydraulic index of relative specific energy in a flowing water column ranging from calm, no flow conditions where Fr = 0 to 0.8 at the onset of rapids and higher values approaching 1 or > at locations of breaking waves and hydraulic jumps. Most of the water flowing in a gravel-bed river exists in the transition range of Fr = 0.1 to 0.8, creating a complex array of potential hydrologic habitat commonly described through observation as riffles, runs, pools eddies, and so on. We use 1.6 m2 resolution multispectral satellite imagery to predict and map water depth (h), mean flow velocity (V) and Froude number (Fr=V/(gh)^0.5) by using a distribution-free statistical learner and error analysis approach. This approach links measures of V and h made from a raft deploying an acoustic Doppler profiler (ADP) and GPS with the reflectance characteristics from the satellite imagery (4 bands) that correspond to each ADP profile. This analysis of Fr space in combination with independent classification of depth and velocity provides physical metrics related to the energetic state of flow in the river at the time of image acquisition. We use these metrics, determined from a suite of 23 floodplains spread across the rim of the North Pacific (including British Columbia, Alaska and the Kamchatka Peninsula of Russia) and covering the range in fluvial geomorphic type from braided to meandering, to rank them in terms of energetic complexity.
The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states
NASA Astrophysics Data System (ADS)
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-01
The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.
The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-07
The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.
Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A
2016-04-28
The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation.
The value of support for aid workers in complex emergencies: a phenomenological study.
Hearns, Annette; Deeny, Pat
2007-01-01
More disasters worldwide are now classified as complex emergencies, thereby increasing the threat to life and limb and potentially increasing the psychosocial impact of the experience for aid workers. This study examines the concept of support as perceived by aid workers who had recent experience in complex emergencies. Using a phenomenological approach, 6 professional aid workers were interviewed about their experience. Aid workers who work in complex emergencies do not feel supported at the pre-deployment, during deployment, and after deployment phases. Failure to provide this support may cause disappointment, reduced self-worth, anger with the organization, and feeling of lack of achievement regarding self and the mission. While the study may be limited by the volunteer sample and potential bias in data collection, the findings reiterate a proverbial but important issue in relation to aid relief staff in complex emergencies.
Urrios, Arturo; de Nadal, Eulàlia; Solé, Ricard; Posas, Francesc
2016-01-01
Engineered synthetic biological devices have been designed to perform a variety of functions from sensing molecules and bioremediation to energy production and biomedicine. Notwithstanding, a major limitation of in vivo circuit implementation is the constraint associated to the use of standard methodologies for circuit design. Thus, future success of these devices depends on obtaining circuits with scalable complexity and reusable parts. Here we show how to build complex computational devices using multicellular consortia and space as key computational elements. This spatial modular design grants scalability since its general architecture is independent of the circuit’s complexity, minimizes wiring requirements and allows component reusability with minimal genetic engineering. The potential use of this approach is demonstrated by implementation of complex logical functions with up to six inputs, thus demonstrating the scalability and flexibility of this method. The potential implications of our results are outlined. PMID:26829588
Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks.
Olivon, Florent; Allard, Pierre-Marie; Koval, Alexey; Righi, Davide; Genta-Jouve, Gregory; Neyts, Johan; Apel, Cécile; Pannecouque, Christophe; Nothias, Louis-Félix; Cachet, Xavier; Marcourt, Laurence; Roussi, Fanny; Katanaev, Vladimir L; Touboul, David; Wolfender, Jean-Luc; Litaudon, Marc
2017-10-20
Natural products represent an inexhaustible source of novel therapeutic agents. Their complex and constrained three-dimensional structures endow these molecules with exceptional biological properties, thereby giving them a major role in drug discovery programs. However, the search for new bioactive metabolites is hampered by the chemical complexity of the biological matrices in which they are found. The purification of single constituents from such matrices requires such a significant amount of work that it should be ideally performed only on molecules of high potential value (i.e., chemical novelty and biological activity). Recent bioinformatics approaches based on mass spectrometry metabolite profiling methods are beginning to address the complex task of compound identification within complex mixtures. However, in parallel to these developments, methods providing information on the bioactivity potential of natural products prior to their isolation are still lacking and are of key interest to target the isolation of valuable natural products only. In the present investigation, we propose an integrated analysis strategy for bioactive natural products prioritization. Our approach uses massive molecular networks embedding various informational layers (bioactivity and taxonomical data) to highlight potentially bioactive scaffolds within the chemical diversity of crude extracts collections. We exemplify this workflow by targeting the isolation of predicted active and nonactive metabolites from two botanical sources (Bocquillonia nervosa and Neoguillauminia cleopatra) against two biological targets (Wnt signaling pathway and chikungunya virus replication). Eventually, the detection and isolation processes of a daphnane diterpene orthoester and four 12-deoxyphorbols inhibiting the Wnt signaling pathway and exhibiting potent antiviral activities against the CHIKV virus are detailed. Combined with efficient metabolite annotation tools, this bioactive natural products prioritization pipeline proves to be efficient. Implementation of this approach in drug discovery programs based on natural extract screening should speed up and rationalize the isolation of bioactive natural products.
Discrete Fourier Transform Analysis in a Complex Vector Space
NASA Technical Reports Server (NTRS)
Dean, Bruce H.
2009-01-01
Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.
Mertens, Franz G.; Cooper, Fred; Arevalo, Edward; ...
2016-09-15
Here in this paper, we discuss the behavior of solitary wave solutions of the nonlinear Schrödinger equation (NLSE) as they interact with complex potentials, using a four-parameter variational approximation based on a dissipation functional formulation of the dynamics. We concentrate on spatially periodic potentials with the periods of the real and imaginary part being either the same or different. Our results for the time evolution of the collective coordinates of our variational ansatz are in good agreement with direct numerical simulation of the NLSE. We compare our method with a collective coordinate approach of Kominis and give examples where themore » two methods give qualitatively different answers. In our variational approach, we are able to give analytic results for the small oscillation frequency of the solitary wave oscillating parameters which agree with the numerical solution of the collective coordinate equations. We also verify that instabilities set in when the slope dp(t)/dv(t) becomes negative when plotted parametrically as a function of time, where p(t) is the momentum of the solitary wave and v(t) the velocity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertens, Franz G.; Cooper, Fred; Arevalo, Edward
Here in this paper, we discuss the behavior of solitary wave solutions of the nonlinear Schrödinger equation (NLSE) as they interact with complex potentials, using a four-parameter variational approximation based on a dissipation functional formulation of the dynamics. We concentrate on spatially periodic potentials with the periods of the real and imaginary part being either the same or different. Our results for the time evolution of the collective coordinates of our variational ansatz are in good agreement with direct numerical simulation of the NLSE. We compare our method with a collective coordinate approach of Kominis and give examples where themore » two methods give qualitatively different answers. In our variational approach, we are able to give analytic results for the small oscillation frequency of the solitary wave oscillating parameters which agree with the numerical solution of the collective coordinate equations. We also verify that instabilities set in when the slope dp(t)/dv(t) becomes negative when plotted parametrically as a function of time, where p(t) is the momentum of the solitary wave and v(t) the velocity.« less
Hopper, Elizabeth K; Azar, Naomi; Bhattacharyya, Sriya; Malebranche, Dominique A; Brennan, Kelsey E
2018-01-01
This is the abstract that was submitted online with the paper: Despite the fact that many survivors of human trafficking have experienced complex trauma, there are no established interventions designed to specifically address these impacts. Leaders in the field of complex trauma have advocated for the need for somatic approaches to intervention. This paper presents STARS Experiential Group treatment, the first structured bodybased group intervention that has been designed to address complex trauma in survivors of human trafficking. Three pilot groups were run in residential settings with adolescent and adult survivors of sex trafficking. Two adaptations were utilized, with one focusing on application of expressive arts modalities and the other incorporating theater games. Qualitative results, using thematic analysis, identified several themes related to challenges and potential benefits of these groups. Potential benefits of the STARS groups were found in the areas of Interpersonal Relationships, Regulation, and Self/ Identity, with fourteen sub-themes further describing positive impacts. Challenges within these areas are explored, to inform the development of group interventions for trafficking survivors. The results of this paper suggest that experiential, somatically-oriented group treatment shows promise as an important element of holistic intervention with trafficking survivors.
Zhu, Yuyang; Yan, Maomao; Lasanajak, Yi; Smith, David F; Song, Xuezheng
2018-07-15
Despite the important advances in chemical and chemoenzymatic synthesis of glycans, access to large quantities of complex natural glycans remains a major impediment to progress in Glycoscience. Here we report a large-scale preparation of N-glycans from a kilogram of commercial soy proteins using oxidative release of natural glycans (ORNG). The high mannose and paucimannose N-glycans were labeled with a fluorescent tag and purified by size exclusion and multidimensional preparative HPLC. Side products are identified and potential mechanisms for the oxidative release of natural N-glycans from glycoproteins are proposed. This study demonstrates the potential for using the ORNG approach as a complementary route to synthetic approaches for the preparation of multi-milligram quantities of biomedically relevant complex glycans. Copyright © 2018 Elsevier Ltd. All rights reserved.
Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches.
Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A
2015-04-01
The nsP2 protease of chikungunya virus (CHIKV) is one of the essential components of viral replication and it plays a crucial role in the cleavage of polyprotein precursors for the viral replication process. Therefore, it is gaining attention as a potential drug design target against CHIKV. Based on the recently determined crystal structure of the nsP2 protease of CHIKV, this study identified potential inhibitors of the virus using structure-based approaches with a combination of molecular docking, virtual screening and molecular dynamics (MD) simulations. The top hit compounds from database searching, using the NCI Diversity Set II, with targeting at five potential binding sites of the nsP2 protease, were identified by blind dockings and focused dockings. These complexes were then subjected to MD simulations to investigate the stability and flexibility of the complexes and to gain a more detailed insight into the interactions between the compounds and the enzyme. The hydrogen bonds and hydrophobic contacts were characterized for the complexes. Through structural alignment, the catalytic residues Cys1013 and His1083 were identified in the N-terminal region of the nsP2 protease. The absolute binding free energies were estimated by the linear interaction energy approach and compared with the binding affinities predicted with docking. The results provide valuable information for the development of inhibitors for CHIKV. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.
Evaluating the potential human health and/or ecological risks associated with exposures to complex chemical mixtures in the ambient environment is one of the central challenges of chemical safety assessment and environmental protection. There is a need for approaches that can he...
ERIC Educational Resources Information Center
Steif, Paul S.; Fu, Luoting; Kara, Levent Burak
2016-01-01
Problems faced by engineering students involve multiple pathways to solution. Students rarely receive effective formative feedback on handwritten homework. This paper examines the potential for computer-based formative assessment of student solutions to multipath engineering problems. In particular, an intelligent tutor approach is adopted and…
Park, Hyunseok; Magee, Christopher L
2017-01-01
The aim of this paper is to propose a new method to identify main paths in a technological domain using patent citations. Previous approaches for using main path analysis have greatly improved our understanding of actual technological trajectories but nonetheless have some limitations. They have high potential to miss some dominant patents from the identified main paths; nonetheless, the high network complexity of their main paths makes qualitative tracing of trajectories problematic. The proposed method searches backward and forward paths from the high-persistence patents which are identified based on a standard genetic knowledge persistence algorithm. We tested the new method by applying it to the desalination and the solar photovoltaic domains and compared the results to output from the same domains using a prior method. The empirical results show that the proposed method can dramatically reduce network complexity without missing any dominantly important patents. The main paths identified by our approach for two test cases are almost 10x less complex than the main paths identified by the existing approach. The proposed approach identifies all dominantly important patents on the main paths, but the main paths identified by the existing approach miss about 20% of dominantly important patents.
2017-01-01
The aim of this paper is to propose a new method to identify main paths in a technological domain using patent citations. Previous approaches for using main path analysis have greatly improved our understanding of actual technological trajectories but nonetheless have some limitations. They have high potential to miss some dominant patents from the identified main paths; nonetheless, the high network complexity of their main paths makes qualitative tracing of trajectories problematic. The proposed method searches backward and forward paths from the high-persistence patents which are identified based on a standard genetic knowledge persistence algorithm. We tested the new method by applying it to the desalination and the solar photovoltaic domains and compared the results to output from the same domains using a prior method. The empirical results show that the proposed method can dramatically reduce network complexity without missing any dominantly important patents. The main paths identified by our approach for two test cases are almost 10x less complex than the main paths identified by the existing approach. The proposed approach identifies all dominantly important patents on the main paths, but the main paths identified by the existing approach miss about 20% of dominantly important patents. PMID:28135304
Post-closure biosphere assessment modelling: comparison of complex and more stylised approaches.
Walke, Russell C; Kirchner, Gerald; Xu, Shulan; Dverstorp, Björn
2015-10-01
Geological disposal facilities are the preferred option for high-level radioactive waste, due to their potential to provide isolation from the surface environment (biosphere) on very long timescales. Assessments need to strike a balance between stylised models and more complex approaches that draw more extensively on site-specific information. This paper explores the relative merits of complex versus more stylised biosphere models in the context of a site-specific assessment. The more complex biosphere modelling approach was developed by the Swedish Nuclear Fuel and Waste Management Co (SKB) for the Formark candidate site for a spent nuclear fuel repository in Sweden. SKB's approach is built on a landscape development model, whereby radionuclide releases to distinct hydrological basins/sub-catchments (termed 'objects') are represented as they evolve through land rise and climate change. Each of seventeen of these objects is represented with more than 80 site specific parameters, with about 22 that are time-dependent and result in over 5000 input values per object. The more stylised biosphere models developed for this study represent releases to individual ecosystems without environmental change and include the most plausible transport processes. In the context of regulatory review of the landscape modelling approach adopted in the SR-Site assessment in Sweden, the more stylised representation has helped to build understanding in the more complex modelling approaches by providing bounding results, checking the reasonableness of the more complex modelling, highlighting uncertainties introduced through conceptual assumptions and helping to quantify the conservatisms involved. The more stylised biosphere models are also shown capable of reproducing the results of more complex approaches. A major recommendation is that biosphere assessments need to justify the degree of complexity in modelling approaches as well as simplifying and conservative assumptions. In light of the uncertainties concerning the biosphere on very long timescales, stylised biosphere models are shown to provide a useful point of reference in themselves and remain a valuable tool for nuclear waste disposal licencing procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.
A technique for evaluating black-footed ferret habitat
Biggins, Dean E.; Miller, Brian J.; Hanebury, Louis R.; Oakleaf, Bob; Farmer, Adrian H.; Crete, Ron; Dood, Arnold
1993-01-01
In this paper, we provide a model and step-by-step procedures for rating a prairie dog (Cynomys sp.) complex for the reintroduction of black-footed ferrets (Mustela nigripes). An important factor in the model is an estimate of the number of black-footed ferret families a prairie dog complex can support for a year; thus, the procedures prescribe how to estimate the size of a prairie dog complex and the density of prairie dogs. Other attributes of the model are qualitative: arrangement of colonies, potential for plague and canine distemper, potential for prairie dog expansion, abundance of predators, future resource conflicts and ownership stability, and public and landowner attitudes about prairie dogs and black-footed ferrets. Because of the qualitative attributes in the model, a team approach is recommended for ranking complexes of prairie dogs for black-footed ferret reintroduction.
GRADIENT: Graph Analytic Approach for Discovering Irregular Events, Nascent and Temporal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Emilie
2015-03-31
Finding a time-ordered signature within large graphs is a computationally complex problem due to the combinatorial explosion of potential patterns. GRADIENT is designed to search and understand that problem space.
GRADIENT: Graph Analytic Approach for Discovering Irregular Events, Nascent and Temporal
Hogan, Emilie
2018-01-16
Finding a time-ordered signature within large graphs is a computationally complex problem due to the combinatorial explosion of potential patterns. GRADIENT is designed to search and understand that problem space.
Games as Tools to Address Conservation Conflicts.
Redpath, Steve M; Keane, Aidan; Andrén, Henrik; Baynham-Herd, Zachary; Bunnefeld, Nils; Duthie, A Bradley; Frank, Jens; Garcia, Claude A; Månsson, Johan; Nilsson, Lovisa; Pollard, Chris R J; Rakotonarivo, O Sarobidy; Salk, Carl F; Travers, Henry
2018-06-01
Conservation conflicts represent complex multilayered problems that are challenging to study. We explore the utility of theoretical, experimental, and constructivist approaches to games to help to understand and manage these challenges. We show how these approaches can help to develop theory, understand patterns in conflict, and highlight potentially effective management solutions. The choice of approach should be guided by the research question and by whether the focus is on testing hypotheses, predicting behaviour, or engaging stakeholders. Games provide an exciting opportunity to help to unravel the complexity in conflicts, while researchers need an awareness of the limitations and ethical constraints involved. Given the opportunities, this field will benefit from greater investment and development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?
Brezinski, Mark E; Rupnick, Maria
2016-01-01
Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems. PMID:29200743
Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?
Brezinski, Mark E; Rupnick, Maria
2014-07-01
Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems.
Kindermans, Pieter-Jan; Verschore, Hannes; Schrauwen, Benjamin
2013-10-01
In recent years, in an attempt to maximize performance, machine learning approaches for event-related potential (ERP) spelling have become more and more complex. In this paper, we have taken a step back as we wanted to improve the performance without building an overly complex model, that cannot be used by the community. Our research resulted in a unified probabilistic model for ERP spelling, which is based on only three assumptions and incorporates language information. On top of that, the probabilistic nature of our classifier yields a natural dynamic stopping strategy. Furthermore, our method uses the same parameters across 25 subjects from three different datasets. We show that our classifier, when enhanced with language models and dynamic stopping, improves the spelling speed and accuracy drastically. Additionally, we would like to point out that as our model is entirely probabilistic, it can easily be used as the foundation for complex systems in future work. All our experiments are executed on publicly available datasets to allow for future comparison with similar techniques.
Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.
He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming
2018-02-28
Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.
Association rule mining in the US Vaccine Adverse Event Reporting System (VAERS).
Wei, Lai; Scott, John
2015-09-01
Spontaneous adverse event reporting systems are critical tools for monitoring the safety of licensed medical products. Commonly used signal detection algorithms identify disproportionate product-adverse event pairs and may not be sensitive to more complex potential signals. We sought to develop a computationally tractable multivariate data-mining approach to identify product-multiple adverse event associations. We describe an application of stepwise association rule mining (Step-ARM) to detect potential vaccine-symptom group associations in the US Vaccine Adverse Event Reporting System. Step-ARM identifies strong associations between one vaccine and one or more adverse events. To reduce the number of redundant association rules found by Step-ARM, we also propose a clustering method for the post-processing of association rules. In sample applications to a trivalent intradermal inactivated influenza virus vaccine and to measles, mumps, rubella, and varicella (MMRV) vaccine and in simulation studies, we find that Step-ARM can detect a variety of medically coherent potential vaccine-symptom group signals efficiently. In the MMRV example, Step-ARM appears to outperform univariate methods in detecting a known safety signal. Our approach is sensitive to potentially complex signals, which may be particularly important when monitoring novel medical countermeasure products such as pandemic influenza vaccines. The post-processing clustering algorithm improves the applicability of the approach as a screening method to identify patterns that may merit further investigation. Copyright © 2015 John Wiley & Sons, Ltd.
Short-term bioassay of complex organic mixtures. Part II. Mutagenicity testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epler, J.L.; Clark, B.R.; Ho, C.
1978-01-01
The feasibility of using short-term mutagenicity assays to predict the potential biohazard of various crude and complex test materials has been examined in a coupled chemical and biological approach. The principal focus of the research has involved the preliminary chemical characterizatiion and preparation for bioassay, followed by testing in the Salmonella histidine reversion assay system. The mutagenicity tests are intended to act as predictors of profound long-range health effects such as mutagenesis and/or carcinogenesis; act as a mechanism to rapidly isolate and identify a hazardous agent in a complex mixture; and function as a measure of biological activity correlating baselinemore » data with changes in process conditions. Since complex mixtures can be fractionated and approached in these short-term assays, information reflecting on the actual compounds responsible for the biological effect may be accumulated.« less
A New Metrics for Countries' Fitness and Products' Complexity
NASA Astrophysics Data System (ADS)
Tacchella, Andrea; Cristelli, Matthieu; Caldarelli, Guido; Gabrielli, Andrea; Pietronero, Luciano
2012-10-01
Classical economic theories prescribe specialization of countries industrial production. Inspection of the country databases of exported products shows that this is not the case: successful countries are extremely diversified, in analogy with biosystems evolving in a competitive dynamical environment. The challenge is assessing quantitatively the non-monetary competitive advantage of diversification which represents the hidden potential for development and growth. Here we develop a new statistical approach based on coupled non-linear maps, whose fixed point defines a new metrics for the country Fitness and product Complexity. We show that a non-linear iteration is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We show that, given the paradigm of economic complexity, the correct and simplest approach to measure the competitiveness of countries is the one presented in this work. Furthermore our metrics appears to be economically well-grounded.
Assessment of global flood exposures - developing an appropriate approach
NASA Astrophysics Data System (ADS)
Millinship, Ian; Booth, Naomi
2015-04-01
Increasingly complex probabilistic catastrophe models have become the standard for quantitative flood risk assessments by re/insurance companies. On the one hand, probabilistic modelling of this nature is extremely useful; a large range of risk metrics can be output. However, they can be time consuming and computationally expensive to develop and run. Levels of uncertainty are persistently high despite, or perhaps because of, attempts to increase resolution and complexity. A cycle of dependency between modelling companies and re/insurers has developed whereby available models are purchased, models run, and both portfolio and model data 'improved' every year. This can lead to potential exposures in perils and territories that are not currently modelled being largely overlooked by companies, who may then face substantial and unexpected losses when large events occur in these areas. We present here an approach to assessing global flood exposures which reduces the scale and complexity of approach used and begins with the identification of hotspots where there is a significant exposure to flood risk. The method comprises four stages: i) compile consistent exposure information, ii) to apply reinsurance terms and conditions to calculate values exposed, iii) to assess the potential hazard using a global set of flood hazard maps, and iv) to identify potential risk 'hotspots' which include considerations of spatially and/or temporally clustered historical events, and local flood defences. This global exposure assessment is designed as a scoping exercise, and reveals areas or cities where the potential for accumulated loss is of significant interest to a reinsurance company, and for which there is no existing catastrophe model. These regions are then candidates for the development of deterministic scenarios, or probabilistic models. The key advantages of this approach will be discussed. These include simplicity and ability of business leaders to understand results, as well as ease and speed of analysis and the advantages this can offer in terms of monitoring changing exposures over time. Significantly, in many areas of the world, this increase in exposure is likely to have more of an impact on increasing catastrophe losses than potential anthropogenically driven changes in weather extremes.
The Nucleosome Remodeling and Deacetylase (NuRD) Complex in Development and Disease
Basta, Jeannine; Rauchman, Michael
2014-01-01
The Nucleosome Remodeling and Deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis and accelerated ageing. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer. PMID:24880148
Time-Based Indicators of Emotional Complexity: Interrelations and Correlates
Grühn, Daniel; Lumley, Mark A.; Diehl, Manfred; Labouvie-Vief, Gisela
2012-01-01
Emotional complexity has been regarded as one correlate of adaptive emotion regulation in adulthood. One novel and potentially valuable approach to operationalizing emotional complexity is to use reports of emotions obtained repeatedly in real time, which can generate a number of potential time-based indicators of emotional complexity. It is not known, however, how these indicators relate to each other, to other measures of affective complexity, such as those derived from a cognitive-developmental view of emotional complexity, or to measures of adaptive functioning, such as well-being. A sample of 109 adults, aged 23 to 90 years, participated in an experience-sampling study and reported their negative and positive affect five times a day for one week. Based on these reports, we calculated nine different time-based indicators potentially reflecting emotional complexity. Analyses showed three major findings: First, the indicators showed a diverse pattern of interrelations suggestive of four distinct components of emotional complexity. Second, age was generally not related to time-based indicators of emotional complexity; however, older adults showed overall low variability in negative affect. Third, time-based indicators of emotional complexity were either unrelated or inversely related to measures of adaptive functioning; that is, these measures tended to predict a less adaptive profile, such as lower subjective and psychological well-being. In sum, time-based indicators of emotional complexity displayed a more complex and less beneficial picture than originally thought. In particular, variability in negative affect seems to indicate suboptimal adjustments. Future research would benefit from collecting empirical data for the interrelations and correlates of time-based indicators of emotional complexity in different contexts. PMID:23163712
Dynamic complexity: plant receptor complexes at the plasma membrane.
Burkart, Rebecca C; Stahl, Yvonne
2017-12-01
Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Oligomerization of G protein-coupled receptors: computational methods.
Selent, J; Kaczor, A A
2011-01-01
Recent research has unveiled the complexity of mechanisms involved in G protein-coupled receptor (GPCR) functioning in which receptor dimerization/oligomerization may play an important role. Although the first high-resolution X-ray structure for a likely functional chemokine receptor dimer has been deposited in the Protein Data Bank, the interactions and mechanisms of dimer formation are not yet fully understood. In this respect, computational methods play a key role for predicting accurate GPCR complexes. This review outlines computational approaches focusing on sequence- and structure-based methodologies as well as discusses their advantages and limitations. Sequence-based approaches that search for possible protein-protein interfaces in GPCR complexes have been applied with success in several studies, but did not yield always consistent results. Structure-based methodologies are a potent complement to sequence-based approaches. For instance, protein-protein docking is a valuable method especially when guided by experimental constraints. Some disadvantages like limited receptor flexibility and non-consideration of the membrane environment have to be taken into account. Molecular dynamics simulation can overcome these drawbacks giving a detailed description of conformational changes in a native-like membrane. Successful prediction of GPCR complexes using computational approaches combined with experimental efforts may help to understand the role of dimeric/oligomeric GPCR complexes for fine-tuning receptor signaling. Moreover, since such GPCR complexes have attracted interest as potential drug target for diverse diseases, unveiling molecular determinants of dimerization/oligomerization can provide important implications for drug discovery.
Kassem, Ahmed Alaa; Abd El-Alim, Sameh Hosam; Basha, Mona; Salama, Abeer
2017-03-01
To enhance the oral antidiabetic effect of repaglinide (RG), a newly emerging approach, based on the combination of phospholipid complexation and micelle techniques, was employed. Repaglinide-phospholipid complex (RG-PLC) was prepared by the solvent-evaporation method then characterized using Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction (XPRD). The results revealed obvious disappearance of the characteristic peaks of the prepared RG-PLCs confirming the formation of drug-phospholipid complex. RG-PLC enriched micelles (RG-PLC-Ms) were prepared by the solvent-evaporation technique employing poloxamer 188 as surfactant. The prepared RG-PLC-Ms showed high drug encapsulation efficiencies (93.81-99.38%), with nanometric particle diameters (500.61-665.32nm) of monodisperse distribution and high stability (Zeta potential < -29.8mV). The in vitro release of RG from RG-PLC-Ms was pH-dependant according to the release media. A higher release pattern was reported in pH=1.2 compared to a more retarded release in pH=6.8 owing to two different kinetics of drug release. Oral antidiabetic effect of two optimized RG-PLC-M formulations was evaluated in an alloxan-induced diabetic rat model for 7-day treatment protocol. The two investigated formulations depicted normal blood glucose, serum malondialdehyde and insulin levels as well as an improved lipid profile, at the end of daily oral treatment, in contrast to RG marketed tablets implying enhanced antidiabetic effect of the drug. Hence, phospholipid-complex enriched micelles approach holds a promising potential for promoting the antidiabetic effect of RG. Copyright © 2016 Elsevier B.V. All rights reserved.
Kasthurirathne, Suranga N; Dixon, Brian E; Gichoya, Judy; Xu, Huiping; Xia, Yuni; Mamlin, Burke; Grannis, Shaun J
2016-04-01
Increased adoption of electronic health records has resulted in increased availability of free text clinical data for secondary use. A variety of approaches to obtain actionable information from unstructured free text data exist. These approaches are resource intensive, inherently complex and rely on structured clinical data and dictionary-based approaches. We sought to evaluate the potential to obtain actionable information from free text pathology reports using routinely available tools and approaches that do not depend on dictionary-based approaches. We obtained pathology reports from a large health information exchange and evaluated the capacity to detect cancer cases from these reports using 3 non-dictionary feature selection approaches, 4 feature subset sizes, and 5 clinical decision models: simple logistic regression, naïve bayes, k-nearest neighbor, random forest, and J48 decision tree. The performance of each decision model was evaluated using sensitivity, specificity, accuracy, positive predictive value, and area under the receiver operating characteristics (ROC) curve. Decision models parameterized using automated, informed, and manual feature selection approaches yielded similar results. Furthermore, non-dictionary classification approaches identified cancer cases present in free text reports with evaluation measures approaching and exceeding 80-90% for most metrics. Our methods are feasible and practical approaches for extracting substantial information value from free text medical data, and the results suggest that these methods can perform on par, if not better, than existing dictionary-based approaches. Given that public health agencies are often under-resourced and lack the technical capacity for more complex methodologies, these results represent potentially significant value to the public health field. Copyright © 2016 Elsevier Inc. All rights reserved.
Shrestha, Rehana; van Maarseveen, Martin
2018-01-01
Cumulative burden assessment (CuBA) has the potential to inform planning and decision-making on health disparities related to multiple environmental burdens. However, scholars have raised concerns about the social complexity to be dealt with while conducting CuBA, suggesting that it should be addressed in an adaptive, participatory and transdisciplinary (APT) approach. APT calls for deliberation among stakeholders by engaging them in a process of social learning and knowledge co-production. We propose an interactive stakeholder-based approach that facilitates a science-based stakeholder dialogue as an interface for combining different knowledge domains and engendering social learning in CuBA processes. Our approach allows participants to interact with each other using a flexible and auditable CuBA model implemented within a shared workspace. In two workshops we explored the usefulness and practicality of the approach. Results show that stakeholders were enabled to deliberate on cumulative burdens collaboratively, to learn about the technical uncertainties and social challenges associated with CuBA, and to co-produce knowledge in a realm of both technical and societal challenges. The paper identifies potential benefits relevant for responding to social complexity in the CuBA and further recommends exploration of how our approach can enable or constraint social learning and knowledge co-production in CuBA processes under various institutional, social and political contexts. PMID:29401676
The importance of multidisciplinary team management of patients with non-small-cell lung cancer
Ellis, P.M.
2012-01-01
Historically, a simple approach to the treatment of non-small-cell lung cancer (nsclc) was applicable to nearly all patients. Recently, a more complex treatment algorithm has emerged, driven by both pathologic and molecular phenotype. This increasing complexity underscores the importance of a multidisciplinary team approach to the diagnosis, treatment, and supportive care of patients with nsclc. A team approach to management is important at all points: from diagnosis, through treatment, to end-of-life care. It also needs to be patient-centred and must involve the patient in decision-making concerning treatment. Multidisciplinary case conferencing is becoming an integral part of care. Early integration of palliative care into the team approach appears to contribute significantly to quality of life and potentially extends overall survival for these patients. Supportive approaches, including psychosocial and nutrition support, should be routinely incorporated into the team approach. Challenges to the implementation of multidisciplinary care require institutional commitment and support. PMID:22787414
Hansen, Matthew; O’Brien, Kerth; Meckler, Garth; Chang, Anna Marie; Guise, Jeanne-Marie
2016-01-01
Mixed methods research has significant potential to broaden the scope of emergency care and specifically emergency medical services investigation. Mixed methods studies involve the coordinated use of qualitative and quantitative research approaches to gain a fuller understanding of practice. By combining what is learnt from multiple methods, these approaches can help to characterise complex healthcare systems, identify the mechanisms of complex problems such as medical errors and understand aspects of human interaction such as communication, behaviour and team performance. Mixed methods approaches may be particularly useful for out-of-hospital care researchers because care is provided in complex systems where equipment, interpersonal interactions, societal norms, environment and other factors influence patient outcomes. The overall objectives of this paper are to (1) introduce the fundamental concepts and approaches of mixed methods research and (2) describe the interrelation and complementary features of the quantitative and qualitative components of mixed methods studies using specific examples from the Children’s Safety Initiative-Emergency Medical Services (CSI-EMS), a large National Institutes of Health-funded research project conducted in the USA. PMID:26949970
Recent advances in QM/MM free energy calculations using reference potentials.
Duarte, Fernanda; Amrein, Beat A; Blaha-Nelson, David; Kamerlin, Shina C L
2015-05-01
Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way. Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field. The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed. As was already demonstrated 40 years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
Submillimeter and Far-Infrared Dielectric Properties of Thin Films
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Wollack, Edward J.
2016-01-01
The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approach typically reproduce the observed transmittance spectra with an accuracy of less than 4%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Alexander S.; Bryantsev, Vyacheslav S.
An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.
Ivanov, Alexander S.; Bryantsev, Vyacheslav S.
2016-06-20
An accurate description of solvation effects for trivalent lanthanide ions is a main stumbling block to the qualitative prediction of selectivity trends along the lanthanide series. In this work, we propose a simple model to describe the differential effect of solvation in the competitive binding of a ligand by lanthanide ions by including weakly co-ordinated counterions in the complexes of more than a +1 charge. The success of the approach to quantitatively reproduce selectivities obtained from aqueous phase complexation studies demonstrates its potential for the design and screening of new ligands for efficient size-based separation.
COMPUTATIONAL TOXICOLOGY: AN APPROACH FOR PRIORITIZING CHEMICAL RISK ASSESSMENTS
Characterizing toxic effects for industrial chemicals carries the challenge of focusing resources on the greatest potential risks for human health and the environment. The union of molecular modeling, bioinformatics and simulation of complex systems with emerging technologies suc...
The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy
Milosavljevic, Vedran; Haddad, Yazan; Merlos Rodrigo, Miguel Angel; Moulick, Amitava; Polanska, Hana; Hynek, David; Heger, Zbynek; Kopel, Pavel; Adam, Vojtech
2016-01-01
Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug. PMID:27727290
Cardiac Arrhythmia: In vivo screening in the zebrafish to overcome complexity in drug discovery.
Macrae, Calum A
2010-07-01
IMPORTANCE OF THE FIELD: Cardiac arrhythmias remain a major challenge for modern drug discovery. Clinical events are paroxysmal, often rare and may be asymptomatic until a highly morbid complication. Target selection is often based on limited information and though highly specific agents are identified in screening, the final efficacy is often compromised by unanticipated systemic responses, a narrow therapeutic index and substantial toxicities. AREAS COVERED IN THIS REVIEW: Our understanding of complexity of arrhythmogenesis has grown dramatically over the last two decades, and the range of potential disease mechanisms now includes pathways previously thought only tangentially involved in arrhythmia. This review surveys the literature on arrhythmia mechanisms from 1965 to the present day, outlines the complex biology underlying potentially each and every rhythm disturbance, and highlights the problems for rational target identification. The rationale for in vivo screening is described and the utility of the zebrafish for this approach and for complementary work in functional genomics is discussed. Current limitations of the model in this setting and the need for careful validation in new disease areas are also described. WHAT THE READER WILL GAIN: An overview of the complex mechanisms underlying most clinical arrhythmias, and insight into the limits of ion channel conductances as drug targets. An introduction to the zebrafish as a model organism, in particular for cardiovascular biology. Potential approaches to overcoming the hurdles to drug discovery in the face of complex biology including in vivo screening of zebrafish genetic disease models. TAKE HOME MESSAGE: In vivo screening in faithful disease models allows the effects of drugs on integrative physiology and disease biology to be captured during the screening process, in a manner agnostic to potential drug target or targets. This systematic strategy bypasses current gaps in our understanding of disease biology, but emphasizes the importance of the rigor of the disease model.
NASA Astrophysics Data System (ADS)
Tejada, I. G.; Brochard, L.; Stoltz, G.; Legoll, F.; Lelièvre, T.; Cancès, E.
2015-01-01
Molecular dynamics is a simulation technique that can be used to study failure in solids, provided the inter-atomic potential energy is able to account for the complex mechanisms at failure. Reactive potentials fitted on ab initio results or on experimental values have the ability to adapt to any complex atomic arrangement and, therefore, are suited to simulate failure. But the complexity of these potentials, together with the size of the systems considered, make simulations computationally expensive. In order to improve the efficiency of numerical simulations, simpler harmonic potentials can be used instead of complex reactive potentials in the regions where the system is close to its ground state and a harmonic approximation reasonably fits the actual reactive potential. However the validity and precision of such an approach has not been investigated in detail yet. We present here a methodology for constructing a reduced potential and combining it with the reactive one. We also report some important features of crack propagation that may be affected by the coupling of reactive and reduced potentials. As an illustrative case, we model a crystalline two-dimensional material (graphene) with a reactive empirical bond-order potential (REBO) or with harmonic potentials made of bond and angle springs that are designed to reproduce the second order approximation of REBO in the ground state. We analyze the consistency of this approximation by comparing the mechanical behavior and the phonon spectra of systems modeled with these potentials. These tests reveal when the anharmonicity effects appear. As anharmonic effects originate from strain, stress or temperature, the latter quantities are the basis for establishing coupling criteria for on the fly substitution in large simulations.
Self-organized minimum-energy structures for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Kofod, G.; Paajanen, M.; Bauer, S.
2006-11-01
When a stretched elastomer is laminated to a flat plastic frame, a complex shape is formed, which is termed a minimum-energy structure. It is shown how self-organized structures can be applied in the development of actuators with complex, out-of-plane actuationmodes. This unusual concept is then demonstrated in the case of dielectric elastomer actuators. Among advantages of this approach are the simplicity in manufacturing, the potential complexity and sophistication of the manufactured structures, and the general benefits of the concept when applied to other electro-mechanically active materials.
A framework for evaluating complex networks measurements
NASA Astrophysics Data System (ADS)
Comin, Cesar H.; Silva, Filipi N.; Costa, Luciano da F.
2015-06-01
A good deal of current research in complex networks involves the characterization and/or classification of the topological properties of given structures, which has motivated several respective measurements. This letter proposes a framework for evaluating the quality of complex-network measurements in terms of their effective resolution, degree of degeneracy and discriminability. The potential of the suggested approach is illustrated with respect to comparing the characterization of several model and real-world networks by using concentric and symmetry measurements. The results indicate a markedly superior performance for the latter type of mapping.
Gas Chromatography Data Classification Based on Complex Coefficients of an Autoregressive Model
Zhao, Weixiang; Morgan, Joshua T.; Davis, Cristina E.
2008-01-01
This paper introduces autoregressive (AR) modeling as a novel method to classify outputs from gas chromatography (GC). The inverse Fourier transformation was applied to the original sensor data, and then an AR model was applied to transform data to generate AR model complex coefficients. This series of coefficients effectively contains a compressed version of all of the information in the original GC signal output. We applied this method to chromatograms resulting from proliferating bacteria species grown in culture. Three types of neural networks were used to classify the AR coefficients: backward propagating neural network (BPNN), radial basis function-principal component analysismore » (RBF-PCA) approach, and radial basis function-partial least squares regression (RBF-PLSR) approach. This exploratory study demonstrates the feasibility of using complex root coefficient patterns to distinguish various classes of experimental data, such as those from the different bacteria species. This cognition approach also proved to be robust and potentially useful for freeing us from time alignment of GC signals.« less
Chakravarti, Deboki; Cho, Jang Hwan; Weinberg, Benjamin H; Wong, Nicole M; Wong, Wilson W
2016-04-18
Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.
Engineering of routes to heparin and related polysaccharides.
Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J
2012-01-01
Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.
The genome editing toolbox: a spectrum of approaches for targeted modification.
Cheng, Joseph K; Alper, Hal S
2014-12-01
The increase in quality, quantity, and complexity of recombinant products heavily drives the need to predictably engineer model and complex (mammalian) cell systems. However, until recently, limited tools offered the ability to precisely manipulate their genomes, thus impeding the full potential of rational cell line development processes. Targeted genome editing can combine the advances in synthetic and systems biology with current cellular hosts to further push productivity and expand the product repertoire. This review highlights recent advances in targeted genome editing techniques, discussing some of their capabilities and limitations and their potential to aid advances in pharmaceutical biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mathematical modeling of cancer metabolism.
Medina, Miguel Ángel
2018-04-01
Systemic approaches are needed and useful for the study of the very complex issue of cancer. Modeling has a central position in these systemic approaches. Metabolic reprogramming is nowadays acknowledged as an essential hallmark of cancer. Mathematical modeling could contribute to a better understanding of cancer metabolic reprogramming and to identify new potential ways of therapeutic intervention. Herein, I review several alternative approaches to metabolic modeling and their current and future impact in oncology. Copyright © 2018 Elsevier B.V. All rights reserved.
Functional assessment of human enhancer activities using whole-genome STARR-sequencing.
Liu, Yuwen; Yu, Shan; Dhiman, Vineet K; Brunetti, Tonya; Eckart, Heather; White, Kevin P
2017-11-20
Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome. In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements. WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.
Mental models: an alternative evaluation of a sensemaking approach to ethics instruction.
Brock, Meagan E; Vert, Andrew; Kligyte, Vykinta; Waples, Ethan P; Sevier, Sydney T; Mumford, Michael D
2008-09-01
In spite of the wide variety of approaches to ethics training it is still debatable which approach has the highest potential to enhance professionals' integrity. The current effort assesses a novel curriculum that focuses on metacognitive reasoning strategies researchers use when making sense of day-to-day professional practices that have ethical implications. The evaluated trainings effectiveness was assessed by examining five key sensemaking processes, such as framing, emotion regulation, forecasting, self-reflection, and information integration that experts and novices apply in ethical decision-making. Mental models of trained and untrained graduate students, as well as faculty, working in the field of physical sciences were compared using a think-aloud protocol 6 months following the ethics training. Evaluation and comparison of the mental models of participants provided further validation evidence for sensemaking training. Specifically, it was found that trained students applied metacognitive reasoning strategies learned during training in their ethical decision-making that resulted in complex mental models focused on the objective assessment of the situation. Mental models of faculty and untrained students were externally-driven with a heavy focus on autobiographical processes. The study shows that sensemaking training has a potential to induce shifts in researchers' mental models by making them more cognitively complex via the use of metacognitive reasoning strategies. Furthermore, field experts may benefit from sensemaking training to improve their ethical decision-making framework in highly complex, novel, and ambiguous situations.
Multivariate Models for Prediction of Human Skin Sensitization Hazard.
One of the lnteragency Coordinating Committee on the Validation of Alternative Method's (ICCVAM) top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary to produce skin sensiti...
A Tiered Approach to Evaluating Salinity Sources in Water at Oil and Gas Production Sites.
Paquette, Shawn M; Molofsky, Lisa J; Connor, John A; Walker, Kenneth L; Hopkins, Harley; Chakraborty, Ayan
2017-09-01
A suspected increase in the salinity of fresh water resources can trigger a site investigation to identify the source(s) of salinity and the extent of any impacts. These investigations can be complicated by the presence of naturally elevated total dissolved solids or chlorides concentrations, multiple potential sources of salinity, and incomplete data and information on both naturally occurring conditions and the characteristics of potential sources. As a result, data evaluation techniques that are effective at one site may not be effective at another. In order to match the complexity of the evaluation effort to the complexity of the specific site, this paper presents a strategic tiered approach that utilizes established techniques for evaluating and identifying the source(s) of salinity in an efficient step-by-step manner. The tiered approach includes: (1) a simple screening process to evaluate whether an impact has occurred and if the source is readily apparent; (2) basic geochemical characterization of the impacted water resource(s) and potential salinity sources coupled with simple visual and statistical data evaluation methods to determine the source(s); and (3) advanced laboratory analyses (e.g., isotopes) and data evaluation methods to identify the source(s) and the extent of salinity impacts where it was not otherwise conclusive. A case study from the U.S. Gulf Coast is presented to illustrate the application of this tiered approach. © 2017, National Ground Water Association.
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.
NASA Astrophysics Data System (ADS)
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays.
Zacharewski, T
1998-01-01
It has been suggested that chemicals and complex mixtures capable of modulating the endocrine system may contribute to adverse health, reproduction, and developmental effects in humans and wildlife. These effects include increased incidence of hormone-dependent cancers, compromised reproductive fitness, and abnormal reproductive system development. In response to public concern, regulatory agencies in North America and Europe are formulating potential strategies to systematically test chemicals and complex mixtures for their endocrine-disrupting activities. Because of the complexity of the endocrine system and the number of potential endocrine disruptor targets, a tiered approach involving a complementary battery of short- and long-term in vivo and in vitro assays that assesses both receptor and nonreceptor-mediated mechanisms of action is being considered. However, the available established assays use a limited number of end points, and significant information gaps exist for other potential targets in the endocrine system. In addition to discussing the merits and limitations of the assays that may be adopted, this paper also highlights potential problems associated with the use of a tiered testing strategy. PMID:9599705
Genome-wide detection of intervals of genetic heterogeneity associated with complex traits
Llinares-López, Felipe; Grimm, Dominik G.; Bodenham, Dean A.; Gieraths, Udo; Sugiyama, Mahito; Rowan, Beth; Borgwardt, Karsten
2015-01-01
Motivation: Genetic heterogeneity, the fact that several sequence variants give rise to the same phenotype, is a phenomenon that is of the utmost interest in the analysis of complex phenotypes. Current approaches for finding regions in the genome that exhibit genetic heterogeneity suffer from at least one of two shortcomings: (i) they require the definition of an exact interval in the genome that is to be tested for genetic heterogeneity, potentially missing intervals of high relevance, or (ii) they suffer from an enormous multiple hypothesis testing problem due to the large number of potential candidate intervals being tested, which results in either many false positives or a lack of power to detect true intervals. Results: Here, we present an approach that overcomes both problems: it allows one to automatically find all contiguous sequences of single nucleotide polymorphisms in the genome that are jointly associated with the phenotype. It also solves both the inherent computational efficiency problem and the statistical problem of multiple hypothesis testing, which are both caused by the huge number of candidate intervals. We demonstrate on Arabidopsis thaliana genome-wide association study data that our approach can discover regions that exhibit genetic heterogeneity and would be missed by single-locus mapping. Conclusions: Our novel approach can contribute to the genome-wide discovery of intervals that are involved in the genetic heterogeneity underlying complex phenotypes. Availability and implementation: The code can be obtained at: http://www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/sis.html. Contact: felipe.llinares@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26072488
Global high-frequency source imaging accounting for complexity in Green's functions
NASA Astrophysics Data System (ADS)
Lambert, V.; Zhan, Z.
