Sample records for complex production process

  1. The Interaction between Central and Peripheral Processing in Chinese Handwritten Production: Evidence from the Effect of Lexicality and Radical Complexity

    PubMed Central

    Zhang, Qingfang; Feng, Chen

    2017-01-01

    The interaction between central and peripheral processing in written word production remains controversial. This study aims to investigate whether the effects of radical complexity and lexicality in central processing cascade into peripheral processing in Chinese written word production. The participants were asked to write characters and non-characters (lexicality) with different radical complexity (few- and many-strokes). The findings indicated that regardless of the lexicality, the writing latencies were longer for characters with higher complexity (the many-strokes condition) than for characters with lower complexity (the few-strokes condition). The participants slowed down their writing execution at the radicals' boundary strokes, which indicated a radical boundary effect in peripheral processing. Interestingly, the lexicality and the radical complexity affected the pattern of shift velocity and writing velocity during the execution of writing. Lexical processing cascades into peripheral processing but only at the beginning of Chinese characters. In contrast, the radical complexity influenced the execution of handwriting movement throughout the entire character, and the pattern of the effect interacted with the character frequency. These results suggest that the processes of the lexicality and the radical complexity function during the execution of handwritten word production, which suggests that central processing cascades over peripheral processing during Chinese characters handwriting. PMID:28348536

  2. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum.

    PubMed

    Posch, Andreas E; Spadiut, Oliver; Herwig, Christoph

    2012-06-22

    Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding.

  3. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum

    PubMed Central

    2012-01-01

    Background Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. Results This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. Conclusions The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding. PMID:22727013

  4. Superstructure-based Design and Optimization of Batch Biodiesel Production Using Heterogeneous Catalysts

    NASA Astrophysics Data System (ADS)

    Nuh, M. Z.; Nasir, N. F.

    2017-08-01

    Biodiesel as a fuel comprised of mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oil and animal fat. Biodiesel production is complex process which need systematic design and optimization. However, no case study using the process system engineering (PSE) elements which are superstructure optimization of batch process, it involves complex problems and uses mixed-integer nonlinear programming (MINLP). The PSE offers a solution to complex engineering system by enabling the use of viable tools and techniques to better manage and comprehend the complexity of the system. This study is aimed to apply the PSE tools for the simulation of biodiesel process and optimization and to develop mathematical models for component of the plant for case A, B, C by using published kinetic data. Secondly, to determine economic analysis for biodiesel production, focusing on heterogeneous catalyst. Finally, the objective of this study is to develop the superstructure for biodiesel production by using heterogeneous catalyst. The mathematical models are developed by the superstructure and solving the resulting mixed integer non-linear model and estimation economic analysis by using MATLAB software. The results of the optimization process with the objective function of minimizing the annual production cost by batch process from case C is 23.2587 million USD. Overall, the implementation a study of process system engineering (PSE) has optimized the process of modelling, design and cost estimation. By optimizing the process, it results in solving the complex production and processing of biodiesel by batch.

  5. A foundational methodology for determining system static complexity using notional lunar oxygen production processes

    NASA Astrophysics Data System (ADS)

    Long, Nicholas James

    This thesis serves to develop a preliminary foundational methodology for evaluating the static complexity of future lunar oxygen production systems when extensive information is not yet available about the various systems under consideration. Evaluating static complexity, as part of a overall system complexity analysis, is an important consideration in ultimately selecting a process to be used in a lunar base. When system complexity is higher, there is generally an overall increase in risk which could impact the safety of astronauts and the economic performance of the mission. To evaluate static complexity in lunar oxygen production, static complexity is simplified and defined into its essential components. First, three essential dimensions of static complexity are investigated, including interconnective complexity, strength of connections, and complexity in variety. Then a set of methods is developed upon which to separately evaluate each dimension. Q-connectivity analysis is proposed as a means to evaluate interconnective complexity and strength of connections. The law of requisite variety originating from cybernetic theory is suggested to interpret complexity in variety. Secondly, a means to aggregate the results of each analysis is proposed to create holistic measurement for static complexity using the Single Multi-Attribute Ranking Technique (SMART). Each method of static complexity analysis and the aggregation technique is demonstrated using notional data for four lunar oxygen production processes.

  6. Modelling for Ship Design and Production

    DTIC Science & Technology

    1991-09-01

    the physical production process. The product has to be delivered within the chain of order processing . The process “ship production” is defined by the...environment is of increasing importance. Changing product types, complexity and parallelism of order processing , short throughput times and fixed due...specialized and high quality products under manu- facturing conditions which ensure economic and effective order processing . Mapping these main

  7. Quality data collection and management technology of aerospace complex product assembly process

    NASA Astrophysics Data System (ADS)

    Weng, Gang; Liu, Jianhua; He, Yongxi; Zhuang, Cunbo

    2017-04-01

    Aiming at solving problems of difficult management and poor traceability for discrete assembly process quality data, a data collection and management method is proposed which take the assembly process and BOM as the core. Data collection method base on workflow technology, data model base on BOM and quality traceability of assembly process is included in the method. Finally, assembly process quality data management system is developed and effective control and management of quality information for complex product assembly process is realized.

  8. Data reduction complex analog-to-digital data processing requirements for onsite test facilities

    NASA Technical Reports Server (NTRS)

    Debbrecht, J. D.

    1976-01-01

    The analog to digital processing requirements of onsite test facilities are described. The source and medium of all input data to the Data Reduction Complex (DRC) and the destination and medium of all output products of the analog-to-digital processing are identified. Additionally, preliminary input and output data formats are presented along with the planned use of the output products.

  9. 40 CFR 432.21 - Special definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... extensive processing of the by-products of meat slaughtering. A complex slaughterhouse would usually include... STANDARDS MEAT AND POULTRY PRODUCTS POINT SOURCE CATEGORY Complex Slaughterhouses § 432.21 Special...

  10. Neural Correlates in the Processing of Phoneme-Level Complexity in Vowel Production

    ERIC Educational Resources Information Center

    Park, Haeil; Iverson, Gregory K.; Park, Hae-Jeong

    2011-01-01

    We investigated how articulatory complexity at the phoneme level is manifested neurobiologically in an overt production task. fMRI images were acquired from young Korean-speaking adults as they pronounced bisyllabic pseudowords in which we manipulated phonological complexity defined in terms of vowel duration and instability (viz., COMPLEX:…

  11. Isolation and Purification of Biotechnological Products

    NASA Astrophysics Data System (ADS)

    Hubbuch, Jürgen; Kula, Maria-Regina

    2007-05-01

    The production of modern pharma proteins is one of the most rapid growing fields in biotechnology. The overall development and production is a complex task ranging from strain development and cultivation to the purification and formulation of the drug. Downstream processing, however, still accounts for the major part of production costs. This is mainly due to the high demands on purity and thus safety of the final product and results in processes with a sequence of typically more than 10 unit operations. Consequently, even if each process step would operate at near optimal yield, a very significant amount of product would be lost. The majority of unit operations applied in downstream processing have a long history in the field of chemical and process engineering; nevertheless, mathematical descriptions of the respective processes and the economical large-scale production of modern pharmaceutical products are hampered by the complexity of the biological feedstock, especially the high molecular weight and limited stability of proteins. In order to develop new operational steps as well as a successful overall process, it is thus a necessary prerequisite to develop a deeper understanding of the thermodynamics and physics behind the applied processes as well as the implications for the product.

  12. Examining the freezing process of an intermediate bulk containing an industrially relevant protein

    PubMed Central

    Reinsch, Holger; Spadiut, Oliver; Heidingsfelder, Johannes; Herwig, Christoph

    2015-01-01

    Numerous biopharmaceuticals are produced in recombinant microorganisms in the controlled environment of a bioreactor, a process known as Upstream Process. To minimize product loss due to physico-chemical and enzymatic degradation, the Upstream Process should be directly followed by product purification, known as Downstream Process. However, the Downstream Process can be technologically complex and time-consuming which is why Upstream and Downstream Process usually have to be decoupled temporally and spatially. Consequently, the product obtained after the Upstream Process, known as intermediate bulk, has to be stored. In those circumstances, a freezing procedure is often performed to prevent product loss. However, the freezing process itself is inseparably linked to physico-chemical changes of the intermediate bulk which may in turn damage the product. The present study analysed the behaviour of a Tris-buffered intermediate bulk containing a biopharmaceutically relevant protein during a bottle freezing process. Major damaging mechanisms, like the spatiotemporal redistribution of ion concentrations and pH, and their influence on product stability were investigated. Summarizing, we show the complex events which happen in an intermediate bulk during freezing and explain the different causes for product loss. PMID:25765305

  13. A systems-based approach for integrated design of materials, products and design process chains

    NASA Astrophysics Data System (ADS)

    Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh

    2007-12-01

    The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by applying the method to the MESM design problem, we show that the integrated design of materials and products can be carried out more efficiently by explicitly accounting for design process decisions with the hierarchy of models.

  14. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    NASA Astrophysics Data System (ADS)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  15. Separation of uranium from technetium in recovery of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Friedman, H. A.

    1984-06-01

    A method for decontaminating uranium product from the Purex 5 process is described. Hydrazine is added to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO2(2+)) uranium and heptavalent technetius (TcO4-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H2O2O4), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  16. Neural correlates in the processing of phoneme-level complexity in vowel production.

    PubMed

    Park, Haeil; Iverson, Gregory K; Park, Hae-Jeong

    2011-12-01

    We investigated how articulatory complexity at the phoneme level is manifested neurobiologically in an overt production task. fMRI images were acquired from young Korean-speaking adults as they pronounced bisyllabic pseudowords in which we manipulated phonological complexity defined in terms of vowel duration and instability (viz., COMPLEX: /tiɯi/ > MID-COMPLEX: /tiye/ > SIMPLE: /tii/). Increased activity in the left inferior frontal gyrus (Brodmann Areas (BA) 44 and 47), supplementary motor area and anterior insula was observed for the articulation of COMPLEX sequences relative to MID-COMPLEX; this was the case with the articulation of MID-COMPLEX relative to SIMPLE, except that the pars orbitalis (BA 47) was dominantly identified in the Broca's area. The differentiation indicates that phonological complexity is reflected in the neural processing of distinct phonemic representations, both by recruiting brain regions associated with retrieval of phonological information from memory and via articulatory rehearsal for the production of COMPLEX vowels. In addition, the finding that increased complexity engages greater areas of the brain suggests that brain activation can be a neurobiological measure of articulo-phonological complexity, complementing, if not substituting for, biomechanical measurements of speech motor activity. 2011 Elsevier Inc. All rights reserved.

  17. A PBOM configuration and management method based on templates

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Qiao, Lihong; Qie, Yifan

    2018-03-01

    The design of Process Bill of Materials (PBOM) holds a hinge position in the process of product development. The requirements of PBOM configuration design and management for complex products are analysed in this paper, which include the reuse technique of configuration procedure and urgent management need of huge quantity of product family PBOM data. Based on the analysis, the function framework of PBOM configuration and management has been established. Configuration templates and modules are defined in the framework to support the customization and the reuse of configuration process. The configuration process of a detection sensor PBOM is shown as an illustration case in the end. The rapid and agile PBOM configuration and management can be achieved utilizing template-based method, which has a vital significance to improve the development efficiency for complex products.

  18. Mass failures and other processes of sediment production in Pacific northwest forest landscapes

    Treesearch

    Frederick J. Swanson; Lee E. Benda; Stanley H. Duncan; Gordon E. Grant; Walter F. Megahan; Leslie M. Reid; Robert R. Ziemer

    1987-01-01

    Abstract - Accelerated sediment production by mass failures and other erosion processes is an important link between management of forest resources and fish resources. Dominant processes and the rates of sediment production vary greatly throughout the Pacific Northwest in response to geologic and climatic factors. The complex sediment routing systems characteristic...

  19. SEPARATION OF PLUTONIUM VALUES FROM OTHER METAL VALUES IN AQUEOUS SOLUTIONS BY SELECTIVE COMPLEXING AND ADSORPTION

    DOEpatents

    Beaton, R.H.

    1960-06-28

    A process is given for separating tri- or tetravalent plutonium from fission products in an aqueous solution by complexing the fission products with oxalate, tannate, citrate, or tartrate anions at a pH value of at least 2.4 (preferably between 2.4 and 4), and contacting a cation exchange resin with the solution whereby the plutonium is adsorbed while the complexed fission products remain in solution.

  20. Optical Gripper

    NASA Astrophysics Data System (ADS)

    Jalba, C. K.; Muminovic, A.; Epple, S.; Barz, C.; Nasui, V.

    2017-05-01

    With increasing automation, many work processes become more and more complex. Most technical products can no longer be developed and manufactured by a single department. They are often the product of different divisions and require cooperation from different specialist areas. For example, in the Western world, a simple coffee maker is no longer so much in demand. If the buyer has the possibility to choose between a simple coffee maker and a coffee machine with very complex functions, the choice will probably fall to the more complex variant. Technical progress also applies to other technical products, such as grippers and manipulators. In this paper, it is shown how grasping processes can be redefined and developed with interdisciplinary technical approaches. Both conventional and latest developments in mechanical engineering, production technology, mechatronics and sensor technology will be considered.

  1. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Friedman, H.A.

    1984-06-13

    A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  2. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Friedman, Horace A.

    1985-01-01

    A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.

  3. A combined acidification/PEO flocculation process to improve the lignin removal from the pre-hydrolysis liquor of kraft-based dissolving pulp production process.

    PubMed

    Shi, Haiqiang; Fatehi, Pedram; Xiao, Huining; Ni, Yonghao

    2011-04-01

    The presence of lignin impairs the utilization of the hemicelluloses dissolved in the pre-hydrolysis liquor (PHL) of the kraft-based dissolving pulp production process. In this paper, a novel process was developed by combining the acidification and poly ethylene oxide (PEO) flocculation concepts to improve the lignin removal. The results showed that the lignin removal was improved by the addition of PEO to the acidified PHL, particularly at a low pH of 1.5. The main mechanisms involved are the lignin/PEO complex formation and the bridging of the formed complexes. This hypothesis was supported by the turbidity, FTIR and particle size measurements. Interestingly, the hemicelluloses removal from the acidification/PEO flocculation was marginal, which would be beneficial for the down-stream ethanol production from the PHL. Additionally, a process flow diagram was proposed that incorporates this new concept into the existing configuration of kraft-based dissolving pulp production process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Supported metal alloy catalysts

    DOEpatents

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  5. Simulating the Composite Propellant Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Williamson, Suzanne; Love, Gregory

    2000-01-01

    There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.

  6. National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities.

    PubMed

    Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James; Chen, Xiaojuan

    2016-11-01

    Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. © 2016 by the American Diabetes Association.

  7. National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

    PubMed Central

    Balamurugan, A.N.; Szot, Gregory L.; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W.; Barbaro, Barbara; Bridges, Nancy D.; Cano, Jose; Clarke, William R.; Eggerman, Thomas L.; Hunsicker, Lawrence G.; Kaufman, Dixon B.; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F.; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A.; Brandhorst, Daniel; Chen, Xiaojuan; Friberg, Andrew S.; Lei, Ji; Wang, Ling-jia; Wilhelm, Joshua J.; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J.; Posselt, Andrew M.; Stock, Peter G.; Shapiro, A.M. James

    2016-01-01

    Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed. PMID:27465220

  8. Self-Reacting Friction Stir Welding for Aluminum Complex Curvature Applications

    NASA Technical Reports Server (NTRS)

    Brown, Randy J.; Martin, W.; Schneider, J.; Hartley, P. J.; Russell, Carolyn; Lawless, Kirby; Jones, Chip

    2003-01-01

    This viewgraph representation provides an overview of sucessful research conducted by Lockheed Martin and NASA to develop an advanced self-reacting friction stir technology for complex curvature aluminum alloys. The research included weld process development for 0.320 inch Al 2219, sucessful transfer from the 'lab' scale to the production scale tool and weld quality exceeding strenght goals. This process will enable development and implementation of large scale complex geometry hardware fabrication. Topics covered include: weld process development, weld process transfer, and intermediate hardware fabrication.

  9. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  10. Implementation of a repeated fed-batch process for the production of chitin-glucan complex by Komagataella pastoris.

    PubMed

    Farinha, Inês; Freitas, Filomena; Reis, Maria A M

    2017-07-25

    The yeast Komagataella pastoris was cultivated under different fed-batch strategies for the production of chitin-glucan complex (CGC), a co-polymer of chitin and β-glucan. The tested fed-batch strategies included DO-stat mode, predefined feeding profile and repeated fed-batch operation. Although high cell dry mass and high CGC production were obtained under the tested DO-stat strategy in a 94h cultivation (159 and 29g/L, respectively), the overall biomass and CGC productivities were low (41 and 7.4g/Lday, respectively). Cultivation with a predefined profile significantly improved both biomass and CGC volumetric productivity (87 and 10.8g/Lday, respectively). Hence, this strategy was used to implement a repeated fed-batch process comprising 7 consecutive cycles. A daily production of 119-126g/L of biomass with a CGC content of 11-16wt% was obtained, thus proving this cultivation strategy is adequate to reach a high CGC productivity that ranged between 11 and 18g/Lday. The process was stable and reproducible in terms of CGC productivity and polymer composition, making it a promising strategy for further process development. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nonisothermal glass molding for the cost-efficient production of precision freeform optics

    NASA Astrophysics Data System (ADS)

    Vu, Anh-Tuan; Kreilkamp, Holger; Dambon, Olaf; Klocke, Fritz

    2016-07-01

    Glass molding has become a key replication-based technology to satisfy intensively growing demands of complex precision optics in the today's photonic market. However, the state-of-the-art replicative technologies are still limited, mainly due to their insufficiency to meet the requirements of mass production. This paper introduces a newly developed nonisothermal glass molding in which a complex-shaped optic is produced in a very short process cycle. The innovative molding technology promises a cost-efficient production because of increased mold lifetime, less energy consumption, and high throughput from a fast process chain. At the early stage of the process development, the research focuses on an integration of finite element simulation into the process chain to reduce time and labor-intensive cost. By virtue of numerical modeling, defects including chill ripples and glass sticking in the nonisothermal molding process can be predicted and the consequent effects are avoided. In addition, the influences of process parameters and glass preforms on the surface quality, form accuracy, and residual stress are discussed. A series of experiments was carried out to validate the simulation results. The successful modeling, therefore, provides a systematic strategy for glass preform design, mold compensation, and optimization of the process parameters. In conclusion, the integration of simulation into the entire nonisothermal glass molding process chain will significantly increase the manufacturing efficiency as well as reduce the time-to-market for the mass production of complex precision yet low-cost glass optics.

  12. Biodegradation of CuTETA, an effluent by-product in mineral processing.

    PubMed

    Cushing, Alexander M L; Kelebek, Sadan; Yue, Siqing; Ramsay, Juliana A

    2018-04-13

    Polyamines such as triethylenetetramine (TETA) and other amine chelators are used in mineral processing applications. Formation of heavy metal complexes of these reagents as a by-product in effluent water is a recent environmental concern. In this study, Paecilomyces sp. was enriched from soil on TETA as the sole source of carbon and nitrogen and was found to degrade > 96 and 90% CuTETA complexes at initial concentrations of 0.32 and 0.79 mM respectively, following 96-h incubation. After destabilization, most of the copper (> 78%) was complexed extracellularly and the rest was associated with the cell. Mass spectroscopy results provided confirmation that copper re-complexed with small, extracellular, and organic molecules. There are no reports in the literature that Paecilomyces or any other organism can grow on TETA or CuTETA. This study is the first to show that biological destabilization of CuTETA complexes in mineral processing effluents is feasible.

  13. The Large Hydrophilic Loop of Presenilin 1 Is Important for Regulating γ-Secretase Complex Assembly and Dictating the Amyloid β Peptide (Aβ) Profile without Affecting Notch Processing*

    PubMed Central

    Wanngren, Johanna; Frånberg, Jenny; Svensson, Annelie I.; Laudon, Hanna; Olsson, Fredrik; Winblad, Bengt; Liu, Frank; Näslund, Jan; Lundkvist, Johan; Karlström, Helena

    2010-01-01

    γ-Secretase is an enzyme complex that mediates both Notch signaling and β-amyloid precursor protein (APP) processing, resulting in the generation of Notch intracellular domain, APP intracellular domain, and the amyloid β peptide (Aβ), the latter playing a central role in Alzheimer disease (AD). By a hitherto undefined mechanism, the activity of γ-secretase gives rise to Aβ peptides of different lengths, where Aβ42 is considered to play a particular role in AD. In this study we have examined the role of the large hydrophilic loop (amino acids 320–374, encoded by exon 10) of presenilin 1 (PS1), the catalytic subunit of γ-secretase, for γ-secretase complex formation and activity on Notch and APP processing. Deletion of exon 10 resulted in impaired PS1 endoproteolysis, γ-secretase complex formation, and had a differential effect on Aβ-peptide production. Although the production of Aβ38, Aβ39, and Aβ40 was severely impaired, the effect on Aβ42 was affected to a lesser extent, implying that the production of the AD-related Aβ42 peptide is separate from the production of the Aβ38, Aβ39, and Aβ40 peptides. Interestingly, formation of the intracellular domains of both APP and Notch was intact, implying a differential cleavage activity between the ϵ/S3 and γ sites. The most C-terminal amino acids of the hydrophilic loop were important for regulating APP processing. In summary, the large hydrophilic loop of PS1 appears to differentially regulate the relative production of different Aβ peptides without affecting Notch processing, two parameters of significance when considering γ-secretase as a target for pharmaceutical intervention in AD. PMID:20106965

  14. Stochastic production phase design for an open pit mining complex with multiple processing streams

    NASA Astrophysics Data System (ADS)

    Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen

    2014-08-01

    In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cresap, D.A.; Halverson, D.S.

    In the Fluorinel Dissolution Process (FDP) upgrade, excess hydrofluoric acid in the dissolver product must be complexed with aluminum nitrate (ANN) to eliminate corrosion concerns, adjusted with nitrate to facilitate extraction, and diluted with water to ensure solution stability. This is currently accomplished via batch processing in large vessels. However, to accommodate increases in projected throughput and reduce water production in a cost-effective manner, a semi-continuous system (In-line Complexing (ILC)) has been developed. The major conclusions drawn from tests demonstrating the feasibility of this concept are given in this report.

  16. Mars Observer data production, transfer, and archival: The data production assembly line

    NASA Technical Reports Server (NTRS)

    Childs, David B.

    1993-01-01

    This paper describes the data production, transfer, and archival process designed for the Mars Observer Flight Project. It addresses the developmental and operational aspects of the archive collection production process. The developmental aspects cover the design and packaging of data products for archival and distribution to the planetary community. Also discussed is the design and development of a data transfer and volume production process capable of handling the large throughput and complexity of the Mars Observer data products. The operational aspects cover the main functions of the process: creating data and engineering products, collecting the data products and ancillary products in a central repository, producing archive volumes, validating volumes, archiving, and distributing the data to the planetary community.

  17. The FOT tool kit concept

    NASA Technical Reports Server (NTRS)

    Fatig, Michael

    1993-01-01

    Flight operations and the preparation for it has become increasingly complex as mission complexities increase. Further, the mission model dictates that a significant increase in flight operations activities is upon us. Finally, there is a need for process improvement and economy in the operations arena. It is therefore time that we recognize flight operations as a complex process requiring a defined, structured, and life cycle approach vitally linked to space segment, ground segment, and science operations processes. With this recognition, an FOT Tool Kit consisting of six major components designed to provide tools to guide flight operations activities throughout the mission life cycle was developed. The major components of the FOT Tool Kit and the concepts behind the flight operations life cycle process as developed at NASA's GSFC for GSFC-based missions are addressed. The Tool Kit is therefore intended to increase productivity, quality, cost, and schedule performance of the flight operations tasks through the use of documented, structured methodologies; knowledge of past lessons learned and upcoming new technology; and through reuse and sharing of key products and special application programs made possible through the development of standardized key products and special program directories.

  18. Saturn S-2 production operations techniques: Production welding. Volume 1: Bulkhead welding

    NASA Technical Reports Server (NTRS)

    Abel, O. G.

    1970-01-01

    The complex Saturn S-2 welding processes and procedures required considerable development and refinement to establish a production capability that could consistently produce aluminum alloy welds within specified requirements. The special processes and techniques are defined that were established for the welding of gore-to-gore and manhole- or closeout-to-gore.

  19. Performance evaluation of functioning of natural-industrial system of mining-processing complex with help of analytical and mathematical models

    NASA Astrophysics Data System (ADS)

    Bosikov, I. I.; Klyuev, R. V.; Revazov, V. Ch; Pilieva, D. E.

    2018-03-01

    The article describes research and analysis of hazardous processes occurring in the natural-industrial system and effectiveness assessment of its functioning using mathematical models. Studies of the functioning regularities of the natural and industrial system are becoming increasingly relevant in connection with the formulation of the task of modernizing production and the economy of Russia as a whole. In connection with a significant amount of poorly structured data, it is complicated by regulations for the effective functioning of production processes, social and natural complexes, under which a sustainable development of the natural-industrial system of the mining and processing complex would be ensured. Therefore, the scientific and applied problems, the solution of which allows one to formalize the hidden structural functioning patterns of the natural-industrial system and to make managerial decisions of organizational and technological nature to improve the efficiency of the system, are very relevant.

  20. Training verb argument structure production in agrammatic aphasia: Behavioral and neural recovery patterns

    PubMed Central

    Thompson, Cynthia K.; Riley, Ellyn A.; den Ouden, Dirk-Bart; Meltzer-Asscher, Aya; Lukic, Sladjana

    2013-01-01

    Introduction Neuroimaging and lesion studies indicate a left hemisphere network for verb and verb argument structure processing, involving both frontal and temporoparietal brain regions. Although their verb comprehension is generally unimpaired, it is well known that individuals with agrammatic aphasia often present with verb production deficits, characterized by an argument structure complexity hierarchy, indicating faulty access to argument structure representations for production and integration into syntactic contexts. Recovery of verb processing in agrammatism, however, has received little attention and no studies have examined the neural mechanisms associated with improved verb and argument structure processing. In the present study we trained agrammatic individuals on verbs with complex argument structure in sentence contexts and examined generalization to verbs with less complex argument structure. The neural substrates of improved verb production were examined using functional magnetic resonance imaging (fMRI). Methods Eight individuals with chronic agrammatic aphasia participated in the study (four experimental and four control participants). Production of three-argument verbs in active sentences was trained using a sentence generation task emphasizing the verb’s argument structure and the thematic roles of sentential noun phrases. Before and after training, production of trained and untrained verbs was tested in naming and sentence production and fMRI scans were obtained, using an action naming task. Results Significant pre- to post-training improvement in trained and untrained (one- and two-argument) verbs was found for treated, but not control, participants, with between-group differences found for verb naming, production of verbs in sentences, and production of argument structure. fMRI activation derived from post-treatment compared to pre-treatment scans revealed upregulation in cortical regions implicated for verb and argument structure processing in healthy controls. Conclusions Training verb deficits emphasizing argument structure and thematic role mapping is effective for improving verb and sentence production and results in recruitment of neural networks engaged for verb and argument structure processing in healthy individuals. PMID:23514929

  1. Innovation processes in technologies for the processing of refractory mineral raw materials

    NASA Astrophysics Data System (ADS)

    Chanturiya, V. A.

    2008-12-01

    Analysis of the grade of mineral resources of Russia and other countries shows that end products that are competitive in terms of both technological and environmental criteria in the world market can only be obtained by the development and implementation of progressive technologies based on the up-to-date achievements of fundamental sciences. The essence of modern innovation processes in technologies developed in Russia for the complex and comprehensive processing of refractory raw materials with a complex composition is ascertained. These processes include (i) radiometric methods of concentration of valuable components, (ii) high-energy methods of disintegration of highly dispersed mineral components, and (iii) electrochemical methods of water conditioning to obtain target products for solving specific technological problems.

  2. Trends in biotechnological production of fuel ethanol from different feedstocks.

    PubMed

    Sánchez, Oscar J; Cardona, Carlos A

    2008-09-01

    Present work deals with the biotechnological production of fuel ethanol from different raw materials. The different technologies for producing fuel ethanol from sucrose-containing feedstocks (mainly sugar cane), starchy materials and lignocellulosic biomass are described along with the major research trends for improving them. The complexity of the biomass processing is recognized through the analysis of the different stages involved in the conversion of lignocellulosic complex into fermentable sugars. The features of fermentation processes for the three groups of studied feedstocks are discussed. Comparative indexes for the three major types of feedstocks for fuel ethanol production are presented. Finally, some concluding considerations on current research and future tendencies in the production of fuel ethanol regarding the pretreatment and biological conversion of the feedstocks are presented.

  3. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  4. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. © 2015 The Authors.

  5. Statistical mechanics of complex economies

    NASA Astrophysics Data System (ADS)

    Bardoscia, Marco; Livan, Giacomo; Marsili, Matteo

    2017-04-01

    In the pursuit of ever increasing efficiency and growth, our economies have evolved to remarkable degrees of complexity, with nested production processes feeding each other in order to create products of greater sophistication from less sophisticated ones, down to raw materials. The engine of such an expansion have been competitive markets that, according to general equilibrium theory (GET), achieve efficient allocations under specific conditions. We study large random economies within the GET framework, as templates of complex economies, and we find that a non-trivial phase transition occurs: the economy freezes in a state where all production processes collapse when either the number of primary goods or the number of available technologies fall below a critical threshold. As in other examples of phase transitions in large random systems, this is an unintended consequence of the growth in complexity. Our findings suggest that the Industrial Revolution can be regarded as a sharp transition between different phases, but also imply that well developed economies can collapse if too many intermediate goods are introduced.

  6. Encountering Productive Forms of Complexity in Learning Modern Physics

    ERIC Educational Resources Information Center

    Levrini, Olivia; Fantini, Paola

    2013-01-01

    This paper aims at supporting the claim that some forms of hyper-simplification, by making physics seem easy, are at risk of dangerously distorting the content as well as the process of learning physics. The paper presents examples of dangerous simplifications in the teaching of quantum physics. Then, examples of productive forms of complexity are…

  7. Scientific and Regulatory Considerations for Generic Complex Drug Products Containing Nanomaterials.

    PubMed

    Zheng, Nan; Sun, Dajun D; Zou, Peng; Jiang, Wenlei

    2017-05-01

    In the past few decades, the development of medicine at the nanoscale has been applied to oral and parenteral dosage forms in a wide range of therapeutic areas to enhance drug delivery and reduce toxicity. An obvious response to these benefits is reflected in higher market shares of complex drug products containing nanomaterials than that of conventional formulations containing the same active ingredient. The surging market interest has encouraged the pharmaceutical industry to develop cost-effective generic versions of complex drug products based on nanotechnology when the associated patent and exclusivity on the reference products have expired. Due to their complex nature, nanotechnology-based drugs present unique challenges in determining equivalence standards between generic and innovator products. This manuscript attempts to provide the scientific rationales and regulatory considerations of key equivalence standards (e.g., in vivo studies and in vitro physicochemical characterization) for oral drugs containing nanomaterials, iron-carbohydrate complexes, liposomes, protein-bound drugs, nanotube-forming drugs, and nano emulsions. It also presents active research studies in bridging regulatory and scientific gaps for establishing equivalence of complex products containing nanomaterials. We hope that open communication among industry, academia, and regulatory agencies will accelerate the development and approval processes of generic complex products based on nanotechnology.

  8. Prediction in complex systems: The case of the international trade network

    NASA Astrophysics Data System (ADS)

    Vidmer, Alexandre; Zeng, An; Medo, Matúš; Zhang, Yi-Cheng

    2015-10-01

    Predicting the future evolution of complex systems is one of the main challenges in complexity science. Based on a current snapshot of a network, link prediction algorithms aim to predict its future evolution. We apply here link prediction algorithms to data on the international trade between countries. This data can be represented as a complex network where links connect countries with the products that they export. Link prediction techniques based on heat and mass diffusion processes are employed to obtain predictions for products exported in the future. These baseline predictions are improved using a recent metric of country fitness and product similarity. The overall best results are achieved with a newly developed metric of product similarity which takes advantage of causality in the network evolution.

  9. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    PubMed

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  10. Optimization and cost estimation of novel wheat biorefining for continuous production of fermentation feedstock.

    PubMed

    Arifeen, Najmul; Wang, Ruohang; Kookos, Ioannis; Webb, Colin; Koutinas, Apostolis A

    2007-01-01

    A wheat-based continuous process for the production of a nutrient-complete feedstock for bioethanol production by yeast fermentation has been cost-optimized. This process could substitute for the current wheat dry milling process employed in industry for bioethanol production. Each major wheat component (bran, gluten, starch) is extracted and processed for different end-uses. The separate stages, liquefaction and saccharification, used currently in industry for starch hydrolysis have been integrated into a simplified continuous process by exploiting the complex enzymatic consortium produced by on-site fungal bioconversions. A process producing 120 m3 h-1 nutrient-complete feedstock for bioethanol production containing 250 g L-1 glucose and 0.85 g L-1 free amino nitrogen would result in a production cost of $0.126/kg glucose.

