Hydrologic processes influencing meadow ecosystems [chapter 4
Mark L. Lord; David G. Jewett; Jerry R. Miller; Dru Germanoski; Jeanne C. Chambers
2011-01-01
The hydrologic regime exerts primary control on riparian meadow complexes and is strongly influenced by past and present geomorphic processes; biotic processes; and, in some cases, anthropogenic activities. Thus, it is essential to understand not only the hydrologic processes that operate within meadow complexes but also the interactions of meadow hydrology with other...
Jeffrey A. Falke; Jason B. Dunham; Christopher E. Jordan; Kristina M. McNyset; Gordon H. Reeves
2013-01-01
Processes that influence habitat selection in landscapes involve the interaction of habitat composition and configuration and are particularly important for species with complex life cycles. We assessed the relative influence of landscape spatial processes and local habitat characteristics on patterns in the distribution and abundance of spawning steelhead (...
Complex Network Structure Influences Processing in Long-Term and Short-Term Memory
ERIC Educational Resources Information Center
Vitevitch, Michael S.; Chan, Kit Ying; Roodenrys, Steven
2012-01-01
Complex networks describe how entities in systems interact; the structure of such networks is argued to influence processing. One measure of network structure, clustering coefficient, C, measures the extent to which neighbors of a node are also neighbors of each other. Previous psycholinguistic experiments found that the C of phonological…
We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site...
Toward a biopsychosocial understanding of the patient-physician relationship: an emerging dialogue.
Adler, Herbert M
2007-02-01
Complexity theory has been used to view the patient-physician relationship as constituted by complex responsive processes of relating. It describes an emergent, psychosocial relational process through which patients and physicians continually and reciprocally influence each other's behavior and experience. As psychosocial responses are necessarily biopsychosocial responses, patients and physicians must likewise be influencing each other's psychobiology. This mutual influence may be subjectively experienced as empathy, and may be skillfully employed by the clinician to directly improve the patient's psychobiology.
Landscape community genomics: understanding eco-evolutionary processes in complex environments
Hand, Brian K.; Lowe, Winsor H.; Kovach, Ryan P.; Muhlfeld, Clint C.; Luikart, Gordon
2015-01-01
Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments.
ERIC Educational Resources Information Center
Schmidtke, Daniel; Matsuki, Kazunaga; Kuperman, Victor
2017-01-01
The current study addresses a discrepancy in the psycholinguistic literature about the chronology of information processing during the visual recognition of morphologically complex words. "Form-then-meaning" accounts of complex word recognition claim that morphemes are processed as units of form prior to any influence of their meanings,…
Effects of Task Complexity on L2 Writing Behaviors and Linguistic Complexity
ERIC Educational Resources Information Center
Révész, Andrea; Kourtali, Nektaria-Efstathia; Mazgutova, Diana
2017-01-01
This study investigated whether task complexity influences second language (L2) writers' fluency, pausing, and revision behaviors and the cognitive processes underlying these behaviors; whether task complexity affects linguistic complexity of written output; and whether relationships between writing behaviors and linguistic complexity are…
Representational Complexity and Memory Retrieval in Language Comprehension
ERIC Educational Resources Information Center
Hofmeister, Philip
2011-01-01
Mental representations formed from words or phrases may vary considerably in their feature-based complexity. Modern theories of retrieval in sentence comprehension do not indicate how this variation and the role of encoding processes should influence memory performance. Here, memory retrieval in language comprehension is shown to be influenced by…
Nonturbulent dispersion processes in complex terrain
Michael A. Fosberg; Douglas G. Fox; E.A. Howard; Jack D. Cohen
1976-01-01
Mass divergence influences on plume dispersion modify classic Gaussian calculations by as much as a factor of two in complex terrain. The Gaussian plume was derived in flux form to include this process.Authors' response to comments and criticism received following this publication:
Complexity and Hemispheric Abilities: Evidence for a Differential Impact on Semantics and Phonology
ERIC Educational Resources Information Center
Tremblay, Tania; Monetta, Laura; Joanette, Yves
2009-01-01
The main goal of this study was to determine whether the phonological and semantic processing of words are similarly influenced by an increase in processing complexity. Thirty-six French-speaking young adults performed both semantic and phonological word judgment tasks, using a divided visual field procedure. The phonological complexity of words…
Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores
Flores, Lorea; Bailey, R. A.; Elosegi, Arturo; Larrañaga, Aitor; Reiss, Julia
2016-01-01
Habitat complexity can influence predation rates (e.g. by providing refuge) but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants), in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants); and 3. as the spatial configuration of structures (measured as fractal dimension). The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology). We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, ‘habitat complexity’ by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems. PMID:27802267
The Effects of Syntactic Complexity on Processing Sentences in Noise
ERIC Educational Resources Information Center
Carroll, Rebecca; Ruigendijk, Esther
2013-01-01
This paper discusses the influence of stationary (non-fluctuating) noise on processing and understanding of sentences, which vary in their syntactic complexity (with the factors canonicity, embedding, ambiguity). It presents data from two RT-studies with 44 participants testing processing of German sentences in silence and in noise. Results show a…
Interhemispheric Resource Sharing: Decreasing Benefits with Increasing Processing Efficiency
ERIC Educational Resources Information Center
Maertens, M.; Pollmann, S.
2005-01-01
Visual matches are sometimes faster when stimuli are presented across visual hemifields, compared to within-field matching. Using a cued geometric figure matching task, we investigated the influence of computational complexity vs. processing efficiency on this bilateral distribution advantage (BDA). Computational complexity was manipulated by…
Complex Problem Solving in Teams: The Impact of Collective Orientation on Team Process Demands.
Hagemann, Vera; Kluge, Annette
2017-01-01
Complex problem solving is challenging and a high-level cognitive process for individuals. When analyzing complex problem solving in teams, an additional, new dimension has to be considered, as teamwork processes increase the requirements already put on individual team members. After introducing an idealized teamwork process model, that complex problem solving teams pass through, and integrating the relevant teamwork skills for interdependently working teams into the model and combining it with the four kinds of team processes (transition, action, interpersonal, and learning processes), the paper demonstrates the importance of fulfilling team process demands for successful complex problem solving within teams. Therefore, results from a controlled team study within complex situations are presented. The study focused on factors that influence action processes, like coordination, such as emergent states like collective orientation, cohesion, and trust and that dynamically enable effective teamwork in complex situations. Before conducting the experiments, participants were divided by median split into two-person teams with either high ( n = 58) or low ( n = 58) collective orientation values. The study was conducted with the microworld C3Fire, simulating dynamic decision making, and acting in complex situations within a teamwork context. The microworld includes interdependent tasks such as extinguishing forest fires or protecting houses. Two firefighting scenarios had been developed, which takes a maximum of 15 min each. All teams worked on these two scenarios. Coordination within the team and the resulting team performance were calculated based on a log-file analysis. The results show that no relationships between trust and action processes and team performance exist. Likewise, no relationships were found for cohesion. Only collective orientation of team members positively influences team performance in complex environments mediated by action processes such as coordination within the team. The results are discussed in relation to previous empirical findings and to learning processes within the team with a focus on feedback strategies.
Complex Problem Solving in Teams: The Impact of Collective Orientation on Team Process Demands
Hagemann, Vera; Kluge, Annette
2017-01-01
Complex problem solving is challenging and a high-level cognitive process for individuals. When analyzing complex problem solving in teams, an additional, new dimension has to be considered, as teamwork processes increase the requirements already put on individual team members. After introducing an idealized teamwork process model, that complex problem solving teams pass through, and integrating the relevant teamwork skills for interdependently working teams into the model and combining it with the four kinds of team processes (transition, action, interpersonal, and learning processes), the paper demonstrates the importance of fulfilling team process demands for successful complex problem solving within teams. Therefore, results from a controlled team study within complex situations are presented. The study focused on factors that influence action processes, like coordination, such as emergent states like collective orientation, cohesion, and trust and that dynamically enable effective teamwork in complex situations. Before conducting the experiments, participants were divided by median split into two-person teams with either high (n = 58) or low (n = 58) collective orientation values. The study was conducted with the microworld C3Fire, simulating dynamic decision making, and acting in complex situations within a teamwork context. The microworld includes interdependent tasks such as extinguishing forest fires or protecting houses. Two firefighting scenarios had been developed, which takes a maximum of 15 min each. All teams worked on these two scenarios. Coordination within the team and the resulting team performance were calculated based on a log-file analysis. The results show that no relationships between trust and action processes and team performance exist. Likewise, no relationships were found for cohesion. Only collective orientation of team members positively influences team performance in complex environments mediated by action processes such as coordination within the team. The results are discussed in relation to previous empirical findings and to learning processes within the team with a focus on feedback strategies. PMID:29033886
The Influence of Levels of Processing on Recall from Working Memory and Delayed Recall Tasks
ERIC Educational Resources Information Center
Loaiza, Vanessa M.; McCabe, David P.; Youngblood, Jessie L.; Rose, Nathan S.; Myerson, Joel
2011-01-01
Recent research in working memory has highlighted the similarities involved in retrieval from complex span tasks and episodic memory tasks, suggesting that these tasks are influenced by similar memory processes. In the present article, the authors manipulated the level of processing engaged when studying to-be-remembered words during a reading…
A novel complex networks clustering algorithm based on the core influence of nodes.
Tong, Chao; Niu, Jianwei; Dai, Bin; Xie, Zhongyu
2014-01-01
In complex networks, cluster structure, identified by the heterogeneity of nodes, has become a common and important topological property. Network clustering methods are thus significant for the study of complex networks. Currently, many typical clustering algorithms have some weakness like inaccuracy and slow convergence. In this paper, we propose a clustering algorithm by calculating the core influence of nodes. The clustering process is a simulation of the process of cluster formation in sociology. The algorithm detects the nodes with core influence through their betweenness centrality, and builds the cluster's core structure by discriminant functions. Next, the algorithm gets the final cluster structure after clustering the rest of the nodes in the network by optimizing method. Experiments on different datasets show that the clustering accuracy of this algorithm is superior to the classical clustering algorithm (Fast-Newman algorithm). It clusters faster and plays a positive role in revealing the real cluster structure of complex networks precisely.
Rudrangi, Shashi Ravi Suman; Bhomia, Ruchir; Trivedi, Vivek; Vine, George J; Mitchell, John C; Alexander, Bruce David; Wicks, Stephen Richard
2015-02-20
The main objective of this study was to investigate different manufacturing processes claimed to promote inclusion complexation between indomethacin and cyclodextrins in order to enhance the apparent solubility and dissolution properties of indomethacin. Especially, the effectiveness of supercritical carbon dioxide processing for preparing solid drug-cyclodextrin inclusion complexes was investigated and compared to other preparation methods. The complexes were prepared by physical mixing, co-evaporation, freeze drying from aqueous solution, spray drying and supercritical carbon dioxide processing methods. The prepared complexes were then evaluated by scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, solubility and dissolution studies. The method of preparation of the inclusion complexes was shown to influence the physicochemical properties of the formed complexes. Indomethacin exists in a highly crystalline solid form. Physical mixing of indomethacin and methyl-β-cyclodextrin appeared not to reduce the degree of crystallinity of the drug. The co-evaporated and freeze dried complexes had a lower degree of crystallinity than the physical mix; however the lowest degree of crystallinity was achieved in complexes prepared by spray drying and supercritical carbon dioxide processing methods. All systems based on methyl-β-cyclodextrin exhibited better dissolution properties than the drug alone. The greatest improvement in drug dissolution properties was obtained from complexes prepared using supercritical carbon dioxide processing, thereafter by spray drying, freeze drying, co-evaporation and finally by physical mixing. Supercritical carbon dioxide processing is well known as an energy efficient alternative to other pharmaceutical processes and may have application for the preparation of solid-state drug-cyclodextrin inclusion complexes. It is an effective and economic method that allows the formation of solid complexes with a high yield, without the use of organic solvents and problems associated with their residues. Copyright © 2015 Elsevier B.V. All rights reserved.
STUDY OF TURBULENT ENERGY OVER COMPLEX TERRAIN: STATE, 1978
The complex structure of the earth's surface influenced atmospheric parameters pertinent to modeling the diffusion process during the 1978 'STATE' field study. The Information Theory approach of statistics proved useful for analyzing the complex structures observed in the radiome...
ERIC Educational Resources Information Center
Bodie, Graham D.; Burleson, Brant R.; Holmstrom, Amanda J.; McCullough, Jennifer D.; Rack, Jessica J.; Hanasono, Lisa K.; Rosier, Jennifer G.
2011-01-01
We report tests of hypotheses derived from a theory of supportive communication outcomes that maintains the effects of supportive messages are moderated by factors influencing the motivation and ability to process these messages. Participants in two studies completed a measure of cognitive complexity, which provided an assessment of processing…
Schmidtke, Daniel; Matsuki, Kazunaga; Kuperman, Victor
2017-11-01
The current study addresses a discrepancy in the psycholinguistic literature about the chronology of information processing during the visual recognition of morphologically complex words. Form-then-meaning accounts of complex word recognition claim that morphemes are processed as units of form prior to any influence of their meanings, whereas form-and-meaning models posit that recognition of complex word forms involves the simultaneous access of morphological and semantic information. The study reported here addresses this theoretical discrepancy by applying a nonparametric distributional technique of survival analysis (Reingold & Sheridan, 2014) to 2 behavioral measures of complex word processing. Across 7 experiments reported here, this technique is employed to estimate the point in time at which orthographic, morphological, and semantic variables exert their earliest discernible influence on lexical decision RTs and eye movement fixation durations. Contrary to form-then-meaning predictions, Experiments 1-4 reveal that surface frequency is the earliest lexical variable to exert a demonstrable influence on lexical decision RTs for English and Dutch derived words (e.g., badness ; bad + ness ), English pseudoderived words (e.g., wander ; wand + er ) and morphologically simple control words (e.g., ballad ; ball + ad ). Furthermore, for derived word processing across lexical decision and eye-tracking paradigms (Experiments 1-2; 5-7), semantic effects emerge early in the time-course of word recognition, and their effects either precede or emerge simultaneously with morphological effects. These results are not consistent with the premises of the form-then-meaning view of complex word recognition, but are convergent with a form-and-meaning account of complex word recognition. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Influence of the boundary conditions on heat and mass transfer in spacer-filled channels
NASA Astrophysics Data System (ADS)
Ciofalo, M.; La Cerva, M. F.; Di Liberto, M.; Tamburini, A.
2017-11-01
The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically complex channels
The influence of levels of processing on recall from working memory and delayed recall tasks.
Loaiza, Vanessa M; McCabe, David P; Youngblood, Jessie L; Rose, Nathan S; Myerson, Joel
2011-09-01
Recent research in working memory has highlighted the similarities involved in retrieval from complex span tasks and episodic memory tasks, suggesting that these tasks are influenced by similar memory processes. In the present article, the authors manipulated the level of processing engaged when studying to-be-remembered words during a reading span task (Experiment 1) and an operation span task (Experiment 2) in order to assess the role of retrieval from secondary memory during complex span tasks. Immediate recall from both span tasks was greater for items studied under deep processing instructions compared with items studied under shallow processing instructions regardless of trial length. Recall was better for deep than for shallow levels of processing on delayed recall tests as well. These data are consistent with the primary-secondary memory framework, which suggests that to-be-remembered items are displaced from primary memory (i.e., the focus of attention) during the processing phases of complex span tasks and therefore must be retrieved from secondary memory. (c) 2011 APA, all rights reserved.
ERIC Educational Resources Information Center
Radulescu, Iulian Ionut
2006-01-01
Software complexity is the most important software quality attribute and a very useful instrument in the study of software quality. Is one of the factors that affect most of the software quality characteristics, including maintainability. It is very important to quantity this influence and identify the means to keep it under control; by using…
Enhancing Learning Performance and Adaptability for Complex Tasks
2005-03-30
development of active learning interventions and techniques that influence the focus and quality of learner regulatory activity (Kozlowski Toney et al...what are the effects of these goal representations on learning strategies, performance, and adaptability? Can active learning inductions, that influence...and mindful process - active learning - are generally associated with improved skill acquisition and adaptability for complex tasks (Smith et al
Linguistic Complexity and Information Structure in Korean: Evidence from Eye-Tracking during Reading
ERIC Educational Resources Information Center
Lee, Yoonhyoung; Lee, Hanjung; Gordon, Peter C.
2007-01-01
The nature of the memory processes that support language comprehension and the manner in which information packaging influences online sentence processing were investigated in three experiments that used eye-tracking during reading to measure the ease of understanding complex sentences in Korean. All three experiments examined reading of embedded…
Complex network structure influences processing in long-term and short-term memory.
Vitevitch, Michael S; Chan, Kit Ying; Roodenrys, Steven
2012-07-01
Complex networks describe how entities in systems interact; the structure of such networks is argued to influence processing. One measure of network structure, clustering coefficient, C, measures the extent to which neighbors of a node are also neighbors of each other. Previous psycholinguistic experiments found that the C of phonological word-forms influenced retrieval from the mental lexicon (that portion of long-term memory dedicated to language) during the on-line recognition and production of spoken words. In the present study we examined how network structure influences other retrieval processes in long- and short-term memory. In a false-memory task-examining long-term memory-participants falsely recognized more words with low- than high-C. In a recognition memory task-examining veridical memories in long-term memory-participants correctly recognized more words with low- than high-C. However, participants in a serial recall task-examining redintegration in short-term memory-recalled lists comprised of high-C words more accurately than lists comprised of low-C words. These results demonstrate that network structure influences cognitive processes associated with several forms of memory including lexical, long-term, and short-term.
Influence of early attentional modulation on working memory
Gazzaley, Adam
2011-01-01
It is now established that attention influences working memory (WM) at multiple processing stages. This liaison between attention and WM poses several interesting empirical questions. Notably, does attention impact WM via its influences on early perceptual processing? If so, what are the critical factors at play in this attention-perception-WM interaction. I review recent data from our laboratory utilizing a variety of techniques (electroencephalography (EEG), functional MRI (fMRI) and transcranial magnetic stimulation (TMS)), stimuli (features and complex objects), novel experimental paradigms, and research populations (younger and older adults), which converge to support the conclusion that top-down modulation of visual cortical activity at early perceptual processing stages (100–200 ms after stimulus onset) impacts subsequent WM performance. Factors that affect attentional control at this stage include cognitive load, task practice, perceptual training, and aging. These developments highlight the complex and dynamic relationships among perception, attention, and memory. PMID:21184764
Encoding and choice in the task span paradigm.
Reiman, Kaitlin M; Weaver, Starla M; Arrington, Catherine M
2015-03-01
Cognitive control during sequences of planned behaviors requires both plan-level processes such as generating, maintaining, and monitoring the plan, as well as task-level processes such as selecting, establishing and implementing specific task sets. The task span paradigm (Logan in J Exp Psychol Gen 133:218-236, 2004) combines two common cognitive control paradigms, task switching and working memory span, to investigate the integration of plan-level and task-level processes during control of sequential behavior. The current study expands past task span research to include measures of encoding processes and choice behavior with volitional sequence generation, using the standard task span as well as a novel voluntary task span paradigm. In two experiments, we consider how sequence complexity, defined separately for plan-level and task-level complexity, influences sequence encoding (Experiment 1), sequence choice (Experiment 2), sequence memory, and task performance of planned sequences of action. Results indicate that participants were sensitive to sequence complexity, but that different aspects of behavior are most strongly influenced by different types of complexity. Hierarchical complexity at the plan level best predicts voluntary sequence generation and memory; while switch frequency at the task level best predicts encoding of externally defined sequences and task performance. Furthermore, performance RTs were similar for externally and internally defined plans, whereas memory was improved for internally defined sequences. Finally, participants demonstrated a significant sequence choice bias in the voluntary task span. Consistent with past research on choice behavior, volitional selection of plans was markedly influenced by both the ease of memory and performance.
NASA Astrophysics Data System (ADS)
Ghavami, Seyed Morsal; Taleai, Mohammad
2017-04-01
Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.
The Influence of Cultural Factors on Trust in Automation
ERIC Educational Resources Information Center
Chien, Shih-Yi James
2016-01-01
Human interaction with automation is a complex process that requires both skilled operators and complex system designs to effectively enhance overall performance. Although automation has successfully managed complex systems throughout the world for over half a century, inappropriate reliance on automation can still occur, such as the recent…
Human Error In Complex Systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1991-01-01
Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.
Famoso, Nicholas A; Davis, Edward Byrd
2014-01-01
Four groups of equids, "Anchitheriinae," Merychippine-grade Equinae, Hipparionini, and Equini, coexisted in the middle Miocene, but only the Equini remains after 16 Myr of evolution and extinction. Each group is distinct in its occlusal enamel pattern. These patterns have been compared qualitatively but rarely quantitatively. The processes influencing the evolution of these occlusal patterns have not been thoroughly investigated with respect to phylogeny, tooth position, and climate through geologic time. We investigated Occlusal Enamel Index, a quantitative method for the analysis of the complexity of occlusal patterns. We used analyses of variance and an analysis of co-variance to test whether equid teeth increase resistive cutting area for food processing during mastication, as expressed in occlusal enamel complexity, in response to increased abrasion in their diet. Results suggest that occlusal enamel complexity was influenced by climate, phylogeny, and tooth position through time. Occlusal enamel complexity in middle Miocene to Modern horses increased as the animals experienced increased tooth abrasion and a cooling climate.
Famoso, Nicholas A.; Davis, Edward Byrd
2014-01-01
Four groups of equids, “Anchitheriinae,” Merychippine-grade Equinae, Hipparionini, and Equini, coexisted in the middle Miocene, but only the Equini remains after 16 Myr of evolution and extinction. Each group is distinct in its occlusal enamel pattern. These patterns have been compared qualitatively but rarely quantitatively. The processes influencing the evolution of these occlusal patterns have not been thoroughly investigated with respect to phylogeny, tooth position, and climate through geologic time. We investigated Occlusal Enamel Index, a quantitative method for the analysis of the complexity of occlusal patterns. We used analyses of variance and an analysis of co-variance to test whether equid teeth increase resistive cutting area for food processing during mastication, as expressed in occlusal enamel complexity, in response to increased abrasion in their diet. Results suggest that occlusal enamel complexity was influenced by climate, phylogeny, and tooth position through time. Occlusal enamel complexity in middle Miocene to Modern horses increased as the animals experienced increased tooth abrasion and a cooling climate. PMID:24587267
Dávid-Barrett, T.; Dunbar, R. I. M.
2013-01-01
Sociality is primarily a coordination problem. However, the social (or communication) complexity hypothesis suggests that the kinds of information that can be acquired and processed may limit the size and/or complexity of social groups that a species can maintain. We use an agent-based model to test the hypothesis that the complexity of information processed influences the computational demands involved. We show that successive increases in the kinds of information processed allow organisms to break through the glass ceilings that otherwise limit the size of social groups: larger groups can only be achieved at the cost of more sophisticated kinds of information processing that are disadvantageous when optimal group size is small. These results simultaneously support both the social brain and the social complexity hypotheses. PMID:23804623
Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John
2015-08-15
Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Qingfang; Feng, Chen
2017-01-01
The interaction between central and peripheral processing in written word production remains controversial. This study aims to investigate whether the effects of radical complexity and lexicality in central processing cascade into peripheral processing in Chinese written word production. The participants were asked to write characters and non-characters (lexicality) with different radical complexity (few- and many-strokes). The findings indicated that regardless of the lexicality, the writing latencies were longer for characters with higher complexity (the many-strokes condition) than for characters with lower complexity (the few-strokes condition). The participants slowed down their writing execution at the radicals' boundary strokes, which indicated a radical boundary effect in peripheral processing. Interestingly, the lexicality and the radical complexity affected the pattern of shift velocity and writing velocity during the execution of writing. Lexical processing cascades into peripheral processing but only at the beginning of Chinese characters. In contrast, the radical complexity influenced the execution of handwriting movement throughout the entire character, and the pattern of the effect interacted with the character frequency. These results suggest that the processes of the lexicality and the radical complexity function during the execution of handwritten word production, which suggests that central processing cascades over peripheral processing during Chinese characters handwriting. PMID:28348536
Complex Processes from Dynamical Architectures with Time-Scale Hierarchy
Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor
2011-01-01
The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363
Vicious circles in inflammatory bowel disease.
Sonnenberg, Amnon; Collins, Judith F
2006-10-01
Inflammatory bowel disease can present with a bewildering array of disease manifestations whose overall impact on patient health is difficult to disentangle. The multitude of disease complications and therapeutic side effects result in conflicting ideas on how to best manage a patient. The aim of the study is to test the usefulness of influence diagrams in resolving conflicts centered on managing complex disease processes. The influences of a disease process and the ensuing medical interventions on the health of a patient with inflammatory bowel disease are modeled by an influence diagram. Patient health is the focal point of multiple influences affecting its overall strength. Any downstream influence represents the focal point of other preceding upstream influences. The mathematics underlying the influence diagram is similar to that of a decision tree. Its formalism allows one to consider additive and inhibitory influences and include in the same analysis qualitatively different types of parameters, such as diagnoses, complications, side effects, and therapeutic outcomes. Three exemplary cases are presented to illustrate the potential use of influence diagrams. In all three case scenarios, Crohn's disease resulted in disease manifestations that seemingly interfered with its own therapy. The presence of negative feedback loops rendered the management of each case particularly challenging. The analyses by influence diagrams revealed subtle interactions among the multiple influences and their joint contributions to the patient's overall health that would have been difficult to appreciate by verbal reasoning alone. Influence diagrams represent a decision tool that is particularly suited to improve decision-making in inflammatory bowel disease. They highlight key factors of a complex disease process and help to assess their quantitative interactions.
Surface Structures Formed by a Copper(II) Complex of Alkyl-Derivatized Indigo
Honda, Akinori; Noda, Keisuke; Tamaki, Yoshinori; Miyamura, Kazuo
2016-01-01
Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II) ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM) analysis revealed that the copper(II) complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed. PMID:28773957
Marginal Utility of Conditional Sensitivity Analyses for Dynamic Models
Background/Question/MethodsDynamic ecological processes may be influenced by many factors. Simulation models thatmimic these processes often have complex implementations with many parameters. Sensitivityanalyses are subsequently used to identify critical parameters whose uncertai...
Dedola, Simone; Izumi, Masayuki; Makimura, Yutaka; Ito, Yukishige; Kajihara, Yasuhiro
2016-11-04
Glycoproteins are assembled and folded in the endoplasmic reticulum (ER) and transported to the Golgi for further processing of their oligosaccharides. During these processes, two types of oligosaccharides are used: that is, high mannose-type oligosaccharide in the ER and complex-type oligosaccharide in the Golgi. We were interested to know how two different types of oligosaccharides could influence the folding pathway or the final three-dimensional structure of the glycoproteins. For this purpose, we synthesized a new glycosyl crambin having complex-type oligosaccharide and evaluated the folding process, the final protein structure analyzed by NMR, and compared the CD spectra with previously synthesized glycosyl crambin bearing high mannose-type oligosaccharides. From our analysis, we found that the two different oligosaccharides do not influence the folding pathway in vitro and the final structure of the small glycoproteins. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 446-452, 2016. © 2015 Wiley Periodicals, Inc.
Investigation of flavonoid influence on peroxidation processes intensity in the blood
NASA Astrophysics Data System (ADS)
Navolokin, N. A.; Mudrak, D. A.; Plastun, I. L.; Bucharskaya, A. B.; Agandeeva, K. E.; Ivlichev, A. V.; Tychina, S. A.; Afanasyeva, G. A.; Polukonova, N. V.; Maslyakova, G. N.
2017-03-01
Influence of flavonoids on the intensity of peroxidation processes in the blood is investigated by numerical modeling and by experiment in vivo. As an example we consider the effects of flavonoid-containing extract of Helichrysum arenarium L. with antitumor activity on serum of rats with transplanted liver cancer PC-1. It was found that the content of malondialdehyde, lipid hydroperoxides and average mass molecules were decreased in animals with transplanted liver cancer after intramuscular and oral administration of Helichrysum arenarium L extract in a dose of 1000 mg/mL. The extract reduces the intensity of lipid peroxidation processes in animals. The compound formation possibility of flavonoids and products of lipid peroxidation is investigated by numerical simulations. Using the density functional theory method of molecular modeling, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and products of lipid peroxidation processes on example of naringine and malondialdehyde. We have found that naringine can form a steady molecular complex with malondialdehyde by hydrogen bonds formation. Thus, the application of Helichrysum arenarium L. extract for suppression processes of lipid peroxidation and activation of enzymatic and non-enzymatic antioxidant systems is promising.
ERIC Educational Resources Information Center
Cepeda, Nicholas J.; Blackwell, Katharine A.; Munakata, Yuko
2013-01-01
The rate at which people process information appears to influence many aspects of cognition across the lifespan. However, many commonly accepted measures of "processing speed" may require goal maintenance, manipulation of information in working memory, and decision-making, blurring the distinction between processing speed and executive…
Acute stress influences the discrimination of complex scenes and complex faces in young healthy men.
Paul, M; Lech, R K; Scheil, J; Dierolf, A M; Suchan, B; Wolf, O T
2016-04-01
The stress-induced release of glucocorticoids has been demonstrated to influence hippocampal functions via the modulation of specific receptors. At the behavioral level stress is known to influence hippocampus dependent long-term memory. In recent years, studies have consistently associated the hippocampus with the non-mnemonic perception of scenes, while adjacent regions in the medial temporal lobe were associated with the perception of objects, and faces. So far it is not known whether and how stress influences non-mnemonic perceptual processes. In a behavioral study, fifty male participants were subjected either to the stressful socially evaluated cold-pressor test or to a non-stressful control procedure, before they completed a visual discrimination task, comprising scenes and faces. The complexity of the face and scene stimuli was manipulated in easy and difficult conditions. A significant three way interaction between stress, stimulus type and complexity was found. Stressed participants tended to commit more errors in the complex scenes condition. For complex faces a descriptive tendency in the opposite direction (fewer errors under stress) was observed. As a result the difference between the number of errors for scenes and errors for faces was significantly larger in the stress group. These results indicate that, beyond the effects of stress on long-term memory, stress influences the discrimination of spatial information, especially when the perception is characterized by a high complexity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of Mechanistic Models to?Improve Understanding: Differential, mass balance, process-based Spatial and temporal resolution Necessary simplifications of system complexity Combing field monitoring and modeling efforts Balance between capturing complexity and maintaining...
Spatiotemporal sensitivity analysis of vertical transport of pesticides in soil
Environmental fate and transport processes are influenced by many factors. Simulation models that mimic these processes often have complex implementations, which can lead to over-parameterization. Sensitivity analyses are subsequently used to identify critical parameters whose un...
NASA Astrophysics Data System (ADS)
Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.
2018-02-01
The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.
29 CFR 1910.119 - Process safety management of highly hazardous chemicals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...
29 CFR 1910.119 - Process safety management of highly hazardous chemicals.
Code of Federal Regulations, 2010 CFR
2010-07-01
... complexity of the process will influence the decision as to the appropriate PHA methodology to use. All PHA... process hazard analysis in sufficient detail to support the analysis. (3) Information pertaining to the...) Relief system design and design basis; (E) Ventilation system design; (F) Design codes and standards...
Complexity in electronic negotiation support systems.
Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T
2011-10-01
It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.
Role of Working Memory in Typically Developing Children's Complex Sentence Comprehension
ERIC Educational Resources Information Center
Montgomery, James W.; Magimairaj, Beula M.; O'Malley, Michelle H.
2008-01-01
The influence of three mechanisms of working memory (phonological short-term memory (PSTM capacity), attentional resource control/allocation, and processing speed) on children's complex (and simple) sentence comprehension was investigated. Fifty two children (6-12 years) completed a nonword repetition task (indexing PSTM), concurrent verbal…
Venkata Mohan, S; Chandrasekhara Rao, N; Krishna Prasad, K; Murali Krishna, P; Sreenivas Rao, R; Sarma, P N
2005-06-20
The Taguchi robust experimental design (DOE) methodology has been applied on a dynamic anaerobic process treating complex wastewater by an anaerobic sequencing batch biofilm reactor (AnSBBR). For optimizing the process as well as to evaluate the influence of different factors on the process, the uncontrollable (noise) factors have been considered. The Taguchi methodology adopting dynamic approach is the first of its kind for studying anaerobic process evaluation and process optimization. The designed experimental methodology consisted of four phases--planning, conducting, analysis, and validation connected sequence-wise to achieve the overall optimization. In the experimental design, five controllable factors, i.e., organic loading rate (OLR), inlet pH, biodegradability (BOD/COD ratio), temperature, and sulfate concentration, along with the two uncontrollable (noise) factors, volatile fatty acids (VFA) and alkalinity at two levels were considered for optimization of the anae robic system. Thirty-two anaerobic experiments were conducted with a different combination of factors and the results obtained in terms of substrate degradation rates were processed in Qualitek-4 software to study the main effect of individual factors, interaction between the individual factors, and signal-to-noise (S/N) ratio analysis. Attempts were also made to achieve optimum conditions. Studies on the influence of individual factors on process performance revealed the intensive effect of OLR. In multiple factor interaction studies, biodegradability with other factors, such as temperature, pH, and sulfate have shown maximum influence over the process performance. The optimum conditions for the efficient performance of the anaerobic system in treating complex wastewater by considering dynamic (noise) factors obtained are higher organic loading rate of 3.5 Kg COD/m3 day, neutral pH with high biodegradability (BOD/COD ratio of 0.5), along with mesophilic temperature range (40 degrees C), and low sulfate concentration (700 mg/L). The optimization resulted in enhanced anaerobic performance (56.7%) from a substrate degradation rate (SDR) of 1.99 to 3.13 Kg COD/m3 day. Considering the obtained optimum factors, further validation experiments were carried out, which showed enhanced process performance (3.04 Kg COD/m3-day from 1.99 Kg COD/m3 day) accounting for 52.13% improvement with the optimized process conditions. The proposed method facilitated a systematic mathematical approach to understand the complex multi-species manifested anaerobic process treating complex chemical wastewater by considering the uncontrollable factors. Copyright (c) 2005 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.
2016-08-01
Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons pertaining to the topic 'blood and circulatory system'. Two fundamental characteristics used to analyze tasks include: (1) required cognitive level of processing (e.g. low level information processing: repetiition, summary, define, classify and high level information processing: interpret-analyze data, formulate hypothesis, etc.) and (2) complexity of task content (e.g. if tasks require use of factual, linking or concept level content). Additionally, students' cognitive knowledge structure about the topic 'blood and circulatory system' was measured using student-drawn concept maps (N = 970 students). Finally, linear multilevel models were created with high-level cognitive processing tasks and higher content complexity tasks as class-level predictors and students' prior knowledge, students' interest in biology, and students' interest in biology activities as control covariates. Results showed a positive influence of high-level cognitive processing tasks (β = 0.07; p < .01) on students' cognitive knowledge structure. However, there was no observed effect of higher content complexity tasks on students' cognitive knowledge structure. Presented findings encourage the use of high-level cognitive processing tasks in biology instruction.
Enhancement of photoisomerization of polymethine dyes in complexes with biomacromolecules
NASA Astrophysics Data System (ADS)
Tatikolov, Alexander S.; Akimkin, Timofei M.; Pronkin, Pavel G.; Yarmoluk, Sergiy M.
2013-01-01
Photochemical processes (photoisomerization and generation of the triplet state) of the thiacarbocyanine dyes 3,3',9-trimethylthiacarbocyanine iodide (Cyan 2), 3,3'-diethyl-9-methylthiacarbocyanine iodide (DMTC), and 3,3',9-triethylthiacarbocyanine iodide (TETC) in complexes with biomacromolecules—DNA and chondroitin-4-sulfate—were studied by flash photolysis. It has been shown that, along with generation of the triplet state, enhancement of the photoisomer formation is observed for Cyan 2 and DMTC complexed with the biomolecules. This effect can be explained by the influence of the biopolymer matrix on the potential energy curves of the photoisomerization process.
Multi-compartmental modeling of SORLA’s influence on amyloidogenic processing in Alzheimer’s disease
2012-01-01
Background Proteolytic breakdown of the amyloid precursor protein (APP) by secretases is a complex cellular process that results in formation of neurotoxic Aβ peptides, causative of neurodegeneration in Alzheimer’s disease (AD). Processing involves monomeric and dimeric forms of APP that traffic through distinct cellular compartments where the various secretases reside. Amyloidogenic processing is also influenced by modifiers such as sorting receptor-related protein (SORLA), an inhibitor of APP breakdown and major AD risk factor. Results In this study, we developed a multi-compartment model to simulate the complexity of APP processing in neurons and to accurately describe the effects of SORLA on these processes. Based on dose–response data, our study concludes that SORLA specifically impairs processing of APP dimers, the preferred secretase substrate. In addition, SORLA alters the dynamic behavior of β-secretase, the enzyme responsible for the initial step in the amyloidogenic processing cascade. Conclusions Our multi-compartment model represents a major conceptual advance over single-compartment models previously used to simulate APP processing; and it identified APP dimers and β-secretase as the two distinct targets of the inhibitory action of SORLA in Alzheimer’s disease. PMID:22727043
Implementing complex innovations: factors influencing middle manager support.
Chuang, Emmeline; Jason, Kendra; Morgan, Jennifer Craft
2011-01-01
Middle manager resistance is often described as a major challenge for upper-level administrators seeking to implement complex innovations such as evidence-based protocols or new skills training. However, factors influencing middle manager support for innovation implementation are currently understudied in the U.S. health care literature. This article examined the factors that influence middle managers' support for and participation in the implementation of work-based learning, a complex innovation adopted by health care organizations to improve the jobs, educational pathways, skills, and/or credentials of their frontline workers. We conducted semistructured interviews and focus groups with 92 middle managers in 17 health care organizations. Questions focused on understanding middle managers' support for work-based learning as a complex innovation, facilitators and barriers to the implementation process, and the systems changes needed to support the implementation of this innovation. Factors that emerged as influential to middle manager support were similar to those found in broader models of innovation implementation within the health care literature. However, our findings extend previous research by developing an understanding about how middle managers perceived these constructs and by identifying specific strategies for how to influence middle manager support for the innovation implementation process. These findings were generally consistent across different types of health care organizations. Study findings suggest that middle manager support was highest when managers felt the innovation fit their workplace needs and priorities and when they had more discretion and control over how it was implemented. Leaders seeking to implement innovations should consider the interplay between middle managers' control and discretion, their narrow focus on the performance of their own departments or units, and the dedication of staff and other resources for empowering their managers to implement these complex innovations.
Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.
Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas
2018-01-01
The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.
Connecting the Dots: Social Network Structure, Conflict, and Group Cognitive Complexity
ERIC Educational Resources Information Center
Curseu, Petru L.; Janssen, Steffie E. A.; Raab, Jorg
2012-01-01
The current paper combines arguments from the social capital and group cognition literature to explain two different processes through which communication network structures and intra group conflict influence groups' cognitive complexity (GCC). We test in a sample of 44 groups the mediating role of intra group conflict in the relationship between…
Qualitative Teacher Research and the Complexity of Classroom Contexts
ERIC Educational Resources Information Center
Klehr, Mary
2012-01-01
This article discusses how the underlying assumptions and practices of teacher research position it as a distinct form of educational inquiry, and identifies qualitative methodology as a central influence on the work. A discussion of some of the common conceptualizations and processes of PK-12 teacher research, the complex yet continually changing…
ERIC Educational Resources Information Center
Locher, Paul J.; Simmons, Roger W.
Two experiments were conducted to investigate the perceptual processes involved in haptic exploration of randomly generated shapes. Experiment one required subjects to detect symmetrical or asymmetrical characteristics of individually presented plastic shapes, also varying in complexity. Scanning time for both symmetrical and asymmetrical shapes…
Is the destabilization of the cournot equilibrium a good business strategy in cournot-puu duopoly?
Canovas, Jose S
2011-10-01
It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.
USDA-ARS?s Scientific Manuscript database
Serious video games for health are designed to entertain players while attempting to modify some aspect of their health behavior. Behavior is a complex process influenced by multiple factors, often making it difficult to change. Behavioral science provides insight into factors that influence specifi...
USDA-ARS?s Scientific Manuscript database
Maturation of Atlantic salmon Salmo salar is an extremely complex process, particularly in aquaculture systems, with many variables (known or otherwise) having the capacity to influence the timing and prevalence of maturation, and acting as promoters and/or inhibitors of sexual development. The vast...
The Context, Process, and Outcome Evaluation Model for Organisational Health Interventions
Fridrich, Annemarie; Jenny, Gregor J.; Bauer, Georg F.
2015-01-01
To facilitate evaluation of complex, organisational health interventions (OHIs), this paper aims at developing a context, process, and outcome (CPO) evaluation model. It builds on previous model developments in the field and advances them by clearly defining and relating generic evaluation categories for OHIs. Context is defined as the underlying frame that influences and is influenced by an OHI. It is further differentiated into the omnibus and discrete contexts. Process is differentiated into the implementation process, as the time-limited enactment of the original intervention plan, and the change process of individual and collective dynamics triggered by the implementation process. These processes lead to proximate, intermediate, and distal outcomes, as all results of the change process that are meaningful for various stakeholders. Research questions that might guide the evaluation of an OHI according to the CPO categories and a list of concrete themes/indicators and methods/sources applied within the evaluation of an OHI project at a hospital in Switzerland illustrate the model's applicability in structuring evaluations of complex OHIs. In conclusion, the model supplies a common language and a shared mental model for improving communication between researchers and company members and will improve the comparability and aggregation of evaluation study results. PMID:26557665
The Context, Process, and Outcome Evaluation Model for Organisational Health Interventions.
Fridrich, Annemarie; Jenny, Gregor J; Bauer, Georg F
2015-01-01
To facilitate evaluation of complex, organisational health interventions (OHIs), this paper aims at developing a context, process, and outcome (CPO) evaluation model. It builds on previous model developments in the field and advances them by clearly defining and relating generic evaluation categories for OHIs. Context is defined as the underlying frame that influences and is influenced by an OHI. It is further differentiated into the omnibus and discrete contexts. Process is differentiated into the implementation process, as the time-limited enactment of the original intervention plan, and the change process of individual and collective dynamics triggered by the implementation process. These processes lead to proximate, intermediate, and distal outcomes, as all results of the change process that are meaningful for various stakeholders. Research questions that might guide the evaluation of an OHI according to the CPO categories and a list of concrete themes/indicators and methods/sources applied within the evaluation of an OHI project at a hospital in Switzerland illustrate the model's applicability in structuring evaluations of complex OHIs. In conclusion, the model supplies a common language and a shared mental model for improving communication between researchers and company members and will improve the comparability and aggregation of evaluation study results.
Effects of sentence-structure complexity on speech initiation time and disfluency.
Tsiamtsiouris, Jim; Cairns, Helen Smith
2013-03-01
There is general agreement that stuttering is caused by a variety of factors, and language formulation and speech motor control are two important factors that have been implicated in previous research, yet the exact nature of their effects is still not well understood. Our goal was to test the hypothesis that sentences of high structural complexity would incur greater processing costs than sentences of low structural complexity and these costs would be higher for adults who stutter than for adults who do not stutter. Fluent adults and adults who stutter participated in an experiment that required memorization of a sentence classified as low or high structural complexity followed by production of that sentence upon a visual cue. Both groups of speakers initiated most sentences significantly faster in the low structural complexity condition than in the high structural complexity condition. Adults who stutter were over-all slower in speech initiation than were fluent speakers, but there were no significant interactions between complexity and group. However, adults who stutter produced significantly more disfluencies in sentences of high structural complexity than in those of low complexity. After reading this article, the learner will be able to: (a) identify integral parts of all well-known models of adult sentence production; (b) summarize the way that sentence structure might negatively influence the speech production processes; (c) discuss whether sentence structure influences speech initiation time and disfluencies. Copyright © 2012 Elsevier Inc. All rights reserved.
Waters, Deborah M; Arendt, Elke K; Moroni, Alice V
2017-01-22
Quality of coffee is a complex trait and is influenced by physical and sensory parameters. A complex succession of transformations during the processing of seeds to roasted coffee will inevitably influence the in-cup attributes of coffee. Germination and fermentation of the beans are two bioprocesses that take place during post-harvest treatment, and may lead to significant modifications of coffee attributes. The aim of this review is to address the current knowledge of dynamics of these two processes and their significance for bean modifications and coffee quality. The first part of this review gives an overview of coffee germination and its influence on coffee chemistry and quality. The germination process initiates while these non-orthodox seeds are still inside the cherry. This process is asynchronous and the evolution of germination depends on how the beans are processed. A range of metabolic reactions takes place during germination and can influence the carbohydrate, protein, and lipid composition of the beans. The second part of this review focuses on the microbiota associated with the beans during post-harvesting, exploring its effects on coffee quality and safety. The microbiota associated with the coffee cherries and beans comprise several bacterial, yeast, and fungal species and affects the processing from cherries to coffee beans. Indigenous bacteria and yeasts play a role in the degradation of pulp/mucilage, and their metabolism can affect the sensory attributes of coffee. On the other hand, the fungal population occurring during post-harvest and storage negatively affects coffee quality, especially regarding spoilage, off-tastes, and mycotoxin production.
Crupi, Vincenza; Guella, Graziano; Longeville, Stéphane; Majolino, Domenico; Mancini, Ines; Paciaroni, Alessandro; Rossi, Barbara; Venuti, Valentina
2013-10-03
In this paper, we analyze the internal picosecond dynamics of enantiomeric ((S)-) and racemic ((R,S)-) ibuprofen (IBP), when forming inclusion complexes, in solid state, with methyl-β-cyclodextrin (Me-β-CD), by inelastic and quasi elastic neutron scattering. The study was aimed at understanding, by the analysis of the vibrational and relaxational properties of the inclusion complexes also with respect to the single components, if and how the differences in the structural properties of the hydrogen bond (HB) network of (S)- and (R,S)-IBP can have influence on the complexation process triggered by "host-guest" interactions, whose detailed knowledge is retained as a prerequisite for enantiodiscrimination. From the results, a similar complexation mechanism for (S)- and (R,S)-IBP is argued, with a preferred penetration mode involving the isopropyl group of IBP.
NASA Astrophysics Data System (ADS)
Kramer, Tobias; Kreisbeck, Christoph; Rodriguez, Mirta; Hein, Birgit
2011-03-01
We study the efficiency of the energy transfer in the Fenna-Matthews-Olson complex solving the non-Markovian hierarchical equations (HE) proposed by Ishizaki and Fleming in 2009, which include properly the reorganization process. We compare it to the Markovian approach and find that the Markovian dynamics overestimates the thermalization rate, yielding higher efficiencies than the HE. Using the high-performance of graphics processing units (GPU) we cover a large range of reorganization energies and temperatures and find that initial quantum beatings are important for the energy distribution, but of limited influence to the efficiency. Our efficient GPU implementation of the HE allows us to calculate nonlinear spectra of the FMO complex. References see www.quantumdynamics.de
Connections Matter: Social Networks and Lifespan Health in Primate Translational Models
McCowan, Brenda; Beisner, Brianne; Bliss-Moreau, Eliza; Vandeleest, Jessica; Jin, Jian; Hannibal, Darcy; Hsieh, Fushing
2016-01-01
Humans live in societies full of rich and complex relationships that influence health. The ability to improve human health requires a detailed understanding of the complex interplay of biological systems that contribute to disease processes, including the mechanisms underlying the influence of social contexts on these biological systems. A longitudinal computational systems science approach provides methods uniquely suited to elucidate the mechanisms by which social systems influence health and well-being by investigating how they modulate the interplay among biological systems across the lifespan. In the present report, we argue that nonhuman primate social systems are sufficiently complex to serve as model systems allowing for the development and refinement of both analytical and theoretical frameworks linking social life to health. Ultimately, developing systems science frameworks in nonhuman primate models will speed discovery of the mechanisms that subserve the relationship between social life and human health. PMID:27148103
ERIC Educational Resources Information Center
Ji, Hongbo; Gagne, Christina L.; Spalding, Thomas L.
2011-01-01
Six lexical decision experiments were conducted to examine the influence of complex structure on the processing speed of English compounds. All experiments revealed that semantically transparent compounds (e.g., "rosebud") were processed more quickly than matched monomorphemic words (e.g., "giraffe"). Opaque compounds (e.g., "hogwash") were also…
ERIC Educational Resources Information Center
Johnson, Marcus L.; Lowder, Matthew W.; Gordon, Peter C.
2011-01-01
In 2 experiments, the authors used an eye tracking while reading methodology to examine how different configurations of common noun phrases versus unusual noun phrases (NPs) influenced the difference in processing difficulty between sentences containing object- and subject-extracted relative clauses. Results showed that processing difficulty was…
The Complexity of Communication in a Course Environment: A Case Study
ERIC Educational Resources Information Center
Santandreu, R. Juan; Shurden, Susan; Shurden, Michael
2011-01-01
Communication is not a simple concept. On the contrary, it is one that entails multiple aspects of a complex process. It is interesting to see that there are many definitions of communication, some of which, in the authors' opinion, fit better in the educational environment by considering the impact of communication as one that influences all…
Beyond the Campus Tour: College Choice and the Campus Visit
ERIC Educational Resources Information Center
Okerson, Justine Rebecca
2016-01-01
College choice, the decision-making process for students of whether and where to attend college, is complex. The college choice process also affects a range of stakeholders: high school students, parents, public policymakers, high schools, admission professionals, and institutions of higher education. Understanding the influences of college choice…
Landsliding and its multiscale influence on mountainscapes
Carla Restrepo; Lawrence R. Walker; Aaron B. Shiels; Rainer Bussmann; Lieven Claessens; Simey Fisch; Pablo Lozano; Girish Negi; Leonardo Paolini; Germán Poveda; Carlos Ramos-Sharrón; Michael Ritcher; Eduardo Velázquez
2009-01-01
Landsliding is a complex process that modifies mountainscapes worldwide. Its severe and sometimes long-lasting negative effects contrast with the less-documented positive effects on ecosystems, raising numerous questions about the dual role of landsliding, the feedbacks between biotic and geomorphic processes, and, ultimately, the ecological and evolutionary responses...