2017-12-01
The general characterization of earthquake source processes at long periods has seen great success via seismic finite fault inversion/modeling. Complementary techniques, such as seismic back-projection, extend the capabilities of source imaging to higher frequencies and reveal finer details of the rupture process. However, such high frequency methods are limited by the implicit assumption of simple Green's functions, which restricts the use of global arrays and introduces artifacts (e.g., sweeping effects, depth/water phases) that require careful attention. This motivates the implementation of an imaging technique that considers the potential complexity of Green's functions at high frequencies. We propose an alternative inversion approach based on the modest assumption that the path effects contributing to signals within high-coherency subarrays share a similar form. Under this assumption, we develop a method that can combine multiple high-coherency subarrays to invert for a sparse set of subevents. By accounting for potential variability in the Green's functions among subarrays, our method allows for the utilization of heterogeneous global networks for robust high resolution imaging of the complex rupture process. The approach also provides a consistent framework for examining frequency-dependent radiation across a broad frequency spectrum.
Progress in surgical and nonsurgical approaches for hepatocellular carcinoma treatment.
Yegin, Ender Gunes; Oymaci, Erkan; Karatay, Emrah; Coker, Ahmet
2016-06-01
Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy, frequently occurs in the setting of a chronically diseased organ, with multiple confounding factors making its management challenging. HCC represents one of the leading causes of cancer-related mortality globally with a rising trend of incidence in some of the developed countries, which indicates the need for better surgical and nonsurgical management strategies. PubMed database was searched for relevant articles in English on the issue of HCC management. Surgical resection represents a potentially curative option for appropriate candidates with tumors detected at earlier stages and with well-preserved liver function. The long-term outcome of surgery is impaired by a high rate of recurrence. Surgical approaches are being challenged by local ablative therapies such as radiofrequency ablation and microwave ablation in selected patients. Liver transplantation offers potential cure for HCC and also correction of underlying liver disease, and minimizes the risk of recurrence, but is reserved for patients within a set of criteria proposed for a prudent allocation in the shortage of donor organs. Transcatheter locoregional therapies have become the palliative standard allowing local control for intermediate stage patients with noninvasive multinodular or large HCC who are beyond the potentially curative options. The significant survival benefit with the multikinase inhibitor sorafenib for advanced HCC has shifted the direction of research regarding systemic treatment toward molecular therapies targeting the disregulated pathways of hepatocarcinogenesis. Potential benefit is suggested from simultaneous or sequential multimodal therapies, and optimal combinations are being investigated. Despite the striking progress in preclinical studies of HCC immunotherapy and gene therapy, extensive clinical trials are required to achieve successful clinical applications of these innovative approaches. Treatment decisions have become increasingly complex for HCC with the availability of multiple surgical and nonsurgical therapeutic options and require a comprehensive, multidisciplinary approach.
Multivariate Models for Prediction of Skin Sensitization Hazard in Humans
One of ICCVAM’s highest priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary for a substance to elicit a skin sensitization reaction suggests that no single alternative me...
Multivariate Models for Prediction of Human Skin Sensitization Hazard
One of ICCVAM’s top priorities is the development and evaluation of non-animal approaches to identify potential skin sensitizers. The complexity of biological events necessary for a substance to elicit a skin sensitization reaction suggests that no single alternative method...
Peripheral neuropathy in complex inherited diseases: an approach to diagnosis.
Rossor, Alexander M; Carr, Aisling S; Devine, Helen; Chandrashekar, Hoskote; Pelayo-Negro, Ana Lara; Pareyson, Davide; Shy, Michael E; Scherer, Steven S; Reilly, Mary M
2017-10-01
Peripheral neuropathy is a common finding in patients with complex inherited neurological diseases and may be subclinical or a major component of the phenotype. This review aims to provide a clinical approach to the diagnosis of this complex group of patients by addressing key questions including the predominant neurological syndrome associated with the neuropathy, for example, spasticity, the type of neuropathy and the other neurological and non-neurological features of the syndrome. Priority is given to the diagnosis of treatable conditions. Using this approach, we associated neuropathy with one of three major syndromic categories: (1) ataxia, (2) spasticity and (3) global neurodevelopmental impairment. Syndromes that do not fall easily into one of these three categories can be grouped according to the predominant system involved in addition to the neuropathy, for example, cardiomyopathy and neuropathy. We also include a separate category of complex inherited relapsing neuropathy syndromes, some of which may mimic Guillain-Barré syndrome, as many will have a metabolic aetiology and be potentially treatable. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Martha, Cornelius T; Hoogendoorn, Jan-Carel; Irth, Hubertus; Niessen, Wilfried M A
2011-05-15
Current development in catalyst discovery includes combinatorial synthesis methods for the rapid generation of compound libraries combined with high-throughput performance-screening methods to determine the associated activities. Of these novel methodologies, mass spectrometry (MS) based flow chemistry methods are especially attractive due to the ability to combine sensitive detection of the formed reaction product with identification of introduced catalyst complexes. Recently, such a mass spectrometry based continuous-flow reaction detection system was utilized to screen silver-adducted ferrocenyl bidentate catalyst complexes for activity in a multicomponent synthesis of a substituted 2-imidazoline. Here, we determine the merits of different ionization approaches by studying the combination of sensitive detection of product formation in the continuous-flow system with the ability to simultaneous characterize the introduced [ferrocenyl bidentate+Ag](+) catalyst complexes. To this end, we study the ionization characteristics of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), no-discharge APCI, dual ESI/APCI, and dual APCI/no-discharge APCI. Finally, we investigated the application potential of the different ionization approaches by the investigation of ferrocenyl bidentate catalyst complex responses in different solvents. Copyright © 2011 Elsevier B.V. All rights reserved.
A kernel regression approach to gene-gene interaction detection for case-control studies.
Larson, Nicholas B; Schaid, Daniel J
2013-11-01
Gene-gene interactions are increasingly being addressed as a potentially important contributor to the variability of complex traits. Consequently, attentions have moved beyond single locus analysis of association to more complex genetic models. Although several single-marker approaches toward interaction analysis have been developed, such methods suffer from very high testing dimensionality and do not take advantage of existing information, notably the definition of genes as functional units. Here, we propose a comprehensive family of gene-level score tests for identifying genetic elements of disease risk, in particular pairwise gene-gene interactions. Using kernel machine methods, we devise score-based variance component tests under a generalized linear mixed model framework. We conducted simulations based upon coalescent genetic models to evaluate the performance of our approach under a variety of disease models. These simulations indicate that our methods are generally higher powered than alternative gene-level approaches and at worst competitive with exhaustive SNP-level (where SNP is single-nucleotide polymorphism) analyses. Furthermore, we observe that simulated epistatic effects resulted in significant marginal testing results for the involved genes regardless of whether or not true main effects were present. We detail the benefits of our methods and discuss potential genome-wide analysis strategies for gene-gene interaction analysis in a case-control study design. © 2013 WILEY PERIODICALS, INC.
Rodriguez-Falces, Javier
2013-12-01
In electrophysiology studies, it is becoming increasingly common to explain experimental observations using both descriptive methods and quantitative approaches. However, some electrophysiological phenomena, such as the generation of extracellular potentials that results from the propagation of the excitation source along the muscle fiber, are difficult to describe and conceptualize. In addition, most traditional approaches aimed at describing extracellular potentials consist of complex mathematical machinery that gives no chance for physical interpretation. The aim of the present study is to present a new method to teach the formation of extracellular potentials around a muscle fiber from both a descriptive and quantitative perspective. The implementation of this method was tested through a written exam and a satisfaction survey. The new method enhanced the ability of students to visualize the generation of bioelectrical potentials. In addition, the new approach improved students' understanding of how changes in the fiber-to-electrode distance and in the shape of the excitation source are translated into changes in the extracellular potential. The survey results show that combining general principles of electrical fields with accurate graphic imagery gives students an intuitive, yet quantitative, feel for electrophysiological signals and enhances their motivation to continue their studies in the biomedical engineering field.
NASA Astrophysics Data System (ADS)
Zhang, X.-G.; Varga, Kalman; Pantelides, Sokrates T.
2007-07-01
Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations but have not so far been adapted for quantum transport problems with open boundary conditions. Here, we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method are demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data.
Multi-Agent-Based Simulation of a Complex Ecosystem of Mental Health Care.
Kalton, Alan; Falconer, Erin; Docherty, John; Alevras, Dimitris; Brann, David; Johnson, Kyle
2016-02-01
This paper discusses the creation of an Agent-Based Simulation that modeled the introduction of care coordination capabilities into a complex system of care for patients with Serious and Persistent Mental Illness. The model describes the engagement between patients and the medical, social and criminal justice services they interact with in a complex ecosystem of care. We outline the challenges involved in developing the model, including process mapping and the collection and synthesis of data to support parametric estimates, and describe the controls built into the model to support analysis of potential changes to the system. We also describe the approach taken to calibrate the model to an observable level of system performance. Preliminary results from application of the simulation are provided to demonstrate how it can provide insights into potential improvements deriving from introduction of care coordination technology.
Formalizing the Role of Agent-Based Modeling in Causal Inference and Epidemiology
Marshall, Brandon D. L.; Galea, Sandro
2015-01-01
Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. PMID:25480821
Van Guyse, Joachim F R; de la Rosa, Victor R; Hoogenboom, Richard
2018-02-21
Buckminster fullerene (C 60 )'s main hurdle to enter the field of biomedicine is its low bioavailability, which results from its extremely low water solubility. A well-known approach to increase the water solubility of C 60 is by complexation with γ-cyclodextrins. However, the formed complexes are not stable in time as they rapidly aggregate and eventually precipitate due to attractive intermolecular forces, a common problem in inclusion complexes of cyclodextrins. In this study we attempt to overcome the attractive intermolecular forces between the complexes by designing custom γ-cyclodextrin (γCD)-based supramolecular hosts for C 60 that inhibit the aggregation found in native γCD-C 60 complexes. The approach entails the introduction of either repulsive electrostatic forces or increased steric hindrance to prevent aggregation, thus enhancing the biomedical application potential of C 60 . These modifications have led to new sub-100 nm nanostructures that show long-term stability in solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Foundations for Streaming Model Transformations by Complex Event Processing.
Dávid, István; Ráth, István; Varró, Dániel
2018-01-01
Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.
Support vector machines-based modelling of seismic liquefaction potential
NASA Astrophysics Data System (ADS)
Pal, Mahesh
2006-08-01
This paper investigates the potential of support vector machines (SVM)-based classification approach to assess the liquefaction potential from actual standard penetration test (SPT) and cone penetration test (CPT) field data. SVMs are based on statistical learning theory and found to work well in comparison to neural networks in several other applications. Both CPT and SPT field data sets is used with SVMs for predicting the occurrence and non-occurrence of liquefaction based on different input parameter combination. With SPT and CPT test data sets, highest accuracy of 96 and 97%, respectively, was achieved with SVMs. This suggests that SVMs can effectively be used to model the complex relationship between different soil parameter and the liquefaction potential. Several other combinations of input variable were used to assess the influence of different input parameters on liquefaction potential. Proposed approach suggest that neither normalized cone resistance value with CPT data nor the calculation of standardized SPT value is required with SPT data. Further, SVMs required few user-defined parameters and provide better performance in comparison to neural network approach.
Lima, Estevao; Rolanda, Carla; Correia-Pinto, Jorge
2009-05-01
An isolated transgastric port raises serious limitations in performing natural orifice translumenal endoscopic surgery (NOTES) complex procedures in the urology field. In an attempt to overcome these limitations, several solutions has been advanced, such as the hybrid approach (adding a single abdominal port access) or the pure NOTES combined approach (joining multiple natural orifice ports). To review the current state of experimental and clinical results of multiple ports in NOTES, a literature search of PubMed was performed, seeking publications from January 2002 to 2008 on NOTES. In addition, we looked at pertinent abstracts of annual meetings of the American Urological Association, the European Association of Urology, and the World Congress of Endourology from 2007. Multiple ports of entry seem to be necessary, mainly for moderately complex procedures. Thus, we could find studies using the hybrid approach (combination of transgastric or transvaginal access with a single transabdominal port), or using the pure NOTES combined approach (transgastric and transvesical, transvaginal and transcolonic, or transgastric and transvaginal). There is still limited experience in humans using these approaches, and no comparative studies exist to date. It is predictable that for moderately complex procedures, we will need multiple ports, so the transvaginal-transabdominal (hybrid) approach is the most appealing, whereas in a pure NOTES perspective, the transgastric-transvesical approach seems to be the preferred approach. We are waiting for new equipment and instruments that are more appropriate for these novel techniques.
SMART: A Propositional Logic-Based Trade Analysis and Risk Assessment Tool for a Complex Mission
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Nicholas, Austin; Alibay, Farah; Parrish, Joseph
2015-01-01
This paper introduces a new trade analysis software called the Space Mission Architecture and Risk Analysis Tool (SMART). This tool supports a high-level system trade study on a complex mission, such as a potential Mars Sample Return (MSR) mission, in an intuitive and quantitative manner. In a complex mission, a common approach to increase the probability of success is to have redundancy and prepare backups. Quantitatively evaluating the utility of adding redundancy to a system is important but not straightforward, particularly when the failure of parallel subsystems are correlated.
Optimum design of bolted composite lap joints under mechanical and thermal loading
NASA Astrophysics Data System (ADS)
Kradinov, Vladimir Yurievich
A new approach is developed for the analysis and design of mechanically fastened composite lap joints under mechanical and thermal loading. Based on the combined complex potential and variational formulation, the solution method satisfies the equilibrium equations exactly while the boundary conditions are satisfied by minimizing the total potential. This approach is capable of modeling finite laminate planform dimensions, uniform and variable laminate thickness, laminate lay-up, interaction among bolts, bolt torque, bolt flexibility, bolt size, bolt-hole clearance and interference, insert dimensions and insert material properties. Comparing to the finite element analysis, the robustness of the method does not decrease when modeling the interaction of many bolts; also, the method is more suitable for parametric study and design optimization. The Genetic Algorithm (GA), a powerful optimization technique for multiple extrema functions in multiple dimensions search spaces, is applied in conjunction with the complex potential and variational formulation to achieve optimum designs of bolted composite lap joints. The objective of the optimization is to acquire such a design that ensures the highest strength of the joint. The fitness function for the GA optimization is based on the average stress failure criterion predicting net-section, shear-out, and bearing failure modes in bolted lap joints. The criterion accounts for the stress distribution in the thickness direction at the bolt location by applying an approach utilizing a beam on an elastic foundation formulation.
The optical potential on the lattice
Agadjanov, Dimitri; Doring, Michael; Mai, Maxim; ...
2016-06-08
The extraction of hadron-hadron scattering parameters from lattice data by using the Luscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel Luscher formalism. Furthermore, this method is applicable without modifications if some inelastic channels contain three or more particles.
Assessment of potential ecological risks of complex contaminant mixtures in the environment requires integrated chemical and biological approaches. Instrumental analysis of environmental samples alone can identify contaminants, but provides only limited insights as to possible a...
Minireview: Epigenetics of Obesity and Diabetes in Humans
Slomko, Howard; Heo, Hye J.
2012-01-01
Understanding the determinants of human health and disease is overwhelmingly complex, particularly for common, late-onset, chronic disorders, such as obesity and diabetes. Elucidating the genetic and environmental factors that influence susceptibility to disruptions in energy homeostasis and metabolic regulation remain a challenge, and progress will entail the integration of multiple assessments of temporally dynamic environmental exposures in the context of each individual's genotype. To meet this challenge, researchers are increasingly exploring the epigenome, which is the malleable interface of gene-environment interactions. Epigenetic variation, whether innate or induced, contributes to variation in gene expression, the range of potential individual responses to internal and external cues, and risk for metabolic disease. Ultimately, advancement in our understanding of chronic disease susceptibility in humans will depend on refinement of exposure assessment tools and systems biology approaches to interpretation. In this review, we present recent progress in epigenetics of human obesity and diabetes, existing challenges, and the potential for new approaches to unravel the complex biology of metabolic dysregulation. PMID:22253427
NASA Astrophysics Data System (ADS)
Yamamoto, Takahiro; Nadaoka, Kazuo
2018-04-01
Atmospheric, watershed and coastal ocean models were integrated to provide a holistic analysis approach for coastal ocean simulation. The coupled model was applied to coastal ocean in the Philippines where terrestrial sediment loads provided from several adjacent watersheds play a major role in influencing coastal turbidity and are partly responsible for the coastal ecosystem degradation. The coupled model was validated using weather and hydrologic measurement to examine its potential applicability. The results revealed that the coastal water quality may be governed by the loads not only from the adjacent watershed but also from the distant watershed via coastal currents. This important feature of the multiple linkages can be quantitatively characterized by a "stress connectivity matrix", which indicates the complex underlying structure of environmental stresses in coastal ocean. The multiple stress connectivity concept shows the potential advantage of the integrated modelling approach for coastal ocean assessment, which may also serve for compensating the lack of measured data especially in tropical basins.
Minireview: Epigenetics of obesity and diabetes in humans.
Slomko, Howard; Heo, Hye J; Einstein, Francine H
2012-03-01
Understanding the determinants of human health and disease is overwhelmingly complex, particularly for common, late-onset, chronic disorders, such as obesity and diabetes. Elucidating the genetic and environmental factors that influence susceptibility to disruptions in energy homeostasis and metabolic regulation remain a challenge, and progress will entail the integration of multiple assessments of temporally dynamic environmental exposures in the context of each individual's genotype. To meet this challenge, researchers are increasingly exploring the epigenome, which is the malleable interface of gene-environment interactions. Epigenetic variation, whether innate or induced, contributes to variation in gene expression, the range of potential individual responses to internal and external cues, and risk for metabolic disease. Ultimately, advancement in our understanding of chronic disease susceptibility in humans will depend on refinement of exposure assessment tools and systems biology approaches to interpretation. In this review, we present recent progress in epigenetics of human obesity and diabetes, existing challenges, and the potential for new approaches to unravel the complex biology of metabolic dysregulation.
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates.
Middey, S; Meyers, D; Kareev, M; Cao, Yanwei; Liu, X; Shafer, P; Freeland, J W; Kim, J-W; Ryan, P J; Chakhalian, J
2018-04-13
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO_{3}. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates
NASA Astrophysics Data System (ADS)
Middey, S.; Meyers, D.; Kareev, M.; Cao, Yanwei; Liu, X.; Shafer, P.; Freeland, J. W.; Kim, J.-W.; Ryan, P. J.; Chakhalian, J.
2018-04-01
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO3 . Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions. Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. This designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.
Kushniruk, Andre W; Borycki, Elizabeth M
2015-01-01
Innovations in healthcare information systems promise to revolutionize and streamline healthcare processes worldwide. However, the complexity of these systems and the need to better understand issues related to human-computer interaction have slowed progress in this area. In this chapter the authors describe their work in using methods adapted from usability engineering, video ethnography and analysis of digital log files for improving our understanding of complex real-world healthcare interactions between humans and technology. The approaches taken are cost-effective and practical and can provide detailed ethnographic data on issues health professionals and consumers encounter while using systems as well as potential safety problems. The work is important in that it can be used in techno-anthropology to characterize complex user interactions with technologies and also to provide feedback into redesign and optimization of improved healthcare information systems.
NASA Astrophysics Data System (ADS)
Saeidifar, Maryam; Mirzaei, Hamidreza; Ahmadi Nasab, Navid; Mansouri-Torshizi, Hassan
2017-11-01
The binding ability between a new water-soluble palladium(II) complex [Pd(bpy)(bez-dtc)]Cl (where bpy is 2,2‧-bipyridine and bez-dtc is benzyl dithiocarbamate), as an antitumor agent, and calf thymus DNA was evaluated using various physicochemical methods, such as UV-Vis absorption, Competitive fluorescence studies, viscosity measurement, zeta potential and circular dichroism (CD) spectroscopy. The Pd(II) complex was synthesized and characterized using elemental analysis, molar conductivity measurements, FT-IR, 1H NMR, 13C NMR and electronic spectra studies. The anticancer activity against HeLa cell lines demonstrated lower cytotoxicity than cisplatin. The binding constants and the thermodynamic parameters were determined at different temperatures (300 K, 310 K and 320 K) and shown that the complex can bind to DNA via electrostatic forces. Furthermore, this result was confirmed by the viscosity and zeta potential measurements. The CD spectral results demonstrated that the binding of Pd(II) complex to DNA induced conformational changes in DNA. We hope that these results will provide a basis for further studies and practical clinical use of anticancer drugs.
MARY spectroscopy in the presence of coordination compound Zn(hfac) 2(PPO) 2
NASA Astrophysics Data System (ADS)
Sergey, N. V.; Burdukov, A. B.; Pervukhina, N. V.; Kuibida, L. V.; Pozdnyakov, I. P.; Stass, D. V.
2011-02-01
MARY spectroscopy is finding increasing use in the studies of transient organic radical ions and their reactions. Extending this technique to organometallic species will broaden the class of potential target compounds and can help answer important mechanistic questions in organometallic and spin chemistry. We probed this approach using a tailored Zn(hfac)2(PPO)2 complex. The synthesized complex has quantum yield and fluorescence lifetime (n-decane solution) φ ∼0.8 and τ ∼1.3 ns, respectively. For this type of complex it is the first observation of MARY spectra different from those of free ligand, thus implying participation of the complex in the development of the observed signal.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Cui, Weidong; Wecksler, Aaron T.; Zhang, Hao; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.
2016-07-01
Native mass spectrometry (MS) and top-down electron-capture dissociation (ECD) combine as a powerful approach for characterizing large proteins and protein assemblies. Here, we report their use to study an antibody Fab (Fab-1)-VEGF complex in its near-native state. Native ESI with analysis by FTICR mass spectrometry confirms that VEGF is a dimer in solution and that its complex with Fab-1 has a binding stoichiometry of 2:2. Applying combinations of collisionally activated dissociation (CAD), ECD, and infrared multiphoton dissociation (IRMPD) allows identification of flexible regions of the complex, potentially serving as a guide for crystallization and X-ray diffraction analysis.
NASA Technical Reports Server (NTRS)
Idris, Husni; Shen, Ni; Wing, David J.
2011-01-01
The growing demand for air travel is increasing the need for mitigating air traffic congestion and complexity problems, which are already at high levels. At the same time new surveillance, navigation, and communication technologies are enabling major transformations in the air traffic management system, including net-based information sharing and collaboration, performance-based access to airspace resources, and trajectory-based rather than clearance-based operations. The new system will feature different schemes for allocating tasks and responsibilities between the ground and airborne agents and between the human and automation, with potential capacity and cost benefits. Therefore, complexity management requires new metrics and methods that can support these new schemes. This paper presents metrics and methods for preserving trajectory flexibility that have been proposed to support a trajectory-based approach for complexity management by airborne or ground-based systems. It presents extensions to these metrics as well as to the initial research conducted to investigate the hypothesis that using these metrics to guide user and service provider actions will naturally mitigate traffic complexity. The analysis showed promising results in that: (1) Trajectory flexibility preservation mitigated traffic complexity as indicated by inducing self-organization in the traffic patterns and lowering traffic complexity indicators such as dynamic density and traffic entropy. (2)Trajectory flexibility preservation reduced the potential for secondary conflicts in separation assurance. (3) Trajectory flexibility metrics showed potential application to support user and service provider negotiations for minimizing the constraints imposed on trajectories without jeopardizing their objectives.
A Complex Systems Approach to Causal Discovery in Psychiatry.
Saxe, Glenn N; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C; Aliferis, Constantin
2016-01-01
Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN) method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a 'gold standard' dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry.
Multivalued classical mechanics arising from singularity loops in complex time
NASA Astrophysics Data System (ADS)
Koch, Werner; Tannor, David J.
2018-02-01
Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.
NASA Astrophysics Data System (ADS)
Saracco, Ginette; Moreau, Frédérique; Mathé, Pierre-Etienne; Hermitte, Daniel; Michel, Jean-Marie
2007-10-01
We have previously developed a method for characterizing and localizing `homogeneous' buried sources, from the measure of potential anomalies at a fixed height above ground (magnetic, electric and gravity). This method is based on potential theory and uses the properties of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax the assumption on sources and introduce a method that we call the `multiscale tomography'. Our approach is based on the harmonic extension of the observed magnetic field to produce a complex source by use of a complex Poisson kernel solution of the Laplace equation for complex potential field. A phase and modulus are defined. We show that the phase provides additional information on the total magnetic inclination and the structure of sources, while the modulus allows us to characterize its spatial location, depth and `effective degree'. This method is compared to the `complex dipolar tomography', extension of the Patella method that we previously developed. We applied both methods and a classical electrical resistivity tomography to detect and localize buried archaeological structures like antique ovens from magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared with the results of excavations.
NASA Technical Reports Server (NTRS)
Freedman, M. I.; Sipcic, S.; Tseng, K.
1985-01-01
A frequency domain Green's Function Method for unsteady supersonic potential flow around complex aircraft configurations is presented. The focus is on the supersonic range wherein the linear potential flow assumption is valid. In this range the effects of the nonlinear terms in the unsteady supersonic compressible velocity potential equation are negligible and therefore these terms will be omitted. The Green's function method is employed in order to convert the potential flow differential equation into an integral one. This integral equation is then discretized, through standard finite element technique, to yield a linear algebraic system of equations relating the unknown potential to its prescribed co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed to vary linearly within each panel. The long range goal is to develop a comprehensive theory for unsteady supersonic potential aerodynamic which is capable of yielding accurate results even in the low supersonic (i.e., high transonic) range.
Tissue polarimetry: concepts, challenges, applications, and outlook.
Ghosh, Nirmalya; Vitkin, I Alex
2011-11-01
Polarimetry has a long and successful history in various forms of clear media. Driven by their biomedical potential, the use of the polarimetric approaches for biological tissue assessment has also recently received considerable attention. Specifically, polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) in order to enhance contrast and to improve tissue imaging resolution. Moreover, the intrinsic tissue polarimetry characteristics contain a wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium-like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. In order to realize the potential of the polarimetric approaches for tissue imaging and characterization/diagnosis, a number of researchers are thus pursuing innovative solutions to these challenges. In this review paper, we summarize these and other issues pertinent to the polarized light methodologies in tissues. Specifically, we discuss polarized light basics, Stokes-Muller formalism, methods of polarization measurements, polarized light modeling in turbid media, applications to tissue imaging, inverse analysis for polarimetric results quantification, applications to quantitative tissue assessment, etc.
USDA-ARS?s Scientific Manuscript database
The important questions about agriculture, climate, and sustainability have become increasingly complex and require a coordinated, multi-faceted approach for developing new knowledge and understanding. A multi-state, transdisciplinary project was begun in 2011 to study the potential for both mitigat...
Managing Physical Education Lessons: An Interactional Approach
ERIC Educational Resources Information Center
Barker, Dean; Annerstedt, Claes
2016-01-01
Physical education (PE) lessons involve complex and dynamic interactive sequences between students, equipment and teacher. The potential for unexpected and/or unintended events is relatively large, a point reflected in an increasing amount of scholarship dealing with classroom management (CM). This scholarship further suggests that unexpected and…
Capillary electrophoresis method to determine siRNA complexation with cationic liposomes.
Furst, Tania; Bettonville, Virginie; Farcas, Elena; Frere, Antoine; Lechanteur, Anna; Evrard, Brigitte; Fillet, Marianne; Piel, Géraldine; Servais, Anne-Catherine
2016-10-01
Small interfering RNA (siRNA) inducing gene silencing has great potential to treat many human diseases. To ensure effective siRNA delivery, it must be complexed with an appropriate vector, generally nanoparticles. The nanoparticulate complex requires an optimal physiochemical characterization and the complexation efficiency has to be precisely determined. The methods usually used to measure complexation in gel electrophoresis and RiboGreen ® fluorescence-based assay. However, those approaches are not automated and present some drawbacks such as the low throughput and the use of carcinogenic reagents. The aim of this study is to develop a new simple and fast method to accurately quantify the complexation efficiency. In this study, capillary electrophoresis (CE) was used to determine the siRNA complexation with cationic liposomes. The short-end injection mode applied enabled siRNA detection in less than 5 min. Moreover, the CE technique offers many advantages compared with the other classical methods. It is automated, does not require sample preparation and expensive reagents. Moreover, no mutagenic risk is associated with the CE approach since no carcinogenic product is used. Finally, this methodology can also be extended for the characterization of other types of nanoparticles encapsulating siRNA, such as cationic polymeric nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Remediation management of complex sites using an adaptive site management approach.
Price, John; Spreng, Carl; Hawley, Elisabeth L; Deeb, Rula
2017-12-15
Complex sites require a disproportionate amount of resources for environmental remediation and long timeframes to achieve remediation objectives, due to their complex geologic conditions, hydrogeologic conditions, geochemical conditions, contaminant-related conditions, large scale of contamination, and/or non-technical challenges. A recent team of state and federal environmental regulators, federal agency representatives, industry experts, community stakeholders, and academia worked together as an Interstate Technology & Regulatory Council (ITRC) team to compile resources and create new guidance on the remediation management of complex sites. This article summarizes the ITRC team's recommended process for addressing complex sites through an adaptive site management approach. The team provided guidance for site managers and other stakeholders to evaluate site complexities and determine site remediation potential, i.e., whether an adaptive site management approach is warranted. Adaptive site management was described as a comprehensive, flexible approach to iteratively evaluate and adjust the remedial strategy in response to remedy performance. Key aspects of adaptive site management were described, including tools for revising and updating the conceptual site model (CSM), the importance of setting interim objectives to define short-term milestones on the journey to achieving site objectives, establishing a performance model and metrics to evaluate progress towards meeting interim objectives, and comparing actual with predicted progress during scheduled periodic evaluations, and establishing decision criteria for when and how to adapt/modify/revise the remedial strategy in response to remedy performance. Key findings will be published in an ITRC Technical and Regulatory guidance document in 2017 and free training webinars will be conducted. More information is available at www.itrc-web.org. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yin, Weiwei; Garimalla, Swetha; Moreno, Alberto; Galinski, Mary R; Styczynski, Mark P
2015-08-28
There are increasing efforts to bring high-throughput systems biology techniques to bear on complex animal model systems, often with a goal of learning about underlying regulatory network structures (e.g., gene regulatory networks). However, complex animal model systems typically have significant limitations on cohort sizes, number of samples, and the ability to perform follow-up and validation experiments. These constraints are particularly problematic for many current network learning approaches, which require large numbers of samples and may predict many more regulatory relationships than actually exist. Here, we test the idea that by leveraging the accuracy and efficiency of classifiers, we can construct high-quality networks that capture important interactions between variables in datasets with few samples. We start from a previously-developed tree-like Bayesian classifier and generalize its network learning approach to allow for arbitrary depth and complexity of tree-like networks. Using four diverse sample networks, we demonstrate that this approach performs consistently better at low sample sizes than the Sparse Candidate Algorithm, a representative approach for comparison because it is known to generate Bayesian networks with high positive predictive value. We develop and demonstrate a resampling-based approach to enable the identification of a viable root for the learned tree-like network, important for cases where the root of a network is not known a priori. We also develop and demonstrate an integrated resampling-based approach to the reduction of variable space for the learning of the network. Finally, we demonstrate the utility of this approach via the analysis of a transcriptional dataset of a malaria challenge in a non-human primate model system, Macaca mulatta, suggesting the potential to capture indicators of the earliest stages of cellular differentiation during leukopoiesis. We demonstrate that by starting from effective and efficient approaches for creating classifiers, we can identify interesting tree-like network structures with significant ability to capture the relationships in the training data. This approach represents a promising strategy for inferring networks with high positive predictive value under the constraint of small numbers of samples, meeting a need that will only continue to grow as more high-throughput studies are applied to complex model systems.
Long, Katrina M; McDermott, Fiona; Meadows, Graham N
2018-06-20
The healthcare system has proved a challenging environment for innovation, especially in the area of health services management and research. This is often attributed to the complexity of the healthcare sector, characterized by intersecting biological, social and political systems spread across geographically disparate areas. To help make sense of this complexity, researchers are turning towards new methods and frameworks, including simulation modeling and complexity theory. Herein, we describe our experiences implementing and evaluating a health services innovation in the form of simulation modeling. We explore the strengths and limitations of complexity theory in evaluating health service interventions, using our experiences as examples. We then argue for the potential of pragmatism as an epistemic foundation for the methodological pluralism currently found in complexity research. We discuss the similarities between complexity theory and pragmatism, and close by revisiting our experiences putting pragmatic complexity theory into practice. We found the commonalities between pragmatism and complexity theory to be striking. These included a sensitivity to research context, a focus on applied research, and the valuing of different forms of knowledge. We found that, in practice, a pragmatic complexity theory approach provided more flexibility to respond to the rapidly changing context of health services implementation and evaluation. However, this approach requires a redefinition of implementation success, away from pre-determined outcomes and process fidelity, to one that embraces the continual learning, evolution, and emergence that characterized our project.
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
NASA Astrophysics Data System (ADS)
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appolaire, Alexandre; Girard, Eric; Colombo, Matteo
2014-11-01
The present work illustrates that small-angle neutron scattering, deuteration and contrast variation, combined with in vitro particle reconstruction, constitutes a very efficient approach to determine subunit architectures in large, symmetric protein complexes. In the case of the 468 kDa heterododecameric TET peptidase machine, it was demonstrated that the assembly of the 12 subunits is a highly controlled process and represents a way to optimize the catalytic efficiency of the enzyme. The specific self-association of proteins into oligomeric complexes is a common phenomenon in biological systems to optimize and regulate their function. However, de novo structure determination of these important complexesmore » is often very challenging for atomic-resolution techniques. Furthermore, in the case of homo-oligomeric complexes, or complexes with very similar building blocks, the respective positions of subunits and their assembly pathways are difficult to determine using many structural biology techniques. Here, an elegant and powerful approach based on small-angle neutron scattering is applied, in combination with deuterium labelling and contrast variation, to elucidate the oligomeric organization of the quaternary structure and the assembly pathways of 468 kDa, hetero-oligomeric and symmetric Pyrococcus horikoshii TET2–TET3 aminopeptidase complexes. The results reveal that the topology of the PhTET2 and PhTET3 dimeric building blocks within the complexes is not casual but rather suggests that their quaternary arrangement optimizes the catalytic efficiency towards peptide substrates. This approach bears important potential for the determination of quaternary structures and assembly pathways of large oligomeric and symmetric complexes in biological systems.« less
Stefanini, Irene; Cavalieri, Duccio
2018-01-01
The winemaking is a complex process that begins in the vineyard and ends at consumption moment. Recent reports have shown the relevance of microbial populations in the definition of the regional organoleptic and sensory characteristics of a wine. Metagenomic approaches, allowing the exhaustive identification of microorganisms present in complex samples, have recently played a fundamental role in the dissection of the contribution of the vineyard environment to wine fermentation. Systematic approaches have explored the impact of agronomical techniques, vineyard topologies, and climatic changes on bacterial and fungal populations found in the vineyard and in fermentations, also trying to predict or extrapolate the effects on the sensorial characteristics of the resulting wine. This review is aimed at highlighting the major technical and experimental challenges in dissecting the contribution of the vineyard and native environments microbiota to the wine fermentation process, and how metagenomic approaches can help in understanding microbial fluxes and selections across the environments and specimens related to wine fermentation. PMID:29867889
Brice, Joseph T.; Liang, Tao; Raston, Paul L.; ...
2016-09-27
Here, sequential capture of OH and CO by superfluid helium droplets leads exclusively to the formation of the linear, entrance-channel complex, OH-CO. This species is characterized by infrared laser Stark and Zeeman spectroscopy via measurements of the fundamental OH stretching vibration. Experimental dipole moments are in disagreement with ab initio calculations at the equilibrium geometry, indicating large-amplitude motion on the ground state potential energy surface. Vibrational averaging along the hydroxyl bending coordinate recovers 80% of the observed deviation from the equilibrium dipole moment. Inhomogeneous line broadening in the zero-field spectrum is modeled with an effective Hamiltonian approach that aims tomore » account for the anisotropic molecule-helium interaction potential that arises as the OH-CO complex is displaced from the center of the droplet.« less
Schiffmann, Christoph; Sebastiani, Daniel
2011-05-10
We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules.
[Nutrition education in schools: potential resources for a teacher/nurse partnership].
Arboix-Calas, France; Lemonnier, Geneviève
2016-01-01
Nutrition education in schools must be based on a collaborative approach between teachers and school nurses. The objective of this study was to compare the nutrition education representations and practices of primary school teachers and school nurses in the Languedoc-Roussillon region in the South of France. We used the theoretical framework of complexity, which is particularly suited to multifactorial phenomena such as nutrition education. We interviewed 112 primary school teachers and 33 school nurses about three aspects of their nutrition education representations and practices: actors, content and place of nutrition education at school. Nurses had a more comprehensive and complex approach to nutrition education, including a collaborative approach. However, teachers had a fairly simplistic view of nutrition education and their practice took little account of the psychosocial dimensions of nutrition and a collaborative approach. Nurses could be resources for teachers to help them change their approach to health by transforming a purely biomedical approach to health and nutrition into a more comprehensive approach, particularly taking into account in its psychological and social dimensions, which would be more appropriate to address the growing prevalence of diet-related chronic diseases in France today.
NASA Astrophysics Data System (ADS)
Apperl, B.; Andreu, J.; Karjalainen, T. P.; Pulido-Velazquez, M.
2014-09-01
The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have been often identified as an impediment to the realization and success of water regulations and policies. The management of complex groundwater systems requires clarifying stakeholders' positions (identifying stakeholders preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards definition of fundamental objectives (value-thinking approach), what facilitates negotiation. The aims of the study are to analyse the potential of the multi attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation in the different stages of the planning process to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to an intensive use of groundwater for irrigation. A complex set of objectives and attributes were defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resources availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes of preferences to the alternative ranking. Results show that the acceptation of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties of the results were notable but did not influence heavily on the alternative ranking. The expected reduction of future groundwater resources by climate change increases the conflict potential. The implementation of the method to a very complex case study, with many conflicting objectives and alternatives and uncertain outcomes, including future scenarios under water limiting conditions, illustrate the potential of the method for supporting management decisions.
NASA Astrophysics Data System (ADS)
Apperl, B.; Pulido-Velazquez, M.; Andreu, J.; Karjalainen, T. P.
2015-03-01
The implementation of the EU Water Framework Directive demands participatory water resource management approaches. Decision making in groundwater quantity and quality management is complex because of the existence of many independent actors, heterogeneous stakeholder interests, multiple objectives, different potential policies, and uncertain outcomes. Conflicting stakeholder interests have often been identified as an impediment to the realisation and success of water regulations and policies. The management of complex groundwater systems requires the clarification of stakeholders' positions (identifying stakeholder preferences and values), improving transparency with respect to outcomes of alternatives, and moving the discussion from the selection of alternatives towards the definition of fundamental objectives (value-thinking approach), which facilitates negotiation. The aims of the study are to analyse the potential of the multi-attribute value theory for conflict resolution in groundwater management and to evaluate the benefit of stakeholder incorporation into the different stages of the planning process, to find an overall satisfying solution for groundwater management. The research was conducted in the Mancha Oriental groundwater system (Spain), subject to intensive use of groundwater for irrigation. A complex set of objectives and attributes was defined, and the management alternatives were created by a combination of different fundamental actions, considering different implementation stages and future changes in water resource availability. Interviews were conducted with representative stakeholder groups using an interactive platform, showing simultaneously the consequences of changes in preferences to the alternative ranking. Results show that the approval of alternatives depends strongly on the combination of measures and the implementation stages. Uncertainties in the results were notable, but did not influence the alternative ranking heavily. The expected reduction in future groundwater resources by climate change increases the conflict potential. The implementation of the method in a very complex case study, with many conflicting objectives and alternatives and uncertain outcomes, including future scenarios under water limiting conditions, illustrates the potential of the method for supporting management decisions.
Assessment of Stable Isotope Distribution in Complex Systems
NASA Astrophysics Data System (ADS)
He, Y.; Cao, X.; Wang, J.; Bao, H.
2017-12-01
Biomolecules in living organisms have the potential to approach chemical steady state and even apparent isotope equilibrium because enzymatic reactions are intrinsically reversible. If an apparent local equilibrium can be identified, enzymatic reversibility and its controlling factors may be quantified, which helps to understand complex biochemical processes. Earlier research on isotope fractionation tends to focus on specific process and compare mostly two different chemical species. Using linear regression, "Thermodynamic order", which refers to correlated δ13C and 13β values, has been proposed to be present among many biomolecules by Galimov et al. However, the concept "thermodynamic order" they proposed and the approach they used has been questioned. Here, we propose that the deviation of a complex system from its equilibrium state can be rigorously described as a graph problem as is applied in discrete mathematics. The deviation of isotope distribution from equilibrium state and apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference matrix (|Δα|). Applying the |Δα| matrix analysis to earlier published data of amino acids, we show the existence of apparent local equilibrium among different amino acids in potato and a kind of green alga. The existence of apparent local equilibrium is in turn consistent with the notion that enzymatic reactions can be reversible even in living systems. The result also implies that previous emphasis on external carbon source intake may be misplaced when studying isotope distribution in physiology. In addition to the identification of local equilibrium among biomolecules, the difference matrix approach has the potential to explore chemical or isotope equilibrium state in extraterrestrial bodies, to distinguish living from non-living systems, and to classify living species. This approach will benefit from large numbers of systematic data and advanced pattern recognition techniques.
Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K
2018-01-03
Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.
Systemic Analysis Approaches for Air Transportation
NASA Technical Reports Server (NTRS)
Conway, Sheila
2005-01-01
Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.
Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization
NASA Astrophysics Data System (ADS)
Engelis, Nikolaos G.; Anastasaki, Athina; Nurumbetov, Gabit; Truong, Nghia P.; Nikolaou, Vasiliki; Shegiwal, Ataulla; Whittaker, Michael R.; Davis, Thomas P.; Haddleton, David M.
2017-02-01
Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage.
Multiresolution Distance Volumes for Progressive Surface Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, D E; Bertram, M; Duchaineau, M A
2002-04-18
We present a surface compression method that stores surfaces as wavelet-compressed signed-distance volumes. Our approach enables the representation of surfaces with complex topology and arbitrary numbers of components within a single multiresolution data structure. This data structure elegantly handles topological modification at high compression rates. Our method does not require the costly and sometimes infeasible base mesh construction step required by subdivision surface approaches. We present several improvements over previous attempts at compressing signed-distance functions, including an 0(n) distance transform, a zero set initialization method for triangle meshes, and a specialized thresholding algorithm. We demonstrate the potential of sampled distancemore » volumes for surface compression and progressive reconstruction for complex high genus surfaces.« less
Nichols, J.M.; Moniz, L.; Nichols, J.D.; Pecora, L.M.; Cooch, E.
2005-01-01
A number of important questions in ecology involve the possibility of interactions or ?coupling? among potential components of ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system components. Another approach is based on time series of two potential components of the same system and, in previous ecological work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both approaches are demonstrated on a one-dimensional predator?prey model system exhibiting complex dynamics. Of particular interest is the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate. Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation, both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.
Juárez, M. Laura; Devescovi, Francisco; Břízová, Radka; Bachmann, Guillermo; Segura, Diego F.; Kalinová, Blanka; Fernández, Patricia; Ruiz, M. Josefina; Yang, Jianquan; Teal, Peter E.A.; Cáceres, Carlos; Vreysen, Marc J.B.; Hendrichs, Jorge; Vera, M. Teresa
2015-01-01
Abstract The study of sexual behavior and the identification of the signals involved in mate recognition between con-specifics are key components that can shed some light, as part of an integrative taxonomic approach, in delimitating species within species complexes. In the Tephritidae family several species complexes have received particular attention as they include important agricultural pests such as the Ceratitis fasciventris (Bezzi), Ceratitis anonae (Graham) and Ceratitis rosa Karsch (FAR) complex, the Bactrocera dorsalis (Hendel) complex and the Anastrepha fraterculus (Wiedemann) complex. Here the value and usefulness of a methodology that uses walk-in field cages with host trees to assess, under semi-natural conditions, mating compatibility within these complexes is reviewed, and the same methodology to study the role of chemical communication in pre-mating isolation among Anastrepha fraterculus populations is used. Results showed that under the same experimental conditions it was possible to distinguish an entire range of different outcomes: from full mating compatibility among some populations to complete assortative mating among others. The effectiveness of the methodology in contributing to defining species limits was shown in two species complexes: Anastrepha fraterculus and Bactrocera dorsalis, and in the case of the latter the synonymization of several established species was published. We conclude that walk-in field cages constitute a powerful tool to measure mating compatibility, which is also useful to determine the role of chemical signals in species recognition. Overall, this experimental approach provides a good source of information about reproductive boundaries to delimit species. However, it needs to be applied as part of an integrative taxonomic approach that simultaneously assesses cytogenetic, molecular, physiological and morphological traits in order to reach more robust species delimitations. PMID:26798257
Spotlight: Sending Clear Signals on Complex Credentialing Process
ERIC Educational Resources Information Center
Guth, Douglas J.
2017-01-01
Credentialing programs in the U.S. are many and varied: Degrees, professional certifications, digital badges, and licenses to practice all serve as potential pathways to employment for would-be workers. However, those many approaches can also result in confusion for employers, colleges, and students when drilling down into how credentials…
ERIC Educational Resources Information Center
Raghubar, Kimberly P.; Barnes, Marcia A.; Hecht, Steven A.
2010-01-01
Working memory refers to a mental workspace, involved in controlling, regulating, and actively maintaining relevant information to accomplish complex cognitive tasks (e.g. mathematical processing). Despite the potential relevance of a relation between working memory and math for understanding developmental and individual differences in…
Scaffolding Learning by Modelling: The Effects of Partially Worked-out Models
ERIC Educational Resources Information Center
Mulder, Yvonne G.; Bollen, Lars; de Jong, Ton; Lazonder, Ard W.