  11. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    NASA Astrophysics Data System (ADS)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  12. Production of Titanium Metal by an Electrochemical Molten Salt Process

    NASA Astrophysics Data System (ADS)

    Fatollahi-Fard, Farzin

    Titanium production is a long and complicated process. What we often consider to be the standard method of primary titanium production (the Kroll process), involves many complex steps both before and after to make a useful product from titanium ore. Thus new methods of titanium production, especially electrochemical processes, which can utilize less-processed feedstocks have the potential to be both cheaper and less energy intensive than current titanium production processes. This project is investigating the use of lower-grade titanium ores with the electrochemical MER process for making titanium via a molten salt process. The experimental work carried out has investigated making the MER process feedstock (titanium oxycarbide) with natural titanium ores--such as rutile and ilmenite--and new ways of using the MER electrochemical reactor to "upgrade" titanium ores or the titanium oxycarbide feedstock. It is feasible to use the existing MER electrochemical reactor to both purify the titanium oxycarbide feedstock and produce titanium metal.

  13. Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice

    PubMed Central

    Miwa, Satomi; Jow, Howsun; Baty, Karen; Johnson, Amy; Czapiewski, Rafal; Saretzki, Gabriele; Treumann, Achim; von Zglinicki, Thomas

    2014-01-01

    Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. PMID:24815183

  14. Advances in the production of freeform optical surfaces

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.; Luniya, Suneet S.

    2007-05-01

    Recent market demands for free-form optics have challenged the industry to find new methods and techniques to manufacture free-form optical surfaces with a high level of accuracy and reliability. Production techniques are becoming a mix of multi-axis single point diamond machining centers or deterministic ultra precision grinding centers coupled with capable measurement systems to accomplish the task. It has been determined that a complex software tool is required to seamlessly integrate all aspects of the manufacturing process chain. Advances in computational power and improved performance of computer controlled precision machinery have driven the use of such software programs to measure, visualize, analyze, produce and re-validate the 3D free-form design thus making the process of manufacturing such complex surfaces a viable task. Consolidation of the entire production cycle in a comprehensive software tool that can interact with all systems in design, production and measurement phase will enable manufacturers to solve these complex challenges providing improved product quality, simplified processes, and enhanced performance. The work being presented describes the latest advancements in developing such software package for the entire fabrication process chain for aspheric and free-form shapes. It applies a rational B-spline based kernel to transform an optical design in the form of parametrical definition (optical equation), standard CAD format, or a cloud of points to a central format that drives the simulation. This software tool creates a closed loop for the fabrication process chain. It integrates surface analysis and compensation, tool path generation, and measurement analysis in one package.

  15. Phenotyping the quality of complex medium components by simple online-monitored shake flask experiments.

    PubMed

    Diederichs, Sylvia; Korona, Anna; Staaden, Antje; Kroutil, Wolfgang; Honda, Kohsuke; Ohtake, Hisao; Büchs, Jochen

    2014-11-07

    Media containing yeast extracts and other complex raw materials are widely used for the cultivation of microorganisms. However, variations in the specific nutrient composition can occur, due to differences in the complex raw material ingredients and in the production of these components. These lot-to-lot variations can affect growth rate, product yield and product quality in laboratory investigations and biopharmaceutical production processes. In the FDA's Process Analytical Technology (PAT) initiative, the control and assessment of the quality of critical raw materials is one key aspect to maintain product quality and consistency. In this study, the Respiration Activity Monitoring System (RAMOS) was used to evaluate the impact of different yeast extracts and commercial complex auto-induction medium lots on metabolic activity and product yield of four recombinant Escherichia coli variants encoding different enzymes. Under non-induced conditions, the oxygen transfer rate (OTR) of E. coli was not affected by a variation of the supplemented yeast extract lot. The comparison of E. coli cultivations under induced conditions exhibited tremendous differences in OTR profiles and volumetric activity for all investigated yeast extract lots of different suppliers as well as lots of the same supplier independent of the E. coli variant. Cultivation in the commercial auto-induction medium lots revealed the same reproducible variations. In cultivations with parallel offline analysis, the highest volumetric activity was found at different cultivation times. Only by online monitoring of the cultures, a distinct cultivation phase (e.g. glycerol depletion) could be detected and chosen for comparable and reproducible offline analysis of the yield of functional product. This work proves that cultivations conducted in complex media may be prone to significant variation in final product quality and quantity if the quality of the raw material for medium preparation is not thoroughly checked. In this study, the RAMOS technique enabled a reliable and reproducible screening and phenotyping of complex raw material lots by online measurement of the respiration activity. Consequently, complex raw material lots can efficiently be assessed if the distinct effects on culture behavior and final product quality and quantity are visualized.

  16. InSAR Deformation Time Series Processed On-Demand in the Cloud

    NASA Astrophysics Data System (ADS)

    Horn, W. B.; Weeden, R.; Dimarchi, H.; Arko, S. A.; Hogenson, K.

    2017-12-01

    During this past year, ASF has developed a cloud-based on-demand processing system known as HyP3 (http://hyp3.asf.alaska.edu/), the Hybrid Pluggable Processing Pipeline, for Synthetic Aperture Radar (SAR) data. The system makes it easy for a user who doesn't have the time or inclination to install and use complex SAR processing software to leverage SAR data in their research or operations. One such processing algorithm is generation of a deformation time series product, which is a series of images representing ground displacements over time, which can be computed using a time series of interferometric SAR (InSAR) products. The set of software tools necessary to generate this useful product are difficult to install, configure, and use. Moreover, for a long time series with many images, the processing of just the interferograms can take days. Principally built by three undergraduate students at the ASF DAAC, the deformation time series processing relies the new Amazon Batch service, which enables processing of jobs with complex interconnected dependencies in a straightforward and efficient manner. In the case of generating a deformation time series product from a stack of single-look complex SAR images, the system uses Batch to serialize the up-front processing, interferogram generation, optional tropospheric correction, and deformation time series generation. The most time consuming portion is the interferogram generation, because even for a fairly small stack of images many interferograms need to be processed. By using AWS Batch, the interferograms are all generated in parallel; the entire process completes in hours rather than days. Additionally, the individual interferograms are saved in Amazon's cloud storage, so that when new data is acquired in the stack, an updated time series product can be generated with minimal addiitonal processing. This presentation will focus on the development techniques and enabling technologies that were used in developing the time series processing in the ASF HyP3 system. Data and process flow from job submission through to order completion will be shown, highlighting the benefits of the cloud for each step.

  17. Quality assurance after process changes of the production of a therapeutic antibody.

    PubMed

    Brass, J M; Krummen, K; Moll-Kaufmann, C

    1996-12-01

    Process development for the production of a therapeutic humanised antibody is a very complex operation. It involves recombinant genetics, verification of a strong expression system, gene amplification, characterisation of a stable host cell expression system, optimisation and design of the mammalian cell culture fermentation system and development of an efficient recovery process resulting in high yields and product quality. Rapid progress in the field and the wish of some pharmaceutical companies for outsourcing their production are the driving forces for process changes relatively late in the development phase. This literature survey is aimed at identifying the limits of acceptable process changes in up scaling of the fermentation and down stream processing of biopharmaceuticals and defining the demand in production validation to prove product equivalency and identity of the isolated, purified therapeutic antibody.

  18. Energetic Processing of Interstellar Ices: A Route to Complexity

    NASA Technical Reports Server (NTRS)

    Moore, Marla H.; Hudson, Reggie L.

    2009-01-01

    More than 140 gas-phase molecules have been detected in the interstellar (IS) medium or in circumstellar environments including inorganics, organics, ions, and radicals. The significant abundance of large, complex organic molecules, and families of isomers in these regions makes the origin and formation history of these species the subject of debate. Observationally determined condensed-phase species are H2O, CO, CO2, NH3 and CH30H, with CH4, HCOOH, OCS, OCN-, H2CO and NH4(+) present at trace levels. These ices can undergo energetic processing with cosmic rays or far-UV photons to form larger complex organics with abundance levels that make them undetectable in icy mantles. Once warmed, however, it is likely that these complex species would enter the gas-phase where they might be detected by Herschel or Alma. Understanding the role of radiation chemistry and thermal processing of ices and identifying new products are the goals of our laboratory research. In the Cosmic lee Laboratory at NASA Goddard Space Plight Center, we can study both the photo-and radiation chemistries of ices from 8 -- 300 K. Using dear- and mid-IR spectroscopy we can follow the destruction of primary molecules and the formation of radicals and secondary products as a function of energetic processing. During warming we can monitor the trapping of species and the results of any thermal chemistry. An overview of recent and past work will focus on complex secondary radiation products from small condensed-phase IS species. Likely reactions include dimerization, isomerization, H-addition and H-elimination. Another focus of our work is the development of reaction schemes for the formation of complex molecules and the use of such schemes to predict new molecules awaiting detection by Herschel and Alma.

  19. Intelligent methods for the process parameter determination of plastic injection molding

    NASA Astrophysics Data System (ADS)

    Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn

    2018-03-01

    Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

  20. Fractal geometry as a new approach for proving nanosimilarity: a reflection note.

    PubMed

    Demetzos, Costas; Pippa, Natassa

    2015-04-10

    Nanosimilars are considered as new medicinal outcomes combining the generic drugs and the nanocarrier as an innovative excipient, in order to evaluate them as final products. They belong to the grey area - concerning the evaluation process - between generic drugs and biosimilar medicinal products. Generic drugs are well documented and a huge number of them are in market, replacing effectively the off-patent drugs. The scientific approach for releasing them to the market is based on bioequivalence studies, which are well documented and accepted by the regulatory agencies. On the other hand, the structural complexity of biological/biotechnology-derived products demands a new approach for the approval process taking into consideration that bioequivalence studies are not considered as sufficient as in generic drugs, and new clinical trials are needed to support their approval process of the product to the market. In proportion, due to technological complexity of nanomedicines, the approaches for proving the statistical identity or the similarity for generic and biosimilar products, respectively, with those of prototypes, are not considered as effective for nanosimilar products. The aim of this note is to propose a complementary approach which can provide realistic evidences concerning the nanosimilarity, based on fractal analysis. This approach is well fit with the structural complexity of nanomedicines and smooths the difficulties for proving the similarity between off-patent and nanosimilar products. Fractal analysis could be considered as the approach that completely characterizes the physicochemical/morphological characteristics of nanosimilar products and could be proposed as a start point for a deep discussion on nanosimilarity. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of sentence-structure complexity on speech initiation time and disfluency.

    PubMed

    Tsiamtsiouris, Jim; Cairns, Helen Smith

    2013-03-01

    There is general agreement that stuttering is caused by a variety of factors, and language formulation and speech motor control are two important factors that have been implicated in previous research, yet the exact nature of their effects is still not well understood. Our goal was to test the hypothesis that sentences of high structural complexity would incur greater processing costs than sentences of low structural complexity and these costs would be higher for adults who stutter than for adults who do not stutter. Fluent adults and adults who stutter participated in an experiment that required memorization of a sentence classified as low or high structural complexity followed by production of that sentence upon a visual cue. Both groups of speakers initiated most sentences significantly faster in the low structural complexity condition than in the high structural complexity condition. Adults who stutter were over-all slower in speech initiation than were fluent speakers, but there were no significant interactions between complexity and group. However, adults who stutter produced significantly more disfluencies in sentences of high structural complexity than in those of low complexity. After reading this article, the learner will be able to: (a) identify integral parts of all well-known models of adult sentence production; (b) summarize the way that sentence structure might negatively influence the speech production processes; (c) discuss whether sentence structure influences speech initiation time and disfluencies. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali T-Raissi

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammoniamore » and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.« less

  3. An integration architecture for the automation of a continuous production complex.

    PubMed

    Chacón, Edgar; Besembel, Isabel; Narciso, Flor; Montilva, Jonás; Colina, Eliezer

    2002-01-01

    The development of integrated automation systems for continuous production plants is a very complicated process. A variety of factors must be taken into account, such as their different components (e.g., production units control systems, planning systems, financial systems, etc.), the interaction among them, and their different behavior (continuous or discrete). Moreover, the difficulty of this process is increased by the fact that each component can be viewed in a different way depending on the kind of decisions to be made, and its specific behavior. Modeling continuous production complexes as a composition of components, where, in turn, each component may also be a composite, appears to be the simplest and safest way to develop integrated automation systems. In order to provide the most versatile way to develop this kind of system, this work proposes a new approach for designing and building them, where process behavior, operation conditions and equipment conditions are integrated into a hierarchical automation architecture.

  4. Maximizing Modern Distribution of Complex Anatomical Spatial Information: 3D Reconstruction and Rapid Prototype Production of Anatomical Corrosion Casts of Human Specimens

    ERIC Educational Resources Information Center

    Li, Jianyi; Nie, Lanying; Li, Zeyu; Lin, Lijun; Tang, Lei; Ouyang, Jun

    2012-01-01

    Anatomical corrosion casts of human specimens are useful teaching aids. However, their use is limited due to ethical dilemmas associated with their production, their lack of perfect reproducibility, and their consumption of original specimens in the process of casting. In this study, new approaches with modern distribution of complex anatomical…

  5. The influence of different screw concepts while processing fibre reinforced thermoplastics with the concept of inline-compounding on an injection moulding machine

    NASA Astrophysics Data System (ADS)

    Moritzer, E.; Müller, E.; Kleeschulte, R.

    2014-05-01

    Today, the global market poses major challenges for industrial product development. Complexity, the wide range of variants, flexibility and individuality are just some of the features that products have to fulfil. Product series additionally have shorter and shorter lifetimes. Because of their high capacity for adaptation, polymers are increasingly able to substitute traditional materials such as wood, glass and metals in various fields of application [1]. But polymers can only substitute other materials if they are optimally suited to the applications in question. Hence, product-specific material development is becoming increasingly important [2]. The problem is that the traditional development process for new polymer formulations is much too complex, too slow and therefore too expensive. Product-specific material development is thus out of the question for most processors. Integrating the compounding step in the injection moulding process would lead to a more efficient and faster development process for a new polymer formulation, providing an opportunity to create new product-specific materials. This process is called inline-compounding on an injection moulding machine. In order to develop this innovative formulation concept, with the focus on fibre reinforced thermoplastics, different screw-concepts are compared with regard to the resultant performance characteristics in the part, such as mechanical properties and fibre length distribution.

  6. Parallel effects of memory set activation and search on timing and working memory capacity.

    PubMed

    Schweickert, Richard; Fortin, Claudette; Xi, Zhuangzhuang; Viau-Quesnel, Charles

    2014-01-01

    Accurately estimating a time interval is required in everyday activities such as driving or cooking. Estimating time is relatively easy, provided a person attends to it. But a brief shift of attention to another task usually interferes with timing. Most processes carried out concurrently with timing interfere with it. Curiously, some do not. Literature on a few processes suggests a general proposition, the Timing and Complex-Span Hypothesis: A process interferes with concurrent timing if and only if process performance is related to complex span. Complex-span is the number of items correctly recalled in order, when each item presented for study is followed by a brief activity. Literature on task switching, visual search, memory search, word generation and mental time travel supports the hypothesis. Previous work found that another process, activation of a memory set in long term memory, is not related to complex-span. If the Timing and Complex-Span Hypothesis is true, activation should not interfere with concurrent timing in dual-task conditions. We tested such activation in single-task memory search task conditions and in dual-task conditions where memory search was executed with concurrent timing. In Experiment 1, activating a memory set increased reaction time, with no significant effect on time production. In Experiment 2, set size and memory set activation were manipulated. Activation and set size had a puzzling interaction for time productions, perhaps due to difficult conditions, leading us to use a related but easier task in Experiment 3. In Experiment 3 increasing set size lengthened time production, but memory activation had no significant effect. Results here and in previous literature on the whole support the Timing and Complex-Span Hypotheses. Results also support a sequential organization of activation and search of memory. This organization predicts activation and set size have additive effects on reaction time and multiplicative effects on percent correct, which was found.

  7. An intelligent factory-wide optimal operation system for continuous production process

    NASA Astrophysics Data System (ADS)

    Ding, Jinliang; Chai, Tianyou; Wang, Hongfeng; Wang, Junwei; Zheng, Xiuping

    2016-03-01

    In this study, a novel intelligent factory-wide operation system for a continuous production process is designed to optimise the entire production process, which consists of multiple units; furthermore, this system is developed using process operational data to avoid the complexity of mathematical modelling of the continuous production process. The data-driven approach aims to specify the structure of the optimal operation system; in particular, the operational data of the process are used to formulate each part of the system. In this context, the domain knowledge of process engineers is utilised, and a closed-loop dynamic optimisation strategy, which combines feedback, performance prediction, feed-forward, and dynamic tuning schemes into a framework, is employed. The effectiveness of the proposed system has been verified using industrial experimental results.

  8. Production and Distribution of NASA MODIS Remote Sensing Products

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert

    2007-01-01

    The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on-board NASA's Earth Observing System (EOS) Terra and Aqua satellites make key measurements for understanding the Earth's terrestrial ecosystems. Global time-series of terrestrial geophysical parameters have been produced from MODIS/Terra for over 7 years and for MODIS/Aqua for more than 4 1/2 years. These well calibrated instruments, a team of scientists and a large data production, archive and distribution systems have allowed for the development of a new suite of high quality product variables at spatial resolutions as fine as 250m in support of global change research and natural resource applications. This talk describes the MODIS Science team's products, with a focus on the terrestrial (land) products, the data processing approach and the process for monitoring and improving the product quality. The original MODIS science team was formed in 1989. The team's primary role is the development and implementation of the geophysical algorithms. In addition, the team provided feedback on the design and pre-launch testing of the instrument and helped guide the development of the data processing system. The key challenges the science team dealt with before launch were the development of algorithms for a new instrument and provide guidance of the large and complex multi-discipline processing system. Land, Ocean and Atmosphere discipline teams drove the processing system requirements, particularly in the area of the processing loads and volumes needed to daily produce geophysical maps of the Earth at resolutions as fine as 250 m. The processing system had to handle a large number of data products, large data volumes and processing loads, and complex processing requirements. Prior to MODIS, daily global maps from heritage instruments, such as Advanced Very High Resolution Radiometer (AVHRR), were not produced at resolutions finer than 5 km. The processing solution evolved into a combination of processing the lower level (Level 1) products and the higher level discipline specific Land and Atmosphere products in the MODIS Science Investigator Lead Processing System (SIPS), the MODIS Adaptive Processing System (MODAPS), and archive and distribution of the Land products to the user community by two of NASA s EOS Distributed Active Archive Centers (DAACs). Recently, a part of MODAPS, the Level 1 and Atmosphere Archive and Distribution System (LAADS), took over the role of archiving and distributing the Level 1 and Atmosphere products to the user community.

  9. Pupillary dynamics reveal computational cost in sentence planning.

    PubMed

    Sevilla, Yamila; Maldonado, Mora; Shalóm, Diego E

    2014-01-01

    This study investigated the computational cost associated with grammatical planning in sentence production. We measured people's pupillary responses as they produced spoken descriptions of depicted events. We manipulated the syntactic structure of the target by training subjects to use different types of sentences following a colour cue. The results showed higher increase in pupil size for the production of passive and object dislocated sentences than for active canonical subject-verb-object sentences, indicating that more cognitive effort is associated with more complex noncanonical thematic order. We also manipulated the time at which the cue that triggered structure-building processes was presented. Differential increase in pupil diameter for more complex sentences was shown to rise earlier as the colour cue was presented earlier, suggesting that the observed pupillary changes are due to differential demands in relatively independent structure-building processes during grammatical planning. Task-evoked pupillary responses provide a reliable measure to study the cognitive processes involved in sentence production.

  10. Effects of different nitrogen sources on the biogas production - a lab-scale investigation.

    PubMed

    Wagner, Andreas Otto; Hohlbrugger, Peter; Lins, Philipp; Illmer, Paul

    2012-12-20

    For anaerobic digestion processes nitrogen sources are poorly investigated although they are known as possible process limiting factors (in the hydrolysis phase) but also as a source for fermentations for subsequent methane production by methanogenic archaea. In the present study different complex and defined nitrogen sources were investigated in a lab-scale experiment in order to study their potential to build up methane. The outcome of the study can be summarised as follows: from complex nitrogen sources yeast extract and casamino acids showed the highest methane production with approximately 600 ml methane per mole of nitrogen, whereas by the use of skim milk no methane production could be observed. From defined nitrogen sources L-arginine showed the highest methane production with almost 1400 ml methane per mole of nitrogen. Moreover it could be demonstrated that the carbon content and therefore C/N-ratio has only minor influence for the methane production from the used substrates. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. Quality control in the development of coagulation factor concentrates.

    PubMed

    Snape, T J

    1987-01-01

    Limitation of process change is a major factor contributing to assurance of quality in pharmaceutical manufacturing. This is particularly true in the manufacture of coagulation factor concentrates, for which presumptive testing for poorly defined product characteristics is an integral feature of finished product quality control. The development of new or modified preparations requires that this comfortable position be abandoned, and that the effect on finished product characteristics of changes to individual process steps (and components) be assessed. The degree of confidence in the safety and efficacy of the new product will be determined by, amongst other things, the complexity of the process alteration and the extent to which the results of finished product tests can be considered predictive. The introduction of a heat-treatment step for inactivation of potential viral contaminants in coagulation factor concentrates presents a significant challenge in both respects, quite independent of any consideration of assessment of the effectiveness of the viral inactivation step. These interactions are illustrated by some of the problems encountered with terminal dry heat-treatment (72 h. at 80 degrees C) of factor VIII and prothrombin complex concentrates manufactured by the Blood Products Laboratory.

  12. Bridging the Operational Divide: An Information-Processing Model of Internal Supply Chain Integration

    ERIC Educational Resources Information Center

    Rosado Feger, Ana L.

    2009-01-01

    Supply Chain Management, the coordination of upstream and downstream flows of product, services, finances, and information from a source to a customer, has risen in prominence over the past fifteen years. The delivery of a product to the consumer is a complex process requiring action from several independent entities. An individual firm consists…

  13. Using Tracking Software for Writing Instruction

    ERIC Educational Resources Information Center

    Yagi, Sane M.; Al-Salman, Saleh

    2011-01-01

    Writing is a complex skill that is hard to teach. Although the written product is what is often evaluated in the context of language teaching, the process of giving thought to linguistic form is fascinating. For almost forty years, language teachers have found it more effective to help learners in the writing process than in the written product;…

  14. Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores

    PubMed Central

    Flores, Lorea; Bailey, R. A.; Elosegi, Arturo; Larrañaga, Aitor; Reiss, Julia

    2016-01-01

    Habitat complexity can influence predation rates (e.g. by providing refuge) but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants), in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants); and 3. as the spatial configuration of structures (measured as fractal dimension). The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology). We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, ‘habitat complexity’ by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems. PMID:27802267

  15. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages.

    PubMed

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production.

  16. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages

    PubMed Central

    Kramberger, Petra; Urbas, Lidija; Štrancar, Aleš

    2015-01-01

    Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production. PMID:25751122

  17. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  18. [Complex technology for water and wastewater disinfection and its industrial realization in prototype unit].

    PubMed

    Arakcheev, E N; Brunman, V E; Brunman, M V; Konyashin, A V; Dyachenko, V A; Petkova, A P

    Usage of complex automated electrolysis unit for drinking water disinfection and wastewater oxidation and coagulation is scoped, its ecological and energy efficiency is shown. Properties of technological process of anolyte production using membrane electrolysis of brine for water disinfection in municipal pipelines and potassium ferrate production using electrochemical dissolution of iron anode in NaOH solution for usage in purification plants are listed. Construction of modules of industrial prototype for anolyte and ferrate production and applied aspects of automation of complex electrolysis unit are proved. Results of approbation of electrolytic potassium ferrate for drinking water disinfection and wastewater, rain water and environmental water oxidation and coagulation are shown.

  19. Electronics manufacturing and assembly in Japan

    NASA Technical Reports Server (NTRS)

    Kukowski, John A.; Boulton, William R.

    1995-01-01

    In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.

  20. Integration of disabled people in an automated work process

    NASA Astrophysics Data System (ADS)

    Jalba, C. K.; Muminovic, A.; Epple, S.; Barz, C.; Nasui, V.

    2017-05-01

    Automation processes enter more and more into all areas of life and production. Especially people with disabilities can hardly keep step with this change. In sheltered workshops in Germany people with physical and mental disabilities get help with much dedication, to be integrated into the work processes. This work shows that cooperation between disabled people and industrial robots by means of industrial image processing can successfully result in the production of highly complex products. Here is described how high-pressure hydraulic pumps are assembled by people with disabilities in cooperation with industrial robots in a sheltered workshop. After the assembly process, the pumps are checked for leaks at very high pressures in a completely automated process.

  1. Chicken feather hydrolysate as an inexpensive complex nitrogen source for PHA production by Cupriavidus necator on waste frying oils.

    PubMed

    Benesova, P; Kucera, D; Marova, I; Obruca, S

    2017-08-01

    The chicken feather hydrolysate (FH) has been tested as a potential complex nitrogen source for the production of polyhydroxyalkanoates by Cupriavidus necator H16 when waste frying oil was used as a carbon source. The addition of FH into the mineral salt media with decreased inorganic nitrogen source concentration improved the yields of biomass and polyhydrohyalkanoates. The highest yields were achieved when 10 vol.% of FH prepared by microwave-assisted alkaline hydrolysis of 60 g l -1 feather was added. In this case, the poly(3-hydroxybutyrate) (PHB) yields were improved by more than about 50% as compared with control cultivation. A positive impact of FH was also observed for accumulation of copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) when sodium propionate was used as a precursor. The copolymer has superior processing and mechanical properties in comparison with PHB homopolymer. The application of FH eliminated the inhibitory effect of propionate and resulted in altered content of 3-hydroxyvalerate (3HV) in copolymer. Therefore, the hydrolysed feather can serve as an excellent complex source of nitrogen for the polyhydroxyalkanoates (PHA) production. Moreover, by the combination of two inexpensive types of waste, such as waste frying oil and feather hydrolysate, it is possible to produce PHA with substantially improved efficiency and sustainability. Millions of tons of feathers, important waste product of poultry-processing industry, are disposed off annually without any further benefits. Thus, there is an inevitable need for new technologies that enable ecologically and economically sensible processing of this waste. Herein, we report that alkali-hydrolysed feathers can be used as a complex nitrogen source considerably improving polyhydroxyalkanoates production on waste frying oil employing Cupriavidus necator. © 2017 The Society for Applied Microbiology.

  2. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  3. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K.; Crouse, David J.; Mailen, James C.

    1982-01-01

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  4. Tree physiology research in a changing world.

    PubMed

    Kaufmann, Merrill R.; Linder, Sune

    1996-01-01

    Changes in issues and advances in methodology have contributed to substantial progress in tree physiology research during the last several decades. Current research focuses on process interactions in complex systems and the integration of processes across multiple spatial and temporal scales. An increasingly important challenge for future research is assuring sustainability of production systems and forested ecosystems in the face of increased demands for natural resources and human disturbance of forests. Meeting this challenge requires significant shifts in research approach, including the study of limitations of productivity that may accompany achievement of system sustainability, and a focus on the biological capabilities of complex land bases altered by human activity.

  5. Sources of Individual Differences in L2 Narrative Production: The Contribution of Input, Processing, and Output Anxiety

    ERIC Educational Resources Information Center

    Trebits, Anna

    2016-01-01

    The aim of this study was to investigate the effects of cognitive task complexity and individual differences in input, processing, and output anxiety (IPOA) on L2 narrative production. The participants were enrolled in a bilingual secondary educational program. They performed two narrative tasks in speech and writing. The participants' level of…

  6. The Evolution of ICT Markets: An Agent-Based Model on Complex Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li

    Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.

  7. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae.

    PubMed

    Bátori, Veronika; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2015-01-01

    Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w) crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v) were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m(3) of ethanol (22% improvement), around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m(3) ethanol/year.

  8. On the dangers of model complexity without ecological justification in species distribution modeling

    Treesearch

    David M. Bell; Daniel R. Schlaepfer

    2016-01-01

    Although biogeographic patterns are the product of complex ecological processes, the increasing com-plexity of correlative species distribution models (SDMs) is not always motivated by ecological theory,but by model fit. The validity of model projections, such as shifts in a species’ climatic niche, becomesquestionable particularly during extrapolations, such as for...

  9. Investigation of formation of cut off layers and productivity of screw milling process

    NASA Astrophysics Data System (ADS)

    Ambrosimov, S. K.; Morozova, A. V.

    2018-03-01

    The article presents studies of a new method for complex milling surfaces with a screw feed motion. Using the apparatus of algebra of logic, the process of formation of cut metal layers and processing capacity is presented.

  10. A synthetic design environment for ship design

    NASA Technical Reports Server (NTRS)

    Chipman, Richard R.

    1995-01-01

    Rapid advances in computer science and information system technology have made possible the creation of synthetic design environments (SDE) which use virtual prototypes to increase the efficiency and agility of the design process. This next generation of computer-based design tools will rely heavily on simulation and advanced visualization techniques to enable integrated product and process teams to concurrently conceptualize, design, and test a product and its fabrication processes. This paper summarizes a successful demonstration of the feasibility of using a simulation based design environment in the shipbuilding industry. As computer science and information science technologies have evolved, there have been many attempts to apply and integrate the new capabilities into systems for the improvement of the process of design. We see the benefits of those efforts in the abundance of highly reliable, technologically complex products and services in the modern marketplace. Furthermore, the computer-based technologies have been so cost effective that the improvements embodied in modern products have been accompanied by lowered costs. Today the state-of-the-art in computerized design has advanced so dramatically that the focus is no longer on merely improving design methodology; rather the goal is to revolutionize the entire process by which complex products are conceived, designed, fabricated, tested, deployed, operated, maintained, refurbished and eventually decommissioned. By concurrently addressing all life-cycle issues, the basic decision making process within an enterprise will be improved dramatically, leading to new levels of quality, innovation, efficiency, and customer responsiveness. By integrating functions and people with an enterprise, such systems will change the fundamental way American industries are organized, creating companies that are more competitive, creative, and productive.

  11. Analysis of personal and cultural values as key determinants of novel food acceptance. Application to an ethnic product.

    PubMed

    Barrena, Ramo; García, Teresa; Sánchez, Mercedes

    2015-04-01

    This paper sets out to analyse whether the complexity and the type of benefits and values pursued in the consumer choice process for a novel food product (couscous) varies with the consumer's ethnic origin (Spanish and Arab). A qualitative study was used to explore these issues in an application of the "means-end chain" theory. The hierarchical value maps obtained point to the presence of an important emotional dimension in the consumption of the selected product, particularly Arab consumers, suggesting that greater familiarity with the product results in a more complex choice process. Some cross-cultural variation can also be observed. Arab consumers attach more importance to issues such as the geographic origin of the product, cultural identification, and fulfilment of family duty. Spanish couscous consumers, meanwhile, claim that it is a way to follow the latest trends, and be more cosmopolitan and more successful within their environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.

  13. One-step manufacturing of innovative flat-knitted 3D net-shape preforms for composite applications

    NASA Astrophysics Data System (ADS)

    Bollengier, Quentin; Wieczorek, Florian; Hellmann, Sven; Trümper, Wolfgang; Cherif, Chokri

    2017-10-01

    Mostly due to the cost-intensive manually performed processing operations, the production of complex-shaped fibre reinforced plastic composites (FRPC) is currently very expensive and therefore either restricted to sectors with high added value or for small batch applications (e.g. in the aerospace or automotive industry). Previous works suggest that the successful integration of conventional textile manufacturing processes in the FRPC-process chain is the key to a cost-efficient manufacturing of complex three-dimensional (3D) FRPC-components with stress-oriented fibre arrangement. Therefore, this work focuses on the development of the multilayer weft knitting technology for the one-step manufacturing of complex 3D net-shaped preforms for high performance FRPC applications. In order to highlight the advantages of net-shaped multilayer weft knitted fabrics for the production of complex FRPC parts, seamless preforms such as 3D skin-stringer structures and tubular fabrics with load oriented fibre arrangement are realised. In this paper, the development of the textile bindings and performed technical modifications on flat knitting machines are presented. The results show that the multilayer weft knitting technology meets perfectly the requirements for a fully automated and reproducible manufacturing of complex 3D textile preforms with stress-oriented fibre arrangement.

  14. Automated fiber placement composite manufacturing: The mission at MSFC's Productivity Enhancement Complex

    NASA Technical Reports Server (NTRS)

    Vickers, John H.; Pelham, Larry I.