Evaluation: Boundary Identification in the Non-Linear Special Education System.
ERIC Educational Resources Information Center
Yacobacci, Patricia M.
The evaluation process within special education, as in general education, most often becomes one of data collection consisting of formal and informal tests given by the school psychologist and the classroom instructor. Influences of the complex environment on the educational process are often ignored. Evaluation factors include mainstreaming,…
Study design considerations in evaluating environmental impacts
Stan T. Lebow; Paul A. Cooper; Patricia Lebow
2006-01-01
The purpose of this chapter is to make the reader aware of how choices in study parameters may influence the outcome of treated-wood environmental impact evaluations. Evaluation of the leaching and environmental accumulation of preservatives from treated wood is a complex process. and many factors can influence the results of such studies. In laboratory studies, the...
ERIC Educational Resources Information Center
Yoon, Susan
2008-01-01
This study investigated seventh grade learners' decision making about genetic engineering concepts and applications. A social network analyses supported by technology tracked changes in student understanding with a focus on social and conceptual influences. Results indicated that several social and conceptual mechanisms potentially affected how…
ERIC Educational Resources Information Center
Asino, Tutaleni I.
2015-01-01
This comparative study uses the Diffusion of Innovation (DoI) theoretical framework to explore factors that influence diffusion of mobile devices in higher education in Botswana and Namibia. The five attributes (Relative Avantage, Compatability, Complexity, Trialability, and Observability) of the persuasion stage, which have been found in previous…
Lewis, F.M.; Voss, C.I.; Rubin, J.
1987-01-01
Methodologies that account for specific types of chemical reactions in the simulation of solute transport can be developed so they are compatible with solution algorithms employed in existing transport codes. This enables the simulation of reactive transport in complex multidimensional flow regimes, and provides a means for existing codes to account for some of the fundamental chemical processes that occur among transported solutes. Two equilibrium-controlled reaction systems demonstrate a methodology for accommodating chemical interaction into models of solute transport. One system involves the sorption of a given chemical species, as well as two aqueous complexations in which the sorbing species is a participant. The other reaction set involves binary ion exchange coupled with aqueous complexation involving one of the exchanging species. The methodology accommodates these reaction systems through the addition of nonlinear terms to the transport equations for the sorbing species. Example simulation results show (1) the effect equilibrium chemical parameters have on the spatial distributions of concentration for complexing solutes; (2) that an interrelationship exists between mechanical dispersion and the various reaction processes; (3) that dispersive parameters of the porous media cannot be determined from reactive concentration distributions unless the reaction is accounted for or the influence of the reaction is negligible; (4) how the concentration of a chemical species may be significantly affected by its participation in an aqueous complex with a second species which also sorbs; and (5) that these coupled chemical processes influencing reactive transport can be demonstrated in two-dimensional flow regimes. ?? 1987.
Followership, clinical leadership and social identity.
Mannion, Hester; McKimm, Judy; O'Sullivan, Helen
2015-05-01
This article explores how the concepts of followership, social identity and social influence help clinical leaders and followers better understand how leadership processes function within and between individuals, teams and complex organizations.
Linguistic Factors Influencing Speech Audiometric Assessment
Krijger, Stefanie; Meeuws, Matthias; De Ceulaer, Geert
2016-01-01
In speech audiometric testing, hearing performance is typically measured by calculating the number of correct repetitions of a speech stimulus. We investigate to what extent the repetition accuracy of Dutch speech stimuli presented against a background noise is influenced by nonauditory processes. We show that variation in verbal repetition accuracy is partially explained by morpholexical and syntactic features of the target language. Verbs, prepositions, conjunctions, determiners, and pronouns yield significantly lower correct repetitions than nouns, adjectives, or adverbs. The reduced repetition performance for verbs and function words is probably best explained by the similarities in the perceptual nature of verbal morphology and function words in Dutch. For sentences, an overall negative effect of syntactic complexity on speech repetition accuracy was found. The lowest number of correct repetitions was obtained with passive sentences, reflecting the cognitive cost of processing a noncanonical sentence structure. Taken together, these findings may have important implications for the audiological practice. In combination with hearing loss, linguistic complexity may increase the cognitive demands to process sentences in noise, leading to suboptimal functional hearing in day-to-day listening situations. Using test sentences with varying degrees of syntactic complexity may therefore provide useful information to measure functional hearing benefits. PMID:27830152
Grass, G Daniel; Toole, Bryan P
2015-11-24
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. © 2016 Authors.
Grass, G. Daniel; Toole, Bryan P.
2015-01-01
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity. PMID:26604323
Chlorination processing of local planetary ores for oxygen and metallurgically important metals
NASA Technical Reports Server (NTRS)
Lynch, D. C.
1989-01-01
The use of chlorine to extract, reclaim, and purify metals has attractive possibilities for extraterrestrial processing of local planetary resources. While a complete cyclic process has been proposed for the recovery of metallurgically significant metals and oxygen, herein the chlorination step of the cycle is examined. An experimental apparatus for reacting refractory materials, such as ilmenite, in a microwave induced plasma is being built. Complex equilibria calculations reveal that stable refractory materials can, under the influence of a plasma, undergo chlorination and yield oxygen as a by-product. These issues and the potential advantages for plasma processing in space are reviewed. Also presented is a discussion of the complex equilibria program used in the analysis.
NASA Astrophysics Data System (ADS)
Robinson, Clare E.; Xin, Pei; Santos, Isaac R.; Charette, Matthew A.; Li, Ling; Barry, D. A.
2018-05-01
Sustainable coastal resource management requires sound understanding of interactions between coastal unconfined aquifers and the ocean as these interactions influence the flux of chemicals to the coastal ocean and the availability of fresh groundwater resources. The importance of submarine groundwater discharge in delivering chemical fluxes to the coastal ocean and the critical role of the subterranean estuary (STE) in regulating these fluxes is well recognized. STEs are complex and dynamic systems exposed to various physical, hydrological, geological, and chemical conditions that act on disparate spatial and temporal scales. This paper provides a review of the effect of factors that influence flow and salt transport in STEs, evaluates current understanding on the interactions between these influences, and synthesizes understanding of drivers of nutrient, carbon, greenhouse gas, metal and organic contaminant fluxes to the ocean. Based on this review, key research needs are identified. While the effects of density and tides are well understood, episodic and longer-period forces as well as the interactions between multiple influences remain poorly understood. Many studies continue to focus on idealized nearshore aquifer systems and future work needs to consider real world complexities such as geological heterogeneities, and non-uniform and evolving alongshore and cross-shore morphology. There is also a significant need for multidisciplinary research to unravel the interactions between physical and biogeochemical processes in STEs, as most existing studies treat these processes in isolation. Better understanding of this complex and dynamic system can improve sustainable management of coastal water resources under the influence of anthropogenic pressures and climate change.
López-Íñiguez, Guadalupe; Pozo, Juan Ignacio
2014-06-01
Despite increasing interest in teachers' and students' conceptions of learning and teaching, and how they influence their practice, there are few studies testing the influence of teachers' conceptions on their students' learning. This study tests how teaching conception (TC; with a distinction between direct and constructive) influences students' representations regarding sheet music. Sixty students (8-12 years old) from music conservatories: 30 of them took lessons with teachers with a constructive TC and another 30 with teachers shown to have a direct TC. Children were given a musical comprehension task in which they were asked to select and rank the contents they needed to learn. These contents had different levels of processing and complexity: symbolic, analytical, and referential. Three factorial ANOVAs, two-one-way ANOVAs, and four 2 × 3 repeated-measures ANOVAs were used to analyse the effects of and the interaction between the independent variables TC and class, both for/on total cards selected, their ranking, and each sub-category (the three processing levels). ANOVAs on the selection and ranking of these contents showed that teachers' conceptions seem to mediate significantly in the way the students understand the music. Students from constructive teachers have more complex and deep understanding of music. They select more elements for learning scores than those from traditional teachers. Teaching conception also influences the way in which children rank those elements. No difference exists between the way 8- and 12-year-olds learn scores. Children's understanding of the scores is more complex than assumed in other studies. © 2013 The British Psychological Society.
Odean, Rosalie; Nazareth, Alina; Pruden, Shannon M.
2015-01-01
Developmental systems theory posits that development cannot be segmented by influences acting in isolation, but should be studied through a scientific lens that highlights the complex interactions between these forces over time (Overton, 2013a). This poses a unique challenge for developmental psychologists studying complex processes like language development. In this paper, we advocate for the combining of highly sophisticated data collection technologies in an effort to move toward a more systemic approach to studying language development. We investigate the efficiency and appropriateness of combining eye-tracking technology and the LENA (Language Environment Analysis) system, an automated language analysis tool, in an effort to explore the relation between language processing in early development, and external dynamic influences like parent and educator language input in the home and school environments. Eye-tracking allows us to study language processing via eye movement analysis; these eye movements have been linked to both conscious and unconscious cognitive processing, and thus provide one means of evaluating cognitive processes underlying language development that does not require the use of subjective parent reports or checklists. The LENA system, on the other hand, provides automated language output that describes a child’s language-rich environment. In combination, these technologies provide critical information not only about a child’s language processing abilities but also about the complexity of the child’s language environment. Thus, when used in conjunction these technologies allow researchers to explore the nature of interacting systems involved in language development. PMID:26379591
ERIC Educational Resources Information Center
Greathead, Scot; Yates, Rhiannon; Hill, Vivian; Kenny, Lorcan; Croydon, Abigail; Pellicano, Elizabeth
2016-01-01
All children have the right to shape decisions that influence their lives. Yet, children with severe-to-profound intellectual disabilities and complex communication needs are often marginalized from this process. Here, we examined the utility of a set of tools incorporating ethnographic and structured observational methods with three such…
Progress in wilderness fire science: Embracing complexity
Carol Miller; Gregory H. Aplet
2016-01-01
Wilderness has played an invaluable role in the development of wildland fire science. Since Ageeâs review of the subject 15 years ago, tremendous progress has been made in the development of models and data, in understanding the complexity of wildland fire as a landscape process, and in appreciating the social factors that influence the use of wilderness fire....
Brain correlates of aesthetic judgment of beauty.
Jacobsen, Thomas; Schubotz, Ricarda I; Höfel, Lea; Cramon, D Yves V
2006-01-01
Functional MRI was used to investigate the neural correlates of aesthetic judgments of beauty of geometrical shapes. Participants performed evaluative aesthetic judgments (beautiful or not?) and descriptive symmetry judgments (symmetric or not?) on the same stimulus material. Symmetry was employed because aesthetic judgments are known to be often guided by criteria of symmetry. Novel, abstract graphic patterns were presented to minimize influences of attitudes or memory-related processes and to test effects of stimulus symmetry and complexity. Behavioral results confirmed the influence of stimulus symmetry and complexity on aesthetic judgments. Direct contrasts showed specific activations for aesthetic judgments in the frontomedian cortex (BA 9/10), bilateral prefrontal BA 45/47, and posterior cingulate, left temporal pole, and the temporoparietal junction. In contrast, symmetry judgments elicited specific activations in parietal and premotor areas subserving spatial processing. Interestingly, beautiful judgments enhanced BOLD signals not only in the frontomedian cortex, but also in the left intraparietal sulcus of the symmetry network. Moreover, stimulus complexity caused differential effects for each of the two judgment types. Findings indicate aesthetic judgments of beauty to rely on a network partially overlapping with that underlying evaluative judgments on social and moral cues and substantiate the significance of symmetry and complexity for our judgment of beauty.
Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.
2008-01-01
On activation of a receptor the G protein βγ complex translocates away from the receptor on the plasma membrane to the Golgi complex. The rate of translocation is influenced by the type of γ subunit associated with the G protein. Complementary approaches — imaging living cells expressing fluorescent protein tagged G proteins and assaying reconstituted receptors and G proteins in vitro — were used to identify mechanisms at the basis of the translocation process. Translocation of Gβγ containing mutant γ subunits with altered prenyl moieties showed that the differences in the prenyl moieties were not sufficient to explain the differential effects of geranylgeranylated γ5 and farnesylated γ11 on the translocation process. The translocation properties of Gβγ were altered dramatically by mutating the C terminal tail region of the γ subunit. The translocation characteristics of these mutants suggest that after receptor activation, Gβγ retains contact with a receptor through the γ subunit C terminal domain and that differential interaction of the activated receptor with this domain controls Gβγ translocation from the plasma membrane. PMID:16517125
Duan, Yipin; Wang, Chao; Zhao, Mengmeng; Vogt, Bryan D; Zacharia, Nicole S
2018-05-30
Ternary complexes formed in a single pot process through the mixing of cationic (branched polyethylenimine, BPEI) and anionic (graphene oxide, GO, and poly(acrylic acid), PAA) aqueous solutions exhibit superior mechanical performance in comparison to their binary analogs. The composition of the ternary complex can be simply tuned through the composition of the anionic solution, which influences the water content and mechanical properties of the complex. Increasing the PAA content in the complex decreases the overall water content due to improved charge compensation with the BPEI, but this change also significantly improves the toughness of the complex. Ternary complexes containing ≤32 wt% PAA were too brittle to generate samples for tensile measurements, while extension in excess of 250% could be reached with 57 wt% PAA. From this work, the influence of GO and PAA on the mechanical properties of GO/PAA/BPEI complexes were elucidated with GO sheets acting to restrain the viscous flow and improve the mechanical strength at low loading (<12.6 wt%) and PAA more efficiently complexes with BPEI than GO to generate a less swollen and stronger network. This combination overcomes the brittle nature of GO-BPEI complexes and viscous creep of PAA-BPEI complexes. Ternary nanocomposite complexes appear to provide an effective route to toughen and strengthen bulk polyelectrolyte complexes.
NASA Astrophysics Data System (ADS)
Yoon, Susan Anne
Understanding the world through a complex systems lens has recently garnered a great deal of interest in many knowledge disciplines. In the educational arena, interactional studies, through their focus on understanding patterns of system behaviour including the dynamical processes and trajectories of learning, lend support for investigating how a complex systems approach can inform educational research. This study uses previously existing literature and tools for complex systems applications and seeks to extend this research base by exploring learning outcomes of a complex systems framework when applied to curriculum and instruction. It is argued that by applying the evolutionary dynamics of variation, interaction and selection, complexity may be harnessed to achieve growth in both the social and cognitive systems of the classroom. Furthermore, if the goal of education, i.e., the social system under investigation, is to teach for understanding, conceptual knowledge of the kind described in Popper's (1972; 1976) World 3, needs to evolve. Both the study of memetic processes and knowledge building pioneered by Bereiter (cf. Bereiter, 2002) draw on the World 3 notion of ideas existing as conceptual artifacts that can be investigated as products outside of the individual mind providing an educational lens from which to proceed. The curricular topic addressed is the development of an ethical understanding of the scientific and technological issues of genetic engineering. 11 grade 8 students are studied as they proceed through 40 hours of curricular instruction based on the complex systems evolutionary framework. Results demonstrate growth in both complex systems thinking and content knowledge of the topic of genetic engineering. Several memetic processes are hypothesized to have influenced how and why ideas change. Categorized by factors influencing either reflective or non-reflective selection, these processes appear to have exerted differential effects on students' abilities to think and act in complex ways at various points throughout the study. Finally, an analysis of winner and loser memes is offered that is intended to reveal information about the conceptual system---its strengths and deficiencies---that can help educators assess curricular goals and organize and construct additional educational activities.
Climate and dengue transmission: evidence and implications.
Morin, Cory W; Comrie, Andrew C; Ernst, Kacey
2013-01-01
Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.
Segregation and persistence of form in the lateral occipital complex.
Ferber, Susanne; Humphrey, G Keith; Vilis, Tutis
2005-01-01
While the lateral occipital complex (LOC) has been shown to be implicated in object recognition, it is unclear whether this brain area is responsive to low-level stimulus-driven features or high-level representational processes. We used scrambled shape-from-motion displays to disambiguate the presence of contours from figure-ground segregation and to measure the strength of the binding process for shapes without contours. We found persisting brain activation in the LOC for scrambled displays after the motion stopped indicating that this brain area subserves and maintains figure-ground segregation processes, a low-level function in the object processing hierarchy. In our second experiment, we found that the figure-ground segregation process has some form of spatial constancy indicating top-down influences. The persisting activation after the motion stops suggests an intermediate role in object recognition processes for this brain area and might provide further evidence for the idea that the lateral occipital complex subserves mnemonic functions mediating between iconic and short-term memory.
Friberg, Febe; Wallengren, Catarina; Håkanson, Cecilia; Carlsson, Eva; Smith, Frida; Pettersson, Monica; Kenne Sarenmalm, Elisabeth; Sawatzky, Richard; Öhlén, Joakim
2018-06-13
The assessment and evaluation of practical and sustainable development of health care has become a major focus of investigation in health services research. A key challenge for researchers as well as decision-makers in health care is to understand mechanisms influencing how complex interventions work and become embedded in practice, which is significant for both evaluation and later implementation. In this study, we explored nurses' and surgeons' perspectives on performing and participating in a complex multi-centre person-centred intervention process that aimed to support patients diagnosed with colorectal cancer to feel prepared for surgery, discharge and recovery. Data consisted of retrospective interviews with 20 professionals after the intervention, supplemented with prospective conversational data and field notes from workshops and follow-up meetings (n = 51). The data were analysed to construct patterns in line with interpretive description. Although the participants highly valued components of the intervention, the results reveal influencing mechanisms underlying the functioning of the intervention, including multiple objectives, unclear mandates and competing professional logics. The results also reveal variations in processing the intervention focused on differences in using and talking about intervention components. The study indicates there are significant areas of ambiguity in understanding how theory-based complex clinical interventions work and in how interventions are socially constructed and co-created by professionals' experiences, assumptions about own professional practice, contextual conditions and the researchers' intentions. This process evaluation reveals insights into reasons for success or failure and contextual aspects associated with variations in outcomes. Thus, there is a need for further interpretive inquiry, and not only descriptive studies, of the multifaceted characters of complex clinical interventions and how the intervention components are actually shaped in constantly shifting contexts.
Boguta, Patrycja; Pieczywek, Piotr M.; Sokołowska, Zofia
2016-01-01
The main aim of this study was the application of excitation-emission fluorescence matrices (EEMs) combined with two decomposition methods: parallel factor analysis (PARAFAC) and nonnegative matrix factorization (NMF) to study the interaction mechanisms between humic acids (HAs) and Zn(II) over a wide concentration range (0–50 mg·dm−3). The influence of HA properties on Zn(II) complexation was also investigated. Stability constants, quenching degree and complexation capacity were estimated for binding sites found in raw EEM, EEM-PARAFAC and EEM-NMF data using mathematical models. A combination of EEM fluorescence analysis with one of the proposed decomposition methods enabled separation of overlapping binding sites and yielded more accurate calculations of the binding parameters. PARAFAC and NMF processing allowed finding binding sites invisible in a few raw EEM datasets as well as finding totally new maxima attributed to structures of the lowest humification. Decomposed data showed an increase in Zn complexation with an increase in humification, aromaticity and molecular weight of HAs. EEM-PARAFAC analysis also revealed that the most stable compounds were formed by structures containing the highest amounts of nitrogen. The content of oxygen-functional groups did not influence the binding parameters, mainly due to fact of higher competition of metal cation with protons. EEM spectra coupled with NMF and especially PARAFAC processing gave more adequate assessments of interactions as compared to raw EEM data and should be especially recommended for modeling of complexation processes where the fluorescence intensities (FI) changes are weak or where the processes are interfered with by the presence of other fluorophores. PMID:27782078
Problems in modernization of automation systems at coal preparation plants
NASA Astrophysics Data System (ADS)
Myshlyaev, L. P.; Lyakhovets, M. V.; Venger, K. G.; Leontiev, I. A.; Makarov, G. V.; Salamatin, A. S.
2018-05-01
The factors influencing the process of modernization (reconstruction) of the automation systems at coal preparation plants are described. Problems such as heterogeneity of existing and developed systems, planning of reconstruction of a technological complex without taking into account modernization of automated systems, commissioning without stopping the existing technological complex, as well as problems of conducting procurement procedures are discussed. The option of stage-by-stage start-up and adjustment works in the conditions of modernization of systems without long stops of the process equipment is offered.
Prediction of biodiversity hotspots in the Anthropocene: The case of veteran oaks.
Skarpaas, Olav; Blumentrath, Stefan; Evju, Marianne; Sverdrup-Thygeson, Anne
2017-10-01
Over the past centuries, humans have transformed large parts of the biosphere, and there is a growing need to understand and predict the distribution of biodiversity hotspots influenced by the presence of humans. Our basic hypothesis is that human influence in the Anthropocene is ubiquitous, and we predict that biodiversity hot spot modeling can be improved by addressing three challenges raised by the increasing ecological influence of humans: (i) anthropogenically modified responses to individual ecological factors, (ii) fundamentally different processes and predictors in landscape types shaped by different land use histories and (iii) a multitude and complexity of natural and anthropogenic processes that may require many predictors and even multiple models in different landscape types. We modeled the occurrence of veteran oaks in Norway, and found, in accordance with our basic hypothesis and predictions, that humans influence the distribution of veteran oaks throughout its range, but in different ways in forests and open landscapes. In forests, geographical and topographic variables related to the oak niche are still important, but the occurrence of veteran oaks is shifted toward steeper slopes, where logging is difficult. In open landscapes, land cover variables are more important, and veteran oaks are more common toward the north than expected from the fundamental oak niche. In both landscape types, multiple predictor variables representing ecological and human-influenced processes were needed to build a good model, and several models performed almost equally well. Models accounting for the different anthropogenic influences on landscape structure and processes consistently performed better than models based exclusively on natural biogeographical and ecological predictors. Thus, our results for veteran oaks clearly illustrate the challenges to distribution modeling raised by the ubiquitous influence of humans, even in a moderately populated region, but also show that predictions can be improved by explicitly addressing these anthropogenic complexities.
NASA Astrophysics Data System (ADS)
Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima
2017-06-01
Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.
Spontaneous brain activity as a source of ideal 1/f noise
NASA Astrophysics Data System (ADS)
Allegrini, Paolo; Menicucci, Danilo; Bedini, Remo; Fronzoni, Leone; Gemignani, Angelo; Grigolini, Paolo; West, Bruce J.; Paradisi, Paolo
2009-12-01
We study the electroencephalogram (EEG) of 30 closed-eye awake subjects with a technique of analysis recently proposed to detect punctual events signaling rapid transitions between different metastable states. After single-EEG-channel event detection, we study global properties of events simultaneously occurring among two or more electrodes termed coincidences. We convert the coincidences into a diffusion process with three distinct rules that can yield the same μ only in the case where the coincidences are driven by a renewal process. We establish that the time interval between two consecutive renewal events driving the coincidences has a waiting-time distribution with inverse power-law index μ≈2 corresponding to ideal 1/f noise. We argue that this discovery, shared by all subjects of our study, supports the conviction that 1/f noise is an optimal communication channel for complex networks as in art or language and may therefore be the channel through which the brain influences complex processes and is influenced by them.
ERIC Educational Resources Information Center
Thompson, Debbe; Baranowski, Tom; Buday, Richard; Baranowski, Janice; Thompson, Victoria; Jago, Russell; Griffith, Melissa Juliano
2010-01-01
Serious video games for health are designed to entertain players while attempting to modify some aspect of their health behavior. Behavior is a complex process influenced by multiple factors, often making it difficult to change. Behavioral science provides insight into factors that influence specific actions that can be used to guide key game…
Environmental influences on neural systems of relational complexity
Kalbfleisch, M. Layne; deBettencourt, Megan T.; Kopperman, Rebecca; Banasiak, Meredith; Roberts, Joshua M.; Halavi, Maryam
2013-01-01
Constructivist learning theory contends that we construct knowledge by experience and that environmental context influences learning. To explore this principle, we examined the cognitive process relational complexity (RC), defined as the number of visual dimensions considered during problem solving on a matrix reasoning task and a well-documented measure of mature reasoning capacity. We sought to determine how the visual environment influences RC by examining the influence of color and visual contrast on RC in a neuroimaging task. To specify the contributions of sensory demand and relational integration to reasoning, our participants performed a non-verbal matrix task comprised of color, no-color line, or black-white visual contrast conditions parametrically varied by complexity (relations 0, 1, 2). The use of matrix reasoning is ecologically valid for its psychometric relevance and for its potential to link the processing of psychophysically specific visual properties with various levels of RC during reasoning. The role of these elements is important because matrix tests assess intellectual aptitude based on these seemingly context-less exercises. This experiment is a first step toward examining the psychophysical underpinnings of performance on these types of problems. The importance of this is increased in light of recent evidence that intelligence can be linked to visual discrimination. We submit three main findings. First, color and black-white visual contrast (BWVC) add demand at a basic sensory level, but contributions from color and from BWVC are dissociable in cortex such that color engages a “reasoning heuristic” and BWVC engages a “sensory heuristic.” Second, color supports contextual sense-making by boosting salience resulting in faster problem solving. Lastly, when visual complexity reaches 2-relations, color and visual contrast relinquish salience to other dimensions of problem solving. PMID:24133465
ERIC Educational Resources Information Center
Zhang, Xiaomeng; Bartol, Kathryn M.
2010-01-01
Integrating theories addressing attention and activation with creativity literature, we found an inverted U-shaped relationship between creative process engagement and overall job performance among professionals in complex jobs in an information technology firm. Work experience moderated the curvilinear relationship, with low-experience employees…
Strategising as a Complex Responsive Leadership Process
ERIC Educational Resources Information Center
Groot, Nol; Homan, Thijs H.
2012-01-01
This paper, based on a narrative of one of the authors, explores management reality where a chosen strategy developed into a different direction than expected. The authors offer an insight in a manager's daily struggle, where power, gossip and conflict can influence the strategising process. The plans and strategic ambitions chosen at the outset…
The distribution of minor constituents in the stratosphere and lower mesosphere
NASA Technical Reports Server (NTRS)
Martell, E. A.
1973-01-01
The complex circulation processes within the stratosphere and mesosphere have been clarified by recent studies. The distribution of minor constituents in the middle atmosphere is significantly influenced by these transport processes. Rocket sampling results are discussed, giving attention to the sampling method, noble gases, methane, water vapor, molecular hydrogen, and carbon dioxide.
Borleffs, Elisabeth; Maassen, Ben A M; Lyytinen, Heikki; Zwarts, Frans
2017-01-01
This narrative review discusses quantitative indices measuring differences between alphabetic languages that are related to the process of word recognition. The specific orthography that a child is acquiring has been identified as a central element influencing reading acquisition and dyslexia. However, the development of reliable metrics to measure differences between language scripts hasn't received much attention so far. This paper therefore reviews metrics proposed in the literature for quantifying orthographic transparency, syllabic complexity, and morphological complexity of alphabetic languages. The review included searches of Web of Science, PubMed, PsychInfo, Google Scholar, and various online sources. Search terms pertained to orthographic transparency, morphological complexity, and syllabic complexity in relation to reading acquisition, and dyslexia. Although the predictive value of these metrics is promising, more research is needed to validate the value of the metrics discussed and to understand the 'developmental footprint' of orthographic transparency, morphological complexity, and syllabic complexity in the lexical organization and processing strategies.
A dynamic processes study of PM retention by trees under different wind conditions.
Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan
2018-02-01
Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra.
Bueno, C Guillermo; Williamson, Scott N; Barrio, Isabel C; Helgadóttir, Ágústa; HiK, David S
2016-01-01
In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes.
Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra
Williamson, Scott N.; Barrio, Isabel C.; Helgadóttir, Ágústa; HiK, David S.
2016-01-01
In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes. PMID:27760156
Photochromic molecules as building blocks for molecular electronics.
Peter, Belser
2010-01-01
Energy and electron transfer processes can be easily induced by a photonic excitation of a donor metal complex ([Ru(bpy)3]2), which is connected via a wire-type molecular fragment to an acceptor metal complex ([Os(bpy)3]2+). The rate constant for the transfer process can be determined by emission measurements of the two connected metal complexes. The system can be modified by incorporation of a switching unit or an interrupter into the wire, influencing the transfer process. Such a molecular device corresponds to an interrupter, mimic the same function applied in molecular electronics. We have used organic switches, which show photochromic properties. By irradiation with light of different wavelengths, the switch changes its functionality by a photochemical reaction from an OFF- to an ON-state and vice versa. The ON- respectively OFF-state is manifested by a color change but also in different conductivity properties for energy and electron transfer processes. Therefore, the mentioned molecular device can work as a simple interrupter, controlling the rate of the transfer processes.
Relating geomorphic change and grazing to avian communities in riparian forests
Scott, M.L.; Skagen, S.K.; Merligliano, M.F.
2003-01-01
Avian conservation in riparian or bottomland forests requires an understanding of the physical and biotic factors that sustain the structural complexity of riparian vegetation. Riparian forests of western North America are dependent upon flow-related geomorphic processes necessary for establishment of new cottonwood and willow patches. In June 1995, we examined how fluvial geomorphic processes and long-term grazing influence the structural complexity of riparian vegetation and the abundance and diversity of breeding birds along the upper Missouri River in central Montana, a large, flow-regulated, and geomorphically constrained reach. Use by breeding birds was linked to fluvial geomorphic processes that influence the structure of these patches. Species richness and bird diversity increased with increasing structural complexity of vegetation (F1,32 = 75.49, p < 0.0001; F1,32 = 79.76, p < 0.0001, respectively). Bird species composition was significantly correlated with vegetation strata diversity (rs,33 = 0.98, p < 0.0001). Bird abundance in canopy and tall-shrub foraging guilds increased significantly with increasing tree cover and tall-shrub cover (F1,22 = 34.68, p < 0.0001; F1,20 = 22.22, p < 0.0001, respectively). Seventeen bird species, including five species of concern (e.g., Red-eyed Vireo [Vireo olivaceus]), were significantly associated (p < 0.10) with structurally complex forest patches, whereas only six bird species were significantly associated with structurally simple forest patches. We related the structural complexity of 34 riparian vegetation patches to geomorphic change, woody vegetation establishment, and grazing history over a 35-year post-dam period (1953–1988). The structural complexity of habitat patches was positively related to recent sediment accretion (t33 = 3.31, p = 0.002) and vegetation establishment (t20.7 = −3.63, p = 0.002) and negatively related to grazing activity (t19.6 = 3.75, p = 0.001). Avian conservation along rivers like the upper Missouri requires maintenance of the geomorphic processes responsible for tree establishment and management of land-use activities in riparian forests.
FACTORS INFLUENCING LIGHT-INDUCED MORTALITY OF ENTEROCOCCI IN SEDIMENT SUSPENSIONS
Contamination of recreational waters by pathogenic microorganisms occurs through complex, poorly understood interactions involving variable microbial sources, hydrodynamic transport, arid microbial fate processes. Fecal indicator bacteria such as enterococci have been used to ass...
ERIC Educational Resources Information Center
Raina, Parminder; McIntyre, Chris; Zhu, Bin; McDowell, Ian; Santaguida, Pasqualina; Kristjansson, Betsy; Hendricks, Alexandra; Massfeller, Helen; Chambers, Larry
2004-01-01
This study examined the direct and indirect relationships between caring for a person with dementia and caregiver health. A conceptual model of the caregiver stress process considered informal caregiver characteristics, sources of caregiver stress, and the influence of informal and formal support on the well-being of the caregivers of persons with…
Farmer, Anna P; Nikolopoulos, Hara; McCargar, Linda; Berry, Tanya; Mager, Diana
2015-06-01
The objective of the present study was to gain an understanding of the organizational characteristics and processes in two child-care centres that may influence adoption of the Alberta Nutrition Guidelines for Children and Youth (ANGCY). In-depth qualitative case studies. Data were collected through direct observations, key informant interviews and field notes. Diffusion of Innovations theory guided the evaluation and intrinsic case analysis. Two urban child-care centres in Edmonton, Alberta, Canada identified as exemplary early adopter cases. Ten key informants comprised of directors, junior and senior staff members participated in interviews. Organizational processes such as leadership, networking and knowledge brokering, health champions and organizational culture positively influenced adoption behaviour in child-care centres. A key determinant influencing organizational behaviour within both centres was the directors' strong leadership. Acceptance of and adherence to the guidelines were facilitated by organizational factors, such as degree of centralization, formalization and complexity, level of staff training and education. Knowledge brokering by directors was important for transferring and exchanging information across the centre. All child-care staff embraced their informal role as health champions as essential to supporting guideline adherence and encouraging healthy food and eating environments. Organizational processes and characteristics such as leadership, knowledge brokering and networking, organizational culture and health champions played an important role in the adoption of nutrition guidelines in child-care centres. The complex interplay of decision making, organization of work and specialization of roles influenced the extent to which nutrition guidelines were adopted.
Reinders, Jörg; Schröder, Josef; Dietl, Alexander; Schmid, Peter M.; Jungbauer, Carsten; Resch, Markus; Maier, Lars S.; Luchner, Andreas; Birner, Christoph
2017-01-01
Background Inhibitors of the renin angiotensin system and neprilysin (RAS-/NEP-inhibitors) proved to be extraordinarily beneficial in systolic heart failure. Furthermore, compelling evidence exists that impaired mitochondrial pathways are causatively involved in progressive left ventricular (LV) dysfunction. Consequently, we aimed to assess whether RAS-/NEP-inhibition can attenuate mitochondrial adaptations in experimental heart failure (HF). Methods and Results By progressive right ventricular pacing, distinct HF stages were induced in 15 rabbits, and 6 animals served as controls (CTRL). Six animals with manifest HF (CHF) were treated with the RAS-/NEP-inhibitor omapatrilat. Echocardiographic studies and invasive blood pressure measurements were undertaken during HF progression. Mitochondria were isolated from LV tissue, respectively, and further worked up for proteomic analysis using the SWATH technique. Enzymatic activities of citrate synthase and the electron transfer chain (ETC) complexes I, II, and IV were assessed. Ultrastructural analyses were performed by transmission electron microscopy. During progression to overt HF, intricate expression changes were mainly detected for proteins belonging to the tricarboxylic acid cycle, glucose and fat metabolism, and the ETC complexes, even though ETC complex I, II, or IV enzymatic activities were not significantly influenced. Treatment with a RAS-/NEP-inhibitor then reversed some maladaptive metabolic adaptations, positively influenced the decline of citrate synthase activity, and altered the composition of each respiratory chain complex, even though this was again not accompanied by altered ETC complex enzymatic activities. Finally, ultrastructural evidence pointed to a reduction of autophagolytic and degenerative processes with omapatrilat-treatment. Conclusions This study describes complex adaptations of the mitochondrial proteome in experimental tachycardia-induced heart failure and shows that a combined RAS-/NEP-inhibition can beneficially influence mitochondrial key pathways. PMID:28076404
Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed.
Perlovich, German L; Skar, Merete; Bauer-Brandl, Annette
2003-10-01
Cyclodextrins are often used in order to increase the aqueous solubility of drug substances by complexation. In order to investigate the complexation reaction of ibuprofen and hydroxypropyl-beta-cyclodextrin, titration calorimetry was used as a direct method. The thermodynamic parameters of the complexation process (stability constant, K(11); complexation enthalpy, deltaH(c) degrees ) were obtained in two different buffer systems (citric acid/sodium-phosphate and phosphoric acid) at various pH values. Based on these data the relative contributions of the enthalpic and entropic terms of the Gibbs energy to the complexation process have been analyzed. In both buffers the enthalpic and entropic terms are of different sign and this case corresponds to a 'nonclassical' model of hydrophobic interaction. In citric buffer, the main driving force of complexation is the entropy, which increases from 60 to 67% while the pH of the solution increases from 3.2 to 8.0. However, for the phosphoric buffer the entropic term decreases from 60 to 45%, while the pH-value of the solution increases from 5.0 to 8.2, and the driving force of the complexation process changes from entropy to enthalpy. The experimental data of the present study are compared to results of other authors and discrepancies discussed in detail.
Emotional Complexity and the Neural Representation of Emotion in Motion
Barnard, Philip J.; Lawrence, Andrew D.
2011-01-01
According to theories of emotional complexity, individuals low in emotional complexity encode and represent emotions in visceral or action-oriented terms, whereas individuals high in emotional complexity encode and represent emotions in a differentiated way, using multiple emotion concepts. During functional magnetic resonance imaging, participants viewed valenced animated scenarios of simple ball-like figures attending either to social or spatial aspects of the interactions. Participant’s emotional complexity was assessed using the Levels of Emotional Awareness Scale. We found a distributed set of brain regions previously implicated in processing emotion from facial, vocal and bodily cues, in processing social intentions, and in emotional response, were sensitive to emotion conveyed by motion alone. Attention to social meaning amplified the influence of emotion in a subset of these regions. Critically, increased emotional complexity correlated with enhanced processing in a left temporal polar region implicated in detailed semantic knowledge; with a diminished effect of social attention; and with increased differentiation of brain activity between films of differing valence. Decreased emotional complexity was associated with increased activity in regions of pre-motor cortex. Thus, neural coding of emotion in semantic vs action systems varies as a function of emotional complexity, helping reconcile puzzling inconsistencies in neuropsychological investigations of emotion recognition. PMID:20207691
Gable, Philip A; Harmon-Jones, Eddie
2010-08-01
Emotions influence attention and processes involved in memory. Although some research has suggested that positive affect categorically influences these processes differently than neutral affect, recent research suggests that motivational intensity of positive affective states influences these processes. The present experiments examined memory for centrally or peripherally presented information after the evocation of approach-motivated positive affect. Experiment 1 found that, relative to neutral conditions, pregoal, approach-motivated positive affect (caused by a monetary incentives task) enhanced memory for centrally presented information, whereas postgoal, low approach-motivated positive affect enhanced memory for peripherally presented information. Experiment 2 found that, relative to a neutral condition, high approach-motivated positive affect (caused by appetitive pictures) enhanced memory for centrally presented information but hindered memory for peripheral information. These results suggest a more complex relationship between positive affect and memory processes and highlight the importance of considering the motivational intensity of positive affects in cognitive processes. Copyright 2010 APA
Evolving Scale-Free Networks by Poisson Process: Modeling and Degree Distribution.
Feng, Minyu; Qu, Hong; Yi, Zhang; Xie, Xiurui; Kurths, Jurgen
2016-05-01
Since the great mathematician Leonhard Euler initiated the study of graph theory, the network has been one of the most significant research subject in multidisciplinary. In recent years, the proposition of the small-world and scale-free properties of complex networks in statistical physics made the network science intriguing again for many researchers. One of the challenges of the network science is to propose rational models for complex networks. In this paper, in order to reveal the influence of the vertex generating mechanism of complex networks, we propose three novel models based on the homogeneous Poisson, nonhomogeneous Poisson and birth death process, respectively, which can be regarded as typical scale-free networks and utilized to simulate practical networks. The degree distribution and exponent are analyzed and explained in mathematics by different approaches. In the simulation, we display the modeling process, the degree distribution of empirical data by statistical methods, and reliability of proposed networks, results show our models follow the features of typical complex networks. Finally, some future challenges for complex systems are discussed.
ERIC Educational Resources Information Center
Kinzie, Jillian; Palmer, Megan; Hayek, John; Hossler, Don; Jacob, Stacy A.; Cummings, Heather
2004-01-01
The college-choice process is complex and affects many high school students, family members and public policy-makers, as well as institutions of higher education. This report provides an overview of the college-choice process for traditional-age students and examines how it has evolved during the last half of the 20th century. Material from the…
Social regulation of emotion: messy layers
Kappas, Arvid
2013-01-01
Emotions are evolved systems of intra- and interpersonal processes that are regulatory in nature, dealing mostly with issues of personal or social concern. They regulate social interaction and in extension, the social sphere. In turn, processes in the social sphere regulate emotions of individuals and groups. In other words, intrapersonal processes project in the interpersonal space, and inversely, interpersonal experiences deeply influence intrapersonal processes. Thus, I argue that the concepts of emotion generation and regulation should not be artificially separated. Similarly, interpersonal emotions should not be reduced to interacting systems of intraindividual processes. Instead, we can consider emotions at different social levels, ranging from dyads to large scale e-communities. The interaction between these levels is complex and does not only involve influences from one level to the next. In this sense the levels of emotion/regulation are messy and a challenge for empirical study. In this article, I discuss the concepts of emotions and regulation at different intra- and interpersonal levels. I extend the concept of auto-regulation of emotions (Kappas, 2008, 2011a,b) to social processes. Furthermore, I argue for the necessity of including mediated communication, particularly in cyberspace in contemporary models of emotion/regulation. Lastly, I suggest the use of concepts from systems dynamics and complex systems to tackle the challenge of the “messy layers.” PMID:23424049
Markov and non-Markov processes in complex systems by the dynamical information entropy
NASA Astrophysics Data System (ADS)
Yulmetyev, R. M.; Gafarov, F. M.
1999-12-01
We consider the Markov and non-Markov processes in complex systems by the dynamical information Shannon entropy (DISE) method. The influence and important role of the two mutually dependent channels of entropy alternation (creation or generation of correlation) and anti-correlation (destroying or annihilation of correlation) have been discussed. The developed method has been used for the analysis of the complex systems of various natures: slow neutron scattering in liquid cesium, psychology (short-time numeral and pattern human memory and effect of stress on the dynamical taping-test), random dynamics of RR-intervals in human ECG (problem of diagnosis of various disease of the human cardio-vascular systems), chaotic dynamics of the parameters of financial markets and ecological systems.
NASA Astrophysics Data System (ADS)
Spoelstra, Paul; Djakow, Eugen; Homberg, Werner
2017-10-01
The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.
Field-scale apparent soil electrical conductivity
USDA-ARS?s Scientific Manuscript database
Soils are notoriously spatially heterogeneous and many soil properties (e.g., salinity, water content, trace element concentration, etc.) are temporally variable, making soil a complex media. Spatial variability of soil properties has a profound influence on agricultural and environmental processes ...
How wilderness visitors choose entry points and campsites
Robert C. Lucas
1990-01-01
The process of selecting trailheads and campsites is described for visitors to the Bob Marshall Wilderness complex in Montana. Factors influencing decisions by different types of visitors are analyzed. Implications, particularly for information and education programs, are presented.
Inhibition during response preparation is sensitive to response complexity
Saks, Dylan; Hoang, Timothy; Ivry, Richard B.
2015-01-01
Motor system excitability is transiently suppressed during the preparation of movement. This preparatory inhibition is hypothesized to facilitate response selection and initiation. Given that demands on selection and initiation processes increase with movement complexity, we hypothesized that complexity would influence preparatory inhibition. To test this hypothesis, we probed corticospinal excitability during a delayed-response task in which participants were cued to prepare right- or left-hand movements of varying complexity. Single-pulse transcranial magnetic stimulation was applied over right primary motor cortex to elicit motor evoked potentials (MEPs) from the first dorsal interosseous (FDI) of the left hand. MEP suppression was greater during the preparation of responses involving coordination of the FDI and adductor digiti minimi relative to easier responses involving only the FDI, independent of which hand was cued to respond. In contrast, this increased inhibition was absent when the complex responses required sequential movements of the two muscles. Moreover, complexity did not influence the level of inhibition when the response hand was fixed for the trial block, regardless of whether the complex responses were performed simultaneously or sequentially. These results suggest that preparatory inhibition contributes to response selection, possibly by suppressing extraneous movements when responses involve the simultaneous coordination of multiple effectors. PMID:25717168
Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.
Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin
2015-11-23
Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.
Lelo-de-Larrea-Mancera, E Sebastian; Rodríguez-Agudelo, Yaneth; Solís-Vivanco, Rodolfo
2017-06-01
Music represents a complex form of human cognition. To what extent our auditory system is attuned to music is yet to be clearly understood. Our principal aim was to determine whether the neurophysiological operations underlying pre-attentive auditory change detection (N1 enhancement (N1e)/Mismatch Negativity (MMN)) and the subsequent involuntary attentional reallocation (P3a) towards infrequent sound omissions, are influenced by differences in musical content. Specifically, we intended to explore any interaction effects that rhythmic and pitch dimensions of musical organization may have over these processes. Results showed that both the N1e and MMN amplitudes were differentially influenced by rhythm and pitch dimensions. MMN latencies were shorter for musical structures containing both features. This suggests some neurocognitive independence between pitch and rhythm domains, but also calls for further address on possible interactions between both of them at the level of early, automatic auditory detection. Furthermore, results demonstrate that the N1e reflects basic sensory memory processes. Lastly, we show that the involuntary switch of attention associated with the P3a reflects a general-purpose mechanism not modulated by musical features. Altogether, the N1e/MMN/P3a complex elicited by infrequent sound omissions revealed evidence of musical influence over early stages of auditory perception. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Influence of early childhood stress exposure and traumatic life events on pain perception].
Tesarz, J; Gerhardt, A; Eich, W
2018-06-05
Adult pain perception is influenced substantially by interactions between mind, body, and social environment during early life. Early stress exposure and traumatic life events induce powerful psychophysical stress reactions that exert multiple neurofunctional processes. This has significant implications for pain perception and pain processing. As part of this review, the complex relationships between traumatic stress experiences and associated psychobiological mechanisms of chronic pain will be discussed. Based on selected studies, psychophysiological findings are presented and possible underlying mechanisms are discussed. The article concludes with a discussion of potential implications for treatment.
Finding gene-environment interactions for phobias.
Gregory, Alice M; Lau, Jennifer Y F; Eley, Thalia C
2008-03-01
Phobias are common disorders causing a great deal of suffering. Studies of gene-environment interaction (G x E) have revealed much about the complex processes underlying the development of various psychiatric disorders but have told us little about phobias. This article describes what is already known about genetic and environmental influences upon phobias and suggests how this information can be used to optimise the chances of discovering G x Es for phobias. In addition to the careful conceptualisation of new studies, it is suggested that data already collected should be re-analysed in light of increased understanding of processes influencing phobias.
NASA Astrophysics Data System (ADS)
Demirbaş, Ümit; Akyüz, Duygu; Akçay, Hakkı Türker; Koca, Atıf; Bekircan, Olcay; Kantekin, Halit
2018-03-01
In the present study novel tetra 4-(4-fluorophenyl)-5-(4-methoxyphenyl)-4H-1,2,4-triazole-3-thio substituted non-peripherally metal free (4), zinc(II) (5), lead (II) (6) and copper(II) (7) phthalocyanines were synthesized. The obtained novel compounds were characterized by a combination of FT-IR, 1H NMR, UV-Vis and MALDI-TOF techniques. The redox properties of the complexes have been investigated via cyclic voltammetry, square wave voltammetry and in situ spectroelectrochemistry. The compounds displayed ring-based, reversible and/or quasi-reversible reduction and oxidation processes and aggregation of the complexes influenced the redox character of the processes. The color changes during the redox processes of metallo phthalocyanine were recorded by in-situ spectroelectrochemical measurements. In situ UV-vis spectroelectrochemical measurements, which was associated with color change of the complexes, showed their applicability in the fields of the electrochemical technologies.
King, Gillian; Shepherd, Tracy A; Servais, Michelle; Willoughby, Colleen; Bolack, Linda; Strachan, Deborah; Moodie, Sheila; Baldwin, Patricia; Knickle, Kerry; Parker, Kathryn; Savage, Diane; McNaughton, Nancy
2016-10-01
To describe the creation and validation of six simulations concerned with effective listening and interpersonal communication in pediatric rehabilitation. The simulations involved clinicians from various disciplines, were based on clinical scenarios related to client issues, and reflected core aspects of listening/communication. Each simulation had a key learning objective, thus focusing clinicians on specific listening skills. The article outlines the process used to turn written scenarios into digital video simulations, including steps taken to establish content validity and authenticity, and to establish a series of videos based on the complexity of their learning objectives, given contextual factors and associated macrocognitive processes that influence the ability to listen. A complexity rating scale was developed and used to establish a gradient of easy/simple, intermediate, and hard/complex simulations. The development process exemplifies an evidence-based, integrated knowledge translation approach to the teaching and learning of listening and communication skills.
Visual Complexity and Affect: Ratings Reflect More Than Meets the Eye.