2016-01-01
Creating executable computer models is a potentially powerful approach to science learning. Learning by modelling is also challenging because students can easily get overwhelmed by the inherent complexities of the task. This study investigated whether offering partially worked-out models can facilitate students' modelling practices and promote…
Wheat productivity estimates using LANDSAT data. [Michigan
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Colwell, J. (Principal Investigator); Rice, D. P.
1977-01-01
The author has identified the following significant results. An initial demonstration was made of the capability to make direct production forecasts for winter wheat using early season LANDSAT data. The approach offers the potential to make production forecasts quickly and simply, possibly avoiding some of the complexities of alternate procedures.
The Use of Computer-Aided Decision Support Systems for Complex Source Selection Decisions
1989-09-01
unique low noise interferometer developed at Fusetech Inc. by using divided Fabry - Perot fiber optic cells, common- mode rejection, matched path lengths and...potential techniques for a demodulation scheme. They proposed a detailed investigation of the approaches as part of the program. For mine applications
Multimodal Therapy for Anorexia Nervosa: An Holistic Approach to Treatment.
ERIC Educational Resources Information Center
O'Keefe, Edward J.; Castaldo, Christine
1985-01-01
Anorexia nervosa has received considerable attention lately because of its increased incidence, potential danger, and resistance to treatment. A review of the literature on anorexia nervosa suggests that, although it is characterized by complex interrelated psychological and physiological processes, it is often conceptualized and treated in…
Sweat lipid mediator profiling: a non-invasive approach for cutaneous research
USDA-ARS?s Scientific Manuscript database
Sweat is a complex biological fluid with potential diagnostic value for the investigation of skin disorders. Previous efforts in sweat testing focused on analysis of small molecules and ions for forensic and diagnostic testing, but with advances in analytical and sweat collection techniques, there h...
USDA-ARS?s Scientific Manuscript database
Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization integrated approaches combining different chemical, biological and in silico methods are recommended to r...
Previously Funded Teams | Division of Cancer Prevention
The first group of NCI-supported Tumor Glycomics Laboratories teams offered different approaches and concentrations to exploit the potential of glycomics to yield biomarkers for early cancer detection, and used various technologies to investigate complex carbohydrate biochemistry. They are listed here with links to more information about each laboratory, including publications
A Constructive Controversy Approach to "Case Studies"
ERIC Educational Resources Information Center
Bird, Sharon R.; Erickson, Karla A.
2010-01-01
On the basis of analysis of student responses to a case study titled "Drinks and Dinner," the authors evaluate the pedagogical potential of using constructive controversy case studies to teach about inequality. "Drinks and Dinner" is designed to capture the complexity of social interactions that defy simple solutions to engage students in…
This article provides the background for understanding the many complex variables that combine to cause pollution of the environment with the active ingredients from pharmaceuticals. It also summarizes the many approaches that could potentially reduce this pollution. Significan...
NASA Astrophysics Data System (ADS)
Vargas-Barbosa, Nella M.; Roling, Bernhard
2018-05-01
The potential of zero charge (PZC) is a fundamental property that describes the electrode/electrolyte interface. The determination of the PZC at electrode/ionic liquid interfaces has been challenging due to the lack of models that fully describe these complex interfaces as well as the non-standardized approaches used to characterize them. In this work, we present a method that combines electrode immersion transient and impedance measurements for the determination of the PZC. This combined approach allows the distinction of the potential of zero free charge (pzfc), related to fast double layer charging on a millisecond timescale, from a potential of zero charge on a timescale of tens of seconds related to slower ion transport processes at the interface. Our method highlights the complementarity of these electrochemical techniques and the importance of selecting the correct timescale to execute experiments and interpret the results.
Through a glass darkly: economics and personalised medicine.
Haycox, Alan; Pirmohamed, Munir; McLeod, Claire; Houten, Rachel; Richards, Sarah
2014-11-01
Personalised medicine and pharmacogenetic-test-guided treatment strategies will be of increasing importance in the future, both in terms of healthcare provision and evaluation. It is well recognised that significant variability exists in the response of patients to drugs resulting from genetic or biological variations; however, we are only now gradually becoming aware of the complexities involved. Enormous variability occurs in the risk-benefit ratio that will be experienced by each individual patient as a consequence of their overall genetic make-up. Although not a panacea, enhanced scientific knowledge of the genetic basis for such variability offers the potential for a more 'tailored' approach to prescribing in the future, making it more closely attuned to the needs of the individual patient. Such 'personalised' medicine has the potential to revolutionise care provision in a manner that provides a range of challenges to current structures and processes of 'conventional' healthcare delivery. The aim of this paper is to outline such challenges and analyse potential ways in which they may be addressed in the future. It provides non-expert readers with a non-technical case study of the complexities inherent in the evaluation of a pharmacogenetic-test-guided treatment strategy from a health economic perspective. Wherever possible, technical issues have been minimised; however, references are provided for readers who wish to enhance their knowledge of the pharmacological basis of the case study of cytochrome P450 test-guided treatment. The case study aims simply to illustrate the approach and difficulties encountered in the health economic evaluation of complex pharmacogenetic technologies. Such technologies present a range of new and complex issues which have crucial implications for health economists attempting to obtain an accurate assessment of the 'value' of the technology in clinical practice in an array of patient subgroups. Personalised medicine is the future and this paper highlights how pharmaceutical manufacturers, clinicians, regulators and other stakeholders must all play their part in the inevitable and accelerating move into this complex and uncertain future.
A Concurrent Product-Development Approach for Friction-Stir Welded Vehicle-Underbody Structures
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, G.; Hariharan, A.; Pandurangan, B.
2012-04-01
High-strength aluminum and titanium alloys with superior blast/ballistic resistance against armor piercing (AP) threats and with high vehicle light-weighing potential are being increasingly used as military-vehicle armor. Due to the complex structure of these vehicles, they are commonly constructed through joining (mainly welding) of the individual components. Unfortunately, these alloys are not very amenable to conventional fusion-based welding technologies [e.g., gas metal arc welding (GMAW)] and to obtain high-quality welds, solid-state joining technologies such as friction-stir welding (FSW) have to be employed. However, since FSW is a relatively new and fairly complex joining technology, its introduction into advanced military-vehicle-underbody structures is not straight forward and entails a comprehensive multi-prong approach which addresses concurrently and interactively all the aspects associated with the components/vehicle-underbody design, fabrication, and testing. One such approach is developed and applied in this study. The approach consists of a number of well-defined steps taking place concurrently and relies on two-way interactions between various steps. The approach is critically assessed using a strengths, weaknesses, opportunities, and threats (SWOT) analysis.
It Should BE Studied and Tailored to each Problem
NASA Astrophysics Data System (ADS)
Pietronero, Luciano
The immense accumulation of data is a new phenomenon which induces many considerations, represents great potential, and sometimes leads to mythical expectations. Here we discuss a specific example of big data applications, the case of economic complexity. This is a new perspective on fundamental economics, adopting a bottom-up approach which starts with a novel use of older data and then develops into its own streamline. The approach confirms some expectations about big data but also disproves others...
A Systems Approach to Vaccine Decision Making
Lee, Bruce Y.; Mueller, Leslie E.; Tilchin, Carla G.
2016-01-01
Vaccines reside in a complex multiscale system that includes biological, clinical, behavioral, social, operational, environmental, and economical relationships. Not accounting for these systems when making decisions about vaccines can result in changes that have little effect rather than solutions, lead to unsustainable solutions, miss indirect (e.g., secondary, tertiary, and beyond) effects, cause unintended consequences, and lead to wasted time, effort, and resources. Mathematical and computational modeling can help better understand and address complex systems by representing all or most of the components, relationships, and processes. Such models can serve as “virtual laboratories” to examine how a system operates and test the effects of different changes within the system. Here are ten lessons learned from using computational models to bring more of a systems approach to vaccine decision making: (i) traditional single measure approaches may overlook opportunities; (ii) there is complex interplay among many vaccine, population, and disease characteristics; (iii) accounting for perspective can identify synergies; (iv) the distribution system should not be overlooked; (v) target population choice can have secondary and tertiary effects; (vi) potentially overlooked characteristics can be important; (vii) characteristics of one vaccine can affect other vaccines; (viii) the broader impact of vaccines is complex; (ix) vaccine administration extends beyond the provider level; (x) and the value of vaccines is dynamic. PMID:28017430
A systems approach to vaccine decision making.
Lee, Bruce Y; Mueller, Leslie E; Tilchin, Carla G
2017-01-20
Vaccines reside in a complex multiscale system that includes biological, clinical, behavioral, social, operational, environmental, and economical relationships. Not accounting for these systems when making decisions about vaccines can result in changes that have little effect rather than solutions, lead to unsustainable solutions, miss indirect (e.g., secondary, tertiary, and beyond) effects, cause unintended consequences, and lead to wasted time, effort, and resources. Mathematical and computational modeling can help better understand and address complex systems by representing all or most of the components, relationships, and processes. Such models can serve as "virtual laboratories" to examine how a system operates and test the effects of different changes within the system. Here are ten lessons learned from using computational models to bring more of a systems approach to vaccine decision making: (i) traditional single measure approaches may overlook opportunities; (ii) there is complex interplay among many vaccine, population, and disease characteristics; (iii) accounting for perspective can identify synergies; (iv) the distribution system should not be overlooked; (v) target population choice can have secondary and tertiary effects; (vi) potentially overlooked characteristics can be important; (vii) characteristics of one vaccine can affect other vaccines; (viii) the broader impact of vaccines is complex; (ix) vaccine administration extends beyond the provider level; and (x) the value of vaccines is dynamic. Copyright © 2016 Elsevier Ltd. All rights reserved.
3-D decoupled inversion of complex conductivity data in the real number domain
NASA Astrophysics Data System (ADS)
Johnson, Timothy C.; Thomle, Jonathan
2018-01-01
Complex conductivity imaging (also called induced polarization imaging or spectral induced polarization imaging when conducted at multiple frequencies) involves estimating the frequency-dependent complex electrical conductivity distribution of the subsurface. The superior diagnostic capabilities provided by complex conductivity spectra have driven advancements in mechanistic understanding of complex conductivity as well as modelling and inversion approaches over the past several decades. In this work, we demonstrate the theory and application for an approach to 3-D modelling and inversion of complex conductivity data in the real number domain. Beginning from first principles, we demonstrate how the equations for the real and imaginary components of the complex potential may be decoupled. This leads to a description of the real and imaginary source current terms, and a corresponding assessment of error arising from an assumption necessary to complete the decoupled modelling. We show that for most earth materials, which exhibit relatively small phases (e.g. less than 0.2 radians) in complex conductivity, these errors become insignificant. For higher phase materials, the errors may be quantified and corrected through an iterative procedure. We demonstrate the accuracy of numerical forward solutions by direct comparison to corresponding analytic solutions. We demonstrate the inversion using both synthetic and field examples with data collected over a waste infiltration trench, at frequencies ranging from 0.5 to 7.5 Hz.
Iterative approach as alternative to S-matrix in modal methods
NASA Astrophysics Data System (ADS)
Semenikhin, Igor; Zanuccoli, Mauro
2014-12-01
The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.
Rule-based spatial modeling with diffusing, geometrically constrained molecules.
Gruenert, Gerd; Ibrahim, Bashar; Lenser, Thorsten; Lohel, Maiko; Hinze, Thomas; Dittrich, Peter
2010-06-07
We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.
Rule-based spatial modeling with diffusing, geometrically constrained molecules
2010-01-01
Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly. PMID:20529264
Rabideau, Dustin J; Pei, Pamela P; Walensky, Rochelle P; Zheng, Amy; Parker, Robert A
2018-02-01
The expected value of sample information (EVSI) can help prioritize research but its application is hampered by computational infeasibility, especially for complex models. We investigated an approach by Strong and colleagues to estimate EVSI by applying generalized additive models (GAM) to results generated from a probabilistic sensitivity analysis (PSA). For 3 potential HIV prevention and treatment strategies, we estimated life expectancy and lifetime costs using the Cost-effectiveness of Preventing AIDS Complications (CEPAC) model, a complex patient-level microsimulation model of HIV progression. We fitted a GAM-a flexible regression model that estimates the functional form as part of the model fitting process-to the incremental net monetary benefits obtained from the CEPAC PSA. For each case study, we calculated the expected value of partial perfect information (EVPPI) using both the conventional nested Monte Carlo approach and the GAM approach. EVSI was calculated using the GAM approach. For all 3 case studies, the GAM approach consistently gave similar estimates of EVPPI compared with the conventional approach. The EVSI behaved as expected: it increased and converged to EVPPI for larger sample sizes. For each case study, generating the PSA results for the GAM approach required 3 to 4 days on a shared cluster, after which EVPPI and EVSI across a range of sample sizes were evaluated in minutes. The conventional approach required approximately 5 weeks for the EVPPI calculation alone. Estimating EVSI using the GAM approach with results from a PSA dramatically reduced the time required to conduct a computationally intense project, which would otherwise have been impractical. Using the GAM approach, we can efficiently provide policy makers with EVSI estimates, even for complex patient-level microsimulation models.
A multi-species exchange model for fully fluctuating polymer field theory simulations.
Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H
2014-11-07
Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.
Hydrogen Isotopes in Amino Acids and Soils Offer New Potential to Study Complex Processes
NASA Astrophysics Data System (ADS)
Fogel, M. L.; Newsome, S. D.; Williams, E. K.; Bradley, C. J.; Griffin, P.; Nakamoto, B. J.
2016-12-01
Hydrogen isotopes have been analyzed extensively in the earth and biogeosciences to trace water through various environmental systems. The majority of the measurements have been made on water in rocks and minerals (inorganic) or non-exchangeable H in lipids (organic), important biomarkers that represent a small fraction of the organic molecules synthesized by living organisms. Our lab has been investigating hydrogen isotopes in amino acids and complex soil organic matter, which have traditionally been thought to be too complex to interpret owing to complications from potentially exchangeable hydrogen. For the amino acids, we show how hydrogen in amino acids originates from two sources, food and water, and demonstrate that hydrogen isotopes can be routed directly between organisms. Amino acid hydrogen isotopes may unravel cycling in extremophiles in order to discover novel biochemical pathways central to the organism. For soil organic matter, recent approaches to understanding the origin of soil organic matter are pointing towards root exudates along with microbial biomass as the source, rather than aboveground leaf litter. Having an isotope tracer in very complex, potentially exchangeable organic matter can be handled with careful experimentation. Although no new instrumentation is being used per se, extension of classes of organic matter to isotope measurements has potential to open up new doors for understanding organic matter cycling on earth and in planetary materials.
Instantons re-examined: dynamical tunneling and resonant tunneling.
Le Deunff, Jérémy; Mouchet, Amaury
2010-04-01
Starting from trace formulas for the tunneling splittings (or decay rates) analytically continued in the complex time domain, we obtain explicit semiclassical expansions in terms of complex trajectories that are selected with appropriate complex-time paths. We show how this instantonlike approach, which takes advantage of an incomplete Wick rotation, accurately reproduces tunneling effects not only in the usual double-well potential but also in situations where a pure Wick rotation is insufficient, for instance dynamical tunneling or resonant tunneling. Even though only one-dimensional autonomous Hamiltonian systems are quantitatively studied, we discuss the relevance of our method for multidimensional and/or chaotic tunneling.
Single-step electrodeposition of CIS thin films with the complexing agent triethanolamine
NASA Astrophysics Data System (ADS)
Chiu, Yu-Shuen; Hsieh, Mu-Tao; Chang, Chih-Min; Chen, Chun-Shuo; Whang, Thou-Jen
2014-04-01
Some difficulties have long been encountered by single-step electrodeposition such as the optimization of electrolyte composition, deposition potentials, deposition time, and pH values. The approach of introducing ternary components into single-step electrodeposition is rather challenging especially due to the different values of the equilibrium potential for each constituent. Complexing agents play an important role in single-step electrodeposition of CuInSe2 (CIS), since the equilibrium potential of every constituent can be brought closer to each other when complexing agents are employed. In this work, single-step electrodeposition of CIS was enhanced by adding triethanolamine (TEA) into deposition bath, the CIS thin films were improved consequently in the form of polycrystalline cauliflower structures through the examination of SEM images and XRD patterns. The optimum composition of the solution for single-step electrodeposition of CIS is found to be 5 mM CuCl2, 22 mM InCl3, and 22 mM SeO2 at pH 1.5 with 0.1 M TEA. The structures, compositions, and morphologies of as-deposited and of annealed films were investigated.
Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian
2016-11-01
Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.
Haga, Ayako; Ogawara, Yoko; Kubota, Daisuke; Kitabayashi, Issay; Murakami, Yasufumi; Kondo, Tadashi
2013-06-01
Nucleophosmin (NPM) is a novel prognostic biomarker for Ewing's sarcoma. To evaluate the prognostic utility of NPM, we conducted an interactomic approach to characterize the NPM protein complex in Ewing's sarcoma cells. A gene suppression assay revealed that NPM promoted cell proliferation and the invasive properties of Ewing's sarcoma cells. FLAG-tag-based affinity purification coupled with liquid chromatography-tandem mass spectrometry identified 106 proteins in the NPM protein complex. The functional classification suggested that the NPM complex participates in critical biological events, including ribosome biogenesis, regulation of transcription and translation, and protein folding, that are mediated by these proteins. In addition to JAK1, a candidate prognostic biomarker for Ewing's sarcoma, the NPM complex, includes 11 proteins known as prognostic biomarkers for other malignancies. Meta-analysis of gene expression profiles of 32 patients with Ewing's sarcoma revealed that 6 of 106 were significantly and independently associated with survival period. These observations suggest a functional role as well as prognostic value of these NPM complex proteins in Ewing's sarcoma. Further, our study suggests the potential applications of interactomics in conjunction with meta-analysis for biomarker discovery. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krein, Gastao; Leme, Rafael R.; Woitek, Marcio
Traditional Monte Carlo simulations of QCD in the presence of a baryon chemical potential are plagued by the complex phase problem and new numerical approaches are necessary for studying the phase diagram of the theory. In this work we consider a Z{sub 3} Polyakov loop model for the deconfining phase transition in QCD and discuss how a flux representation of the model in terms of dimer and monomer variable solves the complex action problem. We present results of numerical simulations using a worm algorithm for the specific heat and two-point correlation function of Polyakov loops. Evidences of a first ordermore » deconfinement phase transition are discussed.« less
A Conceptual Modeling Approach for OLAP Personalization
NASA Astrophysics Data System (ADS)
Garrigós, Irene; Pardillo, Jesús; Mazón, Jose-Norberto; Trujillo, Juan
Data warehouses rely on multidimensional models in order to provide decision makers with appropriate structures to intuitively analyze data with OLAP technologies. However, data warehouses may be potentially large and multidimensional structures become increasingly complex to be understood at a glance. Even if a departmental data warehouse (also known as data mart) is used, these structures would be also too complex. As a consequence, acquiring the required information is more costly than expected and decision makers using OLAP tools may get frustrated. In this context, current approaches for data warehouse design are focused on deriving a unique OLAP schema for all analysts from their previously stated information requirements, which is not enough to lighten the complexity of the decision making process. To overcome this drawback, we argue for personalizing multidimensional models for OLAP technologies according to the continuously changing user characteristics, context, requirements and behaviour. In this paper, we present a novel approach to personalizing OLAP systems at the conceptual level based on the underlying multidimensional model of the data warehouse, a user model and a set of personalization rules. The great advantage of our approach is that a personalized OLAP schema is provided for each decision maker contributing to better satisfy their specific analysis needs. Finally, we show the applicability of our approach through a sample scenario based on our CASE tool for data warehouse development.
Variationally Optimized Free-Energy Flooding for Rate Calculation.
McCarty, James; Valsson, Omar; Tiwary, Pratyush; Parrinello, Michele
2015-08-14
We propose a new method to obtain kinetic properties of infrequent events from molecular dynamics simulation. The procedure employs a recently introduced variational approach [Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)] to construct a bias potential as a function of several collective variables that is designed to flood the associated free energy surface up to a predefined level. The resulting bias potential effectively accelerates transitions between metastable free energy minima while ensuring bias-free transition states, thus allowing accurate kinetic rates to be obtained. We test the method on a few illustrative systems for which we obtain an order of magnitude improvement in efficiency relative to previous approaches and several orders of magnitude relative to unbiased molecular dynamics. We expect an even larger improvement in more complex systems. This and the ability of the variational approach to deal efficiently with a large number of collective variables will greatly enhance the scope of these calculations. This work is a vindication of the potential that the variational principle has if applied in innovative ways.
Quantifying the adaptive cycle
Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika
2015-01-01
The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.
Quantifying the Adaptive Cycle.
Angeler, David G; Allen, Craig R; Garmestani, Ahjond S; Gunderson, Lance H; Hjerne, Olle; Winder, Monika
2015-01-01
The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.
Complex Instruction Set Quantum Computing
NASA Astrophysics Data System (ADS)
Sanders, G. D.; Kim, K. W.; Holton, W. C.
1998-03-01
In proposed quantum computers, electromagnetic pulses are used to implement logic gates on quantum bits (qubits). Gates are unitary transformations applied to coherent qubit wavefunctions and a universal computer can be created using a minimal set of gates. By applying many elementary gates in sequence, desired quantum computations can be performed. This reduced instruction set approach to quantum computing (RISC QC) is characterized by serial application of a few basic pulse shapes and a long coherence time. However, the unitary matrix of the overall computation is ultimately a unitary matrix of the same size as any of the elementary matrices. This suggests that we might replace a sequence of reduced instructions with a single complex instruction using an optimally taylored pulse. We refer to this approach as complex instruction set quantum computing (CISC QC). One trades the requirement for long coherence times for the ability to design and generate potentially more complex pulses. We consider a model system of coupled qubits interacting through nearest neighbor coupling and show that CISC QC can reduce the time required to perform quantum computations.
A wavelet analysis for the X-ray absorption spectra of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penfold, T. J.; Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne; SwissFEL, Paul Scherrer Inst, CH-5232 Villigen
2013-01-07
We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rheniummore » diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.« less
Climate Influence on Emerging Risk Areas for Rift Valley Fever Epidemics in Tanzania.
Mweya, Clement N; Mboera, Leonard E G; Kimera, Sharadhuli I
2017-07-01
Rift Valley Fever (RVF) is a climate-related arboviral infection of animals and humans. Climate is thought to represent a threat toward emerging risk areas for RVF epidemics globally. The objective of this study was to evaluate influence of climate on distribution of suitable breeding habitats for Culex pipiens complex, potential mosquito vector responsible for transmission and distribution of disease epidemics risk areas in Tanzania. We used ecological niche models to estimate potential distribution of disease risk areas based on vectors and disease co-occurrence data approach. Climatic variables for the current and future scenarios were used as model inputs. Changes in mosquito vectors' habitat suitability in relation to disease risk areas were estimated. We used partial receiver operating characteristic and the area under the curves approach to evaluate model predictive performance and significance. Habitat suitability for Cx. pipiens complex indicated broad-scale potential for change and shift in the distribution of the vectors and disease for both 2020 and 2050 climatic scenarios. Risk areas indicated more intensification in the areas surrounding Lake Victoria and northeastern part of the country through 2050 climate scenario. Models show higher probability of emerging risk areas spreading toward the western parts of Tanzania from northeastern areas and decrease in the southern part of the country. Results presented here identified sites for consideration to guide surveillance and control interventions to reduce risk of RVF disease epidemics in Tanzania. A collaborative approach is recommended to develop and adapt climate-related disease control and prevention strategies.
Hansen, Matthew; O'Brien, Kerth; Meckler, Garth; Chang, Anna Marie; Guise, Jeanne-Marie
2016-07-01
Mixed methods research has significant potential to broaden the scope of emergency care and specifically emergency medical services investigation. Mixed methods studies involve the coordinated use of qualitative and quantitative research approaches to gain a fuller understanding of practice. By combining what is learnt from multiple methods, these approaches can help to characterise complex healthcare systems, identify the mechanisms of complex problems such as medical errors and understand aspects of human interaction such as communication, behaviour and team performance. Mixed methods approaches may be particularly useful for out-of-hospital care researchers because care is provided in complex systems where equipment, interpersonal interactions, societal norms, environment and other factors influence patient outcomes. The overall objectives of this paper are to (1) introduce the fundamental concepts and approaches of mixed methods research and (2) describe the interrelation and complementary features of the quantitative and qualitative components of mixed methods studies using specific examples from the Children's Safety Initiative-Emergency Medical Services (CSI-EMS), a large National Institutes of Health-funded research project conducted in the USA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Validity as a social imperative for assessment in health professions education: a concept analysis.
Marceau, Mélanie; Gallagher, Frances; Young, Meredith; St-Onge, Christina
2018-06-01
Assessment can have far-reaching consequences for future health care professionals and for society. Thus, it is essential to establish the quality of assessment. Few modern approaches to validity are well situated to ensure the quality of complex assessment approaches, such as authentic and programmatic assessments. Here, we explore and delineate the concept of validity as a social imperative in the context of assessment in health professions education (HPE) as a potential framework for examining the quality of complex and programmatic assessment approaches. We conducted a concept analysis using Rodgers' evolutionary method to describe the concept of validity as a social imperative in the context of assessment in HPE. Supported by an academic librarian, we developed and executed a search strategy across several databases for literature published between 1995 and 2016. From a total of 321 citations, we identified 67 articles that met our inclusion criteria. Two team members analysed the texts using a specified approach to qualitative data analysis. Consensus was achieved through full team discussions. Attributes that characterise the concept were: (i) demonstration of the use of evidence considered credible by society to document the quality of assessment; (ii) validation embedded through the assessment process and score interpretation; (iii) documented validity evidence supporting the interpretation of the combination of assessment findings, and (iv) demonstration of a justified use of a variety of evidence (quantitative and qualitative) to document the quality of assessment strategies. The emerging concept of validity as a social imperative highlights some areas of focus in traditional validation frameworks, whereas some characteristics appear unique to HPE and move beyond traditional frameworks. The study reflects the importance of embedding consideration for society and societal concerns throughout the assessment and validation process, and may represent a potential lens through which to examine the quality of complex and programmatic assessment approaches. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
NASA Astrophysics Data System (ADS)
Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik
2018-03-01
The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol-1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.
Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik
2018-03-14
The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol -1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.
Using cognitive work analysis to explore activity allocation within military domains.
Jenkins, D P; Stanton, N A; Salmon, P M; Walker, G H; Young, M S
2008-06-01
Cognitive work analysis (CWA) is frequently advocated as an approach for the analysis of complex socio-technical systems. Much of the current CWA literature within the military domain pays particular attention to its initial phases; work domain analysis and contextual task analysis. Comparably, the analysis of the social and organisational constraints receives much less attention. Through the study of a helicopter mission planning system software tool, this paper describes an approach for investigating the constraints affecting the distribution of work. The paper uses this model to evaluate the potential benefits of the social and organisational analysis phase within a military context. The analysis shows that, through its focus on constraints, the approach provides a unique description of the factors influencing the social organisation within a complex domain. This approach appears to be compatible with existing approaches and serves as a validation of more established social analysis techniques. As part of the ergonomic design of mission planning systems, the social organisation and cooperation analysis phase of CWA provides a constraint-based description informing allocation of function between key actor groups. This approach is useful because it poses questions related to the transfer of information and optimum working practices.
Loeb, Danielle F; Bayliss, Elizabeth A; Candrian, Carey; deGruy, Frank V; Binswanger, Ingrid A
2016-03-22
Complex patients are increasingly common in primary care and often have poor clinical outcomes. Healthcare system barriers to effective care for complex patients have been previously described, but less is known about the potential impact and meaning of caring for complex patients on a daily basis for primary care providers (PCPs). Our objective was to describe PCPs' experiences providing care for complex patients, including their experiences of health system barriers and facilitators and their strategies to enhance provision of effective care. Using a general inductive approach, our qualitative research study was guided by an interpretive epistemology, or way of knowing. Our method for understanding included semi-structured in-depth interviews with internal medicine PCPs from two university-based and three community health clinics. We developed an interview guide, which included questions on PCPs' experiences, perceived system barriers and facilitators, and strategies to improve their ability to effectively treat complex patients. To focus interviews on real cases, providers were asked to bring de-identified clinical notes from patients they considered complex to the interview. Interview transcripts were coded and analyzed to develop categories from the raw data, which were then conceptualized into broad themes after team-based discussion. PCPs (N = 15) described complex patients with multidimensional needs, such as socio-economic, medical, and mental health. A vision of optimal care emerged from the data, which included coordinating care, preventing hospitalizations, and developing patient trust. PCPs relied on professional values and individual care strategies to overcome local and system barriers. Team based approaches were endorsed to improve the management of complex patients. Given the barriers to effective care described by PCPs, individual PCP efforts alone are unlikely to meet the needs of complex patients. To fulfill PCP's expressed concepts of optimal care, implementation of effective systemic approaches should be considered.
Generic approach for synthesizing asymmetric nanoparticles and nanoassemblies
Sun, Yugang; Hu, Yongxing
2015-05-26
A generic route for synthesis of asymmetric nanostructures. This approach utilizes submicron magnetic particles (Fe.sub.3O.sub.4--SiO.sub.2) as recyclable solid substrates for the assembly of asymmetric nanostructures and purification of the final product. Importantly, an additional SiO.sub.2 layer is employed as a mediation layer to allow for selective modification of target nanoparticles. The partially patched nanoparticles are used as building blocks for different kinds of complex asymmetric nanostructures that cannot be fabricated by conventional approaches. The potential applications such as ultra-sensitive substrates for surface enhanced Raman scattering (SERS) have been included.
Clinical examination and physical assessment of hip joint-related pain in athletes.
Reiman, Michael P; Thorborg, Kristian
2014-11-01
Evidence-based clinical examination and assessment of the athlete with hip joint related pain is complex. It requires a systematic approach to properly differentially diagnose competing potential causes of athletic pain generation. An approach with an initial broad focus (and hence use of highly sensitive tests/measures) that then is followed by utilizing more specific tests/measures to pare down this imprecise differential diagnosis list is suggested. Physical assessment measures are then suggested to discern impairments, activity and participation restrictions for athletes with hip-join related pain, hence guiding the proper treatment approach. 5.
"Defense-in-Depth" Laser Safety and the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J J
The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths ofmore » up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential hazard to personnel. Because of this, a multilayered approach to safety is taken. This paper presents the philosophy and approach taken at the NIF in the multi-layered 'defense-in-depth' approach to laser safety.« less
NASA Technical Reports Server (NTRS)
Beck, M.
1979-01-01
In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.
Joint histogram-based cost aggregation for stereo matching.
Min, Dongbo; Lu, Jiangbo; Do, Minh N
2013-10-01
This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation problem is reformulated from the perspective of a histogram, giving us the potential to reduce the complexity of the cost aggregation in stereo matching significantly. Differently from previous methods which have tried to reduce the complexity in terms of the size of an image and a matching window, our approach focuses on reducing the computational redundancy that exists among the search range, caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through an efficient sampling scheme inside the matching window. The tradeoff between accuracy and complexity is extensively investigated by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality disparity maps with low complexity and outperforms existing local methods. This paper also provides new insights into complexity-constrained stereo-matching algorithm design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Madeleine; Stanley, Ann Marie; Wang, Guangshun
Paralogous enzymes arise from gene duplication events that confer a novel function, although it is unclear how cross-reaction between the original and duplicate protein interaction network is minimized. We investigated HPr:EIsugar and NPr:EINtr, the initial complexes of paralogous phosphorylation cascades involved in sugar import and nitrogen regulation in bacteria, respectively. Although the HPr:EIsugar interaction has been well characterized, involving multiple complexes and transient interactions, the exact nature of the NPr:EINtr complex was unknown. We set out to identify the key features of the interaction by performing binding assays and elucidating the structure of NPr in complex with the phosphorylation domainmore » of EINtr (EINNtr), using a hybrid approach involving X-ray, homology, and sparse nuclear magnetic resonance. We found that the overall fold and active-site structure of the two complexes are conserved in order to maintain productive phosphorylation, however, the interface surface potential differs between the two complexes, which prevents cross-reaction.« less
Wang, Nani; Zhao, Guizhi; Zhang, Yang; Wang, Xuping; Zhao, Lisha; Xu, Pingcui; Shou, Dan
2017-10-27
BACKGROUND Osteoporosis is a complex bone disorder with a genetic predisposition, and is a cause of health problems worldwide. In China, Curculigo orchioides (CO) has been widely used as a herbal medicine in the prevention and treatment of osteoporosis. However, research on the mechanism of action of CO is still lacking. The aim of this study was to identify the absorbable components, potential targets, and associated treatment pathways of CO using a network pharmacology approach. MATERIAL AND METHODS We explored the chemical components of CO and used the five main principles of drug absorption to identify absorbable components. Targets for the therapeutic actions of CO were obtained from the PharmMapper server database. Pathway enrichment analysis was performed using the Comparative Toxicogenomics Database (CTD). Cytoscape was used to visualize the multiple components-multiple target-multiple pathways-multiple disease network for CO. RESULTS We identified 77 chemical components of CO, of which 32 components could be absorbed in the blood. These potential active components of CO regulated 83 targets and affected 58 pathways. Data analysis showed that the genes for estrogen receptor alpha (ESR1) and beta (ESR2), and the gene for 11 beta-hydroxysteroid dehydrogenase type 1, or cortisone reductase (HSD11B1) were the main targets of CO. Endocrine regulatory factors and factors regulating calcium reabsorption, steroid hormone biosynthesis, and metabolic pathways were related to these main targets and to ten corresponding compounds. CONCLUSIONS The network pharmacology approach used in our study has attempted to explain the mechanisms for the effects of CO in the prevention and treatment of osteoporosis, and provides an alternative approach to the investigation of the effects of this complex compound.
Leach, Verity; Redwood, Sabi; Lasseter, Gemma; Walther, Axel; Reid, Colette; Blazeby, Jane; Martin, Richard; Donovan, Jenny
2016-07-01
Members of the public and patients repeatedly indicate their willingness to take part in research, but current United Kingdom research governance involves complex rules about gaining consent. Research participation registers that seek consent from participants to be approached about future studies have several potential benefits, including: increased research participation across clinical and healthy populations; simplified recruitment to health care research; support for people's autonomy in decision making; and improved efficiency and generalizability of research. These potential benefits have to be balanced against ethical and governance considerations. With appropriate processes in place, seeking prospective consent from patients and members of the public to be approached about future studies could potentially increase public participation in health research without compromising informed consent and other ethical principles. © The Author(s) 2016.
Liu, Enzhao; Shehata, Michael; Swerdlow, Charles; Amorn, Allen; Cingolani, Eugenio; Kannarkat, Vinod; Chugh, Sumeet S; Wang, Xunzhang
2012-06-01
Ablation of accessory tracts in the posteroseptal region can be challenging, as illustrated by these 2 cases. Familiarity of the anatomy of this region and recognition of the ECG patterns can help identify the AP origin and potentially improve success rates of ablation. The isoelectric initial preexcited QRS complex with rSR’ pattern in lead V1 of the surface ECG but not the relatively earlier local ventricular activation at PSMA region may indicate a left-sided ablation approach for these APs.
Otis-Green, Shirley; Sidhu, Rupinder K.; Ferraro, Catherine Del; Ferrell, Betty
2014-01-01
Lung cancer patients and their family caregivers face a wide range of potentially distressing symptoms across the four domains of quality of life. A multi-dimensional approach to addressing these complex concerns with early integration of palliative care has proven beneficial. This article highlights opportunities to integrate social work using a comprehensive quality of life model and a composite patient scenario from a large lung cancer educational intervention National Cancer Institute-funded program project grant. PMID:24797998
Barbosa, Nuno Almeida; Grzeszczuk, Maria; Wieczorek, Robert
2015-01-15
First results of the application of the DFT computational approach to the reversible electrochemistry of polyaniline are presented. A tetrameric chain was used as the simplest model of the polyaniline polymer species. The system under theoretical investigation involved six tetramer species, two electrons, and two protons, taking part in 14 elementary reactions. Moreover, the tetramer species were interacting with two trihalogenoacetic acid molecules. Trifluoroacetic, trichloroacetic, and tribromoacetic acids were found to impact the redox transformation of polyaniline as shown by cyclic voltammetry. The theoretical approach was considered as a powerful tool for investigating the main factors of importance for the experimental behavior. The DFT method provided molecular structures, interaction energies, and equilibrium energies of all of the tetramer-acid complexes. Differences between the energies of the isolated tetramer species and their complexes with acids are discussed in terms of the elementary reactions, that is, ionization potentials and electron affinities, equilibrium constants, electrode potentials, and reorganization energies. The DFT results indicate a high impact of the acid on the reorganization energy of a particular elementary electron-transfer reaction. The ECEC oxidation path was predicted by the calculations. The model of the reacting system must be extended to octamer species and/or dimeric oligomer species to better approximate the real polymer situation.
Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang
2014-01-01
N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented.
Higel, Fabian; Seidl, Andreas; Demelbauer, Uwe; Sörgel, Fritz; Frieß, Wolfgang
2014-01-01
N-glycosylation is a complex post-translational modification with potential effects on the efficacy and safety of therapeutic proteins and known influence on the effector function of biopharmaceutical monoclonal antibodies (mAbs). Comprehensive characterization of N-glycosylation is therefore important in biopharmaceutical development. In early development, e.g. during pool or clone selection, however, only minute protein amounts of multiple samples are available for analytics. High sensitivity and high throughput methods are thus needed. An approach based on 96-well plate sample preparation and nanoLC-MS of 2- anthranilic acid or 2-aminobenzoic acid (AA) labeled N-glycans for the characterization of biopharmaceuticals in early development is reported here. With this approach, 192 samples can be processed simultaneously from complex matrices (e.g., cell culture supernatant) to purified 2-AA glycans, which are then analyzed by reversed phase nanoLC-MS. Attomolar sensitivity has been achieved by use of nanoelectrospray ionization, resulting in detailed glycan maps of mAbs and fusion proteins that are exemplarily shown in this work. Reproducibility, robustness and linearity of the approach are demonstrated, making use in a routine manner during pool or clone selection possible. Other potential fields of application, such as glycan biomarker discovery from serum samples, are also presented. PMID:24848368
Webster, Fiona; Christian, Jennifer; Mansfield, Elizabeth; Bhattacharyya, Onil; Hawker, Gillian; Levinson, Wendy; Naglie, Gary; Pham, Thuy-Nga; Rose, Louise; Schull, Michael; Sinha, Samir; Stergiopoulos, Vicky; Upshur, Ross; Wilson, Lynn
2015-01-01
Objectives The perspectives, needs and preferences of individuals with complex health and social needs can be overlooked in the design of healthcare interventions. This study was designed to provide new insights on patient perspectives drawing from the qualitative evaluation of 5 complex healthcare interventions. Setting Patients and their caregivers were recruited from 5 interventions based in primary, hospital and community care in Ontario, Canada. Participants We included 62 interviews from 44 patients and 18 non-clinical caregivers. Intervention Our team analysed the transcripts from 5 distinct projects. This approach to qualitative meta-evaluation identifies common issues described by a diverse group of patients, therefore providing potential insights into systems issues. Outcome measures This study is a secondary analysis of qualitative data; therefore, no outcome measures were identified. Results We identified 5 broad themes that capture the patients’ experience and highlight issues that might not be adequately addressed in complex interventions. In our study, we found that: (1) the emergency department is the unavoidable point of care; (2) patients and caregivers are part of complex and variable family systems; (3) non-medical issues mediate patients’ experiences of health and healthcare delivery; (4) the unanticipated consequences of complex healthcare interventions are often the most valuable; and (5) patient experiences are shaped by the healthcare discourses on medically complex patients. Conclusions Our findings suggest that key assumptions about patients that inform intervention design need to be made explicit in order to build capacity to better understand and support patients with multiple chronic diseases. Across many health systems internationally, multiple models are being implemented simultaneously that may have shared features and target similar patients, and a qualitative meta-evaluation approach, thus offers an opportunity for cumulative learning at a system level in addition to informing intervention design and modification. PMID:26351182
Talkowski, Michael E; Ernst, Carl; Heilbut, Adrian; Chiang, Colby; Hanscom, Carrie; Lindgren, Amelia; Kirby, Andrew; Liu, Shangtao; Muddukrishna, Bhavana; Ohsumi, Toshiro K; Shen, Yiping; Borowsky, Mark; Daly, Mark J; Morton, Cynthia C; Gusella, James F
2011-04-08
The contribution of balanced chromosomal rearrangements to complex disorders remains unclear because they are not detected routinely by genome-wide microarrays and clinical localization is imprecise. Failure to consider these events bypasses a potentially powerful complement to single nucleotide polymorphism and copy-number association approaches to complex disorders, where much of the heritability remains unexplained. To capitalize on this genetic resource, we have applied optimized sequencing and analysis strategies to test whether these potentially high-impact variants can be mapped at reasonable cost and throughput. By using a whole-genome multiplexing strategy, rearrangement breakpoints could be delineated at a fraction of the cost of standard sequencing. For rearrangements already mapped regionally by karyotyping and fluorescence in situ hybridization, a targeted approach enabled capture and sequencing of multiple breakpoints simultaneously. Importantly, this strategy permitted capture and unique alignment of up to 97% of repeat-masked sequences in the targeted regions. Genome-wide analyses estimate that only 3.7% of bases should be routinely omitted from genomic DNA capture experiments. Illustrating the power of these approaches, the rearrangement breakpoints were rapidly defined to base pair resolution and revealed unexpected sequence complexity, such as co-occurrence of inversion and translocation as an underlying feature of karyotypically balanced alterations. These findings have implications ranging from genome annotation to de novo assemblies and could enable sequencing screens for structural variations at a cost comparable to that of microarrays in standard clinical practice. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Howell, Bryan; McIntyre, Cameron C.
2016-06-01
Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.
Teaching Note: When a "Feminist Approach" Is Too Narrow
ERIC Educational Resources Information Center
Bondestam, Fredrik
2011-01-01
For feminist literary critics and teachers writing about and teaching literature "after feminism," the path is potentially treacherous. Feminist literary criticism, if it is applied too narrowly and used to reject complex literary texts that do not uphold an imagined feminist standard of "positive images" of women, can end up undermining other…
ERIC Educational Resources Information Center
Kanu, A. Bakarr; Pajski, Megan; Hartman, Machelle; Kimaru, Irene; Marine, Susan
2015-01-01
In today's complex world, there is a continued demand for recently graduated forensic chemists (criminalists) who have some background in forensic experimental techniques. This article describes modern forensic experimental approaches designed and implemented from a unique instructional perspective to present certain facets of crime scene…
Use of Problem-Based Learning in the Teaching and Learning of Horticultural Production
ERIC Educational Resources Information Center
Abbey, Lord; Dowsett, Eric; Sullivan, Jan
2017-01-01
Purpose: Problem-based learning (PBL), a relatively novel teaching and learning process in horticulture, was investigated. Proper application of PBL can potentially create a learning context that enhances student learning. Design/Methodology/Approach: Students worked on two complex ill-structured problems: (1) to produce fresh baby greens for a…
An Oil Spill in a Tube: An Accessible Approach for Teaching Environmental NMR Spectroscopy
ERIC Educational Resources Information Center
Simpson, Andre´ J.; Mitchell, Perry J.; Masoom, Hussain; Mobarhan, Yalda Liaghati; Adamo, Antonio; Dicks, Andrew P.
2015-01-01
NMR spectroscopy has great potential as an instrumental method for environmental chemistry research and monitoring but may be underused in teaching laboratories because of its complexity and the level of expertise required in operating the instrument and interpreting data. This laboratory experiment introduces environmental NMR spectroscopy to…
Gratitude in Workplace Research: A Rossian Approach
ERIC Educational Resources Information Center
Gibbs, Paul
2009-01-01
Workplace learning is complex in form. It is explorative, social and creative enquiry, and because it is carried out in the socio-political domain of the workplace, it is potentially exploitative of all who contribute. This paper suggests that the workplace researcher might conceptualise the contributions of participants as benefits and/or gifts,…
Evaluating the potential human health and ecological risks associated with exposures to complex chemical mixtures in the environment is one of the main challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrat...
Agroforestry adoption in the Calakmul biosphere reserve, Campeche, Mexico
D. Evan Mercer; Jeremy Haggar; Ann Snook; Mauricio Sosa
2005-01-01
Since farmers engage in a complex, dynamic process of learning-by-doing, evaluating economic incentives, and assessing risks in deciding whether to adopt agroforestry systems, a multi-pronged research approach is required for a complete analysis of adoption potential and to develop effective technological and institutional interventions. A case study is presented for...
Brains and Brawn: Complex Motor Activities to Maximize Cognitive Enhancement
ERIC Educational Resources Information Center
Moreau, David
2015-01-01
The target articles in this special issue address the timely question of embodied cognition in the classroom, and in particular the potential of this approach to facilitate learning in children. The interest for motor activities within settings that typically give little space to nontraditional content is proof of a shift from a Cartesian…
Better Skills, Better Jobs, Better Lives: A Strategic Approach to Skills Policies
ERIC Educational Resources Information Center
OECD Publishing (NJ3), 2012
2012-01-01
Recognising both the complexity of skills policies and the potential for peer learning, the OECD has developed a global Skills Strategy that helps countries to identify the strengths and weaknesses of their national skills systems, benchmark them internationally, and develop policies that can transform better skills into better jobs, economic…
USDA-ARS?s Scientific Manuscript database
Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The family Peronosporaceae (Straminipila; Oomycota) consists of obligate biotrophic pathogens that cause downy mildew disease on angiosperm...
Synthetic collective intelligence.