    1993-01-01

    Automated fiber placement is a manufacturing process used for producing complex composite structures. It is a notable leap to the state-of-the-art in technology for automated composite manufacturing. The fiber placement capability was established at the Marshall Space Flight Center's (MSFC) Productivity Enhancement Complex in 1992 in collaboration with Thiokol Corporation to provide materials and processes research and development, and to fabricate components for many of the Center's Programs. The Fiber Placement System (FPX) was developed as a distinct solution to problems inherent to other automated composite manufacturing systems. This equipment provides unique capabilities to build composite parts in complex 3-D shapes with concave and other asymmetrical configurations. Components with complex geometries and localized reinforcements usually require labor intensive efforts resulting in expensive, less reproducible components; the fiber placement system has the features necessary to overcome these conditions. The mechanical systems of the equipment have the motion characteristics of a filament winder and the fiber lay-up attributes of a tape laying machine, with the additional capabilities of differential tow payout speeds, compaction and cut-restart to selectively place the correct number of fibers where the design dictates. This capability will produce a repeatable process resulting in lower cost and improved quality and reliability.

  15. Integrating mechanisms of visual guidance in naturalistic language production.

    PubMed

    Coco, Moreno I; Keller, Frank

    2015-05-01

    Situated language production requires the integration of visual attention and linguistic processing. Previous work has not conclusively disentangled the role of perceptual scene information and structural sentence information in guiding visual attention. In this paper, we present an eye-tracking study that demonstrates that three types of guidance, perceptual, conceptual, and structural, interact to control visual attention. In a cued language production experiment, we manipulate perceptual (scene clutter) and conceptual guidance (cue animacy) and measure structural guidance (syntactic complexity of the utterance). Analysis of the time course of language production, before and during speech, reveals that all three forms of guidance affect the complexity of visual responses, quantified in terms of the entropy of attentional landscapes and the turbulence of scan patterns, especially during speech. We find that perceptual and conceptual guidance mediate the distribution of attention in the scene, whereas structural guidance closely relates to scan pattern complexity. Furthermore, the eye-voice span of the cued object and its perceptual competitor are similar; its latency mediated by both perceptual and structural guidance. These results rule out a strict interpretation of structural guidance as the single dominant form of visual guidance in situated language production. Rather, the phase of the task and the associated demands of cross-modal cognitive processing determine the mechanisms that guide attention.

  16. Sustainable aggregate production planning in the chemical process industry - A benchmark problem and dataset.

    PubMed

    Brandenburg, Marcus; Hahn, Gerd J

    2018-06-01

    Process industries typically involve complex manufacturing operations and thus require adequate decision support for aggregate production planning (APP). The need for powerful and efficient approaches to solve complex APP problems persists. Problem-specific solution approaches are advantageous compared to standardized approaches that are designed to provide basic decision support for a broad range of planning problems but inadequate to optimize under consideration of specific settings. This in turn calls for methods to compare different approaches regarding their computational performance and solution quality. In this paper, we present a benchmarking problem for APP in the chemical process industry. The presented problem focuses on (i) sustainable operations planning involving multiple alternative production modes/routings with specific production-related carbon emission and the social dimension of varying operating rates and (ii) integrated campaign planning with production mix/volume on the operational level. The mutual trade-offs between economic, environmental and social factors can be considered as externalized factors (production-related carbon emission and overtime working hours) as well as internalized ones (resulting costs). We provide data for all problem parameters in addition to a detailed verbal problem statement. We refer to Hahn and Brandenburg [1] for a first numerical analysis based on and for future research perspectives arising from this benchmarking problem.

  17. Using the Context, Input, Process, and Product Evaluation Model (CIPP) as a Comprehensive Framework to Guide the Planning, Implementation, and Assessment of Service-Learning Programs

    ERIC Educational Resources Information Center

    Zhang, Guili; Zeller, Nancy; Griffith, Robin; Metcalf, Debbie; Williams, Jennifer; Shea, Christine; Misulis, Katherine

    2011-01-01

    Planning, implementing, and assessing a service-learning project can be a complex task because service-learning projects often involve multiple constituencies and aim to meet both the needs of service providers and community partners. In this article, Stufflebeam's Context, Input, Process, and Product (CIPP) evaluation model is recommended as a…

  18. Application of denaturing high-performance liquid chromatography (DHPLC) for the identification of fish: a new way to determine the composition of processed food containing multiple species.

    PubMed

    Le Fresne, Sophie; Popova, Milena; Le Vacon, Françoise; Carton, Thomas

    2011-12-14

    The identification of fish species in transformed food products is difficult because the existing methods are not adapted to heat-processed products containing more than one species. Using a common to all vertebrates region of the cytochrome b gene, we have developed a denaturing high-performance liquid chromatography (DHPLC) fingerprinting method, which allowed us to identify most of the species in commercial crab sticks. Whole fish and fillets were used for the creation of a library of referent DHPLC profiles. Crab sticks generated complex DHPLC profiles in which the number of contained fish species can be estimated by the number of major fluorescence peaks. The identity of some of the species was predicted by comparison of the peaks with the referent profiles, and others were identified after collection of the peak fractions, reamplification, and sequencing. DHPLC appears to be a quick and efficient method to analyze the species composition of complex heat-processed fish products.

  19. NGS tools for traceability in candies as high processed food products: Ion Torrent PGM versus conventional PCR-cloning.

    PubMed

    Muñoz-Colmenero, Marta; Martínez, Jose Luis; Roca, Agustín; Garcia-Vazquez, Eva

    2017-01-01

    The Next Generation Sequencing methodologies are considered the next step within DNA-based methods and their applicability in different fields is being evaluated. Here, we tested the usefulness of the Ion Torrent Personal Genome Machine (PGM) in food traceability analyzing candies as a model of high processed foods, and compared the results with those obtained by PCR-cloning-sequencing (PCR-CS). The majority of samples exhibited consistency between methodologies, yielding more information and species per product from the PGM platform than PCR-CS. Significantly higher AT-content in sequences of the same species was also obtained from PGM. This together with some taxonomical discrepancies between methodologies suggest that the PGM platform is still pre-mature for its use in food traceability of complex highly processed products. It could be a good option for analysis of less complex food, saving time and cost per sample. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Development of a 3-step straight-through purification strategy combining membrane adsorbers and resins.

    PubMed

    Hughson, Michael D; Cruz, Thayana A; Carvalho, Rimenys J; Castilho, Leda R

    2017-07-01

    The pressures to efficiently produce complex biopharmaceuticals at reduced costs are driving the development of novel techniques, such as in downstream processing with straight-through processing (STP). This method involves directly and sequentially purifying a particular target with minimal holding steps. This work developed and compared six different 3-step STP strategies, combining membrane adsorbers, monoliths, and resins, to purify a large, complex, and labile glycoprotein from Chinese hamster ovary cell culture supernatant. The best performing pathway was cation exchange chromatography to hydrophobic interaction chromatography to affinity chromatography with an overall product recovery of up to 88% across the process and significant clearance of DNA and protein impurities. This work establishes a platform and considerations for the development of STP of biopharmaceutical products and highlights its suitability for integration with single-use technologies and continuous production methods. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:931-940, 2017. © 2017 American Institute of Chemical Engineers.

  1. Authentication of processed meat products by peptidomic analysis using rapid ambient mass spectrometry.

    PubMed

    Montowska, Magdalena; Alexander, Morgan R; Tucker, Gregory A; Barrett, David A

    2015-11-15

    We present the application of a novel ambient LESA-MS method for the authentication of processed meat products. A set of 25 species and protein-specific heat stable peptide markers has been detected in processed samples manufactured from beef, pork, horse, chicken and turkey meat. We demonstrate that several peptides derived from myofibrillar and sarcoplasmic proteins are sufficiently resistant to processing to serve as specific markers of processed products. The LESA-MS technique required minimal sample preparation without fractionation and enabled the unambiguous and simultaneous identification of skeletal muscle proteins and peptides as well as other components of animal origin, including the milk protein such as casein alpha-S1, in whole meat product digests. We have identified, for the first time, six fast type II and five slow/cardiac type I MHC peptide markers in various processed meat products. The study demonstrates that complex mixtures of processed proteins/peptides can be examined effectively using this approach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  3. To repair or not to repair: with FAVOR there is no question

    NASA Astrophysics Data System (ADS)

    Garetto, Anthony; Schulz, Kristian; Tabbone, Gilles; Himmelhaus, Michael; Scheruebl, Thomas

    2016-10-01

    In the mask shop the challenges associated with today's advanced technology nodes, both technical and economic, are becoming increasingly difficult. The constant drive to continue shrinking features means more masks per device, smaller manufacturing tolerances and more complexity along the manufacturing line with respect to the number of manufacturing steps required. Furthermore, the extremely competitive nature of the industry makes it critical for mask shops to optimize asset utilization and processes in order to maximize their competitive advantage and, in the end, profitability. Full maximization of profitability in such a complex and technologically sophisticated environment simply cannot be achieved without the use of smart automation. Smart automation allows productivity to be maximized through better asset utilization and process optimization. Reliability is improved through the minimization of manual interactions leading to fewer human error contributions and a more efficient manufacturing line. In addition to these improvements in productivity and reliability, extra value can be added through the collection and cross-verification of data from multiple sources which provides more information about our products and processes. When it comes to handling mask defects, for instance, the process consists largely of time consuming manual interactions that are error prone and often require quick decisions from operators and engineers who are under pressure. The handling of defects itself is a multiple step process consisting of several iterations of inspection, disposition, repair, review and cleaning steps. Smaller manufacturing tolerances and features with higher complexity contribute to a higher number of defects which must be handled as well as a higher level of complexity. In this paper the recent efforts undertaken by ZEISS to provide solutions which address these challenges, particularly those associated with defectivity, will be presented. From automation of aerial image analysis to the use of data driven decision making to predict and propose the optimized back end of line process flow, productivity and reliability improvements are targeted by smart automation. Additionally the generation of the ideal aerial image from the design and several repair enhancement features offer additional capabilities to improve the efficiency and yield associated with defect handling.

  4. A Decision Tool that Combines Discrete Event Software Process Models with System Dynamics Pieces for Software Development Cost Estimation and Analysis

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn Barrett; Malone, Linda

    2007-01-01

    The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.

  5. Age differences in the motor control of speech: An fMRI study of healthy aging.

    PubMed

    Tremblay, Pascale; Sato, Marc; Deschamps, Isabelle

    2017-05-01

    Healthy aging is associated with a decline in cognitive, executive, and motor processes that are concomitant with changes in brain activation patterns, particularly at high complexity levels. While speech production relies on all these processes, and is known to decline with age, the mechanisms that underlie these changes remain poorly understood, despite the importance of communication on everyday life. In this cross-sectional group study, we investigated age differences in the neuromotor control of speech production by combining behavioral and functional magnetic resonance imaging (fMRI) data. Twenty-seven healthy adults underwent fMRI while performing a speech production task consisting in the articulation of nonwords of different sequential and motor complexity. Results demonstrate strong age differences in movement time (MT), with longer and more variable MT in older adults. The fMRI results revealed extensive age differences in the relationship between BOLD signal and MT, within and outside the sensorimotor system. Moreover, age differences were also found in relation to sequential complexity within the motor and attentional systems, reflecting both compensatory and de-differentiation mechanisms. At very high complexity level (high motor complexity and high sequence complexity), age differences were found in both MT data and BOLD response, which increased in several sensorimotor and executive control areas. Together, these results suggest that aging of motor and executive control mechanisms may contribute to age differences in speech production. These findings highlight the importance of studying functionally relevant behavior such as speech to understand the mechanisms of human brain aging. Hum Brain Mapp 38:2751-2771, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Regulatory challenges and approaches to characterize nanomedicines and their follow-on similars.

    PubMed

    Mühlebach, Stefan; Borchard, Gerrit; Yildiz, Selcan

    2015-03-01

    Nanomedicines are highly complex products and are the result of difficult to control manufacturing processes. Nonbiological complex drugs and their biological counterparts can comprise nanoparticles and therefore show nanomedicine characteristics. They consist of not fully known nonhomomolecular structures, and can therefore not be characterized by physicochemical means only. Also, intended copies of nanomedicines (follow-on similars) may have clinically meaningful differences, creating the regulatory challenge of how to grant a high degree of assurance for patients' benefit and safety. As an example, the current regulatory approach for marketing authorization of intended copies of nonbiological complex drugs appears inappropriate; also, a valid strategy incorporating the complexity of such systems is undefined. To demonstrate sufficient similarity and comparability, a stepwise quality, nonclinical and clinical approach is necessary to obtain market authorization for follow-on products as therapeutic alternatives, substitution and/or interchangeable products. To fill the regulatory gap, harmonized and science-based standards are needed.

  7. Processing lunar soils for oxygen and other materials

    NASA Technical Reports Server (NTRS)

    Knudsen, Christian W.; Gibson, Michael A.

    1992-01-01

    Two types of lunar materials are excellent candidates for lunar oxygen production: ilmenite and silicates such as anorthite. Both are lunar surface minable, occurring in soils, breccias, and basalts. Because silicates are considerably more abundant than ilmenite, they may be preferred as source materials. Depending on the processing method chosen for oxygen production and the feedstock material, various useful metals and bulk materials can be produced as byproducts. Available processing techniques include hydrogen reduction of ilmenite and electrochemical and chemical reductions of silicates. Processes in these categories are generally in preliminary development stages and need significant research and development support to carry them to practical deployment, particularly as a lunar-based operation. The goal of beginning lunar processing operations by 2010 requires that planning and research and development emphasize the simplest processing schemes. However, more complex schemes that now appear to present difficult technical challenges may offer more valuable metal byproducts later. While they require more time and effort to perfect, the more complex or difficult schemes may provide important processing and product improvements with which to extend and elaborate the initial lunar processing facilities. A balanced R&D program should take this into account. The following topics are discussed: (1) ilmenite--semi-continuous process; (2) ilmenite--continuous fluid-bed reduction; (3) utilization of spent ilmenite to produce bulk materials; (4) silicates--electrochemical reduction; and (5) silicates--chemical reduction.

  8. A new chapter in pharmaceutical manufacturing: 3D-printed drug products.

    PubMed

    Norman, James; Madurawe, Rapti D; Moore, Christine M V; Khan, Mansoor A; Khairuzzaman, Akm

    2017-01-01

    FDA recently approved a 3D-printed drug product in August 2015, which is indicative of a new chapter for pharmaceutical manufacturing. This review article summarizes progress with 3D printed drug products and discusses process development for solid oral dosage forms. 3D printing is a layer-by-layer process capable of producing 3D drug products from digital designs. Traditional pharmaceutical processes, such as tablet compression, have been used for decades with established regulatory pathways. These processes are well understood, but antiquated in terms of process capability and manufacturing flexibility. 3D printing, as a platform technology, has competitive advantages for complex products, personalized products, and products made on-demand. These advantages create opportunities for improving the safety, efficacy, and accessibility of medicines. Although 3D printing differs from traditional manufacturing processes for solid oral dosage forms, risk-based process development is feasible. This review highlights how product and process understanding can facilitate the development of a control strategy for different 3D printing methods. Overall, the authors believe that the recent approval of a 3D printed drug product will stimulate continual innovation in pharmaceutical manufacturing technology. FDA encourages the development of advanced manufacturing technologies, including 3D-printing, using science- and risk-based approaches. Published by Elsevier B.V.

  9. A new large-scale manufacturing platform for complex biopharmaceuticals.

    PubMed

    Vogel, Jens H; Nguyen, Huong; Giovannini, Roberto; Ignowski, Jolene; Garger, Steve; Salgotra, Anil; Tom, Jennifer

    2012-12-01

    Complex biopharmaceuticals, such as recombinant blood coagulation factors, are addressing critical medical needs and represent a growing multibillion-dollar market. For commercial manufacturing of such, sometimes inherently unstable, molecules it is important to minimize product residence time in non-ideal milieu in order to obtain acceptable yields and consistently high product quality. Continuous perfusion cell culture allows minimization of residence time in the bioreactor, but also brings unique challenges in product recovery, which requires innovative solutions. In order to maximize yield, process efficiency, facility and equipment utilization, we have developed, scaled-up and successfully implemented a new integrated manufacturing platform in commercial scale. This platform consists of a (semi-)continuous cell separation process based on a disposable flow path and integrated with the upstream perfusion operation, followed by membrane chromatography on large-scale adsorber capsules in rapid cycling mode. Implementation of the platform at commercial scale for a new product candidate led to a yield improvement of 40% compared to the conventional process technology, while product quality has been shown to be more consistently high. Over 1,000,000 L of cell culture harvest have been processed with 100% success rate to date, demonstrating the robustness of the new platform process in GMP manufacturing. While membrane chromatography is well established for polishing in flow-through mode, this is its first commercial-scale application for bind/elute chromatography in the biopharmaceutical industry and demonstrates its potential in particular for manufacturing of potent, low-dose biopharmaceuticals. Copyright © 2012 Wiley Periodicals, Inc.

  10. Space Transportation Avionics Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  11. Space Transportation Avionics Technology Symposium. Volume 2: Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  12. Automation of cellular therapy product manufacturing: results of a split validation comparing CD34 selection of peripheral blood stem cell apheresis product with a semi-manual vs. an automatic procedure.

    PubMed

    Hümmer, Christiane; Poppe, Carolin; Bunos, Milica; Stock, Belinda; Wingenfeld, Eva; Huppert, Volker; Stuth, Juliane; Reck, Kristina; Essl, Mike; Seifried, Erhard; Bonig, Halvard

    2016-03-16

    Automation of cell therapy manufacturing promises higher productivity of cell factories, more economical use of highly-trained (and costly) manufacturing staff, facilitation of processes requiring manufacturing steps at inconvenient hours, improved consistency of processing steps and other benefits. One of the most broadly disseminated engineered cell therapy products is immunomagnetically selected CD34+ hematopoietic "stem" cells (HSCs). As the clinical GMP-compliant automat CliniMACS Prodigy is being programmed to perform ever more complex sequential manufacturing steps, we developed a CD34+ selection module for comparison with the standard semi-automatic CD34 "normal scale" selection process on CliniMACS Plus, applicable for 600 × 10(6) target cells out of 60 × 10(9) total cells. Three split-validation processings with healthy donor G-CSF-mobilized apheresis products were performed; feasibility, time consumption and product quality were assessed. All processes proceeded uneventfully. Prodigy runs took about 1 h longer than CliniMACS Plus runs, albeit with markedly less hands-on operator time and therefore also suitable for less experienced operators. Recovery of target cells was the same for both technologies. Although impurities, specifically T- and B-cells, were 5 ± 1.6-fold and 4 ± 0.4-fold higher in the Prodigy products (p = ns and p = 0.013 for T and B cell depletion, respectively), T cell contents per kg of a virtual recipient receiving 4 × 10(6) CD34+ cells/kg was below 10 × 10(3)/kg even in the worst Prodigy product and thus more than fivefold below the specification of CD34+ selected mismatched-donor stem cell products. The products' theoretical clinical usability is thus confirmed. This split validation exercise of a relatively short and simple process exemplifies the potential of automatic cell manufacturing. Automation will further gain in attractiveness when applied to more complex processes, requiring frequent interventions or handling at unfavourable working hours, such as re-targeting of T-cells.

  13. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae

    PubMed Central

    Bátori, Veronika; Ferreira, Jorge A.; Taherzadeh, Mohammad J.; Lennartsson, Patrik R.

    2015-01-01

    Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w) crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v) were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m3 of ethanol (22% improvement), around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m3 ethanol/year. PMID:26682213

  14. [Evolution of technology and occupational exposures in petrochemical industry and in petroleum refining].

    PubMed

    Cottica, Danilo; Grignani, Elena

    2013-01-01

    The industry of oil refining and petrochemical play an important role in terms of number of employees in the Italian production. Often the terms "petroleum refining" and "petrochemical" are used interchangeably to define processes that occur in complex plants, which grow outdoors on large surfaces and a visual impact is not irrelevant. In reality, the two areas involve potential exposure to different chemical agents, related to raw materials processed and the specific products. The petrochemical uses as raw materials, the oil fractions, obtained by distillation in the refinery, or natural gas; petrochemical products are, usually, single compounds with a specific degree of purity, used as basic raw materials for the entire industry of organic chemistry, from the production of plastics to pharmaceuticals. The oil refining, that is the topic of this paper, processes mainly oil to obtain mixtures of hydrocarbon compounds, the products of which are specified on the basis of aptitude for use. For example gasolines, are obtained by mixing of fractions of the first distillation, reforming products, antiknock. The paper illustrates, necessarily broadly due to the complexity of the productive sectors, the technological and organizational changes that have led to a significant reduction of occupational exposure to chemical agents, the results of environmental monitoring carried out in some refineries both during routine conditions that during scheduled maintenance activities with plant shutdown and a store of petroleum products. The chemical agents measured are typical for presence, physico-chemical properties and toxicological characteristics of the manufacturing processes of petroleum products like benzene, toluene, xylenes, ethyl benzene, n-hexane, Volatile Hydrocarbons belonging to gasoline, kerosene, diesel fuel. Data related to both personal sampling and fixed positions.

  15. How the NWC handles software as product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinson, D.

    1997-11-01

    This tutorial provides a hands-on view of how the Nuclear Weapons Complex project should be handling (or planning to handle) software as a product in response to Engineering Procedure 401099. The SQAS has published the document SQAS96-002, Guidelines for NWC Processes for Handling Software Product, that will be the basis for the tutorial. The primary scope of the tutorial is on software products that result from weapons and weapons-related projects, although the information presented is applicable to many software projects. Processes that involve the exchange, review, or evaluation of software product between or among NWC sites, DOE, and external customersmore » will be described.« less

  16. Building quality into medical product software design.

    PubMed

    Mallory, S R

    1993-01-01

    The software engineering and quality assurance disciplines are a requisite to the design of safe and effective software-based medical devices. It is in the areas of software methodology and process that the most beneficial application of these disciplines to software development can be made. Software is a product of complex operations and methodologies and is not amenable to the traditional electromechanical quality assurance processes. Software quality must be built in by the developers, with the software verification and validation engineers acting as the independent instruments for ensuring compliance with performance objectives and with development and maintenance standards. The implementation of a software quality assurance program is a complex process involving management support, organizational changes, and new skill sets, but the benefits are profound. Its rewards provide safe, reliable, cost-effective, maintainable, and manageable software, which may significantly speed the regulatory review process and therefore potentially shorten the overall time to market. The use of a trial project can greatly facilitate the learning process associated with the first-time application of a software quality assurance program.

  17. The complexity and cost of vaccine manufacturing - An overview.

    PubMed

    Plotkin, Stanley; Robinson, James M; Cunningham, Gerard; Iqbal, Robyn; Larsen, Shannon

    2017-07-24

    As companies, countries, and governments consider investments in vaccine production for routine immunization and outbreak response, understanding the complexity and cost drivers associated with vaccine production will help to inform business decisions. Leading multinational corporations have good understanding of the complex manufacturing processes, high technological and R&D barriers to entry, and the costs associated with vaccine production. However, decision makers in developing countries, donors and investors may not be aware of the factors that continue to limit the number of new manufacturers and have caused attrition and consolidation among existing manufacturers. This paper describes the processes and cost drivers in acquiring and maintaining licensure of childhood vaccines. In addition, when export is the goal, we describe the requirements to supply those vaccines at affordable prices to low-resource markets, including the process of World Health Organization (WHO) prequalification and supporting policy recommendation. By providing a generalized and consolidated view of these requirements we seek to build awareness in the global community of the benefits and costs associated with vaccine manufacturing and the challenges associated with maintaining consistent supply. We show that while vaccine manufacture may prima facie seem an economic growth opportunity, the complexity and high fixed costs of vaccine manufacturing limit potential profit. Further, for most lower and middle income countries a large majority of the equipment, personnel and consumables will need to be imported for years, further limiting benefits to the local economy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Referral hospitals in the Democratic Republic of Congo as complex adaptive systems: similar program, different dynamics.

    PubMed

    Karemere, Hermès; Ribesse, Nathalie; Kahindo, Jean-Bosco; Macq, Jean

    2015-01-01

    In many African countries, first referral hospitals received little attention from development agencies until recently. We report the evolution of two of them in an unstable region like Eastern Democratic Republic of Congo when receiving the support from development aid program. Specifically, we aimed at studying how actors' network and institutional framework evolved over time and what could matter the most when looking at their performance in such an environment. We performed two cases studies between 2006 and 2010. We used multiple sources of data: reports to document events; health information system for hospital services production, and "key-informants" interviews to interpret the relation between interventions and services production. Our analysis was inspired from complex adaptive system theory. It started from the analysis of events implementation, to explore interaction process between the main agents in each hospital, and the consequence it could have on hospital health services production. This led to the development of new theoretical propositions. Two events implemented in the frame of the development aid program were identified by most of the key-informants interviewed as having the greatest impact on hospital performance: the development of a hospital plan and the performance based financing. They resulted in contrasting interaction process between the main agents between the two hospitals. Two groups of services production were reviewed: consultation at outpatient department and admissions, and surgery. The evolution of both groups of services production were different between both hospitals. By studying two first referral hospitals through the lens of a Complex Adaptive System, their performance in a context of development aid takes a different meaning. Success is not only measured through increased hospital production but through meaningful process of hospital agents'" network adaptation. Expected process is not necessarily a change; strengthened equilibrium and existing institutional arrangement may be a preferable result. Much more attention should be given in future international aid to the proper understanding of the hospital adaptation capacities.

  19. Computationally efficient algorithm for Gaussian Process regression in case of structured samples

    NASA Astrophysics Data System (ADS)

    Belyaev, M.; Burnaev, E.; Kapushev, Y.

    2016-04-01

    Surrogate modeling is widely used in many engineering problems. Data sets often have Cartesian product structure (for instance factorial design of experiments with missing points). In such case the size of the data set can be very large. Therefore, one of the most popular algorithms for approximation-Gaussian Process regression-can be hardly applied due to its computational complexity. In this paper a computationally efficient approach for constructing Gaussian Process regression in case of data sets with Cartesian product structure is presented. Efficiency is achieved by using a special structure of the data set and operations with tensors. Proposed algorithm has low computational as well as memory complexity compared to existing algorithms. In this work we also introduce a regularization procedure allowing to take into account anisotropy of the data set and avoid degeneracy of regression model.

  20. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick

    2016-04-01

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  1. Academic Maturation and Metacognitive Strategies in Academic Research and Production

    ERIC Educational Resources Information Center

    Filipovic, Jelena; Jovanovic, Ana

    2016-01-01

    This qualitative research aims at linking recent findings related to cognition and self-regulated learning with complexity-driven educational framework that promotes Teacher-Learner communities of practice, in which knowledge is generated and constructed through a complex process of reflection and negotiation. Building on the data that was…

  2. New efforts in eastern cottonwood biomass production through breeding and clonal refinement

    Treesearch

    Jason W. Cromer; Randall J. Rousseau; B. Landis Herrin

    2014-01-01

    First generation biofuels (also known as traditional biofuels) primarily use corn to produce ethanol. Newer techniques and knowledge are now allowing ethanol production from renewable resources such as trees that have more complex molecular structures that inhibit access to sugars. Ethanol production is through an enzymatic process which uses cellulose, or pyrolosis...

  3. Using a Polytope to Estimate Efficient Production Functions of Joint Product Processes.

    ERIC Educational Resources Information Center

    Simpson, William A.

    In the last decade, a modeling technique has been developed to handle complex input/output analyses where outputs involve joint products and there are no known mathematical relationships linking the outputs or inputs. The technique uses the geometrical concept of a six-dimensional shape called a polytope to analyze the efficiency of each…

  4. A MULTIPLE-PURPOSE DESIGN APPROACH TO THE EVALUATION OF RISKS FROM COMPLEX MIXTURES OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Drinking water disinfection has effectively eliminated much of the morbidity and mortality associated with waterborne infectious diseases in the United States. Various disinfection processes, however, produce certain types and amounts of disinfection by-products (DBPs), including...

  5. Quality Assessment of Established and Emerging Blood Components for Transfusion

    PubMed Central

    Marks, Denese C.

    2016-01-01

    Blood is donated either as whole blood, with subsequent component processing, or through the use of apheresis devices that extract one or more components and return the rest of the donation to the donor. Blood component therapy supplanted whole blood transfusion in industrialized countries in the middle of the twentieth century and remains the standard of care for the majority of patients receiving a transfusion. Traditionally, blood has been processed into three main blood products: red blood cell concentrates; platelet concentrates; and transfusable plasma. Ensuring that these products are of high quality and that they deliver their intended benefits to patients throughout their shelf-life is a complex task. Further complexity has been added with the development of products stored under nonstandard conditions or subjected to additional manufacturing steps (e.g., cryopreserved platelets, irradiated red cells, and lyophilized plasma). Here we review established and emerging methodologies for assessing blood product quality and address controversies and uncertainties in this thriving and active field of investigation. PMID:28070448

  6. The behavior and importance of lactic acid complexation in Talspeak extraction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Travis S.; Nilsson, Mikael; Nash, Kenneth L.

    2008-07-01

    Advanced partitioning of spent nuclear fuel in the UREX +la process relies on the TALSPEAK process for separation of fission-product lanthanides from trivalent actinides. The classic TALSPEAK utilizes an aqueous medium of both lactic acid and diethylenetriaminepentaacetic acid and the extraction reagent di(2-ethylhexyl)phosphoric acid in an aromatic diluent. In this study, the specific role of lactic acid and the complexes involved in the extraction of the trivalent actinides and lanthanides have been investigated using {sup 14}C-labeled lactic acid. Our results show that lactic acid partitions between the phases in a complex fashion. (authors)

  7. Ethnographic methods for process evaluations of complex health behaviour interventions.

    PubMed

    Morgan-Trimmer, Sarah; Wood, Fiona

    2016-05-04

    This article outlines the contribution that ethnography could make to process evaluations for trials of complex health-behaviour interventions. Process evaluations are increasingly used to examine how health-behaviour interventions operate to produce outcomes and often employ qualitative methods to do this. Ethnography shares commonalities with the qualitative methods currently used in health-behaviour evaluations but has a distinctive approach over and above these methods. It is an overlooked methodology in trials of complex health-behaviour interventions that has much to contribute to the understanding of how interventions work. These benefits are discussed here with respect to three strengths of ethnographic methodology: (1) producing valid data, (2) understanding data within social contexts, and (3) building theory productively. The limitations of ethnography within the context of process evaluations are also discussed.

  8. Preparation of olanzapine and methyl-β-cyclodextrin complexes using a single-step, organic solvent-free supercritical fluid process: An approach to enhance the solubility and dissolution properties.

    PubMed

    Rudrangi, Shashi Ravi Suman; Trivedi, Vivek; Mitchell, John C; Wicks, Stephen Richard; Alexander, Bruce David

    2015-10-15

    The purpose of this study was to evaluate a single-step, organic solvent-free supercritical fluid process for the preparation of olanzapine-methyl-β-cyclodextrin complexes with an express goal to enhance the dissolution properties of olanzapine. The complexes were prepared by supercritical carbon dioxide processing, co-evaporation, freeze drying and physical mixing. The prepared complexes were then analysed by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, solubility and dissolution studies. Computational molecular docking studies were performed to study the formation of molecular inclusion complexation of olanzapine with methyl-β-cyclodextrin. All the binary mixtures of olanzapine with methyl-β-cyclodextrin, except physical mixture, exhibited a faster and greater extent of drug dissolution than the drug alone. Products obtained by the supercritical carbon dioxide processing method exhibited the highest apparent drug dissolution. The characterisation by different analytical techniques suggests complete complexation or amorphisation of olanzapine and methyl-β-cyclodextrin complexes prepared by supercritical carbon dioxide processing method. Therefore, organic solvent-free supercritical carbon dioxide processing method proved to be novel and efficient for the preparation of solid inclusion complexes of olanzapine with methyl-β-cyclodextrin. The preliminary data also suggests that the complexes of olanzapine with methyl-β-cyclodextrin will lead to better therapeutic efficacy due to better solubility and dissolution properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Missing in Action: Writing Process-Based Instructional Practices and Measures of Higher-Order Literacy Achievement in Predominantly Urban Elementary Schools

    ERIC Educational Resources Information Center

    Briddell, Andrew

    2013-01-01

    This study of 1,974 fifth grade students investigated potential relationships between writing process-based instruction practices and higher-order thinking measured by a standardized literacy assessment. Writing process is defined as a highly complex, socio-cognitive process that includes: planning, text production, review, metacognition, writing…

  10. Process Metallurgy an Enabler of Resource Efficiency: Linking Product Design to Metallurgy in Product Centric Recycling

    NASA Astrophysics Data System (ADS)

    Reuter, Markus; van Schaik, Antoinette

    In this paper the link between process metallurgy, classical minerals processing, product centric recycling and urban/landfill mining is discussed. The depth that has to be achieved in urban mining and recycling must glean from the wealth of theoretical knowledge and insight that have been developed in the past in minerals and metallurgical processing. This background learns that recycling demands a product centric approach, which considers simultaneously the multi-material interactions in man-made complex `minerals'. Fast innovation in recycling and urban mining can be achieved by further evolving from this well developed basis, evolving the techniques and tools that have been developed over the years. This basis has already been used for many years to design, operate and control industrial plants for metal production. This has been the basis for Design for Recycling rules for End-of-Life products. Using, among others, the UNEP Metal Recycling report as a basis (authors are respectively Lead and Main authors of report), it is demonstrated that a common theoretical basis as developed in metallurgy and minerals processing can help much to level the playing field between primary processing, secondary processing, recycling, and urban/landfill mining and product design hence enhancing resource efficiency. Thus various scales of detail link product design with metallurgical process design and its fundamentals.