Madan, Christopher R; Bayer, Janine; Gamer, Matthias; Lonsdorf, Tina B; Sommer, Tobias
2017-01-01
Pictorial stimuli can vary on many dimensions, several aspects of which are captured by the term 'visual complexity.' Visual complexity can be described as, "a picture of a few objects, colors, or structures would be less complex than a very colorful picture of many objects that is composed of several components." Prior studies have reported a relationship between affect and visual complexity, where complex pictures are rated as more pleasant and arousing. However, a relationship in the opposite direction, an effect of affect on visual complexity, is also possible; emotional arousal and valence are known to influence selective attention and visual processing. In a series of experiments, we found that ratings of visual complexity correlated with affective ratings, and independently also with computational measures of visual complexity. These computational measures did not correlate with affect, suggesting that complexity ratings are separately related to distinct factors. We investigated the relationship between affect and ratings of visual complexity, finding an 'arousal-complexity bias' to be a robust phenomenon. Moreover, we found this bias could be attenuated when explicitly indicated but did not correlate with inter-individual difference measures of affective processing, and was largely unrelated to cognitive and eyetracking measures. Taken together, the arousal-complexity bias seems to be caused by a relationship between arousal and visual processing as it has been described for the greater vividness of arousing pictures. The described arousal-complexity bias is also of relevance from an experimental perspective because visual complexity is often considered a variable to control for when using pictorial stimuli.
Visual Complexity and Affect: Ratings Reflect More Than Meets the Eye
Madan, Christopher R.; Bayer, Janine; Gamer, Matthias; Lonsdorf, Tina B.; Sommer, Tobias
2018-01-01
Pictorial stimuli can vary on many dimensions, several aspects of which are captured by the term ‘visual complexity.’ Visual complexity can be described as, “a picture of a few objects, colors, or structures would be less complex than a very colorful picture of many objects that is composed of several components.” Prior studies have reported a relationship between affect and visual complexity, where complex pictures are rated as more pleasant and arousing. However, a relationship in the opposite direction, an effect of affect on visual complexity, is also possible; emotional arousal and valence are known to influence selective attention and visual processing. In a series of experiments, we found that ratings of visual complexity correlated with affective ratings, and independently also with computational measures of visual complexity. These computational measures did not correlate with affect, suggesting that complexity ratings are separately related to distinct factors. We investigated the relationship between affect and ratings of visual complexity, finding an ‘arousal-complexity bias’ to be a robust phenomenon. Moreover, we found this bias could be attenuated when explicitly indicated but did not correlate with inter-individual difference measures of affective processing, and was largely unrelated to cognitive and eyetracking measures. Taken together, the arousal-complexity bias seems to be caused by a relationship between arousal and visual processing as it has been described for the greater vividness of arousing pictures. The described arousal-complexity bias is also of relevance from an experimental perspective because visual complexity is often considered a variable to control for when using pictorial stimuli. PMID:29403412
ERIC Educational Resources Information Center
Mancilla-Martinez, Jeannette; Lesaux, Nonie K.
2010-01-01
This longitudinal study examined the process of English reading comprehension at age 11 years for 173 low-achieving Spanish-speaking children. The influence of growth rates, from early childhood (age 4.5 years) to pre-adolescence (age 11 years), in vocabulary and word reading skills on this complex process were evaluated with structural equation…
Early and Late Processes in Syllogistic Reasoning: Evidence from Eye-Movements
ERIC Educational Resources Information Center
Espino, Orlando; Santamaria, Carlos; Meseguer, Enrique; Carreiras, Manuel
2005-01-01
An eye-movement monitoring experiment was carried out to examine the effects of the difficulty of the problem (simple versus complex problems) and the type of figure (figure 1 or figure 4) on the time course of processing categorical syllogisms. The results showed that the course of influence for these two factors is different. We found early…
NASA Astrophysics Data System (ADS)
Homberg, Werner; Hornjak, Daniel
2011-05-01
Friction spinning is a new innovative and promising incremental forming technology implying high potential regarding the manufacturing of complex functionally graded workpieces and enhancing existing forming limits of conventional metal spinning processes. The friction spinning process is based on the integration of thermo-mechanical friction subprocesses in this incremental forming process. By choosing the appropriate process parameters, e.g. axial feed rate or relative motion, the contact conditions between tool and workpiece can be influenced in a defined way and, thus, a required temperature profile can be obtained. Friction spinning allows the extension of forming limits compared to conventional metal spinning in order to produce multifunctional components with locally varying properties and the manufacturing of e.g. complex hollow parts made of tubes, profiles, or sheet metals. In this way, it meets the demands regarding efficiency and the manufacturing of functionally graded lightweight components. There is e.g. the possibility of locally increasing the wall thickness in joining zones and, as a consequence, achieving higher quality of the joint at decreased expense. These products are not or only hardly producible by conventional processes so far. In order to benefit from the advantages and potentials of this new innovative process new tooling systems and concepts are indispensable which fulfill the special requirements of this thermo-mechanical process concerning thermal and tribological loads and which allow simultaneous and defined forming and friction operations. An important goal of the corresponding research work at the Chair of Forming and Machining Technology at the University of Paderborn is the development of tool systems that allow the manufacturing of such complex parts by simple uniaxial or sequential biaxial linear tool paths. In the paper, promising tool systems and geometries as well as results of theoretical and experimental research work (e.g. regarding the influence and interaction of process parameters on the workpiece quality) will be discussed. Furthermore, possibilities regarding the manufacturing of geometries (demonstrator workpieces) which are not or only hardly producible with conventional processes will be presented.
Characteristics of biochar: Microchemical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amonette, James E.; Joseph, Stephen
2009-03-13
Biochars, being derived from a variety of biological feedstocks that have been thermally degraded under a range of conditions, exhibit a correspondingly large range in composition and chemistry. Due in part to the somewhat chaotic nature of the thermal process itself, this chemical heterogeneity extends to the microscopic scale even within a single biochar. Thus, in the strictest sense, each biochar made under a particular feedstock/process combination presents a unique mixture of phases and microenvironments that gives rise to a unique set of chemical properties. In some respects, the chemical complexity of biochars rivals that of incipient soils. In thismore » chapter we focus on the chemical complexity of biochar as manifested primarily at a microscopic and molecular scale. We start by describing the biochar-formation process and how this influences the composition and nature of the solid phases, entrained oils, and their organization at the microscopic level. We then proceed to discuss the range of surface chemistries exhibited by biochars in terms of functional groups and electrochemical properties. We conclude with a discussion of the influence of these properties on the sorption of aqueous species at biochar surfaces.« less
Process mining is an underutilized clinical research tool in transfusion medicine.
Quinn, Jason G; Conrad, David M; Cheng, Calvino K
2017-03-01
To understand inventory performance, transfusion services commonly use key performance indicators (KPIs) as summary descriptors of inventory efficiency that are graphed, trended, and used to benchmark institutions. Here, we summarize current limitations in KPI-based evaluation of blood bank inventory efficiency and propose process mining as an ideal methodology for application to inventory management research to improve inventory flows and performance. The transit of a blood product from inventory receipt to final disposition is complex and relates to many internal and external influences, and KPIs may be inadequate to fully understand the complexity of the blood supply chain and how units interact with its processes. Process mining lends itself well to analysis of blood bank inventories, and modern laboratory information systems can track nearly all of the complex processes that occur in the blood bank. Process mining is an analytical tool already used in other industries and can be applied to blood bank inventory management and research through laboratory information systems data using commercial applications. Although the current understanding of real blood bank inventories is value-centric through KPIs, it potentially can be understood from a process-centric lens using process mining. © 2017 AABB.
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2016-11-04
Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM.
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2016-01-01
Fused deposition modeling (FDM) additive manufacturing has been intensively used for many industrial applications due to its attractive advantages over traditional manufacturing processes. The process parameters used in FDM have significant influence on the part quality and its properties. This process produces the plastic part through complex mechanisms and it involves complex relationships between the manufacturing conditions and the quality of the processed part. In the present study, the influence of multi-level manufacturing parameters on the temperature-dependent dynamic mechanical properties of FDM processed parts was investigated using IV-optimality response surface methodology (RSM) and multilayer feed-forward neural networks (MFNNs). The process parameters considered for optimization and investigation are slice thickness, raster to raster air gap, deposition angle, part print direction, bead width, and number of perimeters. Storage compliance and loss compliance were considered as response variables. The effect of each process parameter was investigated using developed regression models and multiple regression analysis. The surface characteristics are studied using scanning electron microscope (SEM). Furthermore, performance of optimum conditions was determined and validated by conducting confirmation experiment. The comparison between the experimental values and the predicted values by IV-Optimal RSM and MFNN was conducted for each experimental run and results indicate that the MFNN provides better predictions than IV-Optimal RSM. PMID:28774019
Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...
2015-10-28
A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less
Harvesting Social Signals to Inform Peace Processes Implementation and Monitoring
Nigam, Aastha; Dambanemuya, Henry K.; Joshi, Madhav; Chawla, Nitesh V.
2017-01-01
Abstract Peace processes are complex, protracted, and contentious involving significant bargaining and compromising among various societal and political stakeholders. In civil war terminations, it is pertinent to measure the pulse of the nation to ensure that the peace process is responsive to citizens' concerns. Social media yields tremendous power as a tool for dialogue, debate, organization, and mobilization, thereby adding more complexity to the peace process. Using Colombia's final peace agreement and national referendum as a case study, we investigate the influence of two important indicators: intergroup polarization and public sentiment toward the peace process. We present a detailed linguistic analysis to detect intergroup polarization and a predictive model that leverages Tweet structure, content, and user-based features to predict public sentiment toward the Colombian peace process. We demonstrate that had proaccord stakeholders leveraged public opinion from social media, the outcome of the Colombian referendum could have been different. PMID:29235916
Harvesting Social Signals to Inform Peace Processes Implementation and Monitoring.
Nigam, Aastha; Dambanemuya, Henry K; Joshi, Madhav; Chawla, Nitesh V
2017-12-01
Peace processes are complex, protracted, and contentious involving significant bargaining and compromising among various societal and political stakeholders. In civil war terminations, it is pertinent to measure the pulse of the nation to ensure that the peace process is responsive to citizens' concerns. Social media yields tremendous power as a tool for dialogue, debate, organization, and mobilization, thereby adding more complexity to the peace process. Using Colombia's final peace agreement and national referendum as a case study, we investigate the influence of two important indicators: intergroup polarization and public sentiment toward the peace process. We present a detailed linguistic analysis to detect intergroup polarization and a predictive model that leverages Tweet structure, content, and user-based features to predict public sentiment toward the Colombian peace process. We demonstrate that had proaccord stakeholders leveraged public opinion from social media, the outcome of the Colombian referendum could have been different.
van Niekerk, Karin; Dada, Shakila; Tönsing, Kerstin
2017-12-20
Selection of assistive technology for young children is a complex process. Within a context with limited resources, such as South Africa, research is needed to determine the factors influencing the assistive technology selection process, as these could ultimately either facilitate or hinder the availability and accessibility of affordable, adaptable, acceptable, and high quality assistive technology for this age group. Two asynchronous online focus groups were conducted with 16 rehabilitation professionals to identify the factors they perceived to influence the selection and provision of assistive technology to young children within the South African context. A process of deductive thematic analysis was followed by inductive analysis of the data. Components of the Assistive Technology Device Selection Framework were used as themes to guide the deductive analysis, followed by inductive analysis to create subthemes. The important role of the professional was highlighted in negotiating all the factors to consider in the assistive technology selection and provision process. Adaptation of the Assistive Technology Device Selection Framework is suggested in order to facilitate application to low resourced contexts, such as South Africa. Implications for rehabilitation Assistive technology selection is a complex process with factors pertaining to the users (child and family) of the assistive technology, as well as the rehabilitation professional recommending the assistive technology influencing the process. Although it may be an important factor, the availability of financial resources to purchase assistive technology is not the only determining factor in providing appropriate assistive technology to young children in contexts with limited resources. Formalized support, such as reflective supervision or mentorship programs should be facilitated and utilized by recommending professionals. Home and school visits during assessment ensure a good match between assistive technology and users within the particular context. Facilitating the availability of assistive technology for trial during assessment and/or for a period afterwards will increase the likelihood that appropriate recommendations for assistive technology are made.
Kindermann, Christoph; Matthée, Karin; Sievert, Frank; Breitkreutz, Jörg
2012-10-01
Recently introduced drug-polyelectrolyte complexes prepared by hot-melt extrusion should be processed to solid dosage forms with tailor-made release properties. Their potential of stability enhancement should be investigated. Milled hot-melt extruded naproxen-EUDRAGIT® E PO polyelectrolyte complexes were subsequently processed to double-layer tablets with varying complex loadings on a rotary-die press. Physicochemical interactions were studied under ICH guideline conditions and using the Gordon-Taylor equation. Sorption and desorption were determined to investigate the influence of moisture and temperature on the complex and related to stability tests under accelerated conditions. Naproxen release from the drug-polyelectrolyte complex is triggered by electrolyte concentration. Depending on the complex loading, phosphate buffer pH 6.8 stimulated a biphasic dissolution profile of the produced double-layer tablets: immediate release from the first layer with 65% loading and prolonged release from the second layer within 24 h (98.5% loading). XRPD patterns proved pseudopolymorphism for tablets containing the pure drug under common storage conditions whereas the drug-complex was stable in the amorphous state. Drug-polyelectrolyte complexes enable tailor-made dissolution profiles of solid dosage forms by electrolyte stimulation and increase stability under common storage conditions.
2012-09-30
understand how the delicate balance of ebb and flood sediment fluxes is maintained to create tidal flat and mangrove complexes, and distributary shoals and...and the subaqueous delta on the inner continental shelf, and sediment sinks within vegetated/ mangrove shoreline complexes. Our overall hypothesis...on Mangrove /Vegetated Intertidal Areas. Along the main stem tidal river and in the offshore banks may be shorelines lined with vegetation ( mangroves
The Influence of Free Space Environment in the Mission Life Cycle: Material Selection
NASA Technical Reports Server (NTRS)
Edwards, David L.; Burns, Howard D.; de Groh, Kim K.
2014-01-01
The natural space environment has a great influence on the ability of space systems to perform according to mission design specification. Understanding the natural space environment and its influence on space system performance is critical to the concept formulation, design, development, and operation of space systems. Compatibility with the natural space environment is a primary factor in determining the functional lifetime of the space system. Space systems being designed and developed today are growing in complexity. In many instances, the increased complexity also increases its sensitivity to space environmental effects. Sensitivities to the natural space environment can be tempered through appropriate design measures, material selection, ground processing, mitigation strategies, and/or the acceptance of known risks. The design engineer must understand the effects of the natural space environment on the space system and its components. This paper will discuss the influence of the natural space environment in the mission life cycle with a specific focus on the role of material selection.
Nurse manager cognitive decision-making amidst stress and work complexity.
Shirey, Maria R; Ebright, Patricia R; McDaniel, Anna M
2013-01-01
The present study provides insight into nurse manager cognitive decision-making amidst stress and work complexity. Little is known about nurse manager decision-making amidst stress and work complexity. Because nurse manager decisions have the potential to impact patient care quality and safety, understanding their decision-making processes is useful for designing supportive interventions. This qualitative descriptive study interviewed 21 nurse managers from three hospitals to answer the research question: What decision-making processes do nurse managers utilize to address stressful situations in their nurse manager role? Face-to-face interviews incorporating components of the Critical Decision Method illuminated expert-novice practice differences. Content analysis identified one major theme and three sub-themes. The present study produced a cognitive model that guides nurse manager decision-making related to stressful situations. Experience in the role, organizational context and situation factors influenced nurse manager cognitive decision-making processes. Study findings suggest that chronic exposure to stress and work complexity negatively affects nurse manager health and their decision-making processes potentially threatening individual, patient and organizational outcomes. Cognitive decision-making varies based on nurse manager experience and these differences have coaching and mentoring implications. This present study contributes a current understanding of nurse manager decision-making amidst stress and work complexity. © 2012 Blackwell Publishing Ltd.
Collective influence in evolutionary social dilemmas
NASA Astrophysics Data System (ADS)
Szolnoki, Attila; Perc, Matjaž
2016-03-01
When evolutionary games are contested in structured populations, the degree of each player in the network plays an important role. If they exist, hubs often determine the fate of the population in remarkable ways. Recent research based on optimal percolation in random networks has shown, however, that the degree is neither the sole nor the best predictor of influence in complex networks. Low-degree nodes may also be optimal influencers if they are hierarchically linked to hubs. Taking this into account leads to the formalism of collective influence in complex networks, which as we show here, has far-reaching implications for the favorable resolution of social dilemmas. In particular, there exists an optimal hierarchical depth for the determination of collective influence that we use to describe the potency of players for passing their strategies, which depends on the strength of the social dilemma. Interestingly, the degree, which corresponds to the baseline depth zero, is optimal only when the temptation to defect is small. Our research reveals that evolutionary success stories are related to spreading processes which are rooted in favorable hierarchical structures that extend beyond local neighborhoods.
Measuring the pulse of urban green infrastructure: vegetation dynamics across residential landscapes
Vegetation can be an important component of urban green infrastructure. Its structure is a complex result of the socio-ecological milieu and management decisions, and it can influence numerous ecohydrological processes such as stormwater interception and evapotranspiration. Despi...
Does ecohydrological connectivity affect sensitivity to environmental change?
Our goal is to understand the influences of complex terrain on the sensitivity of carbon and water cycle processes to environmental drivers at different scales. Gravity-driven flowpaths of air and water transport material and energy across and through landscapes, creating connec...
Social complexity beliefs predict posttraumatic growth in survivors of a natural disaster.
Nalipay, Ma Jenina N; Bernardo, Allan B I; Mordeno, Imelu G
2016-09-01
Most studies on posttraumatic growth (PTG) have focused on personal characteristics, interpersonal resources, and the immediate environment. There has been less attention on dynamic internal processes related to the development of PTG and on how these processes are affected by the broader culture. Calhoun and Tedeschi's (2006) model suggests a role of distal culture in PTG development, but empirical investigations on that point are limited. The present study investigated the role of social complexity-the generalized belief about changing social environments and inconsistency of human behavior-as a predictor of PTG. Social complexity was hypothesized to be associated with problem-solving approaches that are likely to give rise to cognitive processes that promote PTG. A sample of 446 survivors of Typhoon Haiyan, 1 of the strongest typhoons ever recorded at the time, answered self-report measures of social complexity, cognitive processing of trauma, and PTG. Structural equation modeling indicated a good fit between the data and the hypothesized model; belief in social complexity predicted stronger PTG, mediated by cognitive processing. The results provide evidence for how disaster survivors' beliefs about the changing nature of social environments and their corresponding behavior changes are predictors of PTG and suggest a psychological mechanism for how distal culture can influence PTG. Thus, assessing social complexity beliefs during early the phases of a postdisaster psychosocial intervention may provide useful information on who is likely to experience PTG. Trauma workers might consider culture-specific social themes related to social complexity in disaster-affected communities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Nonlinear model of epidemic spreading in a complex social network.
Kosiński, Robert A; Grabowski, A
2007-10-01
The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.
The social neuroscience and the theory of integrative levels.
Bello-Morales, Raquel; Delgado-García, José María
2015-01-01
The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines. First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology. In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and structures might be contemplated not as the result of mixing or summing social and biological influences, but as emergent phenomena that should be described with its own laws. Finally, following the integrative levels view, influences upward, from biology to social level, and downward, from social level to biology, might not be equivalent, since the bottom-up processes are emergent and the downward causation (DC) is not.
The social neuroscience and the theory of integrative levels
Bello-Morales, Raquel; Delgado-García, José María
2015-01-01
The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines. First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology. In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and structures might be contemplated not as the result of mixing or summing social and biological influences, but as emergent phenomena that should be described with its own laws. Finally, following the integrative levels view, influences upward, from biology to social level, and downward, from social level to biology, might not be equivalent, since the bottom-up processes are emergent and the downward causation (DC) is not. PMID:26578909
Microbiota as a mediator of cancer progression and therapy.
Pope, Jillian L; Tomkovich, Sarah; Yang, Ye; Jobin, Christian
2017-01-01
Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Microbiota as a mediator of cancer progression and therapy
Pope, Jillian L.; Tomkovich, Sarah; Yang, Ye; Jobin, Christian
2017-01-01
Complex and intricate circuitries regulate cellular proliferation, survival, and growth, and alterations of this network through genetic and epigenetic events result in aberrant cellular behaviors, often leading to carcinogenesis. Although specific germline mutations have been recognized as cancer inducers, the vast majority of neoplastic changes in humans occur through environmental exposure, lifestyle, and diet. An emerging concept in cancer biology implicates the microbiota as a powerful environmental factor modulating the carcinogenic process. For example, the intestinal microbiota influences cancer development or therapeutic responses through specific activities (immune responses, metabolites, microbial structures, and toxins). The numerous effects of microbiota on carcinogenesis, ranging from promoting, preventing, or even influencing therapeutic outcomes, highlight the complex relationship between the biota and the host. In this review, we discuss the latest findings on this complex microbial interaction with the host and highlight potential mechanisms by which the microbiota mediates such a wide impact on carcinogenesis. PMID:27554797
The Evolution of ICT Markets: An Agent-Based Model on Complex Networks
NASA Astrophysics Data System (ADS)
Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li
Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.
The role of water molecules in computational drug design.
de Beer, Stephanie B A; Vermeulen, Nico P E; Oostenbrink, Chris
2010-01-01
Although water molecules are small and only consist of two different atom types, they play various roles in cellular systems. This review discusses their influence on the binding process between biomacromolecular targets and small molecule ligands and how this influence can be modeled in computational drug design approaches. Both the structure and the thermodynamics of active site waters will be discussed as these influence the binding process significantly. Structurally conserved waters cannot always be determined experimentally and if observed, it is not clear if they will be replaced upon ligand binding, even if sufficient space is available. Methods to predict the presence of water in protein-ligand complexes will be reviewed. Subsequently, we will discuss methods to include water in computational drug research. Either as an additional factor in automated docking experiments, or explicitly in detailed molecular dynamics simulations, the effect of water on the quality of the simulations is significant, but not easily predicted. The most detailed calculations involve estimates of the free energy contribution of water molecules to protein-ligand complexes. These calculations are computationally demanding, but give insight in the versatility and importance of water in ligand binding.
How Service Values Influence the Processing of Word-of-Mouth in the Evaluation of Credence Beliefs
ERIC Educational Resources Information Center
Herold, Kristiina; Sipilä, Jenni; Tarkiainen, Anssi; Sundqvist, Sanna
2017-01-01
The purpose of this paper is to assess the effect of service values on the processing of word-of-mouth (WOM) information, and their impact on a complex belief in a high-involvement service context. Hypotheses are tested on survey data collected from 378 respondents facing a high-involvement service choice. The results suggest that two distinct…
NASA Astrophysics Data System (ADS)
Vaganova, N. A.
2017-12-01
Technogenic and climatic influences have a significant impact on the degradation of permafrost. Long-term forecasts of such changes during long-time periods have to be taken into account in the oil and gas and construction industries in view to development the Arctic and Subarctic regions. There are considered constantly operating technical systems (for example, oil and gas wells) that affect changes in permafrost, as well as the technical systems that have a short-term impact on permafrost (for example, flare systems for emergency flaring of associated gas). The second type of technical systems is rather complex for simulation, since it is required to reserve both short and long-scales in computations with variable time steps describing the complex technological processes. The main attention is paid to the simulation of long-term influence on the permafrost from the second type of the technical systems.
Processing of simple and complex acoustic signals in a tonotopically organized ear
Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela
2014-01-01
Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727
NASA Astrophysics Data System (ADS)
Alagha, Jawad S.; Seyam, Mohammed; Md Said, Md Azlin; Mogheir, Yunes
2017-12-01
Artificial intelligence (AI) techniques have increasingly become efficient alternative modeling tools in the water resources field, particularly when the modeled process is influenced by complex and interrelated variables. In this study, two AI techniques—artificial neural networks (ANNs) and support vector machine (SVM)—were employed to achieve deeper understanding of the salinization process (represented by chloride concentration) in complex coastal aquifers influenced by various salinity sources. Both models were trained using 11 years of groundwater quality data from 22 municipal wells in Khan Younis Governorate, Gaza, Palestine. Both techniques showed satisfactory prediction performance, where the mean absolute percentage error (MAPE) and correlation coefficient ( R) for the test data set were, respectively, about 4.5 and 99.8% for the ANNs model, and 4.6 and 99.7% for SVM model. The performances of the developed models were further noticeably improved through preprocessing the wells data set using a k-means clustering method, then conducting AI techniques separately for each cluster. The developed models with clustered data were associated with higher performance, easiness and simplicity. They can be employed as an analytical tool to investigate the influence of input variables on coastal aquifer salinity, which is of great importance for understanding salinization processes, leading to more effective water-resources-related planning and decision making.
[Clinical decision making and critical thinking in the nursing diagnostic process].
Müller-Staub, Maria
2006-10-01
The daily routine requires complex thinking processes of nurses, but clinical decision making and critical thinking are underestimated in nursing. A great demand for educational measures in clinical judgement related with the diagnostic process was found in nurses. The German literature hardly describes nursing diagnoses as clinical judgements about human reactions on health problems / life processes. Critical thinking is described as an intellectual, disciplined process of active conceptualisation, application and synthesis of information. It is gained through observation, experience, reflection and communication and leads thinking and action. Critical thinking influences the aspects of clinical decision making a) diagnostic judgement, b) therapeutic reasoning and c) ethical decision making. Human reactions are complex processes and in their course, human behavior is interpreted in the focus of health. Therefore, more attention should be given to the nursing diagnostic process. This article presents the theoretical framework of the paper "Clinical decision making: Fostering critical thinking in the nursing diagnostic process through case studies".
Eisenbies, Mark H.; Hughes, W. Brian
2000-01-01
Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.
ENVIRONMENTAL QUALITY AND LANDSCAPE-RISK ASSESSMENT IN THE YANTRA RIVER BASIN
Landscape characteristics exert their impact on the processes occurring in river basins in many directions and may influence in a different way the environmental security and some related constraints like extreme natural events. The complex nature of landscape structure and dynam...
Changes in landscape heterogeneity, historic landcover change, and human disturbance regimes are governed by complex interrelated landscape processes that modify lake water quality through the addition of nutrients, sediment, anthropogenic chemicals, and changes in major ion conc...
Prediction of competitive diffusion on complex networks
NASA Astrophysics Data System (ADS)
Zhao, Jiuhua; Liu, Qipeng; Wang, Lin; Wang, Xiaofan
2018-10-01
In this paper, we study the prediction problem of diffusion process on complex networks in competitive circumstances. With this problem solved, the competitors could timely intervene the diffusion process if needed such that an expected outcome might be obtained. We consider a model with two groups of competitors spreading opposite opinions on a network. A prediction method based on the mutual influences among the agents is proposed, called Influence Matrix (IM for short), and simulations on real-world networks show that the proposed IM method has quite high accuracy on predicting both the preference of any normal agent and the final competition result. For comparison purpose, classic centrality measures are also used to predict the competition result. It is shown that PageRank, Degree, Katz Centrality, and the IM method are suitable for predicting the competition result. More precisely, in undirected networks, the IM method performs better than these centrality measures when the competing group contains more than one agent; in directed networks, the IM method performs only second to PageRank.
Family feuds: social competition and sexual conflict in complex societies
Rubenstein, Dustin R.
2012-01-01
Darwin was initially puzzled by the processes that led to ornamentation in males—what he termed sexual selection—and those that led to extreme cooperation and altruism in complex animal societies—what was later termed kin selection. Here, I explore the relationships between sexual and kin selection theory by examining how social competition for reproductive opportunities—particularly in females—and sexual conflict over mating partners are inherent and critical parts of complex altruistic societies. I argue that (i) patterns of reproductive sharing within complex societies can drive levels of social competition and reproductive conflict not only in males but also in females living in social groups, and ultimately the evolution of female traits such as ornaments and armaments; (ii) mating conflict over female choice of sexual partners can influence kin structure within groups and drive the evolution of complex societies; and (iii) patterns of reproductive sharing and conflict among females may also drive the evolution of complex societies by influencing kin structure within groups. Ultimately, complex societies exhibiting altruistic behaviour appear to have only arisen in taxa where social competition over reproductive opportunities and sexual conflict over mating partners were low. Once such societies evolved, there were important selective feedbacks on traits used to regulate and mediate intra-sexual competition over reproductive opportunities, particularly in females. PMID:22777018
Family feuds: social competition and sexual conflict in complex societies.
Rubenstein, Dustin R
2012-08-19
Darwin was initially puzzled by the processes that led to ornamentation in males-what he termed sexual selection-and those that led to extreme cooperation and altruism in complex animal societies-what was later termed kin selection. Here, I explore the relationships between sexual and kin selection theory by examining how social competition for reproductive opportunities-particularly in females-and sexual conflict over mating partners are inherent and critical parts of complex altruistic societies. I argue that (i) patterns of reproductive sharing within complex societies can drive levels of social competition and reproductive conflict not only in males but also in females living in social groups, and ultimately the evolution of female traits such as ornaments and armaments; (ii) mating conflict over female choice of sexual partners can influence kin structure within groups and drive the evolution of complex societies; and (iii) patterns of reproductive sharing and conflict among females may also drive the evolution of complex societies by influencing kin structure within groups. Ultimately, complex societies exhibiting altruistic behaviour appear to have only arisen in taxa where social competition over reproductive opportunities and sexual conflict over mating partners were low. Once such societies evolved, there were important selective feedbacks on traits used to regulate and mediate intra-sexual competition over reproductive opportunities, particularly in females.
Mölle, M; Albrecht, C; Marshall, L; Fehm, H L; Born, J
1997-01-01
This study examined the effects of ACTH 4-10, a fragment of adrenocorticotropin (ACTH) with known central nervous system (CNS) activity, on the dimensional complexity of the ongoing electroencephalographic (EEG) activity. Stressful stimuli cause ACTH to be released from the pituitary, and as a neuropeptide ACTH may concurrently exert adaptive influences on the brain's processing of these stimuli. Previous studies have indicated an impairing influence of ACTH on selective attention. Dimensional complexity of the EEG, which indexes the brain's way of stimulus processing, was evaluated while subjects performed tasks with different attention demands. Sixteen healthy men (23 to 33 years) were tested once after placebo and another time after administration of ACTH 4-10 (1.25 mg intravenously (i.v.), 30 minutes before testing). The EEG was recorded while subjects were presented with a dichotic listening task (consisting of the concurrent presentation of tone pips to the left and right ear). Subjects either a) listened to pips in both ears (divided attention), or b) listened selectively to pips in one ear (selective attention), or c) ignored all pips. Dimensional complexity of the EEG was higher during divided than selective attention. ACTH significantly increased the EEG complexity during selective attention, in particular over the midfrontal cortex (Fz, Cz). The effects support the view of a de-focusing action of ACTH during selective attention that could serve to improve the organism's adaptation to stress stimuli.
Towards simplification of hydrologic modeling: Identification of dominant processes
Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.
2016-01-01
The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many
Analysis of complex decisionmaking processes. [with application to jet engine development
NASA Technical Reports Server (NTRS)
Hill, J. D.; Ollila, R. G.
1978-01-01
The analysis of corporate decisionmaking processes related to major system developments is unusually difficult because of the number of decisionmakers involved in the process and the long development cycle. A method for analyzing such decision processes is developed and illustrated through its application to the analysis of the commercial jet engine development process. The method uses interaction matrices as the key tool for structuring the problem, recording data, and analyzing the data to establish the rank order of the major factors affecting development decisions. In the example, the use of interaction matrices permitted analysts to collect and analyze approximately 50 factors that influenced decisions during the four phases of the development cycle, and to determine the key influencers of decisions at each development phase. The results of this study indicate that the cost of new technology installed on an aircraft is the prime concern of the engine manufacturer.
Acculturation and reacculturation influence: multilayer contexts in therapy.
Abu Baker, K
1999-12-01
Clients who live within a minority culture while being influenced by a dominant culture usually bring to therapy the impact of their multilayered cultural experience. Migration literature point to separation and marginalization processes during the acculturation process as the main cause of relocators' psychosocial problems. In contrast to other studies that appreciate assimilation and integration within the dominant culture, this study shows that these processes often lead to disharmony and disintegration within the home culture, especially among those who remigrate back home or those who continue to live simultaneously within the sending culture and the receiving culture. Additionally, this study emphasizes that acculturation often happens as a multilinear and multidimensional process within the host culture and the sending culture. Therapists may help clients when they become aware of the complexity of the multidirectional process of acculturation and its various levels, such as the interfamilial, the intrafamilial, and the social. Three case studies will illustrate the theoretical framework.
Pickering, Emily A.; Adler, Alyssa M.; Taylor, J. Christopher; Peterson, Charles H.
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed. PMID:28873447
Methods for Converter Sludge Dehydration Intensification
NASA Astrophysics Data System (ADS)
Vakhromeev, M. I.; Moreva, Y. A.; Starkova, L. G.
2017-11-01
The article considers the intensification methods for converter sludge dehydration exemplified by the sludges of the Oxygen Converter Workshop (OCW) of the Open Joint-Stock Company “Magnitogorsk Iron and Steel Works” (MMK, OJSC), one of the largest metallurgical companies in the Southern Urals. Converter sludges can contain up to 45-70% of ferrum [21] which is interesting in terms of their use as an addition to a sinter-feed mixture. Sludge intensifies the sintering process. It positively influences pelletizing and fusion mixture melting dynamics at sintering. Over the period of the converter sludge dehydration complex operation at the OCW, MMK, OJSC, it was revealed that processing results in obtaining of high humidity sludge. It causes sludge freezing during the winter period, thus, its transportation involves extra costs for sludge warming up. To resolve the above-mentioned problem, the following works were performed in 2016: - experimental studies of how the application of the low-molecular anionic flocculate “SEURVEY” FL-3 influences sludge humidity reduction. - experimental studies of how the filtering press process operation parameters influence sludge humidity reduction. The new flocculate application didn't lower the dehydrated sludge humidity (the objective was the humidity of not more than 15%). Basing upon the conducted research results, we can make a conclusion that putting into operation the sewage water reactant treatment technology with the use of “SEURVEY”, FL-3 (H-10) is not recommended. The research of the influence the filtering press process parameters have on the dehydration process intensification demonstrated that reaching of the obtained residue humidity value lower than 15% is possible under the reduction of the filtering press chamber depths to 30 mm and with the application of additional operation “Residue drying” with compressed air. This way of the sludge dehydration problem resolving at filtering presses of the converter sludge dehydration complex of the OCW, MMK, OJSC, can be recommended for application.
Understanding the biological underpinnings of ecohydrological processes
NASA Astrophysics Data System (ADS)
Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.
2012-12-01
Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.
Haynes, Abby; Brennan, Sue; Carter, Stacy; O'Connor, Denise; Schneider, Carmen Huckel; Turner, Tari; Gallego, Gisselle
2014-09-27
Process evaluation is vital for understanding how interventions function in different settings, including if and why they have different effects or do not work at all. This is particularly important in trials of complex interventions in 'real world' organisational settings where causality is difficult to determine. Complexity presents challenges for process evaluation, and process evaluations that tackle complexity are rarely reported. This paper presents the detailed protocol for a process evaluation embedded in a randomised trial of a complex intervention known as SPIRIT (Supporting Policy In health with Research: an Intervention Trial). SPIRIT aims to build capacity for using research in health policy and program agencies. We describe the flexible and pragmatic methods used for capturing, managing and analysing data across three domains: (a) the intervention as it was implemented; (b) how people participated in and responded to the intervention; and (c) the contextual characteristics that mediated this relationship and may influence outcomes. Qualitative and quantitative data collection methods include purposively sampled semi-structured interviews at two time points, direct observation and coding of intervention activities, and participant feedback forms. We provide examples of the data collection and data management tools developed. This protocol provides a worked example of how to embed process evaluation in the design and evaluation of a complex intervention trial. It tackles complexity in the intervention and its implementation settings. To our knowledge, it is the only detailed example of the methods for a process evaluation of an intervention conducted as part of a randomised trial in policy organisations. We identify strengths and weaknesses, and discuss how the methods are functioning during early implementation. Using 'insider' consultation to develop methods is enabling us to optimise data collection while minimising discomfort and burden for participants. Embedding the process evaluation within the trial design is facilitating access to data, but may impair participants' willingness to talk openly in interviews. While it is challenging to evaluate the process of conducting a randomised trial of a complex intervention, our experience so far suggests that it is feasible and can add considerably to the knowledge generated.
Weaning from mechanical ventilation: factors that influence intensive care nurses' decision-making.
Tingsvik, Catarina; Johansson, Karin; Mårtensson, Jan
2015-01-01
The aim of the study was to describe the factors that influence intensive care nurses' decision-making when weaning patients from mechanical ventilation. Patients with failing vital function may require respiratory support. Weaning from mechanical ventilation is a process in which the intensive care nurse participates in both planning and implementation. A qualitative approach was used. The data were collected by means of semi-structured interviews with 22 intensive care nurses. The interviews were transcribed and analysed using qualitative content analysis. One theme emerged: 'A complex nursing situation where the patient receives attention and which is influenced by the current care culture'. There was consensus that the overall assessment of the patient made by the intensive care nurse was the main factor that influenced the decision-making process. This assessment was a continuous process consisting of three factors: the patient's perspective as well as her/his physical and mental state. On the other hand, there was a lack of consensus about what other factors influenced the decision-making process. These factors included the care culture constituted by the characteristics of the team, the intensive care nurses' professional skills, personalities and ability to be present. The individual overall assessment of the patient enabled nursing care from a holistic perspective. Furthermore, the weaning process can be more effective and potential suffering reduced by creating awareness of the care culture's impact on the decision-making process. © 2014 British Association of Critical Care Nurses.
Understanding the visual resource
Floyd L. Newby
1971-01-01
Understanding our visual resources involves a complex interweaving of motivation and cognitive recesses; but, more important, it requires that we understand and can identify those characteristics of a landscape that influence the image formation process. From research conducted in Florida, three major variables were identified that appear to have significant effect...
Mud, Macrofauna and Microbes: An ode to benthic organism-abiotic interactions at varying scales
Benthic environments are dynamic habitats, subject to variable sources and rates of sediment delivery, reworking from the abiotic and biotic processes, and complex biogeochemistry. These activities do not occur in a vacuum, and interact synergistically to influence food webs, bi...
Protein control of true, gated, and coupled electron transfer reactions.
Davidson, Victor L
2008-06-01
Electron transfer (ET) through and between proteins is a fundamental biological process. The rates of ET depend upon the thermodynamic driving force, the reorganization energy, and the degree of electronic coupling between the reactant and product states. The analysis of protein ET reactions is complicated by the fact that non-ET processes might influence the observed ET rate in kinetically complex biological systems. This Account describes studies of the methylamine dehydrogenase-amicyanin-cytochrome c-551i protein ET complex that have revealed the influence of several features of the protein structure on the magnitudes of the physical parameters for true ET reactions and how they dictate the kinetic mechanisms of non-ET processes that sometimes influence protein ET reactions. Kinetic and thermodynamic studies, coupled with structural information and biochemical data, are necessary to fully describe the ET reactions of proteins. Site-directed mutagenesis can be used to elucidate specific structure-function relationships. When mutations selectively alter the electronic coupling, reorganization energy, or driving force for the ET reaction, it becomes possible to use the parameters of the ET process to determine how specific amino acid residues and other features of the protein structure influence the ET rates. When mutations alter the kinetic mechanism for ET, one can determine the mechanisms by which non-ET processes, such as protein conformational changes or proton transfers, control the rates of ET reactions and how specific amino acid residues and certain features of the protein structure influence these non-ET reactions. A complete description of the mechanism of regulation of biological ET reactions enhances our understanding of metabolism, respiration, and photosynthesis at the molecular level. Such information has important medical relevance. Defective protein ET leads to production of the reactive oxygen species and free radicals that are associated with aging and many disease states. Defective ET within the respiratory chain also causes certain mitochondrial myopathies. An understanding of the mechanisms of regulation of protein ET is also of practical value because it provides a logical basis for the design of applications utilizing redox enzymes, such as enzyme-based electrode sensors and fuel cells.
Development of structural model of adaptive training complex in ergatic systems for professional use
NASA Astrophysics Data System (ADS)
Obukhov, A. D.; Dedov, D. L.; Arkhipov, A. E.
2018-03-01
The article considers the structural model of the adaptive training complex (ATC), which reflects the interrelations between the hardware, software and mathematical model of ATC and describes the processes in this subject area. The description of the main components of software and hardware complex, their interaction and functioning within the common system are given. Also the article scrutinizers a brief description of mathematical models of personnel activity, a technical system and influences, the interactions of which formalize the regularities of ATC functioning. The studies of main objects of training complexes and connections between them will make it possible to realize practical implementation of ATC in ergatic systems for professional use.
The multitalented Mediator complex.
Carlsten, Jonas O P; Zhu, Xuefeng; Gustafsson, Claes M
2013-11-01
The Mediator complex is needed for regulated transcription of RNA polymerase II (Pol II)-dependent genes. Initially, Mediator was only seen as a protein bridge that conveyed regulatory information from enhancers to the promoter. Later studies have added many other functions to the Mediator repertoire. Indeed, recent findings show that Mediator influences nearly all stages of transcription and coordinates these events with concomitant changes in chromatin organization. We review the multitude of activities associated with Mediator and discuss how this complex coordinates transcription with other cellular events. We also discuss the inherent difficulties associated with in vivo characterization of a coactivator complex that can indirectly affect diverse cellular processes via changes in gene transcription. Copyright © 2013 Elsevier Ltd. All rights reserved.
Quantifying social influence in an online cultural market.
Krumme, Coco; Cebrian, Manuel; Pickard, Galen; Pentland, Sandy
2012-01-01
We revisit experimental data from an online cultural market in which 14,000 users interact to download songs, and develop a simple model that can explain seemingly complex outcomes. Our results suggest that individual behavior is characterized by a two-step process--the decision to sample and the decision to download a song. Contrary to conventional wisdom, social influence is material to the first step only. The model also identifies the role of placement in mediating social signals, and suggests that in this market with anonymous feedback cues, social influence serves an informational rather than normative role.
Lessard, Jean-Philippe; Weinstein, Ben G; Borregaard, Michael K; Marske, Katharine A; Martin, Danny R; McGuire, Jimmy A; Parra, Juan L; Rahbek, Carsten; Graham, Catherine H
2016-01-01
A persistent challenge in ecology is to tease apart the influence of multiple processes acting simultaneously and interacting in complex ways to shape the structure of species assemblages. We implement a heuristic approach that relies on explicitly defining species pools and permits assessment of the relative influence of the main processes thought to shape assemblage structure: environmental filtering, dispersal limitations, and biotic interactions. We illustrate our approach using data on the assemblage composition and geographic distribution of hummingbirds, a comprehensive phylogeny and morphological traits. The implementation of several process-based species pool definitions in null models suggests that temperature-but not precipitation or dispersal limitation-acts as the main regional filter of assemblage structure. Incorporating this environmental filter directly into the definition of assemblage-specific species pools revealed an otherwise hidden pattern of phylogenetic evenness, indicating that biotic interactions might further influence hummingbird assemblage structure. Such hidden patterns of assemblage structure call for a reexamination of a multitude of phylogenetic- and trait-based studies that did not explicitly consider potentially important processes in their definition of the species pool. Our heuristic approach provides a transparent way to explore patterns and refine interpretations of the underlying causes of assemblage structure.
Jerry R. Miller; Mark L. Lord; Lionel F. Villarroel; Dru Germanoski; Jeanne C. Chambers
2012-01-01
The drainage network within upland watersheds in central Nevada can be subdivided into distinct zones each dominated by a unique set of processes on the basis of valley form, the geological materials that comprise the valley floor, and the presence or absence of surficial channels. On hillslopes, the type and structure (frequency, length, and spatial arrangement) of...
Dellve, Lotta; Wikström, Ewa
2009-12-01
To conceptualize how health care leaders' strategies to increase their influence in their psychosocial work environment are experienced and handled, and may be supported. The complex nature of the psychosocial work environment with increased stress creates significant challenges for leaders in today's health care organizations. Interviews with health care leaders (n = 39) were analysed in accordance with constructivist grounded theory. Compound identities, loyalty commitments and professional interests shape conditions for leaders' influence. Strategies to achieve legitimacy were either to retain clinical skills and a strong occupational identity or to take a full leadership role. Ethical stress was experienced when organizational procedural or consequential legitimacy norms were in conflict with the leaders' own values. Leadership support through socializing processes and strategic support structures may be complementary or counteractive. Support programmes need to have a clear message related to decision-making processes and should facilitate communication between top management, human resource departments and subordinate leaders. Ethical stress from conflicting legitimacy principles may be moderated by clear policies for decision-making processes, strengthened sound networks and improved communication. Supportive programmes should include: (1) sequential and strategic systems for introducing new leaders and mentoring; (2) reflective dialogue and feedback; (3) team development; and (4) decision-making policies and processes.
[Problems of work world and its impact on health. Current financial crisis].
Tomasina, Fernando
2012-06-01
Health and work are complex processes. Besides, they are multiple considering the forms they take. These two processes are linked to each other and they are influenced by each other. According to this, it is possible to establish that work world is extremely complex and heterogeneous. In this world, "old" or traditional risks coexist with "modern risks", derived from the new models of work organization and the incorporation of new technologies. Unemployment, work relationships precariousness and work risks outsourcing are results of neoliberal strategies. Some negative results of health-sickness process derived from transformation in work world and current global economic crisis have been noticed in current work conditions. Finally, the need for reconstructing policies focusing on this situation derived from work world is suggested.
Cepeda, Nicholas J.; Blackwell, Katharine A.; Munakata, Yuko
2012-01-01
The rate at which people process information appears to influence many aspects of cognition across the lifespan. However, many commonly accepted measures of “processing speed” may require goal maintenance, manipulation of information in working memory, and decision-making, blurring the distinction between processing speed and executive control and resulting in overestimation of processing-speed contributions to cognition. This concern may apply particularly to studies of developmental change, as even seemingly simple processing speed measures may require executive processes to keep children and older adults on task. We report two new studies and a re-analysis of a published study, testing predictions about how different processing speed measures influence conclusions about executive control across the life span. We find that the choice of processing speed measure affects the relationship observed between processing speed and executive control, in a manner that changes with age, and that choice of processing speed measure affects conclusions about development and the relationship among executive control measures. Implications for understanding processing speed, executive control, and their development are discussed. PMID:23432836
Technology-design-manufacturing co-optimization for advanced mobile SoCs
NASA Astrophysics Data System (ADS)
Yang, Da; Gan, Chock; Chidambaram, P. R.; Nallapadi, Giri; Zhu, John; Song, S. C.; Xu, Jeff; Yeap, Geoffrey
2014-03-01
How to maintain the Moore's Law scaling beyond the 193 immersion resolution limit is the key question semiconductor industry needs to answer in the near future. Process complexity will undoubtfully increase for 14nm node and beyond, which brings both challenges and opportunities for technology development. A vertically integrated design-technologymanufacturing co-optimization flow is desired to better address the complicated issues new process changes bring. In recent years smart mobile wireless devices have been the fastest growing consumer electronics market. Advanced mobile devices such as smartphones are complex systems with the overriding objective of providing the best userexperience value by harnessing all the technology innovations. Most critical system drivers are better system performance/power efficiency, cost effectiveness, and smaller form factors, which, in turns, drive the need of system design and solution with More-than-Moore innovations. Mobile system-on-chips (SoCs) has become the leading driver for semiconductor technology definition and manufacturing. Here we highlight how the co-optimization strategy influenced architecture, device/circuit, process technology and package, in the face of growing process cost/complexity and variability as well as design rule restrictions.
Evolution of opto-electronic properties during film formation of complex semiconductors
NASA Astrophysics Data System (ADS)
Heinemann, M. D.; Mainz, R.; Österle, F.; Rodriguez-Alvarez, H.; Greiner, D.; Kaufmann, C. A.; Unold, T.
2017-04-01
Optical and electrical properties of complex semiconducting alloys like Cu(In,Ga)Se2 (CIGS) are strongly influenced by the reaction pathways occurring during their deposition process. This makes it desirable to observe and control these properties in real-time during the deposition. Here we show for the first time the evolution of the band gap and the sub-band-gap defect absorption of CIGS thin film as well as surface roughness during a three-stage co-evaporation process by means of an optical analysis technique, based on white light reflectometry (WLR). By simultaneously recording structural information with in-situ energy dispersive X-ray diffraction and X-ray fluorescence we can directly correlate the evolution of opto-electronic material parameters with the structural properties of the film during growth. We find that the surface roughness and the sub-gap light absorption can be correlated with the phase evolution during the transformation from (In,Ga)2Se3 to Cu(In,Ga)Se2 by the incorporation of Cu into the film. Sub-bandgap light absorption is found to be influenced by the Cu-saturated growth phase and is lowered close to the points of stoichiometry, allowing for an advanced process design.
Keeping Control: The Role of Senescence and Development in Plant Pathogenesis and Defense
Häffner, Eva; Konietzki, Sandra; Diederichsen, Elke
2015-01-01
Many plant pathogens show interactions with host development. Pathogens may modify plant development according to their nutritional demands. Conversely, plant development influences pathogen growth. Biotrophic pathogens often delay senescence to keep host cells alive, and resistance is achieved by senescence-like processes in the host. Necrotrophic pathogens promote senescence in the host, and preventing early senescence is a resistance strategy of plants. For hemibiotrophic pathogens both patterns may apply. Most signaling pathways are involved in both developmental and defense reactions. Increasing knowledge about the molecular components allows to distinguish signaling branches, cross-talk and regulatory nodes that may influence the outcome of an infection. In this review, recent reports on major molecular players and their role in senescence and in pathogen response are reviewed. Examples of pathosystems with strong developmental implications illustrate the molecular basis of selected control strategies. A study of gene expression in the interaction between the hemibiotrophic vascular pathogen Verticillium longisporum and its cruciferous hosts shows processes that are fine-tuned to counteract early senescence and to achieve resistance. The complexity of the processes involved reflects the complex genetic control of quantitative disease resistance, and understanding the relationship between disease, development and resistance will support resistance breeding. PMID:27135337
Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks
Walpole, J.; Chappell, J.C.; Cluceru, J.G.; Mac Gabhann, F.; Bautch, V.L.; Peirce, S. M.