Solé, Ricard; Amor, Daniel R; Duran-Nebreda, Salva; Conde-Pueyo, Núria; Carbonell-Ballestero, Max; Montañez, Raúl
2016-10-01
Intelligent systems have emerged in our biosphere in different contexts and achieving different levels of complexity. The requirement of communication in a social context has been in all cases a determinant. The human brain, probably co-evolving with language, is an exceedingly successful example. Similarly, social insects complex collective decisions emerge from information exchanges between many agents. The difference is that such processing is obtained out of a limited individual cognitive power. Computational models and embodied versions using non-living systems, particularly involving robot swarms, have been used to explore the potentiality of collective intelligence. Here we suggest a novel approach to the problem grounded in the genetic engineering of unicellular systems, which can be modified in order to interact, store memories or adapt to external stimuli in collective ways. What we label as Synthetic Swarm Intelligence defines a parallel approach to the evolution of computation and swarm intelligence and allows to explore potential embodied scenarios for decision making at the microscale. Here, we consider several relevant examples of collective intelligence and their synthetic organism counterparts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Studying technology use as social practice: the untapped potential of ethnography
2011-01-01
Information and communications technologies (ICTs) in healthcare are often introduced with expectations of higher-quality, more efficient, and safer care. Many fail to meet these expectations. We argue here that the well-documented failures of ICTs in healthcare are partly attributable to the philosophical foundations of much health informatics research. Positivistic assumptions underpinning the design, implementation and evaluation of ICTs (in particular the notion that technology X has an impact which can be measured and reproduced in new settings), and the deterministic experimental and quasi-experimental study designs which follow from these assumptions, have inherent limitations when ICTs are part of complex social practices involving multiple human actors. We suggest that while experimental and quasi-experimental studies have an important place in health informatics research overall, ethnography is the preferred methodological approach for studying ICTs introduced into complex social systems. But for ethnographic approaches to be accepted and used to their full potential, many in the health informatics community will need to revisit their philosophical assumptions about what counts as research rigor. PMID:21521535
Application of surface complexation models to anion adsorption by natural materials.
Goldberg, Sabine
2014-10-01
Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.
Integrating microRNAs into a system biology approach to acute lung injury.
Zhou, Tong; Garcia, Joe G N; Zhang, Wei
2011-04-01
Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease. Copyright © 2011 Mosby, Inc. All rights reserved.
Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation
Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan
2016-01-01
Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747
Chirality sensing with stereodynamic biphenolate zinc complexes.
Bentley, Keith W; de Los Santos, Zeus A; Weiss, Mary J; Wolf, Christian
2015-10-01
Two bidentate ligands consisting of a fluxional polyarylacetylene framework with terminal phenol groups were synthesized. Reaction with diethylzinc gives stereodynamic complexes that undergo distinct asymmetric transformation of the first kind upon binding of chiral amines and amino alcohols. The substrate-to-ligand chirality imprinting at the zinc coordination sphere results in characteristic circular dichroism signals that can be used for direct enantiomeric excess (ee) analysis. This chemosensing approach bears potential for high-throughput ee screening with small sample amounts and reduced solvent waste compared to traditional high-performance liquid chromatography methods. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy
2014-08-19
The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup133 55–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one constructmore » of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes.« less
Kim, Seung Joong; Fernandez-Martinez, Javier; Sampathkumar, Parthasarathy; Martel, Anne; Matsui, Tsutomu; Tsuruta, Hiro; Weiss, Thomas M.; Shi, Yi; Markina-Inarrairaegui, Ane; Bonanno, Jeffery B.; Sauder, J. Michael; Burley, Stephen K.; Chait, Brian T.; Almo, Steven C.; Rout, Michael P.; Sali, Andrej
2014-01-01
The nuclear pore complex (NPC) is the sole passageway for the transport of macromolecules across the nuclear envelope. Nup133, a major component in the essential Y-shaped Nup84 complex, is a large scaffold protein of the NPC's outer ring structure. Here, we describe an integrative modeling approach that produces atomic models for multiple states of Saccharomyces cerevisiae (Sc) Nup133, based on the crystal structures of the sequence segments and their homologs, including the related Vanderwaltozyma polyspora (Vp) Nup133 residues 55 to 502 (VpNup13355–502) determined in this study, small angle X-ray scattering profiles for 18 constructs of ScNup133 and one construct of VpNup133, and 23 negative-stain electron microscopy class averages of ScNup1332–1157. Using our integrative approach, we then computed a multi-state structural model of the full-length ScNup133 and validated it with mutational studies and 45 chemical cross-links determined via mass spectrometry. Finally, the model of ScNup133 allowed us to annotate a potential ArfGAP1 lipid packing sensor (ALPS) motif in Sc and VpNup133 and discuss its potential significance in the context of the whole NPC; we suggest that ALPS motifs are scattered throughout the NPC's scaffold in all eukaryotes and play a major role in the assembly and membrane anchoring of the NPC in the nuclear envelope. Our results are consistent with a common evolutionary origin of Nup133 with membrane coating complexes (the protocoatomer hypothesis); the presence of the ALPS motifs in coatomer-like nucleoporins suggests an ancestral mechanism for membrane recognition present in early membrane coating complexes. PMID:25139911
Mathematical and Computational Modeling in Complex Biological Systems
Li, Wenyang; Zhu, Xiaoliang
2017-01-01
The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology. PMID:28386558
Mathematical and Computational Modeling in Complex Biological Systems.
Ji, Zhiwei; Yan, Ke; Li, Wenyang; Hu, Haigen; Zhu, Xiaoliang
2017-01-01
The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology.
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates
Middey, S.; Meyers, D.; Kareev, M.; ...
2018-04-09
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO 3. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions.more » Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. In conclusion, this designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.« less
Proteomic Approaches and Identification of Novel Therapeutic Targets for Alcoholism
Gorini, Giorgio; Adron Harris, R; Dayne Mayfield, R
2014-01-01
Recent studies have shown that gene regulation is far more complex than previously believed and does not completely explain changes at the protein level. Therefore, the direct study of the proteome, considerably different in both complexity and dynamicity to the genome/transcriptome, has provided unique insights to an increasing number of researchers. During the past decade, extraordinary advances in proteomic techniques have changed the way we can analyze the composition, regulation, and function of protein complexes and pathways underlying altered neurobiological conditions. When combined with complementary approaches, these advances provide the contextual information for decoding large data sets into meaningful biologically adaptive processes. Neuroproteomics offers potential breakthroughs in the field of alcohol research by leading to a deeper understanding of how alcohol globally affects protein structure, function, interactions, and networks. The wealth of information gained from these advances can help pinpoint relevant biomarkers for early diagnosis and improved prognosis of alcoholism and identify future pharmacological targets for the treatment of this addiction. PMID:23900301
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCann, Billy W.; Silva, Nuwan De; Windus, Theresa L.
Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R 2(O)P-link-P(O)R 2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theorymore » and the performance of known bis-phosphine oxide extractants. For the case where link is -CH 2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the ‘anomalous aryl strengthening’ effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.« less
Koo, Jaseung; Park, Jaehong; Tronin, Andrey; Zhang, Ruili; Krishnan, Venkata; Strzalka, Joseph; Kuzmenko, Ivan; Fry, H Christopher; Therien, Michael J; Blasie, J Kent
2012-02-14
We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially orient a linearly extended donor-bridge-acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle's interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle's exterior was employed to vectorially orient the peptide-chromophore complex at a liquid-gas interface, and its ends were tailored for subsequent covalent attachment to an inorganic surface, via a "directed assembly" approach. Structural data, combined with evaluation of the excited state dynamics exhibited by these peptide-chromophore complexes, demonstrate that densely packed, acentrically ordered 2-D monolayer ensembles of such complexes at high in-plane chromophore densities approaching 1/200 Å(2) offer unique potential as active layers in binary heterojunction photovoltaic devices.
Disentangled Cooperative Orderings in Artificial Rare-Earth Nickelates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middey, S.; Meyers, D.; Kareev, M.
Coupled transitions between distinct ordered phases are important aspects behind the rich phase complexity of correlated oxides that hinder our understanding of the underlying phenomena. For this reason, fundamental control over complex transitions has become a leading motivation of the designer approach to materials. We have devised a series of new superlattices by combining a Mott insulator and a correlated metal to form ultrashort period superlattices, which allow one to disentangle the simultaneous orderings in RENiO 3. Tailoring an incommensurate heterostructure period relative to the bulk charge ordering pattern suppresses the charge order transition while preserving metal-insulator and antiferromagnetic transitions.more » Such selective decoupling of the entangled phases resolves the long-standing puzzle about the driving force behind the metal-insulator transition and points to the site-selective Mott transition as the operative mechanism. In conclusion, this designer approach emphasizes the potential of heterointerfaces for selective control of simultaneous transitions in complex materials with entwined broken symmetries.« less
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.; ...
2017-08-18
This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacón, L., E-mail: chacon@lanl.gov; Chen, G.; Knoll, D.A.
We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLOmore » approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less
Multiscale high-order/low-order (HOLO) algorithms and applications
NASA Astrophysics Data System (ADS)
Chacón, L.; Chen, G.; Knoll, D. A.; Newman, C.; Park, H.; Taitano, W.; Willert, J. A.; Womeldorff, G.
2017-02-01
We review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. The HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.
This work applies a three-dimensional (3D) multiscale approach recently developed to analyze a complex CO 2 faulted reservoir that includes some key geological features of the San Andreas and nearby faults. The approach couples the STOMP-CO2-R code for flow and reactive transport modeling to the ABAQUS ® finite element package for geomechanical analysis. The objective is to examine the coupled hydro-geochemical-mechanical impact on the risk of hydraulic fracture and fault slip in a complex and representative CO 2 reservoir that contains two nearly parallel faults. STOMP-CO2-R/ABAQUS ® coupled analyses of this reservoir are performed assuming extensional and compressional stress regimesmore » to predict evolutions of fluid pressure, stress and strain distributions as well as potential fault failure and leakage of CO 2 along the fault damage zones. The tendency for the faults to slip and pressure margin to fracture are examined in terms of stress regime, mineral composition, crack distributions in the fault damage zones and geomechanical properties. Here, this model in combination with a detailed description of the faults helps assess the coupled hydro-geochemical-mechanical effect.« less
A path to precision in the ICU.
Maslove, David M; Lamontagne, Francois; Marshall, John C; Heyland, Daren K
2017-04-03
Precision medicine is increasingly touted as a groundbreaking new paradigm in biomedicine. In the ICU, the complexity and ambiguity of critical illness syndromes have been identified as fundamental justifications for the adoption of a precision approach to research and practice. Inherently protean diseases states such as sepsis and acute respiratory distress syndrome have manifestations that are physiologically and anatomically diffuse, and that fluctuate over short periods of time. This leads to considerable heterogeneity among patients, and conditions in which a "one size fits all" approach to therapy can lead to widely divergent results. Current ICU therapy can thus be seen as imprecise, with the potential to realize substantial gains from the adoption of precision medicine approaches. A number of challenges still face the development and adoption of precision critical care, a transition that may occur incrementally rather than wholesale. This article describes a few concrete approaches to addressing these challenges.First, novel clinical trial designs, including registry randomized controlled trials and platform trials, suggest ways in which conventional trials can be adapted to better accommodate the physiologic heterogeneity of critical illness. Second, beyond the "omics" technologies already synonymous with precision medicine, the data-rich environment of the ICU can generate complex physiologic signatures that could fuel precision-minded research and practice. Third, the role of computing infrastructure and modern informatics methods will be central to the pursuit of precision medicine in the ICU, necessitating close collaboration with data scientists. As work toward precision critical care continues, small proof-of-concept studies may prove useful in highlighting the potential of this approach.
Selection theory of free dendritic growth in a potential flow.
von Kurnatowski, Martin; Grillenbeck, Thomas; Kassner, Klaus
2013-04-01
The Kruskal-Segur approach to selection theory in diffusion-limited or Laplacian growth is extended via combination with the Zauderer decomposition scheme. This way nonlinear bulk equations become tractable. To demonstrate the method, we apply it to two-dimensional crystal growth in a potential flow. We omit the simplifying approximations used in a preliminary calculation for the same system [Fischaleck, Kassner, Europhys. Lett. 81, 54004 (2008)], thus exhibiting the capability of the method to extend mathematical rigor to more complex problems than hitherto accessible.
PSYCHE: An Object-Oriented Approach to Simulating Medical Education
Mullen, Jamie A.
1990-01-01
Traditional approaches to computer-assisted instruction (CAI) do not provide realistic simulations of medical education, in part because they do not utilize heterogeneous knowledge bases for their source of domain knowledge. PSYCHE, a CAI program designed to teach hypothetico-deductive psychiatric decision-making to medical students, uses an object-oriented implementation of an intelligent tutoring system (ITS) to model the student, domain expert, and tutor. It models the transactions between the participants in complex transaction chains, and uses heterogeneous knowledge bases to represent both domain and procedural knowledge in clinical medicine. This object-oriented approach is a flexible and dynamic approach to modeling, and represents a potentially valuable tool for the investigation of medical education and decision-making.
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
How Project Managers Really Manage: An Indepth Look at Some Managers of Large, Complex NASA Projects
NASA Technical Reports Server (NTRS)
Mulenburg, Gerald M.; Impaeilla, Cliff (Technical Monitor)
2000-01-01
This paper reports on a research study by the author that examined ten contemporary National Aeronautics and Space Administration (NASA) complex projects. In-depth interviews with the project managers of these projects provided qualitative data about the inner workings of the project and the methodologies used in establishing and managing the projects. The inclusion of a variety of space, aeronautics, and ground based projects from several different NASA research centers helped to reduce potential bias in the findings toward any one type of project, or technical discipline. The findings address the participants and their individual approaches. The discussion includes possible implications for project managers of other large, complex, projects.
NASA Astrophysics Data System (ADS)
Bagli, Enrico; Guidi, Vincenzo
2013-08-01
A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.
Minimizing Higgs potentials via numerical polynomial homotopy continuation
NASA Astrophysics Data System (ADS)
Maniatis, M.; Mehta, D.
2012-08-01
The study of models with extended Higgs sectors requires to minimize the corresponding Higgs potentials, which is in general very difficult. Here, we apply a recently developed method, called numerical polynomial homotopy continuation (NPHC), which guarantees to find all the stationary points of the Higgs potentials with polynomial-like non-linearity. The detection of all stationary points reveals the structure of the potential with maxima, metastable minima, saddle points besides the global minimum. We apply the NPHC method to the most general Higgs potential having two complex Higgs-boson doublets and up to five real Higgs-boson singlets. Moreover the method is applicable to even more involved potentials. Hence the NPHC method allows to go far beyond the limits of the Gröbner basis approach.
Network-Based Approaches in Drug Discovery and Early Development
Harrold, JM; Ramanathan, M; Mager, DE
2015-01-01
Identification of novel targets is a critical first step in the drug discovery and development process. Most diseases such as cancer, metabolic disorders, and neurological disorders are complex, and their pathogenesis involves multiple genetic and environmental factors. Finding a viable drug target–drug combination with high potential for yielding clinical success within the efficacy–toxicity spectrum is extremely challenging. Many examples are now available in which network-based approaches show potential for the identification of novel targets and for the repositioning of established targets. The objective of this article is to highlight network approaches for identifying novel targets with greater chances of gaining approved drugs with maximal efficacy and minimal side effects. Further enhancement of these approaches may emerge from effectively integrating computational systems biology with pharmacodynamic systems analysis. Coupling genomics, proteomics, and metabolomics databases with systems pharmacology modeling may aid in the development of disease-specific networks that can be further used to build confidence in target identification. PMID:24025802
Reflections on using biographical approaches in end-of-life care: dignity therapy as example.
Lindqvist, Olav; Threlkeld, Guinever; Street, Annette F; Tishelman, Carol
2015-01-01
The therapeutic potential of nonpharmacologic interventions using biographical approaches at the end of life (EoL) is being increasingly recognized, but less attention is paid to processes impeding realization of this potential. In this article, Swedish and Australian researchers reflect on and problematize experiences using one biographical approach, dignity therapy (DT), in EoL care in Sweden. We use this as an example, focusing on critical examination of the process of applying DT in practice, examining frictions experienced in recruiting participants, collecting the data, and creating a biography. We discuss issues regarding agency, which became evident in the recruitment process and choices made about participation, and the power differentials manifested in the interactive process of eliciting stories and crafting them into a final product. We also raise salient questions about how research and practice with biographical approaches in EoL care might better build on and further existing knowledge to better reflect the complexities of everyday life. © The Author(s) 2014.
Sabbagh, C N; Chowdhury, M M; Durrani, A; Van Rensburg, L; Koo, B; Coughlin, P A
2016-01-01
This case highlights the complexity of upper limb revascularization after a subclavian artery traumatic injury and strengthens the role of a hybrid/multi-disciplinary approach to such injuries. A 45-year-old male patient presented with an acute right upper limb following a traumatic injury to the right subclavian artery due to a motor vehicle accident (MVA). Associated injuries included an unstable cervical spine injury, a large open right clavicular injury, and a brain injury, which limited the potential revascularisation options available. The arm was revascularised using a hybrid endovascular/open surgical approach, namely embolization of the proximal subclavian artery (just distal to vertebral artery) and a right common femoral artery to distal axillary artery bypass using prosthetic material. Blunt injuries to the subclavian artery are often high impact, complex and associated with multiple injuries to surrounding structures, which limit the role of standard procedures used in the elective setting. This case highlights the role of multidisciplinary team involvement, using a hybrid approach and a novel distal inflow site to restore upper limb perfusion.
Hoffman, Robert R; Hancock, P A
2017-06-01
As human factors and ergonomics (HF/E) moves to embrace a greater systems perspective concerning human-machine technologies, new and emergent properties, such as resilience, have arisen. Our objective here is to promote discussion as to how to measure this latter, complex phenomenon. Resilience is now a much-referenced goal for technology and work system design. It subsumes the new movement of resilience engineering. As part of a broader systems approach to HF/E, this concept requires both a definitive specification and an associated measurement methodology. Such an effort epitomizes our present work. Using rational analytic and synthetic methods, we offer an approach to the measurement of resilience capacity. We explicate how our proposed approach can be employed to compare resilience across multiple systems and domains, and emphasize avenues for its future development and validation. Emerging concerns for the promise and potential of resilience and associated concepts, such as adaptability, are highlighted. Arguments skeptical of these emerging dimensions must be met with quantitative answers; we advance one approach here. Robust and validated measures of resilience will enable coherent and rational discussions of complex emergent properties in macrocognitive system science.
Buyel, Johannes Felix; Fischer, Rainer
2014-01-31
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Structure-based multiscale approach for identification of interaction partners of PDZ domains.
Tiwari, Garima; Mohanty, Debasisa
2014-04-28
PDZ domains are peptide recognition modules which mediate specific protein-protein interactions and are known to have a complex specificity landscape. We have developed a novel structure-based multiscale approach which identifies crucial specificity determining residues (SDRs) of PDZ domains from explicit solvent molecular dynamics (MD) simulations on PDZ-peptide complexes and uses these SDRs in combination with knowledge-based scoring functions for proteomewide identification of their interaction partners. Multiple explicit solvent simulations ranging from 5 to 50 ns duration have been carried out on 28 PDZ-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these simulations show a correlation coefficient of 0.755 with the experimental binding affinities. On the basis of the SDRs of PDZ domains identified by MD simulations, we have developed a simple scoring scheme for evaluating binding energies for PDZ-peptide complexes using residue based statistical pair potentials. This multiscale approach has been benchmarked on a mouse PDZ proteome array data set by calculating the binding energies for 217 different substrate peptides in binding pockets of 64 different mouse PDZ domains. Receiver operating characteristic (ROC) curve analysis indicates that, the area under curve (AUC) values for binder vs nonbinder classification by our structure based method is 0.780. Our structure based method does not require experimental PDZ-peptide binding data for training.
Design, fabrication and control of origami robots
NASA Astrophysics Data System (ADS)
Rus, Daniela; Tolley, Michael T.
2018-06-01
Origami robots are created using folding processes, which provide a simple approach to fabricating a wide range of robot morphologies. Inspired by biological systems, engineers have started to explore origami folding in combination with smart material actuators to enable intrinsic actuation as a means to decouple design from fabrication complexity. The built-in crease structure of origami bodies has the potential to yield compliance and exhibit many soft body properties. Conventional fabrication of robots is generally a bottom-up assembly process with multiple low-level steps for creating subsystems that include manual operations and often multiple iterations. By contrast, natural systems achieve elegant designs and complex functionalities using top-down parallel transformation approaches such as folding. Folding in nature creates a wide spectrum of complex morpho-functional structures such as proteins and intestines and enables the development of structures such as flowers, leaves and insect wings. Inspired by nature, engineers have started to explore folding powered by embedded smart material actuators to create origami robots. The design and fabrication of origami robots exploits top-down, parallel transformation approaches to achieve elegant designs and complex functionalities. In this Review, we first introduce the concept of origami robotics and then highlight advances in design principles, fabrication methods, actuation, smart materials and control algorithms. Applications of origami robots for a variety of devices are investigated, and future directions of the field are discussed, examining both challenges and opportunities.
Socio-ecological dynamics and challenges to the governance of Neglected Tropical Disease control.
Michael, Edwin; Madon, Shirin
2017-02-06
The current global attempts to control the so-called "Neglected Tropical Diseases (NTDs)" have the potential to significantly reduce the morbidity suffered by some of the world's poorest communities. However, the governance of these control programmes is driven by a managerial rationality that assumes predictability of proposed interventions, and which thus primarily seeks to improve the cost-effectiveness of implementation by measuring performance in terms of pre-determined outputs. Here, we argue that this approach has reinforced the narrow normal-science model for controlling parasitic diseases, and in doing so fails to address the complex dynamics, uncertainty and socio-ecological context-specificity that invariably underlie parasite transmission. We suggest that a new governance approach is required that draws on a combination of non-equilibrium thinking about the operation of complex, adaptive, systems from the natural sciences and constructivist social science perspectives that view the accumulation of scientific knowledge as contingent on historical interests and norms, if more effective control approaches sufficiently sensitive to local disease contexts are to be devised, applied and managed. At the core of this approach is an emphasis on the need for a process that assists with the inclusion of diverse perspectives, social learning and deliberation, and a reflexive approach to addressing system complexity and incertitude, while balancing this flexibility with stability-focused structures. We derive and discuss a possible governance framework and outline an organizational structure that could be used to effectively deal with the complexity of accomplishing global NTD control. We also point to examples of complexity-based management structures that have been used in parasite control previously, which could serve as practical templates for developing similar governance structures to better manage global NTD control. Our results hold important wider implications for global health policy aiming to effectively control and eradicate parasitic diseases across the world.
Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis
Crane, Erika A.
2016-01-01
Abstract Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854
Liu, Jian; Miller, William H
2011-03-14
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.
Sundaram, S K; Sacksteder, Colette A; Weber, Thomas J; Riley, Brian J; Addleman, R Shane; Harrer, Bruce J; Peterman, John W
2013-01-01
A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.
Theophilou, Georgios; Paraskevaidi, Maria; Lima, Kássio M G; Kyrgiou, Maria; Martin-Hirsch, Pierre L; Martin, Francis L
2015-05-01
The complex processes driving cancer have so far impeded the discovery of dichotomous biomarkers associated with its initiation and progression. Reductionist approaches utilizing 'omics' technologies have met some success in identifying molecular alterations associated with carcinogenesis. Systems biology is an emerging science that combines high-throughput investigation techniques to define the dynamic interplay between regulatory biological systems in response to internal and external cues. Vibrational spectroscopy has the potential to play an integral role within systems biology research approaches. It is capable of examining global models of carcinogenesis by scrutinizing chemical bond alterations within molecules. The application of infrared or Raman spectroscopic approaches coupled with computational analysis under the systems biology umbrella can assist the transition of biomarker research from the molecular level to the system level. The comprehensive representation of carcinogenesis as a multilevel biological process will inevitably revolutionize cancer-related healthcare by personalizing risk prediction and prevention.
Cullis, B R; Smith, A B; Beeck, C P; Cowling, W A
2010-11-01
Exploring and exploiting variety by environment (V × E) interaction is one of the major challenges facing plant breeders. In paper I of this series, we presented an approach to modelling V × E interaction in the analysis of complex multi-environment trials using factor analytic models. In this paper, we develop a range of statistical tools which explore V × E interaction in this context. These tools include graphical displays such as heat-maps of genetic correlation matrices as well as so-called E-scaled uniplots that are a more informative alternative to the classical biplot for large plant breeding multi-environment trials. We also present a new approach to prediction for multi-environment trials that include pedigree information. This approach allows meaningful selection indices to be formed either for potential new varieties or potential parents.
The potential application of the blackboard model of problem solving to multidisciplinary design
NASA Technical Reports Server (NTRS)
Rogers, James L.
1989-01-01
The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.
Genetic and environmental pathways to complex diseases.
Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J
2009-05-05
Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.
Management applications of discontinuity theory | Science ...
1.Human impacts on the environment are multifaceted and can occur across distinct spatiotemporal scales. Ecological responses to environmental change are therefore difficult to predict, and entail large degrees of uncertainty. Such uncertainty requires robust tools for management to sustain ecosystem goods and services and maintain resilient ecosystems. 2.We propose an approach based on discontinuity theory that accounts for patterns and processes at distinct spatial and temporal scales, an inherent property of ecological systems. Discontinuity theory has not been applied in natural resource management and could therefore improve ecosystem management because it explicitly accounts for ecological complexity. 3.Synthesis and applications. We highlight the application of discontinuity approaches for meeting management goals. Specifically, discontinuity approaches have significant potential to measure and thus understand the resilience of ecosystems, to objectively identify critical scales of space and time in ecological systems at which human impact might be most severe, to provide warning indicators of regime change, to help predict and understand biological invasions and extinctions and to focus monitoring efforts. Discontinuity theory can complement current approaches, providing a broader paradigm for ecological management and conservation This manuscript provides insight on using discontinuity approaches to aid in managing complex ecological systems. In part
Macroscopic modeling and simulations of supercoiled DNA with bound proteins
NASA Astrophysics Data System (ADS)
Huang, Jing; Schlick, Tamar
2002-11-01
General methods are presented for modeling and simulating DNA molecules with bound proteins on the macromolecular level. These new approaches are motivated by the need for accurate and affordable methods to simulate slow processes (on the millisecond time scale) in DNA/protein systems, such as the large-scale motions involved in the Hin-mediated inversion process. Our approaches, based on the wormlike chain model of long DNA molecules, introduce inhomogeneous potentials for DNA/protein complexes based on available atomic-level structures. Electrostatically, treat those DNA/protein complexes as sets of effective charges, optimized by our discrete surface charge optimization package, in which the charges are distributed on an excluded-volume surface that represents the macromolecular complex. We also introduce directional bending potentials as well as non-identical bead hydrodynamics algorithm to further mimic the inhomogeneous effects caused by protein binding. These models thus account for basic elements of protein binding effects on DNA local structure but remain computational tractable. To validate these models and methods, we reproduce various properties measured by both Monte Carlo methods and experiments. We then apply the developed models to study the Hin-mediated inversion system in long DNA. By simulating supercoiled, circular DNA with or without bound proteins, we observe significant effects of protein binding on global conformations and long-time dynamics of the DNA on the kilo basepair length.
DeSimone, Michael L; Asombang, Akwi W; Berzin, Tyler M
2017-09-16
For patients recovering from acute pancreatitis, the development of a pancreatic fluid collection (PFC) predicts a more complex course of recovery, and introduces difficult management decisions with regard to when, whether, and how the collection should be drained. Most PFCs resolve spontaneously and drainage is indicated only in pseudocysts and walled-off pancreatic necrosis when the collections are causing symptoms and/or local complications such as biliary obstruction. Historical approaches to PFC drainage have included surgical (open or laparoscopic cystgastrostomy or pancreatic debridement), and the placement of percutaneous drains. Endoscopic drainage techniques have emerged in the last several years as the preferred approach for most patients, when local expertise is available. Lumen-apposing metal stents (LAMS) have recently been developed as a tool to facilitate potentially safer and easier endoscopic drainage of pancreatic fluid collections, and less commonly, for other indications, such as gallbladder drainage. Physicians considering LAMS placement must be aware of the complications most commonly associated with LAMS including bleeding, migration, buried stent, stent occlusion, and perforation. Because of the patient complexity associated with severe pancreatitis, management of pancreatic fluid collections can be a complex and multidisciplinary endeavor. Successful and safe use of LAMS for patients with pancreatic fluid collections requires that the endoscopist have a full understanding of the potential complications of LAMS techniques, including how to recognize and manage expected complications.
Neubert, Sebastian; Göde, Bernd; Gu, Xiangyu; Stoll, Norbert; Thurow, Kerstin
2017-04-01
Modern business process management (BPM) is increasingly interesting for laboratory automation. End-to-end workflow automation and improved top-level systems integration for information technology (IT) and automation systems are especially prominent objectives. With the ISO Standard Business Process Model and Notation (BPMN) 2.X, a system-independent and interdisciplinary accepted graphical process control notation is provided, allowing process analysis, while also being executable. The transfer of BPM solutions to structured laboratory automation places novel demands, for example, concerning the real-time-critical process and systems integration. The article discusses the potential of laboratory execution systems (LESs) for an easier implementation of the business process management system (BPMS) in hierarchical laboratory automation. In particular, complex application scenarios, including long process chains based on, for example, several distributed automation islands and mobile laboratory robots for a material transport, are difficult to handle in BPMSs. The presented approach deals with the displacement of workflow control tasks into life science specialized LESs, the reduction of numerous different interfaces between BPMSs and subsystems, and the simplification of complex process modelings. Thus, the integration effort for complex laboratory workflows can be significantly reduced for strictly structured automation solutions. An example application, consisting of a mixture of manual and automated subprocesses, is demonstrated by the presented BPMS-LES approach.
Why the Interdisciplinary Team Approach Works: Insights from Complexity Science.
Ciemins, Elizabeth L; Brant, Jeannine; Kersten, Diane; Mullette, Elizabeth; Dickerson, Dustin
2016-07-01
Although an interdisciplinary approach is considered best practice for caring for patients at the end of life, or in need of palliative care (PC) services, there is growing tension between healthcare organizations' need to contain costs and the provision of this beneficial, yet resource-intensive service. To support the interdisciplinary team (IDT) approach by recognizing organizations, teams, patients, and families as complex adaptive systems, illustrated by a qualitative study of the experiences, roles, and attributes of healthcare professionals (HCPs) who work with patients in need of PC services. In-depth, semi-structured interviews of PC health professionals were conducted, transcribed, and independently reviewed using grounded theory methodology and preliminary interpretations. A combined deductive and inductive iterative qualitative approach was used to identify recurring themes. The study was conducted in a physician-led, not-for-profit, multispecialty integrated health system serving three large, Western, rural states. A purposive sample of 10 HCPs who regularly provide PC services were interviewed. A positive team/patient experience was related to individual attributes, including self-awareness, spirit of inquiry, humility, and comfort with dying. IDT attributes included shared purpose, relational coordination, holistic thinking, trust, and respect for patient autonomy. Professional and personal motivations also contributed to a positive team/patient experience. Interdisciplinary PC teams have the potential to significantly impact patient and team experiences when caring for seriously ill patients. Findings from this study support interventions that focus on relationship building and application of a complex systems theory approach to team development.
The application of quantum mechanics in structure-based drug design.
Mucs, Daniel; Bryce, Richard A
2013-03-01
Computational chemistry has become an established and valuable component in structure-based drug design. However the chemical complexity of many ligands and active sites challenges the accuracy of the empirical potentials commonly used to describe these systems. Consequently, there is a growing interest in utilizing electronic structure methods for addressing problems in protein-ligand recognition. In this review, the authors discuss recent progress in the development and application of quantum chemical approaches to modeling protein-ligand interactions. The authors specifically consider the development of quantum mechanics (QM) approaches for studying large molecular systems pertinent to biology, focusing on protein-ligand docking, protein-ligand binding affinities and ligand strain on binding. Although computation of binding energies remains a challenging and evolving area, current QM methods can underpin improved docking approaches and offer detailed insights into ligand strain and into the nature and relative strengths of complex active site interactions. The authors envisage that QM will become an increasingly routine and valued tool of the computational medicinal chemist.
Morgan, Sonya J; Pullon, Susan R H; Macdonald, Lindsay M; McKinlay, Eileen M; Gray, Ben V
2017-06-01
Case study research is a comprehensive method that incorporates multiple sources of data to provide detailed accounts of complex research phenomena in real-life contexts. However, current models of case study research do not particularly distinguish the unique contribution observation data can make. Observation methods have the potential to reach beyond other methods that rely largely or solely on self-report. This article describes the distinctive characteristics of case study observational research, a modified form of Yin's 2014 model of case study research the authors used in a study exploring interprofessional collaboration in primary care. In this approach, observation data are positioned as the central component of the research design. Case study observational research offers a promising approach for researchers in a wide range of health care settings seeking more complete understandings of complex topics, where contextual influences are of primary concern. Future research is needed to refine and evaluate the approach.
NASA Astrophysics Data System (ADS)
Cole, Barbara Ann
2009-11-01
This paper examines narrative methodologies as one approach to exploring issues of gender, education and social justice and, particularly, insights into "undoing gender". It furthermore examines the possibilities of exploring gender and its multiple intersections in a range of global and policy contexts through the use of personal experience approaches. The "storying" of lived experience is examined as a means of challenging dominant discourses which can construct and other individuals and groups in relation to many aspects of gender and education. Drawing on intersectionality, as a complex and developing feminist theory, the paper considers ways in which narrative can illuminate often hidden complexities while seeking to avoid generalisations and essentialisms. The difficulties of using narrative in relation to these aims are explored in the light of the warnings of feminist writers such as Michele Fine and bell hooks. The paper briefly considers narrative as both methodology and phenomenon, and finally, drawing on critical discourse analysis, discusses the potential of intersectionality and narrative in relation to undoing gender.
Efficient Wide Baseline Structure from Motion
NASA Astrophysics Data System (ADS)
Michelini, Mario; Mayer, Helmut
2016-06-01
This paper presents a Structure from Motion approach for complex unorganized image sets. To achieve high accuracy and robustness, image triplets are employed and (an approximate) camera calibration is assumed to be known. The focus lies on a complete linking of images even in case of large image distortions, e.g., caused by wide baselines, as well as weak baselines. A method for embedding image descriptors into Hamming space is proposed for fast image similarity ranking. The later is employed to limit the number of pairs to be matched by a wide baseline method. An iterative graph-based approach is proposed formulating image linking as the search for a terminal Steiner minimum tree in a line graph. Finally, additional links are determined and employed to improve the accuracy of the pose estimation. By this means, loops in long image sequences are implicitly closed. The potential of the proposed approach is demonstrated by results for several complex image sets also in comparison with VisualSFM.
NASA Astrophysics Data System (ADS)
Dearing, John A.; Bullock, Seth; Costanza, Robert; Dawson, Terry P.; Edwards, Mary E.; Poppy, Guy M.; Smith, Graham M.
2012-04-01
The `Perfect Storm' metaphor describes a combination of events that causes a surprising or dramatic impact. It lends an evolutionary perspective to how social-ecological interactions change. Thus, we argue that an improved understanding of how social-ecological systems have evolved up to the present is necessary for the modelling, understanding and anticipation of current and future social-ecological systems. Here we consider the implications of an evolutionary perspective for designing research approaches. One desirable approach is the creation of multi-decadal records produced by integrating palaeoenvironmental, instrument and documentary sources at multiple spatial scales. We also consider the potential for improved analytical and modelling approaches by developing system dynamical, cellular and agent-based models, observing complex behaviour in social-ecological systems against which to test systems dynamical theory, and drawing better lessons from history. Alongside these is the need to find more appropriate ways to communicate complex systems, risk and uncertainty to the public and to policy-makers.
Shukla, Mahendra; Jaiswal, Swati; Sharma, Abhisheak; Srivastava, Pradeep Kumar; Arya, Abhishek; Dwivedi, Anil Kumar; Lal, Jawahar
2017-05-01
Curcumin, the golden spice from Indian saffron, has shown chemoprotective action against many types of cancer including breast cancer. However, poor oral bioavailability is the major hurdle in its clinical application. In the recent years, self-nanoemulsifying drug delivery system (SNEDDS) has emerged as a promising tool to improve the oral absorption and enhancing the bioavailability of poorly water-soluble drugs. In this context, complexation with lipid carriers like phospholipid has also shown the tremendous potential to improve the solubility and therapeutic efficacy of certain drugs with poor oral bioavailability. In the present investigation, a systematic combination of both the approaches is utilized to prepare the phospholipid complex of curcumin and facilitate its incorporation into SNEDDS. The combined use of both the approaches has been explored for the first time to enhance the oral bioavailability and in turn increase the anticancer activity of curcumin. As evident from the pharmacokinetic studies and in situ single pass intestinal perfusion studies in Sprague-Dawley rats, the optimized SNEDDS of curcumin-phospholipid complex has shown enhanced oral absorption and bioavailability of curcumin. The cytotoxicity study in metastatic breast carcinoma cell line has shown the enhancement of cytotoxic action by 38.7%. The primary tumor growth reduction by 58.9% as compared with the control group in 4T1 tumor-bearing BALB/c mice further supported the theory of enhancement of anticancer activity of curcumin in SNEDDS. The developed formulation can be a potential and safe carrier for the oral delivery of curcumin.
Ilag, Leopold L; Videler, Hortense; McKay, Adam R; Sobott, Frank; Fucini, Paola; Nierhaus, Knud H; Robinson, Carol V
2005-06-07
Ribosomes are universal translators of the genetic code into protein and represent macromolecular structures that are asymmetric, often heterogeneous, and contain dynamic regions. These properties pose considerable challenges for modern-day structural biology. Despite these obstacles, high-resolution x-ray structures of the 30S and 50S subunits have revealed the RNA architecture and its interactions with proteins for ribosomes from Thermus thermophilus, Deinococcus radiodurans, and Haloarcula marismortui. Some regions, however, remain inaccessible to these high-resolution approaches because of their high conformational dynamics and potential heterogeneity, specifically the so-called L7/L12 stalk complex. This region plays a vital role in protein synthesis by interacting with GTPase factors in translation. Here, we apply tandem MS, an approach widely applied to peptide sequencing for proteomic applications but not previously applied to MDa complexes. Isolation and activation of ions assigned to intact 30S and 50S subunits releases proteins S6 and L12, respectively. Importantly, this process reveals, exclusively while attached to ribosomes, a phosphorylation of L12, the protein located in multiple copies at the tip of the stalk complex. Moreover, through tandem MS we discovered a stoichiometry for the stalk protuberance on Thermus thermophilus and other thermophiles and contrast this assembly with the analogous one on ribosomes from mesophiles. Together with evidence for a potential interaction with the degradosome, these results show that important findings on ribosome structure, interactions, and modifications can be discovered by tandem MS, even on well studied ribosomes from Thermus thermophilus.
Ilag, Leopold L.; Videler, Hortense; McKay, Adam R.; Sobott, Frank; Fucini, Paola; Nierhaus, Knud H.; Robinson, Carol V.
2005-01-01
Ribosomes are universal translators of the genetic code into protein and represent macromolecular structures that are asymmetric, often heterogeneous, and contain dynamic regions. These properties pose considerable challenges for modern-day structural biology. Despite these obstacles, high-resolution x-ray structures of the 30S and 50S subunits have revealed the RNA architecture and its interactions with proteins for ribosomes from Thermus thermophilus, Deinococcus radiodurans, and Haloarcula marismortui. Some regions, however, remain inaccessible to these high-resolution approaches because of their high conformational dynamics and potential heterogeneity, specifically the so-called L7/L12 stalk complex. This region plays a vital role in protein synthesis by interacting with GTPase factors in translation. Here, we apply tandem MS, an approach widely applied to peptide sequencing for proteomic applications but not previously applied to MDa complexes. Isolation and activation of ions assigned to intact 30S and 50S subunits releases proteins S6 and L12, respectively. Importantly, this process reveals, exclusively while attached to ribosomes, a phosphorylation of L12, the protein located in multiple copies at the tip of the stalk complex. Moreover, through tandem MS we discovered a stoichiometry for the stalk protuberance on Thermus thermophilus and other thermophiles and contrast this assembly with the analogous one on ribosomes from mesophiles. Together with evidence for a potential interaction with the degradosome, these results show that important findings on ribosome structure, interactions, and modifications can be discovered by tandem MS, even on well studied ribosomes from Thermus thermophilus. PMID:15923259
An Approach to Experimental Design for the Computer Analysis of Complex Phenomenon
NASA Technical Reports Server (NTRS)
Rutherford, Brian
2000-01-01
The ability to make credible system assessments, predictions and design decisions related to engineered systems and other complex phenomenon is key to a successful program for many large-scale investigations in government and industry. Recently, many of these large-scale analyses have turned to computational simulation to provide much of the required information. Addressing specific goals in the computer analysis of these complex phenomenon is often accomplished through the use of performance measures that are based on system response models. The response models are constructed using computer-generated responses together with physical test results where possible. They are often based on probabilistically defined inputs and generally require estimation of a set of response modeling parameters. As a consequence, the performance measures are themselves distributed quantities reflecting these variabilities and uncertainties. Uncertainty in the values of the performance measures leads to uncertainties in predicted performance and can cloud the decisions required of the analysis. A specific goal of this research has been to develop methodology that will reduce this uncertainty in an analysis environment where limited resources and system complexity together restrict the number of simulations that can be performed. An approach has been developed that is based on evaluation of the potential information provided for each "intelligently selected" candidate set of computer runs. Each candidate is evaluated by partitioning the performance measure uncertainty into two components - one component that could be explained through the additional computational simulation runs and a second that would remain uncertain. The portion explained is estimated using a probabilistic evaluation of likely results for the additional computational analyses based on what is currently known about the system. The set of runs indicating the largest potential reduction in uncertainty is then selected and the computational simulations are performed. Examples are provided to demonstrate this approach on small scale problems. These examples give encouraging results. Directions for further research are indicated.
Contributions of Invariants, Heuristics, and Exemplars to the Visual Perception of Relative Mass
ERIC Educational Resources Information Center
Cohen, Andrew L.
2006-01-01
Some potential contributions of invariants, heuristics, and exemplars to the perception of dynamic properties in the colliding balls task were explored. On each trial, an observer is asked to determine the heavier of 2 colliding balls. The invariant approach assumes that people can learn to detect complex visual patterns that reliably specify…
Do We Really Need Another Meeting? Lessons from the Los Angeles County Elder Abuse Forensic Center
ERIC Educational Resources Information Center
Navarro, Adria E.; Wilber, Kathleen H.; Yonashiro, Jeanine; Homeier, Diana C.
2010-01-01
Purpose: Elder abuse cases are often time consuming and complex, requiring interagency cooperation from a diverse array of professionals. Although multidisciplinary teams (MDTs) offer a potentially powerful approach to synergizing the efforts of different providers, there has been little research on elder abuse MDTs in general or elder abuse…
Statistical Primer on Biosimilar Clinical Development.
Isakov, Leah; Jin, Bo; Jacobs, Ira Allen
A biosimilar is highly similar to a licensed biological product and has no clinically meaningful differences between the biological product and the reference (originator) product in terms of safety, purity, and potency and is approved under specific regulatory approval processes. Because both the originator and the potential biosimilar are large and structurally complex proteins, biosimilars are not generic equivalents of the originator. Thus, the regulatory approach for a small-molecule generic is not appropriate for a potential biosimilar. As a result, different study designs and statistical approaches are used in the assessment of a potential biosimilar. This review covers concepts and terminology used in statistical analyses in the clinical development of biosimilars so that clinicians can understand how similarity is evaluated. This should allow the clinician to understand the statistical considerations in biosimilar clinical trials and make informed prescribing decisions when an approved biosimilar is available.
Formalizing the role of agent-based modeling in causal inference and epidemiology.
Marshall, Brandon D L; Galea, Sandro
2015-01-15
Calls for the adoption of complex systems approaches, including agent-based modeling, in the field of epidemiology have largely centered on the potential for such methods to examine complex disease etiologies, which are characterized by feedback behavior, interference, threshold dynamics, and multiple interacting causal effects. However, considerable theoretical and practical issues impede the capacity of agent-based methods to examine and evaluate causal effects and thus illuminate new areas for intervention. We build on this work by describing how agent-based models can be used to simulate counterfactual outcomes in the presence of complexity. We show that these models are of particular utility when the hypothesized causal mechanisms exhibit a high degree of interdependence between multiple causal effects and when interference (i.e., one person's exposure affects the outcome of others) is present and of intrinsic scientific interest. Although not without challenges, agent-based modeling (and complex systems methods broadly) represent a promising novel approach to identify and evaluate complex causal effects, and they are thus well suited to complement other modern epidemiologic methods of etiologic inquiry. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cusick, M E
1992-12-29
A novel approach is described to purify potential ribonucleoproteins (RNP) of yeast. The method assays a yeast RNP complex, assembled in vitro on actin pre-mRNA, by low-ionic strength acrylamide gel electrophoresis. The minimal protein components of this RNP complex were three proteins, one of 30 kDa and two at 42-44 kDa, defined by formation of the complex on biotinylated-RNA, binding of this complex to avidin-agarose, and salt elution of the protein in the biotinylated-RNP complex. Using the assay for RNP complex formation, an RNP protein was purified to homogeneity on the basis of its affinity towards single-stranded DNA and RNA. This RNP protein turned out to be identical to a known RNP protein, the single-stranded binding protein 1 (ssb1) of yeast, on the basis of identical gel electrophoretic migration, antibody cross-reactivity, and identical properties on the gel complex formation assay. In vitro mRNA splicing was normal in extracts made from a yeast strain missing ssb1 (ssb1- strain). Addition of anti-ssb1 antibody to splicing extracts made from a wild type strain did not inhibit or diminish splicing. Instead, mRNA splicing was reproducibly stimulated several fold, indicating competition between ssb1 and splicing factors for binding to single-stranded RNA in the extracts. RNP complexes still formed in the ssb1- strain, demonstrating that it would be possible to purify other RNP proteins from this strain using the gel complex formation assay.
Complex and oriented ZnO nanostructures.
Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang
2003-12-01
Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.
The BioIntelligence Framework: a new computational platform for biomedical knowledge computing.
Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles; Mousses, Spyro
2013-01-01
Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brorby, G.P.; Bruce, G.M.; Widner, T.E.