  11. Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study.

    PubMed

    von Stosch, Moritz; Hamelink, Jan-Martijn; Oliveira, Rui

    2016-05-01

    Process understanding is emphasized in the process analytical technology initiative and the quality by design paradigm to be essential for manufacturing of biopharmaceutical products with consistent high quality. A typical approach to developing a process understanding is applying a combination of design of experiments with statistical data analysis. Hybrid semi-parametric modeling is investigated as an alternative method to pure statistical data analysis. The hybrid model framework provides flexibility to select model complexity based on available data and knowledge. Here, a parametric dynamic bioreactor model is integrated with a nonparametric artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for high cell density heterologous protein production with E. coli. Our model can accurately describe biomass growth and product formation across variations in induction temperature, pH and feed rates. The model indicates that while product expression rate is a function of early induction phase conditions, it is negatively impacted as productivity increases. This could correspond with physiological changes due to cytoplasmic product accumulation. Due to the dynamic nature of the model, rational process timing decisions can be made and the impact of temporal variations in process parameters on product formation and process performance can be assessed, which is central for process understanding.

  12. Microanalysis characterization of bioactive protein-bound polysaccharides produced by Amanita ponderosa cultures.

    PubMed

    Salvador, Cátia; Martins, M Rosário; Caldeira, A Teresa

    2015-02-01

    Different compounds of edible mushrooms are responsible for their bioactivity. The ability to synthesize polysaccharides, namely protein-polysaccharide (PPS) complexes, is related to the antioxidant capacity of these compounds and present great interest in preventing a number of diseases, including cancer, cardiovascular and auto-immune diseases, and accelerated aging. Amanita ponderosa are wild edible mushrooms that grow in Mediterranean "montado" areas [Portuguese name given to cork oak (Quercus suber) and holm oak (Quercus ilex) forests]. The aim of this study was to evaluate the production of PPS complexes obtained from A. ponderosa cultures using a new microanalytical approach to quickly and easily monitor the production process. Microanalysis using Fourier-transform infrared using attenuated total reflection and Raman spectroscopy of PPS samples showed spectra compatible with identification of this type of compound in culture extracts. PPS separated by size-exclusion chromatography showed seven main complexes. Molecular weights of the main PPS complexes isolated from cultures ranged between 1.5 and 20 kDa and did not present toxicity against Artemia salina, demonstrating the potential of A. ponderosa as a source of biologically active compounds with nutraceutical value. Application of this microanalytical approach to monitoring the production of PPS compounds can be successfully applied in biotechnological processes.

  13. Mathematical modeling for resource and energy saving control of extruders in multi-assortment productions of polymeric films

    NASA Astrophysics Data System (ADS)

    Polosin, A. N.; Chistyakova, T. B.

    2018-05-01

    In this article, the authors describe mathematical modeling of polymer processing in extruders of various types used in extrusion and calender productions of film materials. The method consists of the synthesis of a static model for calculating throughput, energy consumption of the extruder, extrudate quality indices, as well as a dynamic model for evaluating polymer residence time in the extruder, on which the quality indices depend. Models are adjusted according to the extruder type (single-screw, reciprocating, twin-screw), its screw and head configuration, extruder’s work temperature conditions, and the processed polymer type. Models enable creating extruder screw configurations and determining extruder controlling action values that provide the extrudate of required quality while satisfying extruder throughput and energy consumption requirements. Model adequacy has been verified using polyolefins’ and polyvinylchloride processing data in different extruders. The program complex, based on mathematical models, has been developed in order to control extruders of various types in order to ensure resource and energy saving in multi-assortment productions of polymeric films. Using the program complex in the control system for the extrusion stage of the polymeric film productions enables improving film quality, reducing spoilage, lessening the time required for production line change-over to other throughput and film type assignment.

  14. [Study on "multi-dimensional structure and process dynamics quality control system" of Danshen infusion solution based on component structure theory].

    PubMed

    Feng, Liang; Zhang, Ming-Hua; Gu, Jun-Fei; Wang, Gui-You; Zhao, Zi-Yu; Jia, Xiao-Bin

    2013-11-01

    As traditional Chinese medicine (TCM) preparation products feature complex compounds and multiple preparation processes, the implementation of quality control in line with the characteristics of TCM preparation products provides a firm guarantee for the clinical efficacy and safety of TCM preparation products. Danshen infusion solution is a preparation commonly used in clinic, but its quality control is restricted to indexes of finished products, which can not guarantee its inherent quality. Our study group has proposed "multi-dimensional structure and process dynamics quality control system" on the basis of "component structure theory", for the purpose of controlling the quality of Danshen infusion solution at multiple levels and in multiple links from the efficacy-related material basis, the safety-related material basis, the characteristics of dosage form to the preparation process. This article, we bring forth new ideas and models to the quality control of TCM preparation products.

  15. Marine Enzymes and Microorganisms for Bioethanol Production.

    PubMed

    Swain, M R; Natarajan, V; Krishnan, C

    Bioethanol is a potential alternative fuel to fossil fuels. Bioethanol as a fuel has several economic and environmental benefits. Though bioethanol is produced using starch and sugarcane juice, these materials are in conflict with food availability. To avoid food-fuel conflict, the second-generation bioethanol production by utilizing nonfood lignocellulosic materials has been extensively investigated. However, due to the complexity of lignocellulose architecture, the process is complicated and not economically competitive. The cultivation of lignocellulosic energy crops indirectly affects the food supplies by extensive land use. Marine algae have attracted attention to replace the lignocellulosic feedstock for bioethanol production, since the algae grow fast, do not use land, avoid food-fuel conflict and have several varieties to suit the cultivation environment. The composition of algae is not as complex as lignocellulose due to the absence of lignin, which renders easy hydrolysis of polysaccharides to fermentable sugars. Marine organisms also produce cold-active enzymes for hydrolysis of starch, cellulose, and algal polysaccharides, which can be employed in bioethanol process. Marine microoorganisms are also capable of fermenting sugars under high salt environment. Therefore, marine biocatalysts are promising for development of efficient processes for bioethanol production. © 2017 Elsevier Inc. All rights reserved.

  16. Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea.

    PubMed

    Wang, Lu; Luo, You; Wu, Yanan; Liu, Yan; Wu, Zhenqiang

    2018-10-30

    There are both soluble and insoluble-bound forms of phenolics in tea-leaf products. In order to increase total soluble phenolics contents, guava leaves tea (GLT) was first fermented with Monascus anka and Saccharomyces cerevisiae, and then hydrolyzed with complex enzymes. The changes in phenolics profiles, antioxidant activities and inhibitory effect on α-glucosidase in processed GLT were investigated. Compared with the un-fermented GLT, fermentation and complex enzymatic processing (FE) significantly increased the total phenolics, total flavonoids, quercetin and kaempferol contents by 2.1, 2.0, 13.0 and 6.8 times, respectively. After the FE, a major proportion of phenolics existed in the soluble form. Quercetin was released in the highest amount among different phenolics. In addition, soluble phenolic extracts from GLT following FE exhibited a highest antioxidant activity and inhibitory effect on α-glucosidase. The paper suggested an improved method for processing GLT into high-value products rich in phenolics and flavonoids aglycones with enhanced health benefits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Subsumed complexity: abiogenesis as a by-product of complex energy transduction.

    PubMed

    Adam, Z R; Zubarev, D; Aono, M; Cleaves, H James

    2017-12-28

    The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called subsumed complexity , organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  18. Subsumed complexity: abiogenesis as a by-product of complex energy transduction

    NASA Astrophysics Data System (ADS)

    Adam, Z. R.; Zubarev, D.; Aono, M.; Cleaves, H. James

    2017-11-01

    The origins of life bring into stark relief the inadequacy of our current synthesis of thermodynamic, chemical, physical and information theory to predict the conditions under which complex, living states of organic matter can arise. Origins research has traditionally proceeded under an array of implicit or explicit guiding principles in lieu of a universal formalism for abiogenesis. Within the framework of a new guiding principle for prebiotic chemistry called subsumed complexity, organic compounds are viewed as by-products of energy transduction phenomena at different scales (subatomic, atomic, molecular and polymeric) that retain energy in the form of bonds that inhibit energy from reaching the ground state. There is evidence for an emergent level of complexity that is overlooked in most conceptualizations of abiogenesis that arises from populations of compounds formed from atomic energy input. We posit that different forms of energy input can exhibit different degrees of dissipation complexity within an identical chemical medium. By extension, the maximum capacity for organic chemical complexification across molecular and macromolecular scales subsumes, rather than emerges from, the underlying complexity of energy transduction processes that drive their production and modification. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  19. Equilibrium and disequilibrium chemistry of adiabatic, solar-composition planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1976-01-01

    The impact of atmospheric and cloud-structure models on the nonequilibrium chemical behavior of the atmospheres of the Jovian planets is discussed. Quantitative constraints on photochemical, lightning, and charged-particle production of organic matter and chromophores are emphasized whenever available. These considerations imply that inorganic chromophore production is far more important than that of organic chromophores, and that lightning is probably a negligibly significant process relative to photochemistry on Jupiter. Production of complex molecules by gas-phase disequilibrium processes on Saturn, Uranus, and Neptune is severely limited by condensation of even simple intermediates.

  20. Process technologies for production of fuel ethanol from lignocellulosic biomass

    USDA-ARS?s Scientific Manuscript database

    Lignocellulosic biomass such as corn stover, wheat straw, rice straw, and switchgrass can serve as low-cost feedstock for production of fuel ethanol. These feedstocks contain complex carbohydrates (cellulose and hemicelluloses) which need to be converted to fermentable sugars and then these sugars b...

  1. Research and Process-Optimization on Mixed Crystal Caused Uneven-Performance of High-strength Structural Car Steel QStE500TM

    NASA Astrophysics Data System (ADS)

    Jian-wen, Li; Hong-yan, Liu

    Handan Iron and Steel production of high-strength structural car steel QStE500TM thin gauge products using Nb + Ti composite strengthening, with a small amount of Cr element to improve its hardenability, the process parameter control is inappropriate with Nb + Ti complex steel, it is easy to produce in the mixed crystal phenomenon, resulting in decreasing the toughness and uneven performance. In this paper, Gleeble 3500 thermal simulation testing machine for high-strength structural steel car QStE500TM product deformation austenite recrystallization behavior research, determined completely recrystallized, partial recrystallization and non-recrystallization region, provide theoretical basis and necessary data for reasonable controlled rolling process for production.

  2. Modeling Production Plant Forming Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhee, M; Becker, R; Couch, R

    2004-09-22

    Engineering has simulation tools and experience in modeling forming processes. Y-12 personnel have expressed interest in validating our tools and experience against their manufacturing process activities such as rolling, casting, and forging etc. We have demonstrated numerical capabilities in a collaborative DOE/OIT project with ALCOA that is nearing successful completion. The goal was to use ALE3D to model Alcoa's slab rolling process in order to demonstrate a computational tool that would allow Alcoa to define a rolling schedule that would minimize the probability of ingot fracture, thus reducing waste and energy consumption. It is intended to lead to long-term collaborationmore » with Y-12 and perhaps involvement with other components of the weapons production complex. Using simulations to aid in design of forming processes can: decrease time to production; reduce forming trials and associated expenses; and guide development of products with greater uniformity and less scrap.« less

  3. Towards an optimal adaptation of exposure to NOAA assessment methodology in Multi-Source Industrial Scenarios (MSIS): the challenges and the decision-making process

    NASA Astrophysics Data System (ADS)

    López de Ipiña, JM; Vaquero, C.; Gutierrez-Cañas, C.

    2017-06-01

    It is expected a progressive increase of the industrial processes that manufacture of intermediate (iNEPs) and end products incorporating ENMs (eNEPs) to bring about improved properties. Therefore, the assessment of occupational exposure to airborne NOAA will migrate, from the simple and well-controlled exposure scenarios in research laboratories and ENMs production plants using innovative production technologies, to much more complex exposure scenarios located around processes of manufacture of eNEPs that, in many cases, will be modified conventional production processes. Here will be discussed some of the typical challenging situations in the process of risk assessment of inhalation exposure to NOAA in Multi-Source Industrial Scenarios (MSIS), from the basis of the lessons learned when confronted to those scenarios in the frame of some European and Spanish research projects.

  4. The genome editing toolbox: a spectrum of approaches for targeted modification.

    PubMed

    Cheng, Joseph K; Alper, Hal S

    2014-12-01

    The increase in quality, quantity, and complexity of recombinant products heavily drives the need to predictably engineer model and complex (mammalian) cell systems. However, until recently, limited tools offered the ability to precisely manipulate their genomes, thus impeding the full potential of rational cell line development processes. Targeted genome editing can combine the advances in synthetic and systems biology with current cellular hosts to further push productivity and expand the product repertoire. This review highlights recent advances in targeted genome editing techniques, discussing some of their capabilities and limitations and their potential to aid advances in pharmaceutical biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cognitive Processes in the Production of Multiple-Goal Messages: Evidence from the Temporal Characteristics of Speech.

    ERIC Educational Resources Information Center

    Greene, John O.; And Others

    1993-01-01

    Finds that the increased cognitive load accompanying multiple-goal messages arises from demands on time and processing capacity associated with assembling incompatible message features and that multiple-goal messages are characterized by heavier demand on processing capacity associated with maintaining more complex message-relevant specifications…

  6. Recurrence Quantification Analysis of Processes and Products of Discourse: A Tutorial in R

    ERIC Educational Resources Information Center

    Wallot, Sebastian

    2017-01-01

    Processes of naturalistic reading and writing are based on complex linguistic input, stretch-out over time, and rely on an integrated performance of multiple perceptual, cognitive, and motor processes. Hence, naturalistic reading and writing performance is nonstationary and exhibits fluctuations and transitions. However, instead of being just…

  7. European Scientific Notes. Volume 36, Number 2,

    DTIC Science & Technology

    1982-02-28

    colleagues at creases in process complexity and cost of the the University College of Swansea have con- product . So far, aluminum alloy, steel, and...associated with metal spray processing can stream of metal impinging on a disk rotating at impart to the solidified product . 3,000 to 5,000 rpm is...the point. Indeed, the pilot can simplicity, economy , stand-alone operability, often "fly the point" as the approach continues, portability, and

  8. Patient centric drug product design in modern drug delivery as an opportunity to increase safety and effectiveness.

    PubMed

    Stegemann, Sven

    2018-06-01

    The advances in drug delivery technologies have enabled pharmaceutical scientists to deliver a drug through various administration routes and optimize the drug release and absorption. The wide range of drug delivery systems and dosage forms represent a toolbox of technology for the development of pharmaceutical drug products but might also be a source of medication errors and nonadherence. Patient centric drug product development is being suggested as an important factor to increase therapeutic outcomes. Areas covered: Patients have impaired health and potentially disabilities and they are not medical or pharmaceutical experts but are requested to manage complex therapeutic regimens. As such the application of technology should also serve to reduce complexity, build on patients' intuition and ease of use. Patients form distinct populations based on the targeted disease, disease cluster or age group with specific characteristics or therapeutic contexts. Expert opinion: Establishing a target product and patient profile is essential to guide drug product design development. Including the targeted patient populations in the process is a prerequisite to achieve patient-centric pharmaceutical drug product design. Addressing the needs early on in the product design process, will create more universal design, avoiding the necessity for multiple product presentations to cover the different patient populations.

  9. Development of a numerical methodology for flowforming process simulation of complex geometry tubes

    NASA Astrophysics Data System (ADS)

    Varela, Sonia; Santos, Maite; Arroyo, Amaia; Pérez, Iñaki; Puigjaner, Joan Francesc; Puigjaner, Blanca

    2017-10-01

    Nowadays, the incremental flowforming process is widely explored because of the usage of complex tubular products is increasing due to the light-weighting trend and the use of expensive materials. The enhanced mechanical properties of finished parts combined with the process efficiency in terms of raw material and energy consumption are the key factors for its competitiveness and sustainability, which is consistent with EU industry policy. As a promising technology, additional steps for extending the existing flowforming limits in the production of tubular products are required. The objective of the present research is to further expand the current state of the art regarding limitations on tube thickness and diameter, exploring the feasibility to flowform complex geometries as tubes of elevated thickness of up to 60 mm. In this study, the analysis of the backward flowforming process of 7075 aluminum tubular preform is carried out to define the optimum process parameters, machine requirements and tooling geometry as demonstration case. Numerical simulation studies on flowforming of thin walled tubular components have been considered to increase the knowledge of the technology. The calculation of the rotational movement of the mesh preform, the high ratio thickness/length and the thermomechanical condition increase significantly the computation time of the numerical simulation model. This means that efficient and reliable tools able to predict the forming loads and the quality of flowformed thick tubes are not available. This paper aims to overcome this situation by developing a simulation methodology based on FEM simulation code including new strategies. Material characterization has also been performed through tensile test to able to design the process. Finally, to check the reliability of the model, flowforming tests at industrial environment have been developed.

  10. New Processes for Freeze-Drying in Dual-Chamber Systems.

    PubMed

    Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M

    2016-01-01

    Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this challenge by (1) freeze-drying the drug product in the syringe in an orientation in which the product is closest to the heat source, or (2) freeze-drying the drug product outside the syringe in a metal tube. The latter requires filling the freeze-dried product subsequently into the dual-chamber syringe. Both processes were very efficient and promised to achieve similar freeze-drying conditions for all dual-chamber syringes within one production run. The proposed processes may help to considerably decrease investment costs into dual-chamber syringe fill-finish equipment. © PDA, Inc. 2016.

  11. 3D Printing: Downstream Production Transforming the Supply Chain

    DTIC Science & Technology

    2017-01-01

    generative designs , and tailorable material properties will transform the way both military and civilian products are manufactured —from simple objects... design . Traditional and established subtractive manufacturing (SM) creates objects by removing material (e.g., through drilling or lathing) from solid... manufacturers to build products with highly complex geometry in a single process rather than by combining multiple components manufactured by

  12. Manufacturing, characterization and control of cell-based medicinal products: challenging paradigms toward commercial use.

    PubMed

    Salmikangas, Paula; Menezes-Ferreira, Margarida; Reischl, Ilona; Tsiftsoglou, Asterios; Kyselovic, Jan; Borg, John Joseph; Ruiz, Sol; Flory, Egbert; Trouvin, Jean-Hugues; Celis, Patrick; Ancans, Janis; Timon, Marcos; Pante, Guido; Sladowski, Dariusz; Lipnik-Stangelj, Metoda; Schneider, Christian K

    2015-01-01

    During the past decade, a large number of cell-based medicinal products have been tested in clinical trials for the treatment of various diseases and tissue defects. However, licensed products and those approaching marketing authorization are still few. One major area of challenge is the manufacturing and quality development of these complex products, for which significant manipulation of cells might be required. While the paradigms of quality, safety and efficacy must apply also to these innovative products, their demonstration may be demanding. Demonstration of comparability between production processes and batches may be difficult for cell-based medicinal products. Thus, the development should be built around a well-controlled manufacturing process and a qualified product to guarantee reproducible data from nonclinical and clinical studies.

  13. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  14. The forgotten grammatical category: Adjective use in agrammatic aphasia

    PubMed Central

    Meltzer-Asscher, Aya; Thompson, Cynthia K.

    2014-01-01

    Background In contrast to nouns and verbs, the use of adjectives in agrammatic aphasia has not been systematically studied. However, because of the linguistic and psycholinguistic attributes of adjectives, some of which overlap with nouns and some with verbs, analysis of adjective production is important for testing theories of word class production deficits in agrammatism. Aims The objective of the current study was to compare adjective use in agrammatic and healthy individuals, focusing on three factors: overall adjective production rate, production of predicative and attributive adjectives, and production of adjectives with complex argument structure. Method & Procedures Narratives elicited from 14 agrammatic and 14 control participants were coded for open class grammatical category production (i.e., nouns, verbs, adjectives), with each adjective also coded for its syntactic environment (attributive/predicative) and argument structure. Outcomes & Results Overall, agrammatic speakers used adjectives in proportions similar to that of cognitively healthy speakers. However, they exhibited a greater proportion of predicative adjectives and a lesser proportion of attributive adjectives, compared to controls. Additionally, agrammatic participants produced adjectives with less complex argument structure than controls. Conclusions The overall normal-like frequency of adjectives produced by agrammatic speakers suggests that agrammatism does not involve an inherent difficulty with adjectives as a word class or with predication, or that it entails a deficit in processing low imageability words. However, agrammatic individuals’ reduced production of attributive adjectives and adjectives with complements extends previous findings of an adjunction deficit and of impairment in complex argument structure processing, respectively, to the adjectival domain. The results suggest that these deficits are not tied to a specific grammatical category. PMID:24882945

  15. The forgotten grammatical category: Adjective use in agrammatic aphasia.

    PubMed

    Meltzer-Asscher, Aya; Thompson, Cynthia K

    2014-07-01

    In contrast to nouns and verbs, the use of adjectives in agrammatic aphasia has not been systematically studied. However, because of the linguistic and psycholinguistic attributes of adjectives, some of which overlap with nouns and some with verbs, analysis of adjective production is important for testing theories of word class production deficits in agrammatism. The objective of the current study was to compare adjective use in agrammatic and healthy individuals, focusing on three factors: overall adjective production rate, production of predicative and attributive adjectives, and production of adjectives with complex argument structure. Narratives elicited from 14 agrammatic and 14 control participants were coded for open class grammatical category production (i.e., nouns, verbs, adjectives), with each adjective also coded for its syntactic environment (attributive/predicative) and argument structure. Overall, agrammatic speakers used adjectives in proportions similar to that of cognitively healthy speakers. However, they exhibited a greater proportion of predicative adjectives and a lesser proportion of attributive adjectives, compared to controls. Additionally, agrammatic participants produced adjectives with less complex argument structure than controls. The overall normal-like frequency of adjectives produced by agrammatic speakers suggests that agrammatism does not involve an inherent difficulty with adjectives as a word class or with predication, or that it entails a deficit in processing low imageability words. However, agrammatic individuals' reduced production of attributive adjectives and adjectives with complements extends previous findings of an adjunction deficit and of impairment in complex argument structure processing, respectively, to the adjectival domain. The results suggest that these deficits are not tied to a specific grammatical category.

  16. Modeling of wastewater treatment system of car parks from petroleum products

    NASA Astrophysics Data System (ADS)

    Savdur, S. N.; Stepanova, Yu V.; Kodolova, I. A.; Fesina, E. L.

    2018-05-01

    The paper discusses the technological complex of wastewater treatment of car parks from petroleum products. Based on the review of the main modeling methods of discrete-continuous chemical and engineering processes, it substantiates expediency of using the theory of Petri nets (PN) for modeling the process of wastewater treatment of car parks from petroleum products. It is proposed to use a modification of Petri nets which is focused on modeling and analysis of discrete-continuous chemical and engineering processes by prioritizing transitions, timing marks in positions and transitions. A model in the form of modified Petri nets (MPN) is designed. A software package to control the process for wastewater treatment is designed by means of SCADA TRACE MODE.

  17. Numerical simulation of complex part manufactured by selective laser melting process

    NASA Astrophysics Data System (ADS)

    Van Belle, Laurent

    2017-10-01

    Selective Laser Melting (SLM) process belonging to the family of the Additive Manufacturing (AM) technologies, enable to build parts layer by layer, from metallic powder and a CAD model. Physical phenomena that occur in the process have the same issues as conventional welding. Thermal gradients generate significant residual stresses and distortions in the parts. Moreover, the large and complex parts to manufacturing, accentuate the undesirable effects. Therefore, it is essential for manufacturers to offer a better understanding of the process and to ensure production reliability of parts with high added value. This paper focuses on the simulation of manufacturing turbine by SLM process in order to calculate residual stresses and distortions. Numerical results will be presented.

  18. Reducing the complexity of the software design process with object-oriented design

    NASA Technical Reports Server (NTRS)

    Schuler, M. P.

    1991-01-01

    Designing software is a complex process. How object-oriented design (OOD), coupled with formalized documentation and tailored object diagraming techniques, can reduce the complexity of the software design process is described and illustrated. The described OOD methodology uses a hierarchical decomposition approach in which parent objects are decomposed into layers of lower level child objects. A method of tracking the assignment of requirements to design components is also included. Increases in the reusability, portability, and maintainability of the resulting products are also discussed. This method was built on a combination of existing technology, teaching experience, consulting experience, and feedback from design method users. The discussed concepts are applicable to hierarchal OOD processes in general. Emphasis is placed on improving the design process by documenting the details of the procedures involved and incorporating improvements into those procedures as they are developed.

  19. The meaning of colours in nutrition labelling in the context of expert and consumer criteria of evaluating food product healthfulness.

    PubMed

    Wąsowicz, Grażyna; Styśko-Kunkowska, Małgorzata; Grunert, Klaus G

    2015-06-01

    Qualitative and quantitative studies were conducted to explore the effect of front-of-pack nutrition labels on the perceived healthfulness of food products. Consumers were found to hold beliefs about colours and their fit to product categories that influence the assessment process. Consumers associate certain colours with product healthfulness. Yellow, blue, green and red were found to be evocative of health. Heather, pink and celadon suggested an artificial thus unhealthful product. The impact of labels on healthfulness assessment was observed only in the unhealthful category. The findings show the complexity of psychological processes in the perception of food healthfulness. © The Author(s) 2015.

  20. Measuring the impact of final demand on global production system based on Markov process

    NASA Astrophysics Data System (ADS)

    Xing, Lizhi; Guan, Jun; Wu, Shan

    2018-07-01

    Input-output table is a comprehensive and detailed in describing the national economic systems, consisting of supply and demand information among various industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can depict the structural properties of social and economic systems, and reveal the complicated relationships between the inner hierarchies and the external macroeconomic functions. This paper tried to measure the globalization degree of industrial sectors on the global value chain. Firstly, it constructed inter-country input-output network models to reproduce the topological structure of global economic system. Secondly, it regarded the propagation of intermediate goods on the global value chain as Markov process and introduced counting first passage betweenness to quantify the added processing amount when globally final demand stimulates this production system. Thirdly, it analyzed the features of globalization at both global and country-sector level

  1. 21 CFR 514.8 - Supplements and other changes to an approved application.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... method(s) or an addition, deletion, or substitution of steps in an aseptic processing operation; (D... solely affecting a natural product, a recombinant DNA-derived protein/polypeptide, or a complex or...) or references to previously approved documentation; (H) For a natural product, a recombinant DNA...

  2. 21 CFR 514.8 - Supplements and other changes to an approved application.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... method(s) or an addition, deletion, or substitution of steps in an aseptic processing operation; (D... solely affecting a natural product, a recombinant DNA-derived protein/polypeptide, or a complex or...) or references to previously approved documentation; (H) For a natural product, a recombinant DNA...

  3. 21 CFR 514.8 - Supplements and other changes to an approved application.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... method(s) or an addition, deletion, or substitution of steps in an aseptic processing operation; (D... solely affecting a natural product, a recombinant DNA-derived protein/polypeptide, or a complex or...) or references to previously approved documentation; (H) For a natural product, a recombinant DNA...

  4. Portfolio Assessment: Production and Reduction of Complexity

    ERIC Educational Resources Information Center

    Qvortrup, Ane; Keiding, Tina Bering

    2015-01-01

    Over the last two decades, the education system has witnessed a shift from summative, product-oriented assessment towards formative, process-oriented assessment. Among the different learning and assessment initiatives introduced in the slipstream of this paradigmatic turn, the portfolio seems to have become one of the most popular. By redescribing…

  5. Designing Automated Guidance to Promote Productive Revision of Science Explanations

    ERIC Educational Resources Information Center

    Tansomboon, Charissa; Gerard, Libby F.; Vitale, Jonathan M.; Linn, Marcia C.

    2017-01-01

    Supporting students to revise their written explanations in science can help students to integrate disparate ideas and develop a coherent, generative account of complex scientific topics. Using natural language processing to analyze student written work, we compare forms of automated guidance designed to motivate productive revision and help…

  6. CONTROL OF MICROBIAL CONTAMINANTS AND DISINFECTION BY-PRODUCTS (DBPS): COST AND PERFORMANCE

    EPA Science Inventory

    The USEPA is in the process of developing a sophisticated regulatory strategy in an attempt to balance the complex trade-offs in risks associated with controlling disinfectants and disinfection by-products (D/DBPs) in drinking water. EPA first attempted to control DBPs in 1974, w...

  7. Effective Processing of the Iron Ores

    NASA Astrophysics Data System (ADS)

    Kuskov, Vadim; Kuskova, Yana; Udovitsky, Vladimir

    2017-11-01

    Effective technology for a complex wasteless processing of the iron ores has been designed and includes three main components (plats): comminution plant, briquette plant, pigment plant. The comminution is done per energy effective technology. Using of briquetting for ores clotting enables the costs cut and brings to a higher level of environmental safety of the process. Briquette formation can be done as a regular pressing, as an extrusion. Developed technology allows to produce high quality competitively products for metallurgy industry and red iron oxide pigments. The whole production line impacts the environment in a minimal manner.

  8. The use of Tecnomatix software to simulate the manufacturing flows in an industrial enterprise producing hydrostatic components

    NASA Astrophysics Data System (ADS)

    Petrila, S.; Brabie, G.; Chirita, B.

    2016-08-01

    The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.

  9. Concepts of risk assesment of complex chemical mixtures in laser pyrolysis fumes

    NASA Astrophysics Data System (ADS)

    Weber, Lothar W.; Meier, Thomas H.

    1996-01-01

    Laser-tissue interaction may generate by energy absorption a complex mixture of gaseous, volatile, semi-volatile and particular substances. At the time about 150 different components are known from IR-laser interaction with different organ tissues like liver, fat, muscle and skin. The laser-tissue interaction process thereby is dominated by heating processes, which is confirmed by the similarity of formed chemical products in comparison with conventional cooking processes for food preparation. With the identified chemical substances and relative amounts in backmind a walk along the think path of risk assessment with special reference to pyrolysis products is given. The main way of intake of pyrolysis products is the inhalative one, which results from the fine aerosols formed and the high spreading energy out of the irradiated source. The liberated amounts of irritative chemicals as (unsaturated) aldehydes, heterocycles of bad odor and possibly cancerogenic acting substances relates to some (mu) g/g of laser vaporized tissue. With regard to this exposure level in a hypothetic one cubic meter volume the occupational limit settings are far away. Even indoor air exposure levels are in nearly all cases underwent, for the content of bad smelling substances forces an effective ventilation. Up to now no laser typical chemical substance could be identified, which was not elsewhere known by frying or baking processes of meat, food or familiar. Starting with the GRAS concept of 1957 the process of risk assessment by modified food products and new ingredients is still improofing. The same process of risk assessment is governing the laser pyrolysis products of mammalian tissues. By use of sufficient suction around the laser tissue source the odor problems as well as the toxicological problems could be solved.

  10. Ionospheric effects during severe space weather events seen in ionospheric service data products

    NASA Astrophysics Data System (ADS)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  11. Methodology and Results of Mathematical Modelling of Complex Technological Processes

    NASA Astrophysics Data System (ADS)

    Mokrova, Nataliya V.

    2018-03-01

    The methodology of system analysis allows us to draw a mathematical model of the complex technological process. The mathematical description of the plasma-chemical process was proposed. The importance the quenching rate and initial temperature decrease time was confirmed for producing the maximum amount of the target product. The results of numerical integration of the system of differential equations can be used to describe reagent concentrations, plasma jet rate and temperature in order to achieve optimal mode of hardening. Such models are applicable both for solving control problems and predicting future states of sophisticated technological systems.