2015-01-01
Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods. PMID:26158406
Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.
Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M
2015-09-01
Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.
Baumgart, André; Denz, Christof; Bender, Hans-Joachim; Schleppers, Alexander
2009-01-01
The complexity of the operating room (OR) requires that both structural (eg, department layout) and behavioral (eg, staff interactions) patterns of work be considered when developing quality improvement strategies. In our study, we investigated how these contextual factors influence outpatient OR processes and the quality of care delivered. The study setting was a German university-affiliated hospital performing approximately 6000 outpatient surgeries annually. During the 3-year-study period, the hospital significantly changed its outpatient OR facility layout from a decentralized (ie, ORs in adjacent areas of the building) to a centralized (ie, ORs in immediate vicinity of each other) design. To study the impact of the facility change on OR processes, we used a mixed methods approach, including process analysis, process modeling, and social network analysis of staff interactions. The change in facility layout was seen to influence OR processes in ways that could substantially affect patient outcomes. For example, we found a potential for more errors during handovers in the new centralized design due to greater interdependency between tasks and staff. Utilization of the mixed methods approach in our analysis, as compared with that of a single assessment method, enabled a deeper understanding of the OR work context and its influence on outpatient OR processes.
Nanotechnology use with cosmeceuticals.
Golubovic-Liakopoulos, Nevenka; Simon, Sanford R; Shah, Bhavdeep
2011-09-01
The skin is a complex organ and its aging is a complex process. Cutaneous aging is influenced by factors such as sun exposure, genetics, stress and the environment. While skin laxity, rhytides, and dyschromia appear on the surface, these processes originate in deeper layers including the dermis and subcutaneous tissues. Until recently, most topical skin treatments were applied to, and consequently only affected the skin surface. Skin care has evolved to be scientifically based, and as knowledge increases about the physiology of the skin, novel methods of maintaining its health and appearance are developed. New generation skin care products are targeting multiple aging mechanisms by utilizing functional active ingredients in combination with innovative delivery systems. Copyright © 2011 Elsevier Inc. All rights reserved.
Automated information and control complex of hydro-gas endogenous mine processes
NASA Astrophysics Data System (ADS)
Davkaev, K. S.; Lyakhovets, M. V.; Gulevich, T. M.; Zolin, K. A.
2017-09-01
The automated information and control complex designed to prevent accidents, related to aerological situation in the underground workings, accounting of the received and handed over individual devices, transmission and display of measurement data, and the formation of preemptive solutions is considered. Examples for the automated workplace of an airgas control operator by individual means are given. The statistical characteristics of field data characterizing the aerological situation in the mine are obtained. The conducted studies of statistical characteristics confirm the feasibility of creating a subsystem of controlled gas distribution with an adaptive arrangement of points for gas control. The adaptive (multivariant) algorithm for processing measuring information of continuous multidimensional quantities and influencing factors has been developed.
[Neuroscientific basic in addiction].
Johann-Ridinger, Monika
2014-10-01
The growing evidence of Neuroscience leads to a better understanding of cerebral processes in cases of acute or chronic intake of psychotropic substances (ps). Predominantly, structures of the "reward system" contributed to the development of addiction. Chronic consumption of ps provides changing in brain equilibrium and leads to adaptations in the brain architecture. In this article, the complex responses of neurons and neuronal networks are presented in cases of chronic intake of ps. The alterations affect the cognitive, emotional and behavioral processings and influence learning and stress regulation. In summary, all cerebral adaptations are integrated in a complex model of biological, psychological and social factors and therefore, addiction arises as a consequence of combination of individual protecting and risk factors.
USDA-ARS?s Scientific Manuscript database
The Water Erosion Prediction Project (WEPP) model was originally developed for hillslope and small watershed applications. The model simulates complex interactive processes influencing erosion, such as surface runoff, soil-water changes, vegetation growth and senescence, and snow accumulation and me...
The Interplay of News Frames on Cognitive Complexity
ERIC Educational Resources Information Center
Shah, Dhavan V.; Kwak, Nojin; Schmierbach, Mike; Zubric, Jessica
2004-01-01
This research considers how distinct news frames work in combination to influence information processing. It extends framing research grounded in prospect theory (Tversky & Kahneman, 1981) and attribution theory (Iyengar, 1991) to study conditional framing effects on associative memory. Using a 2 x 3 experimental design embedded within a…
Middle-School Students' Map Construction: Understanding Complex Spatial Displays.
ERIC Educational Resources Information Center
Bausmith, Jennifer Merriman; Leinhardt, Gaea
1998-01-01
Examines the map-making process of middle-school students to determine which actions influence their accuracy, how prior knowledge helps their map construction, and what lessons can be learned from map making. Indicates that instruction that focuses on recognition of interconnections between map elements can promote map reasoning skills. (DSK)
Clandestine Readers: Boys and Girls Going "Undercover" in School Spaces
ERIC Educational Resources Information Center
Scholes, Laura
2015-01-01
Exploring the diverse nature of students' interpretations of their reading experiences, this study moves beyond broad generalizations about boys and girls to consider complexities inherent in the social processes that influence students' engagement in reading. While the study aimed to develop understandings about the ways notions of masculinity…
Air pollution reduction strategies for a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Contrasting changes in emissio...
Factors Associated with Attrition in Weight Loss Programs
ERIC Educational Resources Information Center
Grave, Riccardo Dalle; Suppini, Alessandro; Calugi, Simona; Marchesini, Giulio
2006-01-01
Attrition in weight loss programs is a complex process, influenced by patients' pretreatment characteristics and treatment variables, but available data are contradictory. Only a few variables have been confirmed by more than one study as relevant risk factors, but recently new data of clinical utility emerged from "real world" large observational…
Correlates of Mathematics Anxiety.
ERIC Educational Resources Information Center
McCoy, Leah P.
Learning is a complex operation that involves a several factors. In studying the learning process, both the characteristics of the learner and the conditions of instruction must be considered. This study examined some of the factors that may influence the learning of mathematics. In particular, it sought to identify relationships among mathematics…
Creative Thinking: Processes, Strategies, and Knowledge
ERIC Educational Resources Information Center
Mumford, Michael D.; Medeiros, Kelsey E.; Partlow, Paul J.
2012-01-01
Creative achievements are the basis for progress in our world. Although creative achievement is influenced by many variables, the basis for creativity is held to lie in the generation of high-quality, original, and elegant solutions to complex, novel, ill-defined problems. In the present effort, we examine the cognitive capacities that make…
USDA-ARS?s Scientific Manuscript database
The evolution of species is complex and subtle, which always associates with the genetic variation and environment adaption during active/ passive spread or migration. In crops, this process is usually driven and influenced by human activities such as domestication, cultivation and immigration. One ...
McKinlay, J B; Burns, R B; Durante, R; Feldman, H A; Freund, K M; Harrow, B S; Irish, J T; Kasten, L E; Moskowitz, M A
1997-02-01
This study examines the influence of six patient characteristics (age, race, socioeconomic status, comorbidities, mobility and presentational style) and two physician characteristics (medical specialty and years of clinical experience) on physicians' clinical decision making behaviour in the evaluation treatment of an unknown and known breast cancer. Physicians' variability and certainty associated with diagnostic and treatment behaviour were also examined. Separate analyses explored the influence of these non-medical factors on physicians' cognitive processes. Using a fractional factorial design, 128 practising physicians were shown two videotaped scenarios and asked about possible diagnoses and medical recommendations. Results showed that physicians displayed considerable variability in response to several patient-based factors. Physician characteristics also emerged as important predictors of clinical behaviour, thus confirming the complexity of the medical decision-making process.
Kim, Dongcheol; Rhee, Sehun
2002-01-01
CO(2) welding is a complex process. Weld quality is dependent on arc stability and minimizing the effects of disturbances or changes in the operating condition commonly occurring during the welding process. In order to minimize these effects, a controller can be used. In this study, a fuzzy controller was used in order to stabilize the arc during CO(2) welding. The input variable of the controller was the Mita index. This index estimates quantitatively the arc stability that is influenced by many welding process parameters. Because the welding process is complex, a mathematical model of the Mita index was difficult to derive. Therefore, the parameter settings of the fuzzy controller were determined by performing actual control experiments without using a mathematical model of the controlled process. The solution, the Taguchi method was used to determine the optimal control parameter settings of the fuzzy controller to make the control performance robust and insensitive to the changes in the operating conditions.
Tunable mega-ampere electron current propagation in solids by dynamic control of lattice melt
MacLellan, D. A.; Carroll, D. C.; Gray, R. J.; ...
2014-10-31
The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.
Transient Oscilliations in Mechanical Systems of Automatic Control with Random Parameters
NASA Astrophysics Data System (ADS)
Royev, B.; Vinokur, A.; Kulikov, G.
2018-04-01
Transient oscillations in mechanical systems of automatic control with random parameters is a relevant but insufficiently studied issue. In this paper, a modified spectral method was applied to investigate the problem. The nature of dynamic processes and the phase portraits are analyzed depending on the amplitude and frequency of external influence. It is evident from the obtained results, that the dynamic phenomena occurring in the systems with random parameters under external influence are complex, and their study requires further investigation.
A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand
Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim
2015-01-01
Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384
Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim
2015-01-01
Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.
Spada, Gianpiera; Gavini, Elisabetta; Cossu, Massimo; Rassu, Giovanna; Carta, Antonio; Giunchedi, Paolo
2013-01-30
Two water in oil emulsions composed by eudermic ingredients as glycerin, cocoa butter, almond oil and a variety of lipids, were enriched respectively with milk thistle dry extract (MT) or with a binary complex composed by MT and hydroxypropyl-β-cyclodextrin (HP) (1:4 w/w) correspondent to 1% (w/w) in sylimarine in order to obtain two different emulsions designed for the skin delivery and determine influence of hydroxypropyl-β-cyclodextrin on the extract delivery and permeation. Uv-vis spectrophotometric analyses demonstrated that phytocomplex formation influences the finding of MT after the complexation process and the in vitro antioxidant activity. Further in vitro and ex vivo experiments demonstrated that the penetration capability of MT from formulations is strictly influenced by the phytocomplex able to control MT permeation; moreover phytocomplex increases flavonoids stability during the in vitro tests. Additionally, in vivo studies showed that the penetration into the stratum corneum of the active ingredients is effectively achieved by the phytocomplex formation, in fact about 80% of MT is absorbed by the skin along 1h despite the 30% of MT not complexed absorbed during the same period. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Xiulan; Bloom, Gerald; Xu, Xiaoxin; Chen, Lin; Liang, Xiaoyun; Wolcott, Sara J
2014-08-26
This paper explores the evolution of schemes for rural finance in China as a case study of the long and complex process of health system development. It argues that the evolution of these schemes has been the outcome of the response of a large number of agents to a rapidly changing context and of efforts by the government to influence this adaptation process and achieve public health goals. The study draws on several sources of data including a review of official policy documents and academic papers and in-depth interviews with key policy actors at national level and at a sample of localities. The study identifies three major transition points associated with changes in broad development strategy and demonstrates how the adaptation of large numbers of actors to these contextual changes had a major impact on the performance of the health system. Further, it documents how the Ministry of Health viewed its role as both an advocate for the interests of health facilities and health workers and as the agency responsible for ensuring that government health system objectives were met. It is argued that a major reason for the resilience of the health system and its ability to adapt to rapid economic and institutional change was the ability of the Ministry to provide overall strategy leadership. Additionally, it postulates that a number of interest groups have emerged, which now also seek to influence the pathway of health system development. This history illustrates the complex and political nature of the management of health system development and reform. The paper concludes that governments will need to increase their capacity to analyze the health sector as a complex system and to manage change processes.
Wagner, Monica; Shafer, Valerie L.; Martin, Brett; Steinschneider, Mitchell
2013-01-01
The influence of native-language experience on sensory-obligatory auditory-evoked potentials (AEPs) was investigated in native-English and native-Polish listeners. AEPs were recorded to the first word in nonsense word pairs, while participants performed a syllable identification task to the second word in the pairs. Nonsense words contained phoneme sequence onsets (i.e., /pt/, /pət/, /st/ and /sət/) that occur in the Polish and English languages, with the exception that /pt/ at syllable onset is an illegal phonotactic form in English. P1–N1–P2 waveforms from fronto-central electrode sites were comparable in English and Polish listeners, even though, these same English participants were unable to distinguish the nonsense words having /pt/ and /pət/ onsets. The P1–N1–P2 complex indexed the temporal characteristics of the word stimuli in the same manner for both language groups. Taken together, these findings suggest that the fronto-central P1–N1–P2 complex reflects acoustic feature processing of speech and is not significantly influenced by exposure to the phoneme sequences of the native-language. In contrast, the T-complex from bilateral posterior temporal sites was found to index phonological as well as acoustic feature processing to the nonsense word stimuli. An enhanced negativity for the /pt/ cluster relative to its contrast sequence (i.e., /pət/) occurred only for the Polish listeners, suggesting that neural networks within non-primary auditory cortex may be involved in early cortical phonological processing. PMID:23643857
Ellis, Alicia M.; Garcia, Andres J.; Focks, Dana A.; Morrison, Amy C.; Scott, Thomas W.
2011-01-01
Models can be useful tools for understanding the dynamics and control of mosquito-borne disease. More detailed models may be more realistic and better suited for understanding local disease dynamics; however, evaluating model suitability, accuracy, and performance becomes increasingly difficult with greater model complexity. Sensitivity analysis is a technique that permits exploration of complex models by evaluating the sensitivity of the model to changes in parameters. Here, we present results of sensitivity analyses of two interrelated complex simulation models of mosquito population dynamics and dengue transmission. We found that dengue transmission may be influenced most by survival in each life stage of the mosquito, mosquito biting behavior, and duration of the infectious period in humans. The importance of these biological processes for vector-borne disease models and the overwhelming lack of knowledge about them make acquisition of relevant field data on these biological processes a top research priority. PMID:21813844
Korom-Djakovic, Danijela; Canamucio, Anne; Lempa, Michele; Yano, Elizabeth M; Long, Judith A
2016-01-01
This study examined how aspects of quality improvement (QI) culture changed during the introduction of the Veterans Health Administration (VHA) patient-centered medical home initiative and how they were influenced by existing organizational factors, including VHA facility complexity and practice location. A voluntary survey, measuring primary care providers' (PCPs') perspectives on QI culture at their primary care clinics, was administered in 2010 and 2012. Participants were 320 PCPs from hospital- and community-based primary care practices in Pennsylvania, West Virginia, Delaware, New Jersey, New York, and Ohio. PCPs in community-based outpatient clinics reported an improvement in established processes for QI, and communication and cooperation from 2010 to 2012. However, their peers in hospital-based clinics did not report any significant improvements in QI culture. In both years, compared with high-complexity facilities, medium- and low-complexity facilities had better scores on the scales assessing established processes for QI, and communication and cooperation. © The Author(s) 2014.
Perez-Gregorio, Maria Rosa; Mateus, Nuno; De Freitas, Victor
2014-10-15
Several factors could influence the tannin-protein interaction such as the human salivary protein profile, the tannin tested, and the tannin/protein ratio. The goal of this study aims to study the effect of different salivas (A, B, and C) and different tannin concentrations (0.5 and 1 mg/mL) on the interaction process as well as the complex's stability over time. This study is focused on the identification of new procyanidin B3-human salivary protein complexes. Thus, 48 major B3-human salivary protein aggregates were identified regardless of the saliva and tannin concentration tested. A higher number of aggregates was found at lower tannin concentration. Moreover, the number of protein moieties involved in the aggregation process was higher when the tannin concentration was also higher. The selectivity of the different groups of proteins to bind tannin was also confirmed. It was also verified that the B3-human salivary protein complexes formed evolved over time.
NASA Technical Reports Server (NTRS)
Eugenbrode, J.; Glavin, D.; Dworkin, J.; Conrad, P.; Mahaffy, P.
2011-01-01
Organic chemicals, when present in extraterrestrial samples, afford precious insight into past and modern conditions elsewhere in the Solar System . No single technology identifies all molecular components because naturally occurring molecules have different chemistries (e.g., polar vs. non-polar, low to high molecular weight) and interface with the ambient sample chemistry in a variety of modes (i.e., organics may be bonded, absorbed or trapped by minerals, liquids, gases, or other organics). More than 90% of organic matter in most natural samples on Earth and in meteorites is composed of complex macromolecules (e.g. biopolymers, complex biomolecules, humic substances, kerogen) because the processes that tend to break down organic molecules also tend towards complexation of the more recalcitrant components. Thus, methodologies that tap the molecular information contained within macromolecules may be critical to detecting extraterrestrial organic matter and assessing the sources and processes influencing its nature.
NASA Astrophysics Data System (ADS)
Pulinets, S. A.; Ouzounov, D. P.; Karelin, A. V.; Davidenko, D. V.
2015-07-01
This paper describes the current understanding of the interaction between geospheres from a complex set of physical and chemical processes under the influence of ionization. The sources of ionization involve the Earth's natural radioactivity and its intensification before earthquakes in seismically active regions, anthropogenic radioactivity caused by nuclear weapon testing and accidents in nuclear power plants and radioactive waste storage, the impact of galactic and solar cosmic rays, and active geophysical experiments using artificial ionization equipment. This approach treats the environment as an open complex system with dissipation, where inherent processes can be considered in the framework of the synergistic approach. We demonstrate the synergy between the evolution of thermal and electromagnetic anomalies in the Earth's atmosphere, ionosphere, and magnetosphere. This makes it possible to determine the direction of the interaction process, which is especially important in applications related to short-term earthquake prediction. That is why the emphasis in this study is on the processes proceeding the final stage of earthquake preparation; the effects of other ionization sources are used to demonstrate that the model is versatile and broadly applicable in geophysics.
An integrated model of communication influence on beliefs
Eveland, William P.; Cooper, Kathryn E.
2013-01-01
How do people develop and maintain their beliefs about science? Decades of social science research exist to help us answer this question. The Integrated Model of Communication Influence on Beliefs presented here combines multiple theories that have considered aspects of this process into a comprehensive model to explain how individuals arrive at their scientific beliefs. In this article, we (i) summarize what is known about how science is presented in various news and entertainment media forms; (ii) describe how individuals differ in their choices to be exposed to various forms and sources of communication; (iii) discuss the implications of how individuals mentally process information on the effects of communication; (iv) consider how communication effects can be altered depending on background characteristics and motivations of individuals; and (v) emphasize that the process of belief formation is not unidirectional but rather, feeds back on itself over time. We conclude by applying the Integrated Model of Communication Influence on Beliefs to the complex issue of beliefs about climate change. PMID:23940328
Interacting Brain Systems Modulate Memory Consolidation
McIntyre, Christa K.; McGaugh, James L.; Williams, Cedric L.
2011-01-01
Emotional arousal influences the consolidation of long-term memory. This review discusses experimental approaches and relevant findings that provide the foundation for current understanding of coordinated interactions between arousal activated peripheral hormones and the brain processes that modulate memory formation. Rewarding or aversive experiences release the stress hormones epinephrine (adrenalin) and glucocorticoids from the adrenal glands into the bloodstream. The effect of these hormones on memory consolidation depends upon binding of norepinephrine to beta-adrenergic receptors in the basolateral complex of the amygdala (BLA). Much evidence indicates that the stress hormones influence release of norepinephrine in the BLA through peripheral actions on the vagus nerve which stimulates, through polysynaptic connections, cells of the locus coeruleus to release norepinephrine. The BLA influences memory storage by actions on synapses, distributed throughout the brain, that are engaged in sensory and cognitive processing at the time of amygdala activation. The implications of the activation of these stress-activated memory processes are discussed in relation to stress-related memory disorders. PMID:22085800
An integrated model of communication influence on beliefs.
Eveland, William P; Cooper, Kathryn E
2013-08-20
How do people develop and maintain their beliefs about science? Decades of social science research exist to help us answer this question. The Integrated Model of Communication Influence on Beliefs presented here combines multiple theories that have considered aspects of this process into a comprehensive model to explain how individuals arrive at their scientific beliefs. In this article, we (i) summarize what is known about how science is presented in various news and entertainment media forms; (ii) describe how individuals differ in their choices to be exposed to various forms and sources of communication; (iii) discuss the implications of how individuals mentally process information on the effects of communication; (iv) consider how communication effects can be altered depending on background characteristics and motivations of individuals; and (v) emphasize that the process of belief formation is not unidirectional but rather, feeds back on itself over time. We conclude by applying the Integrated Model of Communication Influence on Beliefs to the complex issue of beliefs about climate change.
NASA Astrophysics Data System (ADS)
Kirpes, R.; Rodriguez, B.; Kim, S.; Park, K.; China, S.; Laskin, A.; Pratt, K.
2017-12-01
The Arctic region is rapidly changing due to sea ice loss and increasing oil/gas development and shipping activity. These changes influence aerosol sources and composition, resulting in complex aerosol-cloud-climate feedbacks. Atmospheric particles were collected aboard the R/V Araon in July-August 2016 in the Alaskan Arctic along the Bering Strait and Chukchi Sea. Offline analysis of individual particles by microscopic and spectroscopic techniques provided information on particle size, morphology, and chemical composition. Sea spray aerosol (SSA) and organic aerosol (OA) particles were the most commonly observed particle types, and sulfate was internally mixed with both SSA and OA. Evidence of multiphase sea spray aerosol reactions was observed, with varying degrees of chlorine depletion observed along the cruise. Notably, atmospherically processed SSA, completely depleted in chlorine, and internally mixed organic and sulfate particles, were observed in samples influenced by the central Arctic Ocean. Changes in particle composition due to fog processing were also investigated. Due to the changing aerosol sources and atmospheric processes in the Arctic region, it is crucial to understand aerosol composition in order to predict climate impacts.
New levels of language processing complexity and organization revealed by granger causation.
Gow, David W; Caplan, David N
2012-01-01
Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all non-redundant potentially interacting signals, and has shown that even "early" processes such as speech perception involve interactions of many areas in a strikingly large network that extends well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of milliseconds. In this paper we describe this technique and review several general findings that reframe the way we think about language processing and brain function in general. These include the extent and complexity of language processing networks, the central role of interactive processing dynamics, the role of processing hubs where the input from many distinct brain regions are integrated, and the degree to which task requirements and stimulus properties influence processing dynamics and inform our understanding of "language-specific" localized processes.
Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport
Yoon, Hongkyu; Kang, Qinjun; Valocchi, Albert J.
2015-07-29
Here an important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport,more » which can strongly influence larger-scale properties such as permeability and dispersion.« less
Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander
2016-01-01
Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range tested for the tested container closure systems. Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in the literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters contribute to the final capping result.In this study, we used different container closure system configurations from different good manufacturing process drug product fill & finish facilities to investigate the influence of the vial size and the rubber stopper design on the capping process. In addition, we compared two examples of large-scale good manufacturing process capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force. © PDA, Inc. 2016.
Systematic evaluation of implementation fidelity of complex interventions in health and social care
2010-01-01
Background Evaluation of an implementation process and its fidelity can give insight into the 'black box' of interventions. However, a lack of standardized methods for studying fidelity and implementation process have been reported, which might be one reason for the fact that few prior studies in the field of health service research have systematically evaluated interventions' implementation processes. The aim of this project is to systematically evaluate implementation fidelity and possible factors influencing fidelity of complex interventions in health and social care. Methods A modified version of The Conceptual Framework for Implementation Fidelity will be used as a conceptual model for the evaluation. The modification implies two additional moderating factors: context and recruitment. A systematic evaluation process was developed. Multiple case study method is used to investigate implementation of three complex health service interventions. Each case will be investigated in depth and longitudinally, using both quantitative and qualitative methods. Discussion This study is the first attempt to empirically test The Conceptual Framework for Implementation Fidelity. The study can highlight mechanism and factors of importance when implementing complex interventions. Especially the role of the moderating factors on implementation fidelity can be clarified. Trial Registration Supported Employment, SE, among people with severe mental illness -- a randomized controlled trial: NCT00960024. PMID:20815872
NASA Astrophysics Data System (ADS)
Dutka, V. S.; Matsyuk, N. V.; Dutka, Yu. V.
2011-01-01
The influence of different solvents on the oxidation reaction rate of pyridine (Py), quinoline (QN), acridine (AN), α-oxyquinoline (OQN) and α-picolinic acid (APA) by peroxydecanoic acid (PDA) was studied. It was found that the oxidation rate grows in the series Py < QN < AN, and the rate of the oxidation reaction of compounds containing a substituent in the α position from a reactive center is significantly lower than for unsubstituted analogues. The effective energies of activation of the oxidation reaction were found. It was shown that in the first stage, the reaction mechanism includes the rapid formation of an intermediate complex nitrogen-containing compound, peroxyacid, which forms products upon decomposing in the second stage. A kinetic equation that describes the studied process is offered. The constants of equilibrium of the intermediate complex formation ( K eq) and its decomposition constant ( k 2) in acetone and benzene were calculated. It was shown that the nature of the solvent influences the numerical values of both K p and k 2. It was established that introduction of acetic acid (which is able to form compounds with Py) into the reaction medium slows the rate of the oxidation process drastically. Correlation equations linking the polarity, polarizability, electrophilicity, and basicity of solvents with the constant of the PDA oxidation reaction rate for Py were found. It was concluded that the basicity and polarity of the solvent have a decisive influence on the oxidation reaction rate, while the polarizability and electrophilicity of the reaction medium do not influence the oxidation reaction rate.
NASA Astrophysics Data System (ADS)
Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il
2009-04-01
Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.
NASA Astrophysics Data System (ADS)
Slavnov, E. V.; Petrov, I. A.
2015-07-01
The influence of the volume deformation rate on the intensity of piston pressing-out of oil has been investigated. The results of pressing by a piston moving with different speeds are presented. Mathematical simulation is carried out for the stage of pressing-out after the termination of sample loading, when oil release occurs due to the accumulated deformations of the skeleton. It has been assumed that in mechanical pressing there remains the least residual content of oil. A dimensionless complex representing the ratio of the characteristic times of loading to the material response (the process of pressing) has been obtained. The dependence of the rate of oil pressing-out at the stage of pressure relaxation on the dimensionless complex has been determined.
The effect of the neural activity on topological properties of growing neural networks.
Gafarov, F M; Gafarova, V R
2016-09-01
The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.
Return to work and cancer: the Australian experience.
McKay, Georgina; Knott, Vikki; Delfabbro, Paul
2013-03-01
Research suggests that for many cancer survivors, returning to work has a range of benefits. However, considerable barriers have been identified as influencing the quality of return to work outcomes. This study explored the perspectives of Australian cancer survivors, managers and employee assistance program (EAP) professionals to gain an understanding of the return to work process and factors that affect the experience. Focus groups and interviews were conducted with cancer survivors (n = 15), managers (n = 12), and EAP professionals / psychologists (n = 4) from public and private sectors. Thematic analysis was used to analyse the data to identify common and unique themes from the three participant groups. A range of drivers were identified including maintaining normality and regaining identity, which could act positively or negatively depending on survivors' coping ability and self awareness. Analysis revealed communication difficulties in the workplace that impact on emotional and practical support. Negotiating an employee's return is complex, influenced by the level of consultation with the employee and use of an ad hoc or structured process. Direct and indirect ways of supporting employees with cancer were identified, as was the need for colleague and manager support. This study supports previous research findings of the impact of cancer on work, and reveals managers' lack of knowledge on how to respond appropriately. The process of returning to work is complex, influenced by employees' and managers' attitudes, communication skills and coping abilities. Areas for workplace interventions to optimise support for the cancer survivor are described.
Hussein, Khaled; Türk, Michael; Wahl, Martin A
2007-03-01
The preparation of drug/cyclodextrin complexes is a suitable method to improve the dissolution of poor soluble drugs. The efficacy of the Controlled Particle Deposition (CPD) as a new developed method to prepare these complexes in a single stage process using supercritical carbon dioxide is therefore compared with other conventional methods. Ibuprofen/beta-cyclodextrin complexes were prepared with different techniques and characterized using FTIR-ATR spectroscopy, powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In addition, the influences of the processing technique on the drug content (HPLC) and the dissolution behavior were studied. Employing the CPD-process resulted in a drug content of 2.8+/-0.22 wt.% in the carrier. The material obtained by CPD showed an improved dissolution rate of ibuprofen at pH 5 compared with the pure drug and its physical mixture with beta-cyclodextrin. In addition CPD material displays the highest dissolution (93.5+/- 2.89% after 75 min) compared to material obtained by co-precipitation (61.3 +/-0.52%) or freeze-drying (90.6 +/-2.54%). This study presents the CPD-technique as a well suitable method to prepare a drug/beta-cyclodextrin complex with improved drug dissolution compared to the pure drug and materials obtained by other methods.
Barman-Adhikari, Anamika; Cederbaum, Julie; Sathoff, Chelsea; Toro, Rosa
2014-01-01
Peer and family influences are interconnected in complex ways. These influences shape adolescent decision-making regarding engagement in sexual behaviors. Evidence indicates the more proximal (and direct) a process is to an individual, the more likely it is to affect his/her development and behavior. Therefore, family factors (e.g., parenting practices) and peer influence (e.g., peer norms) tend to be more strongly associated with adolescent behavior than distal factors (e.g., media or the economy). Guided by an ecological framework, this study explored how maternal influence variables interact with perceptions of peer influence to affect daughters' intentions to have sex. A nonprobability sample of 176 mother-daughter dyads was recruited in clinics and service organizations in the northeastern United States. Results from path analysis revealed that maternal influence variables had a significant indirect relationship with daughters' intentions to have sex through daughters' perceptions of peer influence. Maternal processes can act as protective factors for adolescent girls who perceive their peers are engaged in sexual behaviors. Therefore, risk reduction interventions with adolescents should include opportunities for parents to learn about sex-related issues and develop skills that will allow them to buffer negative peer influence. PMID:25422533
Vistoli, Damien; Achim, Amélie M; Lavoie, Marie-Audrey; Jackson, Philip L
2016-05-01
Empathy refers to our capacity to share and understand the emotional states of others. It relies on two main processes according to existing models: an effortless affective sharing process based on neural resonance and a more effortful cognitive perspective-taking process enabling the ability to imagine and understand how others feel in specific situations. Until now, studies have focused on factors influencing the affective sharing process but little is known about those influencing the cognitive perspective-taking process and the related brain activations during vicarious pain. In the present fMRI study, we used the well-known physical pain observation task to examine whether the visual perspective can influence, in a bottom-up way, the brain regions involved in taking others' cognitive perspective to attribute their level of pain. We used a pseudo-dynamic version of this classic task which features hands in painful or neutral daily life situations while orthogonally manipulating: (1) the visual perspective with which hands were presented (first-person versus third-person conditions) and (2) the explicit instructions to imagine oneself or an unknown person in those situations (Self versus Other conditions). The cognitive perspective-taking process was investigated by comparing Other and Self conditions. When examined across both visual perspectives, this comparison showed no supra-threshold activation. Instead, the Other versus Self comparison led to a specific recruitment of the bilateral temporo-parietal junction when hands were presented according to a first-person (but not third-person) visual perspective. The present findings identify the visual perspective as a factor that modulates the neural activations related to cognitive perspective-taking during vicarious pain and show that this complex cognitive process can be influenced by perceptual stages of information processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Animal models and conserved processes
2012-01-01
Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter-species extrapolation when the trait or response being studied is located at higher levels of organization, is in a different module, or is influenced by other modules. However, when the examination of the conserved process occurs at the same level of organization or in the same module, and hence is subject to study solely by reductionism, then extrapolation is possible. PMID:22963674
Caughlan, L.
2002-01-01
Natural resource management decisions are complicated by multiple property rights, management objectives, and stakeholders with varying degrees of influence over the decision making process. In order to make efficient decisions, managers must incorporate the opinions and values of the involved stakeholders as well as understand the complex institutional constraints and opportunities that influence the decision-making process. Often this type of information is not understood until after a decision has been made, which can result in wasted time and effort.The purpose of my dissertation was to show how institutional frameworks and stakeholder involvement influence the various phases of the resource management decision-making process in a public choice framework. The intent was to assist decision makers and stakeholders by developing a methodology for formally incorporating stakeholders'' objectives and influence into the resource management planning process and to predict the potential success of rent-seeking activity based on stakeholder preferences and level of influence. Concepts from decision analysis, institutional analysis, and public choice economics were used in designing this interdisciplinary framework. The framework was then applied to an actual case study concerning elk and bison management on the National Elk Refuge and Grand Teton National Park near Jackson, Wyoming. The framework allowed for the prediction of the level of support and conflict for all relevant policy decisions, and the identification of each stakeholder''s level of support or opposition for each management decision.
Preparation of microcapsules by complex coacervation of gum Arabic and chitosan.
Butstraen, Chloé; Salaün, Fabien
2014-01-01
Gum Arabic-chitosan microcapsules containing a commercially available blend of triglycerides (Miglyol 812 N) as core phase were synthesized by complex coacervation. This study was conducted to clarify the influence of different parameters on the encapsulation process, i.e. during the emulsion formation steps and during the shell formation, using conductometry, zeta potential, surface and interface tension measurement and Fourier-transform infrared spectroscopy. By carefully analyzing the influencing factors including phase volume ratio, stirring rate and time, pH, reaction time, biopolymer ratio and crosslinking effect, the optimum synthetic conditions were found out. For the emulsion step, the optimum phase volume ratio chosen was 0.10 and an emulsion time of 15 min at 11,000 rpm was selected. The results also indicated that the optimum formation of these complexes appears at a pH value of 3.6 and a weight ratio of chitosan to gum Arabic mixtures of 0.25. Copyright © 2013 Elsevier Ltd. All rights reserved.
Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin
2011-09-15
Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ivanov, I. M.; Kramar, L. Ya; Orlov, A. A.
2017-11-01
According to the study results, the influence of complex additives based on microsilica and superplasticizers on the processes of the heat release, hydration, hardening, formation of the structure and properties of cement stone was determined. Calorimetry, derivatography, X-ray phase analysis, electronic microscopy and physical-mechanical methods for analyzing the properties of cement stone were used for the studies. It was established that plasticizing additives, in addition to the main water-reducing and rheological functions, regulate cement solidification and hardening while polycarboxylate superplasticizers even contribute to the formation of a special, amorphized microstructure of cement stone. In a complex containing microsilica and a polycarboxylate superplasticizer the strength increases sharply with a sharp drop in the capillary porosity responsible for the density, permeability, durability, and hence, the longevity of concrete. All this is a weighty argument in favor of the use of microsilica jointly with a polycarboxylate superplasticizer in road concretes operated under aggressive conditions.
Salústio, P J; Feio, G; Figueirinhas, J L; Pinto, J F; Cabral Marques, H M
2009-02-01
The work aims to prove the complexation of two model drugs (ibuprofen, IB and indomethacin, IN) by beta-cyclodextrin (betaCD), and the effect of water in such a process, and makes a comparison of their complexation yields. Two methods were considered: kneading of a binary mixture of the drug, betaCD, and inclusion of either IB or IN in aqueous solutions of betaCD. In the latter method water was removed by air stream, spray-drying and freeze-drying. To prove the formation of complexes in final products, optical microscopy, UV spectroscopy, IR spectroscopy, DSC, X-ray and NMR were considered. Each powder was added to an acidic solution (pH=2) to quantify the concentration of the drug inside betaCD cavity. Other media (pH=5 and 7) were used to prove the existence of drug not complexed in each powder, as the drugs solubility increases with the pH. It was observed that complexation occurred in all powders, and that the fraction of drug inside the betaCD did not depend neither on the method of complexation nor on the processes of drying considered.
Complexity and Competition in Appetitive and Aversive Neural Circuits
Barberini, Crista L.; Morrison, Sara E.; Saez, Alex; Lau, Brian; Salzman, C. Daniel
2012-01-01
Decision-making often involves using sensory cues to predict possible rewarding or punishing reinforcement outcomes before selecting a course of action. Recent work has revealed complexity in how the brain learns to predict rewards and punishments. Analysis of neural signaling during and after learning in the amygdala and orbitofrontal cortex, two brain areas that process appetitive and aversive stimuli, reveals a dynamic relationship between appetitive and aversive circuits. Specifically, the relationship between signaling in appetitive and aversive circuits in these areas shifts as a function of learning. Furthermore, although appetitive and aversive circuits may often drive opposite behaviors – approaching or avoiding reinforcement depending upon its valence – these circuits can also drive similar behaviors, such as enhanced arousal or attention; these processes also may influence choice behavior. These data highlight the formidable challenges ahead in dissecting how appetitive and aversive neural circuits interact to produce a complex and nuanced range of behaviors. PMID:23189037
Badgujar, Kirtikumar C; Bhanage, Bhalchandra M
2015-02-01
The utilisation of non-feed lignocellulosic biomass as a source of renewable bio-energy and synthesis of fine chemical products is necessary for the sustainable development. The methods for the dissolution of lignocellulosic biomass in conventional solvents are complex and tedious due to the complex chemical ultra-structure of biomass. In view of this, recent developments for the use of ionic liquid solvent (IL) has received great attention, as ILs can solubilise such complex biomass and thus provides industrial scale-up potential. In this review, we have discussed the state-of-art for the dissolution of lignocellulosic material in representative ILs. Furthermore, various process parameters and their influence for biomass dissolution were reviewed. In addition to this, overview of challenges and opportunities related to this interesting area is presented. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Palamarchuk, M. S.; Mayorov, V. Yu; Modin, E. B.; Portnyagin, A. S.; Sokol'nitskaya, T. A.; Belov, A. A.; Tananaev, I. G.; Avramenko, V. A.
2017-07-01
Molybdenum compounds are industrially demanding as heterogeneous catalysts for oxidation of various organic substances. Highly porous structure of molybdenum-containing catalysts avoids surface's colmatation and prevents blocking catalytic sites that makes these materials play a key role in processes of hydrothermal oxidation of radionuclide organic complexes. The study presents an original way of sol-gel synthesis of new macroporous molybdenum compounds using ;core-shell; colloid template (polymer latex) as poreforming agent. We have described three individual routs of template removal via thermal decomposition to obtain porous materials based on molybdenum compounds. Thermal treatment conditions (temperature, gaseous atmosphere) have been studied with respect to their influence on composition, structure and catalytic properties of synthesized molybdenum systems. The optimal way to synthesis of crystal molybdenum (VI) oxide with ordered porous structure (mean pore size 100-160 nm) has been suggested. Catalytic properties of macroporous molybdenum materials have been investigated in the process of liquid phase and hydrothermal oxidation of such organic substances thiazine and stable Co-EDTA complex. It was shown that macroporous molybdenum oxides could be applied as prospective catalysts for hydrothermal oxidation of organic radionuclide complexes during the processing of radioactive waste.
The Dynamics of Coalition Formation on Complex Networks
NASA Astrophysics Data System (ADS)
Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.
2015-08-01
Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.
Deterministic ripple-spreading model for complex networks.
Hu, Xiao-Bing; Wang, Ming; Leeson, Mark S; Hines, Evor L; Di Paolo, Ezequiel
2011-04-01
This paper proposes a deterministic complex network model, which is inspired by the natural ripple-spreading phenomenon. The motivations and main advantages of the model are the following: (i) The establishment of many real-world networks is a dynamic process, where it is often observed that the influence of a few local events spreads out through nodes, and then largely determines the final network topology. Obviously, this dynamic process involves many spatial and temporal factors. By simulating the natural ripple-spreading process, this paper reports a very natural way to set up a spatial and temporal model for such complex networks. (ii) Existing relevant network models are all stochastic models, i.e., with a given input, they cannot output a unique topology. Differently, the proposed ripple-spreading model can uniquely determine the final network topology, and at the same time, the stochastic feature of complex networks is captured by randomly initializing ripple-spreading related parameters. (iii) The proposed model can use an easily manageable number of ripple-spreading related parameters to precisely describe a network topology, which is more memory efficient when compared with traditional adjacency matrix or similar memory-expensive data structures. (iv) The ripple-spreading model has a very good potential for both extensions and applications.
Marcionilio, Suzana M L de Oliveira; Alves, Gisele M; E Silva, Rachel B Góes; Marques, Pablo J Lima; Maia, Poliana D; Neto, Brenno A D; Linares, José J
2016-10-01
This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 (-)) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl(-) led to the formation of oxychlorinated anions (mostly ClO3 (-) and ClO4 (-)) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.
The Effect of Mental Rotation on Surgical Pathological Diagnosis.
Park, Heejung; Kim, Hyun Soo; Cha, Yoon Jin; Choi, Junjeong; Minn, Yangki; Kim, Kyung Sik; Kim, Se Hoon
2018-05-01
Pathological diagnosis involves very delicate and complex consequent processing that is conducted by a pathologist. The recognition of false patterns might be an important cause of misdiagnosis in the field of surgical pathology. In this study, we evaluated the influence of visual and cognitive bias in surgical pathologic diagnosis, focusing on the influence of "mental rotation." We designed three sets of the same images of uterine cervix biopsied specimens (original, left to right mirror images, and 180-degree rotated images), and recruited 32 pathologists to diagnose the 3 set items individually. First, the items found to be adequate for analysis by classical test theory, Generalizability theory, and item response theory. The results showed statistically no differences in difficulty, discrimination indices, and response duration time between the image sets. Mental rotation did not influence the pathologists' diagnosis in practice. Interestingly, outliers were more frequent in rotated image sets, suggesting that the mental rotation process may influence the pathological diagnoses of a few individual pathologists. © Copyright: Yonsei University College of Medicine 2018.
Trust in automation: designing for appropriate reliance.
Lee, John D; See, Katrina A
2004-01-01
Automation is often problematic because people fail to rely upon it appropriately. Because people respond to technology socially, trust influences reliance on automation. In particular, trust guides reliance when complexity and unanticipated situations make a complete understanding of the automation impractical. This review considers trust from the organizational, sociological, interpersonal, psychological, and neurological perspectives. It considers how the context, automation characteristics, and cognitive processes affect the appropriateness of trust. The context in which the automation is used influences automation performance and provides a goal-oriented perspective to assess automation characteristics along a dimension of attributional abstraction. These characteristics can influence trust through analytic, analogical, and affective processes. The challenges of extrapolating the concept of trust in people to trust in automation are discussed. A conceptual model integrates research regarding trust in automation and describes the dynamics of trust, the role of context, and the influence of display characteristics. Actual or potential applications of this research include improved designs of systems that require people to manage imperfect automation.
Shaw, M; Singh, S
2015-04-01
Diagnostic error has implications for both clinical outcome and resource utilisation, and may often be traced to impaired data gathering, processing or synthesis because of the influence of cognitive bias. Factors inherent to the intensive/acute care environment afford multiple additional opportunities for such errors to occur. This article illustrates many of these with reference to a case encountered on our intensive care unit. Strategies to improve completeness of data gathering, processing and synthesis in the acute care environment are critically appraised in the context of early detection and amelioration of cognitive bias. These include reflection, targeted simulation training and the integration of social media and IT based aids in complex diagnostic processes. A framework which can be quickly and easily employed in a variety of clinical environments is then presented. © 2015 John Wiley & Sons Ltd.
Johansson, Gudrun; Eklund, Kajsa; Gosman-Hedström, Gunilla
2010-01-01
As the number of elderly persons with complex health needs is increasing, teams for their care have been recommended as a means of meeting these needs, particularly in the case of elderly persons with multi-diseases. Occupational therapists, in their role as team members, exert significant influence in guiding team recommendations. However, it has been emphasized that there is a lack of sound research to show the impact of teamwork from the perspective of elderly persons. The aim of this paper was to explore literature concerning multidisciplinary teams that work with elderly persons living in the community. The research method was a systematic literature review and a total of 37 articles was analysed. The result describes team organisation, team intervention and outcome, and factors that influence teamwork. Working in a team is multifaceted and complex. It is important to enhance awareness about factors that influence teamwork. The team process itself is also of great importance. Clinical implications for developing effective and efficient teamwork are also presented and discussed.
The Neural Basis of Social Influence in a Dictator Decision.
Wei, Zhenyu; Zhao, Zhiying; Zheng, Yong
2017-01-01
Humans tend to reduce inequitable distributions. Previous neuroimaging studies have shown that inequitable decisions are related to brain regions that associated with negative emotion and signaling conflict. In the highly complex human social environment, our opinions and behaviors can be affected by social information. In current study, we used a modified dictator game to investigate the effect of social influence on making an equitable decision. We found that the choices of participants in present task was influenced by the choices of peers. However, participants' decisions were influenced by equitable rather than inequitable group choices. fMRI results showed that brain regions that related to norm violation and social conflict were related to the inequitable social influence. The neural responses in the dorsomedial prefrontal cortex, rostral cingulate zone, and insula predicted subsequent conforming behavior in individuals. Additionally, psychophysiological interaction analysis revealed that the interconnectivity between the dorsal striatum and insula was elevated in advantageous inequity influence versus no-social influence conditions. We found decreased functional connectivity between the medial prefrontal cortex and insula, supplementary motor area, posterior cingulate gyrus and dorsal anterior cingulate cortex in the disadvantageous inequity influence versus no-social influence conditions. This suggests that a disadvantageous inequity influence may decrease the functional connectivity among brain regions that are related to reward processes. Thus, the neural mechanisms underlying social influence in an equitable decision may be similar to those implicated in social norms and reward processing.
Principal process analysis of biological models.
Casagranda, Stefano; Touzeau, Suzanne; Ropers, Delphine; Gouzé, Jean-Luc
2018-06-14
Understanding the dynamical behaviour of biological systems is challenged by their large number of components and interactions. While efforts have been made in this direction to reduce model complexity, they often prove insufficient to grasp which and when model processes play a crucial role. Answering these questions is fundamental to unravel the functioning of living organisms. We design a method for dealing with model complexity, based on the analysis of dynamical models by means of Principal Process Analysis. We apply the method to a well-known model of circadian rhythms in mammals. The knowledge of the system trajectories allows us to decompose the system dynamics into processes that are active or inactive with respect to a certain threshold value. Process activities are graphically represented by Boolean and Dynamical Process Maps. We detect model processes that are always inactive, or inactive on some time interval. Eliminating these processes reduces the complex dynamics of the original model to the much simpler dynamics of the core processes, in a succession of sub-models that are easier to analyse. We quantify by means of global relative errors the extent to which the simplified models reproduce the main features of the original system dynamics and apply global sensitivity analysis to test the influence of model parameters on the errors. The results obtained prove the robustness of the method. The analysis of the sub-model dynamics allows us to identify the source of circadian oscillations. We find that the negative feedback loop involving proteins PER, CRY, CLOCK-BMAL1 is the main oscillator, in agreement with previous modelling and experimental studies. In conclusion, Principal Process Analysis is a simple-to-use method, which constitutes an additional and useful tool for analysing the complex dynamical behaviour of biological systems.
The Complex Sol-Gel Process for producing small ThO2 microspheres
NASA Astrophysics Data System (ADS)
Brykala, Marcin; Rogowski, Marcin
2016-05-01
Thorium based fuels offer several benefits compared to uranium based fuels thus they might be an attractive alternative to conventional fuel types. This study is devoted to the synthesis and the characterization of small thorium dioxide microspheres (Ø <50 μm). Their application involves using powder-free process, called the Complex Sol-Gel Process. The source sols used for the processes were prepared by the method where in the starting ascorbic acid solution the solid thorium nitrate was dissolved and partially neutralized by aqueous ammonia under pH control. The microspheres of thorium-ascorbate gel were obtained using the ICHTJ Process (INCT in English). Studies allowed to determine an optimal heat treatment with calcination temperature of 700 °C and temperature rate not higher than 2 °C/min which enabled us to obtain a crack-free surface of microspheres. The main parameters which have a strong influence on the synthesis method and features of the spherical particles of thorium dioxide are described in this article.
Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function
Leisman, Gerry; Moustafa, Ahmed A.; Shafir, Tal
2016-01-01
In this article, we argue that motor and cognitive processes are functionally related and most likely share a similar evolutionary history. This is supported by clinical and neural data showing that some brain regions integrate both motor and cognitive functions. In addition, we also argue that cognitive processes coincide with complex motor output. Further, we also review data that support the converse notion that motor processes can contribute to cognitive function, as found by many rehabilitation and aerobic exercise training programs. Support is provided for motor and cognitive processes possessing dynamic bidirectional influences on each other. PMID:27252937
ERIC Educational Resources Information Center
Beerkens, Maarja
2015-01-01
Higher education quality assurance systems develop within a complex political environment where national level goals and priorities interact with European and global developments. Furthermore, quality assurance is influenced by broader processes in the public sector that set expectations with respect to accountability, legitimacy and regulatory…
Kinesiology and Learning: Implications for Turkish School Curriculum
ERIC Educational Resources Information Center
Ozar, Mirac
2013-01-01
Learning is a complex phenomenon and multi-faceted in nature. There are a number of parameters which influence learning cycle and the process in general. Physical exercise is thought to be one of the variants that affect the learning phenomenon. Accumulated scientific evidence can be found in the literature showing high correlations between…
Motivational Dynamics in Language Learning: Change, Stability, and Context
ERIC Educational Resources Information Center
Waninge, Freerkien; Dörnyei, Zoltán; De Bot, Kees
2014-01-01
Motivation as a variable in L2 development is no longer seen as the stable individual difference factor it was once believed to be: Influenced by process-oriented models and principles, and especially by the growing understanding of how complex dynamic systems work, researchers have been focusing increasingly on the dynamic and changeable nature…
Data, Numbers and Accountability: The Complexity, Nature and Effects of Data Use in Schools
ERIC Educational Resources Information Center
Hardy, Ian
2015-01-01
This article draws upon research in one school in Queensland, Australia, to explore how the push to data influences teacher work and subsequent student learning. This "rise of data," often oriented towards "external" and performative processes of accountability, exhibits itself in many ways, but is particularly evident in…
Beyond the Garden of Eden: Deep Teacher Professional Development
ERIC Educational Resources Information Center
Samuel, M.
2009-01-01
Becoming a professional teacher is falsely understood to be a simple process: usually consisting of a transference of skills to execute classroom pedagogy or classroom management. This article begins by exploring the many forces which influence the curriculum of teacher education in higher education, signaling the complexity of the practice of…
Italian Education beyond Hierarchy: Governance, Evaluation and Headship
ERIC Educational Resources Information Center
Grimaldi, Emiliano; Serpieri, Roberto
2014-01-01
This article deals with the changes introduced in the Italian education system after the 1997 School Autonomy reform. Looking at the complex interplay between global influences and processes of local inflection, the work explores the degree to which we are witnessing a significant shift towards a new mode of governance and the interplay between…
NASA Astrophysics Data System (ADS)
Vasil'ev, V. A.; Dobrynina, N. V.
2017-01-01
The article presents data on the influence of information upon the functioning of complex systems in the process of ensuring their effective management. Ways and methods for evaluating multidimensional information that reduce time and resources, improve the validity of the studied system management decisions, were proposed.
Developing Ethical Adult Educators: A Re-Examination of the Need for a Code of Ethics
ERIC Educational Resources Information Center
Hatcher, Tim; Storberg-Walker, Julia
2003-01-01
The moral philosophies and normative ethical guidelines of a profession influence its practice and research. More than simply assigning merit or worth to outcomes or processes, ethics is the milieu in which professionals establish integrity and develop solidarity through normative ethical worldviews. Thus, in increasingly complex contexts, adult…
Intruder or Resource? The Family's Influence in College Counseling Centers
ERIC Educational Resources Information Center
Haber, Russell; Merck, Rhea A.
2010-01-01
College can provide a transition from interdependence to differentiation in the family. With recent trends and legal cases that document increasing complexity and severity of mental health problems in college, it is important to consider the family as a partner in the therapeutic process. This article delineates a rationale, guidelines, and…
Beyond the Central Dogma: Bringing Epigenetics into the Classroom
ERIC Educational Resources Information Center
Drits-Esser, Dina; Malone, Molly; Barber, Nicola C.; Stark, Louisa A.
2014-01-01
Epigenetics is the study of how external factors and internal cellular signals can lead to changes in the packaging and processing of DNA sequences, thereby altering the expression of genes and traits. Exploring the epigenome introduces students to environmental influences on our genes and the complexities of gene expression. A supplemental…
USDA-ARS?s Scientific Manuscript database
Novel ecosystems are often defined as no-analog communities consisting of new combinations of species that assemble under new abiotic conditions. In the Anthropocene, novel systems differ from the historical state as a result of human influences where self-organizational processes prevail to make th...
Thinking Socially: Teaching Social Knowledge to Foster Social Behavioral Change
ERIC Educational Resources Information Center
Crooke, Pamela J.; Winner, Michelle Garcia; Olswang, Lesley B.
2016-01-01
This article addresses the complexity of what it means to "be social" from the perspective of social thinking. This perspective recognizes social cognitive processing abilities as the foundation for social knowledge and, in turn, social behaviors. The article further describes variables that influence how one understands how to do what…
How Well Do Students in Secondary School Understand Temporal Development of Dynamical Systems?
ERIC Educational Resources Information Center
Forjan, Matej; Grubelnik, Vladimir
2015-01-01
Despite difficulties understanding the dynamics of complex systems only simple dynamical systems without feedback connections have been taught in secondary school physics. Consequently, students do not have opportunities to develop intuition of temporal development of systems, whose dynamics are conditioned by the influence of feedback processes.…
ERIC Educational Resources Information Center
Borleffs, Elisabeth; Maassen, Ben A. M.; Lyytinen, Heikki; Zwarts, Frans
2017-01-01
This narrative review discusses quantitative indices measuring differences between alphabetic languages that are related to the process of word recognition. The specific orthography that a child is acquiring has been identified as a central element influencing reading acquisition and dyslexia. However, the development of reliable metrics to…
ERIC Educational Resources Information Center
Cherubini, Lorenzo
2009-01-01
This qualitative constructivist research study employed a unique professional case-based pedagogy to investigate how concurrent Education undergraduate students made sense of the complex dilemmas inherent in the cases and in particular, the factors that influenced their critical thinking processes. The paper identifies three core categories that…
Transitions to Adulthood for Youth with Disabilities: Emerging Themes for Practice and Research
ERIC Educational Resources Information Center
Stewart, Debra; Gorter, Jan Willem; Freeman, Matt
2013-01-01
The three common themes are emerging from recent research on positive approaches to adult transitions for youth with disabilities. The first theme acknowledges that a person's condition is only one factor that influences the developmental process of transitioning into adulthood; the second theme addresses the complexity of the numerous…
Babies' Self-Regulation: Taking a Broad Perspective
ERIC Educational Resources Information Center
Elliot, Enid; Gonzalez-Mena, Janet
2011-01-01
Self-regulation is a complex process that involves coordinating various systems of the body and mind, including feelings. It's not only about emotions but also about cognition. Self-regulation has an impact on social development, influencing how babies and toddlers get along with others. Through self-regulation, babies and toddlers learn to pay…
Leadership and Storytelling: Promoting a Culture of Learning, Positive Change, and Community
ERIC Educational Resources Information Center
Aidman, Barry; Long, Tanya Alyson
2017-01-01
Educational leaders work in increasingly complex, high pressure environments with people who have diverse backgrounds, interests, and goals. To be effective, these leaders must understand the dynamic process of creating and managing culture and change. Stories have the potential to influence culture and to help people connect, develop genuine…
Identifying Systems of Interaction in Mathematical Engagement
ERIC Educational Resources Information Center
Brown, Bruce J. L.
2014-01-01
Mathematical engagement is a complex process of interaction between the person and the world. This interaction is strongly influenced by the concepts and structure of the mathematical field, by the practical and symbolic tools of mathematics and by the focus of investigation in the world. This paper reports on research that involves a detailed…
English as a Lingua Franca: A Source of Identity for Young Europeans?
ERIC Educational Resources Information Center
Gnutzmann, Claus; Jakisch, Jenny; Rabe, Frank
2014-01-01
As a result of globalisation and the European integration process, identity concepts of young Europeans are becoming more and more diverse and possibly heterogeneous. The factors that influence the development of identity formation and impact on identity constructions are complex--but language seems to be of central importance. It is generally…
Temperament as an Indicator of Language Achievement
ERIC Educational Resources Information Center
Salmani Nodoushan, Mohammad Ali
2011-01-01
Language learning is a complex process that is controlled or influenced by a host of linguistic and non-linguistic factors. Some of these factors are the main concerns of psychologists rather than linguists. Ever since psychology began to develop in the 20th century, more and more individual characteristics were identified and defined. Eysenck's…
ERIC Educational Resources Information Center
Eccles, Robert G.
1981-01-01
Examines the factors that influence subcontracting and type of management in the construction industry. Argues that subcontracting is explained by a construction firm's size, complexity, and market extent, and that management type results from a firm's size and role in the production process and from census classification problems. (Author/RW)
USDA-ARS?s Scientific Manuscript database
The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...
Kinetic profiling of prolinate-catalyzed α-amination of aldehydes.
Hein, Jason E; Armstrong, Alan; Blackmond, Donna G
2011-08-19
Deconvolution of the role of off-cycle species from the desired catalytic cycle leads to an optimized protocol for the prolinate-catalyzed amination of aldehydes. The scope of complex reaction networks will be greatly broadened by understanding ancillary rate processes that influence the productive catalytic pathway. © 2011 American Chemical Society
Bilingualism Matters: One Size Does Not Fit All
ERIC Educational Resources Information Center
Gathercole, Virginia C. Mueller
2014-01-01
The articles in this special issue provide a complex picture of acquisition in bilinguals in which the factors that contribute to patterns of performance in bilingual children's two languages are myriad and diverse. The processes and contours of development in bilingual children are influenced, not only by the quantity, quality, and contexts…
Improving the Quality of E-Learning: Lessons from the eMM
ERIC Educational Resources Information Center
Marshall, S.
2012-01-01
The quality of e-learning can be defined in many different ways, reflecting different stakeholders and the complexity of the systems and processes used in higher education. These different conceptions of quality can be mutually contradictory and, while politically significant, may also be beyond the direct control or influence of institutional…
Detestable or Marvelous? Neuroanatomical Correlates of Character Judgments
ERIC Educational Resources Information Center
Croft, Katie E.; Duff, Melissa C.; Kovach, Christopher K.; Anderson, Steven W.; Adolphs, Ralph; Tranel, Daniel
2010-01-01
As we learn new information about the social and moral behaviors of other people, we form and update character judgments of them, and this can profoundly influence how we regard and act towards others. In the study reported here, we capitalized on two interesting neurological patient populations where this process of complex "moral…
Culture as an Influencing Factor in Adolescent Grief and Bereavement
ERIC Educational Resources Information Center
Lopez, Sandra A.
2011-01-01
Culture is a complex and important consideration in the process of helping others. In clinical practice, we must view the individual within the context of their culture in order for assessment or treatment to be effective. Further, to overlook or negate culture, a practitioner may possibly operate from faulty cultural assumptions or…
The value of decision models: Using ecologically based invasive plant management as an example
USDA-ARS?s Scientific Manuscript database
Humans have both fast and slow thought processes which influence our judgment and decision-making. The fast system is intuitive and valuable for decisions which do not require multiple steps or the application of logic or statistics. However, many decisions in natural resources are complex and req...
[Influence of mental rotation of objects on psychophysiological functions of women].
Chikina, L V; Fedorchuk, S V; Trushina, V A; Ianchuk, P I; Makarchuk, M Iu
2012-01-01
An integral part of activity of modern human beings is an involvement to work with the computer systems which, in turn, produces a nervous - emotional tension. Hence, a problem of control of the psychophysiological state of workmen with the purpose of health preservation and success of their activity and the problem of application of rehabilitational actions are actual. At present it is known that the efficiency of rehabilitational procedures rises following application of the complex of regenerative programs. Previously performed by us investigation showed that mental rotation is capable to compensate the consequences of a nervous - emotional tension. Therefore, in the present work we investigated how the complex of spatial tasks developed by us influences psychophysiological performances of tested women for which the psycho-emotional tension with the usage of computer technologies is more essential, and the procedure of mental rotation is more complex task for them, than for men. The complex of spatial tasks applied in the given work included: mental rotation of simple objects (letters and digits), mental rotation of complex objects (geometrical figures) and mental rotation of complex objects with the usage of a short-term memory. Execution of the complex of spatial tasks reduces the time of simple and complex sensomotor response, raises parameters of a short-term memory, brain work capacity and improves nervous processes. Collectively, mental rotation of objects can be recommended as a rehabilitational resource for compensation of consequences of any psycho-emotional strain, both for men, and for women.
Barken, Tina Lien; Thygesen, Elin; Söderhamn, Ulrika
2017-12-28
Telemedicine is changing traditional nursing care, and entails nurses performing advanced and complex care within a new clinical environment, and monitoring patients at a distance. Telemedicine practice requires complex disease management, advocating that the nurses' reasoning and decision-making processes are supported. Computerised decision support systems are being used increasingly to assist reasoning and decision-making in different situations. However, little research has focused on the clinical reasoning of nurses using a computerised decision support system in a telemedicine setting. Therefore, the objective of the study is to explore the process of telemedicine nurses' clinical reasoning when using a computerised decision support system for the management of patients with chronic obstructive pulmonary disease. The factors influencing the reasoning and decision-making processes were investigated. In this ethnographic study, a combination of data collection methods, including participatory observations, the think-aloud technique, and a focus group interview was employed. Collected data were analysed using qualitative content analysis. When telemedicine nurses used a computerised decision support system for the management of patients with complex, unstable chronic obstructive pulmonary disease, two categories emerged: "the process of telemedicine nurses' reasoning to assess health change" and "the influence of the telemedicine setting on nurses' reasoning and decision-making processes". An overall theme, termed "advancing beyond the system", represented the connection between the reasoning processes and the telemedicine work and setting, where being familiar with the patient functioned as a foundation for the nurses' clinical reasoning process. In the telemedicine setting, when supported by a computerised decision support system, nurses' reasoning was enabled by the continuous flow of digital clinical data, regular video-mediated contact and shared decision-making with the patient. These factors fostered an in-depth knowledge of the patients and acted as a foundation for the nurses' reasoning process. Nurses' reasoning frequently advanced beyond the computerised decision support system recommendations. Future studies are warranted to develop more accurate algorithms, increase system maturity, and improve the integration of the digital clinical information with clinical experiences, to support telemedicine nurses' reasoning process.
Complexity and Health Coaching: Synergies in Nursing
Mitchell, Gail J.; Wong, Winnie; Rush, Danica
2013-01-01
Health care professionals are increasingly aware that persons are complex and live in relation with other complex human communities and broader systems. Complex beings and systems are living and evolving in nonlinear ways through a process of mutual influence. Traditional standardized approaches in chronic disease management do not address these non-linear linkages and the meaning and changes that impact day-to-day life and caring for self and family. The RN health coach role described in this paper addresses the complexities and ambiguities for persons living with chronic illness in order to provide person-centered care and support that are unique and responsive to the context of persons' lives. Informed by complexity thinking and relational inquiry, the RN health coach is an emergent innovation of creative action with community and groups that support persons as they shape their health and patterns of living. PMID:24102025
Multiple mechanisms influencing the relationship between alcohol consumption and peer alcohol use.
Edwards, Alexis C; Maes, Hermine H; Prescott, Carol A; Kendler, Kenneth S
2015-02-01
Alcohol consumption is typically correlated with the alcohol use behaviors of one's peers. Previous research has suggested that this positive relationship could be due to social selection, social influence, or a combination of both processes. However, few studies have considered the role of shared genetic and environmental influences in conjunction with causal processes. This study uses data from a sample of male twins (N = 1,790) who provided retrospective reports of their own alcohol consumption and their peers' alcohol-related behaviors, from adolescence into young adulthood (ages 12 to 25). Structural equation modeling was employed to compare 3 plausible models of genetic and environmental influences on the relationship between phenotypes over time. Model fitting indicated that one's own alcohol consumption and the alcohol use of one's peers are related through both genetic and shared environmental factors and through unique environmental causal influences. The relative magnitude of these factors, and their contribution to covariation, changed over time, with genetic factors becoming more meaningful later in development. Peers' alcohol use behaviors and one's own alcohol consumption are related through a complex combination of genetic and environmental factors that act via correlated factors and the complementary causal mechanisms of social selection and influence. Understanding these processes can inform risk assessment as well as improve our ability to model the development of alcohol use. Copyright © 2015 by the Research Society on Alcoholism.
Multiple mechanisms influencing the relationship between alcohol consumption and peer alcohol use
Edwards, Alexis C.; Maesr, Hermine H.; Prescott, Carol A.; Kendler, Kenneth S.
2014-01-01
Background Alcohol consumption is typically correlated with the alcohol use behaviors of one’s peers. Previous research has suggested that this positive relationship could be due to social selection, social influence, or a combination of both processes. However, few studies have considered the role of shared genetic and environmental influences in conjunction with causal processes. Methods The current study uses data from a sample of male twins (N=1790) who provided retrospective reports of their own alcohol consumption and their peers’ alcohol related behaviors, from adolescence into young adulthood (ages 12–25). Structural equation modeling was employed to compare three plausible models of genetic and environmental influences on the relationship between phenotypes over time. Results Model fitting indicated that one’s own alcohol consumption and the alcohol use of one’s peers are related through both genetic and shared environmental factors and through unique environmental causal influences. The relative magnitude of these factors, and their contribution to covariation, changed over time, with genetic factors becoming more meaningful later in development. Conclusions Peers’ alcohol use behaviors and one’s own alcohol consumption are related through a complex combination of genetic and environmental factors that act via correlated factors and the complementary causal mechanisms of social selection and influence. Understanding these processes can inform risk assessment as well as improve our ability to model the development of alcohol use. PMID:25597346
The multifunctional nuclear pore complex: a platform for controlling gene expression
Ptak, Christopher; Aitchison, John D.; Wozniak, Richard W.
2014-01-01
In addition to their established roles in nucleocytoplasmic transport, the intimate association of nuclear pore complexes (NPCs) with chromatin has long led to speculation that these structures influence peripheral chromatin structure and regulate gene expression. These ideas have their roots in morphological observations, however recent years have seen the identification of physical interactions between NPCs, chromatin, and the transcriptional machinery. Key insights into the molecular functions of specific NPC proteins have uncovered roles for these proteins in transcriptional activation and elongation, mRNA processing, as well as chromatin structure and localization. Here, we review recent studies that provide further molecular detail on the role of specific NPC components as distinct platforms for these chromatin dependent processes. PMID:24657998
Deciphering the Interdependence between Ecological and Evolutionary Networks.
Melián, Carlos J; Matthews, Blake; de Andreazzi, Cecilia S; Rodríguez, Jorge P; Harmon, Luke J; Fortuna, Miguel A
2018-05-24
Biological systems consist of elements that interact within and across hierarchical levels. For example, interactions among genes determine traits of individuals, competitive and cooperative interactions among individuals influence population dynamics, and interactions among species affect the dynamics of communities and ecosystem processes. Such systems can be represented as hierarchical networks, but can have complex dynamics when interdependencies among levels of the hierarchy occur. We propose integrating ecological and evolutionary processes in hierarchical networks to explore interdependencies in biological systems. We connect gene networks underlying predator-prey trait distributions to food webs. Our approach addresses longstanding questions about how complex traits and intraspecific trait variation affect the interdependencies among biological levels and the stability of meta-ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dakshinamurthy, Devika; Gupta, Srinivasa
2018-04-01
Fused Deposition Modelling (FDM) is a fast growing Rapid Prototyping (RP) technology due to its ability to build parts having complex geometrical shape in reasonable time period. The quality of built parts depends on many process variables. In this study, the influence of three FDM process parameters namely, slice height, raster angle and raster width on viscoelastic properties of Acrylonitrile Butadiene Styrene (ABS) RP-specimen is studied. Statistically designed experiments have been conducted for finding the optimum process parameter setting for enhancing the storage modulus. Dynamic Mechanical Analysis has been used to understand the viscoelastic properties at various parameter settings. At the optimal parameter setting the storage modulus and loss modulus of the ABS-RP specimen was 1008 and 259.9 MPa respectively. The relative percentage contribution of slice height and raster width on the viscoelastic properties of the FDM-RP components was found to be 55 and 31 % respectively.
How does information congruence influence diagnosis performance?
Chen, Kejin; Li, Zhizhong
2015-01-01
Diagnosis performance is critical for the safety of high-consequence industrial systems. It depends highly on the information provided, perceived, interpreted and integrated by operators. This article examines the influence of information congruence (congruent information vs. conflicting information vs. missing information) and its interaction with time pressure (high vs. low) on diagnosis performance on a simulated platform. The experimental results reveal that the participants confronted with conflicting information spent significantly more time generating correct hypotheses and rated the results with lower probability values than when confronted with the other two levels of information congruence and were more prone to arrive at a wrong diagnosis result than when they were provided with congruent information. This finding stresses the importance of the proper processing of non-congruent information in safety-critical systems. Time pressure significantly influenced display switching frequency and completion time. This result indicates the decisive role of time pressure. Practitioner Summary: This article examines the influence of information congruence and its interaction with time pressure on human diagnosis performance on a simulated platform. For complex systems in the process control industry, the results stress the importance of the proper processing of non-congruent information in safety-critical systems.
Dou, Ming; Zuo, Qiting; Zhang, Jinping; Li, Congying; Li, Guiqiu
2013-09-01
With rapid economic development, the Pearl River Delta (PRD) of China has experienced a series of serious heavy metal pollution events. Considering complex hydrodynamic and pollutants transport process, one-dimensional hydrodynamic model and heavy metal transport model were developed for tidal river network of the PRD. Then, several pollution emergency scenarios were designed by combining with the upper inflow, water quality and the lower tide level boundary conditions. Using this set of models, the temporal and spatial change process of cadmium (Cd) concentration was simulated. The influence of change in hydrodynamic conditions on Cd transport in tidal river network was assessed, and its transport laws were summarized. The result showed the following: Flow changes in the tidal river network were influenced remarkably by tidal backwater action, which further influenced the transport process of heavy metals; Cd concentrations in most sections while encountering high tide were far greater than those while encountering middle or low tides; and increased inflows from upper reaches could intensify water pollution in the West River (while encountering high tide) or the North River (while encountering middle or low tides).
Protein-Protein Interactions of Azurin Complex by Coarse-Grained Simulations with a Gō-Like Model
NASA Astrophysics Data System (ADS)
Rusmerryani, Micke; Takasu, Masako; Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi
Proteins usually perform their biological functions by forming a complex with other proteins. It is very important to study the protein-protein interactions since these interactions are crucial in many processes of a living organism. In this study, we develop a coarse grained model to simulate protein complex in liquid system. We carry out molecular dynamics simulations with topology-based potential interactions to simulate dynamical properties of Pseudomonas Aeruginosa azurin complex systems. Azurin is known to play an essential role as an anticancer agent and bind many important intracellular molecules. Some physical properties are monitored during simulation time to get a better understanding of the influence of protein-protein interactions to the azurin complex dynamics. These studies will provide valuable insights for further investigation on protein-protein interactions in more realistic system.
Hypoaigic influences on groundwater flux to a seasonally saline river
NASA Astrophysics Data System (ADS)
Trefry, M. G.; Svensson, T. J. A.; Davis, G. B.
2007-03-01
SummaryHypoaigic zones are aquifer volumes close to and beneath the shores of saline surface water bodies, and are characterized by the presence of time-dependent natural convection and chemical stratification. When transient and cyclic processes are involved there is significant potential for complex flow and reaction in the near-shore aquifer, presenting a unique challenge to pollutant risk assessment methodologies. This work considers the nature of some hypoaigic processes generated by the seasonally saline Canning River of Western Australia near a site contaminated by petroleum hydrocarbons. A dissolved hydrocarbon plume migrates within the shallow superficial aquifer to the nearby bank of the Canning River. Beneath the river bank a zone of complex fluid mixing is established by seasonal and tidal influences. Understanding this complexity and the subsequent ramifications for local biogeochemical conditions is critical to inferring the potential for degradation of advecting contaminants. A range of modelling approaches throws light on the overall topographic controls of discharge to the river, on the saline convection processes operating under the river bank, on the potential for fluid mixing, and on the various important time scales in the system. Saline distributions simulated within the aquifer hypoaigic zone are in at least qualitative agreement with previous field measurements at the site and are strongly affected by seasonal influences. Groundwater seepage velocities at the shoreline are found to be positively correlated with river salinity. Calculations of fluid age distributions throughout the system show sensitivity to dispersivity values; however, maximum fluid ages under the river appear to be diffusion limited to a few decades. The saline convection cell in the aquifer defines a zone of strong dispersive dilution of aged (many decades) deep aquifer fluids with relatively young (several months) riverine fluids. Seasonal recharge and river salinity cycles induce regular perturbations to the convection cell, yielding intra-annual variations of 50% in seepage velocity and almost 30% in wedge penetration distance at the plume location.
An approach to contouring the dorsal vagal complex for radiotherapy planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Steen, Lillie; Amdur, Robert J., E-mail: amdurr@shands.ufl.edu
Multiple studies suggest that radiation dose to the area of the brainstem called the “dorsal vagal complex (DVC)” influences the frequency of nausea and vomiting during radiotherapy. The purpose of this didactic article is to describe the step-by-step process that we use to contour the general area of the DVC on axial computed tomography (CT) images as would be done for radiotherapy planning. The contouring procedure that we describe for contouring the area of the DVC is useful to medical dosimetrists and radiation oncologists.
Influencing of resorption and side-effects of salicylic acid by complexing with beta-cyclodextrin.
Szejtli, J; Gerlóczy, A; Sebestyén, G; Fónagy, A
1981-04-01
After oral administration of 14C-labelled salicylic acid and its beta-cyclodextrin complex to rats, the blood radioactivity-level increases in the first 2 h than decreases. The blood level obtained with the inclusion complex is somewhat but not significantly lower than with free acid. Since the resorption of cyclodextrin is a considerably slower process, it is very likely that the resorption of salicylic acid take place in the form of free acid after dissociation of the complex. The urinary excretion cumulative curves show that the free salicylic acid is completely excreted, while about 10% of the salicylic acid administered in the form of complex is lost. The cyclodextrin complex formation increases the pK value of all hydroxy-benzoic acids. Direct observations reveals that complex formation decreases the stomach-irritating effect of salicylic acid. The ratio of radioactivity was nearly the same in the organs of animals treated by both free salicylic and cyclodextrin complex.
Joint estimation of preferential attachment and node fitness in growing complex networks
NASA Astrophysics Data System (ADS)
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi
2016-09-01
Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit.
Joint estimation of preferential attachment and node fitness in growing complex networks
Pham, Thong; Sheridan, Paul; Shimodaira, Hidetoshi
2016-01-01
Complex network growth across diverse fields of science is hypothesized to be driven in the main by a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit. PMID:27601314
Cultural differences in the lateral occipital complex while viewing incongruent scenes
Yang, Yung-Jui; Goh, Joshua; Hong, Ying-Yi; Park, Denise C.
2010-01-01
Converging behavioral and neuroimaging evidence indicates that culture influences the processing of complex visual scenes. Whereas Westerners focus on central objects and tend to ignore context, East Asians process scenes more holistically, attending to the context in which objects are embedded. We investigated cultural differences in contextual processing by manipulating the congruence of visual scenes presented in an fMR-adaptation paradigm. We hypothesized that East Asians would show greater adaptation to incongruent scenes, consistent with their tendency to process contextual relationships more extensively than Westerners. Sixteen Americans and 16 native Chinese were scanned while viewing sets of pictures consisting of a focal object superimposed upon a background scene. In half of the pictures objects were paired with congruent backgrounds, and in the other half objects were paired with incongruent backgrounds. We found that within both the right and left lateral occipital complexes, Chinese participants showed significantly greater adaptation to incongruent scenes than to congruent scenes relative to American participants. These results suggest that Chinese were more sensitive to contextual incongruity than were Americans and that they reacted to incongruent object/background pairings by focusing greater attention on the object. PMID:20083532
Tu, Yan; Johnstone, Cameron N; Stewart, Alastair G
2017-05-01
Annexin A1 is a multifunctional protein characterised by its actions in modulating the innate and adaptive immune response. Accumulating evidence of altered annexin A1 expression in many human tumours raises interest in its functional role in cancer biology. In breast cancer, altered annexin A1 expression levels suggest a potential influence on tumorigenic and metastatic processes. However, reports of conflicting results reveal a relationship that is much more complex than first conceptualised. In this review, we explore the diverse actions of annexin A1 on breast tumour cells and various host cell types, including stromal immune and structural cells, particularly in the context of cancer immunoediting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ciguatera fish poisoning in la Habana, Cuba: a study of local social-ecological resilience.
Morrison, Karen; Aguiar Prieto, Pablo; Castro Domínguez, Arnaldo; Waltner-Toews, David; Fitzgibbon, John
2008-09-01
Following the collapse of the Cuban economy in the early 1990s, epidemiologists in the Cuban Ministry of Health noticed dramatic increases in reported outbreaks of ciguatera fish poisoning (CFP) in some coastal communities. This article summarizes the results of a comparative case study which applied an ecosystem approach to human health to investigate this issue. Situated learning and complexity theories were used to interpret the results of the investigation. CFP outbreaks are influenced by a complex set of interactions between ecological and socioeconomic processes. This study found that the level of organization of the local sports fishing community and the degree of degradation of the local nearshore marine ecosystem appear to be key factors influencing the diverging levels of CFP outbreaks recorded in the 1990s in the communities studied.
Examining the freezing process of an intermediate bulk containing an industrially relevant protein
Reinsch, Holger; Spadiut, Oliver; Heidingsfelder, Johannes; Herwig, Christoph
2015-01-01
Numerous biopharmaceuticals are produced in recombinant microorganisms in the controlled environment of a bioreactor, a process known as Upstream Process. To minimize product loss due to physico-chemical and enzymatic degradation, the Upstream Process should be directly followed by product purification, known as Downstream Process. However, the Downstream Process can be technologically complex and time-consuming which is why Upstream and Downstream Process usually have to be decoupled temporally and spatially. Consequently, the product obtained after the Upstream Process, known as intermediate bulk, has to be stored. In those circumstances, a freezing procedure is often performed to prevent product loss. However, the freezing process itself is inseparably linked to physico-chemical changes of the intermediate bulk which may in turn damage the product. The present study analysed the behaviour of a Tris-buffered intermediate bulk containing a biopharmaceutically relevant protein during a bottle freezing process. Major damaging mechanisms, like the spatiotemporal redistribution of ion concentrations and pH, and their influence on product stability were investigated. Summarizing, we show the complex events which happen in an intermediate bulk during freezing and explain the different causes for product loss. PMID:25765305
Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel
NASA Astrophysics Data System (ADS)
Xie, Yanmin
2011-08-01
Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.
An Analysis of Hospital Accreditation Policy in Iran
YOUSEFINEZHADI, Taraneh; MOSADEGHRAD, Ali Mohammad; ARAB, Mohammad; RAMEZANI, Mozhdeh; SARI, Ali AKBARI
2017-01-01
Background: Public policymaking is complex and lacks research evidences, particularly in the Eastern Mediterranean Region (EMR). This policy analysis aims to generate insights about the process of hospital accreditation policy making in Iran, to identify factors influencing policymaking and to evaluate utilization of evidence in policy making process. Methods: The study examined the policymaking process using Walt and Gilson framework. A qualitative research design was employed. Thirty key informant interviews with policymakers and stakeholders were conducted. In addition hundred and five related documents were reviewed. Data was analyzed using framework analysis. Results: The accreditation program was a decision made at Ministry of Health and Medical Education in Iran. Many healthcare stakeholders were involved and evidence from leading countries was used to guide policy development. Poor hospital managers’ commitment, lack of physicians’ involvement and inadequate resources were the main barriers in policy implementation. Furthermore, there were too many accreditations standards and criteria, surveyors were not well-trained, had little motivation for their work and there was low consistency among them. Conclusion: This study highlighted the complex nature of policymaking cycle and highlighted various factors influencing policy development, implementation and evaluation. An effective accreditation program requires a robust well-governed accreditation body, various stakeholders’ involvement, sufficient resources and sustainable funds, enough human resources, hospital managers’ commitment, and technical assistance to hospitals. PMID:29308378
Public health evolutionary biology of antimicrobial resistance: priorities for intervention
Baquero, Fernando; Lanza, Val F; Cantón, Rafael; Coque, Teresa M
2015-01-01
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR. PMID:25861381
Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.
2016-07-14
The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. Thismore » complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.« less
Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact
NASA Astrophysics Data System (ADS)
Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.
2016-07-01
The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.
Nita, Loredana Elena; Chiriac, Aurica P; Neamtu, Iordana; Bercea, Maria
2010-03-01
The interpenetrated macromolecular chains complexation between poly(aspartic acid) and poly(vinyl alcohol) in aqueous solution it was investigated. The interpolymer complexation process was evaluated through dynamic rheology. The aspects concerning the stability of the tested homopolymers and the prepared interpolymeric complex there were achieved from the evaluation of the aqueous solutions'zeta potential and also by determining the pH influence upon the zeta potential and the conductivity. The data obtained through the rheological dynamic measurements were correlated with the composition of the polymeric mixture, the dependence of zeta potential and conductivity. The study reveals the conditions for the formation of interpenetrated polymeric complex as being a ratio of 70wt.% PAS to 30wt.% PVA at 22 degrees C and 50/50 PAS/PVA ratio at 37 degrees C temperature. From the pH influence upon the zeta potential values it was evidenced the PAS aqueous solution does not reach the isoelectric point. At the same time, PVA solution and the complex PAS/PVA reaches the isoelectric point at strongly acid pH. The better stability of PAS, PVA and their mixture in solution is recorded in the alkaline domain (7.5
The influence of environmental factors on bone tissue engineering.
Szpalski, Caroline; Sagebin, Fabio; Barbaro, Marissa; Warren, Stephen M
2013-05-01
Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.
Information Search and Decision Making: The Effects of Age and Complexity on Strategy Use
Queen, Tara L.; Hess, Thomas M.; Ennis, Gilda E.; Dowd, Keith; Grühn, Daniel
2012-01-01
The impact of task complexity on information search strategy and decision quality was examined in a sample of 135 young, middle-aged, and older adults. We were particularly interested in the competing roles of fluid cognitive ability and domain knowledge and experience, with the former being a negative influence and the latter being a positive influence on older adults’ performance. Participants utilized two decision matrices, which varied in complexity, regarding a consumer purchase. Using process tracing software and an algorithm developed to assess decision strategy, we recorded search behavior, strategy selection, and final decision. Contrary to expectations, older adults were not more likely than the younger age groups to engage in information-minimizing search behaviors in response to increases in task complexity. Similarly, adults of all ages used comparable decision strategies and adapted their strategies to the demands of the task. We also examined decision outcomes in relation to participants’ preferences. Overall, it seems that older adults utilize simpler sets of information primarily reflecting the most valued attributes in making their choice. The results of this study suggest that older adults are adaptive in their approach to decision making and this ability may benefit from accrued knowledge and experience. PMID:22663157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen
Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less
Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; ...
2017-06-15
Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less
Recent advances in understanding secondary organic aerosol: Implications for global climate forcing
NASA Astrophysics Data System (ADS)
Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Kuang, Chongai; Laskin, Alexander; Martin, Scot T.; Ng, Nga Lee; Petaja, Tuukka; Pierce, Jeffrey R.; Rasch, Philip J.; Roldin, Pontus; Seinfeld, John H.; Shilling, John; Smith, James N.; Thornton, Joel A.; Volkamer, Rainer; Wang, Jian; Worsnop, Douglas R.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi
2017-06-01
Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.
Using a Numerical Model to Assess the Geomorphic Impacts of Forest Management Scenarios on Streams
NASA Astrophysics Data System (ADS)
Davidson, S. L.; Eaton, B. C.
2014-12-01
In-stream large wood governs the morphology of many small to intermediate streams, while riparian vegetation influences bank strength and channel pattern. Forest management practices such as harvesting and fire suppression therefore dramatically influence channel processes and associated aquatic habitat. The primary objective of this research is to compare the impacts of three common forest scenarios - natural fire disturbance, forest harvesting with a riparian buffer, and fire suppression - on the volume of in-channel wood and the complexity of aquatic habitat in channels at a range of scales. Each scenario is explored through Monte Carlo simulations run over a period of 1000 years using a numerical reach scale channel simulator (RSCS), with variations in tree toppling rate and forest density used to represent each forest management trajectory. The habitat complexity associated with each scenario is assessed based on the area of the bed occupied by pools and spawning sized sediment, the availability of wood cover, and the probability of avulsion. Within the fire scenario, we also use the model to separately investigate the effects of root decay and recovery on equilibrium channel geometry by varying the rooting depth and associated bank strength through time. The results show that wood loading and habitat complexity are influenced by the timing and magnitude of wood recruitment, as well as channel scale. The forest harvesting scenario produces the lowest wood loads and habitat complexity so long as the buffer width is less than the average mature tree height. The natural fire cycle produces the greatest wood loading and habitat complexity, but also the greatest variability because these streams experience significant periods without wood recruitment as forests regenerate. In reaches that experience recurrent fires, width increases in the post-fire period as roots decay, at times producing a change in channel pattern when a threshold width to depth ratio is exceeded, and decreases as the forest regenerates. In all cases, the effects are greatest in small to intermediate sized streams where wood is the dominant driver of channel morphology, and become negligible in large streams governed by fluvial processes.
Multicriteria Analysis of Assembling Buildings from Steel Frame Structures
NASA Astrophysics Data System (ADS)
Miniotaite, Ruta
2017-10-01
Steel frame structures are often used in the construction of public and industrial buildings. They are used for: all types of slope roofs; walls of newly-built public and industrial buildings; load bearing structures; roofs of renovated buildings. The process of assembling buildings from steel frame structures should be analysed as an integrated process influenced by such factors as construction materials and machinery used, the qualification level of construction workers, complexity of work, available finance. It is necessary to find a rational technological design solution for assembling buildings from steel frame structures by conducting a multiple criteria analysis. The analysis provides a possibility to evaluate the engineering considerations and find unequivocal solutions. The rational alternative of a complex process of assembling buildings from steel frame structures was found through multiple criteria analysis and multiple criteria evaluation. In multiple criteria evaluation of technological solutions for assembling buildings from steel frame structures by pairwise comparison method the criteria by significance are distributed as follows: durability is the most important criterion in the evaluation of alternatives; the price (EUR/unit of measurement) of a part of assembly process; construction workers’ qualification level (category); mechanization level of a part of assembling process (%), and complexity of assembling work (in points) are less important criteria.
Huijg, Johanna M; van der Zouwe, Nicolette; Crone, Mathilde R; Verheijden, Marieke W; Middelkoop, Barend J C; Gebhardt, Winifred A
2015-06-01
The introduction of efficacious physical activity (PA) interventions in routine primary health care (PHC) is a complex process. Understanding factors influencing the process can enhance the development of successful introduction strategies. The aim of this qualitative study was to explore stakeholders' perceptions on factors influencing the introduction, i.e., adoption, implementation, and continuation, of PA interventions in PHC. Twenty-eight semistructured interviews were held with intervention managers, PHC advisors, intervention providers, and referring general practitioners of five PA interventions delivered in PHC. A theoretical framework on the introduction of innovations in health care was used to guide the data collection. Influencing factors were identified using thematic analysis. Stakeholders reported preconditions for the introduction of PA interventions in PHC (e.g., support, resources, and networks and collaborations), in addition to characteristics of PA interventions (e.g., compatibility, flexibility, and intervention materials) and characteristics of PHC professionals (e.g., knowledge, positive attitudes, and beliefs about capabilities) perceived to enhance the introduction process. Furthermore, they proposed strategies for the development of PA interventions (e.g., involvement of future stakeholders, full development, and refinement) and strategies to introduce PA interventions in PHC (e.g., training, assistance, and reinforcement). The majority of the influencing factors were discussed specifically in relation to one or two stages. This study presents an overview of factors that are perceived to influence the introduction of PA interventions in PHC. It underscores the importance of taking these factors into account when designing introduction strategies and of giving special attention to the distinct stages of the process.
Pavlov, A N; Pavlova, O N; Abdurashitov, A S; Sindeeva, O A; Semyachkina-Glushkovskaya, O V; Kurths, J
2018-01-01
The scaling properties of complex processes may be highly influenced by the presence of various artifacts in experimental recordings. Their removal produces changes in the singularity spectra and the Hölder exponents as compared with the original artifacts-free data, and these changes are significantly different for positively correlated and anti-correlated signals. While signals with power-law correlations are nearly insensitive to the loss of significant parts of data, the removal of fragments of anti-correlated signals is more crucial for further data analysis. In this work, we study the ability of characterizing scaling features of chaotic and stochastic processes with distinct correlation properties using a wavelet-based multifractal analysis, and discuss differences between the effect of missed data for synchronous and asynchronous oscillatory regimes. We show that even an extreme data loss allows characterizing physiological processes such as the cerebral blood flow dynamics.
Oceanic forcing of coral reefs.
Lowe, Ryan J; Falter, James L
2015-01-01
Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.
Technical Efficiency and Organ Transplant Performance: A Mixed-Method Approach
de-Pablos-Heredero, Carmen; Fernández-Renedo, Carlos; Medina-Merodio, Jose-Amelio
2015-01-01
Mixed methods research is interesting to understand complex processes. Organ transplants are complex processes in need of improved final performance in times of budgetary restrictions. As the main objective a mixed method approach is used in this article to quantify the technical efficiency and the excellence achieved in organ transplant systems and to prove the influence of organizational structures and internal processes in the observed technical efficiency. The results show that it is possible to implement mechanisms for the measurement of the different components by making use of quantitative and qualitative methodologies. The analysis show a positive relationship between the levels related to the Baldrige indicators and the observed technical efficiency in the donation and transplant units of the 11 analyzed hospitals. Therefore it is possible to conclude that high levels in the Baldrige indexes are a necessary condition to reach an increased level of the service offered. PMID:25950653
NASA Astrophysics Data System (ADS)
Pavlov, A. N.; Pavlova, O. N.; Abdurashitov, A. S.; Sindeeva, O. A.; Semyachkina-Glushkovskaya, O. V.; Kurths, J.
2018-01-01
The scaling properties of complex processes may be highly influenced by the presence of various artifacts in experimental recordings. Their removal produces changes in the singularity spectra and the Hölder exponents as compared with the original artifacts-free data, and these changes are significantly different for positively correlated and anti-correlated signals. While signals with power-law correlations are nearly insensitive to the loss of significant parts of data, the removal of fragments of anti-correlated signals is more crucial for further data analysis. In this work, we study the ability of characterizing scaling features of chaotic and stochastic processes with distinct correlation properties using a wavelet-based multifractal analysis, and discuss differences between the effect of missed data for synchronous and asynchronous oscillatory regimes. We show that even an extreme data loss allows characterizing physiological processes such as the cerebral blood flow dynamics.
Silvestro, Paolo Cosmo; Pignatti, Stefano; Yang, Hao; Yang, Guijun; Pascucci, Simone; Castaldi, Fabio; Casa, Raffaele
2017-01-01
Process-based models can be usefully employed for the assessment of field and regional-scale impact of drought on crop yields. However, in many instances, especially when they are used at the regional scale, it is necessary to identify the parameters and input variables that most influence the outputs and to assess how their influence varies when climatic and environmental conditions change. In this work, two different crop models, able to represent yield response to water, Aquacrop and SAFYE, were compared, with the aim to quantify their complexity and plasticity through Global Sensitivity Analysis (GSA), using Morris and EFAST (Extended Fourier Amplitude Sensitivity Test) techniques, for moderate to strong water limited climate scenarios. Although the rankings of the sensitivity indices was influenced by the scenarios used, the correlation among the rankings, higher for SAFYE than for Aquacrop, assessed by the top-down correlation coefficient (TDCC), revealed clear patterns. Parameters and input variables related to phenology and to water stress physiological processes were found to be the most influential for Aquacrop. For SAFYE, it was found that the water stress could be inferred indirectly from the processes regulating leaf growth, described in the original SAFY model. SAFYE has a lower complexity and plasticity than Aquacrop, making it more suitable to less data demanding regional scale applications, in case the only objective is the assessment of crop yield and no detailed information is sought on the mechanisms of the stress factors affecting its limitations.
Pignatti, Stefano; Yang, Hao; Yang, Guijun; Pascucci, Simone; Castaldi, Fabio
2017-01-01
Process-based models can be usefully employed for the assessment of field and regional-scale impact of drought on crop yields. However, in many instances, especially when they are used at the regional scale, it is necessary to identify the parameters and input variables that most influence the outputs and to assess how their influence varies when climatic and environmental conditions change. In this work, two different crop models, able to represent yield response to water, Aquacrop and SAFYE, were compared, with the aim to quantify their complexity and plasticity through Global Sensitivity Analysis (GSA), using Morris and EFAST (Extended Fourier Amplitude Sensitivity Test) techniques, for moderate to strong water limited climate scenarios. Although the rankings of the sensitivity indices was influenced by the scenarios used, the correlation among the rankings, higher for SAFYE than for Aquacrop, assessed by the top-down correlation coefficient (TDCC), revealed clear patterns. Parameters and input variables related to phenology and to water stress physiological processes were found to be the most influential for Aquacrop. For SAFYE, it was found that the water stress could be inferred indirectly from the processes regulating leaf growth, described in the original SAFY model. SAFYE has a lower complexity and plasticity than Aquacrop, making it more suitable to less data demanding regional scale applications, in case the only objective is the assessment of crop yield and no detailed information is sought on the mechanisms of the stress factors affecting its limitations. PMID:29107963
Decision-Making Rationales among Quebec VET Student Aged 25 and Older
ERIC Educational Resources Information Center
Cournoyer, Louis; Deschenaux, Frédéric
2017-01-01
Each year, a large number of students aged 25 years and over take part in vocational and education training (VET) programs in the Province of Quebec, Canada. The life experiences of many of these adults are marked by complex psychosocial and professional events, which may have influenced their career decision-making processes. This paper aimed to…
Soil ecological interactions: comparisons between tropical and subalpine forests
Grizelle Gonzalez; Ruth E. Ley; Steven K. Schmidt; Xiaoming Zou; Timothy R. Seastedt
2001-01-01
Soil fauna can influence soil processes through interactions with the microbial community. Due to the complexity of the functional roles of fauna and their effects on microbes, little consensus has been reached on the extent to which soil fauna can regulate microbial activities. We quantified soil microbial biomass and maximum growth rates in control and fauna-excluded...
The role of fuels for understanding fire behavior and fire effects
E. Louise Loudermilk; J. Kevin Hiers; Joseph J. O' Brien
2018-01-01
Fire ecology, which has emerged as a critical discipline, links the complex interactions that occur between fire regimes and ecosystems. The ecology of fuels, a first principle in fire ecology, identifies feedbacks between vegetation and fire behavior-a cyclic process that starts with fuels influencing fire behavior, which in turn governs patterns of postfire...
ERIC Educational Resources Information Center
Schmid, Monika S.; Dusseldorp, Elise
2010-01-01
Most linguistic processes--acquisition, change, deterioration--take place in and are determined by a complex and multifactorial web of language internal and language external influences. This implies that the impact of each individual factor can only be determined on the basis of a careful consideration of its interplay with all other factors. The…
T. Heartsill Scalley; F.N. Scatena; S. Moya; A.E. Lugo
2012-01-01
In heterotrophic streams the retention and export of coarse particulate organic matter and associated elements are fundamental biogeochemical processes that influence water quality, food webs and the structural complexity of forested headwater streams. Nevertheless, few studies have documented the quantity and quality of exported organic matter over multiple years and...
Judson G. Isebrands; Richard E. Dickson; Joanne Rebbeck; David F. Karnosky
2000-01-01
Global climate chagnge is a complex and controversial subject, both technically and politically. Recently, the Intergovernmental Panel on Climate Change (IPCC) of the United Nations concluded that "the balance of evidence suggests a discernible human influence on global climate" and that "further accumulation of greenhouse gases will commit the earth...
Anurag Srivastava; Joan Q. Wu; William J. Elliot; Erin S. Brooks
2015-01-01
The Water Erosion Prediction Project (WEPP) model, originally developed for hillslope and small watershed applications, simulates complex interactive processes influencing erosion. Recent incorporations to the model have improved the subsurface hydrology components for forest applications. Incorporation of channel routing has made the WEPP model well suited for large...
Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...
Using Contribution Analysis to Evaluate the Impacts of Research on Policy: Getting to "Good Enough"
ERIC Educational Resources Information Center
Riley, Barbara L.; Kernoghan, Alison; Stockton, Lisa; Montague, Steve; Yessis, Jennifer; Willis, Cameron D.
2018-01-01
Assessing societal impacts of research is more difficult than assessing advances in knowledge. Methods to evaluate research impact on policy processes and outcomes are especially underdeveloped, and are needed to optimize the influence of research on policy for addressing complex issues such as chronic diseases. Contribution analysis (CA), a…
Antecedents of Employees' Involvement in Work-Related Learning: A Systematic Review
ERIC Educational Resources Information Center
Kyndt, Eva; Baert, Herman
2013-01-01
Involvement in work-related learning seems to be more complex than a simple supply-demand fit. An interplay of several factors can influence this involvement at different stages of the decision-making process of the employee. The aim of this systematic review is to examine which antecedents of work-related learning have been identified in previous…
ERIC Educational Resources Information Center
Bindler, Ruth C.; Goetz, Summer; Butkus, Sue Nicholson; Power, Thomas G.; Ullrich-French, Sarah; Steele, Michael
2012-01-01
Childhood obesity has reached epidemic levels in developed countries and is showing no signs of abating. The causes of obesity in adolescence are extremely complex, and therefore approaches to prevention and treatments must be multifaceted. Early adolescence is a developmental period when youth are becoming more independent, are influenced by…
The Role of Personality and Team-Based Product Dissection on Fixation Effects
ERIC Educational Resources Information Center
Toh, Christine; Miller, Scarlett; Kremer, Gül E. Okudan
2013-01-01
Design fixation has been found to be complex in its definition and expression, but it plays an important role in design idea generation. Identifying the factors that influence fixation is crucial in understanding how to enhance the design process and reduce the negative effects of fixation. One way to potentially mitigate fixation is through…
Olney, Cynthia A
2005-10-01
After arguing that most community-based organizations (CBOs) function as complex adaptive systems, this white paper describes the evaluation goals, questions, indicators, and methods most important at different stages of community-based health information outreach. This paper presents the basic characteristics of complex adaptive systems and argues that the typical CBO can be considered this type of system. It then presents evaluation as a tool for helping outreach teams adapt their outreach efforts to the CBO environment and thus maximize success. Finally, it describes the goals, questions, indicators, and methods most important or helpful at each stage of evaluation (community assessment, needs assessment and planning, process evaluation, and outcomes assessment). Literature from complex adaptive systems as applied to health care, business, and evaluation settings is presented. Evaluation models and applications, particularly those based on participatory approaches, are presented as methods for maximizing the effectiveness of evaluation in dynamic CBO environments. If one accepts that CBOs function as complex adaptive systems-characterized by dynamic relationships among many agents, influences, and forces-then effective evaluation at the stages of community assessment, needs assessment and planning, process evaluation, and outcomes assessment is critical to outreach success.