1993-09-01
While each of the three different screening comparisons made in this report (i.e., within-medium evaluation, between-media evaluation and relative importance grouping) individually provides information potentially of value in focusing future studies, each one is subject to a variety of limitations, the most important being associated with the absence or variable quality of environmental data for a number of the contaminants and media. These screening exercises are intended to provide an initial framework for approaching the study of an extremely complex site. Other approaches could very well yield somewhat different priorities, and the identification or reinterpretation of data in subsequent detailedmore » studies are likely to invalidate some of the results of these screening exercises. However, these evaluations provide a logical approach to defining initial off- site health impact study priorities for the ORR. Therefore, while care must be taken in attempting to make any broad generalizations or greatly simplifying assumptions with regard to the potential health hazards posed by the complex releases from the Reservation, Table 6-1 represents an attempt to summarize a set of recommendations that are derived from the screening exercises presented in this report. Table 6-1 identifies the facilities, processes and contaminants believed to have the highest potential for resulting in off-site health impacts. Table 6-2 identifies contaminants for which no ranking could be performed as part of this feasibility study, because of the absence of any appropriate data for any environmental medium.« less
Predicting protein complex geometries with a neural network.
Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter
2010-03-01
A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkowski, Marian; Richmann, Michael K; Reed, Donald T
2010-01-01
The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, itmore » was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported.« less
Fisher, Rohan; Lassa, Jonatan
2017-04-18
Modelling travel time to services has become a common public health tool for planning service provision but the usefulness of these analyses is constrained by the availability of accurate input data and limitations inherent in the assumptions and parameterisation. This is particularly an issue in the developing world where access to basic data is limited and travel is often complex and multi-modal. Improving the accuracy and relevance in this context requires greater accessibility to, and flexibility in, travel time modelling tools to facilitate the incorporation of local knowledge and the rapid exploration of multiple travel scenarios. The aim of this work was to develop simple open source, adaptable, interactive travel time modelling tools to allow greater access to and participation in service access analysis. Described are three interconnected applications designed to reduce some of the barriers to the more wide-spread use of GIS analysis of service access and allow for complex spatial and temporal variations in service availability. These applications are an open source GIS tool-kit and two geo-simulation models. The development of these tools was guided by health service issues from a developing world context but they present a general approach to enabling greater access to and flexibility in health access modelling. The tools demonstrate a method that substantially simplifies the process for conducting travel time assessments and demonstrate a dynamic, interactive approach in an open source GIS format. In addition this paper provides examples from empirical experience where these tools have informed better policy and planning. Travel and health service access is complex and cannot be reduced to a few static modeled outputs. The approaches described in this paper use a unique set of tools to explore this complexity, promote discussion and build understanding with the goal of producing better planning outcomes. The accessible, flexible, interactive and responsive nature of the applications described has the potential to allow complex environmental social and political considerations to be incorporated and visualised. Through supporting evidence-based planning the innovative modelling practices described have the potential to help local health and emergency response planning in the developing world.
Adaptive sampling strategies with high-throughput molecular dynamics
NASA Astrophysics Data System (ADS)
Clementi, Cecilia
Despite recent significant hardware and software developments, the complete thermodynamic and kinetic characterization of large macromolecular complexes by molecular simulations still presents significant challenges. The high dimensionality of these systems and the complexity of the associated potential energy surfaces (creating multiple metastable regions connected by high free energy barriers) does not usually allow to adequately sample the relevant regions of their configurational space by means of a single, long Molecular Dynamics (MD) trajectory. Several different approaches have been proposed to tackle this sampling problem. We focus on the development of ensemble simulation strategies, where data from a large number of weakly coupled simulations are integrated to explore the configurational landscape of a complex system more efficiently. Ensemble methods are of increasing interest as the hardware roadmap is now mostly based on increasing core counts, rather than clock speeds. The main challenge in the development of an ensemble approach for efficient sampling is in the design of strategies to adaptively distribute the trajectories over the relevant regions of the systems' configurational space, without using any a priori information on the system global properties. We will discuss the definition of smart adaptive sampling approaches that can redirect computational resources towards unexplored yet relevant regions. Our approaches are based on new developments in dimensionality reduction for high dimensional dynamical systems, and optimal redistribution of resources. NSF CHE-1152344, NSF CHE-1265929, Welch Foundation C-1570.
Rehman, Zia Ur; Idris, Adnan; Khan, Asifullah
2018-06-01
Protein-Protein Interactions (PPI) play a vital role in cellular processes and are formed because of thousands of interactions among proteins. Advancements in proteomics technologies have resulted in huge PPI datasets that need to be systematically analyzed. Protein complexes are the locally dense regions in PPI networks, which extend important role in metabolic pathways and gene regulation. In this work, a novel two-phase protein complex detection and grouping mechanism is proposed. In the first phase, topological and biological features are extracted for each complex, and prediction performance is investigated using Bagging based Ensemble classifier (PCD-BEns). Performance evaluation through cross validation shows improvement in comparison to CDIP, MCode, CFinder and PLSMC methods Second phase employs Multi-Dimensional Scaling (MDS) for the grouping of known complexes by exploring inter complex relations. It is experimentally observed that the combination of topological and biological features in the proposed approach has greatly enhanced prediction performance for protein complex detection, which may help to understand various biological processes, whereas application of MDS based exploration may assist in grouping potentially similar complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.
Qu, Chen; Bowman, Joel M
2018-05-17
We report quantum VSCF/VCI and ab initio molecular dynamics (AIMD) calculations of the IR spectra of (HCOOH) 2 and (DCOOH) 2 , using full-dimensional, ab initio potential energy and dipole moment surfaces (PES and DMS). These surfaces are fits, using permutationally invariant polynomials, to 13 475 ab initio CCSD(T)-F12a electronic energies and MP2 dipole moments. Here "AIMD" means using these ab initio potential and dipole moment surfaces in the MD calculations. The VSCF/VCI calculations use all (24) normal modes for coupling, with a four-mode representation of the potential. The quantum spectra align well with jet-cooled and room-temperature experimental spectra over the spectral range 600-3600 cm -1 . Analyses of the complex O-H and C-H stretch bands are made based on the mixing of the VSCF/VCI basis functions. The comparisons of the AIMD IR spectra with both experimental and VSCF/VCI ones provide tests of the accuracy of the AIMD approach. These indicate good accuracy for simple bands but not for the complex O-H stretch band, which is upshifted from experimental and VSCF/VCI bands by roughly 300 cm -1 . In addition to testing the AIMD approach, the PES, DMS, and VSCF/VCI calculations for formic acid dimer provide opportunities for testing other methods to represent high-dimensional data and other methods that perform postharmonic vibrational calculations.
Optical potential from first principles
Rotureau, J.; Danielewicz, P.; Hagen, G.; ...
2017-02-15
Here, we develop a method to construct a microscopic optical potential from chiral interactions for nucleon-nucleus scattering. The optical potential is constructed by combining the Green’s function approach with the coupled-cluster method. To deal with the poles of the Green’s function along the real energy axis we employ a Berggren basis in the complex energy plane combined with the Lanczos method. Using this approach, we perform a proof-of-principle calculation of the optical potential for the elastic neutron scattering on 16O. For the computation of the ground-state of 16O, we use the coupled-cluster method in the singles-and-doubles approximation, while for themore » A ±1 nuclei we use particle-attached/removed equation-of-motion method truncated at two-particle-one-hole and one-particle-two-hole excitations, respectively. We verify the convergence of the optical potential and scattering phase shifts with respect to the model-space size and the number of discretized complex continuum states. We also investigate the absorptive component of the optical potential (which reflects the opening of inelastic channels) by computing its imaginary volume integral and find an almost negligible absorptive component at low-energies. To shed light on this result, we computed excited states of 16O using equation-of-motion coupled-cluster method with singles-and- doubles excitations and we found no low-lying excited states below 10 MeV. Furthermore, most excited states have a dominant two-particle-two-hole component, making higher-order particle-hole excitations necessary to achieve a precise description of these core-excited states. We conclude that the reduced absorption at low-energies can be attributed to the lack of correlations coming from the low-order cluster truncation in the employed coupled-cluster method.« less
Norman, Jason M.; Handley, Scott A.; Virgin, Herbert W.
2014-01-01
Advanced sequencing techniques have shown that bacteria are not the only complex and important microbes in the human intestine. Non-bacterial organisms, particularly the virome and the mycobiome, are important regulators of intestinal immunity and inflammation. The virome is mucosal and systemic; it can alter the host response to bacteria and interact with host genes and bacteria to contribute to disease pathogenesis. The human mycobiome is also complex and can contribute to intestinal inflammation. We review what has recently been learned about the non-bacterial and non-archaeal microbes in the gastrointestinal tract, discussing their potential effects on health and disease and analytical approaches for their study. Studies of associations between the microbiome and intestinal pathology should incorporate kingdom-agnostic approaches if we are to fully understand intestinal health and disease. PMID:24508599
Telemedicine in Complex Diabetes Management.
McDonnell, Marie E
2018-05-24
Telehealth has the potential to positively transform the quality and cost-effectiveness of complex diabetes management in adults. This review explores the landscape of telemedicine approaches and evidence for incorporation into general practice. Telemedicine for diabetes care is feasible based on over 100 randomized clinical trials. Evidence shows modest benefits in A1c lowering and other clinical outcomes that are better sustained over time vs. usual care. While telemedicine interventions are likely cost-effective in diabetes care, more research is needed using implementation science approaches. Telehealth platforms have been shown to be both feasible and effective for health care delivery in diabetes, although there are many caveats that require tailoring to the institution, clinician, and patient population. Research in diabetes telehealth should focus next on how to increase access to patients who are known to be marginalized from traditional models of health care.
Evaluating the core microbiota in complex communities: A systematic investigation.
Astudillo-García, Carmen; Bell, James J; Webster, Nicole S; Glasl, Bettina; Jompa, Jamaluddin; Montoya, Jose M; Taylor, Michael W
2017-04-01
The study of complex microbial communities poses unique conceptual and analytical challenges, with microbial species potentially numbering in the thousands. With transient or allochthonous microorganisms often adding to this complexity, a 'core' microbiota approach, focusing only on the stable and permanent members of the community, is becoming increasingly popular. Given the various ways of defining a core microbiota, it is prudent to examine whether the definition of the core impacts upon the results obtained. Here we used complex marine sponge microbiotas and undertook a systematic evaluation of the degree to which different factors used to define the core influenced the conclusions. Significant differences in alpha- and beta-diversity were detected using some but not all core definitions. However, findings related to host specificity and environmental quality were largely insensitive to major changes in the core microbiota definition. Furthermore, none of the applied definitions altered our perception of the ecological networks summarising interactions among bacteria within the sponges. These results suggest that, while care should still be taken in interpretation, the core microbiota approach is surprisingly robust, at least for comparing microbiotas of closely related samples. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
3D Bioprinting for Engineering Complex Tissues
Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho
2016-01-01
Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. PMID:26724184
3D bioprinting for engineering complex tissues.
Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho
2016-01-01
Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies. Copyright © 2015 Elsevier Inc. All rights reserved.
Recurrence Quantification Analysis of Sentence-Level Speech Kinematics.
Jackson, Eric S; Tiede, Mark; Riley, Michael A; Whalen, D H
2016-12-01
Current approaches to assessing sentence-level speech variability rely on measures that quantify variability across utterances and use normalization procedures that alter raw trajectory data. The current work tests the feasibility of a less restrictive nonlinear approach-recurrence quantification analysis (RQA)-via a procedural example and subsequent analysis of kinematic data. To test the feasibility of RQA, lip aperture (i.e., the Euclidean distance between lip-tracking sensors) was recorded for 21 typically developing adult speakers during production of a simple utterance. The utterance was produced in isolation and in carrier structures differing just in length or in length and complexity. Four RQA indices were calculated: percent recurrence (%REC), percent determinism (%DET), stability (MAXLINE), and stationarity (TREND). Percent determinism (%DET) decreased only for the most linguistically complex sentence; MAXLINE decreased as a function of linguistic complexity but increased for the longer-only sentence; TREND decreased as a function of both length and linguistic complexity. This research note demonstrates the feasibility of using RQA as a tool to compare speech variability across speakers and groups. RQA offers promise as a technique to assess effects of potential stressors (e.g., linguistic or cognitive factors) on the speech production system.
Site-directed DNA crosslinking of large multisubunit protein-DNA complexes.
Persinger, Jim; Bartholomew, Blaine
2009-01-01
Several methods have been developed to site-specifically incorporate photoreactive nucleotide analogs into DNA for the purpose of identifying the proteins and their domains that are in contact with particular regions of DNA. The synthesis of several deoxynucleotide analogs that have a photoreactive group tethered to the nucleotide base and the incorporation of these analogs into DNA are described. In a second approach, oligonucleotide with a photoreactive group attached to the phosphate backbone is chemically synthesized. The photoreactive oligonucleotide is then enzymatically incorporated into DNA by annealing it to a complementary DNA template and extending with DNA polymerase. Both approaches have been effectively used to map protein-DNA interactions in large multisubunit complexes such as the eukaryotic transcription or ATP-dependent chromatin remodeling complexes. Not only do these techniques map the binding sites of the various subunits in these complexes, but when coupled with peptide mapping also determine the protein domain that is in close proximity to the different DNA sites. The strength of these techniques is the ability to scan a large number of potential sites by making combinations of different DNA probes and is facilitated by using an immobilized DNA template for synthesis.
Transcription regulation by the Mediator complex.
Soutourina, Julie
2018-04-01
Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.
Exploring resting-state EEG complexity before migraine attacks.
Cao, Zehong; Lai, Kuan-Lin; Lin, Chin-Teng; Chuang, Chun-Hsiang; Chou, Chien-Chen; Wang, Shuu-Jiun
2018-06-01
Objective Entropy-based approaches to understanding the temporal dynamics of complexity have revealed novel insights into various brain activities. Herein, electroencephalogram complexity before migraine attacks was examined using an inherent fuzzy entropy approach, allowing the development of an electroencephalogram-based classification model to recognize the difference between interictal and preictal phases. Methods Forty patients with migraine without aura and 40 age-matched normal control subjects were recruited, and the resting-state electroencephalogram signals of their prefrontal and occipital areas were prospectively collected. The migraine phases were defined based on the headache diary, and the preictal phase was defined as within 72 hours before a migraine attack. Results The electroencephalogram complexity of patients in the preictal phase, which resembled that of normal control subjects, was significantly higher than that of patients in the interictal phase in the prefrontal area (FDR-adjusted p < 0.05) but not in the occipital area. The measurement of test-retest reliability (n = 8) using the intra-class correlation coefficient was good with r1 = 0.73 ( p = 0.01). Furthermore, the classification model, support vector machine, showed the highest accuracy (76 ± 4%) for classifying interictal and preictal phases using the prefrontal electroencephalogram complexity. Conclusion Entropy-based analytical methods identified enhancement or "normalization" of frontal electroencephalogram complexity during the preictal phase compared with the interictal phase. This classification model, using this complexity feature, may have the potential to provide a preictal alert to migraine without aura patients.
Recent advances in QM/MM free energy calculations using reference potentials☆
Duarte, Fernanda; Amrein, Beat A.; Blaha-Nelson, David; Kamerlin, Shina C.L.
2015-01-01
Background Recent years have seen enormous progress in the development of methods for modeling (bio)molecular systems. This has allowed for the simulation of ever larger and more complex systems. However, as such complexity increases, the requirements needed for these models to be accurate and physically meaningful become more and more difficult to fulfill. The use of simplified models to describe complex biological systems has long been shown to be an effective way to overcome some of the limitations associated with this computational cost in a rational way. Scope of review Hybrid QM/MM approaches have rapidly become one of the most popular computational tools for studying chemical reactivity in biomolecular systems. However, the high cost involved in performing high-level QM calculations has limited the applicability of these approaches when calculating free energies of chemical processes. In this review, we present some of the advances in using reference potentials and mean field approximations to accelerate high-level QM/MM calculations. We present illustrative applications of these approaches and discuss challenges and future perspectives for the field. Major conclusions The use of physically-based simplifications has shown to effectively reduce the cost of high-level QM/MM calculations. In particular, lower-level reference potentials enable one to reduce the cost of expensive free energy calculations, thus expanding the scope of problems that can be addressed. General significance As was already demonstrated 40 years ago, the usage of simplified models still allows one to obtain cutting edge results with substantially reduced computational cost. This article is part of a Special Issue entitled Recent developments of molecular dynamics. PMID:25038480
NASA Astrophysics Data System (ADS)
Lohmann, U.; Jahns, J.; Wagner, T.; Werner, C.
2012-10-01
A microoptical 3D interconnection scheme and fabricated samples of this fiberoptical multi-channel interconnec- tion with an actual capacity of 144 channels were shown. Additionally the aspects of micrometer-fabrication of such microoptical interconnection modules in the view of alignment-tolerances were considered. For the realiza- tion of the interconnection schemes, the approach of planar-integrated free space optics (PIFSO) is used with its well known advantages. This approach offers the potential for complex interconnectivity, and yet compact size.
Interweaving Knowledge Resources to Address Complex Environmental Health Challenges.
Anderson, Beth Ellen; Naujokas, Marisa F; Suk, William A
2015-11-01
Complex problems do not respect academic disciplinary boundaries. Environmental health research is complex and often moves beyond these boundaries, integrating diverse knowledge resources to solve such challenges. Here we describe an evolving paradigm for interweaving approaches that integrates widely diverse resources outside of traditional academic environments in full partnerships of mutual respect and understanding. We demonstrate that scientists, social scientists, and engineers can work with government agencies, industry, and communities to interweave their expertise into metaphorical knowledge fabrics to share understanding, resources, and enthusiasm. Our goal is to acknowledge and validate how interweaving research approaches can contribute to research-driven, solution-oriented problem solving in environmental health, and to inspire more members of the environmental health community to consider this approach. The National Institutes of Health's National Institute of Environmental Health Sciences Superfund Research Program (SRP), as mandated by Congress, has evolved to become a program that reaches across a wide range of knowledge resources. SRP fosters interweaving multiple knowledge resources to develop innovative multidirectional partnerships for research and training. Here we describe examples of how motivation, ideas, knowledge, and expertise from different people, institutions, and agencies can integrate to tackle challenges that can be as complex as the resources they bring to bear on it. By providing structure for interweaving science with its stakeholders, we are better able to leverage resources, increase potential for innovation, and proactively ensure a more fully developed spectrum of beneficial outcomes of research investments. Anderson BE, Naujokas MF, Suk WA. 2015. Interweaving knowledge resources to address complex environmental health challenges. Environ Health Perspect 123:1095-1099; http://dx.doi.org/10.1289/ehp.1409525.
Advancing Clinical Proteomics via Analysis Based on Biological Complexes: A Tale of Five Paradigms.
Goh, Wilson Wen Bin; Wong, Limsoon
2016-09-02
Despite advances in proteomic technologies, idiosyncratic data issues, for example, incomplete coverage and inconsistency, resulting in large data holes, persist. Moreover, because of naïve reliance on statistical testing and its accompanying p values, differential protein signatures identified from such proteomics data have little diagnostic power. Thus, deploying conventional analytics on proteomics data is insufficient for identifying novel drug targets or precise yet sensitive biomarkers. Complex-based analysis is a new analytical approach that has potential to resolve these issues but requires formalization. We categorize complex-based analysis into five method classes or paradigms and propose an even-handed yet comprehensive evaluation rubric based on both simulated and real data. The first four paradigms are well represented in the literature. The fifth and newest paradigm, the network-paired (NP) paradigm, represented by a method called Extremely Small SubNET (ESSNET), dominates in precision-recall and reproducibility, maintains strong performance in small sample sizes, and sensitively detects low-abundance complexes. In contrast, the commonly used over-representation analysis (ORA) and direct-group (DG) test paradigms maintain good overall precision but have severe reproducibility issues. The other two paradigms considered here are the hit-rate and rank-based network analysis paradigms; both of these have good precision-recall and reproducibility, but they do not consider low-abundance complexes. Therefore, given its strong performance, NP/ESSNET may prove to be a useful approach for improving the analytical resolution of proteomics data. Additionally, given its stability, it may also be a powerful new approach toward functional enrichment tests, much like its ORA and DG counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deeb, Rula A.; Hawley, Elisabeth L.
The goal of United States (U.S.) Department of Energy's (DOE)'s environmental remediation programs is to restore groundwater to beneficial use, similar to many other Federal and state environmental cleanup programs. Based on past experience, groundwater remediation to pre-contamination conditions (i.e., drinking water standards or non-detectable concentrations) can be successfully achieved at many sites. At a subset of the most complex sites, however, complete restoration is not likely achievable within the next 50 to 100 years using today's technology. This presentation describes several approaches used at complex sites in the face of these technical challenges. Many complex sites adopted a long-termmore » management approach, whereby contamination was contained within a specified area using active or passive remediation techniques. Consistent with the requirements of their respective environmental cleanup programs, several complex sites selected land use restrictions and used risk management approaches to accordingly adopt alternative cleanup goals (alternative endpoints). Several sites used long-term management designations and approaches in conjunction with the alternative endpoints. Examples include various state designations for groundwater management zones, technical impracticability (TI) waivers or greater risk waivers at Superfund sites, and the use of Monitored Natural Attenuation (MNA) or other passive long-term management approaches over long time frames. This presentation will focus on findings, statistics, and case studies from a recently-completed report for the Department of Defense's Environmental Security Technology Certification Program (ESTCP) (Project ER-0832) on alternative endpoints and approaches for groundwater remediation at complex sites under a variety of Federal and state cleanup programs. The primary objective of the project was to provide environmental managers and regulators with tools, metrics, and information needed to evaluate alternative endpoints for groundwater remediation at complex sites. A statistical analysis of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) sites receiving TI waivers will be presented as well as case studies of other types of alternative endpoints and alternative remedial strategies that illustrate the variety of approaches used at complex sites and the technical analyses used to predict and document cost, time frame, and potential remedial effectiveness. This presentation is intended to inform DOE program managers, state regulators, practitioners and other stakeholders who are evaluating technical cleanup challenges within their own programs, and establishing programmatic approaches to evaluating and implementing long-term management approaches. Case studies provide examples of long-term management designations and strategies to manage and remediate groundwater at complex sites. At least 13 states consider some designation for groundwater containment in their corrective action policies, such as groundwater management zones, containment zones, and groundwater classification exemption areas. Long-term management designations are not a way to 'do nothing' or walk away from a site. Instead, soil and groundwater within the zone is managed to be protective of human health and the environment. Understanding when and how to adopt a long-term management approach can lead to cost savings and the more efficient use of resources across DOE and at numerous other industrial and military sites across the U.S. This presentation provides context for assessing the use and appropriate role of alternative endpoints and supporting long-term management designations in final remedies. (authors)« less
Bennett, Casey C; Hauser, Kris
2013-01-01
In the modern healthcare system, rapidly expanding costs/complexity, the growing myriad of treatment options, and exploding information streams that often do not effectively reach the front lines hinder the ability to choose optimal treatment decisions over time. The goal in this paper is to develop a general purpose (non-disease-specific) computational/artificial intelligence (AI) framework to address these challenges. This framework serves two potential functions: (1) a simulation environment for exploring various healthcare policies, payment methodologies, etc., and (2) the basis for clinical artificial intelligence - an AI that can "think like a doctor". This approach combines Markov decision processes and dynamic decision networks to learn from clinical data and develop complex plans via simulation of alternative sequential decision paths while capturing the sometimes conflicting, sometimes synergistic interactions of various components in the healthcare system. It can operate in partially observable environments (in the case of missing observations or data) by maintaining belief states about patient health status and functions as an online agent that plans and re-plans as actions are performed and new observations are obtained. This framework was evaluated using real patient data from an electronic health record. The results demonstrate the feasibility of this approach; such an AI framework easily outperforms the current treatment-as-usual (TAU) case-rate/fee-for-service models of healthcare. The cost per unit of outcome change (CPUC) was $189 vs. $497 for AI vs. TAU (where lower is considered optimal) - while at the same time the AI approach could obtain a 30-35% increase in patient outcomes. Tweaking certain AI model parameters could further enhance this advantage, obtaining approximately 50% more improvement (outcome change) for roughly half the costs. Given careful design and problem formulation, an AI simulation framework can approximate optimal decisions even in complex and uncertain environments. Future work is described that outlines potential lines of research and integration of machine learning algorithms for personalized medicine. Copyright © 2012 Elsevier B.V. All rights reserved.
Phillips, Patrick J.; Nowell, Lisa H.; Gilliom, Robert J.; Nakagaki, Naomi; Murray, Karen; VanAlstyne, Carolyn
2010-01-01
Mixtures of organochlorine compounds have the potential for additive or interactive toxicity to organisms exposed in the stream. This study uses a variety of methods to identify mixtures and a modified concentration-addition approach to estimate their potential toxicity at 845 stream sites across the United States sampled between 1992 and 2001 for organochlorine pesticides and polychlorinated biphenyls (PCBs) in bed sediment. Principal-component (PC) analysis identified five PCs that account for 77% of the total variance in 14 organochlorine compounds in the original dataset. The five PCs represent: (1) chlordane-related compounds and dieldrin; (2) p,p′-DDT and its degradates; (3) o,p′-DDT and its degradates; (4) the pesticide degradates oxychlordane and heptachlor epoxide; and (5) PCBs. The PC analysis grouped compounds that have similar chemical structure (such as parent compound and degradate), common origin (in the same technical pesticide mixture), and(or) similar relation of concentrations to land use. For example, the highest concentrations of chlordane compounds and dieldrin occurred at urban sites, reflecting past use of parent pesticides for termite control. Two approaches to characterizing mixtures—PC-based mixtures and unique mixtures—were applied to all 299 samples with a detection of two or more organochlorine compounds. PC-based mixtures are defined by the presence (in the sample) of one or more compounds associated with that PC. Unique mixtures are defined as a specific combination of two or more compounds detected in a sample, regardless of how many other compounds were also detected in that sample. The simplest PC-based mixtures (containing compounds from 1 or 2 PCs) commonly occurred in a variety of land use settings. Complex mixtures (containing compounds from 3 or more PCs) were most common in samples from urban and mixed/urban sites, especially in the Northeast, reflecting high concentrations of multiple chlordane, dieldrin, DDT-related compounds, and(or) PCBs. The most commonly occurring unique mixture (p,p′-DDE, p,p′-DDD) occurred in both simple and complex PC-based mixtures, and at both urban and agricultural sites. Mean Probable Effect Concentration Quotients (PEC-Q) values, which estimate the potential toxicity of organochlorine contaminant mixtures, were highest for complex mixtures. Mean PEC-Q values were highest for urban sites in the Northeast, followed by mixed/urban sites in the Northeast and agricultural sites in cotton growing areas. These results demonstrate that the PEC-Q approach can be used in combination with PC-based and unique mixture analyses to relate potential aquatic toxicity of contaminant mixtures to mixture complexity, land use, and other surrogates for contaminant sources.
NASA Astrophysics Data System (ADS)
Gosai, Agnivo
The concomitant detection, monitoring and analysis of biomolecules have assumed utmost importance in the field of medical diagnostics as well as in different spheres of biotechnology research such as drug development, environmental hazard detection and biodefense. There is an increased demand for the modulation of the biological response for such detection / sensing schemes which will be facilitated by the sensitive and controllable transmission of external stimuli. Electrostatic actuation for the controlled release/capture of biomolecules through conformational transformations of bioreceptors provides an efficient and feasible mechanism to modulate biological response. In addition, electrostatic actuation mechanism has the advantage of allowing massively parallel schemes and measurement capabilities that could ultimately be essential for biomedical applications. Experiments have previously demonstrated the unbinding of thrombin from its aptamer in presence of small positive electrode potential whereas the complex remained associated in presence of small negative potentials / zero potential. However, the nanoscale physics/chemistry involved in this process is not clearly understood. In this thesis a combination of continuum mechanics based modeling and a variety of atomistic simulation techniques have been utilized to corroborate the aforementioned experimental observations. It is found that the computational approach can satisfactorily predict the dynamics of the electrically excited aptamer-thrombin complex as well as provide an analytical model to characterize the forced binding of the complex.
SNAP: Automated Generation of High-Accuracy Interatomic Potentials using Quantum Data
NASA Astrophysics Data System (ADS)
Thompson, Aidan; Wood, Mitchell; Phillpot, Simon
Molecular dynamics simulation is a powerful computational method for bridging between macroscopic continuum models and quantum models treating a few hundred atoms, but it is limited by the accuracy of the interatomic potential. Sound physical and chemical understanding have led to good potentials for certain systems, but it is difficult to extend them to new materials and properties. The solution is obvious but challenging: develop more complex potentials that reproduce large quantum datasets. The growing availability of large data sets has made it possible to use automated machine-learning approaches for interatomic potential development. In the SNAP approach, the interatomic potential depends on a very general set of atomic neighborhood descriptors, based on the bispectrum components of the density projected onto the surface of the unit 3-sphere. Previously, this approach was demonstrated for tantalum, reproducing the screw dislocation Peierls barrier. In this talk, it will be shown that the SNAP method is capable of reproducing a wide range of energy landscapes relevant to diverse material science applications: i) point defects in indium phosphide, ii) stability of tungsten surfaces at high temperatures, and iii) formation of intrinsic defects in uranium. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energys National Nuclear Security Admin. under contract DE-AC04-94AL85000.
A genetic-algorithm approach for assessing the liquefaction potential of sandy soils
NASA Astrophysics Data System (ADS)
Sen, G.; Akyol, E.
2010-04-01
The determination of liquefaction potential is required to take into account a large number of parameters, which creates a complex nonlinear structure of the liquefaction phenomenon. The conventional methods rely on simple statistical and empirical relations or charts. However, they cannot characterise these complexities. Genetic algorithms are suited to solve these types of problems. A genetic algorithm-based model has been developed to determine the liquefaction potential by confirming Cone Penetration Test datasets derived from case studies of sandy soils. Software has been developed that uses genetic algorithms for the parameter selection and assessment of liquefaction potential. Then several estimation functions for the assessment of a Liquefaction Index have been generated from the dataset. The generated Liquefaction Index estimation functions were evaluated by assessing the training and test data. The suggested formulation estimates the liquefaction occurrence with significant accuracy. Besides, the parametric study on the liquefaction index curves shows a good relation with the physical behaviour. The total number of misestimated cases was only 7.8% for the proposed method, which is quite low when compared to another commonly used method.
Theoretical investigation of the He4Br2 conformers.
Valdés, Álvaro; Prosmiti, Rita; Villarreal, Pablo; Delgado-Barrio, Gerardo
2012-07-05
Full dimensional quantum dynamics calculations of the three lowest isomers of the He(4)Br(2) van der Waals molecule in its ground electronic state are reported. The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method and a realistic potential form that includes the sum of three body ab initio coupled-cluster single double triple [CCSD(T)] He-Br(2) interactions plus the He-He and Br-Br interactions. This potential exhibits several multiple minima, with the three lowest ones lying very close in energy, just within 2 cm(-1). Such small differences are also found in the calculated binding energies of the three most stable conformers, indicating the floppiness of the system and, thus, the need of accurate potential forms and quantum full dynamics methods to treat this kind of complexes. The 12 dimensional results reported in this work present benchmark data and, thus, can serve to evaluate approximate methods aiming to describe higher order rare gas-dihalogen (N > 4) complexes. A comparison with previous studies using different potential forms and approaches to the energetics for the He(4)Br(2) cluster is also presented.
Fürnstahl, Philipp; Vlachopoulos, Lazaros; Schweizer, Andreas; Fucentese, Sandro F; Koch, Peter P
2015-08-01
The accurate reduction of tibial plateau malunions can be challenging without guidance. In this work, we report on a novel technique that combines 3-dimensional computer-assisted planning with patient-specific surgical guides for improving reliability and accuracy of complex intraarticular corrective osteotomies. Preoperative planning based on 3-dimensional bone models was performed to simulate fragment mobilization and reduction in 3 cases. Surgical implementation of the preoperative plan using patient-specific cutting and reduction guides was evaluated; benefits and limitations of the approach were identified and discussed. The preliminary results are encouraging and show that complex, intraarticular corrective osteotomies can be accurately performed with this technique. For selective patients with complex malunions around the tibia plateau, this method might be an attractive option, with the potential to facilitate achieving the most accurate correction possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Cyd E.
2014-03-25
This white paper briefly reviews the research literature exploring complex algal communities as a means of increasing algal biomass production via increased tolerance, resilience, and resistance to a variety of abiotic and biotic perturbations occurring within harvesting timescales. This paper identifies what data are available and whether more research utilizing complex communities is needed to explore the potential of complex algal community stability (CACS) approach as a plausible means to increase biomass yields regardless of ecological context and resulting in decreased algal-based fuel prices by reducing operations costs. By reviewing the literature for what we do and do not know,more » in terms of CACS methodologies, this report will provide guidance for future research addressing pond crash phenomena.« less
Yuan, Bangqing; Xian, Ronghua; Wu, Xianqu; Jing, Junjie; Chen, Kangning; Liu, Guojun; Zhou, Zhenhua
2012-07-01
Previous evidence suggested that the stress protein grp170 can function as a highly efficient molecular chaperone, binding to large protein substrates and acting as a potent vaccine against specific tumors when purified from the same tumor. In addition, Pokemon can be found in almost all malignant tumor cells and is regarded to be a promising candidate for the treatment of tumors. However, the potential of the grp170-Pokemon chaperone complex has not been well described. In the present study, the natural chaperone complex between grp170 and the Pokemon was formed by heat shock, and its immunogenicity was detected by ELISPOT and (51)Cr-release assays in vitro and by tumor bearing models in vivo. Our results demonstrated that the grp170-Pokemon chaperone complex could elicit T cell responses as determined by ELISPOT and (51)Cr-release assays. In addition, immunized C57BL/6 mice were challenged with subcutaneous (s.c.) injection of Lewis cancer cells to induce primary tumors. Treatment of mice with the grp170-Pokemon chaperone complex also significantly inhibited tumor growth and prolonged the life span of tumor-bearing mice. Our results indicated that the grp170-Pokemon chaperone complex might represent a powerful approach to tumor immunotherapy and have significant potential for clinical application. Copyright © 2012 Elsevier GmbH. All rights reserved.
Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication.
Jun, Indong; Han, Hyung-Seop; Edwards, James R; Jeon, Hojeong
2018-03-06
Electrospinning has been used for the fabrication of extracellular matrix (ECM)-mimicking fibrous scaffolds for several decades. Electrospun fibrous scaffolds provide nanoscale/microscale fibrous structures with interconnecting pores, resembling natural ECM in tissues, and showing a high potential to facilitate the formation of artificial functional tissues. In this review, we summarize the fundamental principles of electrospinning processes for generating complex fibrous scaffold geometries that are similar in structural complexity to the ECM of living tissues. Moreover, several approaches for the formation of three-dimensional fibrous scaffolds arranged in hierarchical structures for tissue engineering are also presented.
Perspective: Rapid synthesis of complex oxides by combinatorial molecular beam epitaxy
A. T. Bollinger; Wu, J.; Bozovic, I.
2016-03-15
In this study, the molecular beam epitaxy(MBE) technique is well known for producing atomically smooth thin films as well as impeccable interfaces in multilayers of many different materials. In particular, molecular beam epitaxy is well suited to the growth of complex oxides, materials that hold promise for many applications. Rapid synthesis and high throughput characterization techniques are needed to tap into that potential most efficiently. We discuss our approach to doing that, leaving behind the traditional one-growth-one-compound scheme and instead implementing combinatorial oxide molecular beam epitaxy in a custom built system.
Kernel methods for large-scale genomic data analysis
Xing, Eric P.; Schaid, Daniel J.
2015-01-01
Machine learning, particularly kernel methods, has been demonstrated as a promising new tool to tackle the challenges imposed by today’s explosive data growth in genomics. They provide a practical and principled approach to learning how a large number of genetic variants are associated with complex phenotypes, to help reveal the complexity in the relationship between the genetic markers and the outcome of interest. In this review, we highlight the potential key role it will have in modern genomic data processing, especially with regard to integration with classical methods for gene prioritizing, prediction and data fusion. PMID:25053743
Petri net modelling of biological networks.
Chaouiya, Claudine
2007-07-01
Mathematical modelling is increasingly used to get insights into the functioning of complex biological networks. In this context, Petri nets (PNs) have recently emerged as a promising tool among the various methods employed for the modelling and analysis of molecular networks. PNs come with a series of extensions, which allow different abstraction levels, from purely qualitative to more complex quantitative models. Noteworthily, each of these models preserves the underlying graph, which depicts the interactions between the biological components. This article intends to present the basics of the approach and to foster the potential role PNs could play in the development of the computational systems biology.
Submillimeter and far-infrared dielectric properties of thin films
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Wollack, Edward J.
2016-07-01
The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approachtypically reproduce the observed transmittance spectra with an accuracy of < 4%.
Li, Cheng; Zhang, Yong; Xie, Zhang-Xian; He, Zhi-Ping; Lin, Lin; Wang, Da-Zhi
2013-06-28
The Alexandrium tamarense/catenella/fundyense complex is the major causative agent responsible for harmful algal blooms and paralytic shellfish poisoning around the world. However, taxonomy of the A. tamarense complex is contentious and the evolutionary relationships within the complex are unclear. This study compared protein profiles of the A. tamarense complex collected from different geographic regions using the two dimensional fluorescence difference gel electrophoresis (2-D DIGE) approach, and identified species-specific peptides using MALDI-TOF/TOF mass spectrometry. The results showed that three Alexandrium morphotypes presented significantly different protein expression patterns with about 30-40% shared proteins. However, ecotypes from different geographic regions within a species exhibited the same expression patterns, although a few proteins were altered in abundance. Several proteins, i.e. ribulose-1,5-bisphosphate carboxylase oxygenase form II, plastid protein NAP50, methionine S-adenosyltransferase, and peridinin-chlorophyll a-binding protein, were identified and presented different shift patterns in isoelectric point and/or molecular weight in the 2-D DIGE gels, indicating that amino acid mutation and/or posttranslational modification of these proteins had occurred. The species-specific peptide mass fingerprint and amino acid sequence of ribulose-1,5-bisphosphate carboxylase oxygenase were characterized in the A. tamarense complex, and amino acid substitution occurred among them. This study indicated that evolutionary divergence had occurred at the proteomic level in the A. tamarense complex, and that the species-specific peptides could be used as potential biomarkers to distinguish the three morphotypes. Scientific question: The Alexandrium tamarense/catenella/fundyense complex is the major causative agent responsible for harmful algal blooms and paralytic shellfish poisoning around the world. However, taxonomy of the A. tamarense complex is contentious and the evolutionary relationships within the complex are unclear, which has seriously impeded our understanding of Alexandrium-causing HABs and, consequently, the monitoring, mitigation and prevention. Technical significance: This study, for the first time, compared the global protein expression patterns of eight ecotypes from the A. tamarense complex and identified species-specific peptides using a quantitative proteomic approach combining 2-D DIGE and MALDI-TOF/TOF MS. This study demonstrated that the evolutionary divergence had occurred in the A. tamarense complex at the proteomic level, and the complex should be classified into three species, i.e. A. tamarense, A. catenella, and A. fundyense. Moreover, the species-specific peptide mass fingerprints could be used as potential biomarkers to distinguish the three morphotypes. Copyright © 2013 Elsevier B.V. All rights reserved.
Martins, Kelly Vasconcelos Chaves; Gil, Daniela
2017-01-01
Introduction The registry of the component P1 of the cortical auditory evoked potential has been widely used to analyze the behavior of auditory pathways in response to cochlear implant stimulation. Objective To determine the influence of aural rehabilitation in the parameters of latency and amplitude of the P1 cortical auditory evoked potential component elicited by simple auditory stimuli (tone burst) and complex stimuli (speech) in children with cochlear implants. Method The study included six individuals of both genders aged 5 to 10 years old who have been cochlear implant users for at least 12 months, and who attended auditory rehabilitation with an aural rehabilitation therapy approach. Participants were submitted to research of the cortical auditory evoked potential at the beginning of the study and after 3 months of aural rehabilitation. To elicit the responses, simple stimuli (tone burst) and complex stimuli (speech) were used and presented in free field at 70 dB HL. The results were statistically analyzed, and both evaluations were compared. Results There was no significant difference between the type of eliciting stimulus of the cortical auditory evoked potential for the latency and the amplitude of P1. There was a statistically significant difference in the P1 latency between the evaluations for both stimuli, with reduction of the latency in the second evaluation after 3 months of auditory rehabilitation. There was no statistically significant difference regarding the amplitude of P1 under the two types of stimuli or in the two evaluations. Conclusion A decrease in latency of the P1 component elicited by both simple and complex stimuli was observed within a three-month interval in children with cochlear implant undergoing aural rehabilitation. PMID:29018498
Anrys, Pauline; Strauven, Goedele; Boland, Benoit; Dalleur, Olivia; Declercq, Anja; Degryse, Jean-Marie; De Lepeleire, Jan; Henrard, Séverine; Lacour, Valérie; Simoens, Steven; Speybroeck, Niko; Vanhaecht, Kris; Spinewine, Anne; Foulon, Veerle
2016-03-11
Ageing has become a worldwide reality and presents new challenges for the health-care system. Research has shown that potentially inappropriate prescribing, both potentially inappropriate medications and potentially prescribing omissions, is highly prevalent in older people, especially in the nursing home setting. The presence of potentially inappropriate medications/potentially prescribing omissions is associated with adverse drug events, hospitalisations, mortality and health-care costs. The Collaborative approach to Optimise MEdication use for Older people in Nursing homes (COME-ON) study aims to evaluate the effect of a complex, multifaceted intervention, including interdisciplinary case conferences, on the appropriateness of prescribing of medicines for older people in Belgian nursing homes. A multicentre cluster-controlled trial is set up in 63 Belgian nursing homes (30 intervention; 33 control). In each of these nursing homes, 35 residents (≥65 years) are selected for participation. The complex, multifaceted intervention comprises (i) health-care professional education and training, (ii) local concertation (discussion on the appropriate use of at least one medication class at the level of the nursing home) and (iii) repeated interdisciplinary case conferences between general practitioner, nurse and pharmacist to perform medication review for each included nursing home resident. The control group works as usual. The study period lasts 15 months. The primary outcome measures relate to the appropriateness of prescribing and are defined as (1) among residents who had at least one potentially inappropriate medication/potentially prescribing omission at baseline, the proportion of them for whom there is a decrease of at least one of these potentially inappropriate medications/potentially prescribing omissions at the end of study, and (2) among all residents, the proportion of them for whom at least one new potentially inappropriate medication/potentially prescribing omission is present at the end of the study, compared to baseline. The secondary outcome measures include individual components of appropriateness of prescribing, medication use, outcomes of the case conferences, clinical outcomes and costs. A process evaluation (focusing on implementation, causal mechanisms and contextual factors) will be conducted alongside the study. The COME-ON study will contribute to a growing body of knowledge concerning the effect of complex interventions on the use of medicines in the nursing home setting, and on factors influencing their effect. The results will inform policymakers on strategies to implement in the near future. Current Controlled Trials ISRCTN66138978.
Li, Ying; He, Zhen-Dan; Zheng, Qian-En; Hu, Chengshen; Lai, Wing-Fu
2018-05-14
Over the years, various methods have been developed to enhance the solubility of insoluble drugs; however, most of these methods are time-consuming and labor intensive or involve the use of toxic materials. A method that can safely and effectively enhance the solubility of insoluble drugs is lacking. This study adopted baicalin as an insoluble drug model, and used hydroxypropyl-β-cyclodextrin for the delivery of baicalin via the inclusion complexation by supercritical fluid encapsulation. Different parameters for the complex preparation as well as the physicochemical properties of the complex have been investigated. Our results showed that when compared to the conventional solution mixing approach, supercritical fluid encapsulation enables a more precise control of the properties of the complex, and gives higher loading and encapsulation efficiency. It is anticipated that our reported method can be useful in enhancing the preparation efficiency of inclusion complexes, and can expand the application potential of insoluble herbal ingredients in treatment development and pharmaceutical formulation.
Retinal Prosthetics, Optogenetics, and Chemical Photoswitches
2015-01-01
Three technologies have emerged as therapies to restore light sensing to profoundly blind patients suffering from late-stage retinal degenerations: (1) retinal prosthetics, (2) optogenetics, and (3) chemical photoswitches. Prosthetics are the most mature and the only approach in clinical practice. Prosthetic implants require complex surgical intervention and provide only limited visual resolution but can potentially restore navigational ability to many blind patients. Optogenetics uses viral delivery of type 1 opsin genes from prokaryotes or eukaryote algae to restore light responses in survivor neurons. Targeting and expression remain major problems, but are potentially soluble. Importantly, optogenetics could provide the ultimate in high-resolution vision due to the long persistence of gene expression achieved in animal models. Nevertheless, optogenetics remains challenging to implement in human eyes with large volumes, complex disease progression, and physical barriers to viral penetration. Now, a new generation of photochromic ligands or chemical photoswitches (azobenzene-quaternary ammonium derivatives) can be injected into a degenerated mouse eye and, in minutes to hours, activate light responses in neurons. These photoswitches offer the potential for rapidly and reversibly screening the vision restoration expected in an individual patient. Chemical photoswitch variants that persist in the cell membrane could make them a simple therapy of choice, with resolution and sensitivity equivalent to optogenetics approaches. A major complexity in treating retinal degenerations is retinal remodeling: pathologic network rewiring, molecular reprogramming, and cell death that compromise signaling in the surviving retina. Remodeling forces a choice between upstream and downstream targeting, each engaging different benefits and defects. Prosthetics and optogenetics can be implemented in either mode, but the use of chemical photoswitches is currently limited to downstream implementations. Even so, given the high density of human foveal ganglion cells, the ultimate chemical photoswitch treatment could deliver cost-effective, high-resolution vision for the blind. PMID:25089879
Bourret, Vincent; Dionne, Mélanie; Bernatchez, Louis
2014-09-01
Wild populations of Atlantic salmon have declined worldwide. While the causes for this decline may be complex and numerous, increased mortality at sea is predicted to be one of the major contributing factors. Examining the potential changes occurring in the genome-wide composition of populations during this migration has the potential to tease apart some of the factors influencing marine mortality. Here, we genotyped 5568 SNPs in Atlantic salmon populations representing two distinct regional genetic groups and across two cohorts to test for differential allelic and genotypic frequencies between juveniles (smolts) migrating to sea and adults (grilses) returning to freshwater after 1 year at sea. Given the complexity of the traits potentially associated with sea mortality, we contrasted the outcomes of a single-locus F(ST) based genome scan method with a new multilocus framework to test for genetically based differential mortality at sea. While numerous outliers were identified by the single-locus analysis, no evidence for parallel, temporally repeated selection was found. In contrast, the multilocus approach detected repeated patterns of selection for a multilocus group of 34 covarying SNPs in one of the two populations. No significant pattern of selective mortality was detected in the other population, suggesting different causes of mortality among populations. These results first support the hypothesis that selection mainly causes small changes in allele frequencies among many covarying loci rather than a small number of changes in loci with large effects. They also point out that moving away from the a strict 'selective sweep paradigm' towards a multilocus genetics framework may be a more useful approach for studying the genomic signatures of natural selection on complex traits in wild populations. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.