  12. Ketoprofen-β-cyclodextrin inclusion complexes formation by supercritical process technology

    NASA Astrophysics Data System (ADS)

    Sumarno, Rahim, Rizki; Trisanti, Prida Novarita

    2017-05-01

    Ketoprofen was a poorly soluble which anti-inflammatory, analgesic and antipyretic drug, solubility of which can be enchanced by form complexation with β-cyclodextrin. Besides that, the inclusion complex reduces the incidence of gastrointestinal side effect of drug. The aims of this research are to study the effect of H2O concentration in the supercritical carbondioxide and operation condition in the formation of ketoprofen-β-Cyclodextrin inclusion complex. This research was began by dissolved H2O in supercritical CO2 at 40°C and various saturation pressures. Then, dissolved H2O contacted with (1:5 w/w) ketoprofen-β-Cyclodextrin mixture at 50°C and various operation pressures. It called saturation process. Saturation was done for ±2 hours with agitation process and continued by decompression process. The products were characterized by drug Release, Differential Scanning Calorimetry (DCS) dan Scanning Electron Microscopy (SEM) analyses. The percentage from this work were 76,82%-89,99% for inclusion complexes. The percentage drug release of ketoprofen were 82,83%-88,36% on various inclusion pressure and various inclusion period.

  13. Tailoring Enterprise Systems Engineering Policy for Project Scale and Complexity

    NASA Technical Reports Server (NTRS)

    Cox, Renee I.; Thomas, L. Dale

    2014-01-01

    Space systems are characterized by varying degrees of scale and complexity. Accordingly, cost-effective implementation of systems engineering also varies depending on scale and complexity. Recognizing that systems engineering and integration happen everywhere and at all levels of a given system and that the life cycle is an integrated process necessary to mature a design, the National Aeronautic and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) has developed a suite of customized implementation approaches based on project scale and complexity. While it may be argued that a top-level system engineering process is common to and indeed desirable across an enterprise for all space systems, implementation of that top-level process and the associated products developed as a result differ from system to system. The implementation approaches used for developing a scientific instrument necessarily differ from those used for a space station. .

  14. Evaluating exposures to complex mixtures of chemicals during a new production process in the plastics industry.

    PubMed

    Meijster, Tim; Burstyn, Igor; Van Wendel De Joode, Berna; Posthumus, Maarten A; Kromhout, Hans

    2004-08-01

    The goal of this study was to monitor emission of chemicals at a factory where plastics products were fabricated by a new robotic (impregnated tape winding) production process. Stationary and personal air measurements were taken to determine which chemicals were released and at what concentrations. Principal component analyses (PCA) and linear regression were used to determine the emission sources of different chemicals found in the air samples. We showed that complex mixtures of chemicals were released, but most concentrations were below Dutch exposure limits. Based on the results of the principal component analyses, the chemicals found were divided into three groups. The first group consisted of short chain aliphatic hydrocarbons (C2-C6). The second group included larger hydrocarbons (C9-C11) and some cyclic hydrocarbons. The third group contained all aromatic and two aliphatic hydrocarbons. Regression analyses showed that emission of the first group of chemicals was associated with cleaning activities and the use of epoxy resins. The second and third group showed strong association with the type of tape used in the new tape winding process. High levels of CO and HCN (above exposure limits) were measured on one occasion when a different brand of impregnated polypropylene sulphide tape was used in the tape winding process. Plans exist to drastically increase production with the new tape winding process. This will cause exposure levels to rise and therefore further control measures should be installed to reduce release of these chemicals.

  15. Data Provenance in Photogrammetry Through Documentation Protocols

    NASA Astrophysics Data System (ADS)

    Carboni, N.; Bruseker, G.; Guillem, A.; Bellido Castañeda, D.; Coughenour, C.; Domajnko, M.; de Kramer, M.; Ramos Calles, M. M.; Stathopoulou, E. K.; Suma, R.

    2016-06-01

    Documenting the relevant aspects in digitisation processes such as photogrammetry in order to provide a robust provenance for their products continues to present a challenge. The creation of a product that can be re-used scientifically requires a framework for consistent, standardised documentation of the entire digitisation pipeline. This article provides an analysis of the problems inherent to such goals and presents a series of protocols to document the various steps of a photogrammetric workflow. We propose this pipeline, with descriptors to track all phases of digital product creation in order to assure data provenance and enable the validation of the operations from an analytic and production perspective. The approach aims to support adopters of the workflow to define procedures with a long term perspective. The conceptual schema we present is founded on an analysis of information and actor exchanges in the digitisation process. The metadata were defined through the synthesis of previous proposals in this area and were tested on a case study. We performed the digitisation of a set of cultural heritage artefacts from an Iron Age burial in Ilmendorf, Germany. The objects were captured and processed using different techniques, including a comparison of different imaging tools and algorithms. This augmented the complexity of the process allowing us to test the flexibility of the schema for documenting complex scenarios. Although we have only presented a photogrammetry digitisation scenario, we claim that our schema is easily applicable to a multitude of 3D documentation processes.

  16. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications.

    PubMed

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2016-12-01

    Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.

  17. Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review

    NASA Astrophysics Data System (ADS)

    Kumbhar, N. N.; Mulay, A. V.

    2016-08-01

    The Additive Manufacturing (AM) processes open the possibility to go directly from Computer-Aided Design (CAD) to a physical prototype. These prototypes are used as test models before it is finalized as well as sometimes as a final product. Additive Manufacturing has many advantages over the traditional process used to develop a product such as allowing early customer involvement in product development, complex shape generation and also save time as well as money. Additive manufacturing also possess some special challenges that are usually worth overcoming such as Poor Surface quality, Physical Properties and use of specific raw material for manufacturing. To improve the surface quality several attempts had been made by controlling various process parameters of Additive manufacturing and also applying different post processing techniques on components manufactured by Additive manufacturing. The main objective of this work is to document an extensive literature review in the general area of post processing techniques which are used in Additive manufacturing.

  18. Manufacturing challenges in the commercial production of recombinant coagulation factor VIII.

    PubMed

    Jiang, R; Monroe, T; McRogers, R; Larson, P J

    2002-03-01

    Advances in gene technology have led to the development of a method to manufacture recombinant coagulation Factor VIII (rFVIII) for haemophilia A. Because rFVIII is a large and complex protein, its commercialization has required that many challenges in manufacturing, purification and processing be overcome. In order to license the first generation of rFVIII (Kogenate) in 1993, Bayer Corporation invested over 10 years in research and manufacturing development. Seven additional years were subsequently devoted to research and manufacturing improvements in order to accomplish the recent licensing of a second rFVIII product (KOGENATE Bayer or Kogenate FS). This product differs from its predecessor, in that human albumin is removed from the purification and the formulation steps. In addition, fewer chromatography steps are involved resulting in greater yields per mL of conditioned medium, and a solvent-detergent viral inactivation step replaces the heat-processing step used for the previous product. Despite these changes in the manufacturing, the protein backbone and carbohydrate structure of the final rFVIII molecule are identical. The complexity of the production processes is reflected by over 100 000 manufacturing data entries and by 600 quality control tests for each batch of rFVIII. Manufacturers are continuing to develop the next generation of rFVIII, which will be produced without the addition of any human or animal proteins or byproducts. Investments in research, development and manufacturing technology are expected to result in the development of new products with enhanced safety profiles, and in an increase in the production capacity for products that are chronically in short supply.

  19. Crystallization using reverse micelles and water-in-oil microemulsion systems: the highly selective tool for the purification of organic compounds from complex mixtures.

    PubMed

    Kljajic, Alen; Bester-Rogac, Marija; Klobcar, Andrej; Zupet, Rok; Pejovnik, Stane

    2013-02-01

    The active pharmaceutical ingredient orlistat is usually manufactured using a semi-synthetic procedure, producing crude product and complex mixtures of highly related impurities with minimal side-chain structure variability. It is therefore crucial for the overall success of industrial/pharmaceutical application to develop an effective purification process. In this communication, we present the newly developed water-in-oil reversed micelles and microemulsion system-based crystallization process. Physiochemical properties of the presented crystallization media were varied through surfactants and water composition, and the impact on efficiency was measured through final variation of these two parameters. Using precisely defined properties of the dispersed water phase in crystallization media, a highly efficient separation process in terms of selectivity and yield was developed. Small-angle X-ray scattering, high-performance liquid chromatography, mass spectrometry, and scanning electron microscopy were used to monitor and analyze the separation processes and orlistat products obtained. Typical process characteristics, especially selectivity and yield in regard to reference examples, were compared and discussed. Copyright © 2012 Wiley Periodicals, Inc.

  20. Processing AIRS Scientific Data Through Level 2

    NASA Technical Reports Server (NTRS)

    Oliphant, Robert; Lee, Sung-Yung; Chahine, Moustafa; Susskind, Joel; arnet, Christopher; McMillin, Larry; Goldberg, Mitchell; Blaisdell, John; Rosenkranz, Philip; Strow, Larrabee

    2007-01-01

    The Atmospheric Infrared Spectrometer (AIRS) Science Processing System (SPS) is a collection of computer programs, denoted product generation executives (PGEs), for processing the readings of the AIRS suite of infrared and microwave instruments orbiting the Earth aboard NASA s Aqua spacecraft. AIRS SPS at an earlier stage of development was described in "Initial Processing of Infrared Spectral Data' (NPO-35243), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 39. To recapitulate: Starting from level 0 (representing raw AIRS data), the PGEs and their data products are denoted by alphanumeric labels (1A, 1B, and 2) that signify the successive stages of processing. The cited prior article described processing through level 1B (the level-2 PGEs were not yet operational). The level-2 PGEs, which are now operational, receive packages of level-1B geolocated radiance data products and produce such geolocated geophysical atmospheric data products such as temperature and humidity profiles. The process of computing these geophysical data products is denoted "retrieval" and is quite complex. The main steps of the process are denoted microwave-only retrieval, cloud detection and cloud clearing, regression, full retrieval, and rapid transmittance algorithm.

  1. Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    1997-01-01

    Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.

  2. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    NASA Technical Reports Server (NTRS)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  3. Improving designer productivity

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting those challenges.

  4. Molecular pathways in the transformation of model discoidal lipoprotein complexes induced by lecithin:cholesterol acyltransferase.

    PubMed

    Nichols, A V; Blanche, P J; Gong, E L; Shore, V G; Forte, T M

    1985-05-17

    Incubation (24 h, 37 degrees C) of discoidal complexes of phosphatidylcholine and apolipoprotein A-I (molar ratio 95 +/- 10 egg yolk phosphatidylcholine-apolipoprotein A-I; 10.5 X 4.0 nm, long X short dimension; designated, class 3 complexes) with the ultracentrifugal d greater than 1.21 g/ml fraction transformed the discoidal complexes to a small product with apparent mean hydrated and nonhydrated diameter of 7.8 and 6.6 nm, respectively. Formation of the small product was associated with marked reduction in phosphatidylcholine-apolipoprotein AI molar ratio of the complexes (on average from 95:1 to 45:1). Phospholipase A2 activity of lecithin:cholesterol acyltransferase participated in the depletion process, as evidenced by production of unesterified fatty acids. In the presence of the d greater than 1.21 g/ml fraction or partially purified lecithin:cholesterol acyltransferase and a source of unesterified cholesterol, the small product could be transformed to a core-containing (cholesteryl ester) round product with a hydrated and nonhydrated diameter of 8.6 and 7.5 nm, respectively. By means of cross-linking with dimethylsuberimidate, the protein moiety of the small product was shown to contain primarily two apolipoprotein A-I molecules per particle, while the large product contained three apolipoprotein A-I molecules per particle. The increase in number of apolipoprotein A-I molecules per particle during transformation of the small to the large product appeared to result from fusion of the small particles during core build-up and release of excess apolipoprotein A-I from the fusion product. The results obtained with the model complexes were consistent for the most part with recent observations (Chen, C., Applegate, K., King, W.C., Glomset, J.A., Norum, K.R. and Gjone, E. (1984) J. Lipid Res. 25, 269-282) on the transformation, by lecithin:cholesterol acyltransferase, of the small spherical high-density lipoproteins of patients with familial lecithin:cholesterol acyltransferase deficiency.

  5. In-situ acoustic signature monitoring in additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  6. Novel chemometric strategy based on the application of artificial neural networks to crossed mixture design for the improvement of recombinant protein production in continuous culture.

    PubMed

    Didier, Caroline; Forno, Guillermina; Etcheverrigaray, Marina; Kratje, Ricardo; Goicoechea, Héctor

    2009-09-21

    The optimal blends of six compounds that should be present in culture media used in recombinant protein production were determined by means of artificial neural networks (ANN) coupled with crossed mixture experimental design. This combination constitutes a novel approach to develop a medium for cultivating genetically engineered mammalian cells. The compounds were collected in two mixtures of three elements each, and the experimental space was determined by a crossed mixture design. Empirical data from 51 experimental units were used in a multiresponse analysis to train artificial neural networks which satisfy different requirements, in order to define two new culture media (Medium 1 and Medium 2) to be used in a continuous biopharmaceutical production process. These media were tested in a bioreactor to produce a recombinant protein in CHO cells. Remarkably, for both predicted media all responses satisfied the predefined goals pursued during the analysis, except in the case of the specific growth rate (mu) observed for Medium 1. ANN analysis proved to be a suitable methodology to be used when dealing with complex experimental designs, as frequently occurs in the optimization of production processes in the biotechnology area. The present work is a new example of the use of ANN for the resolution of a complex, real life system, successfully employed in the context of a biopharmaceutical production process.

  7. Grand Challenges and Chemical Engineering Curriculum--Developments at TU Dortmund University

    ERIC Educational Resources Information Center

    Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej

    2016-01-01

    Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…

  8. Analysis of the possibility of SysML and BPMN application in formal data acquisition system description

    NASA Astrophysics Data System (ADS)

    Ćwikła, G.; Gwiazda, A.; Banaś, W.; Monica, Z.; Foit, K.

    2017-08-01

    The article presents the study of possible application of selected methods of complex description, that can be used as a support of the Manufacturing Information Acquisition System (MIAS) methodology, describing how to design a data acquisition system, allowing for collecting and processing real-time data on the functioning of a production system, necessary for management of a company. MIAS can allow conversion into Cyber-Physical Production System. MIAS is gathering and pre-processing data on the state of production system, including e.g. realisation of production orders, state of machines, materials and human resources. Systematised approach and model-based development is proposed for improving the quality of the design of MIAS methodology-based complex systems supporting data acquisition in various types of companies. Graphical specification can be the baseline for any model-based development in specified areas. The possibility of application of SysML and BPMN, both being UML-based languages, representing different approaches to modelling of requirements, architecture and implementation of the data acquisition system, as a tools supporting description of required features of MIAS, were considered.

  9. From a Decomposition Product to an Efficient and Versatile Catalyst: The [Ru(η5-indenyl)(PPh3)2Cl] Story

    PubMed Central

    2014-01-01

    Conspectus One of the most important challenges in catalyst design is the synthesis of stable promoters without compromising their activity. For this reason, it is important to understand the factors leading to decomposition of such catalysts, especially if side-products negatively affect the activity and selectivity of the starting complex. In this context, the understanding of termination and decomposition processes in olefin metathesis is receiving significant attention from the scientific community. For example, the decomposition of ruthenium olefin metathesis precatalysts in alcohol solutions can occur during either the catalyst synthesis or the metathesis process, and such decomposition has been found to be common for Grubbs-type precatalysts. These decomposition products are usually hydridocarbonyl complexes, which are well-known to be active in several transformations such as hydrogenation, terminal alkene isomerization, and C–H activation chemistry. The reactivity of these side products can be unwanted, and it is therefore important to understand how to avoid them and maybe also important to keep an open mind and think of ways to use these in other catalytic reactions. A showcase of these decomposition studies is reported in this Account. These reports analyze the stability of ruthenium phenylindenylidene complexes, highly active olefin metathesis precatalysts, in basic alcohol solutions. Several different decomposition processes can occur under these conditions depending on the starting complex and the alcohol used. These indenylidene-bearing metathesis complexes display a completely different behavior compared with that of other metathesis precatalysts and show an alternative competitive alcoholysis pathway, where rather than forming the expected hydrido carbonyl complexes, the indenylidene fragment is transformed into a η1-indenyl, which then rearranges to its η5-indenyl form. In particular, [RuCl(η5-(3-phenylindenylidene)(PPh3)2] has been found to be extremely active in numerous transformations (at least 20) as well as compatible with a broad range of reaction conditions, rendering it a versatile catalytic tool. It should be stated that the η5-phenyl indenyl ligand shows enhanced catalytic activity over related half-sandwich ruthenium complexes. The analogous half-sandwich (cyclopentadienyl and indenyl) ruthenium complexes show lower activity in transfer hydrogenation and allylic alcohol isomerization reactions. In addition, this catalyst allows access to new phenylindenyl ruthenium complexes, which can be achieved in a very straightforward manner and have been successfully used in catalysis. This Account provides an overview of how mechanistic insights into decomposition and stability of a well-known family of ruthenium metathesis precatalysts has resulted in a series of novel and versatile ruthenium complexes with unexpected reactivity. PMID:25264626

  10. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlyingmore » the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR and phosphorylation of ERK.« less

  11. Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants alpha-tocopherol and quercetin.

    PubMed

    Koontz, John L; Marcy, Joseph E; O'Keefe, Sean F; Duncan, Susan E

    2009-02-25

    Cyclodextrin (CD) complexation procedures are relatively simple processes, but these techniques often require very specific conditions for each individual guest molecule. Variations of the coprecipitation from aqueous solution technique were optimized for the CD complexation of the natural antioxidants alpha-tocopherol and quercetin. Solid inclusion complex products of alpha-tocopherol/beta-CD and quercetin/gamma-CD had molar ratios of 1.7:1, which were equivalent to 18.1% (w/w) alpha-tocopherol and 13.0% (w/w) quercetin. The molar reactant ratios of CD/antioxidant were optimized at 8:1 to improve the yield of complexation. The product yields of alpha-tocopherol/beta-CD and quercetin/gamma-CD complexes from their individual reactants were calculated as 24 and 21% (w/w), respectively. ATR/FT-IR, 13C CP/MAS NMR, TGA, and DSC provided evidence of antioxidant interaction with CD at the molecular level, which indicated true CD inclusion complexation in the solid state. Natural antioxidant/CD inclusion complexes may serve as novel additives in controlled-release active packaging to extend the oxidative stability of foods.

  12. Chlorination processing of local planetary ores for oxygen and metallurgically important metals

    NASA Technical Reports Server (NTRS)

    Lynch, D. C.

    1989-01-01

    The use of chlorine to extract, reclaim, and purify metals has attractive possibilities for extraterrestrial processing of local planetary resources. While a complete cyclic process has been proposed for the recovery of metallurgically significant metals and oxygen, herein the chlorination step of the cycle is examined. An experimental apparatus for reacting refractory materials, such as ilmenite, in a microwave induced plasma is being built. Complex equilibria calculations reveal that stable refractory materials can, under the influence of a plasma, undergo chlorination and yield oxygen as a by-product. These issues and the potential advantages for plasma processing in space are reviewed. Also presented is a discussion of the complex equilibria program used in the analysis.

  13. Use and perception of the environment: cultural and developmental processes

    Treesearch

    Martin M. Chemers; Irwin Altman

    1977-01-01

    This paper presents a "social systems" orientation for integrating the diverse aspects of environment, culture, and individual behavior. It suggests that a wide range of variables, including the physical environment, cultural and social processes, environmental perceptions and cognitions, behavior, and products of behavior, are connected in a complex,...

  14. Organic waste as a sustainable feedstock for platform chemicals.

    PubMed

    Coma, M; Martinez-Hernandez, E; Abeln, F; Raikova, S; Donnelly, J; Arnot, T C; Allen, M J; Hong, D D; Chuck, C J

    2017-09-21

    Biorefineries have been established since the 1980s for biofuel production, and there has been a switch lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. To a lesser extent, many opportunities have been investigated for producing chemicals from biomass using by-products of the present biorefineries, simple waste streams. Current facilities apply intensive pre-treatments to deal with single substrate types such as carbohydrates. However, most organic streams such as municipal solid waste or algal blooms present a high complexity and variable mixture of molecules, which makes specific compound production and separation difficult. Here we focus on flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept.

  15. Organic waste as a sustainable feedstock for platform chemicals

    PubMed Central

    Martinez-Hernandez, E.; Abeln, F.; Raikova, S.; Donnelly, J.; Arnot, T. C.; Allen, M. J.; Hong, D. D.; Chuck, C. J.

    2017-01-01

    Biorefineries have been established since the 1980s for biofuel production, and there has been a switch lately from first to second generation feedstocks in order to avoid the food versus fuel dilemma. To a lesser extent, many opportunities have been investigated for producing chemicals from biomass using by-products of the present biorefineries, simple waste streams. Current facilities apply intensive pre-treatments to deal with single substrate types such as carbohydrates. However, most organic streams such as municipal solid waste or algal blooms present a high complexity and variable mixture of molecules, which makes specific compound production and separation difficult. Here we focus on flexible anaerobic fermentation and hydrothermal processes that can treat complex biomass as a whole to obtain a range of products within an integrated biorefinery concept. PMID:28654113

  16. Product Development and its Comparative Analysis by SLA, SLS and FDM Rapid Prototyping Processes

    NASA Astrophysics Data System (ADS)

    Choudhari, C. M.; Patil, V. D.

    2016-09-01

    To grab market and meeting deadlines has increased the scope of new methods in product design and development. Industries continuously strive to optimize the development cycles with high quality and cost efficient products to maintain market competitiveness. Thus the need of Rapid Prototyping Techniques (RPT) has started to play pivotal role in rapid product development cycle for complex product. Dimensional accuracy and surface finish are the corner stone of Rapid Prototyping (RP) especially if they are used for mould development. The paper deals with the development of part made with the help of Selective Laser Sintering (SLS), Stereo-lithography (SLA) and Fused Deposition Modelling (FDM) processes to benchmark and investigate on various parameters like material shrinkage rate, dimensional accuracy, time, cost and surface finish. This helps to conclude which processes can be proved to be effective and efficient in mould development. In this research work the emphasis was also given to the design stage of a product development to obtain an optimum design solution for an existing product.

  17. New Trends in Pesticide Residue Analysis in Cereals, Nutraceuticals, Baby Foods, and Related Processed Consumer Products.

    PubMed

    Raina-Fulton, Renata

    2015-01-01

    Pesticide residue methods have been developed for a wide variety of food products including cereal-based foods, nutraceuticals and related plant products, and baby foods. These cereal, fruit, vegetable, and plant-based products provide the basis for many processed consumer products. For cereal and nutraceuticals, which are dry sample products, a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method has been used with additional steps to allow wetting of the dry sample matrix and subsequent cleanup using dispersive or cartridge format SPE to reduce matrix effects. More processed foods may have lower pesticide concentrations but higher co-extracts that can lead to signal suppression or enhancement with MS detection. For complex matrixes, GC/MS/MS or LC/electrospray ionization (positive or negative ion)-MS/MS is more frequently used. The extraction and cleanup methods vary with different sample types particularly for cereal-based products, and these different approaches are discussed in this review. General instrument considerations are also discussed.

  18. UCXp camera imaging principle and key technologies of data post-processing

    NASA Astrophysics Data System (ADS)

    Yuan, Fangyan; Li, Guoqing; Zuo, Zhengli; Liu, Jianmin; Wu, Liang; Yu, Xiaoping; Zhao, Haitao

    2014-03-01

    The large format digital aerial camera product UCXp was introduced into the Chinese market in 2008, the image consists of 17310 columns and 11310 rows with a pixel size of 6 mm. The UCXp camera has many advantages compared with the same generation camera, with multiple lenses exposed almost at the same time and no oblique lens. The camera has a complex imaging process whose principle will be detailed in this paper. On the other hand, the UCXp image post-processing method, including data pre-processing and orthophoto production, will be emphasized in this article. Based on the data of new Beichuan County, this paper will describe the data processing and effects.

  19. Strategies for Maximizing Successful Drug Substance Technology Transfer Using Engineering, Shake-Down, and Wet Test Runs.

    PubMed

    Abraham, Sushil; Bain, David; Bowers, John; Larivee, Victor; Leira, Francisco; Xie, Jasmina

    2015-01-01

    The technology transfer of biological products is a complex process requiring control of multiple unit operations and parameters to ensure product quality and process performance. To achieve product commercialization, the technology transfer sending unit must successfully transfer knowledge about both the product and the process to the receiving unit. A key strategy for maximizing successful scale-up and transfer efforts is the effective use of engineering and shake-down runs to confirm operational performance and product quality prior to embarking on good manufacturing practice runs such as process performance qualification runs. We consider key factors to consider in making the decision to perform shake-down or engineering runs. We also present industry benchmarking results of how engineering runs are used in drug substance technology transfers alongside the main themes and best practices that have emerged. Our goal is to provide companies with a framework for ensuring the "right first time" technology transfers with effective deployment of resources within increasingly aggressive timeline constraints. © PDA, Inc. 2015.

  20. The Simple Concurrent Online Processing System (SCOPS) - An open-source interface for remotely sensed data processing

    NASA Astrophysics Data System (ADS)

    Warren, M. A.; Goult, S.; Clewley, D.

    2018-06-01

    Advances in technology allow remotely sensed data to be acquired with increasingly higher spatial and spectral resolutions. These data may then be used to influence government decision making and solve a number of research and application driven questions. However, such large volumes of data can be difficult to handle on a single personal computer or on older machines with slower components. Often the software required to process data is varied and can be highly technical and too advanced for the novice user to fully understand. This paper describes an open-source tool, the Simple Concurrent Online Processing System (SCOPS), which forms part of an airborne hyperspectral data processing chain that allows users accessing the tool over a web interface to submit jobs and process data remotely. It is demonstrated using Natural Environment Research Council Airborne Research Facility (NERC-ARF) instruments together with other free- and open-source tools to take radiometrically corrected data from sensor geometry into geocorrected form and to generate simple or complex band ratio products. The final processed data products are acquired via an HTTP download. SCOPS can cut data processing times and introduce complex processing software to novice users by distributing jobs across a network using a simple to use web interface.

  1. New process for preparing complex-shaped dielectric film similar to Mylar

    NASA Astrophysics Data System (ADS)

    Lagasse, R. R.; Kraynik, A. M.

    1982-02-01

    A new thermoforming/heat-treatment process yields complex-shaped dielectric film having electrical and shrinkage properties similar to those of flat Mylar film. This similarity should extend to other physical properties because the new process is directly analogous to the process used to prepare Mylar. Commercially available poly(ethylene terephthalate) film is formed into a cavity at approx. 110 C and then heat treated at approx. 180 C. A laboratory-scale forming apparatus has produced cylindrically shaped films having depth/diameter ratio approx. 1, a tapered wall-section, and variation in wall thickness of 3X. Evaluation of other forming methods suggest that the production rate and thickness uniformity can be improved with existing technology. Thermal shrinkage at 150 C, 1 kHz dielectric constant from -55 to +70 C, leakage current at 1 kV, and breakdown voltage have been measured for both the complex-shaped film and Mylar.

  2. Reversible double oxidation and protonation of the non-innocent bridge in a nickel(II) salophen complex.

    PubMed

    de Bellefeuille, David; Askari, Mohammad S; Lassalle-Kaiser, Benedikt; Journaux, Yves; Aukauloo, Ally; Orio, Maylis; Thomas, Fabrice; Ottenwaelder, Xavier

    2012-12-03

    Substitution on the aromatic bridge of a nickel(II) salophen complex with electron-donating dimethylamino substituents creates a ligand with three stable, easily and reversibly accessible oxidation states. The one-electron-oxidized product is characterized as a nickel(II) radical complex with the radical bore by the central substituted aromatic ring, in contrast to other nickel(II) salen or salophen complexes that oxidize on the phenolate moieties. The doubly oxidized product, a singlet species, is best described as having an iminobenzoquinone bridge with a vinylogous distribution of bond lengths between the dimethylamino substituents. Protonation of the dimethylamino substituents inhibits these redox processes on the time scale of cyclovoltammetry, but electrolysis and chemical oxidation are consistent with deprotonation occurring concomitantly with electron transfer to yield the mono- and dioxidized species described above.

  3. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex

    NASA Astrophysics Data System (ADS)

    Falcone, Marta; Chatelain, Lucile; Scopelliti, Rosario; Živković, Ivica; Mazzanti, Marinella

    2017-07-01

    Molecular nitrogen (N2) is cheap and widely available, but its unreactive nature is a challenge when attempting to functionalize it under mild conditions with other widely available substrates (such as carbon monoxide, CO) to produce value-added compounds. Biological N2 fixation can do this, but the industrial Haber-Bosch process for ammonia production operates under harsh conditions (450 degrees Celsius and 300 bar), even though both processes are thought to involve multimetallic catalytic sites. And although molecular complexes capable of binding and even reducing N2 under mild conditions are known, with co-operativity between metal centres considered crucial for the N2 reduction step, the multimetallic species involved are usually not well defined, and further transformation of N2-binding complexes to achieve N-H or N-C bond formation is rare. Haber noted, before an iron-based catalyst was adopted for the industrial Haber-Bosch process, that uranium and uranium nitride materials are very effective heterogeneous catalysts for ammonia production from N2. However, few examples of uranium complexes binding N2 are known, and soluble uranium complexes capable of transforming N2 into ammonia or organonitrogen compounds have not yet been identified. Here we report the four-electron reduction of N2 under ambient conditions by a fully characterized complex with two UIII ions and three K+ centres held together by a nitride group and a flexible metalloligand framework. The addition of H2 and/or protons, or CO to the resulting complex results in the complete cleavage of N2 with concomitant N2 functionalization through N-H or N-C bond-forming reactions. These observations establish that a molecular uranium complex can promote the stoichiometric transformation of N2 into NH3 or cyanate, and that a flexible, electron-rich, multimetallic, nitride-bridged core unit is a promising starting point for the design of molecular complexes capable of cleaving and functionalizing N2 under mild conditions.

  4. Ambient Assisted Living spaces validation by services and devices simulation.

    PubMed

    Fernández-Llatas, Carlos; Mocholí, Juan Bautista; Sala, Pilar; Naranjo, Juan Carlos; Pileggi, Salvatore F; Guillén, Sergio; Traver, Vicente

    2011-01-01

    The design of Ambient Assisted Living (AAL) products is a very demanding challenge. AAL products creation is a complex iterative process which must accomplish exhaustive prerequisites about accessibility and usability. In this process the early detection of errors is crucial to create cost-effective systems. Computer-assisted tools can suppose a vital help to usability designers in order to avoid design errors. Specifically computer simulation of products in AAL environments can be used in all the design phases to support the validation. In this paper, a computer simulation tool for supporting usability designers in the creation of innovative AAL products is presented. This application will benefit their work saving time and improving the final system functionality.

  5. Totally Integrated Munitions Enterprise ''Affordable Munitions Production for the 21st Century''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleson, R.R.; Poggio, M.E.; Rosenberg, S.J.

    2000-09-13

    The U.S. Army faces several munitions manufacturing issues: downsizing of the organic production base, timely fielding of affordable smart munitions, and munitions replenishment during national emergencies. Totally Integrated Munitions Enterprise (TIME) is addressing these complex issues via the development and demonstration of an integrated enterprise. The enterprise will include the tools, network, and open modular architecture controllers to enable accelerated acquisition, shortened concept to volume production, lower life cycle costs, capture of critical manufacturing processes, and communication of process parameters between remote sites to rapidly spin-off production for replenishment by commercial sources. TIME addresses the enterprise as a system, integratingmore » design, engineering, manufacturing, administration, and logistics.« less

  6. Totally Integrated Munitions Enterprise ''Affordable Munitions Production for the 21st Century''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleson, R.R.; Poggio, M.E.; Rosenberg, S.J.

    2000-07-14

    The U.S. Army faces several munitions manufacturing issues: downsizing of the organic production base, timely fielding of affordable smart munitions, and munitions replenishment during national emergencies. TIME is addressing these complex issues via the development and demonstration of an integrated enterprise. The enterprise will include the tools, network, and open modular architecture controller to enable accelerated acquisition, shortened concept to volume production, lower life cycle costs, capture of critical manufacturing processes, and communication of process parameters between remote sites to rapidly spin-off production for replenishment by commercial sources. TIME addresses the enterprise as a system, integrating design, engineering, manufacturing, administration,more » and logistics.« less

  7. Totally Integrated Munitions Enterprise ''Affordable Munitions Production for the 21st Century''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleson, R.R.; Poggio, M.E.; Rosenberg, S.J.