1992-09-01
abilities is fit along with the autoregressive process. Initially, the influences on search performance of within-group age and sex were included as control...Results: PerformanceLAbility Structure Measurement Model: Ability Structure The correlations between all the ability measures, age, and sex are...subsequent analyses for young adults. Age and sex were included as control variables. There was an age range of 15 years; this range is sufficiently large that
[Difficulties for the medical and legal forensic evaluation in cases of sexual abuse].
Romi, Juan Carlos
2005-01-01
The forensic evaluation of sexual offenders and their victims are a very complex task. This concern becomes even more relevant when children have to be assessed. The evaluation process should consider: children's motivation to deceive during forensic assessment; their perception of the assessment process and its influence on their deceptive tendencies; parental issues related to dissimulation among children and the induction of false memories. The article summarize these problems and gives physicians a practical guide for managing this issue.
The Influence of Coral Reef Benthic Condition on Associated Fish Assemblages
Chong-Seng, Karen M.; Mannering, Thomas D.; Pratchett, Morgan S.; Bellwood, David R.; Graham, Nicholas A. J.
2012-01-01
Accumulative disturbances can erode a coral reef’s resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae. PMID:22870294
The influence of coral reef benthic condition on associated fish assemblages.
Chong-Seng, Karen M; Mannering, Thomas D; Pratchett, Morgan S; Bellwood, David R; Graham, Nicholas A J
2012-01-01
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.
Neilson, Andrew P; Ferruzzi, Mario G
2011-01-01
Flavan-3-ols are a major subclass of the class of plant phytochemicals known as flavonoids. Flavan-3-ols are commonly found in fruit, vegetable, and botanical products, including tea, cocoa, grapes, and apples. Both monomeric catechins and polymeric procyanidins are common in the diet, along with several derivatives produced by degradation of these species during processing. Both epidemiological and biological evidence suggests a health-protective role for dietary flavan-3-ols, leading to increased interest in the bioavailability of these compounds from foods. Flavan-3-ol bioavailability depends on numerous factors, including digestive release, absorption, metabolism, and elimination. In addition to these in vivo factors, the complexity of whole-food systems (physical form, flavan-3-ol form and dose, macronutrient and micronutrient profile, processing, etc.) influences the absorption efficiency and circulating profile of flavan-3-ols. An understanding of how food matrices may influence flavan-3-ol absorption will provide a framework to design and develop functional products that positively affect flavan-3-ol absorption and, by extension, potential bioactivity.
Hundrieser, Manuela; Stahl, Jutta
2016-05-01
Moral judgments are based on complex processing. This study aimed to investigate neural correlates of moral decisions. Participants (N = 32) were asked to express their opinion on various moral issues while ERPs were recorded. After reading texts containing either confirming or contradicting arguments regarding the issues, participants were asked to express their opinion again. A higher N400 amplitude and a higher amplitude of the late positive potential for value-incongruent words compared to value-congruent words could be observed. Furthermore, after participants had read conflicting arguments, slower responses and larger N400 differences (value-incongruent minus value-congruent) were observed. These results showed that language processing for a moral context is influenced by the subjective value system, and it can be assumed that a demanding cognitive elaboration contributed to the observed RT and N400 priming effects. This is the first ERP study comparing moral judgments before and after reading confirming or conflicting information; it revealed that evaluative reasoning can influence neural processing for moral decisions. © 2016 Society for Psychophysiological Research.
NASA Astrophysics Data System (ADS)
Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue
2017-04-01
The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.
Kenzie, Erin S.; Parks, Elle L.; Bigler, Erin D.; Wright, David W.; Lim, Miranda M.; Chesnutt, James C.; Hawryluk, Gregory W. J.; Gordon, Wayne; Wakeland, Wayne
2018-01-01
Despite increasing public awareness and a growing body of literature on the subject of concussion, or mild traumatic brain injury, an urgent need still exists for reliable diagnostic measures, clinical care guidelines, and effective treatments for the condition. Complexity and heterogeneity complicate research efforts and indicate the need for innovative approaches to synthesize current knowledge in order to improve clinical outcomes. Methods from the interdisciplinary field of systems science, including models of complex systems, have been increasingly applied to biomedical applications and show promise for generating insight for traumatic brain injury. The current study uses causal-loop diagramming to visualize relationships between factors influencing the pathophysiology and recovery trajectories of concussive injury, including persistence of symptoms and deficits. The primary output is a series of preliminary systems maps detailing feedback loops, intrinsic dynamics, exogenous drivers, and hubs across several scales, from micro-level cellular processes to social influences. Key system features, such as the role of specific restorative feedback processes and cross-scale connections, are examined and discussed in the context of recovery trajectories. This systems approach integrates research findings across disciplines and allows components to be considered in relation to larger system influences, which enables the identification of research gaps, supports classification efforts, and provides a framework for interdisciplinary collaboration and communication—all strides that would benefit diagnosis, prognosis, and treatment in the clinic. PMID:29670568
Striatal BOLD Response Reflects the Impact of Herd Information on Financial Decisions
Burke, Christopher J.; Tobler, Philippe N.; Schultz, Wolfram; Baddeley, Michelle
2010-01-01
Like other species, humans are sensitive to the decisions and actions of conspecifics, which can lead to herd behavior and undesirable outcomes such as stock market bubbles and bank runs. However, how the brain processes this socially derived influence is only poorly understood. Using functional magnetic resonance imaging (fMRI), we scanned participants as they made decisions on whether to buy stocks after observing others’ buying decisions. We demonstrate that activity in the ventral striatum, an area heavily implicated in reward processing, tracked the degree of influence on participants’ decisions arising from the observation of other peoples’ decisions. The signal did not track non-human, non-social control decisions. These findings lend weight to the notion that the ventral striatum is involved in the processing of complex social aspects of decision making and identify a possible neural basis for herd behavior. PMID:20589242
Cognitive processes in anesthesiology decision making.
Stiegler, Marjorie Podraza; Tung, Avery
2014-01-01
The quality and safety of health care are under increasing scrutiny. Recent studies suggest that medical errors, practice variability, and guideline noncompliance are common, and that cognitive error contributes significantly to delayed or incorrect diagnoses. These observations have increased interest in understanding decision-making psychology.Many nonrational (i.e., not purely based in statistics) cognitive factors influence medical decisions and may lead to error. The most well-studied include heuristics, preferences for certainty, overconfidence, affective (emotional) influences, memory distortions, bias, and social forces such as fairness or blame.Although the extent to which such cognitive processes play a role in anesthesia practice is unknown, anesthesia care frequently requires rapid, complex decisions that are most susceptible to decision errors. This review will examine current theories of human decision behavior, identify effects of nonrational cognitive processes on decision making, describe characteristic anesthesia decisions in this context, and suggest strategies to improve decision making.
2016-01-01
In a touch-screen paradigm, we recorded 3- to 7-year-olds’ (N = 108) accuracy and response times (RTs) to assess their comprehension of 2-clause sentences containing before and after. Children were influenced by order: performance was most accurate when the presentation order of the 2 clauses matched the chronological order of events: “She drank the juice, before she walked in the park” (chronological order) versus “Before she walked in the park, she drank the juice” (reverse order). Differences in RTs for correct responses varied by sentence type: accurate responses were made more speedily for sentences that afforded an incremental processing of meaning. An independent measure of memory predicted this pattern of performance. We discuss these findings in relation to children’s knowledge of connective meaning and the processing requirements of sentences containing temporal connectives. PMID:27690492
Human cells involved in atherosclerosis have a sex.
Franconi, Flavia; Rosano, Giuseppe; Basili, Stefania; Montella, Andrea; Campesi, Ilaria
2017-02-01
The influence of sex has been largely described in cardiovascular diseases. Atherosclerosis is a complex process that involves many cell types such as vessel cells, immune cells and endothelial progenitor cells; however, many, if not all, studies do not report the sex of the cells. This review focuses on sex differences in human cells involved in the atherosclerotic process, emphasizing the role of sex hormones. Furthermore, we report sex differences and issues related to the processes that determine the fate of the cells such as apoptotic and autophagic mechanisms. The analysis of the data reveals that there are still many gaps in our knowledge regarding sex influences in atherosclerosis, largely for the cell types that have not been well studied, stressing the urgent need for a clear definition of experimental conditions and the inclusion of both sexes in preclinical studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kovacs, S.; Beier, T.; Woestmann, S.
2017-09-01
The demands on materials for automotive applications are steadily increasing. For chassis components, the trend is towards thinner and higher strength materials for weight and cost reduction. In view of attainable strengths of up to 1200 MPa for hot rolled materials, certain aspects need to be analysed and evaluated in advance in the development process using these materials. Collars in particular, for example in control arms, have been in focus for part and process design. Issues concerning edge and surface cracks are observed due to improper geometry and process layout. The hole expansion capability of the chosen material grade has direct influence on the achievable collar height. In general, shear cutting reduces the residual formability of blank edges and the hole expansion capability. In this paper, using the example of the complex phase steel CP-W® 800 of thyssenkrupp, it is shown how a suitable geometry of a collar and optimum shear cutting parameters can be chosen.
The Neural Basis of Social Influence in a Dictator Decision
Wei, Zhenyu; Zhao, Zhiying; Zheng, Yong
2017-01-01
Humans tend to reduce inequitable distributions. Previous neuroimaging studies have shown that inequitable decisions are related to brain regions that associated with negative emotion and signaling conflict. In the highly complex human social environment, our opinions and behaviors can be affected by social information. In current study, we used a modified dictator game to investigate the effect of social influence on making an equitable decision. We found that the choices of participants in present task was influenced by the choices of peers. However, participants’ decisions were influenced by equitable rather than inequitable group choices. fMRI results showed that brain regions that related to norm violation and social conflict were related to the inequitable social influence. The neural responses in the dorsomedial prefrontal cortex, rostral cingulate zone, and insula predicted subsequent conforming behavior in individuals. Additionally, psychophysiological interaction analysis revealed that the interconnectivity between the dorsal striatum and insula was elevated in advantageous inequity influence versus no-social influence conditions. We found decreased functional connectivity between the medial prefrontal cortex and insula, supplementary motor area, posterior cingulate gyrus and dorsal anterior cingulate cortex in the disadvantageous inequity influence versus no-social influence conditions. This suggests that a disadvantageous inequity influence may decrease the functional connectivity among brain regions that are related to reward processes. Thus, the neural mechanisms underlying social influence in an equitable decision may be similar to those implicated in social norms and reward processing. PMID:29375412
“Engineering Substrate Micro- and Nanotopography to Control Cell Function”
Bettinger, Christopher J; Langer, Robert; Borenstein, Jeffrey T
2010-01-01
Lead-In The interaction of mammalian cells with nanoscale topography has proven to be an important signaling modality in controlling cell function. Naturally occurring nanotopographic structures within the extracellular matrix present surrounding cells with mechanotransductive cues that influence local migration, cell polarization, and other functions. Synthetically nanofabricated topography can also influence cell morphology, alignment, adhesion, migration, proliferation, and cytoskeleton organization. Here we review the use of in vitro synthetic cell-nanotopography interactions to control cell behavior and influence complex cellular processes including stem cell differentiation and tissue organization. Future challenges and opportunities in cell-nanotopography engineering will also be discussed including the elucidation of mechanisms and applications in tissue engineering. PMID:19492373
[Music therapy as a part of complex healing].
Sliwka, Agnieszka; Jarosz, Anna; Nowobilski, Roman
2006-10-01
Music therapy is a method which takes the adventage of therapeutic influence of musie on psychological and somatic sphere of the human body. Its therapeutic properties are more and more used. Current scientific research have proved its modifying influence on vegetative, circulatory, respiratory and endocrine systems. Works devoted to the effects of musie on the patients' psychological sphere have also confirmed that it reduces psychopathologic symptoms (anxiety and depression), improves self-rating, influences quality and disorders of sleep, reduces pain, improves moral immunity and patients' openness, readiness, co-operation in treatment process. Music therapy is treated as a method which complements conventional treatment and makes up part of an integral whole together with physiotherapy, kinesitherapy and recuperation.
Zherebtsov, Dmitry; Radionova, Ludmila
2018-01-01
Selective laser melting (SLM) is one of the additive manufacturing technologies that allows for the production of parts with complex shapes from either powder feedstock or from wires. Aluminum alloys have a great potential for use in SLM especially in automotive and aerospace fields. This paper studies the influence of starting powder characteristics on the processability of SLM fabricated AlSi12 alloy. Three different batches of gas atomized powders from different manufacturers were processed by SLM. The powders differ in particle size and its distribution, morphology and chemical composition. Cubic specimens (10 mm × 10 mm × 10 mm) were fabricated by SLM from the three different powder batches using optimized process parameters. The fabrication conditions were kept similar for the three powder batches. The influence of powder characteristics on porosity and microstructure of the obtained specimens were studied in detail. The SLM samples produced from the three different powder batches do not show any significant variations in their structural aspects. However, the microstructural aspects differ and the amount of porosity in these three specimens vary significantly. It shows that both the flowability of the powder and the apparent density have an influential role on the processability of AlSi12 SLM samples. PMID:29735932
Baitimerov, Rustam; Lykov, Pavel; Zherebtsov, Dmitry; Radionova, Ludmila; Shultc, Alexey; Prashanth, Konda Gokuldoss
2018-05-07
Selective laser melting (SLM) is one of the additive manufacturing technologies that allows for the production of parts with complex shapes from either powder feedstock or from wires. Aluminum alloys have a great potential for use in SLM especially in automotive and aerospace fields. This paper studies the influence of starting powder characteristics on the processability of SLM fabricated AlSi12 alloy. Three different batches of gas atomized powders from different manufacturers were processed by SLM. The powders differ in particle size and its distribution, morphology and chemical composition. Cubic specimens (10 mm × 10 mm × 10 mm) were fabricated by SLM from the three different powder batches using optimized process parameters. The fabrication conditions were kept similar for the three powder batches. The influence of powder characteristics on porosity and microstructure of the obtained specimens were studied in detail. The SLM samples produced from the three different powder batches do not show any significant variations in their structural aspects. However, the microstructural aspects differ and the amount of porosity in these three specimens vary significantly. It shows that both the flowability of the powder and the apparent density have an influential role on the processability of AlSi12 SLM samples.
Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.
2013-12-01
Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several heterogeneous media characterized by different statistical properties. We find that at distances less than ~6 km from the fault, RMS acceleration values from simulations with homogeneous and heterogeneous media are similar, but at greater distances the RMS values associated with heterogeneous media are larger than those associated with homogeneous media. The magnitude of this divergence increases with the amplitude of the heterogeneities. For instance, for a heterogeneous medium with a 10% standard deviation in material property values relative to mean values, RMS accelerations are ~50% larger than for a homogeneous medium at distances greater than 6 km. This finding is attributed to the scattering of coherent pulses into multiple pulses of decreased amplitude that subsequently arrive at later times. In order to understand the robustness of these results, an extension of our dynamic rupture and wave propagation code to 3D is underway.
Biological reduction of chlorinated solvents: Batch-scale geochemical modeling
NASA Astrophysics Data System (ADS)
Kouznetsova, Irina; Mao, Xiaomin; Robinson, Clare; Barry, D. A.; Gerhard, Jason I.; McCarty, Perry L.
2010-09-01
Simulation of biodegradation of chlorinated solvents in dense non-aqueous phase liquid (DNAPL) source zones requires a model that accounts for the complexity of processes involved and that is consistent with available laboratory studies. This paper describes such a comprehensive modeling framework that includes microbially mediated degradation processes, microbial population growth and decay, geochemical reactions, as well as interphase mass transfer processes such as DNAPL dissolution, gas formation and mineral precipitation/dissolution. All these processes can be in equilibrium or kinetically controlled. A batch modeling example was presented where the degradation of trichloroethene (TCE) and its byproducts and concomitant reactions (e.g., electron donor fermentation, sulfate reduction, pH buffering by calcite dissolution) were simulated. Local and global sensitivity analysis techniques were applied to delineate the dominant model parameters and processes. Sensitivity analysis indicated that accurate values for parameters related to dichloroethene (DCE) and vinyl chloride (VC) degradation (i.e., DCE and VC maximum utilization rates, yield due to DCE utilization, decay rate for DCE/VC dechlorinators) are important for prediction of the overall dechlorination time. These parameters influence the maximum growth rate of the DCE and VC dechlorinating microorganisms and, thus, the time required for a small initial population to reach a sufficient concentration to significantly affect the overall rate of dechlorination. Self-inhibition of chlorinated ethenes at high concentrations and natural buffering provided by the sediment were also shown to significantly influence the dechlorination time. Furthermore, the analysis indicated that the rates of the competing, nonchlorinated electron-accepting processes relative to the dechlorination kinetics also affect the overall dechlorination time. Results demonstrated that the model developed is a flexible research tool that is able to provide valuable insight into the fundamental processes and their complex interactions during bioremediation of chlorinated ethenes in DNAPL source zones.
Nonisothermal glass molding for the cost-efficient production of precision freeform optics
NASA Astrophysics Data System (ADS)
Vu, Anh-Tuan; Kreilkamp, Holger; Dambon, Olaf; Klocke, Fritz
2016-07-01
Glass molding has become a key replication-based technology to satisfy intensively growing demands of complex precision optics in the today's photonic market. However, the state-of-the-art replicative technologies are still limited, mainly due to their insufficiency to meet the requirements of mass production. This paper introduces a newly developed nonisothermal glass molding in which a complex-shaped optic is produced in a very short process cycle. The innovative molding technology promises a cost-efficient production because of increased mold lifetime, less energy consumption, and high throughput from a fast process chain. At the early stage of the process development, the research focuses on an integration of finite element simulation into the process chain to reduce time and labor-intensive cost. By virtue of numerical modeling, defects including chill ripples and glass sticking in the nonisothermal molding process can be predicted and the consequent effects are avoided. In addition, the influences of process parameters and glass preforms on the surface quality, form accuracy, and residual stress are discussed. A series of experiments was carried out to validate the simulation results. The successful modeling, therefore, provides a systematic strategy for glass preform design, mold compensation, and optimization of the process parameters. In conclusion, the integration of simulation into the entire nonisothermal glass molding process chain will significantly increase the manufacturing efficiency as well as reduce the time-to-market for the mass production of complex precision yet low-cost glass optics.
Kursawe, Michael A; Zimmer, Hubert D
2015-06-01
We investigated the impact of perceptual processing demands on visual working memory of coloured complex random polygons during change detection. Processing load was assessed by pupil size (Exp. 1) and additionally slow wave potentials (Exp. 2). Task difficulty was manipulated by presenting different set sizes (1, 2, 4 items) and by making different features (colour, shape, or both) task-relevant. Memory performance in the colour condition was better than in the shape and both condition which did not differ. Pupil dilation and the posterior N1 increased with set size independent of type of feature. In contrast, slow waves and a posterior P2 component showed set size effects but only if shape was task-relevant. In the colour condition slow waves did not vary with set size. We suggest that pupil size and N1 indicates different states of attentional effort corresponding to the number of presented items. In contrast, slow waves reflect processes related to encoding and maintenance strategies. The observation that their potentials vary with the type of feature (simple colour versus complex shape) indicates that perceptual complexity already influences encoding and storage and not only comparison of targets with memory entries at the moment of testing. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Lin X.; Shelby, Megan L.; Lestrange, Patrick J.
2016-01-01
This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(II) tetramesitylporphyrin (NiTMP) were successfully measured for optically excited state at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(I) (π, 3dx2-y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aidedmore » by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.« less
Komatsu, G.; Dohm, J.M.; Hare, T.M.
2004-01-01
Large-scale tectonomagmatic complexes are common on Earth and Mars. Many of these complexes are created or at least influenced by mantle processes, including a wide array of plume types ranging from superplumes to mantle plumes. Among the most prominent complexes, the Mongolian plateau on Earth and the Tharsis bulge on Mars share remarkable similarities in terms of large domal uplifted areas, great rift canyon systems, and widespread volcanism on their surfaces. Water has also played an important role in the development of the two complexes. In general, atmospheric and surface water play a bigger role in the development of the present-day Mongolian plateau than for the Tharsis bulge, as evidenced by highly developed drainages and thick accumulation of sediments in the basins of the Baikal rift system. On the Tharsis bulge, however, water appears to have remained as ground ice except during periods of elevated magmatic activity. Glacial and periglacial processes are well documented for the Mongolian plateau and are also reported for parts of the Tharsis bulge. Ice-magma interactions, which are represented by the formation of subice volcanoes in parts of the Mongolian plateau region, have been reported for the Valles Marineris region of Mars. The complexes are also characterized by cataclysmic floods, but their triggering mechanism may differ: mainly ice-dam failures for the Mongolian plateau and outburst of groundwater for the Tharsis bulge, probably by magma-ice interactions, although ice-dam failures within the Valles Marineris region cannot be ruled out as a possible contributor. Comparative studies of the Mongolian plateau and Tharsis bulge provide excellent opportunities for understanding surface manifestations of plume-driven processes on terrestrial planets and how they interact with hydro-cryospheres. ?? 2004 Geological Society of America.
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.; Gilvear, David J.; Greenwood, Malcolm T.; Thoms, Martin C.; Wood, Paul J.
2016-01-01
Floodplains can be viewed as complex adaptive systems (Levin, 1998) because they are comprised of many different biophysical components, such as morphological features, soil groups and vegetation communities as well as being sites of key biogeochemical processing (Stanford et al., 2005). Interactions and feedbacks among the biophysical components often result in additional phenomena occuring over a range of scales, often in the absence of any controlling factors (sensu Hallet, 1990). This emergence of new biophysical features and rates of processing can lead to alternative stable states which feed back into floodplain adaptive cycles (cf. Hughes, 1997; Stanford et al., 2005). Interactions between different biophysical components, feedbacks, self emergence and scale are all key properties of complex adaptive systems (Levin, 1998; Phillips, 2003; Murray et al., 2014) and therefore will influence the manner in which we study and view spatial patterns. Measuring the spatial patterns of floodplain biophysical components is a prerequisite to examining and understanding these ecosystems as complex adaptive systems. Elucidating relationships between pattern and process, which are intrinsically linked within floodplains (Ward et al., 2002), is dependent upon an understanding of spatial pattern. This knowledge can help river scientists determine the major drivers, controllers and responses of floodplain structure and function, as well as the consequences of altering those drivers and controllers (Hughes and Cass, 1997; Whited et al., 2007). Interactions and feedbacks between physical, chemical and biological components of floodplain ecosystems create and maintain a structurally diverse and dynamic template (Stanford et al., 2005). This template influences subsequent interactions between components that consequently affect system trajectories within floodplains (sensu Bak et al., 1988). Constructing and evaluating models used to predict floodplain ecosystem responses to natural and anthropogenic disturbances therefore require quantification of spatial pattern (Asselman and Middelkoop, 1995; Walling and He, 1998). Quantifying these patterns also provides insights into the spatial and temporal domains of structuring processes as well as enabling the detection of self-emergent phenomena, environmental constraints or anthropogenic interference (Turner et al., 1990; Holling, 1992; De Jager and Rohweder, 2012). Thus, quantifying spatial pattern is an important building block on which to examine floodplains as complex adaptive systems (Levin, 1998). Approaches to measuring spatial pattern in floodplains must be cognisant of scale, self-emergent phenomena, spatial organisation, and location. Fundamental problems may arise when patterns observed at a site or transect scale are scaled-up to infer processes and patterns over entire floodplain surfaces (Wiens, 2002; Thorp et al., 2008). Likewise, patterns observed over the entire spatial extent of a landscape can mask important variation and detail at finer scales (Riitters et al., 2002). Indeed, different patterns often emerge at different scales (Turner et al., 1990) because of hierarchical structuring processes (O'Neill et al., 1991). Categorising data into discrete, homogeneous and predefined spatial units at a particular scale (e.g. polygons) creates issues and errors associated with scale and subjective classification (McGarigal et al., 2009; Cushman et al., 2010). These include, loss of information within classified ‘patches’, as well as the ability to detect the emergence of new features that do not fit the original classification scheme. Many of these issues arise because floodplains are highly heterogeneous and have complex spatial organizations (Carbonneau et al., 2012; Legleiter, 2013). As a result, the scale and location at which measurements are made can influence the observed spatial patterns; and patterns may not be scale independent or applicable in different geomorp
Goldrick, Stephen; Holmes, William; Bond, Nicholas J.; Lewis, Gareth; Kuiper, Marcel; Turner, Richard
2017-01-01
ABSTRACT Product quality heterogeneities, such as a trisulfide bond (TSB) formation, can be influenced by multiple interacting process parameters. Identifying their root cause is a major challenge in biopharmaceutical production. To address this issue, this paper describes the novel application of advanced multivariate data analysis (MVDA) techniques to identify the process parameters influencing TSB formation in a novel recombinant antibody–peptide fusion expressed in mammalian cell culture. The screening dataset was generated with a high‐throughput (HT) micro‐bioreactor system (AmbrTM 15) using a design of experiments (DoE) approach. The complex dataset was firstly analyzed through the development of a multiple linear regression model focusing solely on the DoE inputs and identified the temperature, pH and initial nutrient feed day as important process parameters influencing this quality attribute. To further scrutinize the dataset, a partial least squares model was subsequently built incorporating both on‐line and off‐line process parameters and enabled accurate predictions of the TSB concentration at harvest. Process parameters identified by the models to promote and suppress TSB formation were implemented on five 7 L bioreactors and the resultant TSB concentrations were comparable to the model predictions. This study demonstrates the ability of MVDA to enable predictions of the key performance drivers influencing TSB formation that are valid also upon scale‐up. Biotechnol. Bioeng. 2017;114: 2222–2234. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28500668
Haude, K; McCarthy Veach, P; LeRoy, B; Zierhut, H
2017-06-01
Fanconi anemia (FA) is characterized by congenital malformations, progressive bone marrow failure, and predisposition to malignancy. Hematopoietic stem cell transplantation is used to treat FA, and best results are attained with sibling donors who are human leukocyte antigen (HLA) identical matches. Preimplantation genetic diagnosis (PGD) offers parents of an affected child the opportunity to have an unaffected child who is an HLA match. While some research has investigated parents' experiences during the PGD process, no published studies specifically address factors influencing their decision-making process and long-term interpersonal outcomes. The aims of this study are to: (1) examine parents' expectations and the influence of media, bioethics, and religion on their decision to undergo PGD; (2) examine parents' social support and emotional experiences during their PGD process; and (3) characterize long-term effects of PGD on relationship dynamics (partner, family, friends), others' attitudes, and parental regret. Nine parents participated in semi-structured interviews. Thematic analysis revealed their decision to use PGD was variously influenced by media, bioethics, and religion, in particular, affecting parents' initial confidence levels. Moreover, the PGD process was emotionally complex, with parents desiring varying amounts and types of support from different sources at different times. Parents reported others' attitudes towards them were similar or no different than before PGD. Parental regret regarding PGD was negligible. Results of this study will promote optimization of long-term care for FA families.
Zhang, Xiaomeng; Bartol, Kathryn M
2010-09-01
Integrating theories addressing attention and activation with creativity literature, we found an inverted U-shaped relationship between creative process engagement and overall job performance among professionals in complex jobs in an information technology firm. Work experience moderated the curvilinear relationship, with low-experience employees generally exhibiting higher levels of overall job performance at low to moderate levels of creative process engagement and high-experience employees demonstrating higher overall performance at moderate to high levels of creative process engagement. Creative performance partially mediated the relationship between creative process engagement and job performance. These relationships were tested within a moderated mediation framework. Copyright 2010 APA, all rights reserved
Influences on particle shape in underwater pelletizing processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kast, O., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Musialek, M., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de; Geiger, K., E-mail: oliver.kast@ikt.uni-stuttgart.de, E-mail: matthias.musialek@ikt.uni-stuttgart.de, E-mail: kalman.geiger@ikt.uni-stuttgart.de, E-mail: christian.bonten@ikt.uni-stuttgart.de
2014-05-15
Underwater pelletizing has gained high importance within the last years among the different pelletizing technologies, due to its advantages in terms of throughput, automation, pellet quality and applicability to a large variety of thermoplastics. The resulting shape and quality of pellets, however, differ widely, depending on material characteristics and effects not fully understood yet. In an experimental set-up, pellets of different volumes and shapes were produced and the medium pellet mass, the pellet surface and the bulk density were analyzed in order to identify the influence of material properties and process parameters. Additionally, the shaping kinetics at the die openingmore » were watched with a specially developed camera system. It was found that rheological material properties correlate with process parameters and resulting particle form in a complex way. Higher cutting speeds were shown to have a deforming influence on the pellets, leading to less spherical s and lower bulk densities. More viscous materials, however, showed a better resistance against this. Generally, the viscous properties of polypropylene proofed to be dominant over the elastic ones in regard to their influence on pellet shape. It was also shown that the shapes filmed at the die opening and the actual form of the pellets after a cooling track do not always correlate, indicating a significant influence of thermodynamic properties during the cooling.« less
Not Merely Experiential: Unconscious Thought Can Be Rational
Garrison, Katie E.; Handley, Ian M.
2017-01-01
Individuals often form more reasonable judgments from complex information after a period of distraction vs. deliberation. This phenomenon has been attributed to sophisticated unconscious thought during the distraction period that integrates and organizes the information (Unconscious Thought Theory; Dijksterhuis and Nordgren, 2006). Yet, other research suggests that experiential processes are strengthened during the distraction (relative to deliberation) period, accounting for the judgment and decision benefit. We tested between these possibilities, hypothesizing that unconscious thought is distinct from experiential processes, and independently contributes to judgments and decisions during a distraction period. Using an established paradigm, Experiment 1 (N = 319) randomly induced participants into an experiential or rational mindset, after which participants received complex information describing three roommates to then consider consciously (i.e., deliberation) or unconsciously (i.e., distraction). Results revealed superior roommate judgments (but not choices) following distraction vs. deliberation, consistent with Unconscious Thought Theory. Mindset did not have an influence on roommate judgments. However, planned tests revealed a significant advantage of distraction only within the rational-mindset condition, which is contrary to the idea that experiential processing alone facilitates complex decision-making during periods of distraction. In a second experiment (N = 136), we tested whether effects of unconscious thought manifest for a complex analytical reasoning task for which experiential processing would offer no advantage. As predicted, participants in an unconscious thought condition outperformed participants in a control condition, suggesting that unconscious thought can be analytical. In sum, the current results support the existence of unconscious thinking processes that are distinct from experiential processes, and can be rational. Thus, the experiential vs. rational nature of a process might not cleanly delineate conscious and unconscious thought. PMID:28729844
Not Merely Experiential: Unconscious Thought Can Be Rational.
Garrison, Katie E; Handley, Ian M
2017-01-01
Individuals often form more reasonable judgments from complex information after a period of distraction vs. deliberation. This phenomenon has been attributed to sophisticated unconscious thought during the distraction period that integrates and organizes the information (Unconscious Thought Theory; Dijksterhuis and Nordgren, 2006). Yet, other research suggests that experiential processes are strengthened during the distraction (relative to deliberation) period, accounting for the judgment and decision benefit. We tested between these possibilities, hypothesizing that unconscious thought is distinct from experiential processes, and independently contributes to judgments and decisions during a distraction period. Using an established paradigm, Experiment 1 ( N = 319) randomly induced participants into an experiential or rational mindset, after which participants received complex information describing three roommates to then consider consciously (i.e., deliberation) or unconsciously (i.e., distraction). Results revealed superior roommate judgments (but not choices) following distraction vs. deliberation, consistent with Unconscious Thought Theory. Mindset did not have an influence on roommate judgments. However, planned tests revealed a significant advantage of distraction only within the rational-mindset condition, which is contrary to the idea that experiential processing alone facilitates complex decision-making during periods of distraction. In a second experiment ( N = 136), we tested whether effects of unconscious thought manifest for a complex analytical reasoning task for which experiential processing would offer no advantage. As predicted, participants in an unconscious thought condition outperformed participants in a control condition, suggesting that unconscious thought can be analytical. In sum, the current results support the existence of unconscious thinking processes that are distinct from experiential processes, and can be rational. Thus, the experiential vs. rational nature of a process might not cleanly delineate conscious and unconscious thought.
Global Change and the Earth System
NASA Astrophysics Data System (ADS)
Pollack, Henry N.
2004-08-01
The Earth system in recent years has come to mean the complex interactions of the atmosphere, biosphere, lithosphere and hydrosphere, through an intricate network of feedback loops. This system has operated over geologic time, driven principally by processes with long time scales. Over the lifetime of the solar system, the Sun has slowly become more radiant, and the geography of continents and oceans basins has evolved via plate tectonics. This geography has placed a first-order constraint on the circulation of ocean waters, and thus has strongly influenced regional and global climate. At shorter time scales, the Earth system has been influenced by Milankovitch orbital factors and occasional exogenous events such as bolide impacts. Under these influences the system chugged along for eons, until some few hundred thousand years ago, when one remarkable species evolved: Homo sapiens. As individuals, humans are of course insignificant in shaping the Earth system, but collectively the six billion human occupants of the planet now rival ``natural'' processes in modifying the Earth system. This profound human influence underlies the dubbing of the present epoch of geologic history as the ``Anthropocene.''
Deep Drawing Simulations With Different Polycrystalline Models
NASA Astrophysics Data System (ADS)
Duchêne, Laurent; de Montleau, Pierre; Bouvier, Salima; Habraken, Anne Marie
2004-06-01
The goal of this research is to study the anisotropic material behavior during forming processes, represented by both complex yield loci and kinematic-isotropic hardening models. A first part of this paper describes the main concepts of the `Stress-strain interpolation' model that has been implemented in the non-linear finite element code Lagamine. This model consists of a local description of the yield locus based on the texture of the material through the full constraints Taylor's model. The texture evolution due to plastic deformations is computed throughout the FEM simulations. This `local yield locus' approach was initially linked to the classical isotropic Swift hardening law. Recently, a more complex hardening model was implemented: the physically-based microstructural model of Teodosiu. It takes into account intergranular heterogeneity due to the evolution of dislocation structures, that affects isotropic and kinematic hardening. The influence of the hardening model is compared to the influence of the texture evolution thanks to deep drawing simulations.
Learning to Link Visual Contours
Li, Wu; Piëch, Valentin; Gilbert, Charles D.
2008-01-01
SUMMARY In complex visual scenes, linking related contour elements is important for object recognition. This process, thought to be stimulus driven and hard wired, has substrates in primary visual cortex (V1). Here, however, we find contour integration in V1 to depend strongly on perceptual learning and top-down influences that are specific to contour detection. In naive monkeys the information about contours embedded in complex backgrounds is absent in V1 neuronal responses, and is independent of the locus of spatial attention. Training animals to find embedded contours induces strong contour-related responses specific to the trained retinotopic region. These responses are most robust when animals perform the contour detection task, but disappear under anesthesia. Our findings suggest that top-down influences dynamically adapt neural circuits according to specific perceptual tasks. This may serve as a general neuronal mechanism of perceptual learning, and reflect top-down mediated changes in cortical states. PMID:18255036
Label propagation algorithm for community detection based on node importance and label influence
NASA Astrophysics Data System (ADS)
Zhang, Xian-Kun; Ren, Jing; Song, Chen; Jia, Jia; Zhang, Qian
2017-09-01
Recently, the detection of high-quality community has become a hot spot in the research of social network. Label propagation algorithm (LPA) has been widely concerned since it has the advantages of linear time complexity and is unnecessary to define objective function and the number of community in advance. However, LPA has the shortcomings of uncertainty and randomness in the label propagation process, which affects the accuracy and stability of the community. For large-scale social network, this paper proposes a novel label propagation algorithm for community detection based on node importance and label influence (LPA_NI). The experiments with comparative algorithms on real-world networks and synthetic networks have shown that LPA_NI can significantly improve the quality of community detection and shorten the iteration period. Also, it has better accuracy and stability in the case of similar complexity.
Towards atomic-level mechanics: Adhesive forces between aromatic molecules and carbon nanotubes
NASA Astrophysics Data System (ADS)
Lechner, Christoph; Sax, Alexander F.
2017-10-01
The adhesive forces for desorption of the four aromatic compounds benzene, anthracene, pyrene, and tetracene from a (8,0) carbon nanotube (CNT) are investigated and compared to the desorption from graphene. The desorption energies are found to be proportional to the size of the contact zone in the adsorbent/adsorbate complex while maximum adhesive forces are proportional to the part of the contact zone where attractive interactions are reduced when external forces pull on the adsorbate. To assess the influence of the curvature, type of CNT, and the adsorbate's orientation, the desorption processes from six zigzag CNT and four armchair CNT are studied for pyrene and tetracene. For some properties, the results are independent of the curvature of the adsorbent, whereas for others we find marked differences. Aspects of elasticity are considered as well as the influence of the Pauli exclusion principle on the equilibrium geometries in adsorbent/adsorbate complexes.
Learning Time-Varying Coverage Functions
Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le
2015-01-01
Coverage functions are an important class of discrete functions that capture the law of diminishing returns arising naturally from applications in social network analysis, machine learning, and algorithmic game theory. In this paper, we propose a new problem of learning time-varying coverage functions, and develop a novel parametrization of these functions using random features. Based on the connection between time-varying coverage functions and counting processes, we also propose an efficient parameter learning algorithm based on likelihood maximization, and provide a sample complexity analysis. We applied our algorithm to the influence function estimation problem in information diffusion in social networks, and show that with few assumptions about the diffusion processes, our algorithm is able to estimate influence significantly more accurately than existing approaches on both synthetic and real world data. PMID:25960624
Learning Time-Varying Coverage Functions.
Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le
2014-12-08
Coverage functions are an important class of discrete functions that capture the law of diminishing returns arising naturally from applications in social network analysis, machine learning, and algorithmic game theory. In this paper, we propose a new problem of learning time-varying coverage functions, and develop a novel parametrization of these functions using random features. Based on the connection between time-varying coverage functions and counting processes, we also propose an efficient parameter learning algorithm based on likelihood maximization, and provide a sample complexity analysis. We applied our algorithm to the influence function estimation problem in information diffusion in social networks, and show that with few assumptions about the diffusion processes, our algorithm is able to estimate influence significantly more accurately than existing approaches on both synthetic and real world data.
The effect of bean origin and temperature on grinding roasted coffee
NASA Astrophysics Data System (ADS)
Uman, Erol; Colonna-Dashwood, Maxwell; Colonna-Dashwood, Lesley; Perger, Matthew; Klatt, Christian; Leighton, Stephen; Miller, Brian; Butler, Keith T.; Melot, Brent C.; Speirs, Rory W.; Hendon, Christopher H.
2016-04-01
Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily.
The effect of bean origin and temperature on grinding roasted coffee.
Uman, Erol; Colonna-Dashwood, Maxwell; Colonna-Dashwood, Lesley; Perger, Matthew; Klatt, Christian; Leighton, Stephen; Miller, Brian; Butler, Keith T; Melot, Brent C; Speirs, Rory W; Hendon, Christopher H
2016-04-18
Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily.
The effect of bean origin and temperature on grinding roasted coffee
Uman, Erol; Colonna-Dashwood, Maxwell; Colonna-Dashwood, Lesley; Perger, Matthew; Klatt, Christian; Leighton, Stephen; Miller, Brian; Butler, Keith T.; Melot, Brent C.; Speirs, Rory W.; Hendon, Christopher H.
2016-01-01
Coffee is prepared by the extraction of a complex array of organic molecules from the roasted bean, which has been ground into fine particulates. The extraction depends on temperature, water chemistry and also the accessible surface area of the coffee. Here we investigate whether variations in the production processes of single origin coffee beans affects the particle size distribution upon grinding. We find that the particle size distribution is independent of the bean origin and processing method. Furthermore, we elucidate the influence of bean temperature on particle size distribution, concluding that grinding cold results in a narrower particle size distribution, and reduced mean particle size. We anticipate these results will influence the production of coffee industrially, as well as contribute to how we store and use coffee daily. PMID:27086837
Influence of cirrus clouds on weather and climate processes A global perspective
NASA Technical Reports Server (NTRS)
Liou, K.-N.
1986-01-01
Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.
Aging and the Kidneys: Anatomy, Physiology and Consequences for Defining Chronic Kidney Disease.
Glassock, Richard J; Rule, Andrew D
2016-01-01
The varied functions of the kidneys are influenced by the complex process of aging. The glomerular filtration rate (GFR) steadily declines with normal aging, and the progress of this process can be influenced by superimposed diseases. Microscopically, nephron numbers decrease as global glomerulosclerosis becomes more evident. The precise mechanisms underlying nephron loss with aging are not well understood, but derangements in podocyte biology appear to be involved. Classifications of chronic kidney disease (CKD) incorporate GFR values and attendant risk of adverse events. Arbitrary and fixed thresholds of GFR for defining CKD have led to an overdiagnosis of CKD in the elderly. An age-sensitive definition of CKD could offer a solution to this problem and more meaningfully capture the prognostic implications of CKD. © 2016 S. Karger AG, Basel.
Investigation of Variations in the Equivalent Number of Looks for Polarimetric Channels
NASA Astrophysics Data System (ADS)
Hu, Dingsheng; Anfinsen, Stian Normann; Tao, Ding; Qiu, Xiaolan
2015-04-01
Current estimators of equivalent number of looks (ENL) have already been able to adapt the full-polarimetric SAR data and work in an unsupervised way. However, for some complex SAR scenes, the existing unsupervised estimation procedure would underestimate the ENL value, as the influence of inhomogeneous factor surpasses the allowance. Before determining further solution, this paper first investigates deviations in the estimated ENL that are observed when processing polarimetric synthetic aperture radar images of ocean surfaces. Even for surface that appears to be homogeneous, the estimated ENL is significantly different in cross-polarimetric (cross-pol) and co-polarimetric (co-pol) channels. We have formulated two hypotheses for the cause of this. Both hypotheses reflect that the mixtures are different in each channel, which leads us to question the validity of using the polarimetric information as a whole to eliminate mixture influence, in terms of accuracy and rationality. In the paper, we proposes a new unsupervised estimation procedure to avoid the mixture influence and with robust capability to obtain accurate ENL estimation even for some complex SAR scene.
Complexity in models of cultural niche construction with selection and homophily.
Creanza, Nicole; Feldman, Marcus W
2014-07-22
Niche construction is the process by which organisms can alter the ecological environment for themselves, their descendants, and other species. As a result of niche construction, differences in selection pressures may be inherited across generations. Homophily, the tendency of like phenotypes to mate or preferentially associate, influences the evolutionary dynamics of these systems. Here we develop a model that includes selection and homophily as independent culturally transmitted traits that influence the fitness and mate choice determined by another focal cultural trait. We study the joint dynamics of a focal set of beliefs, a behavior that can differentially influence the fitness of those with certain beliefs, and a preference for partnering based on similar beliefs. Cultural transmission, selection, and homophily interact to produce complex evolutionary dynamics, including oscillations, stable polymorphisms of all cultural phenotypes, and simultaneous stability of oscillation and fixation, which have not previously been observed in models of cultural evolution or gene-culture interactions. We discuss applications of this model to the interaction of beliefs and behaviors regarding education, contraception, and animal domestication.
The neural architecture of expert calendar calculation: a matter of strategy?
Fehr, Thorsten; Wallace, Gregory L; Erhard, Peter; Herrmann, Manfred
2011-08-01
Savants and prodigies are individuals with exceptional skills in particular mental domains. In the present study we used functional magnetic resonance imaging to examine neural correlates of calendar calculation in two individuals, a savant with Asperger's disorder and a self-taught mathematical prodigy. If there is a modular neural organization of exceptional performance in a specific mental domain, calendar calculation should be reflected in a considerable overlap in the recruitment of brain circuits across expert individuals. However, considerable individual differences in activation patterns during calendar calculation were noted. The present results indicate that activation patterns produced by complex mental processing, such as calendar calculation, seem to be influenced strongly by learning history and idiosyncratic strategy usage rather than a modular neural organization. Thus, well-known individual differences in complex cognition play a major role even in experts with exceptional abilities in a particular mental domain and should in particular be considered when examining the neural architecture of complex mental processes and skills.
Nagy, Paul Michael; Aubert, Isabelle
2015-05-01
Aging is marked by progressive impairments in the process of adult neurogenesis and spatial memory performance. The underlying mechanisms for these impairments have not been fully established; however, they may coincide with decline of cholinergic signaling in the hippocampus. This study investigates whether augmenting cholinergic neurotransmission, by enhancing the expression of the vesicular acetylcholine transporter (VAChT), influences the age-related decline in the development of newborn hippocampal cells and spatial memory. We found that enhanced VAChT expression in the hippocampus of mice contributes to lifelong increases in the dendritic complexity of newborn neurons. Furthermore, enhanced VAChT expression improved memory acquisition through an increased use of spatially precise search strategies in the Morris water maze through the course of the aging process. These data suggest that VAChT overexpression contributes to increases in dendritic complexity and improved spatial memory during aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Contact chemosensation of phytochemicals by insect herbivores
Burse, Antje
2017-01-01
Contact chemosensation, or tasting, is a complex process governed by nonvolatile phytochemicals that tell host-seeking insects whether they should accept or reject a plant. During this process, insect gustatory receptors (GRs) contribute to deciphering a host plant's metabolic code. GRs recognise many different classes of nonvolatile compounds; some GRs are likely to be narrowly tuned and others, broadly tuned. Although primary and/or secondary plant metabolites influence the insect's feeding choice, their decoding by GRs is challenging, because metabolites in planta occur in complex mixtures that have additive or inhibitory effects; in diverse forms composed of structurally unrelated molecules; and at different concentrations depending on the plant species, its tissue and developmental stage. Future studies of the mechanism of insect herbivore GRs will benefit from functional characterisation taking into account the spatio-temporal dynamics and diversity of the plant's metabolome. Metabolic information, in turn, will help to elucidate the impact of single ligands and complex natural mixtures on the insect's feeding choice. PMID:28485430
NASA Astrophysics Data System (ADS)
Moore, Brian C. J.
Psychoacoustics
Archaeal MCM has separable processivity, substrate choice and helicase domains
Barry, Elizabeth R.; McGeoch, Adam T.; Kelman, Zvi; Bell, Stephen D.
2007-01-01
The mini-chromosome maintenance (MCM) complex is the principal candidate for the replicative helicase of archaea and eukaryotes. Here, we describe a functional dissection of the roles of the three principal structural modules of the homomultimeric MCM of the hyperthermophilic archaeon Sulfolobus solfataricus. Our results include the first analysis of the central AAA+ domain in isolation. This domain possesses ATPase and helicase activity, defining this as the minimal helicase domain. Reconstitution experiments show that the helicase activity of the AAA+ domain can be stimulated by addition of the isolated N-terminal half in trans. Addition of the N-terminus influences both the processivity of the helicase and the choice of substrate that can be melted by the ATPase domain. The degenerate helix-turn-helix domain at the C-terminus of MCM exerts a negative effect on the helicase activity of the complex. These results provide the first evidence for extensive regulatory inter-domain communication within the MCM complex. PMID:17259218
NASA Astrophysics Data System (ADS)
Lebak, Kimberly
2015-12-01
This case study examines the complex relationship between beliefs, practice, and change related to inquiry-based instruction of one science teacher teaching in a high-poverty urban school. This study explores how video-supported collaboration with peers can provide the catalyst for change. Transcribed collaborative dialogue sessions, written self-reflections, and videotapes of lessons were used to identify and isolate the belief systems that were critical to the teacher's decision making. The Interconnected Model of Professional Growth was then used to trace the trajectories of change of the individual belief systems. Analysis of the data revealed the relationship between beliefs and practices was complex in which initially espoused beliefs were often inconsistent with enacted practice and some beliefs emerged as more salient than others for influencing practice. Furthermore, this research indicates change in both beliefs and practice was an interactive process mediated by collaborative and self-reflection through participation in the video-supported process.
Matrix modulation and heart failure: new concepts question old beliefs.