2018-01-01
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was laboratory air. Because of strong aqueous U(VI)-carbonate solution complexes, the measurement of DIC concentrations was even important for systems set up in the 'absence' of CO2, due to low levels of CO2 contamination during the experiment.
Complex Langevin dynamics and zeroes of the fermion determinant
NASA Astrophysics Data System (ADS)
Aarts, Gert; Seiler, Erhard; Sexty, Dénes; Stamatescu, Ion-Olimpiu
2017-05-01
QCD at nonzero baryon chemical potential suffers from the sign problem, due to the complex quark determinant. Complex Langevin dynamics can provide a solution, provided certain conditions are met. One of these conditions, holomorphicity of the Langevin drift, is absent in QCD since zeroes of the determinant result in a meromorphic drift. We first derive how poles in the drift affect the formal justification of the approach and then explore the various possibilities in simple models. The lessons from these are subsequently applied to both heavy dense QCD and full QCD, and we find that the results obtained show a consistent picture. We conclude that with careful monitoring, the method can be justified a posteriori, even in the presence of meromorphicity.
Selective transformations of complex molecules are enabled by aptameric protective groups
NASA Astrophysics Data System (ADS)
Bastian, Andreas A.; Marcozzi, Alessio; Herrmann, Andreas
2012-10-01
Emerging trends in drug discovery are prompting a renewed interest in natural products as a source of chemical diversity and lead structures. However, owing to the structural complexity of many natural compounds, the synthesis of derivatives is not easily realized. Here, we demonstrate a conceptually new approach using oligonucleotides as aptameric protective groups. These block several functionalities by non-covalent interactions in a complex molecule and enable the highly chemo- and regioselective derivatization (>99%) of natural antibiotics in a single synthetic step with excellent conversions of up to 83%. This technique reveals an important structure-activity relationship in neamine-based antibiotics and should help both to accelerate the discovery of new biologically active structures and to avoid potentially costly and cumbersome synthetic routes.
Cell based advanced therapeutic medicinal products for bone repair: Keep it simple?
Leijten, J; Chai, Y C; Papantoniou, I; Geris, L; Schrooten, J; Luyten, F P
2015-04-01
The development of cell based advanced therapeutic medicinal products (ATMPs) for bone repair has been expected to revolutionize the health care system for the clinical treatment of bone defects. Despite this great promise, the clinical outcomes of the few cell based ATMPs that have been translated into clinical treatments have been far from impressive. In part, the clinical outcomes have been hampered because of the simplicity of the first wave of products. In response the field has set-out and amassed a plethora of complexities to alleviate the simplicity induced limitations. Many of these potential second wave products have remained "stuck" in the development pipeline. This is due to a number of reasons including the lack of a regulatory framework that has been evolving in the last years and the shortage of enabling technologies for industrial manufacturing to deal with these novel complexities. In this review, we reflect on the current ATMPs and give special attention to novel approaches that are able to provide complexity to ATMPs in a straightforward manner. Moreover, we discuss the potential tools able to produce or predict 'goldilocks' ATMPs, which are neither too simple nor too complex. Copyright © 2014 Elsevier B.V. All rights reserved.
COMPUTATIONAL MITRAL VALVE EVALUATION AND POTENTIAL CLINICAL APPLICATIONS
Chandran, Krishnan B.; Kim, Hyunggun
2014-01-01
The mitral valve (MV) apparatus consists of the two asymmetric leaflets, the saddle-shaped annulus, the chordae tendineae, and the papillary muscles. MV function over the cardiac cycle involves complex interaction between the MV apparatus components for efficient blood circulation. Common diseases of the MV include valvular stenosis, regurgitation, and prolapse. MV repair is the most popular and most reliable surgical treatment for early MV pathology. One of the unsolved problems in MV repair is to predict the optimal repair strategy for each patient. Although experimental studies have provided valuable information to improve repair techniques, computational simulations are increasingly playing an important role in understanding the complex MV dynamics, particularly with the availability of patient-specific real-time imaging modalities. This work presents a review of computational simulation studies of MV function employing finite element (FE) structural analysis and fluid-structure interaction (FSI) approach reported in the literature to date. More recent studies towards potential applications of computational simulation approaches in the assessment of valvular repair techniques and potential pre-surgical planning of repair strategies are also discussed. It is anticipated that further advancements in computational techniques combined with the next generations of clinical imaging modalities will enable physiologically more realistic simulations. Such advancement in imaging and computation will allow for patient-specific, disease-specific, and case-specific MV evaluation and virtual prediction of MV repair. PMID:25134487
Frawley, Alean; Powell, Lauren; McQuiston, John R; Gulvik, Christopher A; Bégué, Rodolfo E
2018-04-23
Chromobacterium violaceum is a rare, potentially serious pathogen. Most clinicians have no experience with its clinical appearance or treatment. We describe a case of a child presenting with necrotizing pneumonia caused by C. violaceum . We describe case complexities, including the need for a multidisciplinary approach to diagnosis and treatment.
1987-06-01
obtained from: A simple numerical intergration scheme is employed to perform the integral in Equations (B2) and (86) along the dividing streamline. A 11 4...angle of attack was small, the dividing streamline remained almost horizontal in this case. Results of a higher angle of attack case, in which the mesh
Metabonomics and medicine: the Biochemical Oracle.
Mitchell, Steve; Holmes, Elaine; Carmichael, Paul
2002-10-01
Occasionally, a new idea emerges that has the potential to revolutionize an entire field of scientific endeavour. It is now within our grasp to be able to detect subtle perturbations within the phenomenally complex biochemical matrix of living organisms. The discipline of metabonomics promises an all-encompassing approach to understanding total, yet fundamental, changes occurring in disease processes, drug toxicity and cell function.
ERIC Educational Resources Information Center
Madill, Michael T. R.
2014-01-01
Didactical approaches related to teaching English as a Foreign Language (EFL) have developed into a complex array of instructional methodologies, each having potential benefits attributed to elementary reading development. One such effective practice is Computer Assisted Language Learning (CALL), which uses various forms of technology such as…
Art appreciation and aesthetic feeling as objects of explanation.
Hogan, Patrick Colm
2013-04-01
The target article presents a thought-provoking approach to the relation of neuroscience and art. However, at least two issues pose potential difficulties. The first concerns whether "art appreciation" is a coherent topic for scientific study. The second concerns the degree to which processing fluency can explain aesthetic feeling or may simply be one component of a more complex account.
Robert L. Deal; Bobby Cochran; Gina LaRocco
2012-01-01
There has been increasing interest in the use of market-based approaches to add value for forestland and to assist with the conservation of natural resources. While markets for ecosystem services show potential for increasing forestland value, there is concern that the lack of an integrated program will simply add to the complexity of these services without generating...
Putting Ourselves in the Big Picture: A Sustainable Approach to Project Management for e-Learning
ERIC Educational Resources Information Center
Buchan, Janet
2010-01-01
In a case study of a large Australian university the metaphor of panarchy is used as a means of describing and understanding the complex interrelationships of multi-scale institutional projects and the influences of a variety factors on the potential success of e-learning initiatives. The concept of para-analysis is introduced as a management…
ERIC Educational Resources Information Center
Ebner, Martin; Holzinger, Andreas
2007-01-01
Goal: The use of an online game for learning in higher education aims to make complex theoretical knowledge more approachable. Permanent repetition will lead to a more in-depth learning. Objective: To gain insight into whether and to what extent, online games have the potential to contribute to student learning in higher education. Experimental…
Genetic heterogeneity in cholangiocarcinoma: a major challenge for targeted therapies
Brandi, Giovanni; Farioli, Andrea; Astolfi, Annalisa; Biasco, Guido; Tavolari, Simona
2015-01-01
Cholangiocarcinoma (CC) encompasses a group of related but distinct malignancies whose lack of a stereotyped genetic signature makes challenging the identification of genomic landscape and the development of effective targeted therapies. Accumulated evidences strongly suggest that the remarkable genetic heterogeneity of CC may be the result of a complex interplay among different causative factors, some shared by most human cancers while others typical of this malignancy. Currently, considerable efforts are ongoing worldwide for the genetic characterization of CC, also using advanced technologies such as next-generation sequencing (NGS). Undoubtedly this technology could offer an unique opportunity to broaden our understanding on CC molecular pathogenesis. Despite this great potential, however, the high complexity in terms of factors potentially contributing to genetic variability in CC calls for a more cautionary application of NGS to this malignancy, in order to avoid possible biases and criticisms in the identification of candidate actionable targets. This approach is further justified by the urgent need to develop effective targeted therapies in this disease. A multidisciplinary approach integrating genomic, functional and clinical studies is therefore mandatory to translate the results obtained by NGS into effective targeted therapies for this orphan disease. PMID:26142706
Implicit Geometry Meshing for the simulation of Rotary Friction Welding
NASA Astrophysics Data System (ADS)
Schmicker, D.; Persson, P.-O.; Strackeljan, J.
2014-08-01
The simulation of Rotary Friction Welding (RFW) is a challenging task, since it states a coupled problem of phenomena like large plastic deformations, heat flux, contact and friction. In particular the mesh generation and its restoration when using a Lagrangian description of motion is of significant severity. In this regard Implicit Geometry Meshing (IGM) algorithms are promising alternatives to the more conventional explicit methods. Because of the implicit description of the geometry during remeshing, the IGM procedure turns out to be highly robust and generates spatial discretizations of high quality regardless of the complexity of the flash shape and its inclusions. A model for efficient RFW simulation is presented, which is based on a Carreau fluid law, an Augmented Lagrange approach in mapping the incompressible deformations, a penalty contact approach, a fully regularized Coulomb-/fluid friction law and a hybrid time integration strategy. The implementation of the IGM algorithm using 6-node triangular finite elements is described in detail. The techniques are demonstrated on a fairly complex friction welding problem, demonstrating the performance and the potentials of the proposed method. The techniques are general and straight-forward to implement, and offer the potential of successful adoption to a wide range of other engineering problems.
Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy
Adams, Christopher M.; Ebert, Scott M.; Dyle, Michael C.
2017-01-01
Purpose of review Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Recent findings Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Summary Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function. PMID:25807353
Use of mRNA expression signatures to discover small molecule inhibitors of skeletal muscle atrophy.
Adams, Christopher M; Ebert, Scott M; Dyle, Michael C
2015-05-01
Here, we discuss a recently developed experimental strategy for discovering small molecules with potential to prevent and treat skeletal muscle atrophy. Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression, which generate complex but measurable patterns of positive and negative changes in skeletal muscle mRNA levels (a.k.a. mRNA expression signatures of muscle atrophy). Many bioactive small molecules generate their own characteristic mRNA expression signatures, and by identifying small molecules whose signatures approximate mirror images of muscle atrophy signatures, one may identify small molecules with potential to prevent and/or reverse muscle atrophy. Unlike a conventional drug discovery approach, this strategy does not rely on a predefined molecular target but rather exploits the complexity of muscle atrophy to identify small molecules that counter the entire spectrum of pathological changes in atrophic muscle. We discuss how this strategy has been used to identify two natural compounds, ursolic acid and tomatidine, that reduce muscle atrophy and improve skeletal muscle function. Discovery strategies based on mRNA expression signatures can elucidate new approaches for preserving and restoring muscle mass and function.
Controllable synthesis of rice-shape Alq3 nanoparticles with single crystal structure
NASA Astrophysics Data System (ADS)
Xie, Wanfeng; Fan, Jihui; Song, Hui; Jiang, Feng; Yuan, Huimin; Wei, Zhixian; Ji, Ziwu; Pang, Zhiyong; Han, Shenghao
2016-10-01
We report the controllable growth of rice-shape nanoparticles of Alq3 by an extremely facile self-assembly approach. Possible mechanisms have been proposed to interpret the formation and controlled process of the single crystal nanoparticles. The field-emission performances (turn-on field 7 V μm-1, maximum current density 2.9 mA cm-2) indicate the potential application on miniaturized nano-optoelectronics devices of Alq3-based. This facile method can potentially be used for the controlled synthesis of other functional complexes and organic nanostructures.
Pulido-Olmo, Helena; Rodríguez-Sánchez, Elena; Navarro-García, José Alberto; Barderas, María G.; Álvarez-Llamas, Gloria; Segura, Julián; Fernández-Alfonso, Marisol; Ruilope, Luis M.; Ruiz-Hurtado, Gema
2017-01-01
The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) based on AlphaLISA® technology. We describe two procedures: (i) one approach is used to analyze MMP-9–TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii) the second approach is used to analyze native or endogenous MMP-9–TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9–TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed. The MMP-9–TIMP-1 AlphaLISA® assay is quick, highly simplified, and cost-effective and can be completed in less than 3 h. Moreover, the assay has great potential for use in basic and preclinical research as it allows direct determination of native MMP-9–TIMP-1 complexes in circulating blood as biofluid. PMID:28791014
Ishii, Shun’ichi; Suzuki, Shino; Tenney, Aaron; Norden-Krichmar, Trina M.; Nealson, Kenneth H.; Bretschger, Orianna
2015-01-01
Microorganisms almost always exist as mixed communities in nature. While the significance of microbial community activities is well appreciated, a thorough understanding about how microbial communities respond to environmental perturbations has not yet been achieved. Here we have used a combination of metagenomic, genome binning, and stimulus-induced metatranscriptomic approaches to estimate the metabolic network and stimuli-induced metabolic switches existing in a complex microbial biofilm that was producing electrical current via extracellular electron transfer (EET) to a solid electrode surface. Two stimuli were employed: to increase EET and to stop EET. An analysis of cell activity marker genes after stimuli exposure revealed that only two strains within eleven binned genomes had strong transcriptional responses to increased EET rates, with one responding positively and the other responding negatively. Potential metabolic switches between eleven dominant members were mainly observed for acetate, hydrogen, and ethanol metabolisms. These results have enabled the estimation of a multi-species metabolic network and the associated short-term responses to EET stimuli that induce changes to metabolic flow and cooperative or competitive microbial interactions. This systematic meta-omics approach represents a next step towards understanding complex microbial roles within a community and how community members respond to specific environmental stimuli. PMID:26443302
Multiscale high-order/low-order (HOLO) algorithms and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis; Chen, Guangye; Knoll, Dana Alan
Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less
Multiscale high-order/low-order (HOLO) algorithms and applications
Chacon, Luis; Chen, Guangye; Knoll, Dana Alan; ...
2016-11-11
Here, we review the state of the art in the formulation, implementation, and performance of so-called high-order/low-order (HOLO) algorithms for challenging multiscale problems. HOLO algorithms attempt to couple one or several high-complexity physical models (the high-order model, HO) with low-complexity ones (the low-order model, LO). The primary goal of HOLO algorithms is to achieve nonlinear convergence between HO and LO components while minimizing memory footprint and managing the computational complexity in a practical manner. Key to the HOLO approach is the use of the LO representations to address temporal stiffness, effectively accelerating the convergence of the HO/LO coupled system. Themore » HOLO approach is broadly underpinned by the concept of nonlinear elimination, which enables segregation of the HO and LO components in ways that can effectively use heterogeneous architectures. The accuracy and efficiency benefits of HOLO algorithms are demonstrated with specific applications to radiation transport, gas dynamics, plasmas (both Eulerian and Lagrangian formulations), and ocean modeling. Across this broad application spectrum, HOLO algorithms achieve significant accuracy improvements at a fraction of the cost compared to conventional approaches. It follows that HOLO algorithms hold significant potential for high-fidelity system scale multiscale simulations leveraging exascale computing.« less
ANALYSIS OF GLYCANS DERIVED FROM GLYCOCONJUGATES BY CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY
Mechref, Yehia
2012-01-01
The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful mass spectrometric (MS) and tandem MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high order tandem MS (MSn). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC) and gas chromatography (GC). However, capillary electrophoresis (CE) and microfluidics capillary electrophoresis (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to mass spectrometry. PMID:22180203
Using genomics to characterize evolutionary potential for conservation of wild populations
Harrisson, Katherine A; Pavlova, Alexandra; Telonis-Scott, Marina; Sunnucks, Paul
2014-01-01
Genomics promises exciting advances towards the important conservation goal of maximizing evolutionary potential, notwithstanding associated challenges. Here, we explore some of the complexity of adaptation genetics and discuss the strengths and limitations of genomics as a tool for characterizing evolutionary potential in the context of conservation management. Many traits are polygenic and can be strongly influenced by minor differences in regulatory networks and by epigenetic variation not visible in DNA sequence. Much of this critical complexity is difficult to detect using methods commonly used to identify adaptive variation, and this needs appropriate consideration when planning genomic screens, and when basing management decisions on genomic data. When the genomic basis of adaptation and future threats are well understood, it may be appropriate to focus management on particular adaptive traits. For more typical conservations scenarios, we argue that screening genome-wide variation should be a sensible approach that may provide a generalized measure of evolutionary potential that accounts for the contributions of small-effect loci and cryptic variation and is robust to uncertainty about future change and required adaptive response(s). The best conservation outcomes should be achieved when genomic estimates of evolutionary potential are used within an adaptive management framework. PMID:25553064
NASA Astrophysics Data System (ADS)
Nesbit, P. R.; Hugenholtz, C.; Durkin, P.; Hubbard, S. M.; Kucharczyk, M.; Barchyn, T.
2016-12-01
Remote sensing and digital mapping have started to revolutionize geologic mapping in recent years as a result of their realized potential to provide high resolution 3D models of outcrops to assist with interpretation, visualization, and obtaining accurate measurements of inaccessible areas. However, in stratigraphic mapping applications in complex terrain, it is difficult to acquire information with sufficient detail at a wide spatial coverage with conventional techniques. We demonstrate the potential of a UAV and Structure from Motion (SfM) photogrammetric approach for improving 3D stratigraphic mapping applications within a complex badland topography. Our case study is performed in Dinosaur Provincial Park (Alberta, Canada), mapping late Cretaceous fluvial meander belt deposits of the Dinosaur Park formation amidst a succession of steeply sloping hills and abundant drainages - creating a challenge for stratigraphic mapping. The UAV-SfM dataset (2 cm spatial resolution) is compared directly with a combined satellite and aerial LiDAR dataset (30 cm spatial resolution) to reveal advantages and limitations of each dataset before presenting a unique workflow that utilizes the dense point cloud from the UAV-SfM dataset for analysis. The UAV-SfM dense point cloud minimizes distortion, preserves 3D structure, and records an RGB attribute - adding potential value in future studies. The proposed UAV-SfM workflow allows for high spatial resolution remote sensing of stratigraphy in complex topographic environments. This extended capability can add value to field observations and has the potential to be integrated with subsurface petroleum models.
Uranium extraction by complexation with siderophores
NASA Astrophysics Data System (ADS)
Bahamonde Castro, Cristina
One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.
Complex Correlation Calculation of e-H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Calculation of e-H total and elastic partial wave cross sections is being carried out using the complex correlation variational T-matrix method. In this preliminary study, elastic partial wave phase shifts are calculated with the correlation functions which are confined to be real. In that case the method reduces to the conventional optical potential approach with projection operators. The number of terms in the Hylleraas-type wave function for the S phase shifts is 95 while for the S it is 56, except for k=0.8 where it is 84. Our results, which are rigorous lower bounds, are given. They are seen to be in general agreement with those of Schwartz, but they are of 0 greater accuracy and outside of his error limits for k=0.3 and 0.4 for S. The main aim of this approach' is the application to higher energy scattering. By virtue of the complex correlation functions, the T matrix is not unitary so that elastic and total scattering cross sections are independent of each other. Our results will be compared specifically with those of Bray and Stelbovics.
Complex Correlation Calculation of e(-) - H Total Cross Sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Calculation of e(-) - H total and elastic partial wave cross sections is being carried out using the complex correlation variational T-matrix method. In this preliminary study, elastic partial wave phase shifts are calculated with the correlation functions which are confined to be real. In that case the method reduces to the conventional optical potential approach with 2 projection operators. The number of terms in the Hylleraas-type wave function for the S-1 phase shifts is 95 while for the S-3 it is 56, except for k = 0.8 where it is 84. Our results, which are rigorous lower bounds, are seen to be in general agreement with those of Schwartz, but they are of greater accuracy and outside of his error limits for k = 0.3 and 0.4 for S-1. The main aim of this approach is the application to higher energy scattering. By virtue of the complex correlation functions, the T-matrix is not unitary so that elastic and total scattering cross sections are independent of each other. Our results will be compared specifically with those of Bray and Stelbovics.
On Target Localization Using Combined RSS and AoA Measurements
Beko, Marko; Dinis, Rui
2018-01-01
This work revises existing solutions for a problem of target localization in wireless sensor networks (WSNs), utilizing integrated measurements, namely received signal strength (RSS) and angle of arrival (AoA). The problem of RSS/AoA-based target localization became very popular in the research community recently, owing to its great applicability potential and relatively low implementation cost. Therefore, here, a comprehensive study of the state-of-the-art (SoA) solutions and their detailed analysis is presented. The beginning of this work starts by considering the SoA approaches based on convex relaxation techniques (more computationally complex in general), and it goes through other (less computationally complex) approaches, as well, such as the ones based on the generalized trust region sub-problems framework and linear least squares. Furthermore, a detailed analysis of the computational complexity of each solution is reviewed. Furthermore, an extensive set of simulation results is presented. Finally, the main conclusions are summarized, and a set of future aspects and trends that might be interesting for future research in this area is identified. PMID:29671832
Pickett, John A.; Barasa, Stephen; Birkett, Michael A.
2014-01-01
The interaction between volatile and non-volatile, e.g. proteinaceous, components of pheromone and other semiochemical-based signalling systems presents a daunting set of problems for exploitation in the management of vertebrates, good or bad. Aggravating this is the complexity of the mixtures involved with pheromones, not only by definition associated with each species, but also with individual members of that species and their positions within their immediate communities. Nonetheless, already in some contexts, particularly where signals are perceived at other trophic levels from those of the vertebrates, e.g. by arthropods, reductionist approaches can be applied whereby the integrity of complex volatile mixtures is maintained, but perturbed by augmentation with individual components. In the present article, this is illustrated for cattle husbandry, fish farming and human health. So far, crude formulations have been used to imitate volatile semiochemical interactions with non-volatile components, but new approaches must be developed to accommodate more sophisticated interactions and not least the activities of the non-volatile, particularly proteinaceous components, currently being deduced. PMID:25109967
Pediatric Multiple Sclerosis: Genes, Environment, and a Comprehensive Therapeutic Approach.
Cappa, Ryan; Theroux, Liana; Brenton, J Nicholas
2017-10-01
Pediatric multiple sclerosis is an increasingly recognized and studied disorder that accounts for 3% to 10% of all patients with multiple sclerosis. The risk for pediatric multiple sclerosis is thought to reflect a complex interplay between environmental and genetic risk factors. Environmental exposures, including sunlight (ultraviolet radiation, vitamin D levels), infections (Epstein-Barr virus), passive smoking, and obesity, have been identified as potential risk factors in youth. Genetic predisposition contributes to the risk of multiple sclerosis, and the major histocompatibility complex on chromosome 6 makes the single largest contribution to susceptibility to multiple sclerosis. With the use of large-scale genome-wide association studies, other non-major histocompatibility complex alleles have been identified as independent risk factors for the disease. The bridge between environment and genes likely lies in the study of epigenetic processes, which are environmentally-influenced mechanisms through which gene expression may be modified. This article will review these topics to provide a framework for discussion of a comprehensive approach to counseling and ultimately treating the pediatric patient with multiple sclerosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants
McCann, Billy W.; Silva, Nuwan De; Windus, Theresa L.; ...
2016-02-17
Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R 2(O)P-link-P(O)R 2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theorymore » and the performance of known bis-phosphine oxide extractants. For the case where link is -CH 2-, evaluation of the ligand geometry provides the first characterization of a steric origin for the ‘anomalous aryl strengthening’ effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.« less
Characterizing heterogeneous cellular responses to perturbations.
Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J
2008-12-09
Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.
Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G
2014-09-16
Conspectus The development of more efficient and more accurate ways to represent reactive potential energy surfaces is a requirement for extending the simulation of large systems to more complex systems, longer-time dynamical processes, and more complete statistical mechanical sampling. One way to treat large systems is by direct dynamics fragment methods. Another way is by fitting system-specific analytic potential energy functions with methods adapted to large systems. Here we consider both approaches. First we consider three fragment methods that allow a given monomer to appear in more than one fragment. The first two approaches are the electrostatically embedded many-body (EE-MB) expansion and the electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), which we have shown to yield quite accurate results even when one restricts the calculations to include only electrostatically embedded dimers. The third fragment method is the electrostatically embedded molecular tailoring approach (EE-MTA), which is more flexible than EE-MB and EE-MB-CE. We show that electrostatic embedding greatly improves the accuracy of these approaches compared with the original unembedded approaches. Quantum mechanical fragment methods share with combined quantum mechanical/molecular mechanical (QM/MM) methods the need to treat a quantum mechanical fragment in the presence of the rest of the system, which is especially challenging for those parts of the rest of the system that are close to the boundary of the quantum mechanical fragment. This is a delicate matter even for fragments that are not covalently bonded to the rest of the system, but it becomes even more difficult when the boundary of the quantum mechanical fragment cuts a bond. We have developed a suite of methods for more realistically treating interactions across such boundaries. These methods include redistributing and balancing the external partial atomic charges and the use of tuned fluorine atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.
Zhao, Yihong; Castellanos, F Xavier
2016-03-01
Psychiatric science remains descriptive, with a categorical nosology intended to enhance interobserver reliability. Increased awareness of the mismatch between categorical classifications and the complexity of biological systems drives the search for novel frameworks including discovery science in Big Data. In this review, we provide an overview of incipient approaches, primarily focused on classically categorical diagnoses such as schizophrenia (SZ), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD), but also reference convincing, if focal, advances in cancer biology, to describe the challenges of Big Data and discovery science, and outline approaches being formulated to overcome existing obstacles. A paradigm shift from categorical diagnoses to a domain/structure-based nosology and from linear causal chains to complex causal network models of brain-behavior relationship is ongoing. This (r)evolution involves appreciating the complexity, dimensionality, and heterogeneity of neuropsychiatric data collected from multiple sources ('broad' data) along with data obtained at multiple levels of analysis, ranging from genes to molecules, cells, circuits, and behaviors ('deep' data). Both of these types of Big Data landscapes require the use and development of robust and powerful informatics and statistical approaches. Thus, we describe Big Data analysis pipelines and the promise and potential limitations in using Big Data approaches to study psychiatric disorders. We highlight key resources available for psychopathological studies and call for the application and development of Big Data approaches to dissect the causes and mechanisms of neuropsychiatric disorders and identify corresponding biomarkers for early diagnosis. © 2016 Association for Child and Adolescent Mental Health.
Zhao, Yihong; Castellanos, F. Xavier
2015-01-01
Background and Scope Psychiatric science remains descriptive, with a categorical nosology intended to enhance inter-observer reliability. Increased awareness of the mismatch between categorical classifications and the complexity of biological systems drives the search for novel frameworks including discovery science in Big Data. In this review, we provide an overview of incipient approaches, primarily focused on classically categorical diagnoses such as schizophrenia (SZ), autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), but also reference convincing, if focal, advances in cancer biology, to describe the challenges of Big Data and discovery science, and outline approaches being formulated to overcome existing obstacles. Findings A paradigm shift from categorical diagnoses to a domain/structure-based nosology and from linear causal chains to complex causal network models of brain-behavior relationship is ongoing. This (r)evolution involves appreciating the complexity, dimensionality and heterogeneity of neuropsychiatric data collected from multiple sources (“broad” data) along with data obtained at multiple levels of analysis, ranging from genes to molecules, cells, circuits and behaviors (“deep” data). Both of these types of Big Data landscapes require the use and development of robust and powerful informatics and statistical approaches. Thus, we describe Big Data analysis pipelines and the promise and potential limitations in using Big Data approaches to study psychiatric disorders. Conclusion We highlight key resources available for psychopathological studies and call for the application and development of Big Data approaches to dissect the causes and mechanisms of neuropsychiatric disorders and identify corresponding biomarkers for early diagnosis. PMID:26732133
Proposal for an integrated evaluation model for the study of whole systems health care in cancer.
Jonas, Wayne B; Beckner, William; Coulter, Ian
2006-12-01
For more than 200 years, biomedicine has approached the treatment of disease by studying disease processes (patho-genesis), inferring causal connections and developing specific approaches for therapeutically interfering with those processes. This pathogenic approach has been highly successful in acute and traumatic disease but less successful in chronic disease, primarily because of the complex, multi-factorial nature of most chronic disease, which does not allow for simple causal inference or for simple therapeutic interventions. This article suggests that chronic disease is best approached by enhancing healing processes (salutogenesis) as a whole system. Because of the nature of complex systems in chronic disease, an evaluation model based on integrative medicine is felt to be more appropriate than a disease model. The authors propose and describe an integrated model for the evaluation of healing (IMEH) that collects multilevel "thick case" observational data in assessing complex practices for chronic disease. If successful, this approach could become a blueprint for studying healing capacity in whole medical systems, including complementary medicine, traditional medicine, and conventional primary care. In addition, streamlining data collection and applying rapid informatics management might allow for such data to be used in guiding clinical practice. The IMEH involves collection, integration, and potentially feedback of relevant variables in the following areas: (1) sociocultural, (2) psychological and behavioral, (3) clinical (diagnosis based), and (4) biological. Evaluation and integration of these components would involve specialized research teams that feed their data into a single data management and information analysis center. These data can then be subjected to descriptive and pathway analysis providing "bench and bedside" information.
Webster, Fiona; Christian, Jennifer; Mansfield, Elizabeth; Bhattacharyya, Onil; Hawker, Gillian; Levinson, Wendy; Naglie, Gary; Pham, Thuy-Nga; Rose, Louise; Schull, Michael; Sinha, Samir; Stergiopoulos, Vicky; Upshur, Ross; Wilson, Lynn
2015-09-08
The perspectives, needs and preferences of individuals with complex health and social needs can be overlooked in the design of healthcare interventions. This study was designed to provide new insights on patient perspectives drawing from the qualitative evaluation of 5 complex healthcare interventions. Patients and their caregivers were recruited from 5 interventions based in primary, hospital and community care in Ontario, Canada. We included 62 interviews from 44 patients and 18 non-clinical caregivers. Our team analysed the transcripts from 5 distinct projects. This approach to qualitative meta-evaluation identifies common issues described by a diverse group of patients, therefore providing potential insights into systems issues. This study is a secondary analysis of qualitative data; therefore, no outcome measures were identified. We identified 5 broad themes that capture the patients' experience and highlight issues that might not be adequately addressed in complex interventions. In our study, we found that: (1) the emergency department is the unavoidable point of care; (2) patients and caregivers are part of complex and variable family systems; (3) non-medical issues mediate patients' experiences of health and healthcare delivery; (4) the unanticipated consequences of complex healthcare interventions are often the most valuable; and (5) patient experiences are shaped by the healthcare discourses on medically complex patients. Our findings suggest that key assumptions about patients that inform intervention design need to be made explicit in order to build capacity to better understand and support patients with multiple chronic diseases. Across many health systems internationally, multiple models are being implemented simultaneously that may have shared features and target similar patients, and a qualitative meta-evaluation approach, thus offers an opportunity for cumulative learning at a system level in addition to informing intervention design and modification. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Prebiotic-like chemistry on Titan.
Raulin, François; Brassé, Coralie; Poch, Olivier; Coll, Patrice
2012-08-21
Titan, the largest satellite of Saturn, is the only one in the solar system with a dense atmosphere. Mainly composed of dinitrogen with several % of methane, this atmosphere experiences complex organic processes, both in the gas and aerosol phases, which are of prebiotic interest and within an environment of astrobiological interest. This tutorial review presents the different approaches which can be followed to study such an exotic place and its chemistry: observation, theoretical modeling and experimental simulation. It describes the Cassini-Huygens mission, as an example of observational tools, and gives the new astrobiologically oriented vision of Titan which is now available by coupling the three approaches. This includes the many analogies between Titan and the Earth, in spite of the much lower temperature in the Saturn system, the complex organic chemistry in the atmosphere, from the gas to the aerosol phases, but also the potential organic chemistry on Titan's surface, and in its possible internal water ocean.
A next generation multiscale view of inborn errors of metabolism
Argmann, Carmen A.; Houten, Sander M.; Zhu, Jun; Schadt, Eric E.
2015-01-01
Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of disease modifying biology. Systems biology approaches that integrate multi-omics data into molecular networks have significantly improved our understanding of complex diseases. Similar approaches to study IEM are rare despite their complex nature. We highlight that existing common disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in IEM and potentially identify candidate modifiers. While understanding disease pathophysiology will advance the IEM field, the ultimate goal should be to understand per individual how their phenotype emerges given their primary mutation on the background of their whole genome, not unlike personalized medicine. We foresee that panomics and network strategies combined with recent experimental innovations will facilitate this. PMID:26712461
Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition
NASA Astrophysics Data System (ADS)
Li, Jin; Liu, Zilong
2017-12-01
Nonnegative tensor Tucker decomposition (NTD) in a transform domain (e.g., 2D-DWT, etc) has been used in the compression of hyper-spectral images because it can remove redundancies between spectrum bands and also exploit spatial correlations of each band. However, the use of a NTD has a very high computational cost. In this paper, we propose a low complexity NTD-based compression method of hyper-spectral images. This method is based on a pair-wise multilevel grouping approach for the NTD to overcome its high computational cost. The proposed method has a low complexity under a slight decrease of the coding performance compared to conventional NTD. We experimentally confirm this method, which indicates that this method has the less processing time and keeps a better coding performance than the case that the NTD is not used. The proposed approach has a potential application in the loss compression of hyper-spectral or multi-spectral images
Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)
2002-01-01
Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.
Computing resonance energies, widths, and wave functions using a Lanczos method in real arithmetic.
Tremblay, Jean Christophe; Carrington, Tucker
2005-06-22
We introduce new ideas for calculating resonance energies and widths. It is shown that a non-Hermitian-Lanczos approach can be used to compute eigenvalues of H+W, where H is the Hamiltonian and W is a complex absorbing potential (CAP), without evaluating complex matrix-vector products. This is done by exploiting the link between a CAP-modified Hamiltonian matrix and a real but nonsymmetric matrix U suggested by Mandelshtam and Neumaier [J. Theor. Comput. Chem. 1, 1 (2002)] and using a coupled-two-term Lanczos procedure. We use approximate resonance eigenvectors obtained from the non-Hermitian-Lanczos algorithm and a very good CAP to obtain very accurate energies and widths without solving eigenvalue problems for many values of the CAP strength parameter and searching for cusps. The method is applied to the resonances of HCO. We compare properties of the method with those of established approaches.
Understanding Risk Tolerance and Building an Effective Safety Culture
NASA Technical Reports Server (NTRS)
Loyd, David
2018-01-01
Estimates range from 65-90 percent of catastrophic mishaps are due to human error. NASA's human factors-related mishaps causes are estimated at approximately 75 percent. As much as we'd like to error-proof our work environment, even the most automated and complex technical endeavors require human interaction... and are vulnerable to human frailty. Industry and government are focusing not only on human factors integration into hazardous work environments, but also looking for practical approaches to cultivating a strong Safety Culture that diminishes risk. Industry and government organizations have recognized the value of monitoring leading indicators to identify potential risk vulnerabilities. NASA has adapted this approach to assess risk controls associated with hazardous, critical, and complex facilities. NASA's facility risk assessments integrate commercial loss control, OSHA (Occupational Safety and Health Administration) Process Safety, API (American Petroleum Institute) Performance Indicator Standard, and NASA Operational Readiness Inspection concepts to identify risk control vulnerabilities.
Massive parallelization of serial inference algorithms for a complex generalized linear model
Suchard, Marc A.; Simpson, Shawn E.; Zorych, Ivan; Ryan, Patrick; Madigan, David
2014-01-01
Following a series of high-profile drug safety disasters in recent years, many countries are redoubling their efforts to ensure the safety of licensed medical products. Large-scale observational databases such as claims databases or electronic health record systems are attracting particular attention in this regard, but present significant methodological and computational concerns. In this paper we show how high-performance statistical computation, including graphics processing units, relatively inexpensive highly parallel computing devices, can enable complex methods in large databases. We focus on optimization and massive parallelization of cyclic coordinate descent approaches to fit a conditioned generalized linear model involving tens of millions of observations and thousands of predictors in a Bayesian context. We find orders-of-magnitude improvement in overall run-time. Coordinate descent approaches are ubiquitous in high-dimensional statistics and the algorithms we propose open up exciting new methodological possibilities with the potential to significantly improve drug safety. PMID:25328363
Modeling Complex Biological Flows in Multi-Scale Systems using the APDEC Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trebotich, D
We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA-laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscousmore » flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.« less
Causal inference in public health.
Glass, Thomas A; Goodman, Steven N; Hernán, Miguel A; Samet, Jonathan M
2013-01-01
Causal inference has a central role in public health; the determination that an association is causal indicates the possibility for intervention. We review and comment on the long-used guidelines for interpreting evidence as supporting a causal association and contrast them with the potential outcomes framework that encourages thinking in terms of causes that are interventions. We argue that in public health this framework is more suitable, providing an estimate of an action's consequences rather than the less precise notion of a risk factor's causal effect. A variety of modern statistical methods adopt this approach. When an intervention cannot be specified, causal relations can still exist, but how to intervene to change the outcome will be unclear. In application, the often-complex structure of causal processes needs to be acknowledged and appropriate data collected to study them. These newer approaches need to be brought to bear on the increasingly complex public health challenges of our globalized world.
Liang, Jennifer J; Tsou, Ching-Huei; Devarakonda, Murthy V
2017-01-01
Natural language processing (NLP) holds the promise of effectively analyzing patient record data to reduce cognitive load on physicians and clinicians in patient care, clinical research, and hospital operations management. A critical need in developing such methods is the "ground truth" dataset needed for training and testing the algorithms. Beyond localizable, relatively simple tasks, ground truth creation is a significant challenge because medical experts, just as physicians in patient care, have to assimilate vast amounts of data in EHR systems. To mitigate potential inaccuracies of the cognitive challenges, we present an iterative vetting approach for creating the ground truth for complex NLP tasks. In this paper, we present the methodology, and report on its use for an automated problem list generation task, its effect on the ground truth quality and system accuracy, and lessons learned from the effort.
Modeling complex biological flows in multi-scale systems using the APDEC framework
NASA Astrophysics Data System (ADS)
Trebotich, David
2006-09-01
We have developed advanced numerical algorithms to model biological fluids in multiscale flow environments using the software framework developed under the SciDAC APDEC ISIC. The foundation of our computational effort is an approach for modeling DNA laden fluids as ''bead-rod'' polymers whose dynamics are fully coupled to an incompressible viscous solvent. The method is capable of modeling short range forces and interactions between particles using soft potentials and rigid constraints. Our methods are based on higher-order finite difference methods in complex geometry with adaptivity, leveraging algorithms and solvers in the APDEC Framework. Our Cartesian grid embedded boundary approach to incompressible viscous flow in irregular geometries has also been interfaced to a fast and accurate level-sets method within the APDEC Framework for extracting surfaces from volume renderings of medical image data and used to simulate cardio-vascular and pulmonary flows in critical anatomies.
Desforges, Jean-Pierre; Eulaers, Igor; Periard, Luke; Sonne, Christian; Dietz, Rune; Letcher, Robert J
2017-06-01
In vitro investigations of the health impact of individual chemical compounds have traditionally been used in risk assessments. However, humans and wildlife are exposed to a plethora of potentially harmful chemicals, including organohalogen contaminants (OHCs). An alternative exposure approach to individual or simple mixtures of synthetic OHCs is to isolate the complex mixture present in free-ranging wildlife, often non-destructively sampled from lipid rich adipose. High concentration stock volumes required for in vitro investigations do, however, pose a great analytical challenge to extract sufficient amounts of complex OHC cocktails. Here we describe a novel method to easily, rapidly and efficiently extract an environmentally accumulated and therefore relevant contaminant cocktail from large (10-50 g) marine mammal blubber samples. We demonstrate that lipid freeze-filtration with acetonitrile removes up to 97% of blubber lipids, with minimal effect on the efficiency of OHC recovery. Sample extracts after freeze-filtration were further processed to remove residual trace lipids via high-pressure gel permeation chromatography and solid phase extraction. Average recoveries of OHCs from triplicate analysis of killer whale (Orcinus orca), polar bear (Ursus maritimus) and pilot whale (Globicephala spp.) blubber standard reference material (NIST SRM-1945) ranged from 68 to 80%, 54-92% and 58-145%, respectively, for 13 C-enriched internal standards of six polychlorinated biphenyl congeners, 16 organochlorine pesticides and four brominated flame retardants. This approach to rapidly generate OHC mixtures shows great potential for experimental exposures using complex contaminant mixtures, research or monitoring driven contaminant quantification in biological samples, as well as the untargeted identification of emerging contaminants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Informatics and machine learning to define the phenotype.
Basile, Anna Okula; Ritchie, Marylyn DeRiggi
2018-03-01
For the past decade, the focus of complex disease research has been the genotype. From technological advancements to the development of analysis methods, great progress has been made. However, advances in our definition of the phenotype have remained stagnant. Phenotype characterization has recently emerged as an exciting area of informatics and machine learning. The copious amounts of diverse biomedical data that have been collected may be leveraged with data-driven approaches to elucidate trait-related features and patterns. Areas covered: In this review, the authors discuss the phenotype in traditional genetic associations and the challenges this has imposed.Approaches for phenotype refinement that can aid in more accurate characterization of traits are also discussed. Further, the authors highlight promising machine learning approaches for establishing a phenotype and the challenges of electronic health record (EHR)-derived data. Expert commentary: The authors hypothesize that through unsupervised machine learning, data-driven approaches can be used to define phenotypes rather than relying on expert clinician knowledge. Through the use of machine learning and an unbiased set of features extracted from clinical repositories, researchers will have the potential to further understand complex traits and identify patient subgroups. This knowledge may lead to more preventative and precise clinical care.
Aggregation of LoD 1 building models as an optimization problem
NASA Astrophysics Data System (ADS)
Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M.
3D city models offered by digital map providers typically consist of several thousands or even millions of individual buildings. Those buildings are usually generated in an automated fashion from high resolution cadastral and remote sensing data and can be very detailed. However, not in every application such a high degree of detail is desirable. One way to remove complexity is to aggregate individual buildings, simplify the ground plan and assign an appropriate average building height. This task is computationally complex because it includes the combinatorial optimization problem of determining which subset of the original set of buildings should best be aggregated to meet the demands of an application. In this article, we introduce approaches to express different aspects of the aggregation of LoD 1 building models in the form of Mixed Integer Programming (MIP) problems. The advantage of this approach is that for linear (and some quadratic) MIP problems, sophisticated software exists to find exact solutions (global optima) with reasonable effort. We also propose two different heuristic approaches based on the region growing strategy and evaluate their potential for optimization by comparing their performance to a MIP-based approach.
Prior knowledge-based approach for associating ...
Evaluating the potential human health and/or ecological risks associated with exposures to complex chemical mixtures in the ambient environment is one of the central challenges of chemical safety assessment and environmental protection. There is a need for approaches that can help to integrate chemical monitoring and bio-effects data to evaluate risks associated with chemicals present in the environment. We used prior knowledge about chemical-gene interactions to develop a knowledge assembly model for detected chemicals at five locations near two wastewater treatment plants. The assembly model was used to generate hypotheses about the biological impacts of the chemicals at each location. The hypotheses were tested using empirical hepatic gene expression data from fathead minnows exposed for 12 d at each location. Empirical gene expression data was also mapped to the assembly models to statistically evaluate the likelihood of a chemical contributing to the observed biological responses. The prior knowledge approach was able reasonably hypothesize the biological impacts at one site but not the other. Chemicals most likely contributing to the observed biological responses were identified at each location. Despite limitations to the approach, knowledge assembly models have strong potential for associating chemical occurrence with potential biological effects and providing a foundation for hypothesis generation to guide research and/or monitoring efforts relat
Naccarella, Lucio; Wraight, Brenda; Gorman, Des
2016-02-01
The growing demands on the health system to adapt to constant change has led to investment in health workforce planning agencies and approaches. Health workforce planning approaches focusing on identifying, predicting and modelling workforce supply and demand are criticised as being simplistic and not contributing to system-level resiliency. Alternative evidence- and needs-based health workforce planning approaches are being suggested. However, to contribute to system-level resiliency, workforce planning approaches need to also adopt system-based approaches. The increased complexity and fragmentation of the healthcare system, especially for patients with complex and chronic conditions, has also led to a focus on health literacy not simply as an individual trait, but also as a dynamic product of the interaction between individual (patients, workforce)-, organisational- and system-level health literacy. Although it is absolutely essential that patients have a level of health literacy that enables them to navigate and make decisions, so too the health workforce, organisations and indeed the system also needs to be health literate. Herein we explore whether health workforce planning is recognising the dynamic interplay between health literacy at an individual, organisation and system level, and the potential for strengthening resiliency across all those levels.
Targeting the folate receptor: improving efficacy in inorganic medicinal chemistry.