    2000-08-18

    The U.S. Army faces several munitions manufacturing issues: downsizing of the organic production base, timely fielding of affordable smart munitions, and munitions replenishment during national emergencies. Totally Integrated Munitions Enterprise (TIME) is addressing these complex issues via the development and demonstration of an integrated enterprise. The enterprise will include the tools, network, and open modular architecture controllers to enable accelerated acquisition, shortened concept to volume production, lower life cycle costs, capture of critical manufacturing processes, and communication of process parameters between remote sites to rapidly spin-off production for replenishment by commercial sources. TIME addresses the enterprise as a system, integratingmore » design, engineering, manufacturing, administration, and logistics.« less

  8. Intelligent monitoring and control of semiconductor manufacturing equipment

    NASA Technical Reports Server (NTRS)

    Murdock, Janet L.; Hayes-Roth, Barbara

    1991-01-01

    The use of AI methods to monitor and control semiconductor fabrication in a state-of-the-art manufacturing environment called the Rapid Thermal Multiprocessor is described. Semiconductor fabrication involves many complex processing steps with limited opportunities to measure process and product properties. By applying additional process and product knowledge to that limited data, AI methods augment classical control methods by detecting abnormalities and trends, predicting failures, diagnosing, planning corrective action sequences, explaining diagnoses or predictions, and reacting to anomalous conditions that classical control systems typically would not correct. Research methodology and issues are discussed, and two diagnosis scenarios are examined.

  9. Architectures Toward Reusable Science Data Systems

    NASA Technical Reports Server (NTRS)

    Moses, John Firor

    2014-01-01

    Science Data Systems (SDS) comprise an important class of data processing systems that support product generation from remote sensors and in-situ observations. These systems enable research into new science data products, replication of experiments and verification of results. NASA has been building systems for satellite data processing since the first Earth observing satellites launched and is continuing development of systems to support NASA science research and NOAA's Earth observing satellite operations. The basic data processing workflows and scenarios continue to be valid for remote sensor observations research as well as for the complex multi-instrument operational satellite data systems being built today.

  10. Complexity of line-seru conversion for different scheduling rules and two improved exact algorithms for the multi-objective optimization.

    PubMed

    Yu, Yang; Wang, Sihan; Tang, Jiafu; Kaku, Ikou; Sun, Wei

    2016-01-01

    Productivity can be greatly improved by converting the traditional assembly line to a seru system, especially in the business environment with short product life cycles, uncertain product types and fluctuating production volumes. Line-seru conversion includes two decision processes, i.e., seru formation and seru load. For simplicity, however, previous studies focus on the seru formation with a given scheduling rule in seru load. We select ten scheduling rules usually used in seru load to investigate the influence of different scheduling rules on the performance of line-seru conversion. Moreover, we clarify the complexities of line-seru conversion for ten different scheduling rules from the theoretical perspective. In addition, multi-objective decisions are often used in line-seru conversion. To obtain Pareto-optimal solutions of multi-objective line-seru conversion, we develop two improved exact algorithms based on reducing time complexity and space complexity respectively. Compared with the enumeration based on non-dominated sorting to solve multi-objective problem, the two improved exact algorithms saves computation time greatly. Several numerical simulation experiments are performed to show the performance improvement brought by the two proposed exact algorithms.

  11. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    NASA Astrophysics Data System (ADS)

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  12. Chemistry of Secondary Polyphenols Produced during Processing of Tea and Selected Foods

    PubMed Central

    Tanaka, Takashi; Matsuo, Yosuke; Kouno, Isao

    2010-01-01

    This review will discuss recent progress in the chemistry of secondary polyphenols produced during food processing. The production mechanism of the secondary polyphenols in black tea, whisky, cinnamon, and persimmon fruits will be introduced. In the process of black tea production, tea leaf catechins are enzymatically oxidized to yield a complex mixture of oxidation products, including theaflavins and thearubigins. Despite the importance of the beverage, most of the chemical constituents have not yet been confirmed due to the complexity of the mixture. However, the reaction mechanisms at the initial stages of catechin oxidation are explained by simple quinone–phenol coupling reactions. In vitro model experiments indicated the presence of interesting regio- and stereoselective reactions. Recent results on the reaction mechanisms will be introduced. During the aging of whisky in oak wood barrels, ellagitannins originating from oak wood are oxidized and react with ethanol to give characteristic secondary ellagitannins. The major part of the cinnamon procyanidins is polymerized by copolymerization with cinnamaldehyde. In addition, anthocyanidin structural units are generated in the polymer molecules by oxidation which accounts for the reddish coloration of the cinnamon extract. This reaction is related to the insolubilization of proanthocyanidins in persimmon fruits by condensation with acetaldehyde. In addition to oxidation, the reaction of polyphenols with aldehydes may be important in food processing. PMID:20161999

  13. ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES

    DOEpatents

    Fuentevilla, M.E.

    1959-06-30

    An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.

  14. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    NASA Astrophysics Data System (ADS)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  15. Formation of polycyclic lactones through a ruthenium-catalyzed ring-closing metathesis/hetero-Pauson-Khand reaction sequence.

    PubMed

    Finnegan, David F; Snapper, Marc L

    2011-05-20

    Processes that form multiple carbon-carbon bonds in one operation can generate molecular complexity quickly and therefore be used to shorten syntheses of desirable molecules. We selected the hetero-Pauson-Khand (HPK) cycloaddition and ring-closing metathesis (RCM) as two unique carbon-carbon bond-forming reactions that could be united in a tandem ruthenium-catalyzed process. In doing so, complex polycyclic products can be obtained in one reaction vessel from acyclic precursors using a single ruthenium additive that can catalyze sequentially two mechanistically distinct transformations.

  16. Development of a brazing process for the production of water- cooled bipolar plates made of chromium-coated metal foils for PEM fuel cells

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.

    2016-03-01

    Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.

  17. 3D Printer-Manufacturing of Complex Geometry Elements

    NASA Astrophysics Data System (ADS)

    Ciubară, A.; Burlea, Ș L.; Axinte, M.; Cimpoeșu, R.; Chicet, D. L.; Manole, V.; Burlea, G.; Cimpoeșu, N.

    2018-06-01

    In the last 5-10 years the process of 3D printing has an incredible advanced in all the fields with a tremendous number of applications. Plastic materials exhibit highly beneficial mechanical properties while delivering complex designs impossible to achieve using conventional manufacturing. In this article the printing process (filling degree, time, complications and details finesse) of few plastic elements with complicated geometry and fine details was analyzed and comment. 3D printing offers many of the thermoplastics and industrial materials found in conventional manufacturing. The advantages and disadvantages of 3D printing for plastic parts are discussed. Time of production for an element with complex geometry, from the design to final cut, was evaluated.

  18. Genetics Home Reference: Stickler syndrome

    MedlinePlus

    ... Stickler syndrome provide instructions for making components of collagens, which are complex molecules that give structure and ... genes impair the production, processing, or assembly of collagen molecules. Defective collagen molecules or reduced amounts of ...

  19. Production technology optimization of biscuit baked by electric-contact way

    NASA Astrophysics Data System (ADS)

    Sidorenko, G. A.; Popov, V. P.; Khanina, T. V.; Maneeva, E. Sh; Krasnova, M. S.

    2018-03-01

    Electric-contact way of baking allows one to maintain more nutrients used in biscuit making. As a result of the biscuit production technology optimization, it is established that 30-62,5% is an optimal amount of starch brought instead of flour; 184-200% is optimal amount of egg melange; at this a complex indicator of organoleptic properties will be more than 340 degrees, a complex indicator of physical and chemical properties will be more than 3,3 degrees, and specific costs of energy spent on the biscuit electric-contact baking process will be less than 100 W/kg.

  20. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  1. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  2. Grammatical Impairments in PPA

    PubMed Central

    Thompson, Cynthia K.; Mack, Jennifer E.

    2015-01-01

    Background Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. Aims We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. Main Contribution PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Conclusions Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real-time processes underlying grammatical impairments in PPA, as well as the structural and functional neural correlates of grammatical impairments across linguistic domains. Few studies have examined the effects of treatment for grammatical impairments in PPA; research in this area is needed to better understand how (or if) grammatical processing ability can be improved, the potential for spared neural tissue to be recruited to support this, and whether the neural connections within areas of dysfunctional tissue required for grammatical processing can be enhanced using cortical stimulation. PMID:25642014

  3. Grammatical Impairments in PPA.

    PubMed

    Thompson, Cynthia K; Mack, Jennifer E

    2014-09-01

    Grammatical impairments are commonly observed in the agrammatic subtype of primary progressive aphasia (PPA-G), whereas grammatical processing is relatively preserved in logopenic (PPA-L) and semantic (PPA-S) subtypes. We review research on grammatical deficits in PPA and associated neural mechanisms, with discussion focused on production and comprehension of four aspects of morphosyntactic structure: grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures. We also address assessment of grammatical deficits in PPA, with emphasis on behavioral tests of grammatical processing. Finally, we address research examining the effects of treatment for progressive grammatical impairments. PPA-G is associated with grammatical deficits that are evident across linguistic domains in both production and comprehension. PPA-G is associated with damage to regions including the left inferior frontal gyrus (IFG) and dorsal white matter tracts, which have been linked to impaired comprehension and production of complex sentences. Detailing grammatical deficits in PPA is important for estimating the trajectory of language decline and associated neuropathology. We, therefore, highlight several new assessment tools for examining different aspects of morphosyntactic processing in PPA. Individuals with PPA-G present with agrammatic deficit patterns distinct from those associated with PPA-L and PPA-S, but similar to those seen in agrammatism resulting from stroke, and patterns of cortical atrophy and white matter changes associated with PPA-G have been identified. Methods for clinical evaluation of agrammatism, focusing on comprehension and production of grammatical morphology, functional categories, verbs and verb argument structure, and complex syntactic structures are recommended and tools for this are emerging in the literature. Further research is needed to investigate the real-time processes underlying grammatical impairments in PPA, as well as the structural and functional neural correlates of grammatical impairments across linguistic domains. Few studies have examined the effects of treatment for grammatical impairments in PPA; research in this area is needed to better understand how (or if) grammatical processing ability can be improved, the potential for spared neural tissue to be recruited to support this, and whether the neural connections within areas of dysfunctional tissue required for grammatical processing can be enhanced using cortical stimulation.

  4. Perspectives of ruthenium(ii) polyazaaromatic photo-oxidizing complexes photoreactive towards tryptophan-containing peptides and derivatives.

    PubMed

    Estalayo-Adrián, S; Garnir, K; Moucheron, C

    2018-01-04

    Ru II polyazaaromatic complexes have been studied with the aim of developing molecular tools for DNA and oligonucleotides. In this context, Ru II -TAP (TAP = 1,4,5,8-tetraazaphenanthrene) complexes have been developed as specific photoreagents targeting the genetic material. The advantage of such compounds is due to the formation of photo-addition products between the Ru-TAP complex and the biomolecule, originating from a photo-induced electron transfer process that takes place between the excited Ru-TAP complex and guanine (G) bases of DNA. This photo-addition has been more recently extended to amino acids in view of applications involving peptides, such as inhibition or photocontrol of proteins. More particularly, tryptophan (Trp) and Trp-containing peptides are also able to be photo-oxidized by Ru II -TAP complexes, leading to the formation of photo-addition products. This mini review focuses on recent advances in the search for Ru II polyazaaromatic photo-oxidizing complexes of interest as molecular tools and photoreagents for Trp-containing peptides and proteins. Different possible future directions in this field are also discussed.

  5. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex

    USDA-ARS?s Scientific Manuscript database

    The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showe...

  6. Productive Group Engagement in Cognitive Activity and Metacognitive Regulation during Collaborative Learning: Can It Explain Differences in Students' Conceptual Understanding?

    ERIC Educational Resources Information Center

    Khosa, Deep K.; Volet, Simone E.

    2014-01-01

    This paper addresses the nature and significance of productive engagement in cognitive activity and metacognitive regulation in collaborative learning tasks that involve complex scientific knowledge. A situative framework, combining the constructs of social regulation and content processing, provided the theoretical basis for the development of a…

  7. Potential of Continuous Manufacturing for Liposomal Drug Products.

    PubMed

    Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S

    2018-05-21

    Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.

  8. Microbial production of polyhydroxybutyrate with tailor-made properties: an integrated modelling approach and experimental validation.

    PubMed

    Penloglou, Giannis; Chatzidoukas, Christos; Kiparissides, Costas

    2012-01-01

    The microbial production of polyhydroxybutyrate (PHB) is a complex process in which the final quantity and quality of the PHB depend on a large number of process operating variables. Consequently, the design and optimal dynamic operation of a microbial process for the efficient production of PHB with tailor-made molecular properties is an extremely interesting problem. The present study investigates how key process operating variables (i.e., nutritional and aeration conditions) affect the biomass production rate and the PHB accumulation in the cells and its associated molecular weight distribution. A combined metabolic/polymerization/macroscopic modelling approach, relating the process performance and product quality with the process variables, was developed and validated using an extensive series of experiments and measurements. The model predicts the dynamic evolution of the biomass growth, the polymer accumulation, the consumption of carbon and nitrogen sources and the average molecular weights of the PHB in a bioreactor, under batch and fed-batch operating conditions. The proposed integrated model was used for the model-based optimization of the production of PHB with tailor-made molecular properties in Azohydromonas lata bacteria. The process optimization led to a high intracellular PHB accumulation (up to 95% g of PHB per g of DCW) and the production of different grades (i.e., different molecular weight distributions) of PHB. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. [Logistic and production process in a regional blood center: modeling and analysis].

    PubMed

    Baesler, Felipe; Martínez, Cristina; Yaksic, Eduardo; Herrera, Claudia

    2011-09-01

    The blood supply chain is a complex system that considers different interconnected elements that have to be synchronized correctly to satisfy in quality and quantity the final patient requirements. To determine the blood center maximum production capacity, as well as the determination of the necessary changes for a future production capacity expansion. This work was developed in the Blood Center of Concepción, Chile, operations management tools were applied to model it and to propose improvement alternatives for the production process. The use of simulation is highlighted, which permitted the replication of the center behavior and the evaluation of expansion alternatives. It is possible to absorb a 100% increment in blood demand, without making major changes or investments in the production process. Also it was possible to determine the subsequent steps in terms of investments in equipment and human resources for a future expansion of the center coverage. The techniques used to model the production process of the blood center of Concepción, Chile, allowed us to analyze how it operates, to detect "bottle necks", and to support the decision making process for a future expansion of its capacity.

  10. [Comparative data on the formation of complement-binding and hemagglutinating antibodies to penicillin].

    PubMed

    Sluvko, A L

    1976-10-01

    Comparative data on production of complement-binding and hemagglutinating antibodies in the process of the antigenic effect of benzylpenicillin under experimental conditions are presented. 30 rabbit antisera and 3 sera of intact animals were studied. The hemagglutinating antibodies were determined in 19 antisera, high and reliable titers of the antipenicillin hemagglutinating antibodies being found only in 8 antisera. The antipenicillin complement-binding antibodies using complex antibiotic antibodies were also found in 19 antisera. The process of antibody production was more pronounced in the complement-binding reaction (CBR). Both types of the antibodies were detected simultaneously in 14 antisera. It is concluded that the CBR with the use of the penicillin complex antigenes on the stroma of the erythrocytes and in combination with the blood serum is a rather sensitive reaction for detection of antipenicillin antibodies.

  11. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.

    PubMed

    Li, Ying; Yang, Da-Jian; Chen, Shi-Lin; Chen, Si-Bao; Chan, Albert Sun-Chi

    2008-07-09

    The aim of the study was to develop and evaluate a new method for the production of puerarin phospholipids complex (PPC) microparticles. The advanced particle formation method, solution enhanced dispersion by supercritical fluids (SEDS), was used for the preparation of puerarin (Pur), phospholipids (PC) and their complex particles for the first time. Evaluation of the processing variables on PPC particle characteristics was also conducted. The processing variables included temperature, pressure, solution concentration, the flow rate of supercritical carbon dioxide (SC-CO2) and the relative flow rate of drug solution to CO2. The morphology, particle size and size distribution of the particles were determined. Meanwhile Pur and phospholipids were separately prepared by gas antisolvent precipitation (GAS) method and solid characterization of particles by the two supercritical methods was also compared. Pur formed by GAS was more orderly, purer crystal, whereas amorphous Pur particles between 0.5 and 1microm were formed by SEDS. The complex was successfully obtained by SEDS exhibiting amorphous, partially agglomerated spheres comprised of particles sized only about 1microm. SEDS method may be useful for the processing of other pharmaceutical preparations besides phospholipids complex particles. Furthermore adopting a GAS process to recrystallize pharmaceuticals will provide a highly versatile methodology to generate new polymorphs of drugs in addition to conventional techniques.

  12. Chemical Reaction and Flow Modeling in Fullerene and Nanotube Production

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Farhat, Samir; Greendyke, Robert B.

    2004-01-01

    The development of processes to produce fullerenes and carbon nanotubes has largely been empirical. Fullerenes were first discovered in the soot produced by laser ablation of graphite [1]and then in the soot of electric arc evaporated carbon. Techniques and conditions for producing larger and larger quantities of fullerenes depended mainly on trial and error empirical variations of these processes, with attempts to scale them up by using larger electrodes and targets and higher power. Various concepts of how fullerenes and carbon nanotubes were formed were put forth, but very little was done based on chemical kinetics of the reactions. This was mainly due to the complex mixture of species and complex nature of conditions in the reactors. Temperatures in the reactors varied from several thousand degrees Kelvin down to near room temperature. There are hundreds of species possible, ranging from atomic carbon to large clusters of carbonaceous soot, and metallic catalyst atoms to metal clusters, to complexes of metals and carbon. Most of the chemical kinetics of the reactions and the thermodynamic properties of clusters and complexes have only been approximated. In addition, flow conditions in the reactors are transient or unsteady, and three dimensional, with steep spatial gradients of temperature and species concentrations. All these factors make computational simulations of reactors very complex and challenging. This article addresses the development of the chemical reaction involved in fullerene production and extends this to production of carbon nanotubes by the laser ablation/oven process and by the electric arc evaporation process. In addition, the high-pressure carbon monoxide (HiPco) process is discussed. The article is in several parts. The first one addresses the thermochemical aspects of modeling; and considers the development of chemical rate equations, estimates of reaction rates, and thermodynamic properties where they are available. The second part addresses modeling of the arc process for fullerene and carbon nanotube production using O-D, 1-D and 2-D fluid flow models. The third part addresses simulations of the pulsed laser ablation process using time-dependent techniques in 2-D, and a steady state 2-D simulation of a continuous laser ablation process. The fourth part addresses steady state modeling in O-D and 2-D of the HiPco process. In each of the simulations, there is a variety of simplifications that are made that enable one to concentrate on one aspect or another of the process. There are simplifications that can be made to the chemical reaction models , e.g. reduction in number of species by lumping some of them together in a representative species. Other simulations are carried out by eliminating the chemistry altogether in order to concentrate on the fluid dynamics. When solving problems with a large number of species in more than one spatial dimension, it is almost imperative that the problem be decoupled by solving for the fluid dynamics to find the fluid motion and temperature history of "particles" of fluid moving through a reactor. Then one can solve the chemical rate equations with complex chemistry following the temperature and pressure history. One difficulty is that often mixing with an ambient gas is involved. Therefore, one needs to take dilution and mixing into account. This changes the ratio of carbon species to background gas. Commercially available codes may have no provision for including dilution as part of the input. One must the write special solvers for including dilution in decoupled problems. The article addresses both ful1erene production and single-walled carbon nanotube (SWNT) production. There are at least two schemes or concepts of SWNT growth. This article will only address growth in the gas phase by carbon and catalyst cluster growth and SW T formation by the addition of carbon. There are other models that conceive of SWNT growth as a phase separation process from clusters me up carbon and metal catalyst, with the carbon precipitating from the cluster as it cools. We will not deal with that concept in this article. Further research is needed to determine the rates at which these composite clusters form, evaporate, and segregate.

  13. Environmental Stress-mediated EPS Production Shape Microbial Activity on Various Hydrated Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, G.; Liu, L.; Chen, G.

    2016-12-01

    The complex environmental physical and chemical processes and interplay with the associating biological responses are keys to understanding the environmental microbiology ensconced in environmental remediation, water quality control, food safety, nutrient cycling, and etc., yet remain poorly understood. Using experimental micromodels, we study how environmental conditions (e.g., hydration fluctuation, nutrient limitation, pH variation, etc.) affect microbial extracellular polymeric substances (EPS) production and their configuration within various hydrated surfaces, and impacts on microbial motility, surface attachment, aggregation, and other bioremediation activities. To elucidate the potential mechanisms underlying the complex bio-physicochemical processes, we developed an individual-based and spatio-temporally resolved modeling platform that explicitly considers microscale aqueous-phase configuration and nutrient transport/diffusion and associated biophysical processes affecting individual microbial cell life history. We quantitatively explore the effects of the above microscale environmental processes on bio-physicochemical interactions affecting microbial growth, motility, surface attachment and aggregation, and shaping population interactions and functions. Simulation scenarios of microbial induced pollutant (e.g., roxarsone) biotransformation on various hydrated rough surfaces will also be present.

  14. Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation.

    PubMed

    Ma, Lijuan; Li, Chen; Yang, Zhenhua; Jia, Wendi; Zhang, Dongyuan; Chen, Shulin

    2013-07-20

    Reducing the production cost of cellulase as the key enzyme for cellulose hydrolysis to fermentable sugars remains a major challenge for biofuel production. Because of the complexity of cellulase production, kinetic modeling and mass balance calculation can be used as effective tools for process design and optimization. In this study, kinetic models for cell growth, substrate consumption and cellulase production in batch fermentation were developed, and then applied in fed-batch fermentation to enhance cellulase production. Inhibition effect of substrate was considered and a modified Luedeking-Piret model was developed for cellulase production and substrate consumption according to the growth characteristics of Trichoderma reesei. The model predictions fit well with the experimental data. Simulation results showed that higher initial substrate concentration led to decrease of cellulase production rate. Mass balance and kinetic simulation results were applied to determine the feeding strategy. Cellulase production and its corresponding productivity increased by 82.13% after employing the proper feeding strategy in fed-batch fermentation. This method combining mathematics and chemometrics by kinetic modeling and mass balance can not only improve cellulase fermentation process, but also help to better understand the cellulase fermentation process. The model development can also provide insight to other similar fermentation processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Fermentation characteristics of some assamica clones and process optimization of black tea manufacturing.

    PubMed

    Baruah, Ananta Madhab; Mahanta, Pradip Kumar

    2003-10-22

    Changes in the specific activities of polyphenol oxidase (PPO), peroxidase (POD), and protease and in the relative amounts of flavan-3-ols for eight genetically derived cultivated teas at various stages of leaf maturity and in four succescive seasons were examined. A series of investigations were carried out to study the cross-reactivity of complex polyphenols and PPO-generated orange-yellow theaflavins, as well as of POD oxidized substrates, producing brown so-called thearubigins during fermented tea processing. From the estimation of five major catechins, PPO activities in young shoots, and theaflavin and thearubigin contents of crushed, torn, and curled (CTC) black teas, the superior variety and flavorful flush characteristics were refined. Notable protein hydrolysis by endogenous protease as measured from free amino acids and formation of tannin-protein complex (browning products) was obtained for cultivar character and product quality. Results showed that process optimization with respect to time, temperature, moisture, and pH maximizes PPO-catalyzed desirable theaflavin pigments, whereas POD-mediated chemical reaction produces dull color.

  16. Probing the mer- to fac-isomerization of tris-cyclometallated homo- and heteroleptic (C,N)3 iridium(III) complexes.

    PubMed

    McDonald, Aidan R; Lutz, Martin; von Chrzanowski, Lars S; van Klink, Gerard P M; Spek, Anthony L; van Koten, Gerard

    2008-08-04

    We have developed techniques which allow for covalent tethering, via a "hetero" cyclometallating ligand, of heteroleptic tris-cyclometallated iridium(III) complexes to polymeric supports (for application in light-emitting diode technologies). This involved the selective synthesis and thorough characterization of heteroleptic [Ir(C,N) 2(C',N')] tris-cyclometallated iridium(III) complexes. Furthermore, the synthesis and characterization of heteroleptic [Ir(C,N) 2OR] complexes is presented. Under standard thermal conditions for the synthesis of the facial ( fac) isomer of tris-cyclometallated complexes, it was not possible to synthesize pure heteroleptic complexes of the form [Ir(C,N) 2(C',N')]. Instead, a mixture of homo- and heteroleptic complexes was acquired. It was found that a stepwise procedure involving the synthesis of a pure meridonial ( mer) isomer followed by photochemical isomerization of this mer to the fac isomer was necessary to synthesize pure fac-[Ir(C,N) 2(C',N')] complexes. Under thermal isomerization conditions, the conversion of mer-[Ir(C,N) 2(C',N')] to fac-[Ir(C,N) 2(C',N')] was also not a clean reaction, with again a mixture of homo- and heteroleptic complexes acquired. An investigation into the thermal mer to fac isomerization of both homo- and heteroleptic tris-cyclometallated complexes is presented. It was found that the process is an alcohol-catalyzed reaction with the formation of an iridium alkoxide [Ir(C,N) 2OR] intermediate in the isomerization process. This catalyzed reaction can be carried out between 50 and 100 degrees C, the first such example of low-temperature mer-fac thermal isomerization. We have synthesized analogous complexes and have shown that they do indeed react so as to give fac-tris-cyclometallated products. A detailed explanation of the intermediates (and all of their stereoisomers, in particular when systems of the generic formula [M(a,b) 2(a',b')] are synthesized) formed in the mer to fac isomerization process is presented, including how the formed intermediates react further, and the stereoisomeric products they yield.

  17. Theoretical study of cut area of reduction of large surfaces of rotation parts on machines with rotary cutters “Extra”

    NASA Astrophysics Data System (ADS)

    Bondarenko, J. A.; Fedorenko, M. A.; Pogonin, A. A.

    2018-03-01

    Large parts can be treated without disassembling machines using “Extra”, having technological and design challenges, which differ from the challenges in the processing of these components on the stationary machine. Extension machines are used to restore large parts up to the condition allowing one to use them in a production environment. To achieve the desired accuracy and surface roughness parameters, the surface after rotary grinding becomes recoverable, which greatly increases complexity. In order to improve production efficiency and productivity of the process, the qualitative rotary processing of the machined surface is applied. The rotary cutting process includes a continuous change of the cutting edge surfaces. The kinematic parameters of a rotary cutting define its main features and patterns, the cutting operation of the rotary cutting instrument.

  18. Improving designer productivity. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  19. An Extensible Processing Framework for Eddy-covariance Data

    NASA Astrophysics Data System (ADS)

    Durden, D.; Fox, A. M.; Metzger, S.; Sturtevant, C.; Durden, N. P.; Luo, H.

    2016-12-01

    The evolution of large data collecting networks has not only led to an increase of available information, but also in the complexity of analyzing the observations. Timely dissemination of readily usable data products necessitates a streaming processing framework that is both automatable and flexible. Tower networks, such as ICOS, Ameriflux, and NEON, exemplify this issue by requiring large amounts of data to be processed from dispersed measurement sites. Eddy-covariance data from across the NEON network are expected to amount to 100 Gigabytes per day. The complexity of the algorithmic processing necessary to produce high-quality data products together with the continued development of new analysis techniques led to the development of a modular R-package, eddy4R. This allows algorithms provided by NEON and the larger community to be deployed in streaming processing, and to be used by community members alike. In order to control the processing environment, provide a proficient parallel processing structure, and certify dependencies are available during processing, we chose Docker as our "Development and Operations" (DevOps) platform. The Docker framework allows our processing algorithms to be developed, maintained and deployed at scale. Additionally, the eddy4R-Docker framework fosters community use and extensibility via pre-built Docker images and the Github distributed version control system. The capability to process large data sets is reliant upon efficient input and output of data, data compressibility to reduce compute resource loads, and the ability to easily package metadata. The Hierarchical Data Format (HDF5) is a file format that can meet these needs. A NEON standard HDF5 file structure and metadata attributes allow users to explore larger data sets in an intuitive "directory-like" structure adopting the NEON data product naming conventions.

  20. Deployment of ERP Systems at Automotive Industries, Security Inspection (Case Study: IRAN KHODRO Automotive Company)

    NASA Astrophysics Data System (ADS)

    Ali, Hatamirad; Hasan, Mehrjerdi

    Automotive industry and car production process is one of the most complex and large-scale production processes. Today, information technology (IT) and ERP systems incorporates a large portion of production processes. Without any integrated systems such as ERP, the production and supply chain processes will be tangled. The ERP systems, that are last generation of MRP systems, make produce and sale processes of these industries easier and this is the major factor of development of these industries anyhow. Today many of large-scale companies are developing and deploying the ERP systems. The ERP systems facilitate many of organization processes and make organization to increase efficiency. The security is a very important part of the ERP strategy at the organization, Security at the ERP systems, because of integrity and extensive, is more important of local and legacy systems. Disregarding of this point can play a giant role at success or failure of this kind of systems. The IRANKHODRO is the biggest automotive factory in the Middle East with an annual production over 600.000 cars. This paper presents ERP security deployment experience at the "IRANKHODRO Company". Recently, by launching ERP systems, it moved a big step toward more developments.

  1. Reprint of Design of synthetic microbial communities for biotechnological production processes.

    PubMed

    Jagmann, Nina; Philipp, Bodo

    2014-12-20

    In their natural habitats microorganisms live in multi-species communities, in which the community members exhibit complex metabolic interactions. In contrast, biotechnological production processes catalyzed by microorganisms are usually carried out with single strains in pure cultures. A number of production processes, however, may be more efficiently catalyzed by the concerted action of microbial communities. This review will give an overview of organismic interactions between microbial cells and of biotechnological applications of microbial communities. It focuses on synthetic microbial communities that consist of microorganisms that have been genetically engineered. Design principles for such synthetic communities will be exemplified based on plausible scenarios for biotechnological production processes. These design principles comprise interspecific metabolic interactions via cross-feeding, regulation by interspecific signaling processes via metabolites and autoinducing signal molecules, and spatial structuring of synthetic microbial communities. In particular, the implementation of metabolic interdependencies, of positive feedback regulation and of inducible cell aggregation and biofilm formation will be outlined. Synthetic microbial communities constitute a viable extension of the biotechnological application of metabolically engineered single strains and enlarge the scope of microbial production processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Manufacturing DTaP-based combination vaccines: industrial challenges around essential public health tools.

    PubMed

    Vidor, Emmanuel; Soubeyrand, Benoit

    2016-12-01

    The manufacture of DTP-backboned combination vaccines is complex, and vaccine quality is evaluated by both batch composition and conformance of manufacturing history. Since their first availability, both the manufacturing regulations for DTP combination vaccines and their demand have evolved significantly. This has resulted in a constant need to modify manufacturing and quality control processes. Areas covered: Regulations that govern the manufacture of complex vaccines can be inconsistent between countries and need to be aligned with the regulatory requirements that apply in all countries of distribution. Changes in product mix and quantities can lead to uncertainty in vaccine supply maintenance. These problems are discussed in the context of the importance of these products as essential public health tools. Expert commentary: Increasing demand for complex vaccines globally has led to problems in supply due to intrinsically complex manufacturing and regulatory procedures. Vaccine manufacturers are fully engaged in the resolution of these challenges, but currently changes in demand need ideally to be anticipated approximately 3 years in advance due to long production cycle times.

  3. A water-soluble, mucoadhesive quaternary ammonium chitosan-methyl-β-cyclodextrin conjugate forming inclusion complexes with dexamethasone.

    PubMed

    Piras, Anna Maria; Zambito, Ylenia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Terreni, Eleonora; Fabiano, Angela; Balzano, Federica; Uccello-Barretta, Gloria; Chetoni, Patrizia

    2018-03-30

    The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.

  4. Overcoming the energetic limitations of syngas fermentation.

    PubMed

    Molitor, Bastian; Marcellin, Esteban; Angenent, Largus T

    2017-12-01

    The fermentation of synthesis gas (including carbon monoxide, carbon dioxide, and hydrogen) with anaerobic acetogens is an established biotechnological process that has recently been transferred to a commercial scale. The natural product spectrum of acetogens is natively restricted to acetate, ethanol, and 2,3-butanediol but is rapidly expanding to heterologous products. Syngas fermentation can achieve high carbon-efficiencies; however, the underlying metabolism is operating at a thermodynamic limit. This necessitates special enzymatic properties for energy conservation by acetogens. Therefore, the availability of cellular energy is considered to restrain the efficient production of energy-intense products with complex production pathways. The optimization of the feed-gas composition and other process parameters, genetic engineering, and integration with other biotechnologies is required to overcome this limitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production

    NASA Astrophysics Data System (ADS)

    Azwar; Hussain, M. A.; Abdul-Wahab, A. K.; Zanil, M. F.; Mukhlishien

    2018-03-01

    One of major challenge in bio-hydrogen production process by using MEC process is nonlinear and highly complex system. This is mainly due to the presence of microbial interactions and highly complex phenomena in the system. Its complexity makes MEC system difficult to operate and control under optimal conditions. Thus, precise control is required for the MEC reactor, so that the amount of current required to produce hydrogen gas can be controlled according to the composition of the substrate in the reactor. In this work, two schemes for controlling the current and voltage of MEC were evaluated. The controllers evaluated are PID and Inverse neural network (NN) controller. The comparative study has been carried out under optimal condition for the production of bio-hydrogen gas wherein the controller output is based on the correlation of optimal current and voltage to the MEC. Various simulation tests involving multiple set-point changes and disturbances rejection have been evaluated and the performances of both controllers are discussed. The neural network-based controller results in fast response time and less overshoots while the offset effects are minimal. In conclusion, the Inverse neural network (NN)-based controllers provide better control performance for the MEC system compared to the PID controller.