Deschamps, Anne M; Spinale, Francis G
2005-05-01
Myocardial remodeling is a complex process involving several molecular and cellular factors. Extracellular matrix has been implicated in the remodeling process. Historically, the myocardial extracellular matrix was thought to serve solely as a means to align cells and provide structure to the tissue. Although this is one of its important functions, evidence suggests that the extracellular matrix plays a complex and divergent role in influencing cell behavior. This paper characterizes some of the notable studies on this dynamic entity and on adverse myocardial remodeling that have been published over the past year, which further question the belief that the extracellular matrix is a static structure. Progress has been made in understanding how the extracellular matrix is operative in the three major conditions (myocardial infarction, left ventricular hypertrophy due to overload, and dilated cardiomyopathy) that involve myocardial remodeling. Several studies have examined plasma profiles of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases following myocardial infarction and during left ventricular hypertrophy as surrogate markers of remodeling/remodeled myocardium. It has been demonstrated that bioactive signaling molecules and growth factors, proteases, and structural proteins influence cell-matrix interactions in the context of left ventricular hypertrophy. Finally, studies that either removed or added tissue inhibitor of metalloproteinases species in the myocardium demonstrated the importance of this regulatory protein in the remodeling process. Understanding the cellular and molecular triggers that in turn give rise to changes in the extracellular matrix could provide opportunities to modify the remodeling process.
Friction spinning - Twist phenomena and the capability of influencing them
NASA Astrophysics Data System (ADS)
Lossen, Benjamin; Homberg, Werner
2016-10-01
The friction spinning process can be allocated to the incremental forming techniques. The process consists of process elements from both metal spinning and friction welding. The selective combination of process elements from these two processes results in the integration of friction sub-processes in a spinning process. This implies self-induced heat generation with the possibility of manufacturing functionally graded parts from tube and sheets. Compared with conventional spinning processes, this in-process heat treatment permits the extension of existing forming limits and also the production of more complex geometries. Furthermore, the defined adjustment of part properties like strength, grain size/orientation and surface conditions can be achieved through the appropriate process parameter settings and consequently by setting a specific temperature profile in combination with the degree of deformation. The results presented from tube forming start with an investigation into the resulting twist phenomena in flange processing. In this way, the influence of the main parameters, such as rotation speed, feed rate, forming paths and tool friction surface, and their effects on temperature, forces and finally the twist behavior are analyzed. Following this, the significant correlations with the parameters and a new process strategy are set out in order to visualize the possibility of achieving a defined grain texture orientation.
How to polymerize ethylene in a highly controlled fashion?
Kempe, Rhett
2007-01-01
Very fast, reversible, polyethylene (PE) chain transfer or complex-catalysed "Aufbaureaktion" describes a "living" chain-growing process on a main-group metal or zinc atom; this process is catalysed by an organo-transition-metal or lanthanide complex. PE chains are transferred very fast between the two metal sites and chain growth takes place through ethylene insertion into the transition-metal- or lanthanide-carbon bond-coordinative chain-transfer polymerisation (CCTP). The transferred chains "rest" at the main-group or zinc centre, at which chain-termination processes like beta-H transfer/elimination are of low significance. Such protocols can be used to synthesise very narrowly distributed PE materials (M(w)/M(n)<1.1 up to a molecular weight of about 4000 g mol(-1)) with differently functionalised end groups. Higher molecular-weight polymers can be obtained with a slightly increased M(w)/M(n), since diffusion control and precipitation of the polymers influences the chain-transfer process. Recently, a few transition-metal- or lanthanide-based catalyst systems that catalyse such a highly reversible chain-growing process have been described. They are summarised and compared within this contribution.
Beyond prevalence to process: the role of self and identity in medical student well-being.
Mavor, Kenneth I; McNeill, Kathleen G; Anderson, Katrina; Kerr, Annelise; O'Reilly, Erin; Platow, Michael J
2014-04-01
Problematic stress levels among medical students have been well established. This stress can lead to depression, suicidal ideation, substance abuse, burnout and cynicism, having a negative effect on students and their patients. We propose to move towards examining the processes underlying well-being in some medical students and vulnerability in others. We draw upon social psychological literature to propose that self-complexity, medical student identity and associated norms all have the capacity to influence medical students' well-being in both positive and negative ways. We identify two key dilemmas facing medical students with regard to the social psychological factors investigated. First, a diverse set of interests and a high level of self-complexity is thought to buffer against the effects of stress and might also be beneficial for medical practitioners, but the intensive nature of medical education makes it difficult for students to pursue outside interests, leading to a strongly focused identity. Second, a strong group identity is associated with high levels of social support and improved well-being, but unhealthy group norms may have a greater influence on individuals who have a strong group identity, encouraging them to engage in behaviours that place their well-being at risk. A model is proposed outlining how these potentially contradictory social psychological processes may combine to impact upon medical students' well-being. There is great scope for investigating the role of self-complexity, identity and norms in the medical education context, with room to investigate each of these factors alone and in combination. We highlight how our proposed model can inform medical educators as to the students who may be most vulnerable to the effects of stress and the potential interventions from which they may benefit. We conclude that social psychological factors make a valuable contribution to understanding the complex issue of well-being in medical education. © 2014 John Wiley & Sons Ltd.
Beneath the Tip of the Iceberg: Exploring the Multiple Forms of University-Industry Linkages
ERIC Educational Resources Information Center
Ramos-Vielba, Irene; Fernandez-Esquinas, Manuel
2012-01-01
This article focuses on the wide variety of channels through which the process of knowledge transfer occurs. The overall objective is to show the complexity of relationships between researchers and firms in a university system, and to identify some specific factors that influence such interactions. Our case study involves a face-to-face survey of…
ERIC Educational Resources Information Center
Pisaniello, Sandra L.; Winefield, Helen R.; Delfabbro, Paul H.
2012-01-01
Nursing is an emotionally complex occupation, requiring performance of both emotional labour (for the benefit of the organisation and professional role) and emotional work (for the benefit of the nurse-patient relationship). According to the Conservation of Resources Theory, such processes can have a significant effect on psychological wellbeing…
ERIC Educational Resources Information Center
Lechuga, Vicente M.
2014-01-01
Scholars have offered numerous approaches and best practices for mentoring faculty, many of which have provided valuable insight into the complex nature of the mentoring process. Yet, little attention has been paid to how faculty mentoring practices can influence a mentee's intrinsic motivation. Through a series of 15 interviews with faculty…
USDA-ARS?s Scientific Manuscript database
Ozone uptake by plants leads to an increase in reactive oxygen species (ROS) in the intercellular space of leaves and induces signalling processes reported to involve the membrane-bound heterotrimeric G-protein complex. Therefore, potential G-protein-mediated response mechanisms to ozone were compar...
ERIC Educational Resources Information Center
Yoon, Susan A.
2011-01-01
This study extends previous research that explores how visualization affordances that computational tools provide and social network analyses that account for individual- and group-level dynamic processes can work in conjunction to improve learning outcomes. The study's main hypothesis is that when social network graphs are used in instruction,…
ERIC Educational Resources Information Center
Malara, Nicolina A.
2003-01-01
Our teaching conception acknowledges the teacher's central role as a decision maker, influenced by knowledge, beliefs, and emotions. We believe that teachers' education must be focused on teachers' awareness of the complexity of the teaching process, of the incidence of these factors in it, and of the importance of looking at theory as a strong…
NASA Astrophysics Data System (ADS)
Semenova, L. E.
2018-04-01
The treatment of the two-photon transitions to the An=1 exciton level and the resonant Raman scattering of light by LO-phonons is given for the hexagonal semiconductors A2B6, taking into account the influence of the complex top valence band and anisotropy of the exciton effective mass.
ERIC Educational Resources Information Center
Awokoya, Janet T.
2012-01-01
Past scholarship on immigrant racial and ethnic identity construction tends to ignore the processes by which social context influences identity at the individual level. In this qualitative study, Janet T. Awokoya presents a complex understanding of 1.5- and second-generation African immigrant youths' identities. Awokoya explores how three major…
ERIC Educational Resources Information Center
Pardhan, Almina
2011-01-01
In the current global push to explore the diverse and complex ways in which the school culture contributes to the shaping of young children's gender identity, early childhood teachers' role in this process is an area of concern which has received limited attention. Furthermore, the schooling experiences of early years children in developing world…
The role of science in wilderness planning: a state-of-knowledge review
Edwin E. Krumpe
2000-01-01
Wilderness planning has evolved since the Wilderness Act of 1964 in an atmosphere of intense debate and public scrutiny. Wilderness planning and the role science has played in developing the planning process has been influenced by many complex legal mandates, by thorny social issues, and by emerging planning paradigms. Wilderness planning has at times been inspired by...
Research on Data Use: A Framework and Analysis
ERIC Educational Resources Information Center
Coburn, Cynthia E.; Turner, Erica O.
2011-01-01
One of the central lessons from research on data use in schools and school districts is that assessments, student tests, and other forms of data are only as good as how they are used. But what influences how they are used? This relatively straightforward question turns out to be fairly complex to answer. Data use implicates a number of processes,…
Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?
Erdmann, Weronika; Idzikowski, Bogdan; Kowalski, Wojciech; Szymański, Bogdan; Kosicki, Jakub Z.; Kaczmarek, Łukasz
2017-01-01
Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth’s organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada), which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field. PMID:28886031
Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?
Erdmann, Weronika; Idzikowski, Bogdan; Kowalski, Wojciech; Szymański, Bogdan; Kosicki, Jakub Z; Kaczmarek, Łukasz
2017-01-01
Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth's organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada), which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.
Influence of rainfall and catchment characteristics on urban stormwater quality.
Liu, An; Egodawatta, Prasanna; Guan, Yuntao; Goonetilleke, Ashantha
2013-02-01
The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option. Copyright © 2012 Elsevier B.V. All rights reserved.
Second Iteration of Photogrammetric Pipeline to Enhance the Accuracy of Image Pose Estimation
NASA Astrophysics Data System (ADS)
Nguyen, T. G.; Pierrot-Deseilligny, M.; Muller, J.-M.; Thom, C.
2017-05-01
In classical photogrammetric processing pipeline, the automatic tie point extraction plays a key role in the quality of achieved results. The image tie points are crucial to pose estimation and have a significant influence on the precision of calculated orientation parameters. Therefore, both relative and absolute orientations of the 3D model can be affected. By improving the precision of image tie point measurement, one can enhance the quality of image orientation. The quality of image tie points is under the influence of several factors such as the multiplicity, the measurement precision and the distribution in 2D images as well as in 3D scenes. In complex acquisition scenarios such as indoor applications and oblique aerial images, tie point extraction is limited while only image information can be exploited. Hence, we propose here a method which improves the precision of pose estimation in complex scenarios by adding a second iteration to the classical processing pipeline. The result of a first iteration is used as a priori information to guide the extraction of new tie points with better quality. Evaluated with multiple case studies, the proposed method shows its validity and its high potiential for precision improvement.
Optimizing DNA nanotechnology through coarse-grained modeling: a two-footed DNA walker.
Ouldridge, Thomas E; Hoare, Rollo L; Louis, Ard A; Doye, Jonathan P K; Bath, Jonathan; Turberfield, Andrew J
2013-03-26
DNA has enormous potential as a programmable material for creating artificial nanoscale structures and devices. For more complex systems, however, rational design and optimization can become difficult. We have recently proposed a coarse-grained model of DNA that captures the basic thermodynamic, structural, and mechanical changes associated with the fundamental process in much of DNA nanotechnology, the formation of duplexes from single strands. In this article, we demonstrate that the model can provide powerful insight into the operation of complex nanotechnological systems through a detailed investigation of a two-footed DNA walker that is designed to step along a reusable track, thereby offering the possibility of optimizing the design of such systems. We find that applying moderate tension to the track can have a large influence on the operation of the walker, providing a bias for stepping forward and helping the walker to recover from undesirable overstepped states. Further, we show that the process by which spent fuel detaches from the walker can have a significant impact on the rebinding of the walker to the track, strongly influencing walker efficiency and speed. Finally, using the results of the simulations, we propose a number of modifications to the walker to improve its operation.
Visual Cortex Plasticity: A Complex Interplay of Genetic and Environmental Influences
Maya-Vetencourt, José Fernando; Origlia, Nicola
2012-01-01
The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition to the remarkable variety of transcription factors and their combinatorial interaction at specific gene promoters, epigenetic mechanisms that regulate transcription have emerged as conserved processes by which the nervous system accomplishes the induction of plasticity. Experience-dependent changes of DNA methylation patterns and histone posttranslational modifications are, in fact, recruited as targets of plasticity-associated signal transduction mechanisms. Here, we shall concentrate on structural and functional consequences of early sensory deprivation in the visual system and discuss how intracellular signal transduction pathways associated with experience regulate changes of chromatin structure and gene expression patterns that underlie these plastic phenomena. Recent experimental evidence for mechanisms of cross-modal plasticity following congenital or acquired sensory deprivation both in human and animal models will be considered as well. We shall also review different experimental strategies that can be used to achieve the recovery of sensory functions after long-term deprivation in humans. PMID:22852098
Medical image segmentation based on SLIC superpixels model
NASA Astrophysics Data System (ADS)
Chen, Xiang-ting; Zhang, Fan; Zhang, Ruo-ya
2017-01-01
Medical imaging has been widely used in clinical practice. It is an important basis for medical experts to diagnose the disease. However, medical images have many unstable factors such as complex imaging mechanism, the target displacement will cause constructed defect and the partial volume effect will lead to error and equipment wear, which increases the complexity of subsequent image processing greatly. The segmentation algorithm which based on SLIC (Simple Linear Iterative Clustering, SLIC) superpixels is used to eliminate the influence of constructed defect and noise by means of the feature similarity in the preprocessing stage. At the same time, excellent clustering effect can reduce the complexity of the algorithm extremely, which provides an effective basis for the rapid diagnosis of experts.
Embracing chaos and complexity: a quantum change for public health.
Resnicow, Kenneth; Page, Scott E
2008-08-01
Public health research and practice have been guided by a cognitive, rational paradigm where inputs produce linear, predictable changes in outputs. However, the conceptual and statistical assumptions underlying this paradigm may be flawed. In particular, this perspective does not adequately account for nonlinear and quantum influences on human behavior. We propose that health behavior change is better understood through the lens of chaos theory and complex adaptive systems. Key relevant principles include that behavior change (1) is often a quantum event; (2) can resemble a chaotic process that is sensitive to initial conditions, highly variable, and difficult to predict; and (3) occurs within a complex adaptive system with multiple components, where results are often greater than the sum of their parts.
Liu, Lei; Jiang, Yunyao; Boyce, Mary; Ortiz, Christine; Baur, Jeffery; Song, Juha; Li, Yaning
2017-06-14
Irregular interdigitated morphology is prevalent in biological sutures in nature. Suture complexity index has long been recognized as the most important morphological parameter to govern the mechanical properties of biological sutures. However, the suture complexity index alone does not reflect all aspects of suture morphology. The goal of this investigation was to determine that besides suture complexity index, whether the degree of morphological irregularity of biological sutures has influences on the mechanical properties, and if there is any, how to quantify these influences. To explore these issues, theoretical and finite element (FE) suture models with the same suture complexity index but different levels of morphological irregularity were developed. The quasi-static stiffness, strength for damage initiation and post-failure process of irregular sutures were studied. It was shown that for the same suture complexity index, when the level of morphological irregularity increases, the overall strain to failure will increase while tensile stiffness is retained; also, the total energy to fracture increases with a sacrifice in strength to damage initiation. These results reveal that morphological irregularity is another important independent parameter to govern and balance the mechanical properties of biological sutures. Therefore, from the mechanics point of view, the prevalence of irregular suture morphology in nature is a merit, not a defect. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Mediator complex and transcription regulation
Poss, Zachary C.; Ebmeier, Christopher C.
2013-01-01
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064
Complex terrain influences ecosystem carbon responses to temperature and precipitation
NASA Astrophysics Data System (ADS)
Reyes, W. M.; Epstein, H. E.; Li, X.; McGlynn, B. L.; Riveros-Iregui, D. A.; Emanuel, R. E.
2017-08-01
Terrestrial ecosystem responses to temperature and precipitation have major implications for the global carbon cycle. Case studies demonstrate that complex terrain, which accounts for more than 50% of Earth's land surface, can affect ecological processes associated with land-atmosphere carbon fluxes. However, no studies have addressed the role of complex terrain in mediating ecophysiological responses of land-atmosphere carbon fluxes to climate variables. We synthesized data from AmeriFlux towers and found that for sites in complex terrain, responses of ecosystem CO2 fluxes to temperature and precipitation are organized according to terrain slope and drainage area, variables associated with water and energy availability. Specifically, we found that for tower sites in complex terrain, mean topographic slope and drainage area surrounding the tower explained between 51% and 78% of site-to-site variation in the response of CO2 fluxes to temperature and precipitation depending on the time scale. We found no such organization among sites in flat terrain, even though their flux responses exhibited similar ranges. These results challenge prevailing conceptual framework in terrestrial ecosystem modeling that assumes that CO2 fluxes derive from vertical soil-plant-climate interactions. We conclude that the terrain in which ecosystems are situated can also have important influences on CO2 responses to temperature and precipitation. This work has implications for about 14% of the total land area of the conterminous U.S. This area is considered topographically complex and contributes to approximately 15% of gross ecosystem carbon production in the conterminous U.S.
Joly, Elizabeth
2016-06-01
To present a discussion of a theoretical perspective developed through integrating Meleis' Transition Theory and Bronfenbrenner's Bioecological Theory of Human Development to inform nursing and advanced nursing practice supporting the transition to adulthood for young people with medical complexity. Theoretical perspectives to inform nursing practice in supporting successful transition are limited, yet nurses frequently encounter young people with medical complexity during the transition to adulthood. Discussion paper. A literature search of CINAHL and Medline was conducted in 2014 and included articles from 2003-2014; informal discussions with families; the author's experiences in a transition program. The integrated theoretical perspective described in this paper can inform nurses and advanced practice nurses on contextual influences, program and intervention development across spheres of influence and outcomes for the transition to adulthood for young people with medical complexity. Young people and their families require effective reciprocal interactions with individuals and services across sectors to successfully transition to adulthood and become situated in the adult world. Intervention must also extend beyond the young person to include providers, services and health and social policy. Nurses can take a leadership role in supporting the transition to adulthood for young people with medical complexity through direct care, case management, education and research. It is integral that nurses holistically consider developmental processes, complexity and contextual conditions that promote positive outcomes during and beyond the transition to adulthood. © 2016 John Wiley & Sons Ltd.
Ezer, Paulina; Leipert, Bev; Evans, Marilyn; Regan, Sandra
2016-01-01
Rural female adolescents experience unique circumstances to sexual health care and information as compared to urban adolescents. These circumstances are largely due to their more isolated geographical location and rural sociocultural factors. These circumstances may be contributing factors to an incidence of adolescent pregnancy that is higher in rural areas than in urban cities. Thus, this higher incidence of pregnancy may be due to the ways in which rural adolescents make decisions regarding engagement in sexual intercourse. However, the rural female adolescent sexual decision-making process has rarely, if ever, been studied, and further investigation of this process is necessary. Focusing on rural female adolescents aged 16-19 years is especially significant as this age range is used for reporting most pregnancy and birth statistics in Ontario. Charmaz's guidelines for a constructivist grounded theory methodology were used to gain an in-depth understanding of eight Ontario rural female adolescents' decision-making process regarding sexual intercourse and pregnancy, and how they viewed rural factors and circumstances influencing this process. Research participants were obtained through initial sampling (from criteria developed prior to the study) and theoretical sampling (by collecting data that better inform the categories emerging from the data). Eight participants, aged 16-19 years, were invited to each take part in 1-2-hour individual interviews, and four of these participants were interviewed a second time to verify and elaborate on emerging constructed concepts, conceptual relationships, and the developing process. Data collection and analysis included both field notes and individual interviews in person and over the telephone. Data were analyzed for emerging themes to construct a theory to understand the participants' experiences making sexual decisions in a rural environment. The adolescent sexual decision-making process, Prioritizing Influences, that emerged from the analysis was a complex and non-linear process that involved prioritizing four influences within the rural context. The influences that participants of this study described as being part of their sexual decision-making process were personal values and circumstances, family values and expectations, friends' influences, and community influences. When influences coincided, they strengthened participants' sexual decisions, whereas when influences opposed each other, participants felt conflicted and prioritized the influence that had the most effect on their personal lives and future goals. Although these influences may be common to all adolescents, they impact the rural female adolescent sexual decision-making process by influencing and being influenced by geographical and sociocultural factors that make up the rural context. This study reveals important new and preliminary information about rural female adolescents' sexual decision-making process and factors that affect it. Findings improve understanding of how rural female adolescents make choices regarding sexual intercourse and pregnancy and can be used to guide future research projects that could facilitate effective development of sexual health promotion initiatives, inform rural health policy and practices, and enhance existing sexual education programs in rural communities.
Understanding global health governance as a complex adaptive system.
Hill, Peter S
2011-01-01
The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.
MOF-associated complexes ensure stem cell identity and Xist repression
Chelmicki, Tomasz; Dündar, Friederike; Ramírez, Fidel; Gendrel, Anne-Valerie; Wright, Patrick Rudolf; Videm, Pavankumar; Backofen, Rolf; Heard, Edith; Manke, Thomas; Akhtar, Asifa
2014-01-01
Histone acetyl transferases (HATs) play distinct roles in many cellular processes and are frequently misregulated in cancers. Here, we study the regulatory potential of MYST1-(MOF)-containing MSL and NSL complexes in mouse embryonic stem cells (ESCs) and neuronal progenitors. We find that both complexes influence transcription by targeting promoters and TSS-distal enhancers. In contrast to flies, the MSL complex is not exclusively enriched on the X chromosome, yet it is crucial for mammalian X chromosome regulation as it specifically regulates Tsix, the major repressor of Xist lncRNA. MSL depletion leads to decreased Tsix expression, reduced REX1 recruitment, and consequently, enhanced accumulation of Xist and variable numbers of inactivated X chromosomes during early differentiation. The NSL complex provides additional, Tsix-independent repression of Xist by maintaining pluripotency. MSL and NSL complexes therefore act synergistically by using distinct pathways to ensure a fail-safe mechanism for the repression of X inactivation in ESCs. DOI: http://dx.doi.org/10.7554/eLife.02024.001 PMID:24842875
Branik, Emil
2003-09-01
In the last two decades considerable changes influenced the scope of inpatient treatment in child and adolescent psychiatry. Proceeding from a literature review dilemmas between available research data and clinical practice will be pointed out. Proposals will be made to take into account the complex developmental processes, the individuality and the social context by psychic impaired children and adolescents requiring hospitalisation. This could improve the transfer of research findings into the clinical practice. It will be argued against a confusion of economical interests with research findings.
The power of liking: Highly sensitive aesthetic processing for guiding us through the world
Faerber, Stella J.; Carbon, Claus-Christian
2012-01-01
Assessing liking is one of the most intriguing and influencing types of processing we experience day by day. We can decide almost instantaneously what we like and are highly consistent in our assessments, even across cultures. Still, the underlying mechanism is not well understood and often neglected by vision scientists. Several potential predictors for liking are discussed in the literature, among them very prominently typicality. Here, we analysed the impact of subtle changes of two perceptual dimensions (shape and colour saturation) of three-dimensional models of chairs on typicality and liking. To increase the validity of testing, we utilized a test-adaptation–retest design for extracting sensitivity data of both variables from a static (test only) as well as from a dynamic perspective (test–retest). We showed that typicality was only influenced by shape properties, whereas liking combined processing of shape plus saturation properties, indicating more complex and integrative processing. Processing the aesthetic value of objects, persons, or scenes is an essential and sophisticated mechanism, which seems to be highly sensitive to the slightest variations of perceptual input. PMID:23145310
NASA Astrophysics Data System (ADS)
Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal
2017-07-01
Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.
Food structure: Its formation and relationships with other properties.
Joardder, Mohammad U H; Kumar, Chandan; Karim, M A
2017-04-13
Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food.
Is ‘informed consent’ an ‘understood consent’ in hematopoietic cell transplantation?
D'Souza, A; Pasquini, M; Spellecy, R
2015-01-01
Hematopoietic cell transplantation (HCT) is a complex and highly specialized medical treatment that is associated with significant risks, including death. Furthermore, transplantation is offered to patients who often have no other curative treatment alternatives. The routine-consent process for HCT typically occurs before HCT and is influenced by many factors related to patients, physicians and the transplant per se. These factors can impede the consent process and subsequently result in a failure of proper engagement in and an understanding of the procedure with resultant adverse consequences influencing patients and even the patient–physician relationship. We contend that informed consent is a dynamic and ongoing process and that better patient education can assist in the decision making, fulfill the ethical principle of respect for autonomy and engage the patient to maximize compliance and adherence to therapy. This manuscript reviews the key literature pertaining to the decision-making and consent process in HCT and proposes guidelines for improving the consent process. Strategies for improving patient comprehension, engagement and enhancing consent forms are discussed. PMID:25243618
NASA Astrophysics Data System (ADS)
Majerova, M.; Neilson, B. T.; Schmadel, N. M.; Wheaton, J. M.; Snow, C. J.
2013-12-01
Beaver dams and beaver activity affect hydrologic processes, sediment transport, channel complexity and water quality of streams. Beaver ponds, which form behind beaver dams, increase in-channel water storage affecting the timing and volume of flow and resulting in the attenuation and flattening of the hydrograph. Channel complexity also increases the potential for transient storage (both surface and subsurface) and influences stream temperature. Impacts of beaver dams and beaver activity on stream responses are difficult to quantify because responses are dynamic and spatially variable. Few studies have focused on the reach scale temporal influences on stream responses and further research is needed particularly in quantifying the influence of beaver dams and their role in shaping the stream habitat. This study explores the changing hydrology and temperature regime of Curtis Creek, a mountainous stream located in Northern Utah, in a 560 m long reach where groundwater exchanges and temperature differences were observed over a three-year period. We have collected continuous stream discharge, stream temperature data and performed tracer experiments. During the first year, we were able to capture the pre-beaver activity. In the second year, we captured the impacts of some beaver activity with only a few dams built in the reach, while the third year included the effects of an entire active beaver colony. By the end of the study period, a single thread channel had been transformed into a channel with side channels and backwaters at multiple locations therefore increasing channel complexity. The cumulative influence of beaver dams on reach scale discharge resulted in a slightly losing reach that developed into a gaining reach. At the smaller sub-reach scale, both losing to gaining and gaining to losing transformations were observed. Temperature differences showed a warming effect of beaver dams at the reach scale. The reach stream temperature difference increased on average 0.3°C when comparing the first to the third year of our study period. This warming trend was more pronounced in summer stream temperatures where differences were about 0.7°C. During winter months cooling was observed and temperatures decreased about -0.2°C over the reach. Annual tracer studies also captured an 81min (238%) increase in residence times due primarily to the increased channel complexity and storage over the three-year period. Our study provides reach scale understanding regarding the temporal influence of beavers to not only change physical template of the channel, but also influence the hydrology and temperature regime of streams.
Recovery in involuntary psychiatric care: is there a gender difference?
Schön, Ulla-Karin
2013-10-01
Research on recovery from mental illness and the influence of compulsory psychiatric institutional care has revealed the complexity of this concept. There is also limited knowledge regarding the impact of gender-role expectations in these contexts, and how such expectations may influence both the care and individuals' recovery processes. To explore women's and men's perceptions of the impact of compulsory inpatient care on recovery from severe mental illness. Grounded theory was used to analyse 30 first-person accounts of recovery from mental illness, elicited via interviews with individuals who had been compulsorily treated in hospital and diagnosed with a severe mental illness. Inpatient care at an early stage was crucial for the informants' recovery. However, there was ambivalence in their perceptions of the impact of compulsory inpatient care. The narratives confirmed gender differences as well as gender stereotypes. The results have implications for recovery research, in that they emphasise the importance of understanding recovery as a gender-influenced process.
Columbia River Estuary ecosystem classification—Concept and application
Simenstad, Charles A.; Burke, Jennifer L.; O'Connor, Jim E.; Cannon, Charles; Heatwole, Danelle W.; Ramirez, Mary F.; Waite, Ian R.; Counihan, Timothy D.; Jones, Krista L.
2011-01-01
This document describes the concept, organization, and application of a hierarchical ecosystem classification that integrates saline and tidal freshwater reaches of estuaries in order to characterize the ecosystems of large flood plain rivers that are strongly influenced by riverine and estuarine hydrology. We illustrate the classification by applying it to the Columbia River estuary (Oregon-Washington, USA), a system that extends about 233 river kilometers (rkm) inland from the Pacific Ocean. More than three-quarters of this length is tidal freshwater. The Columbia River Estuary Ecosystem Classification ("Classification") is based on six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. We define and map Levels 1-3 for the entire Columbia River estuary with existing geospatial datasets, and provide examples of Levels 4-6 for one hydrogeomorphic reach. In particular, three levels of the Classification capture the scales and categories of ecosystem structure and processes that are most tractable to estuarine research, monitoring, and management. These three levels are the (1) eight hydrogeomorphic reaches that embody the formative geologic and tectonic processes that created the existing estuarine landscape and encompass the influence of the resulting physiography on interactions between fluvial and tidal hydrology and geomorphology across 230 kilometers (km) of estuary, (2) more than 15 ecosystem complexes composed of broad landforms created predominantly by geologic processes during the Holocene, and (3) more than 25 geomorphic catenae embedded within ecosystem complexes that represent distinct geomorphic landforms, structures, ecosystems, and habitats, and components of the estuarine landscape most likely to change over short time periods.
T-complex measures in bilingual Spanish-English and Turkish-German children and monolingual peers.
Rinker, Tanja; Shafer, Valerie L; Kiefer, Markus; Vidal, Nancy; Yu, Yan H
2017-01-01
Lateral temporal neural measures (Na and T-complex Ta and Tb) of the auditory evoked potential (AEP) index maturation of auditory/speech processing. These measures are also sensitive to language experience in adults. This paper examined neural responses to a vowel sound at temporal electrodes in four- to five-year-old Spanish-English bilinguals and English monolinguals and in five- to six-year-old Turkish-German bilinguals and German monolinguals. The goal was to determine whether obligatory AEPs at temporal electrode sites were modulated by language experience. Language experience was defined in terms of monolingual versus bilingual status as well as the amount and quality of the bilingual language experience. AEPs were recorded at left and right temporal electrode sites to a 250-ms vowel [Ɛ] from 20 monolingual (American)-English and 18 Spanish-English children from New York City, and from 11 Turkish-German and 13 monolingual German children from Ulm, Germany. Language background information and standardized verbal and non-verbal test scores were obtained for the children. The results revealed differences in temporal AEPs (Na and Ta of the T-complex) between monolingual and bilingual children. Specifically, bilingual children showed smaller and/or later peak amplitudes than the monolingual groups. Ta-amplitude distinguished monolingual and bilingual children best at right electrode sites for both the German and American groups. Amount of experience and type of experience with the target language (English and German) influenced processing. The finding of reduced amplitudes at the Ta latency for bilingual compared to monolingual children indicates that language specific experience, and not simply maturational factors, influences development of the neural processes underlying the Ta AEP, and suggests that lateral temporal cortex has an important role in language-specific speech perception development.
T-complex measures in bilingual Spanish-English and Turkish-German children and monolingual peers
Rinker, Tanja; Shafer, Valerie L.; Kiefer, Markus; Vidal, Nancy; Yu, Yan H.
2017-01-01
Background Lateral temporal neural measures (Na and T-complex Ta and Tb) of the auditory evoked potential (AEP) index maturation of auditory/speech processing. These measures are also sensitive to language experience in adults. This paper examined neural responses to a vowel sound at temporal electrodes in four- to five-year-old Spanish-English bilinguals and English monolinguals and in five- to six-year-old Turkish-German bilinguals and German monolinguals. The goal was to determine whether obligatory AEPs at temporal electrode sites were modulated by language experience. Language experience was defined in terms of monolingual versus bilingual status as well as the amount and quality of the bilingual language experience. Method AEPs were recorded at left and right temporal electrode sites to a 250-ms vowel [Ɛ] from 20 monolingual (American)-English and 18 Spanish-English children from New York City, and from 11 Turkish-German and 13 monolingual German children from Ulm, Germany. Language background information and standardized verbal and non-verbal test scores were obtained for the children. Results The results revealed differences in temporal AEPs (Na and Ta of the T-complex) between monolingual and bilingual children. Specifically, bilingual children showed smaller and/or later peak amplitudes than the monolingual groups. Ta-amplitude distinguished monolingual and bilingual children best at right electrode sites for both the German and American groups. Amount of experience and type of experience with the target language (English and German) influenced processing. Conclusions The finding of reduced amplitudes at the Ta latency for bilingual compared to monolingual children indicates that language specific experience, and not simply maturational factors, influences development of the neural processes underlying the Ta AEP, and suggests that lateral temporal cortex has an important role in language-specific speech perception development. PMID:28267801
RTM simulations and experiments for fiber-reinforced turbine blades forming
NASA Astrophysics Data System (ADS)
Nguyen, Tuan Linh; Marchand, Christophe
2018-05-01
The one-shot (full part) forming of tidal turbine blades by RTM (Resin Transfer Molding) process is a complex process due to the complexity of reinforcements and geometry of blades. In this work, beside the experimental tests which have been realized using IRT JV high capacity machines, the RTM simulations using Moldex3D RTM software have been carried out. First of all, simulations have been done on a 1/7th scale part in order to determine the best injection strategy. Different tested strategies vary by the disposition of injection points (Inlet)/vacuum points (Outlet). Then, the chosen strategy has been applied on the full scale part (˜ 7m length) of high thickness with more complex reinforcement draping. In both cases, the stage of meshing is important to take into account the draping plan with different fiber orientation and fiber types. Attention should be paid on the neck of the blade as the structure of reinforcement changes. A sensitivity study of different parameters (permeability, pressure, temperature) has been then done to understand their influence on the injection time. The permeability which lies to the choice of reinforcement type and fiber volume fraction plays an important role. As the thickness of the part is high, an experimental campaign for measuring the 3D permeability is required. Among the process controllable parameters, the pressure seems the fastest way to reduce the injection time. However, increasing the injection pressure (or the vacuum) could deform the reinforcement. Moreover, the maximal pressure depends on the machine capacity. The influence of temperature shows the thermo-dependence of resin viscosity, the injection time thus decreases as the temperature increases. Nevertheless, the gel time is more limited for injection stage if the resin is heated too much.
Ixcatec ethnoecology: plant management and biocultural heritage in Oaxaca, Mexico.
Rangel-Landa, Selene; Casas, Alejandro; Rivera-Lozoya, Erandi; Torres-García, Ignacio; Vallejo-Ramos, Mariana
2016-07-20
Studying motives of plant management allows understanding processes that originated agriculture and current forms of traditional technology innovation. Our work analyses the role of native plants in the Ixcatec subsistence, management practices, native plants biocultural importance, and motivations influencing management decisions. Cultural and ecological importance and management complexity may differ among species according with their use value and availability. We hypothesized that decreasing risk in availability of resources underlies the main motives of management, but curiosity, aesthetic, and ethical values may also be determinant. Role of plants in subsistence strategies, forms of use and management was documented through 130 semi-structured interviews and participant observation. Free listing interviews to 38 people were used to estimate the cognitive importance of species used as food, medicine, fuel, fodder, ornament and ceremonial. Species ecological importance was evaluated through sampling vegetation in 22 points. Principal Components Analysis were performed to explore the relation between management, cultural and ecological importance and estimating the biocultural importance of native species. We recorded 627 useful plant species, 589 of them native. Livelihood strategies of households rely on agriculture, livestock and multiple use of forest resources. At least 400 species are managed, some of them involving artificial selection. Management complexity is the main factor reflecting the biocultural importance of plant species, and the weight of ecological importance and cultural value varied among use types. Management strategies aim to ensure resources availability, to have them closer, to embellish human spaces or satisfying ethical principles. Decisions about plants management are influenced by perception of risk to satisfy material needs, but immaterial principles are also important. Studying such relation is crucial for understanding past and present technological innovation processes and understand the complex process of developing biocultural legacy.
Goal setting with mothers in child development services.
Forsingdal, S; St John, W; Miller, V; Harvey, A; Wearne, P
2014-07-01
The aim of this grounded theory study was to explore mothers' perspectives of the processes of collaborative goal setting in multidisciplinary child development services involving follow-up home therapy. Semi-structured interviews were conducted in South East Queensland, Australia with 14 mothers of children aged 3-6 years who were accessing multidisciplinary child development services. Interviews were focussed around the process of goal setting. A grounded theory of Maternal Roles in Goal Setting (The M-RIGS Model) was developed from analysis of data. Mothers assumed Dependent, Active Participator and Collaborator roles when engaging with the therapist in goal-setting processes. These roles were characterized by the mother's level of dependence on the therapist and insight into their child's needs and therapy processes. Goal Factors, Parent Factors and Therapist Factors influenced and added complexity to the goal-setting process. The M-RIGS Model highlights that mothers take on a range of roles in the goal-setting process. Although family-centred practice encourages negotiation and collaborative goal setting, parents may not always be ready to take on highly collaborative roles. Better understanding of parent roles, goal-setting processes and influencing factors will inform better engagement with families accessing multidisciplinary child development services. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui
2018-04-01
Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.
Ullal-Gupta, Sangeeta; Hannon, Erin E.; Snyder, Joel S.
2014-01-01
Musical meters vary considerably across cultures, yet relatively little is known about how culture-specific experience influences metrical processing. In Experiment 1, we compared American and Indian listeners' synchronous tapping to slow sequences. Inter-tone intervals contained silence or to-be-ignored rhythms that were designed to induce a simple meter (familiar to Americans and Indians) or a complex meter (familiar only to Indians). A subset of trials contained an abrupt switch from one rhythm to another to assess the disruptive effects of contradicting the initially implied meter. In the unfilled condition, both groups tapped earlier than the target and showed large tap-tone asynchronies (measured in relative phase). When inter-tone intervals were filled with simple-meter rhythms, American listeners tapped later than targets, but their asynchronies were smaller and declined more rapidly. Likewise, asynchronies rose sharply following a switch away from simple-meter but not from complex-meter rhythm. By contrast, Indian listeners performed similarly across all rhythm types, with asynchronies rapidly declining over the course of complex- and simple-meter trials. For these listeners, a switch from either simple or complex meter increased asynchronies. Experiment 2 tested American listeners but doubled the duration of the synchronization phase prior to (and after) the switch. Here, compared with simple meters, complex-meter rhythms elicited larger asynchronies that declined at a slower rate, however, asynchronies increased after the switch for all conditions. Our results provide evidence that ease of meter processing depends to a great extent on the amount of experience with specific meters. PMID:25075514
NASA Astrophysics Data System (ADS)
Leisner, T.; Abdelmonem, A.; Benz, S.; Brinkmann, M.; Möhler, O.; Rzesanke, D.; Saathoff, H.; Schnaiter, M.; Wagner, R.
2009-04-01
The formation of ice in tropospheric clouds controls the evolution of precipitation and thereby influences climate and weather via a complex network of dynamical and microphysical processes. At higher altitudes, ice particles in cirrus clouds or contrails modify the radiative energy budget by direct interaction with the shortwave and longwave radiation. In order to improve the parameterisation of the complex microphysical and dynamical processes leading to and controlling the evolution of tropospheric ice, laboratory experiments are performed at the IMK Karlsruhe both on a single particle level and in the aerosol and cloud chamber AIDA. Single particle experiments in electrodynamic levitation lend themselves to the study of the interaction between cloud droplets and aerosol particles under extremely well characterized and static conditions in order to obtain microphysical parameters as freezing nucleation rates for homogeneous and heterogeneous ice formation. They also allow the observation of the freezing dynamics and of secondary ice formation and multiplication processes under controlled conditions and with very high spatial and temporal resolution. The inherent droplet charge in these experiments can be varied over a wide range in order to assess the influence of the electrical state of the cloud on its microphysics. In the AIDA chamber on the other hand, these processes are observable under the realistic dynamic conditions of an expanding and cooling cloud- parcel with interacting particles and are probed simultaneously by a comprehensive set of analytical instruments. By this means, microphysical processes can be studied in their complex interplay with dynamical processes as for example coagulation or particle evaporation and growth via the Bergeron - Findeisen process. Shortwave scattering and longwave absorption properties of the nucleating and growing ice crystals are probed by in situ polarised laser light scattering measurements and infrared extinction spectroscopy. In conjunction with ex situ single particle imaging and light scattering measurements the relation between the overall extinction and depolarization properties of the ice clouds and the morphological details of the constituent ice crystals are investigated. In our contribution we will concentrate on the parameterization of homogeneous and heterogeneous ice formation processes under various atmospheric conditions and on the optical properties of the ice crystals produced under these conditions. First attempts to parameterize the observations will be presented.
General and food-specific parenting: measures and interplay.
Kremers, Stef; Sleddens, Ester; Gerards, Sanne; Gubbels, Jessica; Rodenburg, Gerda; Gevers, Dorus; van Assema, Patricia
2013-08-01
Parental influence on child food intake is typically conceptualized at three levels-parenting practices, feeding style, and parenting style. General parenting style is modeled at the most distal level of influence and food parenting practices are conceptualized as the most proximal level of influence. The goal of this article is to provide insights into contents and explanatory value of instruments that have been applied to assess food parenting practices, feeding style, and parenting style. Measures of food parenting practices, feeding style, and parenting style were reviewed, compared, and contrasted with regard to contents, explanatory value, and interrelationships. Measures that are used in the field often fail to cover the full scope and complexity of food parenting. Healthy parenting dimensions have generally been found to be positively associated with child food intake (i.e., healthier dietary intake and less intake of energy-dense food products and sugar-sweetened beverages), but effect sizes are low. Evidence for the operation of higher-order moderation has been found, in which the impact of proximal parental influences is moderated by more distal levels of parenting. Operationalizing parenting at different levels, while applying a contextual higher-order moderation approach, is advocated to have surplus value in understanding the complex process of parent-child interactions in the area of food intake. A research paradigm is presented that may guide future work regarding the conceptualization and modeling of parental influences on child dietary behavior.
Information search and decision making: effects of age and complexity on strategy use.
Queen, Tara L; Hess, Thomas M; Ennis, Gilda E; Dowd, Keith; Grühn, Daniel
2012-12-01
The impact of task complexity on information search strategy and decision quality was examined in a sample of 135 young, middle-aged, and older adults. We were particularly interested in the competing roles of fluid cognitive ability and domain knowledge and experience, with the former being a negative influence and the latter being a positive influence on older adults' performance. Participants utilized 2 decision matrices, which varied in complexity, regarding a consumer purchase. Using process tracing software and an algorithm developed to assess decision strategy, we recorded search behavior, strategy selection, and final decision. Contrary to expectations, older adults were not more likely than the younger age groups to engage in information-minimizing search behaviors in response to increases in task complexity. Similarly, adults of all ages used comparable decision strategies and adapted their strategies to the demands of the task. We also examined decision outcomes in relation to participants' preferences. Overall, it seems that older adults utilize simpler sets of information primarily reflecting the most valued attributes in making their choice. The results of this study suggest that older adults are adaptive in their approach to decision making and that this ability may benefit from accrued knowledge and experience. 2013 APA, all rights reserved
Pain and sex hormones: a review of current understanding.
Maurer, Adrian J; Lissounov, Alexei; Knezevic, Ivana; Candido, Kenneth D; Knezevic, Nebojsa Nick
2016-01-01
Multiple epidemiologic studies have demonstrated an increased prevalence for women in several chronic pain disorders. Clinical and experimental investigations have consistently demonstrated sex-specific differences in pain sensitivity and pain threshold. Even though the underlying mechanisms responsible for these differences have not yet been elucidated, the logical possibility of gonadal hormone influence on nociceptive processing has garnered recent attention. In this review, we evaluated the complex literature regarding gonadal hormones and their influence on pain perception. We reviewed the numerous functions of gonadal hormones, discussed the influence of these hormones on several common chronic pain syndromes (migraine, tension and cluster headaches, fibromyalgia, temporomandibular syndrome, rheumatoid arthritis and back pain, among others), and have attempted to draw conclusions from the available data.
NASA Astrophysics Data System (ADS)
Ouriev, Boris; Windhab, Erich; Braun, Peter; Zeng, Yuantong; Birkhofer, Beat
2003-12-01
In the present work an in-line ultrasonic method for investigation of the rheological flow behavior of concentrated suspensions was created. It is based on a nondestructive rheological measuring technique for pilot plant and industrial scale applications. Elsewhere the author discusses a tremendous need for in-line rheological characterization of highly concentrated suspensions exposed to pressure driven shear flow conditions. Most existing on-line methods are based on destructive macro actuators, which are not suitable for materials with sensitive to applied deformation structure. Since the process of our basic interest influences the structure of suspension it would be difficult to separate the effects of rheometric measurement and weakly pronounced structural changes arising from a fine adjustment of the process parameters. The magnitude of these effects is usually associated with the complex flow dynamics of structured liquids and is sensitive to density or temperature fluctuations around the moving rheometric actuator. Interpretation of the results of such measurements can be hindered by process parameter influences on liquid product structure. Therefore, the author introduces an in-line noninvasive rheometric method, which is implemented in a pre-crystallization process of chocolate suspension. Use of ultrasound velocity profile pressure difference (UVP-PD) technique enabled process monitoring of the chocolate pre-crystallization process. Influence of seeded crystals on Rheology of chocolate suspension was recorded and monitored on line. It was shown that even slight velocity pulsations in chocolate mainstream can strongly influence rheological properties besides influencing flow velocity profiles. Based on calculations of power law fit in raw velocity profiles and calculation of wall shear stress from pressure difference measurement, a viscosity function was calculated and monitored on line. On-line results were found to be in a good agreement with off-line data. The results of the industrial test of the UVP-PD system brought practical knowledge and stipulated further development of a Smart UVP-PD noninventive on-line rheometer.
Protonation free energy levels in complex molecular systems.
Antosiewicz, Jan M
2008-04-01
All proteins, nucleic acids, and other biomolecules contain residues capable of exchanging protons with their environment. These proton transfer phenomena lead to pH sensitivity of many molecular processes underlying biological phenomena. In the course of biological evolution, Nature has invented some mechanisms to use pH gradients to regulate biomolecular processes inside cells or in interstitial fluids. Therefore, an ability to model protonation equilibria in molecular systems accurately would be of enormous value for our understanding of biological processes and for possible rational influence on them, like in developing pH dependent drugs to treat particular diseases. This work presents a derivation, by thermodynamic and statistical mechanical methods, of an expression for the free energy of a complex molecular system at arbitrary ionization state of its titratable residues. This constitutes one of the elements of modeling protonation equilibria. Starting from a consideration of a simple acid-base equilibrium of a model compound with a single tritratable group, we arrive at an expression which is of general validity for complex systems. The only approximation used in this derivation is the postulating that the interaction energy between any pair of titratable sites does not depend on the protonation states of all the remaining ionizable groups.
Bočková, Martina; Chládek, Jan; Jurák, Pavel; Halámek, Josef; Štillová, Klára; Baláž, Marek; Chrastina, Jan; Rektor, Ivan
2015-03-01
Cognitive adverse effects were reported after the deep brain stimulation (DBS) of the anterior nucleus of the thalamus (AN) in epilepsy. As the AN may have an influence on widespread neocortical networks, we hypothesized that the AN, in addition to its participation in memory processing, may also participate in cognitive activities linked with the frontal neocortical structures. The aim of this study was to investigate whether the AN might participate in complex motor-cognitive activities. Three pharmacoresistant epilepsy patients implanted with AN-DBS electrodes performed two tasks involving the writing of single letters: (1) copying letters from a monitor; and (2) writing of any letter other than that appearing on the monitor. The cognitive load of the second task was increased. The task-related oscillatory changes and evoked potentials were assessed. Local event-related alpha and beta desynchronization were more expressed during the second task while the lower gamma synchronization decreased. The local field event-related potentials were elicited by the two tasks without any specific differences. The AN participates in cognitive networks processing complex motor-cognitive tasks. Attention should be paid to executive functions in subjects undergoing AN-DBS.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.
2012-01-01
The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.
NASA Astrophysics Data System (ADS)
Warren, M. A.; Goult, S.; Clewley, D.
2018-06-01
Advances in technology allow remotely sensed data to be acquired with increasingly higher spatial and spectral resolutions. These data may then be used to influence government decision making and solve a number of research and application driven questions. However, such large volumes of data can be difficult to handle on a single personal computer or on older machines with slower components. Often the software required to process data is varied and can be highly technical and too advanced for the novice user to fully understand. This paper describes an open-source tool, the Simple Concurrent Online Processing System (SCOPS), which forms part of an airborne hyperspectral data processing chain that allows users accessing the tool over a web interface to submit jobs and process data remotely. It is demonstrated using Natural Environment Research Council Airborne Research Facility (NERC-ARF) instruments together with other free- and open-source tools to take radiometrically corrected data from sensor geometry into geocorrected form and to generate simple or complex band ratio products. The final processed data products are acquired via an HTTP download. SCOPS can cut data processing times and introduce complex processing software to novice users by distributing jobs across a network using a simple to use web interface.
A novel approach to characterize information radiation in complex networks
NASA Astrophysics Data System (ADS)
Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao
2016-06-01
The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better ;radiation explosive power;, while the small-world network has better ;radiation staying power;. The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.