Carron, Pauraic Mc; Crowley, Aisling; O'Shea, Denis; McCann, Malachy; Howe, Orla; Hunt, Mary; Devereux, Michael
2018-02-09
The discovery of the high-affinity, high-specificity folate receptor in mamalian kidney cells, coupled with the ability of folate to enter cells by folate receptor-mediated endocytosis and the subsequent elucidation of the folate receptor's overexpression in specific cancer cell types; heralded the arrival of the area of chemotherapeutic folate targeting. The application of purely organic folate-based small-molecule drug conjugates that selectively target the folate receptor, which is over expressed in several diseases such as cancer, is well established. The application of inorganic folate-targeted drugs offers significant potential to expand and enhance this therapeutic approach. From the data made available to date, it is apparent that this aspect of inorganic medicinal chemistry is in its youth but has the capability to contribute greatly to cancer research, both in therapy and diagnosis. The union of folate-receptor targeting and inorganic medicine may also lead to the development of treatments for disorders such as chronic-inflammation, tuberculosis, neurodegenerative disease and leishmaniasis. In this review, we summarize what is known about the coordination chemistry of folic acid and the therapeutic potential of such complexes. We also describe approaches adopted to conjugate platinum drugs to folate- or folate-carrier- systems and their prospective ability to overcome problems associated with unwanted side-effects and resistance by improving their delivery and/or selectivity. The literature pertaining to non-platinum metal complex conjugates with folic acid is also reviewed revealing that this is an area that offers significant potential to develop targeted therapeutic approaches in areas such as chemotherapy and molecular imaging for diagnostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yuan, Zhi-Lin; Zhang, Chu-Long; Lin, Fu-Cheng; Kubicek, Christian P
2010-03-01
Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.
Carlier, Aurélie; van Gastel, Nick; Geris, Liesbet; Carmeliet, Geert; Van Oosterwyck, Hans
2014-01-01
Although bone has a unique restorative capacity, i.e., it has the potential to heal scarlessly, the conditions for spontaneous bone healing are not always present, leading to a delayed union or a non-union. In this work, we use an integrative in vivo - in silico approach to investigate the occurrence of non-unions, as well as to design possible treatment strategies thereof. The gap size of the domain geometry of a previously published mathematical model was enlarged in order to study the complex interplay of blood vessel formation, oxygen supply, growth factors and cell proliferation on the final healing outcome in large bone defects. The multiscale oxygen model was not only able to capture the essential aspects of in vivo non-unions, it also assisted in understanding the underlying mechanisms of action, i.e., the delayed vascularization of the central callus region resulted in harsh hypoxic conditions, cell death and finally disrupted bone healing. Inspired by the importance of a timely vascularization, as well as by the limited biological potential of the fracture hematoma, the influence of the host environment on the bone healing process in critical size defects was explored further. Moreover, dependent on the host environment, several treatment strategies were designed and tested for effectiveness. A qualitative correspondence between the predicted outcomes of certain treatment strategies and experimental observations was obtained, clearly illustrating the model's potential. In conclusion, the results of this study demonstrate that due to the complex non-linear dynamics of blood vessel formation, oxygen supply, growth factor production and cell proliferation and the interactions thereof with the host environment, an integrative in silico-in vivo approach is a crucial tool to further unravel the occurrence and treatments of challenging critical sized bone defects. PMID:25375821
Heutagogy: An alternative practice based learning approach.
Bhoyrub, John; Hurley, John; Neilson, Gavin R; Ramsay, Mike; Smith, Margaret
2010-11-01
Education has explored and utilised multiple approaches in attempts to enhance the learning and teaching opportunities available to adult learners. Traditional pedagogy has been both directly and indirectly affected by andragogy and transformational learning, consequently widening our understandings and approaches toward view teaching and learning. Within the context of nurse education, a major challenge has been to effectively apply these educational approaches to the complex, unpredictable and challenging environment of practice based learning. While not offered as a panacea to such challenges, heutagogy is offered in this discussion paper as an emerging and potentially highly congruent educational framework to place around practice based learning. Being an emergent theory its known conceptual underpinnings and possible applications to nurse education need to be explored and theoretically applied. Through placing the adult learner at the foreground of grasping learning opportunities as they unpredictability emerge from a sometimes chaotic environment, heutagogy can be argued as offering the potential to minimise many of the well published difficulties of coordinating practice with faculty teaching and learning. Copyright © 2010 Elsevier Ltd. All rights reserved.
Application of compost for effective bioremediation of organic contaminants and pollutants in soil.
Kästner, Matthias; Miltner, Anja
2016-04-01
Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature compost materials. Compost addition can thus be considered as a 'super-bioaugmentation' with a complex natural mixture of degrading microorganisms, combined with a 'biostimulation' by nutrient containing readily to hardly degradable organic substrates. It also improves the abiotic soil conditions, thus enhancing microbial activity in general. Finally, this minireview also aims at guiding potential users towards full exploitation of the potentials of this approach.
Nogal, Bartek; Bowman, Charles A.; Ward, Andrew B.
2017-01-01
Several biophysical approaches are available to study protein–protein interactions. Most approaches are conducted in bulk solution, and are therefore limited to an average measurement of the ensemble of molecular interactions. Here, we show how single-particle EM can enrich our understanding of protein–protein interactions at the single-molecule level and potentially capture states that are unobservable with ensemble methods because they are below the limit of detection or not conducted on an appropriate time scale. Using the HIV-1 envelope glycoprotein (Env) and its interaction with receptor CD4-binding site neutralizing antibodies as a model system, we both corroborate ensemble kinetics-derived parameters and demonstrate how time-course EM can further dissect stoichiometric states of complexes that are not readily observable with other methods. Visualization of the kinetics and stoichiometry of Env–antibody complexes demonstrated the applicability of our approach to qualitatively and semi-quantitatively differentiate two highly similar neutralizing antibodies. Furthermore, implementation of machine-learning techniques for sorting class averages of these complexes into discrete subclasses of particles helped reduce human bias. Our data provide proof of concept that single-particle EM can be used to generate a “visual” kinetic profile that should be amenable to studying many other protein–protein interactions, is relatively simple and complementary to well-established biophysical approaches. Moreover, our method provides critical insights into broadly neutralizing antibody recognition of Env, which may inform vaccine immunogen design and immunotherapeutic development. PMID:28972148
Behavioral Genetic Toolkits: Toward the Evolutionary Origins of Complex Phenotypes.
Rittschof, C C; Robinson, G E
2016-01-01
The discovery of toolkit genes, which are highly conserved genes that consistently regulate the development of similar morphological phenotypes across diverse species, is one of the most well-known observations in the field of evolutionary developmental biology. Surprisingly, this phenomenon is also relevant for a wide array of behavioral phenotypes, despite the fact that these phenotypes are highly complex and regulated by many genes operating in diverse tissues. In this chapter, we review the use of the toolkit concept in the context of behavior, noting the challenges of comparing behaviors and genes across diverse species, but emphasizing the successes in identifying genetic toolkits for behavior; these successes are largely attributable to the creative research approaches fueled by advances in behavioral genomics. We have two general goals: (1) to acknowledge the groundbreaking progress in this field, which offers new approaches to the difficult but exciting challenge of understanding the evolutionary genetic basis of behaviors, some of the most complex phenotypes known, and (2) to provide a theoretical framework that encompasses the scope of behavioral genetic toolkit studies in order to clearly articulate the research questions relevant to the toolkit concept. We emphasize areas for growth and highlight the emerging approaches that are being used to drive the field forward. Behavioral genetic toolkit research has elevated the use of integrative and comparative approaches in the study of behavior, with potentially broad implications for evolutionary biologists and behavioral ecologists alike. © 2016 Elsevier Inc. All rights reserved.
Demkow, U; Wolańczyk, T
2017-06-13
With the advent of post-genomic era, new technologies create extraordinary possibilities for diagnostics and personalized therapy, transforming todays' medicine. Rooted in both medical genetics and clinical psychiatry, the paper is designed as an integrated source of information of the current and potential future application of emerging genomic technologies as diagnostic tools in psychiatry, moving beyond the classical concept of patient approach. Selected approaches are presented, starting from currently used technologies (next-generation sequencing (NGS) and microarrays), followed by newer options (reverse phenotyping). Next, we describe an old concept in a new light (endophenotypes), subsequently coming up with a sophisticated and complex approach (gene networks) ending by a nascent field (computational psychiatry). The challenges and barriers that exist to translate genomic research to real-world patient assessment are further discussed. We emphasize the view that only a paradigm shift can bring a fundamental change in psychiatric practice, allowing to disentangle the intricacies of mental diseases. All the diagnostic methods, as described, are directed at uncovering the integrity of the system including many types of relations within a complex structure. The integrative system approach offers new opportunity to connect genetic background with specific diseases entities, or concurrently, with symptoms regardless of a diagnosis. To advance the field, we propose concerted cross-disciplinary effort to provide a diagnostic platform operating at the general level of genetic pathogenesis of complex-trait psychiatric disorders rather than at the individual level of a specific disease.
Demkow, U; Wolańczyk, T
2017-01-01
With the advent of post-genomic era, new technologies create extraordinary possibilities for diagnostics and personalized therapy, transforming todays’ medicine. Rooted in both medical genetics and clinical psychiatry, the paper is designed as an integrated source of information of the current and potential future application of emerging genomic technologies as diagnostic tools in psychiatry, moving beyond the classical concept of patient approach. Selected approaches are presented, starting from currently used technologies (next-generation sequencing (NGS) and microarrays), followed by newer options (reverse phenotyping). Next, we describe an old concept in a new light (endophenotypes), subsequently coming up with a sophisticated and complex approach (gene networks) ending by a nascent field (computational psychiatry). The challenges and barriers that exist to translate genomic research to real-world patient assessment are further discussed. We emphasize the view that only a paradigm shift can bring a fundamental change in psychiatric practice, allowing to disentangle the intricacies of mental diseases. All the diagnostic methods, as described, are directed at uncovering the integrity of the system including many types of relations within a complex structure. The integrative system approach offers new opportunity to connect genetic background with specific diseases entities, or concurrently, with symptoms regardless of a diagnosis. To advance the field, we propose concerted cross-disciplinary effort to provide a diagnostic platform operating at the general level of genetic pathogenesis of complex-trait psychiatric disorders rather than at the individual level of a specific disease. PMID:28608853
A Brief Description of the Kokkos implementation of the SNAP potential in ExaMiniMD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Aidan P.; Trott, Christian Robert
2017-11-01
Within the EXAALT project, the SNAP [1] approach is being used to develop high accuracy potentials for use in large-scale long-time molecular dynamics simulations of materials behavior. In particular, we have developed a new SNAP potential that is suitable for describing the interplay between helium atoms and vacancies in high-temperature tungsten[2]. This model is now being used to study plasma-surface interactions in nuclear fusion reactors for energy production. The high-accuracy of SNAP potentials comes at the price of increased computational cost per atom and increased computational complexity. The increased cost is mitigated by improvements in strong scaling that can bemore » achieved using advanced algorithms [3].« less
Pursiainen, S; Vorwerk, J; Wolters, C H
2016-12-21
The goal of this study is to develop focal, accurate and robust finite element method (FEM) based approaches which can predict the electric potential on the surface of the computational domain given its structure and internal primary source current distribution. While conducting an EEG evaluation, the placement of source currents to the geometrically complex grey matter compartment is a challenging but necessary task to avoid forward errors attributable to tissue conductivity jumps. Here, this task is approached via a mathematically rigorous formulation, in which the current field is modeled via divergence conforming H(div) basis functions. Both linear and quadratic functions are used while the potential field is discretized via the standard linear Lagrangian (nodal) basis. The resulting model includes dipolar sources which are interpolated into a random set of positions and orientations utilizing two alternative approaches: the position based optimization (PBO) and the mean position/orientation (MPO) method. These results demonstrate that the present dipolar approach can reach or even surpass, at least in some respects, the accuracy of two classical reference methods, the partial integration (PI) and St. Venant (SV) approach which utilize monopolar loads instead of dipolar currents.
Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design
Soldevila-Barreda, Joan J.; Romero-Canelón, Isolda; Habtemariam, Abraha; Sadler, Peter J.
2015-01-01
Organometallic complexes are effective hydrogenation catalysts for organic reactions. For example, Noyori-type ruthenium complexes catalyse reduction of ketones by transfer of hydride from formate. Here we show that such catalytic reactions can be achieved in cancer cells, offering a new strategy for the design of safe metal-based anticancer drugs. The activity of ruthenium(II) sulfonamido ethyleneamine complexes towards human ovarian cancer cells is enhanced by up to 50 × in the presence of low non-toxic doses of formate. The extent of conversion of coenzyme NAD+ to NADH in cells is dependent on formate concentration. This novel reductive stress mechanism of cell death does not involve apoptosis or perturbation of mitochondrial membrane potentials. In contrast, iridium cyclopentadienyl catalysts cause cancer cell death by oxidative stress. Organometallic complexes therefore have an extraordinary ability to modulate the redox status of cancer cells. PMID:25791197
Extending Quantum Chemistry of Bound States to Electronic Resonances
NASA Astrophysics Data System (ADS)
Jagau, Thomas-C.; Bravaya, Ksenia B.; Krylov, Anna I.
2017-05-01
Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.
Smith, Steven P; Bayer, Edward A
2013-10-01
Cellulosomes are multi-enzyme complexes produced by anaerobic bacteria for the efficient deconstruction of plant cell wall polysaccharides. The assembly of enzymatic subunits onto a central non-catalytic scaffoldin subunit is mediated by a highly specific interaction between the enzyme-bearing dockerin modules and the resident cohesin modules of the scaffoldin, which affords their catalytic activities to work synergistically. The scaffoldin also imparts substrate-binding and bacterial-anchoring properties, the latter of which involves a second cohesin-dockerin interaction. Recent structure-function studies reveal an ever-growing array of unique and increasingly complex cohesin-dockerin complexes and cellulosomal enzymes with novel activities. A 'build' approach involving multimodular cellulosomal segments has provided a structural model of an organized yet conformationally dynamic supramolecular assembly with the potential to form higher order structures. Copyright © 2013. Published by Elsevier Ltd.
Measuring the intangibles: a metrics for the economic complexity of countries and products.
Cristelli, Matthieu; Gabrielli, Andrea; Tacchella, Andrea; Caldarelli, Guido; Pietronero, Luciano
2013-01-01
We investigate a recent methodology we have proposed to extract valuable information on the competitiveness of countries and complexity of products from trade data. Standard economic theories predict a high level of specialization of countries in specific industrial sectors. However, a direct analysis of the official databases of exported products by all countries shows that the actual situation is very different. Countries commonly considered as developed ones are extremely diversified, exporting a large variety of products from very simple to very complex. At the same time countries generally considered as less developed export only the products also exported by the majority of countries. This situation calls for the introduction of a non-monetary and non-income-based measure for country economy complexity which uncovers the hidden potential for development and growth. The statistical approach we present here consists of coupled non-linear maps relating the competitiveness/fitness of countries to the complexity of their products. The fixed point of this transformation defines a metrics for the fitness of countries and the complexity of products. We argue that the key point to properly extract the economic information is the non-linearity of the map which is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We present a detailed comparison of the results of this approach directly with those of the Method of Reflections by Hidalgo and Hausmann, showing the better performance of our method and a more solid economic, scientific and consistent foundation.
Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products
Cristelli, Matthieu; Gabrielli, Andrea; Tacchella, Andrea; Caldarelli, Guido; Pietronero, Luciano
2013-01-01
We investigate a recent methodology we have proposed to extract valuable information on the competitiveness of countries and complexity of products from trade data. Standard economic theories predict a high level of specialization of countries in specific industrial sectors. However, a direct analysis of the official databases of exported products by all countries shows that the actual situation is very different. Countries commonly considered as developed ones are extremely diversified, exporting a large variety of products from very simple to very complex. At the same time countries generally considered as less developed export only the products also exported by the majority of countries. This situation calls for the introduction of a non-monetary and non-income-based measure for country economy complexity which uncovers the hidden potential for development and growth. The statistical approach we present here consists of coupled non-linear maps relating the competitiveness/fitness of countries to the complexity of their products. The fixed point of this transformation defines a metrics for the fitness of countries and the complexity of products. We argue that the key point to properly extract the economic information is the non-linearity of the map which is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We present a detailed comparison of the results of this approach directly with those of the Method of Reflections by Hidalgo and Hausmann, showing the better performance of our method and a more solid economic, scientific and consistent foundation. PMID:23940633
Deka, Suman Jyoti; Roy, Ashalata; Manna, Debasis; Trivedi, Vishal
2018-06-01
Chemical libraries constitute a reservoir of pharmacophoric molecules to identify potent anti-cancer agents. Virtual screening of heterocyclic compound library in conjugation with the agonist-competition assay, toxicity-carcinogenicity analysis, and string-based structural searches enabled us to identify several drugs as potential anti-cancer agents targeting protein kinase C (PKC) as a target. Molecular modeling study indicates that Cinnarizine fits well within the PKC C2 domain and exhibits extensive interaction with the protein residues. Molecular dynamics simulation of PKC-Cinnarizine complex at different temperatures (300, 325, 350, 375, and 400[Formula: see text]K) confirms that Cinnarizine fits nicely into the C2 domain and forms a stable complex. The drug Cinnarizine was found to bind PKC with a dissociation constant Kd of [Formula: see text]M. The breast cancer cells stimulated with Cinnarizine causes translocation of PKC-[Formula: see text] to the plasma membrane as revealed by immunoblotting and immunofluorescence studies. Cinnarizine also dose dependently reduced the viability of MDAMB-231 and MCF-7 breast cancer cells with an IC[Formula: see text] of [Formula: see text] and [Formula: see text]g/mL, respectively. It is due to the disturbance of cell cycle of breast cancer cells with reduction of S-phase and accumulation of cells in G1-phase. It disturbs mitochondrial membrane potentials to release cytochrome C into the cytosol and activates caspase-3 to induce apoptosis in cancer cells. The cell death was due to induction of apoptosis involving mitochondrial pathway. Hence, the current study has assigned an additional role to Cinnarizine as an activator of PKC and potentials of the approach to identify new molecules for anti-cancer therapy. Thus, in silico screening along with biochemical experimentation is a robust approach to assign additional roles to the drugs present in the databank for anti-cancer therapy.
Cortical pyramidal cells as non-linear oscillators: experiment and spike-generation theory.
Brumberg, Joshua C; Gutkin, Boris S
2007-09-26
Cortical neurons are capable of generating trains of action potentials in response to current injections. These discharges can take different forms, e.g., repetitive firing that adapts during the period of current injection or bursting behaviors. We have used a combined experimental and computational approach to characterize the dynamics leading to action potential responses in single neurons. Specifically we investigated the origin of complex firing patterns in response to sinusoidal current injections. Using a reduced model, the theta-neuron, alongside recordings from cortical pyramidal cells we show that both real and simulated neurons show phase-locking to sine wave stimuli up to a critical frequency, above which period skipping and 1-to-x phase-locking occurs. The locking behavior follows a complex "devil's staircase" phenomena, where locked modes are interleaved with irregular firing. We further show that the critical frequency depends on the time scale of spike generation and on the level of spike frequency adaptation. These results suggest that phase-locking of neuronal responses to complex input patterns can be explained by basic properties of the spike-generating machinery.
Fluorescence correlation spectroscopy to study antibody binding and stoichiometry of complexes
NASA Astrophysics Data System (ADS)
Swift, Kerry M.; Matayoshi, Edmund D.
2008-02-01
FCS (fluorescence correlation spectroscopy) was used to study the association at the single molecule level of tumor necrosis factor alpha (TNF-α) and two of its protein antagonists Humira (TM) (adalimumab), a fully humanized monoclonal antibody, and Enbrel (TM) (etanercept), a soluble form of the TNF receptor. Single molecule approaches potentially have the advantage not only of enhanced sensitivity, but also of observing at equilibrium the details that would otherwise be lost in classical ensemble experiments where heterogeneity is averaged. We prepared fluorescent conjugates of the protein drugs and their biological target, the trimeric soluble form of TNF-α. The bivalency of adalimumab and the trimeric nature of TNF-α potentially allow several forms of associative complexes that may differ in stoichiometry. Detailed knowledge of this reaction may be relevant to understanding adalimumab's pharmacological properties. Our FCS data showed that a single trimeric TNF-α can bind up to three adalimumab molecules. Under some conditions even larger complexes are formed, apparently the result of cross-linking of TNF-α trimers by adalimumab. In addition, distinct differences between Humira and Enbrel were observed in their association with TNF-α.
Hydrogen incorporation into BN fullerene-like nanostructures: A first-principles study
NASA Astrophysics Data System (ADS)
Ganji, M. D.; Abbaszadeh, B.; Ahaz, B.
2011-10-01
We performed density functional theory calculations to investigate the possibility of formation of endohedrally H@(BN) n-fullerene ( n: 24, 36, 60) and H@C 60 complexes for potential applications in solid-state quantum-computers. Spin-polarized approach within the generalized gradient approximation with the Perdew-Burke-Ernzerhof functional was used for the total energies and structural relaxation calculations. The calculated binding energies show that H atom being incorporated into B 60N 60 nanocage can form most stable complexes while the B 24N 24 and C 60 nanocages might form unstable complex with positive binding energy. We have also examined the penetration of an H atom into the respective nanocages and the calculated barrier energies indicate that the H atom prefers to penetrate into the B 24N 24 and B 60N 60 nanocages with barrier energy of about 0.47 eV (10.84 kcal/mol). Furthermore the binding characteristic is rationalized by analyzing the electronic structures. Our findings reveal that the B 60N 60 nanocage has fascinating potential application in future solid-state quantum-computers.
Dangerous mating systems: signal complexity, signal content and neural capacity in spiders.
Herberstein, M E; Wignall, A E; Hebets, E A; Schneider, J M
2014-10-01
Spiders are highly efficient predators in possession of exquisite sensory capacities for ambushing prey, combined with machinery for launching rapid and determined attacks. As a consequence, any sexually motivated approach carries a risk of ending up as prey rather than as a mate. Sexual selection has shaped courtship to effectively communicate the presence, identity, motivation and/or quality of potential mates, which help ameliorate these risks. Spiders communicate this information via several sensory channels, including mechanical (e.g. vibrational), visual and/or chemical, with examples of multimodal signalling beginning to emerge in the literature. The diverse environments that spiders inhabit have further shaped courtship content and form. While our understanding of spider neurobiology remains in its infancy, recent studies are highlighting the unique and considerable capacities of spiders to process and respond to complex sexual signals. As a result, the dangerous mating systems of spiders are providing important insights into how ecology shapes the evolution of communication systems, with future work offering the potential to link this complex communication with its neural processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Interweaving Knowledge Resources to Address Complex Environmental Health Challenges
Anderson, Beth Ellen; Suk, William A.
2015-01-01
Background Complex problems do not respect academic disciplinary boundaries. Environmental health research is complex and often moves beyond these boundaries, integrating diverse knowledge resources to solve such challenges. Here we describe an evolving paradigm for interweaving approaches that integrates widely diverse resources outside of traditional academic environments in full partnerships of mutual respect and understanding. We demonstrate that scientists, social scientists, and engineers can work with government agencies, industry, and communities to interweave their expertise into metaphorical knowledge fabrics to share understanding, resources, and enthusiasm. Objective Our goal is to acknowledge and validate how interweaving research approaches can contribute to research-driven, solution-oriented problem solving in environmental health, and to inspire more members of the environmental health community to consider this approach. Discussion The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program (SRP), as mandated by Congress, has evolved to become a program that reaches across a wide range of knowledge resources. SRP fosters interweaving multiple knowledge resources to develop innovative multidirectional partnerships for research and training. Here we describe examples of how motivation, ideas, knowledge, and expertise from different people, institutions, and agencies can integrate to tackle challenges that can be as complex as the resources they bring to bear on it. Conclusions By providing structure for interweaving science with its stakeholders, we are better able to leverage resources, increase potential for innovation, and proactively ensure a more fully developed spectrum of beneficial outcomes of research investments. Citation Anderson BE, Naujokas MF, Suk WA. 2015. Interweaving knowledge resources to address complex environmental health challenges. Environ Health Perspect 123:1095–1099; http://dx.doi.org/10.1289/ehp.1409525 PMID:25910282
Kirch, Alexsandro; de Almeida, James M; Miranda, Caetano R
2018-05-10
The complexity displayed by nanofluidic-based systems involves electronic and dynamic aspects occurring across different size and time scales. To properly model such kind of system, we introduced a top-down multilevel approach, combining molecular dynamics simulations (MD) with first-principles electronic transport calculations. The potential of this technique was demonstrated by investigating how the water and ionic flow through a (6,6) carbon nanotube (CNT) influences its electronic transport properties. We showed that the confinement on the CNT favors the partially hydrated Na, Cl, and Li ions to exchange charge with the nanotube. This leads to a change in the electronic transmittance, allowing for the distinguishing of cations from anions. Such an ionic trace may handle an indirect measurement of the ionic current that is recorded as a sensing output. With this case study, we are able to show the potential of this top-down multilevel approach, to be applied on the design of novel nanofluidic devices.
Neighbour lists for smoothed particle hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Winkler, Daniel; Rezavand, Massoud; Rauch, Wolfgang
2018-04-01
The efficient iteration of neighbouring particles is a performance critical aspect of any high performance smoothed particle hydrodynamics (SPH) solver. SPH solvers that implement a constant smoothing length generally divide the simulation domain into a uniform grid to reduce the computational complexity of the neighbour search. Based on this method, particle neighbours are either stored per grid cell or for each individual particle, denoted as Verlet list. While the latter approach has significantly higher memory requirements, it has the potential for a significant computational speedup. A theoretical comparison is performed to estimate the potential improvements of the method based on unknown hardware dependent factors. Subsequently, the computational performance of both approaches is empirically evaluated on graphics processing units. It is shown that the speedup differs significantly for different hardware, dimensionality and floating point precision. The Verlet list algorithm is implemented as an alternative to the cell linked list approach in the open-source SPH solver DualSPHysics and provided as a standalone software package.
Diffendorfer, Jay E.; Loomis, John B.; Ries, Leslie; Oberhauser, Karen; Semmens, Darius; Semmens, Brice; Butterfield, Bruce; Bagstad, Ken; Goldstein, Josh; Wiederholt, Ruscena; Mattsson, Brady; Thogmartin, Wayne E.
2013-01-01
The annual migration of monarch butterflies (Danaus plexippus) has high cultural value and recent surveys indicate monarch populations are declining. Protecting migratory species is complex because they cross international borders and depend on multiple regions. Understanding how much, and where, humans place value on migratory species can facilitate market-based conservation approaches. We performed a contingent valuation study of monarchs to understand the potential for such approaches to fund monarch conservation. The survey asked U.S. respondents about the money they would spend, or have spent, growing monarch-friendly plants, and the amount they would donate to monarch conservation organizations. Combining planting payments and donations, the survey indicated U.S. households valued monarchs as a total one-time payment of $4.78–$6.64 billion, levels similar to many endangered vertebrate species. The financial contribution of even a small percentage of households through purchases or donations could generate new funding for monarch conservation through market-based approaches.
Mesenchymal stem cells: potential for therapy and treatment of chronic non-healing skin wounds
Marfia, Giovanni; Navone, Stefania Elena; Di Vito, Clara; Ughi, Nicola; Tabano, Silvia; Miozzo, Monica; Tremolada, Carlo; Bolla, Gianni; Crotti, Chiara; Ingegnoli, Francesca; Rampini, Paolo; Riboni, Laura; Gualtierotti, Roberta; Campanella, Rolando
2015-01-01
abstract Wound healing is a complex physiological process including overlapping phases (hemostatic/inflammatory, proliferating and remodeling phases). Every alteration in this mechanism might lead to pathological conditions of different medical relevance. Treatments for chronic non-healing wounds are expensive because reiterative treatments are needed. Regenerative medicine and in particular mesenchymal stem cells approach is emerging as new potential clinical application in wound healing. In the past decades, advance in the understanding of molecular mechanisms underlying wound healing process has led to extensive topical administration of growth factors as part of wound care. Currently, no definitive treatment is available and the research on optimal wound care depends upon the efficacy and cost-benefit of emerging therapies. Here we provide an overview on the novel approaches through stem cell therapy to improve cutaneous wound healing, with a focus on diabetic wounds and Systemic Sclerosis-associated ulcers, which are particularly challenging. Current and future treatment approaches are discussed with an emphasis on recent advances. PMID:26652928
Skeletonization of Gridded Potential-Field Images
NASA Astrophysics Data System (ADS)
Gao, L.; Morozov, I. B.
2012-12-01
A new approach to skeletonization was developed for gridded potential-field data. Generally, skeletonization is a pattern-recognition technique allowing automatic recognition of near-linear features in the images, measurement of their parameters, and analyzing them for similarities. Our approach decomposes the images into arbitrarily-oriented "wavelets" characterized by positive or negative amplitudes, orientation angles, spatial dimensions, polarities, and other attributes. Orientations of the wavelets are obtained by scanning the azimuths to detect the strike direction of each anomaly. The wavelets are connected according to the similarities of these attributes, which leads to a "skeleton" map of the potential-field data. In addition, 2-D filtering is conducted concurrently with the wavelet-identification process, which allows extracting parameters of background trends and reduces the adverse effects of low-frequency background (which is often strong in potential-field maps) on skeletonization.. By correlating the neighboring wavelets, linear anomalies are identified and characterized. The advantages of this algorithm are the generality and isotropy of feature detection, as well as being specifically designed for gridded data. With several options for background-trend extraction, the stability for identification of lineaments is improved and optimized. The algorithm is also integrated in a powerful processing system which allows combining it with numerous other tools, such as filtering, computation of analytical signal, empirical mode decomposition, and various types of plotting. The method is applied to potential-field data for the Western Canada Sedimentary Basin, in a study area which extends from southern Saskatchewan into southwestern Manitoba. The target is the structure of crystalline basement beneath Phanerozoic sediments. The examples illustrate that skeletonization aid in the interpretation of complex structures at different scale lengths. The results indicate that this method is useful for identifying structures in complex geophysical images and for automatic extraction of their attributes as well as for quantitative characterization and analysis of potential-field images. Skeletonized potential-field images should also be useful for inversion.
Development of Sorbents for Extraction and Stabilization of Nucleic Acids
2016-09-13
ensure safe food and water supplies and to maintain the health and readiness of deployed troops. Identification of molecular signatures (genomic...biological, environmental, forensics, and food safety, drive the need for preservation of nucleic acid integrity during sample collection, transportation... antimicrobial activity as well as the potential for multiple and complex cationic interactions with nucleic acids (Fig. 10). Two different approaches were used
Research directions in large scale systems and decentralized control
NASA Technical Reports Server (NTRS)
Tenney, R. R.
1980-01-01
Control theory provides a well established framework for dealing with automatic decision problems and a set of techniques for automatic decision making which exploit special structure, but it does not deal well with complexity. The potential exists for combining control theoretic and knowledge based concepts into a unified approach. The elements of control theory are diagrammed, including modern control and large scale systems.
Informatics Tools to Improve Clinical Research
Argraves, S; Brandt, CA; Money, R; Nadkarni, P
2005-01-01
During the conduct of complex clinical trials, there are numerous sources and types of data collection and project coordination problems. Methods and approaches to address the conduct of a trial vary in both the cost and time to perform and the potential benefit. Informatics tools can help trial coordinators and investigators ensure the collection of high quality research data during all phases of a clinical trial. PMID:16779170
Mason, Eric; Van Rompaey, Jason; Carrau, Ricardo; Panizza, Benedict; Solares, C Arturo
2014-03-01
Advances in the field of skull base surgery aim to maximize anatomical exposure while minimizing patient morbidity. The petroclival region of the skull base presents numerous challenges for surgical access due to the complex anatomy. The transcochlear approach to the region provides adequate access; however, the resection involved sacrifices hearing and results in at least a grade 3 facial palsy. An endoscopic endonasal approach could potentially avoid negative patient outcomes while providing a desirable surgical window in a select patient population. Cadaveric study. Endoscopic access to the petroclival region was achieved through an endonasal approach. For comparison, a transcochlear approach to the clivus was performed. Different facets of the dissections, such as bone removal volume and exposed surface area, were computed using computed tomography analysis. The endoscopic endonasal approach provided a sufficient corridor to the petroclival region with significantly less bone removal and nearly equivalent exposure of the surgical target, thus facilitating the identification of the relevant anatomy. The lateral approach allowed for better exposure from a posterolateral direction until the inferior petrosal sinus; however, the endonasal approach avoided labyrinthine/cochlear destruction and facial nerve manipulation while providing an anteromedial viewpoint. The endonasal approach also avoided external incisions and cosmetic deficits. The endonasal approach required significant sinonasal resection. Endoscopic access to the petroclival region is a feasible approach. It potentially avoids hearing loss, facial nerve manipulation, and cosmetic damage. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
DNA curtains for high-throughput single-molecule optical imaging.
Greene, Eric C; Wind, Shalom; Fazio, Teresa; Gorman, Jason; Visnapuu, Mari-Liis
2010-01-01
Single-molecule approaches provide a valuable tool in the arsenal of the modern biologist, and new discoveries continue to be made possible through the use of these state-of-the-art technologies. However, it can be inherently difficult to obtain statistically relevant data from experimental approaches specifically designed to probe individual reactions. This problem is compounded with more complex biochemical reactions, heterogeneous systems, and/or reactions requiring the use of long DNA substrates. Here we give an overview of a technology developed in our laboratory, which relies upon simple micro- or nanofabricated structures in combination with "bio-friendly" lipid bilayers, to align thousands of long DNA molecules into defined patterns on the surface of a microfluidic sample chamber. We call these "DNA curtains," and we have developed several different versions varying in complexity and DNA substrate configuration, which are designed to meet different experimental needs. This novel approach to single-molecule imaging provides a powerful experimental platform that offers the potential for concurrent observation of hundreds or even thousands of protein-DNA interactions in real time. Copyright 2010 Elsevier Inc. All rights reserved.
May the Best Molecule Win: Competition ESI Mass Spectrometry
Laughlin, Sarah; Wilson, W. David
2015-01-01
Electrospray ionization mass spectrometry has become invaluable in the characterization of macromolecular biological systems such as nucleic acids and proteins. Recent advances in the field of mass spectrometry and the soft conditions characteristic of electrospray ionization allow for the investigation of non-covalent interactions among large biomolecules and ligands. Modulation of genetic processes through the use of small molecule inhibitors with the DNA minor groove is gaining attention as a potential therapeutic approach. In this review, we discuss the development of a competition method using electrospray ionization mass spectrometry to probe the interactions of multiple DNA sequences with libraries of minor groove binding molecules. Such an approach acts as a high-throughput screening method to determine important information including the stoichiometry, binding mode, cooperativity, and relative binding affinity. In addition to small molecule-DNA complexes, we highlight other applications in which competition mass spectrometry has been used. A competitive approach to simultaneously investigate complex interactions promises to be a powerful tool in the discovery of small molecule inhibitors with high specificity and for specific, important DNA sequences. PMID:26501262
Asia on the move: research challenges for population geography.
Hugo, G
1996-06-01
This paper "summarises some of the major changes which have occurred in international migration to, from, and within Asia in the last two decades....A number of theoretical challenges are put forward regarding the complex interrelationships between international population movements, economic development and social change. The employment of systems approaches, neoclassical economic theory, social networks and institutional approaches, and the potential role of population geography in developing a more comprehensive explanation of the changing dynamics of international migration in the region, are discussed. Also considered are the gender dimension in migration, remittance flows and their consequences, and policy issues." excerpt
Pugin, K G; Vaĭsman, Ia I
2013-01-01
On the basis of the life cycle of materials, containing wastes of iron and steel industry, new methodological approaches to the assessment of technologies of the secondary use of wastes are developed A complex criteria for selection of the technology for the use of resource potential of solid waste of iron and steel industry are developed with taking into account environmental, technological and economic indices. The technology of the use of wastes of ferrovanadium industry as bulk solid materials at the solid waste landfill is shown.
Agile development of ontologies through conversation
NASA Astrophysics Data System (ADS)
Braines, Dave; Bhattal, Amardeep; Preece, Alun D.; de Mel, Geeth
2016-05-01
Ontologies and semantic systems are necessarily complex but offer great potential in terms of their ability to fuse information from multiple sources in support of situation awareness. Current approaches do not place the ontologies directly into the hands of the end user in the field but instead hide them away behind traditional applications. We have been experimenting with human-friendly ontologies and conversational interactions to enable non-technical business users to interact with and extend these dynamically. In this paper we outline our approach via a worked example, covering: OWL ontologies, ITA Controlled English, Sensor/mission matching and conversational interactions between human and machine agents.
Fusion of approaches to the treatment of organ failure.
Ogle, Brenda; Cascalho, Marilia; Platt, Jeffrey L
2004-01-01
Because organ transplantation is the preferred treatment for organ failure, the demand for human organs for transplantation is large and growing. From this demand, several fields based on new technologies for the replacement or repair of damaged tissues and organs have emerged. These fields include stem cell biology, cloning, tissue engineering and xenotransplantation. Here we evaluate the potential contribution of these to the devising of alternative approaches to organ replacement. We present our vision for the development of two structurally complex organs - the lung and the kidney - based on a 'fusion' of new and established technologies.
Scope of Various Random Number Generators in ant System Approach for TSP
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam Ali
2007-01-01
Experimented on heuristic, based on an ant system approach for traveling salesman problem, are several quasi- and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is mainly to seek an answer to the controversial issue "which generator is the best in terms of quality of the result (accuracy) as well as cost of producing the result (time/computational complexity) in a probabilistic/statistical sense."
Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B.
2014-01-01
Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases. PMID:25257784
Barbosa, Mariana; Valentão, Patrícia; Andrade, Paula B
2014-09-25
Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer's and Parkinson's. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases.
Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuev, Dmitry; Jagau, Thomas-C.; Krylov, Anna I.
2014-07-14
A production-level implementation of equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) for electron attachment and excitation energies augmented by a complex absorbing potential (CAP) is presented. The new method enables the treatment of metastable states within the EOM-CC formalism in a similar manner as bound states. The numeric performance of the method and the sensitivity of resonance positions and lifetimes to the CAP parameters and the choice of one-electron basis set are investigated. A protocol for studying molecular shape resonances based on the use of standard basis sets and a universal criterion for choosing the CAP parameters are presented. Our resultsmore » for a variety of π{sup *} shape resonances of small to medium-size molecules demonstrate that CAP-augmented EOM-CCSD is competitive relative to other theoretical approaches for the treatment of resonances and is often able to reproduce experimental results.« less
Machine Learning Estimates of Natural Product Conformational Energies
Rupp, Matthias; Bauer, Matthias R.; Wilcken, Rainer; Lange, Andreas; Reutlinger, Michael; Boeckler, Frank M.; Schneider, Gisbert
2014-01-01
Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures. PMID:24453952
Arenas, Miguel
2015-04-01
NGS technologies present a fast and cheap generation of genomic data. Nevertheless, ancestral genome inference is not so straightforward due to complex evolutionary processes acting on this material such as inversions, translocations, and other genome rearrangements that, in addition to their implicit complexity, can co-occur and confound ancestral inferences. Recently, models of genome evolution that accommodate such complex genomic events are emerging. This letter explores these novel evolutionary models and proposes their incorporation into robust statistical approaches based on computer simulations, such as approximate Bayesian computation, that may produce a more realistic evolutionary analysis of genomic data. Advantages and pitfalls in using these analytical methods are discussed. Potential applications of these ancestral genomic inferences are also pointed out.
A generalized approach to complex networks
NASA Astrophysics Data System (ADS)
Costa, L. Da F.; da Rocha, L. E. C.
2006-03-01
This work describes how the formalization of complex network concepts in terms of discrete mathematics, especially mathematical morphology, allows a series of generalizations and important results ranging from new measurements of the network topology to new network growth models. First, the concepts of node degree and clustering coefficient are extended in order to characterize not only specific nodes, but any generic subnetwork. Second, the consideration of distance transform and rings are used to further extend those concepts in order to obtain a signature, instead of a single scalar measurement, ranging from the single node to whole graph scales. The enhanced discriminative potential of such extended measurements is illustrated with respect to the identification of correspondence between nodes in two complex networks, namely a protein-protein interaction network and a perturbed version of it.
Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian
2015-01-01
Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527
Photochemical Approaches to Complex Chemotypes: Applications in Natural Product Synthesis.
Kärkäs, Markus D; Porco, John A; Stephenson, Corey R J
2016-09-14
The use of photochemical transformations is a powerful strategy that allows for the formation of a high degree of molecular complexity from relatively simple building blocks in a single step. A central feature of all light-promoted transformations is the involvement of electronically excited states, generated upon absorption of photons. This produces transient reactive intermediates and significantly alters the reactivity of a chemical compound. The input of energy provided by light thus offers a means to produce strained and unique target compounds that cannot be assembled using thermal protocols. This review aims at highlighting photochemical transformations as a tool for rapidly accessing structurally and stereochemically diverse scaffolds. Synthetic designs based on photochemical transformations have the potential to afford complex polycyclic carbon skeletons with impressive efficiency, which are of high value in total synthesis.
NASA Astrophysics Data System (ADS)
Beckstein, Pascal; Galindo, Vladimir; Vukčević, Vuko
2017-09-01
Eddy-current problems occur in a wide range of industrial and metallurgical applications where conducting material is processed inductively. Motivated by realising coupled multi-physics simulations, we present a new method for the solution of such problems in the finite volume framework of foam-extend, an extended version of the very popular OpenFOAM software. The numerical procedure involves a semi-coupled multi-mesh approach to solve Maxwell's equations for non-magnetic materials by means of the Coulomb gauged magnetic vector potential A and the electric scalar potential ϕ. The concept is further extended on the basis of the impressed and reduced magnetic vector potential and its usage in accordance with Biot-Savart's law to achieve a very efficient overall modelling even for complex three-dimensional geometries. Moreover, we present a special discretisation scheme to account for possible discontinuities in the electrical conductivity. To complement our numerical method, an extensive validation is completing the paper, which provides insight into the behaviour and the potential of our approach.
NASA Astrophysics Data System (ADS)
Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.
2016-05-01
Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.
Salvador, Cátia; Martins, M Rosário; Caldeira, A Teresa
2015-02-01
Different compounds of edible mushrooms are responsible for their bioactivity. The ability to synthesize polysaccharides, namely protein-polysaccharide (PPS) complexes, is related to the antioxidant capacity of these compounds and present great interest in preventing a number of diseases, including cancer, cardiovascular and auto-immune diseases, and accelerated aging. Amanita ponderosa are wild edible mushrooms that grow in Mediterranean "montado" areas [Portuguese name given to cork oak (Quercus suber) and holm oak (Quercus ilex) forests]. The aim of this study was to evaluate the production of PPS complexes obtained from A. ponderosa cultures using a new microanalytical approach to quickly and easily monitor the production process. Microanalysis using Fourier-transform infrared using attenuated total reflection and Raman spectroscopy of PPS samples showed spectra compatible with identification of this type of compound in culture extracts. PPS separated by size-exclusion chromatography showed seven main complexes. Molecular weights of the main PPS complexes isolated from cultures ranged between 1.5 and 20 kDa and did not present toxicity against Artemia salina, demonstrating the potential of A. ponderosa as a source of biologically active compounds with nutraceutical value. Application of this microanalytical approach to monitoring the production of PPS compounds can be successfully applied in biotechnological processes.
The transformative potential of an integrative approach to pregnancy.
Eidem, Haley R; McGary, Kriston L; Capra, John A; Abbot, Patrick; Rokas, Antonis
2017-09-01
Complex traits typically involve diverse biological pathways and are shaped by numerous genetic and environmental factors. Pregnancy-associated traits and pathologies are further complicated by extensive communication across multiple tissues in two individuals, interactions between two genomes-maternal and fetal-that obscure causal variants and lead to genetic conflict, and rapid evolution of pregnancy-associated traits across mammals and in the human lineage. Given the multi-faceted complexity of human pregnancy, integrative approaches that synthesize diverse data types and analyses harbor tremendous promise to identify the genetic architecture and environmental influences underlying pregnancy-associated traits and pathologies. We review current research that addresses the extreme complexities of traits and pathologies associated with human pregnancy. We find that successful efforts to address the many complexities of pregnancy-associated traits and pathologies often harness the power of many and diverse types of data, including genome-wide association studies, evolutionary analyses, multi-tissue transcriptomic profiles, and environmental conditions. We propose that understanding of pregnancy and its pathologies will be accelerated by computational platforms that provide easy access to integrated data and analyses. By simplifying the integration of diverse data, such platforms will provide a comprehensive synthesis that transcends many of the inherent challenges present in studies of pregnancy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Applying a cloud computing approach to storage architectures for spacecraft
NASA Astrophysics Data System (ADS)
Baldor, Sue A.; Quiroz, Carlos; Wood, Paul
As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.
Hsp70 Protein Complexes as Drug Targets
Assimon, Victoria A.; Gillies, Anne T.; Rauch, Jennifer N.; Gestwicki, Jason E.
2013-01-01
Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70’s interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, such as pro-folding, pro-degradation and pro-trafficking. Thus, a promising strategy may be to block protein-protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to those goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology. PMID:22920901
Harikrishnan, A R; Dhar, Purbarun; Gedupudi, Sateesh; Das, Sarit K
2018-04-12
We propose a comprehensive analysis and a quasi-analytical mathematical formalism to predict the surface tension and contact angles of complex surfactant-infused nanocolloids. The model rests on the foundations of the interaction potentials for the interfacial adsorption-desorption dynamics in complex multicomponent colloids. Surfactant-infused nanoparticle-laden interface problems are difficult to deal with because of the many-body interactions and interfaces involved at the meso-nanoscales. The model is based on the governing role of thermodynamic and chemical equilibrium parameters in modulating the interfacial energies. The influence of parameters such as the presence of surfactants, nanoparticles, and surfactant-capped nanoparticles on interfacial dynamics is revealed by the analysis. Solely based on the knowledge of interfacial properties of independent surfactant solutions and nanocolloids, the same can be deduced for complex surfactant-based nanocolloids through the proposed approach. The model accurately predicts the equilibrium surface tension and contact angle of complex nanocolloids available in the existing literature and present experimental findings.