  6. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures

    NASA Astrophysics Data System (ADS)

    Olsson, Anders; Hellsing, Maja S.; Rennie, Adrian R.

    2017-05-01

    Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented.

  7. Automated campaign system

    NASA Astrophysics Data System (ADS)

    Vondran, Gary; Chao, Hui; Lin, Xiaofan; Beyer, Dirk; Joshi, Parag; Atkins, Brian; Obrador, Pere

    2006-02-01

    To run a targeted campaign involves coordination and management across numerous organizations and complex process flows. Everything from market analytics on customer databases, acquiring content and images, composing the materials, meeting the sponsoring enterprise brand standards, driving through production and fulfillment, and evaluating results; all processes are currently performed by experienced highly trained staff. Presented is a developed solution that not only brings together technologies that automate each process, but also automates the entire flow so that a novice user could easily run a successful campaign from their desktop. This paper presents the technologies, structure, and process flows used to bring this system together. Highlighted will be how the complexity of running a targeted campaign is hidden from the user through technologies, all while providing the benefits of a professionally managed campaign.

  8. Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.

    PubMed

    Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He

    2009-05-01

    DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.

  9. An assembly process model based on object-oriented hierarchical time Petri Nets

    NASA Astrophysics Data System (ADS)

    Wang, Jiapeng; Liu, Shaoli; Liu, Jianhua; Du, Zenghui

    2017-04-01

    In order to improve the versatility, accuracy and integrity of the assembly process model of complex products, an assembly process model based on object-oriented hierarchical time Petri Nets is presented. A complete assembly process information model including assembly resources, assembly inspection, time, structure and flexible parts is established, and this model describes the static and dynamic data involved in the assembly process. Through the analysis of three-dimensional assembly process information, the assembly information is hierarchically divided from the whole, the local to the details and the subnet model of different levels of object-oriented Petri Nets is established. The communication problem between Petri subnets is solved by using message database, and it reduces the complexity of system modeling effectively. Finally, the modeling process is presented, and a five layer Petri Nets model is established based on the hoisting process of the engine compartment of a wheeled armored vehicle.

  10. Panel discussion summary: do we need a revolution in design and process integration to enable sub-100-nm technology nodes?

    NASA Astrophysics Data System (ADS)

    Grobman, Warren D.

    2002-07-01

    Dramatically increasing mask set costs, long-loop design-fabrication iterations, and lithography of unprecedented complexity and cost threaten to disrupt time-accepted IC industry progression as described by Moore"s Law. Practical and cost-effective IC manufacturing below the 100nm technology node presents significant and unique new challenges spanning multiple disciplines and overlapping traditionally separable components of the design-through-chip manufacturing flow. Lithographic and other process complexity is compounded by design, mask, and infrastructure technologies, which do not sufficiently account for increasingly stringent and complex manufacturing issues. Deep subwavelength and atomic-scale process and device physics effects increasingly invade and impact the design flow strongly at a time when the pressures for increased design productivity are escalating at a superlinear rate. Productivity gaps, both upstream in design and downstream in fabrication, are anticipated by many to increase due to dramatic increases in inherent complexity of the design-to-chip equation. Furthermore, the cost of lithographic equipment is increasing at an aggressive compound growth rate so large that we can no longer economically derive the benefit of the increased number of circuits per unit area unless we extend the life of lithographic equipment for more generations, and deeper into the subwavelength regime. Do these trends unambiguously lead to the conclusion that we need a revolution in design and design-process integration to enable the sub-100nm nodes? Or is such a premise similar to other well-known predictions of technology brick walls that never came true?

  11. Health, safety, and environmental risk assessment of steel production complex in central Iran using TOPSIS.

    PubMed

    Jozi, S A; Majd, N Moradi

    2014-10-01

    This research was carried out with the aim of presenting an environmental management plan for steel production complex (SPC) in central Iran. Following precise identification of the plant activities as well as the study area, possible sources of environmental pollution and adverse impacts on the air quality, water, soil, biological environment, socioeconomic and cultural environment, and health and safety of the employees were determined considering the work processes of the steel complex. Afterwards, noise, wastewater, and air pollution sources were measured. Subsequently, factors polluting the steel complex were identified by TOPSIS and then prioritized using Excel Software. Based on the obtained results, the operation of the furnaces in hot rolling process with the score 1, effluent derived from hot rolling process with the score 0.565, nonprincipal disposal and dumping of waste at the plant enclosure with the score 0.335, walking beam process with the score 1.483 respectively allocated themselves the highest priority in terms of air, water, soil and noise pollution. In terms of habitats, land cover and socioeconomic and cultural environment, closeness to the forest area and the existence of four groups of wildlife with the score 1.106 and proximity of villages and residential areas to the plant with the score 3.771 respectively enjoyed the highest priorities while impressibility and occupational accidents with the score 2.725 and cutting and welding operations with score 2.134 had the highest priority among health and safety criteria. Finally, strategies for the control of pollution sources were identified and Training, Monitoring and environmental management plan of the SPC was prepared.

  12. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity

    PubMed Central

    Sobol, Margarita; Yildirim, Sukriye; Philimonenko, Vlada V; Marášek, Pavel; Castaño, Enrique; Hozák, Pavel

    2013-01-01

    To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis. PMID:24513678

  13. Analysis of oxidised heavy paraffininc products by high temperature comprehensive two-dimensional gas chromatography.

    PubMed

    Potgieter, H; Bekker, R; Beigley, J; Rohwer, E

    2017-08-04

    Heavy petroleum fractions are produced during crude and synthetic crude oil refining processes and they need to be upgraded to useable products to increase their market value. Usually these fractions are upgraded to fuel products by hydrocracking, hydroisomerization and hydrogenation processes. These fractions are also upgraded to other high value commercial products like lubricant oils and waxes by distillation, hydrogenation, and oxidation and/or blending. Oxidation of hydrogenated heavy paraffinic fractions produces high value products that contain a variety of oxygenates and the characterization of these heavy oxygenates is very important for the control of oxidation processes. Traditionally titrimetric procedures are used to monitor oxygenate formation, however, these titrimetric procedures are tedious and lack selectivity toward specific oxygenate classes in complex matrices. Comprehensive two-dimensional gas chromatography (GC×GC) is a way of increasing peak capacity for the comprehensive analysis of complex samples. Other groups have used HT-GC×GC to extend the carbon number range attainable by GC×GC and have optimised HT-GC×GC parameters for the separation of aromatics, nitrogen-containing compounds as well as sulphur-containing compounds in heavy petroleum fractions. HT-GC×GC column combinations for the separation of oxygenates in oxidised heavy paraffinic fractions are optimised in this study. The advantages of the HT-GC×GC method in the monitoring of the oxidation reactions of heavy paraffinic fraction samples are illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Reliability Standards of Complex Engineering Systems

    NASA Astrophysics Data System (ADS)

    Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.

    2017-11-01

    Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.

  15. ProSens: integrated production control by automated inspection planning and efficient multisensor metrology

    NASA Astrophysics Data System (ADS)

    Glaser, Ulf; Li, Zhichao; Bichmann, Stephan, II; Pfeifer, Tilo

    2003-05-01

    By China's entry into the WTO, Chinese as well as German companies are facing the question, how to minimize the risk of unfamiliar cooperation partners when developing products. The rise of customer demands concerning quality, product diversity and the reduction of expenses require flexibility and efficiency with reliable component suppliers. In order to build and strengthen sino-german cooperations, a manufacturing control using homogenized and efficient measures to assure high quality is of vital importance. Lack of unifications may cause identical measurements conducted at subcontractors or customers to be carried out with different measurement processes which leads to incomparable results. Rapidly growing company cooperations and simultaneously decreasing of manufacturing scope cause substantial difficulties when coordinating joint quality control activities. "ProSens," a sino-german project consortium consisting of industrial users, technology producers and research institutes, aims at improving selected production processes by: Creation of a homogeneous quality awareness in sino-german cooperations. Sensitization for process accompanying metrology at an early stage of product development. Increase of the process performance by the use of integrated metrology. Reduction of production time and cost. Unification of quality control of complex products by means of efficient measurement strategies and CAD-based inspection planning.

  16. Graphene oxide-dependent growth and self-aggregation into a hydrogel complex of exoelectrogenic bacteria

    PubMed Central

    Yoshida, Naoko; Miyata, Yasushi; Doi, Kasumi; Goto, Yuko; Nagao, Yuji; Tero, Ryugo; Hiraishi, Akira

    2016-01-01

    Graphene oxide (GO) is reduced by certain exoelectrogenic bacteria, but its effects on bacterial growth and metabolism are a controversial issue. This study aimed to determine whether GO functions as the terminal electron acceptor to allow specific growth of and electricity production by exoelectrogenic bacteria. Cultivation of environmental samples with GO and acetate as the sole substrate could specifically enrich exoelectrogenic bacteria with Geobacter species predominating (51–68% of the total populations). Interestingly, bacteria in these cultures self-aggregated into a conductive hydrogel complex together with biologically reduced GO (rGO). A novel GO-respiring bacterium designated Geobacter sp. strain R4 was isolated from this hydrogel complex. This organism exhibited stable electricity production at >1000 μA/cm3 (at 200 mV vs Ag/AgCl) for more than 60 d via rGO while temporary electricity production using graphite felt. The better electricity production depends upon the characteristics of rGO such as a large surface area for biofilm growth, greater capacitance, and smaller internal resistance. This is the first report to demonstrate GO-dependent growth of exoelectrogenic bacteria while forming a conductive hydrogel complex with rGO. The simple put-and-wait process leading to the formation of hydrogel complexes of rGO and exoelectrogens will enable wider applications of GO to bioelectrochemical systems. PMID:26899353

  17. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  18. Investigation of flavonoid influence on peroxidation processes intensity in the blood

    NASA Astrophysics Data System (ADS)

    Navolokin, N. A.; Mudrak, D. A.; Plastun, I. L.; Bucharskaya, A. B.; Agandeeva, K. E.; Ivlichev, A. V.; Tychina, S. A.; Afanasyeva, G. A.; Polukonova, N. V.; Maslyakova, G. N.

    2017-03-01

    Influence of flavonoids on the intensity of peroxidation processes in the blood is investigated by numerical modeling and by experiment in vivo. As an example we consider the effects of flavonoid-containing extract of Helichrysum arenarium L. with antitumor activity on serum of rats with transplanted liver cancer PC-1. It was found that the content of malondialdehyde, lipid hydroperoxides and average mass molecules were decreased in animals with transplanted liver cancer after intramuscular and oral administration of Helichrysum arenarium L extract in a dose of 1000 mg/mL. The extract reduces the intensity of lipid peroxidation processes in animals. The compound formation possibility of flavonoids and products of lipid peroxidation is investigated by numerical simulations. Using the density functional theory method of molecular modeling, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and products of lipid peroxidation processes on example of naringine and malondialdehyde. We have found that naringine can form a steady molecular complex with malondialdehyde by hydrogen bonds formation. Thus, the application of Helichrysum arenarium L. extract for suppression processes of lipid peroxidation and activation of enzymatic and non-enzymatic antioxidant systems is promising.

  19. The standard-based open workflow system in GeoBrain (Invited)

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Zhao, P.; Deng, M.

    2013-12-01

    GeoBrain is an Earth science Web-service system developed and operated by the Center for Spatial Information Science and Systems, George Mason University. In GeoBrain, a standard-based open workflow system has been implemented to accommodate the automated processing of geospatial data through a set of complex geo-processing functions for advanced production generation. The GeoBrain models the complex geoprocessing at two levels, the conceptual and concrete. At the conceptual level, the workflows exist in the form of data and service types defined by ontologies. The workflows at conceptual level are called geo-processing models and cataloged in GeoBrain as virtual product types. A conceptual workflow is instantiated into a concrete, executable workflow when a user requests a product that matches a virtual product type. Both conceptual and concrete workflows are encoded in Business Process Execution Language (BPEL). A BPEL workflow engine, called BPELPower, has been implemented to execute the workflow for the product generation. A provenance capturing service has been implemented to generate the ISO 19115-compliant complete product provenance metadata before and after the workflow execution. The generation of provenance metadata before the workflow execution allows users to examine the usability of the final product before the lengthy and expensive execution takes place. The three modes of workflow executions defined in the ISO 19119, transparent, translucent, and opaque, are available in GeoBrain. A geoprocessing modeling portal has been developed to allow domain experts to develop geoprocessing models at the type level with the support of both data and service/processing ontologies. The geoprocessing models capture the knowledge of the domain experts and are become the operational offering of the products after a proper peer review of models is conducted. An automated workflow composition has been experimented successfully based on ontologies and artificial intelligence technology. The GeoBrain workflow system has been used in multiple Earth science applications, including the monitoring of global agricultural drought, the assessment of flood damage, the derivation of national crop condition and progress information, and the detection of nuclear proliferation facilities and events.

  20. Complex hydrides for hydrogen storage

    DOEpatents

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  1. Feasibility study in the application of optical signal analysis to non-destructive testing of complex structures

    NASA Technical Reports Server (NTRS)

    Baker, B.; Brown, H.

    1974-01-01

    Advantages of the large time bandwidth product of optical processing are presented. Experiments were performed to study the feasibility of the use of optical spectral analysis for detection of flaws in structural elements excited by random noise. Photographic and electronic methods of comparison of complex spectra were developed. Limitations were explored, and suggestions for further work are offered.

  2. Biochemical Reconstitution of the WAVE Regulatory Complex

    PubMed Central

    Chen, Baoyu; Padrick, Shae B.; Henry, Lisa; Rosen, Michael K.

    2014-01-01

    The WAVE regulatory complex (WRC) is a 400-KDa heteropentameric protein assembly that plays a central role in controlling actin cytoskeletal dynamics in many cellular processes. The WRC acts by integrating diverse cellular cues and stimulating the actin nucleating activity of the Arp2/3 complex at membranes. Biochemical and biophysical studies of the underlying mechanisms of these processes require large amounts of purified WRC. Recent success in recombinant expression, reconstitution, purification and crystallization of the WRC has greatly advanced our understanding of the inhibition, activation and membrane recruitment mechanisms of this complex. But many important questions remain to be answered. Here we summarize and update the methods developed in our laboratory, which allow reliable and flexible production of tens of milligrams of recombinant WRC of crystallographic quality, sufficient for many biochemical and structural studies. PMID:24630101

  3. Complex Fluids and Hydraulic Fracturing.

    PubMed

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  4. CD147 is a regulatory subunit of the gamma-secretase complex inAlzheimer's disease amyloid beta-peptide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter J.

    2005-04-06

    {gamma}-secretase is a membrane protein complex that cleaves the {beta}-amyloid precursor protein (APP) within the transmembrane region, following prior processing by {beta}-secretase, producing amyloid {beta}-peptides (A{beta}{sub 40} and A{beta}{sub 42}). Errant production of A{beta}-peptides that substantially increases A{beta}{sub 42} production has been associated with the formation of amyloid plaques in Alzheimer's disease patients. Biophysical and genetic studies indicate that presenilin-1 (Psn-1), which contains the proteolytic active site, and three other membrane proteins, nicastrin (Nct), APH-1, and PEN-2 are required to form the core of the active {gamma}-secretase complex. Here, we report the purification of the native {gamma}-secretase complexes from HeLamore » cell membranes and the identification of an additional {gamma}-secretase complex subunit, CD147, a transmembrane glycoprotein with two immunoglobulin-like domains. The presence of this subunit as an integral part of the complex itself was confirmed through co-immunoprecipitation studies of the purified protein from HeLa cells and solubilized complexes from other cell lines such as neural cell HCN-1A and HEK293. Depletion of CD147 by RNA interference was found to increase the production of A{beta} peptides without changing the expression level of the other {gamma}-secretase components or APP substrates while CD147 overexpression had no statistically significant effect on amyloid {beta}-peptide production, other {gamma}-secretase components or APP substrates, indicating that the presence of the CD147 subunit within the {gamma}-secretase complex directly down-modulates the production of A{beta}-peptides. {gamma}-secretase was first recognized through its role in the production of the A{beta} peptides that are pathogenic in Alzheimer's disease (AD) (1). {gamma}-secretase is a membrane protein complex with unusual aspartyl protease activity that cleaves a variety of type I membrane proteins, such as APP, CD44, DCC, ErbB4, E-cadherin, LRP, N-cadherin, Nectin-1, and Notch, within their transmembranous regions (2-11); therefore, in addition to its role in AD, {gamma}-secretase has been found to participate in other important biological functions, such as intracellular signaling. {gamma}-secretase processing of APP requires prior removal of a major fragment of the APP extracellular domain (sAPP{sub {beta}}) by {beta}-secretase to yield a membrane bound fragment (APP CTF{sub {beta}}). Subsequent cleavage of this membrane bound fragment by {gamma}-secretase results in the release of the Alzheimer's disease (AD) associated amyloid {beta}-peptides (12). The proteolytic activity of {gamma}-secretase is found not to be critically dependent on the specific sequence, but instead on the size of the extracellular domain (13); such sequence independent characteristics of the substrate are reminiscent of those of the 26S proteasome complex that cleaves substrates in a non-sequence specific manner. {gamma}-secretase is present in almost all animal species, vertebrates and invertebrates; it is expressed in many human organs and tissues.« less

  5. A simplified bioprocess for human alpha-fetoprotein production from inclusion bodies.

    PubMed

    Leong, Susanna S J; Middelberg, Anton P J

    2007-05-01

    A simple and effective Escherichia coli (E. coli) bioprocess is demonstrated for the preparation of recombinant human alpha-fetoprotein (rhAFP), a pharmaceutically promising protein that has important immunomodulatory functions. The new rhAFP process employs only unit operations that are easy to scale and validate, and reduces the complexity embedded in existing inclusion body processing methods. A key requirement in the establishment of this process was the attainment of high purity rhAFP prior to protein refolding because (i) rhAFP binds easily to hydrophobic contaminants once refolded, and (ii) rhAFP aggregates during renaturation, in a contaminant- dependent way. In this work, direct protein extraction from cell suspension was coupled with a DNA precipitation-centrifugation step prior to purification using two simple chromatographic steps. Refolding was conducted using a single-step, redox-optimized dilution refolding protocol, with refolding success determined by reversed phase HPLC analysis, ELISA, and circular dichroism spectroscopy. Quantitation of DNA and protein contaminant loads after each unit operation showed that contaminant levels were reduced to levels comparable to traditional flowsheets. Protein microchemical modification due to carbamylation in this urea-based process was identified and minimized, yielding a final refolded and purified product that was significantly purified from carbamylated variants. Importantly, this work conclusively demonstrates, for the first time, that a chemical extraction process can substitute the more complex traditional inclusion body processing flowsheet, without compromising product purity and yield. This highly intensified and simplified process is expected to be of general utility for the preparation of other therapeutic candidates expressed as inclusion bodies. (c) 2006 Wiley Periodicals, Inc.

  6. Comparison of roll-to-roll replication approaches for microfluidic and optical functions in lab-on-a-chip diagnostic devices

    NASA Astrophysics Data System (ADS)

    Brecher, Christian; Baum, Christoph; Bastuck, Thomas

    2015-03-01

    Economically advantageous microfabrication technologies for lab-on-a-chip diagnostic devices substituting commonly used glass etching or injection molding processes are one of the key enablers for the emerging market of microfluidic devices. On-site detection in fields of life sciences, point of care diagnostics and environmental analysis requires compact, disposable and highly functionalized systems. Roll-to-roll production as a high volume process has become the emerging fabrication technology for integrated, complex high technology products within recent years (e.g. fuel cells). Differently functionalized polymer films enable researchers to create a new generation of lab-on-a-chip devices by combining electronic, microfluidic and optical functions in multilayer architecture. For replication of microfluidic and optical functions via roll-to-roll production process competitive approaches are available. One of them is to imprint fluidic channels and optical structures of micro- or nanometer scale from embossing rollers into ultraviolet (UV) curable lacquers on polymer substrates. Depending on dimension, shape and quantity of those structures there are alternative manufacturing technologies for the embossing roller. Ultra-precise diamond turning, electroforming or casting polymer materials are used either for direct structuring or manufacturing of roller sleeves. Mastering methods are selected for application considering replication quality required and structure complexity. Criteria for the replication quality are surface roughness and contour accuracy. Structure complexity is evaluated by shapes producible (e.g. linear, circular) and aspect ratio. Costs for the mastering process and structure lifetime are major cost factors. The alternative replication approaches are introduced and analyzed corresponding to the criteria presented. Advantages and drawbacks of each technology are discussed and exemplary applications are presented.

  7. Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production.

    PubMed

    Delabona, Priscila da Silva; Farinas, Cristiane Sanchez; da Silva, Mateus Ribeiro; Azzoni, Sindelia Freitas; Pradella, José Geraldo da Cruz

    2012-03-01

    The on-site production of cellulases is an important strategy for the development of sustainable second-generation ethanol production processes. This study concerns the use of a specific cellulolytic enzyme complex for hydrolysis of pretreated sugar cane bagasse. Glycosyl hydrolases (FPase, xylanase, and β-glucosidase) were produced using a new strain of Trichoderma harzianum, isolated from the Amazon rainforest and cultivated under different conditions. The influence of the carbon source was first investigated using shake-flask cultures. Selected carbon sources were then further studied under different pH conditions using a stirred tank bioreactor. Enzymatic activities up to 121 FPU/g, 8000 IU/g, and 1730 IU/g of delignified steam-exploded bagasse+sucrose were achieved for cellulase, xylanase and β-glucosidase, respectively. This enzymatic complex was used to hydrolyze pretreated sugar cane bagasse. A comparative evaluation, using an enzymatic extract from Trichoderma reesei RUTC30, indicated similar performance of the T. harzianum enzyme complex, being a potential candidate for on-site production of enzymes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Influence of Different Container Closure Systems and Capping Process Parameters on Product Quality and Container Closure Integrity (CCI) in GMP Drug Product Manufacturing.

    PubMed

    Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander

    2016-01-01

    Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range tested for the tested container closure systems. Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in the literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters contribute to the final capping result.In this study, we used different container closure system configurations from different good manufacturing process drug product fill & finish facilities to investigate the influence of the vial size and the rubber stopper design on the capping process. In addition, we compared two examples of large-scale good manufacturing process capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force. © PDA, Inc. 2016.

  9. Mining manufacturing data for discovery of high productivity process characteristics.

    PubMed

    Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou

    2010-06-01

    Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.

  10. A study on the applications of AI in finishing of additive manufacturing parts

    NASA Astrophysics Data System (ADS)

    Fathima Patham, K.

    2017-06-01

    Artificial intelligent and computer simulation are the technological powerful tools for solving complex problems in the manufacturing industries. Additive Manufacturing is one of the powerful manufacturing techniques that provide design flexibilities to the products. The products with complex shapes are directly manufactured without the need of any machining and tooling using Additive Manufacturing. However, the main drawback of the components produced using the Additive Manufacturing processes is the quality of the surfaces. This study aims to minimize the defects caused during Additive Manufacturing with the aid of Artificial Intelligence. The developed AI system has three layers, each layer is trying to eliminate or minimize the production errors. The first layer of the AI system optimizes the digitization of the 3D CAD model of the product and hence reduces the stair case errors. The second layer of the AI system optimizes the 3D printing machine parameters in order to eliminate the warping effect. The third layer of AI system helps to choose the surface finishing technique suitable for the printed component based on the Degree of Complexity of the product and the material. The efficiency of the developed AI system was examined on the functional parts such as gears.

  11. Electron transport chain dysfunction by H(2)O (2) is linked to increased reactive oxygen species production and iron mobilization by lipoperoxidation: studies using Saccharomyces cerevisiae mitochondria.

    PubMed

    Cortés-Rojo, Christian; Estrada-Villagómez, Mirella; Calderón-Cortés, Elizabeth; Clemente-Guerrero, Mónica; Mejía-Zepeda, Ricardo; Boldogh, Istvan; Saavedra-Molina, Alfredo

    2011-04-01

    The mitochondrial electron transport chain (ETC) contains thiol groups (-SH) which are reversibly oxidized to modulate ETC function during H(2)O(2) overproduction. Since deleterious effects of H(2)O(2) are not limited to -SH oxidation, due to the formation of other H(2)O(2)-derived species, some processes like lipoperoxidation could enhance the effects of H(2)O(2) over ETC enzymes, disrupt their modulation by -SH oxidation and increase superoxide production. To verify this hypothesis, we tested the effects of H(2)O(2) on ETC activities, superoxide production and iron mobilization in mitochondria from lipoperoxidation-resistant native yeast and lipoperoxidation-sensitized yeast. Only complex III activity from lipoperoxidation-sensitive mitochondria exhibited a higher susceptibility to H(2)O(2) and increased superoxide production. The recovery of ETC activity by the thiol reductanct β-mercaptoethanol (BME) was also altered at complex III, and a role was attributed to lipoperoxidation, the latter being also responsible for iron release. A hypothetical model linking lipoperoxidation, increased complex III damage, superoxide production and iron release is given.

  12. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii.

    PubMed

    Pérez-Pérez, María Esther; Couso, Inmaculada; Crespo, José L

    2017-07-12

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii . The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae.

  13. The TOR Signaling Network in the Model Unicellular Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Pérez-Pérez, María Esther; Crespo, José L.

    2017-01-01

    Cell growth is tightly coupled to nutrient availability. The target of rapamycin (TOR) kinase transmits nutritional and environmental cues to the cellular growth machinery. TOR functions in two distinct multiprotein complexes, termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). While the structure and functions of TORC1 are highly conserved in all eukaryotes, including algae and plants, TORC2 core proteins seem to be missing in photosynthetic organisms. TORC1 controls cell growth by promoting anabolic processes, including protein synthesis and ribosome biogenesis, and inhibiting catabolic processes such as autophagy. Recent studies identified rapamycin-sensitive TORC1 signaling regulating cell growth, autophagy, lipid metabolism, and central metabolic pathways in the model unicellular green alga Chlamydomonas reinhardtii. The central role that microalgae play in global biomass production, together with the high biotechnological potential of these organisms in biofuel production, has drawn attention to the study of proteins that regulate cell growth such as the TOR kinase. In this review we discuss the recent progress on TOR signaling in algae. PMID:28704927

  14. Biodiesel production by combined fatty acids separation and subsequently enzymatic esterification to improve the low temperature properties.

    PubMed

    Wang, Meng; Nie, Kaili; Cao, Hao; Deng, Li; Wang, Fang; Tan, Tianwei

    2014-12-01

    The poor low-temperature properties of biodiesel, which provokes easy crystallization at low temperature, can cause fuel line plugging and limits its blending amount with petro-diesel. This work aimed to study the production of biodiesel with a new process of improving the low temperature performance of biodiesel. Waste cooking oil was first hydrolyzed into fatty acids (FAs) by 60g immobilized lipase and 240g RO water in 15h. Then, urea complexation was used to divide the FAs into saturated and unsaturated components. The conditions for complexation were: FA-to-urea ratio 1:2 (w/w), methanol to FA ratio 5:1 (v/v), duration 2h. The saturated and unsaturated FAs were then converted to iso-propyl and methyl esters by lipase, respectively. Finally, the esters were mixed together. The CFPP of this mixture was decreased from 5°C to -3°C. Hydrolysis, urea complexation and enzymic catalyzed esterification processes are discussed in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Model-based MPC enables curvilinear ILT using either VSB or multi-beam mask writers

    NASA Astrophysics Data System (ADS)

    Pang, Linyong; Takatsukasa, Yutetsu; Hara, Daisuke; Pomerantsev, Michael; Su, Bo; Fujimura, Aki

    2017-07-01

    Inverse Lithography Technology (ILT) is becoming the choice for Optical Proximity Correction (OPC) of advanced technology nodes in IC design and production. Multi-beam mask writers promise significant mask writing time reduction for complex ILT style masks. Before multi-beam mask writers become the main stream working tools in mask production, VSB writers will continue to be the tool of choice to write both curvilinear ILT and Manhattanized ILT masks. To enable VSB mask writers for complex ILT style masks, model-based mask process correction (MB-MPC) is required to do the following: 1). Make reasonable corrections for complex edges for those features that exhibit relatively large deviations from both curvilinear ILT and Manhattanized ILT designs. 2). Control and manage both Edge Placement Errors (EPE) and shot count. 3. Assist in easing the migration to future multi-beam mask writer and serve as an effective backup solution during the transition. In this paper, a solution meeting all those requirements, MB-MPC with GPU acceleration, will be presented. One model calibration per process allows accurate correction regardless of the target mask writer.

  16. ART AND SCIENCE OF IMAGE MAPS.

    USGS Publications Warehouse

    Kidwell, Richard D.; McSweeney, Joseph A.

    1985-01-01

    The visual image of reflected light is influenced by the complex interplay of human color discrimination, spatial relationships, surface texture, and the spectral purity of light, dyes, and pigments. Scientific theories of image processing may not always achieve acceptable results as the variety of factors, some psychological, are in part, unpredictable. Tonal relationships that affect digital image processing and the transfer functions used to transform from the continuous-tone source image to a lithographic image, may be interpreted for an insight of where art and science fuse in the production process. The application of art and science in image map production at the U. S. Geological Survey is illustrated and discussed.

  17. Expedient antibiotics production: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bienkowski, P.R.; Byers, C.H.; Lee, D.D.

    The literature on the manufacture, separation and purification, and clinical uses of antibiotics was reviewed, and a bibliography of the pertinent material was completed. Five antimicrobial drugs, penicillin V and G, (and amoxicillin with clavulanic acid), Cephalexin (a cephalosporin), tetracycline and oxytetracycline, Bacitracin (topical), and sulfonamide (chemically produced) were identified for emergency production. Plants that manufacture antibiotics in the continental United States, Mexico, and Puerto Rico have been identified along with potential alternate sites such as those where SCP, enzyme, and fermentation ethanol are produced. Detailed process flow sheets and process descriptions have been derived from the literature and documented.more » This investigation revealed that a typical antibiotic-manufacturing facility is composed of two main sections: (1) a highly specialized, but generic, fermentation unit and (2) a multistep, complex separation and purification unit which is specific to a particular antibiotic product. The fermentation section requires specialized equipment for operation in a sterile environment which is not usually available in other industries. The emergency production of antibiotics under austere conditions will be feasible only if a substantial reduction in the complexity and degree of separation and purity normally required can be realized. Detailed instructions were developed to assist state and federal officials who would be directing the resumption of antibiotic production after a nuclear attack. 182 refs., 54 figs., 26 tabs.« less

  18. 75 FR 22114 - Aluminum Extrusions from the People's Republic of China: Initiation of Countervailing Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... sampling method. Section 771(4)(A) of the Act defines the ``industry'' as the producers as a whole of a... the PRC. At this time, given the unique nature of the alleged subsidy and the complex methodological... process, such as aluminum products produced by a method of casting. Cast aluminum products are properly...

  19. Perestroika and Change in Soviet Weapons Acquisition

    DTIC Science & Technology

    1990-06-01

    attempted to transfer features of defense industry-mainly managers and methods-to the civilian sector to improve productivity and output. On assuming...to the defense complex absorbed defense managers ’ attention, diverted defense production capacity, and redirected new investment to food processing...equipment drew on additional management andproduction caaite and required more diversion of invest- mnet. Defense procurement reductions arising from

  20. Use Zircon-Ilmenite Concentrate in Steelmaking

    NASA Astrophysics Data System (ADS)

    Fedoseev, S. N.; Volkova, T. N.

    2016-08-01

    Market requirements cause a constant search for new materials and technologies, for their immediate use in increasing requirements for material and energy efficiency, as well as to the quality of steel. In practice, steel production in the tended recently of more stringent requirements for the chemical composition of the steel and its contamination by nonmetallic inclusions, gas and non-ferrous metals. The main ways of increasing of strength and performance characteristics fabricated metal products related to the profound and effective influence on the crystallizing metal structure by furnace processing of the melt with refining and modifying additives. It can be argued that the furnace processing of steel and iron chemically active metals (alkali-earth metals, rare-earth metals, and others.) is an integral part of modern production of high quality products and competitive technologies. Important condition for development of methods secondary metallurgy of steel is the use of relatively inexpensive materials in a variety of complex alloys and blends, allowing targeted control of physical and chemical state of the molten metal and, therefore, receive steel with improved performance. In this connection the development of modifying natural materials metallurgy technologies presented complex ores containing titanium and zirconium, is a very urgent task.