The mechanism of nickel ferrite formation by glow discharge effect
NASA Astrophysics Data System (ADS)
Frolova, L. A.
2018-04-01
The influence of various factors on the formation of nickel ferrite by the glow discharge effect has been studied. The ferritization process in the system FeSO4-NiSO4-NaOH-H2O has been studied by the methods of potentiometric titration, measurement of electrical conductivity, residual concentrations and apparent sediment volume. It has been established that the process proceeds in a multistage fashion at pH 11-12 with the formation of polyhydroxo complexes, an intermediate compound and the ferrite formation by its oxidation with active radicals.
Visa, Neus; Percipalle, Piergiorgio
2010-01-01
Actin participates in several essential processes in the cell nucleus. Even though the presence of actin in the nucleus was proposed more than 30 years ago, nuclear processes that require actin have been only recently identified. Actin is part of chromatin remodeling complexes; it is associated with the transcription machineries; it becomes incorporated into newly synthesized ribonucleoproteins; and it influences long-range chromatin organization. As in the cytoplasm, nuclear actin works in conjunction with different types of actin-binding proteins that regulate actin function and bridge interactions between actin and other nuclear components. PMID:20452941
Effects of Preretirement Work Complexity and Postretirement Leisure Activity on Cognitive Aging
Finkel, Deborah; Pedersen, Nancy L.
2016-01-01
Objectives: We examined the influence of postretirement leisure activity on longitudinal associations between work complexity in main lifetime occupation and trajectories of cognitive change before and after retirement. Methods: Information on complexity of work with data, people, and things, leisure activity participation in older adulthood, and four cognitive factors (verbal, spatial, memory, and speed) was available from 421 individuals in the longitudinal Swedish Adoption/Twin Study of Aging. Participants were followed for an average of 14.2 years (SD = 7.1 years) and up to 23 years across eight cognitive assessments. Most of the sample (88.6%) completed at least three cognitive assessments. Results: Results of growth curve analyses indicated that higher complexity of work with people significantly attenuated cognitive aging in verbal skills, memory, and speed of processing controlling for age, sex, and education. When leisure activity was added, greater cognitive and physical leisure activity was associated with reduced cognitive aging in verbal skills, speed of processing, and memory (for cognitive activity only). Discussion: Engagement in cognitive or physical leisure activities in older adulthood may compensate for cognitive disadvantage potentially imposed by working in occupations that offer fewer cognitive challenges. These results may provide a platform to encourage leisure activity participation in those retiring from less complex occupations. PMID:25975289
Cross-national comparisons of complex problem-solving strategies in two microworlds.
Güss, C Dominik; Tuason, Ma Teresa; Gerhard, Christiane
2010-04-01
Research in the fields of complex problem solving (CPS) and dynamic decision making using microworlds has been mainly conducted in Western industrialized countries. This study analyzes the CPS process by investigating thinking-aloud protocols in five countries. Participants were 511 students from Brazil, Germany, India, the Philippines, and the United States who worked on two microworlds. On the basis of cultural-psychological theories, specific cross-national differences in CPS strategies were hypothesized. Following theories of situatedness of cognition, hypotheses about the specific frequency of problem-solving strategies in the two microworlds were developed. Results of the verbal protocols showed (a) modification of the theoretical CPS model, (b) task dependence of CPS strategies, and (c) cross-national differences in CPS strategies. Participants' CPS processes were particularly influenced by country-specific problem-solving strategies. Copyright © 2009 Cognitive Science Society, Inc.
Integrating succession and community assembly perspectives
Chang, Cynthia; HilleRisLambers, Janneke
2016-01-01
Succession and community assembly research overlap in many respects, such as through their focus on how ecological processes like dispersal, environmental filters, and biotic interactions influence community structure. Indeed, many recent advances have been made by successional studies that draw on modern analytical techniques introduced by contemporary community assembly studies. However, community assembly studies generally lack a temporal perspective, both on how the forces structuring communities might change over time and on how historical contingency (e.g. priority effects and legacy effects) and complex transitions (e.g. threshold effects) might alter community trajectories. We believe a full understanding of the complex interacting processes that shape community dynamics across large temporal scales can best be achieved by combining concepts, tools, and study systems into an integrated conceptual framework that draws upon both succession and community assembly theory. PMID:27785355
Connor, Carol McDonald; Day, Stephanie L.; Phillips, Beth; Sparapani, Nicole; Ingebrand, Sarah W.; McLean, Leigh; Barrus, Angela; Kaschak, Michael P.
2016-01-01
Many assume that cognitive and linguistic processes, such as semantic knowledge (SK) and self-regulation (SR) subserve learned skills like reading. However, complex models of interacting and bootstrapping effects of SK, SR, instruction, and reading hypothesize reciprocal effects. Testing this “lattice” model with children (n = 852) followed from 1st–2nd grade (5.9–10.4 years-of-age), revealed reciprocal effects for reading and SR, and reading and SK, but not SR and SK. More effective literacy instruction reduced reading stability over time. Findings elucidate the synergistic and reciprocal effects of learning to read on other important linguistic, self-regulatory, and cognitive processes, the value of using complex models of development to inform intervention design, and how learned skills may influence development during middle childhood. PMID:27264645
New gelling systems to fabricate complex-shaped transparent ceramics
NASA Astrophysics Data System (ADS)
Yang, Yan; Wu, Yiquan
2013-06-01
The aim of this work was to prepare transparent ceramics with large size and complex-shapes by a new water-soluble gelling agent poly(isobutylene-alt-maleic anhydride). Alumina was used as an example of the application of the new gelling system. A stable suspension with 38vol% was prepared by ball milling. Trapped bubbles were removed before casting to obtain homogenous green bodies. The microstructure and particle distribution of alumina raw material were tested. The thermal behavior of the alumina green body was investigated, which exhibited low weight loss when compared with other gelling processes. The influence of solid loading and gelling agent addition were studied on the basis of rheological behavior of the suspension. The microstructures of alumina powders, green bodies before and after de-bindering process, were compared to understand the gelling condition between alumina particles and gelling agent.
Influence of COMT genotype and affective distractors on the processing of self-generated thought.
Kilford, Emma J; Dumontheil, Iroise; Wood, Nicholas W; Blakemore, Sarah-Jayne
2015-06-01
The catechol-O-methyltransferase (COMT) enzyme is a major determinant of prefrontal dopamine levels. The Val(158)Met polymorphism affects COMT enzymatic activity and has been associated with variation in executive function and affective processing. This study investigated the effect of COMT genotype on the flexible modulation of the balance between processing self-generated and processing stimulus-oriented information, in the presence or absence of affective distractors. Analyses included 124 healthy adult participants, who were also assessed on standard working memory (WM) tasks. Relative to Val carriers, Met homozygotes made fewer errors when selecting and manipulating self-generated thoughts. This effect was partly accounted for by an association between COMT genotype and visuospatial WM performance. We also observed a complex interaction between the influence of affective distractors, COMT genotype and sex on task accuracy: male, but not female, participants showed a sensitivity to the affective distractors that was dependent on COMT genotype. This was not accounted for by WM performance. This study provides novel evidence of the role of dopaminergic genetic variation on the ability to select and manipulate self-generated thoughts. The results also suggest sexually dimorphic effects of COMT genotype on the influence of affective distractors on executive function. © The Author (2014). Published by Oxford University Press.
A computer model for liquid jet atomization in rocket thrust chambers
NASA Astrophysics Data System (ADS)
Giridharan, M. G.; Lee, J. G.; Krishnan, A.; Yang, H. Q.; Ibrahim, E.; Chuech, S.; Przekwas, A. J.
1991-12-01
The process of atomization has been used as an efficient means of burning liquid fuels in rocket engines, gas turbine engines, internal combustion engines, and industrial furnaces. Despite its widespread application, this complex hydrodynamic phenomenon has not been well understood, and predictive models for this process are still in their infancy. The difficulty in simulating the atomization process arises from the relatively large number of parameters that influence it, including the details of the injector geometry, liquid and gas turbulence, and the operating conditions. In this study, numerical models are developed from first principles, to quantify factors influencing atomization. For example, the surface wave dynamics theory is used for modeling the primary atomization and the droplet energy conservation principle is applied for modeling the secondary atomization. The use of empirical correlations has been minimized by shifting the analyses to fundamental levels. During applications of these models, parametric studies are performed to understand and correlate the influence of relevant parameters on the atomization process. The predictions of these models are compared with existing experimental data. The main tasks of this study were the following: development of a primary atomization model; development of a secondary atomization model; development of a model for impinging jets; development of a model for swirling jets; and coupling of the primary atomization model with a CFD code.
Muhlfeld, Clint C.; Marotz, Brian
2005-01-01
Despite the importance of large-scale habitat connectivity to the threatened bull trout Salvelinus confluentus, little is known about the life history characteristics and processes influencing natural dispersal of migratory populations. We used radiotelemetry to investigate the seasonal movements and habitat use by subadult bull trout (i.e., fish that emigrated from natal streams to the river system) tracked for varying durations from 1999 to 2002 in the upper Flathead River system in northwestern Montana. Telemetry data revealed migratory (N = 32 fish) and nonmigratory (N = 35 fish) behavior, indicating variable movement patterns in the subadult phase of bull trout life history. Most migrating subadults (84%) made rapid or incremental downriver movements (mean distance, 33 km; range, 6–129 km) to lower portions of the river system and to Flathead Lake during high spring flows and as temperatures declined in the fall and winter. Bull trout subadults used complex daytime habitat throughout the upper river system, including deep runs that contained unembedded boulder and cobble substrates, pools with large woody debris, and deep lake-influenced areas of the lower river system. Our results elucidate the importance of maintaining natural connections and a diversity of complex habitats over a large spatial scale to conserve the full expression of life history traits and processes influencing the natural dispersal of bull trout populations. Managers should seek to restore and enhance critical river corridor habitat and remove migration barriers, where possible, for recovery and management programs.
Al-Areefi, Mahmoud Abdullah; Hassali, Mohamed Azmi; Mohamed Ibrahim, Mohamed Izham B
2013-01-01
Prescribing decisions are a complex phenomenon and influenced by many pharmacological and non-pharmacological factors. Little is known about the actual prescribing behaviors of physicians or the factors behind their prescribing decisions. The objective of this study was to explore the factors that influence physicians' prescribing decisions and the role of the marketing activities by pharmaceutical companies in this decision-making process. A semi-structured interview with the critical incident technique method was used to encourage physicians to describe the particular situations of prescribing for specific newly marketed drugs. All interviews were transcribed verbatim and thematic content analysis with systematic and comprehensive coding was employed to identify categories of physicians' reasons for either prescribing or not of the study drugs. Factors that influence prescribing of the study drugs (223 critical incidents) were categorized in six major themes. Drug characteristics, the most frequently mentioned by physicians as reasons of prescribe, were implicated in 70 (31.4%) incidents, followed by pharmaceutical company mentioned in 53 (23.8%) incidents, indications, 31 (13.9%) incidents, and patient contexts, 26 (11.7%) incidents. Environmental factors as information and evidence were implicated in 22 (9.9%) incidents, and physician factor, 21 (9.4%) incidents. Prescribing is a complex process and physicians integrate different factors. Although physicians make a considerable on patient contexts and treatment outcomes, they still rely on their personal experiences when making prescribing in addition to firms' source of information and firms' marketing activities. Copyright © 2013 Elsevier Inc. All rights reserved.
Besschetnova, Tatiana Y.; Montefusco, David J.; Asinas, Abdalin E.; Shrout, Anthony L.; Antommattei, Frances M.; Weis, Robert M.
2008-01-01
All cells possess transmembrane signaling systems that function in the environment of the lipid bilayer. In the Escherichia coli chemotaxis pathway, the binding of attractants to a two-dimensional array of receptors and signaling proteins simultaneously inhibits an associated kinase and stimulates receptor methylation—a slower process that restores kinase activity. These two opposing effects lead to robust adaptation toward stimuli through a physical mechanism that is not understood. Here, we provide evidence of a counterbalancing influence exerted by receptor density on kinase stimulation and receptor methylation. Receptor signaling complexes were reconstituted over a range of defined surface concentrations by using a template-directed assembly method, and the kinase and receptor methylation activities were measured. Kinase activity and methylation rates were both found to vary significantly with surface concentration—yet in opposite ways: samples prepared at high surface densities stimulated kinase activity more effectively than low-density samples, whereas lower surface densities produced greater methylation rates than higher densities. FRET experiments demonstrated that the cooperative change in kinase activity coincided with a change in the arrangement of the membrane-associated receptor domains. The counterbalancing influence of density on receptor methylation and kinase stimulation leads naturally to a model for signal regulation that is compatible with the known logic of the E. coli pathway. Density-dependent mechanisms are likely to be general and may operate when two or more membrane-related processes are influenced differently by the two-dimensional concentration of pathway elements. PMID:18711126
Nano rods for coloured glasses obtained by hybrid sol-gel coating.
Veron, Olivier; Blondeau, Jean-Philippe; Moineau, Johanne; Aubert, Pierre-Henri; Vignolle, Caroline Andreazza; Banet, Philippe; Allam, Lévi
2011-09-01
Many new materials are now allowing new properties thanks to nanotechnology because this domain of physics gives possibilities to optimize targeted properties even if these materials react in very various influential parameters. Architectural, automotive, bone pathologies, environment, display applications are some concerned domains. The sol-gel process is a method allowing the realisation of coats at ambiant temperature, thus it is possible to realize Liquid Crystal Display (LCD), water-repellent coatings on privacy glass, antireflective coatings, hydrophobic or hydrophilic surfaces, bone tissue regeneration. In this study, the purpose is to show the thermal influence on a covered glass with a complex hybrid sol-gel solution. This coated glass is going to change color from red to orange under the heat influence. This color change effect comes from the evolution of various compounds organizations then/or from their loss during the degassing sequence. We show in spite of the complexity of the process that the responsible is mainly the organic dye. Thus the structure of the heated glass at 250 degrees C looks radically different than the heated one at 350 degrees C. SEM measurement allows to identify the surface compositions and to determine the elementary composition along the sample's cross section. TGA is used to justify a mass loss when samples are annealed. UV/Visible measurement is realized by two methods: in-line transmission to evaluate luminous flux and thus give colorimetric dot in the normalized CIE diagram and diffuse transmission to observe the size influence of the pigments. Infrared Reflectivity allows to evaluate the influence of species on the structure and to better target the nature of the lost compounds during annealing. TEM measurement proves that the obtained iron particles are nano rods for both samples.
The influence of subsurface hydrodynamics on convective precipitation
NASA Astrophysics Data System (ADS)
Rahman, A. S. M. M.; Sulis, M.; Kollet, S. J.
2014-12-01
The terrestrial hydrological cycle comprises complex processes in the subsurface, land surface, and atmosphere, which are connected via complex non-linear feedback mechanisms. The influence of subsurface hydrodynamics on land surface mass and energy fluxes has been the subject of previous studies. Several studies have also investigated the soil moisture-precipitation feedback, neglecting however the connection with groundwater dynamics. The objective of this study is to examine the impact of subsurface hydrodynamics on convective precipitation events via shallow soil moisture and land surface processes. A scale-consistent Terrestrial System Modeling Platform (TerrSysMP) that consists of an atmospheric model (COSMO), a land surface model (CLM), and a three-dimensional variably saturated groundwater-surface water flow model (ParFlow), is used to simulate hourly mass and energy fluxes over days with convective rainfall events over the Rur catchment, Germany. In order to isolate the effect of groundwater dynamics on convective precipitation, two different model configurations with identical initial conditions are considered. The first configuration allows the groundwater table to evolve through time, while a spatially distributed, temporally constant groundwater table is prescribed as a lower boundary condition in the second configuration. The simulation results suggest that groundwater dynamics influence land surface soil moisture, which in turn affects the atmospheric boundary layer (ABL) height by modifying atmospheric thermals. It is demonstrated that because of this sensitivity of ABL height to soil moisture-temperature feedback, the onset and magnitude of convective precipitation is influenced by subsurface hydrodynamics. Thus, the results provide insight into the soil moisture-precipitation feedback including groundwater dynamics in a physically consistent manner by closing the water cycle from aquifers to the atmosphere.
Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth
2018-01-01
There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.
ERIC Educational Resources Information Center
Judge, Miriam; Tuite, Declan
2017-01-01
This paper provides a systematic review of students' multimedia projects and reveals how a complex web of institutional, local, global and gender issues influence the process of digital media creation by young adults. The significance of this research for this Special Issue lies in the study's longitudinal nature, which examined students'…
Culture, Structure and Leadership Impacts on Gender Inclusion in the Security Sector
2017-09-01
culture were outcomes of structural reform. A guided evolution in security sector culture occurred following persistent social pressure, compliance...brought about a change in national and organizational culture to address socially complex issues. As the orchestrators of large successful corporate...challenges them (Jolly 2002). In the process, we are influenced and shaped as we interact with local, national and international information. Likewise, we
Area 18 of the cat: the first step in processing visual movement information.
Orban, G A
1977-01-01
In cats, responses of area 18 neurons to different moving patterns were measured. The influence of three movement parameters--direction, angular velocity, and amplitude of movement--were tested. The results indicate that in area 18 no ideal movement detector exists, but that simple and complex cells each perform complementary operations of primary visual areas, i.e. analysis and detection of movement.
David P Turner; William D Ritts; Robert E Kennedy; Andrew N Gray; Zhiqiang Yang
2015-01-01
Background: Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at...
ERIC Educational Resources Information Center
Strasser, Katherine; del Río, Francisca
2014-01-01
Recent studies have revealed that preschoolers' story comprehension is influenced by several basic as well as complex cognitive and linguistic processes. Among the abilities known to be relevant for young children's understanding of stories are the size of their vocabulary, their inference-making ability, and their working memory. In this study,…
Goldrick, Stephen; Holmes, William; Bond, Nicholas J; Lewis, Gareth; Kuiper, Marcel; Turner, Richard; Farid, Suzanne S
2017-10-01
Product quality heterogeneities, such as a trisulfide bond (TSB) formation, can be influenced by multiple interacting process parameters. Identifying their root cause is a major challenge in biopharmaceutical production. To address this issue, this paper describes the novel application of advanced multivariate data analysis (MVDA) techniques to identify the process parameters influencing TSB formation in a novel recombinant antibody-peptide fusion expressed in mammalian cell culture. The screening dataset was generated with a high-throughput (HT) micro-bioreactor system (Ambr TM 15) using a design of experiments (DoE) approach. The complex dataset was firstly analyzed through the development of a multiple linear regression model focusing solely on the DoE inputs and identified the temperature, pH and initial nutrient feed day as important process parameters influencing this quality attribute. To further scrutinize the dataset, a partial least squares model was subsequently built incorporating both on-line and off-line process parameters and enabled accurate predictions of the TSB concentration at harvest. Process parameters identified by the models to promote and suppress TSB formation were implemented on five 7 L bioreactors and the resultant TSB concentrations were comparable to the model predictions. This study demonstrates the ability of MVDA to enable predictions of the key performance drivers influencing TSB formation that are valid also upon scale-up. Biotechnol. Bioeng. 2017;114: 2222-2234. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Harnsilawat, Thepkunya; Pongsawatmanit, Rungnaphar; McClements, David J
2006-07-26
The potential of utilizing interfacial complexes, formed through the electrostatic interactions of proteins and polysaccharides at oil-water interfaces, to stabilize model beverage cloud emulsions has been examined. These interfacial complexes were formed by mixing charged polysaccharides with oil-in-water emulsions containing oppositely charged protein-coated oil droplets. Model beverage emulsions were prepared that consisted of 0.1 wt % corn oil droplets coated by beta-lactoglobulin (beta-Lg), beta-Lg/alginate, beta-Lg/iota-carrageenan, or beta-Lg/gum arabic interfacial layers (pH 3 or 4). Stable emulsions were formed when the polysaccharide concentration was sufficient to saturate the protein-coated droplets. The emulsions were subjected to variations in pH (from 3 to 7), ionic strength (from 0 to 250 mM NaCl), and thermal processing (from 30 or 90 degrees C), and the influence on their stability was determined. The emulsions containing alginate and carrageenan had the best stability to ionic strength and thermal processing. This study shows that the controlled formation of protein-polysaccharide complexes at droplet surfaces may be used to produce stable beverage emulsions, which may have important implications for industrial applications.
Lekishvili, S E
2014-02-01
The purpose of this investigation is to study the effect of C- taurine complex of antioxidants on blood biochemical parameters in the process of treatment of patients with diabetes mellitus of type II with NPDR. 68 patients (136 eyes) were enrolled in the study. The monitoring of the patient lasted for 3 months. The character of changes of the basic visual functions has been examined. The patients were divided into 2 groups (main and control). Treatment of patients with main group conducted antioxidant complex Taurine + Vitamin C for 42 days. namely. Thus, we have revealed antioxidant activity of the combination of taurine and vitamin C with positive effect on the indexes of carbohydrate, lipid metabolism and hepatoprotective characteristics in patients with diabetes mellitus type II with NPDR. Taking into consideration the peculiarities of correlation relationships between functional, clinical and biochemical parameters and the results of experimental studies on animal it is acceptable to use Taurine complex + Vitamin C as part of conservative treatment of patients with diabetes mellitus type II with NPDR.
ART AND SCIENCE OF IMAGE MAPS.
Kidwell, Richard D.; McSweeney, Joseph A.
1985-01-01
The visual image of reflected light is influenced by the complex interplay of human color discrimination, spatial relationships, surface texture, and the spectral purity of light, dyes, and pigments. Scientific theories of image processing may not always achieve acceptable results as the variety of factors, some psychological, are in part, unpredictable. Tonal relationships that affect digital image processing and the transfer functions used to transform from the continuous-tone source image to a lithographic image, may be interpreted for an insight of where art and science fuse in the production process. The application of art and science in image map production at the U. S. Geological Survey is illustrated and discussed.
[The PAI-1 swing: microenvironment and cancer cell migration].
Malo, Michel; Charrière-Bertrand, Cécile; Chettaoui, Chafika; Fabre-Guillevin, Elizabeth; Maquerlot, François; Lackmy, Alexandra; Vallée, Benoît; Delaplace, Franck; Barlovatz-Meimon, Georgia
2006-12-01
Cancer is a complex and dynamic process caused by a cellular dysfunction leading to a whole organ or even organism vital perturbation. To better understand this process, we need to study each one of the levels involved, which allows the scale change, and to integrate this knowledge. A matricellular protein, PAI-1, is able to induce in vitro cell behaviour modifications, morphological changes, and to promote cell migration. PAI-1 influences the mesenchymo-amaeboid transition. This matricellular protein should be considered as a potential 'launcher' of the metastatic process acting at the molecular, cellular, tissular levels and, as a consequence, at the organism's level.
Bartlam-Brooks, Hattie L A; Bonyongo, Mpaphi C; Harris, Stephen
2013-09-01
Most large-bodied wildlife populations in sub-Saharan Africa only survive in conservation areas, but are continuing to decline because external changes influence ecological processes within reserves, leading to a lack of functionality. However, failure to understand how landscape scale changes influence ecological processes limits our ability to manage protected areas. We used GPS movement data to calculate dry season home ranges for 14 zebra mares in the Okavango Delta and investigated the effects of a range of landscape characteristics (number of habitat patches, mean patch shape, mean index of juxtaposition, and interspersion) on home range size. Resource utilization functions (RUF) were calculated to investigate how specific landscape characteristics affected space use. Space use by all zebra was clustered. In the wetter (Central) parts of the Delta home range size was negatively correlated with the density of habitat patches, more complex patch shapes, low juxtaposition of habitats and an increased availability of floodplain and grassland habitats. In the drier (Peripheral) parts of the Delta, higher use by zebra was also associated with a greater availability of floodplain and grassland habitats, but a lower density of patches and simpler patch shapes. The most important landscape characteristic was not consistent between zebra within the same area of the Delta, suggesting that no single foraging strategy is substantially superior to others, and so animals using different foraging strategies may all thrive. The distribution and complexity of habitat patches are crucial in determining space use by zebra. The extent and duration of seasonal flooding is the principal process affecting habitat patch characteristics in the Okavango Delta, particularly the availability of floodplains, which are the habitat at greatest risk from climate change and anthropogenic disturbance to the Okavango's catchment basin. Understanding how the factors that determine habitat complexity may change in the future is critical to the conservation of large mammal populations. Our study shows the importance of maintaining flood levels in the Okavango Delta and how the loss of seasonal floodplains will be compounded by changes in habitat configuration, forcing zebra to change their relative space use and enlarge home ranges, leading to increased competition for key resources and population declines.
Nelson, Donald R.
2018-01-01
We test the hypothesis that prehistoric Native American land use influenced the Euro-American settlement process in a South Carolina Piedmont landscape. Long term ecological studies demonstrate that land use legacies influence processes and trajectories in complex, coupled social and ecological systems. Native American land use likely altered the ecological and evolutionary feedback and trajectories of many North American landscapes. Yet, considerable debate revolves around the scale and extent of land use legacies of prehistoric Native Americans. At the core of this debate is the question of whether or not European colonists settled a mostly “wild” landscape or an already “humanized” landscape. We use statistical event analysis to model the effects of prehistoric Native American settlement on the rate of Colonial land grants (1749–1775). Our results reveal how abandoned Native American settlements were among the first areas claimed and homesteaded by Euro-Americans. We suggest that prehistoric land use legacies served as key focal nodes in the Colonial era settlement process. As a consequence, localized prehistoric land use legacies likely helped structure the long term, landscape- to regional-level ecological inheritances that resulted from Euro-American settlement. PMID:29596504
Supervisors' views on employer responsibility in the return to work process. A focus group study.
Holmgren, Kristina; Dahlin Ivanoff, Synneve; Ivanoff, Synneve Dahlin
2007-03-01
Supervisors' attitudes and measures have been pointed out by employees to influence the return to work process. The purpose of this study was to explore supervisors' views on employer responsibility in the return to work process and factors influencing the support of sick-listed employees. The focus group method was used. Six groups were conducted and each group met on one occasion. Twenty-three supervisors experienced in managing sick-listed employees participated. Two different themes emerged; In "The Supervisor is the Key Person" the participants found themselves as being key persons, carrying the main responsibility for the rehabilitation of the sick-listed employees and for creating a good working environment, thus preventing ill health and sick-listing among the employees. In the second theme "Influential Factors in Rehabilitation Work" the participants described the rehabilitation work as a part of a greater whole influenced by society, demands and resources of the workplace and the interplay between all parties involved. The study gives us the supervisors' perspective on the complexity of the return to work rehabilitation. This knowledge could be invaluable and be used to improve the possibilities for developing successful collaboration in occupational rehabilitation.
NASA Astrophysics Data System (ADS)
Kolesnikov, B. P.
2017-11-01
The presented work belongs to the issue of searching for the effective kinetic properties of macroscopically disordered environments (MDE). These properties characterize MDE in general on the sizes which significantly exceed the sizes of macro inhomogeneity. The structure of MDE is considered as a complex of interpenetrating percolating and finite clusters consolidated from homonymous components, topological characteristics of which influence on the properties of the whole environment. The influence of percolating clusters’ fractal substructures (backbone, skeleton of backbone, red bonds) on the transfer processes during crossover (a structure transition from fractal to homogeneous condition) is investigated based on the offered mathematical approach for finding the effective conductivity of MDEs and on the percolating cluster model. The nature of the change of the critical conductivity index t during crossover from the characteristic value for the area close to percolation threshold to the value corresponded to homogeneous condition is demonstrated. The offered model describes the transfer processes in MDE with the finite conductivity relation of «conductive» and «low conductive» phases above and below percolation threshold and in smearing area (an analogue of a blur area of the second-order phase transfer).
Coughlan, Michael R; Nelson, Donald R
2018-01-01
We test the hypothesis that prehistoric Native American land use influenced the Euro-American settlement process in a South Carolina Piedmont landscape. Long term ecological studies demonstrate that land use legacies influence processes and trajectories in complex, coupled social and ecological systems. Native American land use likely altered the ecological and evolutionary feedback and trajectories of many North American landscapes. Yet, considerable debate revolves around the scale and extent of land use legacies of prehistoric Native Americans. At the core of this debate is the question of whether or not European colonists settled a mostly "wild" landscape or an already "humanized" landscape. We use statistical event analysis to model the effects of prehistoric Native American settlement on the rate of Colonial land grants (1749-1775). Our results reveal how abandoned Native American settlements were among the first areas claimed and homesteaded by Euro-Americans. We suggest that prehistoric land use legacies served as key focal nodes in the Colonial era settlement process. As a consequence, localized prehistoric land use legacies likely helped structure the long term, landscape- to regional-level ecological inheritances that resulted from Euro-American settlement.
Kasparian, Kristina; Steinhauer, Karsten
2017-01-01
Although research on multilingualism has revealed continued neuroplasticity for language-learning beyond what was previously expected, it remains controversial whether and to what extent a second language (L2) acquired in adulthood may induce changes in the neurocognitive processing of a first language (L1). First language (L1) attrition in adulthood offers new insight on neuroplasticity and the factors that modulate neurocognitive responses to language. To date, investigations of the neurocognitive correlates of L1 attrition and of factors influencing these mechanisms are still scarce. Moreover, most event-related-potential (ERP) studies of second language processing have focused on L1 influence on the L2, while cross-linguistic influence in the reverse direction has been underexplored. Using ERPs, we examined the real-time processing of Italian relative-clauses in 24 Italian-English adult migrants with predominant use of English since immigration and reporting attrition of their native-Italian (Attriters), compared to 30 non-attriting monolinguals in Italy (Controls). Our results showed that Attriters differed from Controls in their acceptability judgment ratings and ERP responses when relative clause constructions were ungrammatical in English, though grammatical in Italian. Controls' ERP responses to unpreferred sentence constructions were consistent with garden path effects typically observed in the literature for these complex sentences. In contrast, due to L2-English influence, Attriters were less sensitive to semantic cues than to word-order preferences, and processed permissible Italian sentences as outright morphosyntactic violations. Key factors modulating processing differences within Attriters were the degree of maintained L1 exposure, length of residence in the L2 environment and L2 proficiency - with higher levels of L2 immersion and proficiency associated with increased L2 influence on the L1. To our knowledge, this is the first demonstration that high levels of L2 proficiency and exposure may render a grammatical sentence in one's native language ungrammatical. These group differences strongly point to distinct processing strategies and provide evidence that even a "stabilized" L1 grammar is subject to change after a prolonged period of L2 immersion and reduced L1 use, especially in linguistic areas promoting cross-linguistic influence.
A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos
NASA Astrophysics Data System (ADS)
Greig, S. M.; Sear, D. A.; Carling, P. A.
2007-01-01
Previous investigations into factors influencing incubation success of salmonid progeny have largely been limited to the development of empirical relationships between characteristics of the incubation environment and survival to emergence. It is suggested that adopting a process-based approach to assessing incubation success aids identification of the precise causes of embryonic mortalities, and provides a robust framework for developing and implementing managerial responses.Identifying oxygen availability within the incubation environment as a limiting factor, a comprehensive review of trends in embryonic respiration, and processes influencing the flux of oxygenated water through gravel riverbeds is provided. The availability of oxygen to incubating salmonid embryos is dependent on the exchange of oxygenated water with the riverbed, and the ability of the riverbed gravel medium to transport this water at a rate and concentration appropriate to support embryonic respiratory requirements. Embryonic respiratory trends indicate that oxygen consumption varies with stage of development, ambient water temperature and oxygen availability. The flux of oxygenated water through the incubation environment is controlled by a complex interaction of intragravel and extragravel processes and factors. The processes driving the exchange of channel water with gravel riverbeds include bed topography, bed permeability, and surface roughness effects. The flux of oxygenated water through riverbed gravels is controlled by gravel permeability, coupling of surface-subsurface flow and oxygen demands imposed by materials infiltrating riverbed gravels. Temporally and spatially variable inputs of groundwater can also influence the oxygen concentration of interstitial water. Copyright
Mancini, Andrea; Tantucci, Michela; Mazzocchetti, Petra; de Iure, Antonio; Durante, Valentina; Macchioni, Lara; Giampà, Carmela; Alvino, Alessandra; Gaetani, Lorenzo; Costa, Cinzia; Tozzi, Alessandro; Calabresi, Paolo; Di Filippo, Massimiliano
2018-05-01
During multiple sclerosis (MS), a close link has been demonstrated to occur between inflammation and neuro-axonal degeneration, leading to the hypothesis that immune mechanisms may promote neurodegeneration, leading to irreversible disease progression. Energy deficits and inflammation-driven mitochondrial dysfunction seem to be involved in this process. In this work we investigated, by the use of striatal electrophysiological field-potential recordings, if the inflammatory process associated with experimental autoimmune encephalomyelitis (EAE) is able to influence neuronal vulnerability to the blockade of mitochondrial complex IV, a crucial component for mitochondrial activity responsible of about 90% of total cellular oxygen consumption. We showed that during the acute relapsing phase of EAE, neuronal susceptibility to mitochondrial complex IV inhibition is markedly enhanced. This detrimental effect was counteracted by the pharmacological inhibition of microglia, of nitric oxide (NO) synthesis and its intracellular pathway (involving soluble guanylyl cyclase, sGC, and protein kinase G, PKG). The obtained results suggest that mitochondrial complex IV exerts an important role in maintaining neuronal energetic homeostasis during EAE. The pathological processes associated with experimental MS, and in particular the activation of microglia and of the NO pathway, lead to an increased neuronal vulnerability to mitochondrial complex IV inhibition, representing promising pharmacological targets. Copyright © 2018 Elsevier Inc. All rights reserved.
Skiba, Thomas; Landi, Nicole; Wagner, Richard
2011-01-01
Reading ability and specific reading disability (SRD) are complex traits involving several cognitive processes and are shaped by a complex interplay of genetic and environmental forces. Linkage studies of these traits have identified several susceptibility loci. Association studies have gone further in detecting candidate genes that might underlie these signals. These results have been obtained in samples of mainly European ancestry, which vary in their languages, inclusion criteria, and phenotype assessments. Such phenotypic heterogeneity across samples makes understanding the relationship between reading (dis)ability and reading-related processes and the genetic factors difficult; in addition, it may negatively influence attempts at replication. In moving forward, the identification of preferable phenotypes for future sample collection may improve the replicability of findings. This review of all published linkage and association results from the past 15 years was conducted to determine if certain phenotypes produce more replicable and consistent results than others. PMID:21243420
Normal male sexual function: emphasis on orgasm and ejaculation
Alwaal, Amjad; Breyer, Benjamin N.; Lue, Tom F.
2016-01-01
Orgasm and ejaculation are two separate physiological processes that are sometimes difficult to distinguish. Orgasm is an intense transient peak sensation of intense pleasure creating an altered state of consciousness associated with reported physical changes. Antegrade ejaculation is a complex physiological process that is composed of two phases (emission and expulsion), and is influenced by intricate neurological and hormonal pathways. Despite the many published research projects dealing with the physiology of orgasm and ejaculation, much about this topic is still unknown. Ejaculatory dysfunction is a common disorder, and currently has no definitive cure. Understanding the complex physiology of orgasm and ejaculation allows the development of therapeutic targets for ejaculatory dysfunction. In this article, we summarize the current literature on the physiology of orgasm and ejaculation, starting with a brief description of the anatomy of sex organs and the physiology of erection. Then, we describe the physiology of orgasm and ejaculation detailing the neuronal, neurochemical, and hormonal control of the ejaculation process. PMID:26385403
Activation of HIV-1 pre-mRNA 3' processing in vitro requires both an upstream element and TAR.
Gilmartin, G M; Fleming, E S; Oetjen, J
1992-01-01
The architecture of the human immunodeficiency virus type 1 (HIV-1) genome presents an intriguing dilemma for the 3' processing of viral transcripts--to disregard a canonical 'core' poly(A) site processing signal present at the 5' end of the transcript and yet to utilize efficiently an identical signal that resides at the 3' end of the message. The choice of processing sites in HIV-1 appears to be influenced by two factors: (i) proximity to the cap site, and (ii) sequences upstream of the core poly(A) site. We now demonstrate that an in vivo-defined upstream element that resides within the U3 region, 76 nucleotides upstream of the AAUAAA hexamer, acts specifically to enhance 3' processing at the HIV-1 core poly(A) site in vitro. We furthermore show that efficient in vitro 3' processing requires the RNA stem-loop structure of TAR, which serves to juxtapose spatially the upstream element and the core poly(A) site. An analysis of the stability of 3' processing complexes formed at the HIV-1 poly(A) site in vitro suggests that the upstream element may function by increasing processing complex stability at the core poly(A) site. Images PMID:1425577
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Kulis, Michael J.; McNatt, Jeremiah S.; Duffy, Norman V.; Hoops, Michael D.; Gorse, Elizabeth; Fanwick, Philip E.; Masnovi, John; Cowen, Jonathan E.; Dominey, Raymond N.
2016-01-01
Single-crystal X-ray structures of four nickel dithiocarbamate complexes, the homoleptic mixed-organic bis-dithiocarbamates Ni[S2CN(isopropyl)(benzyl)]2, Ni[S2CN(ethyl)(n-butyl)]2, and Ni[S2CN(phenyl)(benzyl)]2, as well as the heteroleptic mixed-ligand complex NiCl[P(phenyl)3][(S2CN(phenyl)(benzyl)], were determined. Synthetic, spectroscopic, structural, thermal, and sulfide materials studies are discussed in light of prior literature. The spectroscopic results are routine. A slightly distorted square-planar nickel coordination environment was observed for all four complexes. The organic residues adopt conformations to minimize steric interactions. Steric effects also may determine puckering, if any, about the nickel and nitrogen atoms, both of which are planar or nearly so. A trans-influence affects the Ni-S bond distances. Nitrogen atoms interact with the CS2 carbons with a bond order of about 1.5, and the other substituents on nitrogen display transoid conformations. There are no strong intermolecular interactions, consistent with prior observations of the volatility of nickel dithiocarbamate complexes. Thermogravimetric analysis of the homoleptic species under inert atmosphere is consistent with production of 1:1 nickel sulfide phases. Thermolysis of nickel dithiocarbamates under flowing nitrogen produced hexagonal or -NiS as the major phase; thermolysis under flowing forming gas produced millerite (-NiS) at 300 C, godlevskite (Ni9S8) at 325 and 350 C, and heazlewoodite (Ni3S2) at 400 and 450 C. Failure to exclude oxygen results in production of nickel oxide. Nickel sulfide phases produced seem to be primarily influenced by processing conditions, in agreement with prior literature. Nickel dithiocarbamate complexes demonstrate significant promise to serve as single-source precursors to nickel sulfides, a quite interesting family of materials with numerous potential applications.
Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations
Hawasli, Ammar H.; Kim, DoHyun; Ledbetter, Noah M.; Dahiya, Sonika; Barbour, Dennis L.; Leuthardt, Eric C.
2016-01-01
Brain oscillations reflect changes in electrical potentials summated across neuronal populations. Low- and high-frequency rhythms have different modulation patterns. Slower rhythms are spatially broad, while faster rhythms are more local. From this observation, we hypothesized that low- and high-frequency oscillations reflect white- and gray-matter communications, respectively, and synchronization between low-frequency phase with high-frequency amplitude represents a mechanism enabling distributed brain-networks to coordinate local processing. Testing this common understanding, we selectively disrupted white or gray matter connections to human cortex while recording surface field potentials. Counter to our original hypotheses, we found that cortex consists of independent oscillatory-units (IOUs) that maintain their own complex endogenous rhythm structure. IOUs are differentially modulated by white and gray matter connections. White-matter connections maintain topographical anatomic heterogeneity (i.e., separable processing in cortical space) and gray-matter connections segregate cortical synchronization patterns (i.e., separable temporal processing through phase-power coupling). Modulation of distinct oscillatory modules enables the functional diversity necessary for complex processing in the human brain. PMID:27445767
Inflammasome complexes: emerging mechanisms and effector functions
Rathinam, Vijay A. K.; Fitzgerald, Katherine A.
2017-01-01
Canonical activation of the inflammasome is critical to promote caspase-1-dependent maturation of the proinflammatory cytokines IL-1β and IL-18, as well as to induce pyroptotic cell death in response to pathogens and endogenous danger signals. Recent discoveries, however, are beginning to unveil new components of the inflammasome machinery, and the full spectrum of inflammasome functions, extending their influence beyond canonical functions, to regulation of eicosanoid storm, autophagy and metabolism. In addition, the receptor components of the inflammasome can also regulate diverse biological processes, such as cellular proliferation, gene transcription and tumorigenesis, all of which are independent of their inflammasome complex-forming capabilities. Here, we review these recent advances that are shaping our understanding of the complex biology of the inflammasome and its constituents. PMID:27153493
Geomorphic controls of soil spatial complexity in a primeval mountain forest in the Czech Republic
NASA Astrophysics Data System (ADS)
Daněk, Pavel; Šamonil, Pavel; Phillips, Jonathan D.
2016-11-01
Soil diversity and complexity is influenced by a variety of factors, and much recent research has been focused on interpreting or modeling complexity based on soil-topography relationships, and effects of biogeomorphic processes. We aimed to (i) describe local soil diversity in one of the oldest forest reserves in Europe, (ii) employ existing graph theory concepts in pedocomplexity calculation and extend them by a novel approach based on hypothesis testing and an index measuring graph sequentiality (the extent to which soils have gradual vs. abrupt variations in underlying soil factors), and (iii) reveal the main sources of pedocomplexity, with a particular focus on geomorphic controls. A total of 954 soil profiles were described and classified to soil taxonomic units (STU) within a 46 ha area. We analyzed soil diversity using the Shannon index, and soil complexity using a novel graph theory approach. Pairwise tests of observed adjacencies, spectral radius and a newly proposed sequentiality index were used to describe and quantify the complexity of the spatial pattern of STUs. This was then decomposed into the contributions of three soil factor sequences (SFS), (i) degree of weathering and leaching processes, (ii) hydromorphology, and (iii) proportion of rock fragments. Six Reference Soil Groups and 37 second-level soil units were found. A significant portion of pedocomplexity occurred at distances shorter than the 22 m spacing of neighbouring soil profiles. The spectral radius (an index of complexity) of the pattern of soil spatial adjacency was 14.73, to which the individual SFS accounted for values of 2.0, 8.0 and 3.5, respectively. Significant sequentiality was found for degree of weathering and hydromorphology. Exceptional overall pedocomplexity was particularly caused by enormous spatial variability of soil wetness, representing a crucial soil factor sequence in the primeval forest. Moreover, the soil wetness gradient was partly spatially correlated with the gradient of soil weathering and leaching, suggesting synergistic influences of topography, climate, (hydro)geology and biomechanical and biochemical effects of individual trees. The pattern of stony soils, random in most respects, resulted probably from local geology and quaternary biogeomorphological processes. Thus, while geomorphology is the primary control over a very locally complex soil pattern, microtopography and local disturbances, mostly related to the effects of individual trees, are also critical. Considerable local pedodiversity seems to be an important component of the dynamics of old-growth mixed temperate mountain forests, with implications for decreasing pedodiversity in managed forests and deforested areas.
Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives
Badgley, Catherine; Smiley, Tara M.; Terry, Rebecca; Davis, Edward B.; DeSantis, Larisa R.G.; Fox, David L.; Hopkins, Samantha S.B.; Jezkova, Tereza; Matocq, Marjorie D.; Matzke, Nick; McGuire, Jenny L.; Mulch, Andreas; Riddle, Brett R.; Roth, V. Louise; Samuels, Joshua X.; Strömberg, Caroline A.E.; Yanites, Brian J.
2018-01-01
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. PMID:28196688
Structure, Intent and Conformance Monitoring in ATC
NASA Technical Reports Server (NTRS)
Reynolds, Tom G.; Histon, Jonathan M.; Davison, Hayley J.; Hansman, R. John
2004-01-01
Infield studies of current Air Traffic Control operations it is found that controllers rely on underlying airspace structure to reduce the complexity of the planning and conformance monitoring tasks. The structure appears to influence the controller's working mental model through abstractions that reduce the apparent cognitive complexity. These structure-based abstractions are useful for the controller's key tasks of planning, implementing, monitoring, and evaluating tactical situations. In addition, the structure-based abstractions appear to be important in the maintenance of Situation Awareness. The process of conformance monitoring is analyzed in more detail and an approach to conformance monitoring which utilizes both the structure-based abstractions and intent is presented.
An improved sampling method of complex network
NASA Astrophysics Data System (ADS)
Gao, Qi; Ding, Xintong; Pan, Feng; Li, Weixing
2014-12-01
Sampling subnet is an important topic of complex network research. Sampling methods influence the structure and characteristics of subnet. Random multiple snowball with Cohen (RMSC) process sampling which combines the advantages of random sampling and snowball sampling is proposed in this paper. It has the ability to explore global information and discover the local structure at the same time. The experiments indicate that this novel sampling method could keep the similarity between sampling subnet and original network on degree distribution, connectivity rate and average shortest path. This method is applicable to the situation where the prior knowledge about degree distribution of original network is not sufficient.
NASA Astrophysics Data System (ADS)
Patermann, S.; Altstädt, V.
2014-05-01
Thermoplastic vulcanizates (TPVs) combine the elastic properties of thermoset cross-linked rubbers with the melt processability of thermoplastics. The most representative examples of this class are the TPVs based on polypropylene (PP) and ethylene-propylenediene terpolymer rubber (EPDM). The PP/EPDM blends were produced by dynamic vulcanization in a continuous extrusion process. The influence of different peroxide concentrations was studied with regard to cross-link density, compression set, tensile strength/elongation at break and morphology. With increasing peroxide concentration, the cross-link density increases, leading to a reduction of the compression set by 50 %. The cross-linked blends show smaller dispersed EPDM particles than the uncured one. With a peroxide concentration between 0.2 and 0.6 % a maximum in tensile strength and elongation at break was found and with increasing peroxide concentration, the complex viscosity of the TPVs decreases. Compared to batch processes, the results show nearly the same trends.
Flux canceling in three-dimensional radiative magnetohydrodynamic simulations
NASA Astrophysics Data System (ADS)
Thaler, Irina; Spruit, H. C.
2017-05-01
We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.
Experimental and numerical analysis of interlocking rib formation at sheet metal blanking
NASA Astrophysics Data System (ADS)
Bolka, Špela; Bratuš, Vitoslav; Starman, Bojan; Mole, Nikolaj
2018-05-01
Cores for electrical motors are typically produced by blanking of laminations and then stacking them together, with, for instance, interlocking ribs or welding. Strict geometrical tolerances, both on the lamination and on the stack, combined with complex part geometry and harder steel strip material, call for use of predictive methods to optimize the process before actual blanking to reduce the costs and speed up the process. One of the major influences on the final stack geometry is the quality of the interlocking ribs. A rib is formed in one step and joined with the rib of the preceding lamination in the next. The quality of the joint determines the firmness of the stack and also influences its. The geometrical and positional accuracy is thus crucial in rib formation process. In this study, a complex experimental and numerical analysis of interlocking rib formation has been performed. The aim of the analysis is to numerically predict the shape of the rib in order to perform a numerical simulation of the stack formation in the next step of the process. A detailed experimental research has been performed in order to characterize influential parameters on the rib formation and the geometry of the ribs itself, using classical and 3D laser microscopy. The formation of the interlocking rib is then simulated using Abaqus Explicit. The Hilll 48 constitutive material model is based on extensive and novel material characterization process, combining data from in-plane and out-of-plane material tests to perform a 3D analysis of both, rib formation and rib joining. The study shows good correlation between the experimental and numerical results.
Protein dynamics during presynaptic complex assembly on individual ssDNA molecules
Gibb, Bryan; Ye, Ling F.; Kwon, YoungHo; Niu, Hengyao; Sung, Patrick; Greene, Eric C.
2014-01-01
Homologous recombination is a conserved pathway for repairing double–stranded breaks, which are processed to yield single–stranded DNA overhangs that serve as platforms for presynaptic complex assembly. Here we use single–molecule imaging to reveal the interplay between Saccharomyce cerevisiae RPA, Rad52, and Rad51 during presynaptic complex assembly. We show that Rad52 binds RPA–ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52–RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Together, our work illustrates the spatial and temporal progression of RPA and Rad52 association with the presynaptic complex, and reveals a novel RPA–Rad52–Rad51–ssDNA intermediate, which has implications for understanding how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages recombination. PMID:25195049
Mychasiuk, Richelle; Metz, Gerlinde A S
2016-11-01
Adolescence is defined as the gradual period of transition between childhood and adulthood that is characterized by significant brain maturation, growth spurts, sexual maturation, and heightened social interaction. Although originally believed to be a uniquely human aspect of development, rodent and non-human primates demonstrate maturational patterns that distinctly support an adolescent stage. As epigenetic processes are essential for development and differentiation, but also transpire in mature cells in response to environmental influences, they are an important aspect of adolescent brain maturation. The purpose of this review article was to examine epigenetic programming in animal models of brain maturation during adolescence. The discussion focuses on animal models to examine three main concepts; epigenetic processes involved in normal adolescent brain maturation, the influence of fetal programming on adolescent brain development and the epigenome, and finally, postnatal experiences such as exercise and drugs that modify epigenetic processes important for adolescent brain maturation. This corollary emphasizes the utility of animal models to further our understanding of complex processes such as epigenetic regulation and brain development. Copyright © 2016 Elsevier Ltd. All rights reserved.