The BioIntelligence Framework: a new computational platform for biomedical knowledge computing
Farley, Toni; Kiefer, Jeff; Lee, Preston; Von Hoff, Daniel; Trent, Jeffrey M; Colbourn, Charles
2013-01-01
Breakthroughs in molecular profiling technologies are enabling a new data-intensive approach to biomedical research, with the potential to revolutionize how we study, manage, and treat complex diseases. The next great challenge for clinical applications of these innovations will be to create scalable computational solutions for intelligently linking complex biomedical patient data to clinically actionable knowledge. Traditional database management systems (DBMS) are not well suited to representing complex syntactic and semantic relationships in unstructured biomedical information, introducing barriers to realizing such solutions. We propose a scalable computational framework for addressing this need, which leverages a hypergraph-based data model and query language that may be better suited for representing complex multi-lateral, multi-scalar, and multi-dimensional relationships. We also discuss how this framework can be used to create rapid learning knowledge base systems to intelligently capture and relate complex patient data to biomedical knowledge in order to automate the recovery of clinically actionable information. PMID:22859646
Gwaltney, Steven R; Rosokha, Sergiy V; Head-Gordon, Martin; Kochi, Jay K
2003-03-19
The highly disparate rates of aromatic nitrosation and nitration, despite the very similar (electrophilic) properties of the active species: NO(+) and NO(2)(+) in Chart 1, are quantitatively reconciled. First, the thorough mappings of the potential-energy surfaces by high level (ab initio) molecular-orbital methodologies involving extensive coupled-cluster CCSD(T)/6-31G optimizations establish the intervention of two reactive intermediates in nitration (Figure 8) but only one in nitrosation (Figure 7). Second, the same distinctive topologies involving double and single potential-energy minima (Figures 6 and 5) also emerge from the semiquantitative application of the Marcus-Hush theory to the transient spectral data. Such a striking convergence from quite different theoretical approaches indicates that the molecular-orbital and Marcus-Hush (potential-energy) surfaces are conceptually interchangeable. In the resultant charge-transfer mechanism, the bimolecular interactions of arene donors with both NO(+) and NO(2)(+) spontaneously lead (barrierless) to pi-complexes in which electron transfer is concurrent with complexation. Such a pi-complex in nitration is rapidly converted to the sigma-complex, whereas this Wheland adduct in nitrosation merely represents a high energy (transition-state) structure. Marcus-Hush analysis thus demonstrates how the strongly differentiated (arene) reactivities toward NO(+) and NO(2)(+) can actually be exploited in the quantitative development of a single coherent (electron-transfer) mechanism for both aromatic nitrosation and nitration.
Kumar, Rakesh; Jade, Dhananjay; Gupta, Dinesh
2018-03-05
5-HydroxyTriptamine 2A antagonists are potential targets for treatment of various cerebrovascular and cardiovascular disorders. In this study, we have developed and performed a unique screening pipeline for filtering ZINC database compounds on the basis of similarities to known antagonists to determine novel small molecule antagonists of 5-HydroxyTriptamine 2A. The screening pipeline is based on 2D similarity, 3D dissimilarity and a combination of 2D/3D similarity. The shortlisted compounds were docked to a 5-HydroxyTriptamine 2A homology-based model, and complexes with low binding energies (287 complexes) were selected for molecular dynamics (MD) simulations in a lipid bilayer. The MD simulations of the shortlisted compounds in complex with 5-HydroxyTriptamine 2A confirmed the stability of the complexes and revealed novel interaction insights. The receptor residues S239, N343, S242, S159, Y370 and D155 predominantly participate in hydrogen bonding. π-π stacking is observed in F339, F340, F234, W151 and W336, whereas hydrophobic interactions are observed amongst V156, F339, F234, V362, V366, F340, V235, I152 and W151. The known and potential antagonists shortlisted by us have similar overlapping molecular interaction patterns. The 287 potential 5-HydroxyTriptamine 2A antagonists may be experimentally verified.
ERIC Educational Resources Information Center
Jörg, Ton
2017-01-01
Reinventing education is the ultimate aim of this contribution. The approach taken is a radical new complexity-inspired bottom-up approach which shows complexity as the fount of creativity and innovation. Organizing complexity accordingly may be the foundation for a new complexified vision of education. It all starts with new thinking in…
Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.; ...
2015-10-09
Ground-state diffusion Monte Carlo is used to investigate the binding energies and intercarrier radial probability distributions of excitons, trions, and biexcitons in a variety of two-dimensional transition-metal dichalcogenide materials. We compare these results to approximate variational calculations, as well as to analogous Monte Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes and failures of approximate approaches as well as the physical features that determine the stability of small carrier complexes in monolayer transition-metal dichalcogenide materials. In conclusion, we discuss points of agreement and disagreement with recent experiments.
Sankar, Muthukumar G.; Roy, Sayantani; Tran, Tuyen Thi Ngoc; Wittstein, Kathrin; Bauer, Jonathan O.; Strohmann, Carsten; Ziegler, Slava
2018-01-01
Abstract Complexity‐generating chemical transformations that afford novel molecular scaffolds enriched in sp 3 character are highly desired. Here, we present a highly stereoselective scaffold diversity synthesis approach that utilizes cascade double‐annulation reactions of diverse pairs of zwitterionic and non‐zwitterionic partners with 3‐formylchromones to generate highly complex tetracyclic benzopyrones. Each pair of annulation partners adds to the common chroman‐4‐one scaffold to build two new rings, supporting up to four contiguous chiral centers that include an all‐carbon quaternary center. Differently ring‐fused benzopyrones display different biological activities, thus demonstrating their immense potential in medicinal chemistry and chemical biology research. PMID:29721402
Remotely controlled fusion of selected vesicles and living cells: a key issue review
NASA Astrophysics Data System (ADS)
Bahadori, Azra; Moreno-Pescador, Guillermo; Oddershede, Lene B.; Bendix, Poul M.
2018-03-01
Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.
An Isomer-Specific Approach to Endocrine-Disrupting Nonylphenol in Infant Food.
Günther, Klaus; Räcker, Torsten; Böhme, Roswitha
2017-02-15
Nonylphenols (NPs) are persistent endocrine disruptors that are priority hazardous substances of the European Union Water Framework Directive. Their presence in the environment has caused growing concern regarding their impact on human health. Recent studies have shown that nonylphenol is ubiquitous in commercially available foodstuffs and is also present in human blood. The isomer distribution of 4-nonylphenol was analyzed by gas chromatography - mass spectrometry in 44 samples of infant food. Our study shows that the distribution of nonylphenol isomers is dependent on the foodstuff analyzed. Although some isomer groups prevail, different distributions are frequent. Variations are even found in the same food group. Nonylphenol is a complex mixture of isomers, and the estrogenic potentials of each of these isomers are very different. Consequently, to determine the potential toxicological impact of NP in food, an isomer-specific approach is necessary.
Houghton, Robert J; Baber, Chris; Stanton, Neville A; Jenkins, Daniel P; Revell, Kirsten
2015-01-01
Cognitive Work Analysis (CWA) allows complex, sociotechnical systems to be explored in terms of their potential configurations. However, CWA does not explicitly analyse the manner in which person-to-person communication is performed in these configurations. Consequently, the combination of CWA with Social Network Analysis provides a means by which CWA output can be analysed to consider communication structure. The approach is illustrated through a case study of a military planning team. The case study shows how actor-to-actor and actor-to-function mapping can be analysed, in terms of centrality, to produce metrics of system structure under different operating conditions. In this paper, a technique for building social network diagrams from CWA is demonstrated.The approach allows analysts to appreciate the potential impact of organisational structure on a command system.
NASA Astrophysics Data System (ADS)
Biswas, A.; Sharma, S. P.
2012-12-01
Self-Potential anomaly is an important geophysical technique that measures the electrical potential due natural source of current in the Earth's subsurface. An inclined sheet type model is a very familiar structure associated with mineralization, fault plane, groundwater flow and many other geological features which exhibits self potential anomaly. A number of linearized and global inversion approaches have been developed for the interpretation of SP anomaly over different structures for various purposes. Mathematical expression to compute the forward response over a two-dimensional dipping sheet type structures can be described in three different ways using five variables in each case. Complexities in the inversion using three different forward approaches are different. Interpretation of self-potential anomaly using very fast simulated annealing global optimization has been developed in the present study which yielded a new insight about the uncertainty and equivalence in model parameters. Interpretation of the measured data yields the location of the causative body, depth to the top, extension, dip and quality of the causative body. In the present study, a comparative performance of three different forward approaches in the interpretation of self-potential anomaly is performed to assess the efficacy of the each approach in resolving the possible ambiguity. Even though each forward formulation yields the same forward response but optimization of different sets of variable using different forward problems poses different kinds of ambiguity in the interpretation. Performance of the three approaches in optimization has been compared and it is observed that out of three methods, one approach is best and suitable for this kind of study. Our VFSA approach has been tested on synthetic, noisy and field data for three different methods to show the efficacy and suitability of the best method. It is important to use the forward problem in the optimization that yields the best result without any ambiguity and smaller uncertainty. Keywords: SP anomaly, inclined sheet, 2D structure, forward problems, VFSA Optimization,
Identification of Rays through DNA Barcoding: An Application for Ecologists
Cerutti-Pereyra, Florencia; Meekan, Mark G.; Wei, Nu-Wei V.; O'Shea, Owen; Bradshaw, Corey J. A.; Austin, Chris M.
2012-01-01
DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data. PMID:22701556
NASA Astrophysics Data System (ADS)
Krumrine, Jennifer R.; Alexander, Millard H.; Yang, Xin; Dagdigian, Paul J.
2000-03-01
The 2s2p22D←2s22p 2P valence transition in the BAr2 cluster is investigated in a collaborative experimental and theoretical study. Laser fluorescence excitation spectra of a supersonic expansion of B atoms entrained in Ar at high source backing pressures display several features not assignable to the BAr complex. Resonance fluorescence is not observed, but instead emission from the lower 3s state. Size-selected fluorescence depletion spectra show that these features in the excitation spectrum are primarily due to the BAr2 complex. This electronic transition within BAr2 is modeled theoretically, similarly to our earlier study of the 3s←2p transition [M. H. Alexander et al., J. Chem. Phys. 106, 6320 (1997)]. The excited potential energy surfaces of the fivefold degenerate B(2s2p22D) state within the ternary complex are computed in a pairwise-additive model employing diatomic BAr potential energy curves which reproduce our previous experimental observations on the electronic states emanating from the B(2D)+Ar asymptote. The simulated absorption spectrum reproduces reasonably well the observed fluorescence depletion spectrum. The theoretical model lends insight into the energetics of the approach of B to multiple Ar atoms, and how the orientation of B p-orbitals governs the stability of the complex.
Immune responses to bioengineered organs
Ochando, Jordi; Charron, Dominique; Baptista, Pedro M.; Uygun, Basak E.
2017-01-01
Purpose of review Organ donation in the United States registered 9079 deceased organ donors in 2015. This high percentage of donations allowed organ transplantation in 29 851 recipients. Despite increasing numbers of transplants performed in comparison with previous years, the numbers of patients that are in need for a transplant increase every year at a higher rate. This reveals that the discrepancy between the demand and availability of organs remains fundamental problem in organ transplantation. Recent findings Development of bioengineered organs represents a promising approach to increase the pool of organs for transplantation. The technology involves obtaining complex three-dimensional scaffolds that support cellular activity and functional remodeling though tissue recellularization protocols using progenitor cells. This innovative approach integrates cross-thematic approaches from specific areas of transplant immunology, tissue engineering and stem cell biology, to potentially manufacture an unlimited source of donor organs for transplantation. Summary Although bioengineered organs are thought to escape immune recognition, the potential immune reactivity toward each of its components has not been studied in detail. Here, we summarize the host immune response toward different progenitor cells and discuss the potential implications of using nonself biological scaffolds to develop bioengineered organs. PMID:27926545
A risk assessment approach for fresh fruits.
Bassett, J; McClure, P
2008-04-01
To describe the approach used in conducting a fit-for-purpose risk assessment of microbiological human pathogens associated with fresh fruit and the risk management recommendations made. A qualitative risk assessment for microbiological hazards in fresh fruit was carried out based on the Codex Alimentarius (Codex) framework, modified to consider multiple hazards and all fresh (whole) fruits. The assessment determines 14 significant bacterial, viral, protozoal and nematodal hazards associated with fresh produce, assesses the probable level of exposure from fresh fruit, concludes on the risk from each hazard, and considers and recommends risk management actions. A review of potential risk management options allowed the comparison of effectiveness with the potential exposure to each hazard. Washing to a recommended protocol is an appropriate risk management action for the vast majority of consumption events, particularly when good agricultural and hygienic practices are followed and with the addition of refrigerated storage for low acid fruit. Additional safeguards are recommended for aggregate fruits with respect to the risk from protozoa. The potentially complex process of assessing the risks of multiple hazards in multiple but similar commodities can be simplified in a qualitative assessment approach that employs the Codex methodology.
Describing and understanding behavioral responses to multiple stressors and multiple stimuli.
Hale, Robin; Piggott, Jeremy J; Swearer, Stephen E
2017-01-01
Understanding the effects of environmental change on natural ecosystems is a major challenge, particularly when multiple stressors interact to produce unexpected "ecological surprises" in the form of complex, nonadditive effects that can amplify or reduce their individual effects. Animals often respond behaviorally to environmental change, and multiple stressors can have both population-level and community-level effects. However, the individual, not combined, effects of stressors on animal behavior are commonly studied. There is a need to understand how animals respond to the more complex combinations of stressors that occur in nature, which requires a systematic and rigorous approach to quantify the various potential behavioral responses to the independent and interactive effects of stressors. We illustrate a robust, systematic approach for understanding behavioral responses to multiple stressors based on integrating schemes used to quantitatively classify interactions in multiple-stressor research and to qualitatively view interactions between multiple stimuli in behavioral experiments. We introduce and unify the two frameworks, highlighting their conceptual and methodological similarities, and use four case studies to demonstrate how this unification could improve our interpretation of interactions in behavioral experiments and guide efforts to manage the effects of multiple stressors. Our unified approach: (1) provides behavioral ecologists with a more rigorous and systematic way to quantify how animals respond to interactions between multiple stimuli, an important theoretical advance, (2) helps us better understand how animals behave when they encounter multiple, potentially interacting stressors, and (3) contributes more generally to the understanding of "ecological surprises" in multiple stressors research.
Approaches for scalable modeling and emulation of cyber systems : LDRD final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayo, Jackson R.; Minnich, Ronald G.; Armstrong, Robert C.
2009-09-01
The goal of this research was to combine theoretical and computational approaches to better understand the potential emergent behaviors of large-scale cyber systems, such as networks of {approx} 10{sup 6} computers. The scale and sophistication of modern computer software, hardware, and deployed networked systems have significantly exceeded the computational research community's ability to understand, model, and predict current and future behaviors. This predictive understanding, however, is critical to the development of new approaches for proactively designing new systems or enhancing existing systems with robustness to current and future cyber threats, including distributed malware such as botnets. We have developed preliminarymore » theoretical and modeling capabilities that can ultimately answer questions such as: How would we reboot the Internet if it were taken down? Can we change network protocols to make them more secure without disrupting existing Internet connectivity and traffic flow? We have begun to address these issues by developing new capabilities for understanding and modeling Internet systems at scale. Specifically, we have addressed the need for scalable network simulation by carrying out emulations of a network with {approx} 10{sup 6} virtualized operating system instances on a high-performance computing cluster - a 'virtual Internet'. We have also explored mappings between previously studied emergent behaviors of complex systems and their potential cyber counterparts. Our results provide foundational capabilities for further research toward understanding the effects of complexity in cyber systems, to allow anticipating and thwarting hackers.« less
Generalized Sagdeev potential theory for shock waves modeling
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.
2017-05-01
In this paper, we develop an innovative approach to study the shock wave propagation using the Sagdeev potential method. We also present an analytical solution for Korteweg de Vries Burgers (KdVB) and modified KdVB equation families with a generalized form of the nonlinearity term which agrees well with the numerical one. The novelty of the current approach is that it is based on a simple analogy of the particle in a classical potential with the variable particle energy providing one with a deeper physical insight into the problem and can easily be extended to more complex physical situations. We find that the current method well describes both monotonic and oscillatory natures of the dispersive-diffusive shock structures in different viscous fluid configurations. It is particularly important that all essential parameters of the shock structure can be deduced directly from the Sagdeev potential in small and large potential approximation regimes. Using the new method, we find that supercnoidal waves can decay into either compressive or rarefactive shock waves depending on the initial wave amplitude. Current investigation provides a general platform to study a wide range of phenomena related to nonlinear wave damping and interactions in diverse fluids including plasmas.
Dirac and non-Dirac conditions in the two-potential theory of magnetic charge
NASA Astrophysics Data System (ADS)
Scott, John; Evans, Timothy J.; Singleton, Douglas; Dzhunushaliev, Vladimir; Folomeev, Vladimir
2018-05-01
We investigate the Cabbibo-Ferrari, two-potential approach to magnetic charge coupled to two different complex scalar fields, Φ _1 and Φ _2, each having different electric and magnetic charges. The scalar field, Φ _1, is assumed to have a spontaneous symmetry breaking self-interaction potential which gives a mass to the "magnetic" gauge potential and "magnetic" photon, while the other "electric" gauge potential and "electric" photon remain massless. The magnetic photon is hidden until one reaches energies of the order of the magnetic photon rest mass. The second scalar field, Φ _2, is required in order to make the theory non-trivial. With only one field one can always use a duality rotation to rotate away either the electric or magnetic charge, and thus decouple either the associated electric or magnetic photon. In analyzing this system of two scalar fields in the Cabbibo-Ferrari approach we perform several duality and gauge transformations, which require introducing non-Dirac conditions on the initial electric and magnetic charges. We also find that due to the symmetry breaking the usual Dirac condition is altered to include the mass of the magnetic photon. We discuss the implications of these various conditions on the charges.
NASA Astrophysics Data System (ADS)
Fouad, Geoffrey; Skupin, André; Hope, Allen
2016-04-01
The flow duration curve (FDC) is one of the most widely used tools to quantify streamflow. Its percentile flows are often required for water resource applications, but these values must be predicted for ungauged basins with insufficient or no streamflow data. Regional regression is a commonly used approach for predicting percentile flows that involves identifying hydrologic regions and calibrating regression models to each region. The independent variables used to describe the physiographic and climatic setting of the basins are a critical component of regional regression, yet few studies have investigated their effect on resulting predictions. In this study, the complexity of the independent variables needed for regional regression is investigated. Different levels of variable complexity are applied for a regional regression consisting of 918 basins in the US. Both the hydrologic regions and regression models are determined according to the different sets of variables, and the accuracy of resulting predictions is assessed. The different sets of variables include (1) a simple set of three variables strongly tied to the FDC (mean annual precipitation, potential evapotranspiration, and baseflow index), (2) a traditional set of variables describing the average physiographic and climatic conditions of the basins, and (3) a more complex set of variables extending the traditional variables to include statistics describing the distribution of physiographic data and temporal components of climatic data. The latter set of variables is not typically used in regional regression, and is evaluated for its potential to predict percentile flows. The simplest set of only three variables performed similarly to the other more complex sets of variables. Traditional variables used to describe climate, topography, and soil offered little more to the predictions, and the experimental set of variables describing the distribution of basin data in more detail did not improve predictions. These results are largely reflective of cross-correlation existing in hydrologic datasets, and highlight the limited predictive power of many traditionally used variables for regional regression. A parsimonious approach including fewer variables chosen based on their connection to streamflow may be more efficient than a data mining approach including many different variables. Future regional regression studies may benefit from having a hydrologic rationale for including different variables and attempting to create new variables related to streamflow.
2010-01-01
Background In bioinformatics it is common to search for a pattern of interest in a potentially large set of rather short sequences (upstream gene regions, proteins, exons, etc.). Although many methodological approaches allow practitioners to compute the distribution of a pattern count in a random sequence generated by a Markov source, no specific developments have taken into account the counting of occurrences in a set of independent sequences. We aim to address this problem by deriving efficient approaches and algorithms to perform these computations both for low and high complexity patterns in the framework of homogeneous or heterogeneous Markov models. Results The latest advances in the field allowed us to use a technique of optimal Markov chain embedding based on deterministic finite automata to introduce three innovative algorithms. Algorithm 1 is the only one able to deal with heterogeneous models. It also permits to avoid any product of convolution of the pattern distribution in individual sequences. When working with homogeneous models, Algorithm 2 yields a dramatic reduction in the complexity by taking advantage of previous computations to obtain moment generating functions efficiently. In the particular case of low or moderate complexity patterns, Algorithm 3 exploits power computation and binary decomposition to further reduce the time complexity to a logarithmic scale. All these algorithms and their relative interest in comparison with existing ones were then tested and discussed on a toy-example and three biological data sets: structural patterns in protein loop structures, PROSITE signatures in a bacterial proteome, and transcription factors in upstream gene regions. On these data sets, we also compared our exact approaches to the tempting approximation that consists in concatenating the sequences in the data set into a single sequence. Conclusions Our algorithms prove to be effective and able to handle real data sets with multiple sequences, as well as biological patterns of interest, even when the latter display a high complexity (PROSITE signatures for example). In addition, these exact algorithms allow us to avoid the edge effect observed under the single sequence approximation, which leads to erroneous results, especially when the marginal distribution of the model displays a slow convergence toward the stationary distribution. We end up with a discussion on our method and on its potential improvements. PMID:20205909
Nuel, Gregory; Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude
2010-01-26
In bioinformatics it is common to search for a pattern of interest in a potentially large set of rather short sequences (upstream gene regions, proteins, exons, etc.). Although many methodological approaches allow practitioners to compute the distribution of a pattern count in a random sequence generated by a Markov source, no specific developments have taken into account the counting of occurrences in a set of independent sequences. We aim to address this problem by deriving efficient approaches and algorithms to perform these computations both for low and high complexity patterns in the framework of homogeneous or heterogeneous Markov models. The latest advances in the field allowed us to use a technique of optimal Markov chain embedding based on deterministic finite automata to introduce three innovative algorithms. Algorithm 1 is the only one able to deal with heterogeneous models. It also permits to avoid any product of convolution of the pattern distribution in individual sequences. When working with homogeneous models, Algorithm 2 yields a dramatic reduction in the complexity by taking advantage of previous computations to obtain moment generating functions efficiently. In the particular case of low or moderate complexity patterns, Algorithm 3 exploits power computation and binary decomposition to further reduce the time complexity to a logarithmic scale. All these algorithms and their relative interest in comparison with existing ones were then tested and discussed on a toy-example and three biological data sets: structural patterns in protein loop structures, PROSITE signatures in a bacterial proteome, and transcription factors in upstream gene regions. On these data sets, we also compared our exact approaches to the tempting approximation that consists in concatenating the sequences in the data set into a single sequence. Our algorithms prove to be effective and able to handle real data sets with multiple sequences, as well as biological patterns of interest, even when the latter display a high complexity (PROSITE signatures for example). In addition, these exact algorithms allow us to avoid the edge effect observed under the single sequence approximation, which leads to erroneous results, especially when the marginal distribution of the model displays a slow convergence toward the stationary distribution. We end up with a discussion on our method and on its potential improvements.
Yang, Mingjun; Huang, Jing; MacKerell, Alexander D
2015-06-09
Replica exchange (REX) is a powerful computational tool for overcoming the quasi-ergodic sampling problem of complex molecular systems. Recently, several multidimensional extensions of this method have been developed to realize exchanges in both temperature and biasing potential space or the use of multiple biasing potentials to improve sampling efficiency. However, increased computational cost due to the multidimensionality of exchanges becomes challenging for use on complex systems under explicit solvent conditions. In this study, we develop a one-dimensional (1D) REX algorithm to concurrently combine the advantages of overall enhanced sampling from Hamiltonian solute scaling and the specific enhancement of collective variables using Hamiltonian biasing potentials. In the present Hamiltonian replica exchange method, termed HREST-BP, Hamiltonian solute scaling is applied to the solute subsystem, and its interactions with the environment to enhance overall conformational transitions and biasing potentials are added along selected collective variables associated with specific conformational transitions, thereby balancing the sampling of different hierarchical degrees of freedom. The two enhanced sampling approaches are implemented concurrently allowing for the use of a small number of replicas (e.g., 6 to 8) in 1D, thus greatly reducing the computational cost in complex system simulations. The present method is applied to conformational sampling of two nitrogen-linked glycans (N-glycans) found on the HIV gp120 envelope protein. Considering the general importance of the conformational sampling problem, HREST-BP represents an efficient procedure for the study of complex saccharides, and, more generally, the method is anticipated to be of general utility for the conformational sampling in a wide range of macromolecular systems.
Self-consistent-field KKR-CPA calculations in the atomic-sphere approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, P.P. Gonis, A.; de Fontaine, D.
1991-12-03
We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximations (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.
Li, Feng; Wang, Feiran; Zhu, Changlai; Wei, Qun; Zhang, Tianyi; Zhou, You Lang
2018-01-01
MicroRNA-221(miR-221) is frequently dysregulated in cancer. The purpose of this study was to explore whether miR-221 can be used as a potential diagnostic marker or therapeutic target for hepatocellular carcinoma (HCC). In this study, we investigated whether miR-221 expression was associated with clini-copathological characteristics and prognosis in HCC patients, and we developed a nanoparticle-based miRNA delivery system and detected its therapeutic efficacy in vitro and in vivo. We found that miR-221 was upregulated in HCC tissues, cell lines and blood of HCC patients. Upregulated miR-221 was associated with clinical TNM stage and tumor capsular infiltration, and showed poor prognosis, suggesting that its suppression could serve as an effective approach for hepatocellular carcinoma therapy. Treatment of HCC cells with nanoparticle/miR-221 inhibitor complexes suppressed their growth, colony formation ability, migration and invasion. In vivo, the growth of the tumors treated by the nanoparticle/miR-221 inhibitor complexes were significantly less than those treated by the nanoparticle/miRNA scramble complexes. In addition, circulating miR-221 may act as a potential tumor biomarker for early diagnosis of HCC, and combined serum miR-221 and AFP detection gave a better performance than individual detection in early diagnosis of HCC. These findings suggest that a nanoparticle-based miRNA delivery system could potentially serve as a safe and effective treatment and miR-221 could also be a potential diagnostic marker for HCC.
Current Understanding of Usher Syndrome Type II
Yang, Jun; Wang, Le; Song, Hongman; Sokolov, Maxim
2012-01-01
Usher syndrome is the most common deafness-blindness caused by genetic mutations. To date, three genes have been identified underlying the most prevalent form of Usher syndrome, the type II form (USH2). The proteins encoded by these genes are demonstrated to form a complex in vivo. This complex is localized mainly at the periciliary membrane complex in photoreceptors and the ankle-link of the stereocilia in hair cells. Many proteins have been found to interact with USH2 proteins in vitro, suggesting that they are potential additional components of this USH2 complex and that the genes encoding these proteins may be the candidate USH2 genes. However, further investigations are critical to establish their existence in the USH2 complex in vivo. Based on the predicted functional domains in USH2 proteins, their cellular localizations in photoreceptors and hair cells, the observed phenotypes in USH2 mutant mice, and the known knowledge about diseases similar to USH2, putative biological functions of the USH2 complex have been proposed. Finally, therapeutic approaches for this group of diseases are now being actively explored. PMID:22201796
Simmons, J E; Yang, R S; Berman, E
1995-02-01
As part of a multidisciplinary health effects study, the nephrotoxicity of complex industrial waste mixtures was assessed. Adult, male Fischer 344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. Of the 10 tested samples, 4 produced increased absolute or relative kidney weight, or both, coupled with a statistically significant alteration in at least one of the measured serum parameters (urea nitrogen (BUN), creatinine (CREAT), and BUN/CREAT ratio). Although the waste samples had been analyzed for a number of organic chemicals and 7 of the 10 samples were analyzed also for 12 elemental metals and metalloids, their nephrotoxicity was not readily predicted from the partial chemical characterization data. Because the chemical form or speciation of the metals was unknown, it was not possible to estimate their contribution to the observed biological response. Various experimental approaches, including use of real-world complex mixtures, chemically defined synthetic mixtures, and simple mixtures, will be necessary to adequately determine the potential human health risk from exposure to complex chemical mixtures.
Gibb, Heloise; Parr, Catherine L
2013-01-01
Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure.
GeLC-MRM quantitation of mutant KRAS oncoprotein in complex biological samples.
Halvey, Patrick J; Ferrone, Cristina R; Liebler, Daniel C
2012-07-06
Tumor-derived mutant KRAS (v-Ki-ras-2 Kirsten rat sarcoma viral oncogene) oncoprotein is a critical driver of cancer phenotypes and a potential biomarker for many epithelial cancers. Targeted mass spectrometry analysis by multiple reaction monitoring (MRM) enables selective detection and quantitation of wild-type and mutant KRAS proteins in complex biological samples. A recently described immunoprecipitation approach (Proc. Nat. Acad. Sci.2011, 108, 2444-2449) can be used to enrich KRAS for MRM analysis, but requires large protein inputs (2-4 mg). Here, we describe sodium dodecyl sulfate-polyacrylamide gel electrophoresis-based enrichment of KRAS in a low molecular weight (20-25 kDa) protein fraction prior to MRM analysis (GeLC-MRM). This approach reduces background proteome complexity, thus, allowing mutant KRAS to be reliably quantified in low protein inputs (5-50 μg). GeLC-MRM detected KRAS mutant variants (G12D, G13D, G12V, G12S) in a panel of cancer cell lines. GeLC-MRM analysis of wild-type and mutant was linear with respect to protein input and showed low variability across process replicates (CV = 14%). Concomitant analysis of a peptide from the highly similar HRAS and NRAS proteins enabled correction of KRAS-targeted measurements for contributions from these other proteins. KRAS peptides were also quantified in fluid from benign pancreatic cysts and pancreatic cancers at concentrations from 0.08 to 1.1 fmol/μg protein. GeLC-MRM provides a robust, sensitive approach to quantitation of mutant proteins in complex biological samples.
Evaluation of complex integrated care programmes: the approach in North West London
Greaves, Felix; Pappas, Yannis; Bardsley, Martin; Harris, Matthew; Curry, Natasha; Holder, Holly; Blunt, Ian; Soljak, Michael; Gunn, Laura; Majeed, Azeem; Car, Josip
2013-01-01
Background Several local attempts to introduce integrated care in the English National Health Service have been tried, with limited success. The Northwest London Integrated Care Pilot attempts to improve the quality of care of the elderly and people with diabetes by providing a novel integration process across primary, secondary and social care organisations. It involves predictive risk modelling, care planning, multidisciplinary management of complex cases and an information technology tool to support information sharing. This paper sets out the evaluation approach adopted to measure its effect. Study design We present a mixed methods evaluation methodology. It includes a quantitative approach measuring changes in service utilization, costs, clinical outcomes and quality of care using routine primary and secondary data sources. It also contains a qualitative component, involving observations, interviews and focus groups with patients and professionals, to understand participant experiences and to understand the pilot within the national policy context. Theory and discussion This study considers the complexity of evaluating a large, multi-organisational intervention in a changing healthcare economy. We locate the evaluation within the theory of evaluation of complex interventions. We present the specific challenges faced by evaluating an intervention of this sort, and the responses made to mitigate against them. Conclusions We hope this broad, dynamic and responsive evaluation will allow us to clarify the contribution of the pilot, and provide a potential model for evaluation of other similar interventions. Because of the priority given to the integrated agenda by governments internationally, the need to develop and improve strong evaluation methodologies remains strikingly important. PMID:23687478
Integrated therapy safety management system
Podtschaske, Beatrice; Fuchs, Daniela; Friesdorf, Wolfgang
2013-01-01
Aims The aim is to demonstrate the benefit of the medico-ergonomic approach for the redesign of clinical work systems. Based on the six layer model, a concept for an ‘integrated therapy safety management’ is drafted. This concept could serve as a basis to improve resilience. Methods The concept is developed through a concept-based approach. The state of the art of safety and complexity research in human factors and ergonomics forms the basis. The findings are synthesized to a concept for ‘integrated therapy safety management’. The concept is applied by way of example for the ‘medication process’ to demonstrate its practical implementation. Results The ‘integrated therapy safety management’ is drafted in accordance with the six layer model. This model supports a detailed description of specific work tasks, the corresponding responsibilities and related workflows at different layers by using the concept of ‘bridge managers’. ‘Bridge managers’ anticipate potential errors and monitor the controlled system continuously. If disruptions or disturbances occur, they respond with corrective actions which ensure that no harm results and they initiate preventive measures for future procedures. The concept demonstrates that in a complex work system, the human factor is the key element and final authority to cope with the residual complexity. The expertise of the ‘bridge managers’ and the recursive hierarchical structure results in highly adaptive clinical work systems and increases their resilience. Conclusions The medico-ergonomic approach is a highly promising way of coping with two complexities. It offers a systematic framework for comprehensive analyses of clinical work systems and promotes interdisciplinary collaboration. PMID:24007448
Pfeiffenberger, Erik; Chaleil, Raphael A.G.; Moal, Iain H.
2017-01-01
ABSTRACT Reliable identification of near‐native poses of docked protein–protein complexes is still an unsolved problem. The intrinsic heterogeneity of protein–protein interactions is challenging for traditional biophysical or knowledge based potentials and the identification of many false positive binding sites is not unusual. Often, ranking protocols are based on initial clustering of docked poses followed by the application of an energy function to rank each cluster according to its lowest energy member. Here, we present an approach of cluster ranking based not only on one molecular descriptor (e.g., an energy function) but also employing a large number of descriptors that are integrated in a machine learning model, whereby, an extremely randomized tree classifier based on 109 molecular descriptors is trained. The protocol is based on first locally enriching clusters with additional poses, the clusters are then characterized using features describing the distribution of molecular descriptors within the cluster, which are combined into a pairwise cluster comparison model to discriminate near‐native from incorrect clusters. The results show that our approach is able to identify clusters containing near‐native protein–protein complexes. In addition, we present an analysis of the descriptors with respect to their power to discriminate near native from incorrect clusters and how data transformations and recursive feature elimination can improve the ranking performance. Proteins 2017; 85:528–543. © 2016 Wiley Periodicals, Inc. PMID:27935158
Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso
2016-01-01
Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach. PMID:27965389
Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso
2016-12-27
Protein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein-protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.
Hanrieder, Jörg; Zuberovic, Aida; Bergquist, Jonas
2009-04-24
Development of miniaturized analytical tools continues to be of great interest to face the challenges in proteomic analysis of complex biological samples such as human body fluids. In the light of these challenges, special emphasis is put on the speed and simplicity of newly designed technological approaches as well as the need for cost efficiency and low sample consumption. In this study, we present an alternative multidimensional bottom-up approach for proteomic profiling for fast, efficient and sensitive protein analysis in complex biological matrices. The presented setup was based on sample pre-fractionation using microscale in solution isoelectric focusing (IEF) followed by tryptic digestion and subsequent capillary electrophoresis (CE) coupled off-line to matrix assisted laser desorption/ionization time of flight tandem mass spectrometry (MALDI TOF MS/MS). For high performance CE-separation, PolyE-323 modified capillaries were applied to minimize analyte-wall interactions. The potential of the analytical setup was demonstrated on human follicular fluid (hFF) representing a typical complex human body fluid with clinical implication. The obtained results show significant identification of 73 unique proteins (identified at 95% significance level), including mostly acute phase proteins but also protein identities that are well known to be extensively involved in follicular development.
Bimolecular fluorescence complementation: visualization of molecular interactions in living cells.
Kerppola, Tom K
2008-01-01
A variety of experimental methods have been developed for the analysis of protein interactions. The majority of these methods either require disruption of the cells to detect molecular interactions or rely on indirect detection of the protein interaction. The bimolecular fluorescence complementation (BiFC) assay provides a direct approach for the visualization of molecular interactions in living cells and organisms. The BiFC approach is based on the facilitated association between two fragments of a fluorescent protein when the fragments are brought together by an interaction between proteins fused to the fragments. The BiFC approach has been used for visualization of interactions among a variety of structurally diverse interaction partners in many different cell types. It enables detection of transient complexes as well as complexes formed by a subpopulation of the interaction partners. It is essential to include negative controls in each experiment in which the interface between the interaction partners has been mutated or deleted. The BiFC assay has been adapted for simultaneous visualization of multiple protein complexes in the same cell and the competition for shared interaction partners. A ubiquitin-mediated fluorescence complementation assay has also been developed for visualization of the covalent modification of proteins by ubiquitin family peptides. These fluorescence complementation assays have a great potential to illuminate a variety of biological interactions in the future.
Guo, Yiming; Fredrickson, Daniel C.
2016-04-01
Intermetallic crystal structures offer an enormous structural diversity, with an endless array of structural motifs whose connection to stability and physical properties are often mysterious. Making sense of the often complex crystal structures that arise here, developing a clear structural description, and identifying connections to other phases can be laborious and require an encyclopedic knowledge of structure types. In this Article, we present PRINCEPS, an algorithm based on a new coordination environment projection scheme that facilitates the structural analysis and comparison of such crystal structures. We demonstrate the potential of this approach by applying it to the complex Ce-Ni-Si ternarymore » system, whose 17 binary and 21 ternary phases would present a daunting challenge to one seeking to understand the system by manual inspection (but has nonetheless been well-described through the heroic efforts of previous researchers). With the help of PRINCEPS, most of the ternary phases in this system can be rationalized as intergrowths of simple structural fragments, and grouped into a handful of structural series (with some outliers). Lastly, these results illustrate how the PRINCEPS approach can be used to organize a vast collection of crystal structures into structurally meaningful families, and guide the description of complex atomic arrangements.« less
Metastable electronic states in uranium tetrafluoride
Miskowiec, Andrew J.
2018-04-03
Here, the DFT+ U approach, where U is the Hubbard-like on-site Coulomb interaction, has successfully been used to improve the description of transition metal oxides and other highly correlated systems, including actinides. The secret of the DFT+ U approach is the breaking of d or f shell orbital degeneracy and adding an additional energetic penalty to non-integer occupation of orbitals. A prototypical test case, UO 2, benefits from the + U approach whereby the bare LDA method predicts UO 2 to be a ferromagnetic metal, whereas LDA+ U correctly predicts UO 2 to be insulating. However, the concavity of themore » energetic penalty in the DFT+ U approach can lead to a number of convergent “metastable” electronic configurations residing above the ground state. Uranium tetrafluoride (UF 4) represents a more complex analogy to UO 2 in that the crystal field has lower symmetry and the unit cell contains two symmetrically distinct U atoms. We explore the metastable states in UF 4 using several different methods of selecting initial orbital occupations. Two methods, a “pre-relaxation” method wherein an initial set of orbital eigenvectors is selected via the self-consistency procedure and a crystal rotation method wherein the x, y, z axes are brought into alignment with the crystal field, are explored. We show that in the case of UF 4, which has non-collinearity between its crystal axes and the U atoms' crystal field potentials, the orbital occupation matrices are much more complex and should be analyzed using a novel approach. In addition to demonstrating a complex landscape of metastable electronic states, UF 4 also shows significant hybridization in U–F bonding, which involves non-trivial contributions from s, p, d, and f orbitals.« less
Chelation technology: a promising green approach for resource management and waste minimization.
Chauhan, Garima; Pant, K K; Nigam, K D P
2015-01-01
Green chemical engineering recognises the concept of developing innovative environmentally benign technologies to protect human health and ecosystems. In order to explore this concept for minimizing industrial waste and for reducing the environmental impact of hazardous chemicals, new greener approaches need to be adopted for the extraction of heavy metals from industrial waste. In this review, a range of conventional processes and new green approaches employed for metal extraction are discussed in brief. Chelation technology, a modern research trend, has shown its potential to develop sustainable technology for metal extraction from various metal-contaminated sites. However, the interaction mechanism of ligands with metals and the ecotoxicological risk associated with the increased bioavailability of heavy metals due to the formation of metal-chelant complexes is still not sufficiently explicated in the literature. Therefore, a need was felt to provide a comprehensive state-of-the-art review of all aspects associated with chelation technology to promote this process as a green chemical engineering approach. This article elucidates the mechanism and thermodynamics associated with metal-ligand complexation in order to have a better understanding of the metal extraction process. The effects of various process parameters on the formation and stability of complexes have been elaborately discussed with respect to optimizing the chelation efficiency. The non-biodegradable attribute of ligands is another important aspect which is currently of concern. Therefore, biotechnological approaches and computational tools have been assessed in this review to illustrate the possibility of ligand degradation, which will help the readers to look for new environmentally safe mobilizing agents. In addition, emerging trends and opportunities in the field of chelation technology have been summarized and the diverse applicability of chelation technology in metal extraction from contaminated sites has also been reviewed.
Metastable electronic states in uranium tetrafluoride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskowiec, Andrew J.
Here, the DFT+ U approach, where U is the Hubbard-like on-site Coulomb interaction, has successfully been used to improve the description of transition metal oxides and other highly correlated systems, including actinides. The secret of the DFT+ U approach is the breaking of d or f shell orbital degeneracy and adding an additional energetic penalty to non-integer occupation of orbitals. A prototypical test case, UO 2, benefits from the + U approach whereby the bare LDA method predicts UO 2 to be a ferromagnetic metal, whereas LDA+ U correctly predicts UO 2 to be insulating. However, the concavity of themore » energetic penalty in the DFT+ U approach can lead to a number of convergent “metastable” electronic configurations residing above the ground state. Uranium tetrafluoride (UF 4) represents a more complex analogy to UO 2 in that the crystal field has lower symmetry and the unit cell contains two symmetrically distinct U atoms. We explore the metastable states in UF 4 using several different methods of selecting initial orbital occupations. Two methods, a “pre-relaxation” method wherein an initial set of orbital eigenvectors is selected via the self-consistency procedure and a crystal rotation method wherein the x, y, z axes are brought into alignment with the crystal field, are explored. We show that in the case of UF 4, which has non-collinearity between its crystal axes and the U atoms' crystal field potentials, the orbital occupation matrices are much more complex and should be analyzed using a novel approach. In addition to demonstrating a complex landscape of metastable electronic states, UF 4 also shows significant hybridization in U–F bonding, which involves non-trivial contributions from s, p, d, and f orbitals.« less
NASA Astrophysics Data System (ADS)
Sokolovski, D.; Connor, J. N. L.
1990-12-01
The wave-packet simulation (WPS) method for calculating the time a tunneling particle spends inside a one-dimensional potential barrier is reexamined using the Feynman path-integral technique. Following earlier work by Sokolovski and Baskin [Phys. Rev. A 36, 4604 (1987)], the tunneling (or traversal) time tTpack is defined as a matrix element of a classical nonlocal functional between two states that represent the initial and transmitted wave packets. These states do not lie on the same orbit in Hilbert space; as a result, tTpack is complex-valued. It is shown that RetTpack reduces to the standard WPS result, tTphase, for conditions similar to those employed in the conventional WPS analysis. Similarly, ImtTpack is shown to contain information about the energy dependence of the transmission probability. Under semiclassical conditions, ImtTpack reduces to the well-known Wentzel-Kramers-Brillouin expression for the tunneling time. It is shown there are different definitions for the traversal time of a classical moving object, whose size is comparable to the width of the region of interest. In the quantum case, these different definitions correspond to different ways of analyzing the WPS experiment. The path-integral approach demonstrates that the tunneling-time problem is one of understanding the physical significance of complex-valued off-orbit matrix elements of an operator or functional. The physical content of complex-valued tunneling times is discussed. It is emphasized that the use of complex tunneling times includes real-time approaches as a special case. Nevertheless, there is a limitation in the description of tunneling experiments using tunneling times, whether real or complex. The path-integral approach does not supply a universal traversal time, analogous to a classical time, that can be used in quantum situations. It is demonstrated that the often expressed hope of finding a well-defined and universal real tunneling time is erroneous.
Najafi, Ali; Tavallaei, Mahmood; Hosseini, Sayed Mostafa
2016-01-01
Non-small cell lung cancers (NSCLCs) is a prevalent and heterogeneous subtype of lung cancer accounting for 85 percent of patients. MicroRNAs (miRNAs), a class of small endogenous non-coding RNAs, incorporate into regulation of gene expression post-transcriptionally. Therefore, deregulation of miRNAs' expression has provided further layers of complexity to the molecular etiology and pathogenesis of different diseases and malignancies. Although, until now considerable number of studies has been carried out to illuminate this complexity in NSCLC, they have remained less effective in their goal due to lack of a holistic and integrative systems biology approach which considers all natural elaborations of miRNAs' function. It is able to reliably nominate most affected signaling pathways and therapeutic target genes by deregulated miRNAs during a particular pathological condition. Herein, we utilized a holistic systems biology approach, based on appropriate re-analyses of microarray datasets followed by reliable data filtering, to analyze integrative and combinatorial deregulated miRNA-mRNA interaction network in NSCLC, aiming to ascertain miRNA-dysregulated signaling pathway and potential therapeutic miRNAs and mRNAs which represent a lion' share during various aspects of NSCLC's pathogenesis. Our systems biology approach introduced and nominated 1) important deregulated miRNAs in NSCLCs compared with normal tissue 2) significant and confident deregulated mRNAs which were anti-correlatively targeted by deregulated miRNA in NSCLCs and 3) dysregulated signaling pathways in association with deregulated miRNA-mRNAs interactions in NSCLCs. These results introduce possible mechanism of function of deregulated miRNAs and mRNAs in NSCLC that could be used as potential therapeutic targets.
NASA Astrophysics Data System (ADS)
Linker, Thomas M.; Lee, Glenn S.; Beekman, Matt
2018-06-01
The semi-analytical methods of thermoelectric energy conversion efficiency calculation based on the cumulative properties approach and reduced variables approach are compared for 21 high performance thermoelectric materials. Both approaches account for the temperature dependence of the material properties as well as the Thomson effect, thus the predicted conversion efficiencies are generally lower than that based on the conventional thermoelectric figure of merit ZT for nearly all of the materials evaluated. The two methods also predict material energy conversion efficiencies that are in very good agreement which each other, even for large temperature differences (average percent difference of 4% with maximum observed deviation of 11%). The tradeoff between obtaining a reliable assessment of a material's potential for thermoelectric applications and the complexity of implementation of the three models, as well as the advantages of using more accurate modeling approaches in evaluating new thermoelectric materials, are highlighted.