  1. Landscape genetics of high mountain frog metapopulations

    USGS Publications Warehouse

    Murphy, M.A.; Dezzani, R.; Pilliod, D.S.; Storfer, A.

    2010-01-01

    Explaining functional connectivity among occupied habitats is crucial for understanding metapopulation dynamics and species ecology. Landscape genetics has primarily focused on elucidating how ecological features between observations influence gene flow. Functional connectivity, however, may be the result of both these between-site (landscape resistance) landscape characteristics and at-site (patch quality) landscape processes that can be captured using network based models. We test hypotheses of functional connectivity that include both between-site and at-site landscape processes in metapopulations of Columbia spotted frogs (Rana luteiventris) by employing a novel justification of gravity models for landscape genetics (eight microsatellite loci, 37 sites, n = 441). Primarily used in transportation and economic geography, gravity models are a unique approach as flow (e.g. gene flow) is explained as a function of three basic components: distance between sites, production/attraction (e.g. at-site landscape process) and resistance (e.g. between-site landscape process). The study system contains a network of nutrient poor high mountain lakes where we hypothesized a short growing season and complex topography between sites limit R. luteiventris gene flow. In addition, we hypothesized production of offspring is limited by breeding site characteristics such as the introduction of predatory fish and inherent site productivity. We found that R. luteiventris connectivity was negatively correlated with distance between sites, presence of predatory fish (at-site) and topographic complexity (between-site). Conversely, site productivity (as measured by heat load index, at-site) and growing season (as measured by frost-free period between-sites) were positively correlated with gene flow. The negative effect of predation and positive effect of site productivity, in concert with bottleneck tests, support the presence of source-sink dynamics. In conclusion, gravity models provide a powerful new modelling approach for examining a wide range of both basic and applied questions in landscape genetics.

  2. Biogas Production: Microbiology and Technology.

    PubMed

    Schnürer, Anna

    Biogas, containing energy-rich methane, is produced by microbial decomposition of organic material under anaerobic conditions. Under controlled conditions, this process can be used for the production of energy and a nutrient-rich residue suitable for use as a fertilising agent. The biogas can be used for production of heat, electricity or vehicle fuel. Different substrates can be used in the process and, depending on substrate character, various reactor technologies are available. The microbiological process leading to methane production is complex and involves many different types of microorganisms, often operating in close relationships because of the limited amount of energy available for growth. The microbial community structure is shaped by the incoming material, but also by operating parameters such as process temperature. Factors leading to an imbalance in the microbial community can result in process instability or even complete process failure. To ensure stable operation, different key parameters, such as levels of degradation intermediates and gas quality, are often monitored. Despite the fact that the anaerobic digestion process has long been used for industrial production of biogas, many questions need still to be resolved to achieve optimal management and gas yields and to exploit the great energy and nutrient potential available in waste material. This chapter discusses the different aspects that need to be taken into consideration to achieve optimal degradation and gas production, with particular focus on operation management and microbiology.

  3. Housing Seasonal Workers for the Minnesota Processed Vegetable Industry

    ERIC Educational Resources Information Center

    Ziebarth, Ann

    2006-01-01

    The place where we live and work is a reflection of a complex set of economic conditions and social relationships. Very little information is available regarding housing for Minnesota's migrant workers. It is estimated that approximately 20,000 people migrate to Minnesota each summer to work in the production and processing of green peas and sweet…

  4. Supplier selection based on complex indicator of finished products quality

    NASA Astrophysics Data System (ADS)

    Chernikova, Anna; Golovkina, Svetlana; Kuzmina, Svetlana; Demenchenok, Tatiana

    2017-10-01

    In the article the authors consider possible directions of solving problems when selecting a supplier for deliveries of raw materials and materials of an industrial enterprise, possible difficulties are analyzed and ways of their solution are suggested. Various methods are considered to improve the efficiency of the supplier selection process based on the analysis of the paper bags supplier selection process for the needs of the construction company. In the article the calculation of generalized indicators and complex indicator, which should include single indicators, formed in groups that reflect different aspects of quality, is presented.

  5. Method for the preparation of thin-skinned asymmetric reverse osmosis membranes and products thereof

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J. (Inventor); Katz, M. G.

    1984-01-01

    A method for preparing water insoluble asymmetric membranes from water soluble polymers is discussed. The process involves casting a film of the polymer, partially drying it, and then contacting it with a concentrated solution of a transition metal salt. The transition metal ions render the polymer insoluable and are believed to form a complex with it. Optionally, the polymer is crosslinked with heat or radiation. The most preferred polymer is poly(vinyl alcohol). The most preferred complexing salt is copper sulfate. The process and the metal ion linked membranes are discussed. The membranes are reverse osmosis membranes.

  6. Process mining is an underutilized clinical research tool in transfusion medicine.

    PubMed

    Quinn, Jason G; Conrad, David M; Cheng, Calvino K

    2017-03-01

    To understand inventory performance, transfusion services commonly use key performance indicators (KPIs) as summary descriptors of inventory efficiency that are graphed, trended, and used to benchmark institutions. Here, we summarize current limitations in KPI-based evaluation of blood bank inventory efficiency and propose process mining as an ideal methodology for application to inventory management research to improve inventory flows and performance. The transit of a blood product from inventory receipt to final disposition is complex and relates to many internal and external influences, and KPIs may be inadequate to fully understand the complexity of the blood supply chain and how units interact with its processes. Process mining lends itself well to analysis of blood bank inventories, and modern laboratory information systems can track nearly all of the complex processes that occur in the blood bank. Process mining is an analytical tool already used in other industries and can be applied to blood bank inventory management and research through laboratory information systems data using commercial applications. Although the current understanding of real blood bank inventories is value-centric through KPIs, it potentially can be understood from a process-centric lens using process mining. © 2017 AABB.

  7. A Program Office Guide to Technology Transfer

    DTIC Science & Technology

    1988-11-01

    Requirements 2-4 2.4.1 Equipment Complexity 2-5 2.4.2 Industrial Capabilities 2-5 2.4.3 Logistics Requirements/Configuration Control 2-5 2.4.4 Schedule...accomplishment of these milestones re- with the leverage of the FSD and production pro- sults in second source full production capability , grams. For more...MANUFACTURING PROCESSES BUILD UP COMPETITIVE PRODUCTION RATE CAPABILITY DURING LOT III Table 1.2-1 AMRAAM Technology Transfer The leader-follower approach is

  8. Quality by control: Towards model predictive control of mammalian cell culture bioprocesses.

    PubMed

    Sommeregger, Wolfgang; Sissolak, Bernhard; Kandra, Kulwant; von Stosch, Moritz; Mayer, Martin; Striedner, Gerald

    2017-07-01

    The industrial production of complex biopharmaceuticals using recombinant mammalian cell lines is still mainly built on a quality by testing approach, which is represented by fixed process conditions and extensive testing of the end-product. In 2004 the FDA launched the process analytical technology initiative, aiming to guide the industry towards advanced process monitoring and better understanding of how critical process parameters affect the critical quality attributes. Implementation of process analytical technology into the bio-production process enables moving from the quality by testing to a more flexible quality by design approach. The application of advanced sensor systems in combination with mathematical modelling techniques offers enhanced process understanding, allows on-line prediction of critical quality attributes and subsequently real-time product quality control. In this review opportunities and unsolved issues on the road to a successful quality by design and dynamic control implementation are discussed. A major focus is directed on the preconditions for the application of model predictive control for mammalian cell culture bioprocesses. Design of experiments providing information about the process dynamics upon parameter change, dynamic process models, on-line process state predictions and powerful software environments seem to be a prerequisite for quality by control realization. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Towards better process understanding: chemometrics and multivariate measurements in manufacturing of solid dosage forms.

    PubMed

    Matero, Sanni; van Den Berg, Frans; Poutiainen, Sami; Rantanen, Jukka; Pajander, Jari

    2013-05-01

    The manufacturing of tablets involves many unit operations that possess multivariate and complex characteristics. The interactions between the material characteristics and process related variation are presently not comprehensively analyzed due to univariate detection methods. As a consequence, current best practice to control a typical process is to not allow process-related factors to vary i.e. lock the production parameters. The problem related to the lack of sufficient process understanding is still there: the variation within process and material properties is an intrinsic feature and cannot be compensated for with constant process parameters. Instead, a more comprehensive approach based on the use of multivariate tools for investigating processes should be applied. In the pharmaceutical field these methods are referred to as Process Analytical Technology (PAT) tools that aim to achieve a thorough understanding and control over the production process. PAT includes the frames for measurement as well as data analyzes and controlling for in-depth understanding, leading to more consistent and safer drug products with less batch rejections. In the optimal situation, by applying these techniques, destructive end-product testing could be avoided. In this paper the most prominent multivariate data analysis measuring tools within tablet manufacturing and basic research on operations are reviewed. Copyright © 2013 Wiley Periodicals, Inc.

  10. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less

  11. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing

    DOE PAGES

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; ...

    2017-01-17

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We havemore » applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. Furthermore, a more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.« less

  12. Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing.

    PubMed

    Mizrachi, Eshchar; Verbeke, Lieven; Christie, Nanette; Fierro, Ana C; Mansfield, Shawn D; Davis, Mark F; Gjersing, Erica; Tuskan, Gerald A; Van Montagu, Marc; Van de Peer, Yves; Marchal, Kathleen; Myburg, Alexander A

    2017-01-31

    As a consequence of their remarkable adaptability, fast growth, and superior wood properties, eucalypt tree plantations have emerged as key renewable feedstocks (over 20 million ha globally) for the production of pulp, paper, bioenergy, and other lignocellulosic products. However, most biomass properties such as growth, wood density, and wood chemistry are complex traits that are hard to improve in long-lived perennials. Systems genetics, a process of harnessing multiple levels of component trait information (e.g., transcript, protein, and metabolite variation) in populations that vary in complex traits, has proven effective for dissecting the genetics and biology of such traits. We have applied a network-based data integration (NBDI) method for a systems-level analysis of genes, processes and pathways underlying biomass and bioenergy-related traits using a segregating Eucalyptus hybrid population. We show that the integrative approach can link biologically meaningful sets of genes to complex traits and at the same time reveal the molecular basis of trait variation. Gene sets identified for related woody biomass traits were found to share regulatory loci, cluster in network neighborhoods, and exhibit enrichment for molecular functions such as xylan metabolism and cell wall development. These findings offer a framework for identifying the molecular underpinnings of complex biomass and bioprocessing-related traits. A more thorough understanding of the molecular basis of plant biomass traits should provide additional opportunities for the establishment of a sustainable bio-based economy.

  13. Bacterial flagella and Type III secretion: case studies in the evolution of complexity.

    PubMed

    Pallen, M J; Gophna, U

    2007-01-01

    Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.

  14. A GaAs vector processor based on parallel RISC microprocessors

    NASA Astrophysics Data System (ADS)

    Misko, Tim A.; Rasset, Terry L.

    A vector processor architecture based on the development of a 32-bit microprocessor using gallium arsenide (GaAs) technology has been developed. The McDonnell Douglas vector processor (MVP) will be fabricated completely from GaAs digital integrated circuits. The MVP architecture includes a vector memory of 1 megabyte, a parallel bus architecture with eight processing elements connected in parallel, and a control processor. The processing elements consist of a reduced instruction set CPU (RISC) with four floating-point coprocessor units and necessary memory interface functions. This architecture has been simulated for several benchmark programs including complex fast Fourier transform (FFT), complex inner product, trigonometric functions, and sort-merge routine. The results of this study indicate that the MVP can process a 1024-point complex FFT at a speed of 112 microsec (389 megaflops) while consuming approximately 618 W of power in a volume of approximately 0.1 ft-cubed.

  15. An exploration in mineral supply chain mapping using tantalum as an example

    USGS Publications Warehouse

    Soto-Viruet, Yadira; Menzie, W. David; Papp, John F.; Yager, Thomas R.

    2013-01-01

    This report uses the supply chain of tantalum (Ta) to investigate the complexity of mineral and metal supply chains in general and show how they can be mapped. A supply chain is made up of all the manufacturers, suppliers, information networks, and so forth, that provide the materials and parts that go into making up a final product. The mineral portion of the supply chain begins with mineral material in the ground (the ore deposit); extends through a series of processes that include mining, beneficiation, processing (smelting and refining), semimanufacture, and manufacture; and continues through transformation of the mineral ore into concentrates, refined mineral commodities, intermediate forms (such as metals and alloys), component parts, and, finally, complex products. This study analyses the supply chain of tantalum beginning with minerals in the ground to many of the final goods that contain tantalum.

  16. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli.

    PubMed

    Zhang, Congqiang; Seow, Vui Yin; Chen, Xixian; Too, Heng-Phon

    2018-05-11

    Optimization of metabolic pathways consisting of large number of genes is challenging. Multivariate modular methods (MMMs) are currently available solutions, in which reduced regulatory complexities are achieved by grouping multiple genes into modules. However, these methods work well for balancing the inter-modules but not intra-modules. In addition, application of MMMs to the 15-step heterologous route of astaxanthin biosynthesis has met with limited success. Here, we expand the solution space of MMMs and develop a multidimensional heuristic process (MHP). MHP can simultaneously balance different modules by varying promoter strength and coordinating intra-module activities by using ribosome binding sites (RBSs) and enzyme variants. Consequently, MHP increases enantiopure 3S,3'S-astaxanthin production to 184 mg l -1 day -1 or 320 mg l -1 . Similarly, MHP improves the yields of nerolidol and linalool. MHP may be useful for optimizing other complex biochemical pathways.

  17. Removing sulphur oxides from a fluid stream

    DOEpatents

    Katz, Torsten; Riemann, Christian; Bartling, Karsten; Rigby, Sean Taylor; Coleman, Luke James Ivor; Lail, Marty Alan

    2014-04-08

    A process for removing sulphur oxides from a fluid stream, such as flue gas, comprising: providing a non-aqueous absorption liquid containing at least one hydrophobic amine, the liquid being incompletely miscible with water; treating the fluid stream in an absorption zone with the non-aqueous absorption liquid to transfer at least part of the sulphur oxides into the non-aqueous absorption liquid and to form a sulphur oxide-hydrophobic amine-complex; causing the non-aqueous absorption liquid to be in liquid-liquid contact with an aqueous liquid whereby at least part of the sulphur oxide-hydrophobic amine-complex is hydrolyzed to release the hydrophobic amine and sulphurous hydrolysis products, and at least part of the sulphurous hydrolysis products is transferred into the aqueous liquid; separating the aqueous liquid from the non-aqueous absorption liquid. The process mitigates absorbent degradation problems caused by sulphur dioxide and oxygen in flue gas.

  18. Direct-Write Printing on Three-Dimensional Geometries for Miniaturized Detector and Electronic Assemblies

    NASA Technical Reports Server (NTRS)

    Paquette, Beth; Samuels, Margaret; Chen, Peng

    2017-01-01

    Direct-write printing techniques will enable new detector assemblies that were not previously possible with traditional assembly processes. Detector concepts were manufactured using this technology to validate repeatability. Additional detector applications and printed wires on a 3-dimensional magnetometer bobbin will be designed for print. This effort focuses on evaluating performance for direct-write manufacturing techniques on 3-dimensional surfaces. Direct-write manufacturing has the potential to reduce mass and volume for fabrication and assembly of advanced detector concepts by reducing trace widths down to 10 microns, printing on complex geometries, allowing new electronic concept production, and reduced production times of complex those electronics.

  19. Solar photolysis of water

    NASA Technical Reports Server (NTRS)

    Ryason, P. R. (Inventor)

    1978-01-01

    A cyclic process is described for the solar photolysis of water, including a first stage in which water is reduced in the presence of a Eu(+2) photooxidizable reagent producing hydrogen and spent oxidized Eu(+3) reagent. The spent reagent Eu(+3) is reduced by means of a transition metal ligand complex reductant, RuL(+3) in a photoexcited state, such as a ruthenium pyridyl complex. Due to competing reactions between the photolysis and regeneration products, the photooxidation reaction must be separated from the regeneration in space and time by supporting the reagent and/or the reductant on solid supports and utilizing pH, wavelength and flow control to maximize hydrogen and oxygen production.

  20. Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications.

    PubMed

    Sofokleous, Panagiotis; Stride, Eleanor; Bonfield, William; Edirisinghe, Mohan

    2013-01-01

    Electrohydrodynamic (EHD) processing has attracted substantial interest in the technological and pharmaceutical sectors in recent years. Given the complexity of the process, exploring new ideas for EHD electrospraying and electrospinning delivery is a challenge. In this article, the design, construction and testing of a portable handheld EHD multi-needle device are described to produce multifunctional particles and fibers. Solid and encapsulated polymer particles and fibers were generated in order to study the performance of the device. The intrinsic properties of the feed solution/suspension and the processing conditions were adjusted to ensure robustness of the process and give uniform and reproducible products, with diameters ranging from the sub-micrometer scale to a few micrometers. These products have a broad range of applications in many advanced industrial sectors e.g. drug delivery systems, wound dressing patches, low calorie food products and cosmetics. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate.

    PubMed

    Zhou, Xin; Zhou, Xuelian; Tang, Xiusheng; Xu, Yong

    2018-08-01

    One of the major obstacles in process of lignocellulosic biorefinery is the utilization of pre-hydrolysate from pre-treatment. Although lignocellulosic pre-hydrolysate can serve as an economic starting material for xylonic acid production, the advancement of xylonic acid or xylonate is still limited by further commercial value or applications. In the present study, xylose in the high concentration wheat straw pre-hydrolysate was first in-situ biooxidized to xylonate by Gluconobacter oxydans. To meet the needs of commercialization, crude powdered calcium xylonate was prepared by drying process and calcium xylonate content in the prepared crude product was more than 70%. Then, the calcium xylonate product was evaluated as concrete admixture without any complex purification steps and the results demonstrated that xylonate could improve the performance of concrete. Overall, the crude xylonate product directly produced from low-cost wheat straw pre-hydrolysate can potentially be developed as retarding reducer, which could subsequently benefit lignocellulosic biorefinery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Modeling of plant in vitro cultures: overview and estimation of biotechnological processes.

    PubMed

    Maschke, Rüdiger W; Geipel, Katja; Bley, Thomas

    2015-01-01

    Plant cell and tissue cultivations are of growing interest for the production of structurally complex and expensive plant-derived products, especially in pharmaceutical production. Problems with up-scaling, low yields, and high-priced process conditions result in an increased demand for models to provide comprehension, simulation, and optimization of production processes. In the last 25 years, many models have evolved in plant biotechnology; the majority of them are specialized models for a few selected products or nutritional conditions. In this article we review, delineate, and discuss the concepts and characteristics of the most commonly used models. Therefore, the authors focus on models for plant suspension and submerged hairy root cultures. The article includes a short overview of modeling and mathematics and integrated parameters, as well as the application scope for each model. The review is meant to help researchers better understand and utilize the numerous models published for plant cultures, and to select the most suitable model for their purposes. © 2014 Wiley Periodicals, Inc.

  3. The interface between morphology and phonology: Exploring a morpho-phonological deficit in spoken production

    PubMed Central

    Cohen-Goldberg, Ariel M.; Cholin, Joana; Miozzo, Michele; Rapp, Brenda

    2013-01-01

    Morphological and phonological processes are tightly interrelated in spoken production. During processing, morphological processes must combine the phonological content of individual morphemes to produce a phonological representation that is suitable for driving phonological processing. Further, morpheme assembly frequently causes changes in a word's phonological well-formedness that must be addressed by the phonology. We report the case of an aphasic individual (WRG) who exhibits an impairment at the morpho-phonological interface. WRG was tested on his ability to produce phonologically complex sequences (specifically, coda clusters of varying sonority) in heteromorphemic and tautomorphemic environments. WRG made phonological errors that reduced coda sonority complexity in multimorphemic words (e.g., passed→[pæstɪd]) but not in monomorphemic words (e.g., past). WRG also made similar insertion errors to repair stress clash in multimorphemic environments, confirming his sensitivity to cross-morpheme well-formedness. We propose that this pattern of performance is the result of an intact phonological grammar acting over the phonological content of morphemic representations that were weakly joined because of brain damage. WRG may constitute the first case of a morpho-phonological impairment—these results suggest that the processes that combine morphemes constitute a crucial component of morpho-phonological processing. PMID:23466641

  4. Computational Investigations of Trichoderma Reesei Cel7A Suggest New Routes for Enzyme Activity Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, G. T.; Payne, C. M.; Bu, L.

    2012-01-01

    The Trichoderma reesei Family 7 cellulase (Cel7A) is a key industrial enzyme in the production of biofuels from lignocellulosic biomass. It is a multi-modular enzyme with a Family 1 carbohydrate-binding module, a flexible O-glycosylated linker, and a large catalytic domain. We have used simulation to elucidate new functions for the 3 sub-domains, which suggests new routes to increase the activity of this central enzyme. These findings include new roles for glycosylation, which we have shown can be used to tune the binding affinity. We have also examined the structures of the catalytically-active complex of Cel7A and its non-processive counterpart, Cel7B,more » engaged on cellulose, which suggests allosteric mechanisms involved in chain binding when these cellulases are complexed on cellulose. Our computational results also suggest that product inhibition varies significantly between Cel7A and Cel7B, and we offer a molecular-level explanation for this observation. Finally, we discuss simulations of the absolute and relative binding free energy of cellulose ligands and various mutations along the CD tunnel, which will affect processivity and the ability of Cel7A (and related enzymes) to digest cellulose. These results highlight new considerations in protein engineering for processive and non-processive cellulases for production of lignocellulosic biofuels.« less

  5. Cation exchange concentraion of the Americium product from TRUEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barney, G.S.; Cooper, T.D.; Fisher, F.D.

    1991-06-01

    A transuranic extraction (TRUEX) process has been developed to separate and recover plutonium, americium, and other transuranic (TRU) elements from acid wastes. The main objective of the process is to reduce the effluent to below the TRU limit for actinide concentrations (<100 nCi/g of material) so it can be disposed of inexpensively. The process yields a dilute nitric acid stream containing low concentrations of the extracted americium product. This solution also contains residual plutonium and trace amounts of iron. The americium will be absorbed into a cation exchange resin bed to concentrate it for disposal or for future use. Themore » overall objective of these laboratory tests was to determine the performance of the cation exchange process under expected conditions of the TRUEX process. Effects of acid, iron, and americium concentrations on americium absorption on the resin were determined. Distribution coefficients for americium absorption from acide solutions on the resin were measured using batch equilibrations. Batch equilibrations were also used to measure americium absorption in the presence of complexants. This data will be used to identify complexants and solution conditions that can be used to elute the americium from the columns. The rate of absorption was measured by passing solutions containing americium through small columns of resin, varying the flowrates, and measuring the concentrations of americium in the effluent. The rate data will be used to estimate the minimum bed size of the columns required to concentrate the americium product. 11 refs. , 10 figs., 2 tabs.« less

  6. Technical Parameters Modeling of a Gas Probe Foaming Using an Active Experimental Type Research

    NASA Astrophysics Data System (ADS)

    Tîtu, A. M.; Sandu, A. V.; Pop, A. B.; Ceocea, C.; Tîtu, S.

    2018-06-01

    The present paper deals with a current and complex topic, namely - a technical problem solving regarding the modeling and then optimization of some technical parameters related to the natural gas extraction process. The study subject is to optimize the gas probe sputtering using experimental research methods and data processing by regular probe intervention with different sputtering agents. This procedure makes that the hydrostatic pressure to be reduced by the foam formation from the water deposit and the scrubbing agent which can be removed from the surface by the produced gas flow. The probe production data was analyzed and the so-called candidate for the research itself emerged. This is an extremely complex study and it was carried out on the field works, finding that due to the severe gas field depletion the wells flow decreases and the start of their loading with deposit water, was registered. It was required the regular wells foaming, to optimize the daily production flow and the disposal of the wellbore accumulated water. In order to analyze the process of natural gas production, the factorial experiment and other methods were used. The reason of this choice is that the method can offer very good research results with a small number of experimental data. Finally, through this study the extraction process problems were identified by analyzing and optimizing the technical parameters, which led to a quality improvement of the extraction process.

  7. Effects of build parameters on linear wear loss in plastic part produced by fused deposition modeling

    NASA Astrophysics Data System (ADS)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-07-01

    Fused Deposition Modeling (FDM) is one of the prominent additive manufacturing technologies for producing polymer products. FDM is a complex additive manufacturing process that can be influenced by many process conditions. The industrial demands required from the FDM process are increasing with higher level product functionality and properties. The functionality and performance of FDM manufactured parts are greatly influenced by the combination of many various FDM process parameters. Designers and researchers always pay attention to study the effects of FDM process parameters on different product functionalities and properties such as mechanical strength, surface quality, dimensional accuracy, build time and material consumption. However, very limited studies have been carried out to investigate and optimize the effect of FDM build parameters on wear performance. This study focuses on the effect of different build parameters on micro-structural and wear performance of FDM specimens using definitive screening design based quadratic model. This would reduce the cost and effort of additive manufacturing engineer to have a systematic approachto make decision among the manufacturing parameters to achieve the desired product quality.

  8. Organizational strategy, structure, and process.

    PubMed

    Miles, R E; Snow, C C; Meyer, A D; Coleman, H J

    1978-07-01

    Organizational adaptation is a topic that has received only limited and fragmented theoretical treatment. Any attempt to examine organizational adaptation is difficult, since the process is highly complex and changeable. The proposed theoretical framework deals with alternative ways in which organizations define their product-market domains (strategy) and construct mechanisms (structures and processes) to pursue these strategies. The framework is based on interpretation of existing literature and continuing studies in four industries (college textbook publishing, electronics, food processing, and health care).

  9. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis

    PubMed Central

    Crane, Erika A.

    2016-01-01

    Abstract Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody–drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  10. [New model of accumulation and agro-business: the ecological and epidemiological implications of the Ecuadorian cut flower production].

    PubMed

    Breilh, Jaime

    2007-01-01

    The article refers to the results of an integrative research project that aim to analyze ecosystem and human health's impacts of cut flower production in Cuencas del Rio Grande region (Cayambe and Tabacundo zones). In order to assess the complex object of study and its multiple dimensions, an interdisciplinary approach has been constructed, based on the following components: a) pesticides dynamics analysis; b) pesticides distribution and commercialization processes in the region; c) economic and anthropological transformation determinate by the flower production; d) epidemiological process of human health impacts; e) and the design of participatory, multicultural and integrative information. The research consolidated an important geo-codified data base on the impacts of cut flower production to workers, communities, aquatic systems and soils, offering evidences of the actual flower production system severe impacts and leading to a reflection about the sustainability of the productive systems and the future of the ecosystems.

  11. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    NASA Technical Reports Server (NTRS)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  12. Clustered functional MRI of overt speech production.

    PubMed

    Sörös, Peter; Sokoloff, Lisa Guttman; Bose, Arpita; McIntosh, Anthony R; Graham, Simon J; Stuss, Donald T

    2006-08-01

    To investigate the neural network of overt speech production, event-related fMRI was performed in 9 young healthy adult volunteers. A clustered image acquisition technique was chosen to minimize speech-related movement artifacts. Functional images were acquired during the production of oral movements and of speech of increasing complexity (isolated vowel as well as monosyllabic and trisyllabic utterances). This imaging technique and behavioral task enabled depiction of the articulo-phonologic network of speech production from the supplementary motor area at the cranial end to the red nucleus at the caudal end. Speaking a single vowel and performing simple oral movements involved very similar activation of the cortical and subcortical motor systems. More complex, polysyllabic utterances were associated with additional activation in the bilateral cerebellum, reflecting increased demand on speech motor control, and additional activation in the bilateral temporal cortex, reflecting the stronger involvement of phonologic processing.

  13. MSC products for the simulation of tire behavior

    NASA Technical Reports Server (NTRS)

    Muskivitch, John C.

    1995-01-01

    The modeling of tires and the simulation of tire behavior are complex problems. The MacNeal-Schwendler Corporation (MSC) has a number of finite element analysis products that can be used to address the complexities of tire modeling and simulation. While there are many similarities between the products, each product has a number of capabilities that uniquely enable it to be used for a specific aspect of tire behavior. This paper discusses the following programs: (1) MSC/NASTRAN - general purpose finite element program for linear and nonlinear static and dynamic analysis; (2) MSC/ADAQUS - nonlinear statics and dynamics finite element program; (3) MSC/PATRAN AFEA (Advanced Finite Element Analysis) - general purpose finite element program with a subset of linear and nonlinear static and dynamic analysis capabilities with an integrated version of MSC/PATRAN for pre- and post-processing; and (4) MSC/DYTRAN - nonlinear explicit transient dynamics finite element program.

  14. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    PubMed

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. The Laboratory Production of Complex Organic Molecules in Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.; Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.

    2002-01-01

    Much of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. Their low temperatures preclude most chemical reactions, but ionizing radiation can drive reactions that produce a suite of new species, many of which are complex organics. The Astrochemistry Lab at NASA Ames studies the UV radiation processing of interstellar ice analogs to better identify the resulting products and establish links between interstellar chemistry, the organics in meteorites, and the origin of life on Earth. Once identified, the spectral properties of the products can be quantified to assist with the search for these species in space. Of particular interest are findings that UV irradiation of interstellar ice analogs produces molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids.

  16. Friction Spinning—New Innovative Tool Systems For The Production of Complex Functionally Graded Workpieces

    NASA Astrophysics Data System (ADS)

    Homberg, Werner; Hornjak, Daniel

    2011-05-01

    Friction spinning is a new innovative and promising incremental forming technology implying high potential regarding the manufacturing of complex functionally graded workpieces and enhancing existing forming limits of conventional metal spinning processes. The friction spinning process is based on the integration of thermo-mechanical friction subprocesses in this incremental forming process. By choosing the appropriate process parameters, e.g. axial feed rate or relative motion, the contact conditions between tool and workpiece can be influenced in a defined way and, thus, a required temperature profile can be obtained. Friction spinning allows the extension of forming limits compared to conventional metal spinning in order to produce multifunctional components with locally varying properties and the manufacturing of e.g. complex hollow parts made of tubes, profiles, or sheet metals. In this way, it meets the demands regarding efficiency and the manufacturing of functionally graded lightweight components. There is e.g. the possibility of locally increasing the wall thickness in joining zones and, as a consequence, achieving higher quality of the joint at decreased expense. These products are not or only hardly producible by conventional processes so far. In order to benefit from the advantages and potentials of this new innovative process new tooling systems and concepts are indispensable which fulfill the special requirements of this thermo-mechanical process concerning thermal and tribological loads and which allow simultaneous and defined forming and friction operations. An important goal of the corresponding research work at the Chair of Forming and Machining Technology at the University of Paderborn is the development of tool systems that allow the manufacturing of such complex parts by simple uniaxial or sequential biaxial linear tool paths. In the paper, promising tool systems and geometries as well as results of theoretical and experimental research work (e.g. regarding the influence and interaction of process parameters on the workpiece quality) will be discussed. Furthermore, possibilities regarding the manufacturing of geometries (demonstrator workpieces) which are not or only hardly producible with conventional processes will be presented.

  17. Long-Distance Wh-Movement and Long-Distance Wh-Movement Avoidance in L2 English: Evidence from French and Bulgarian Speakers

    ERIC Educational Resources Information Center

    Slavkov, Nikolay

    2015-01-01

    This article investigates spoken productions of complex questions with long-distance wh-movement in the L2 English of speakers whose first language is (Canadian) French or Bulgarian. Long-distance wh-movement is of interest as it can be argued that it poses difficulty in acquisition due to its syntactic complexity and related high processing load.…

  18. Iterated reaction graphs: simulating complex Maillard reaction pathways.

    PubMed

    Patel, S; Rabone, J; Russell, S; Tissen, J; Klaffke, W

    2001-01-01

    This study investigates a new method of simulating a complex chemical system including feedback loops and parallel reactions. The practical purpose of this approach is to model the actual reactions that take place in the Maillard process, a set of food browning reactions, in sufficient detail to be able to predict the volatile composition of the Maillard products. The developed framework, called iterated reaction graphs, consists of two main elements: a soup of molecules and a reaction base of Maillard reactions. An iterative process loops through the reaction base, taking reactants from and feeding products back to the soup. This produces a reaction graph, with molecules as nodes and reactions as arcs. The iterated reaction graph is updated and validated by comparing output with the main products found by classical gas-chromatographic/mass spectrometric analysis. To ensure a realistic output and convergence to desired volatiles only, the approach contains a number of novel elements: rate kinetics are treated as reaction probabilities; only a subset of the true chemistry is modeled; and the reactions are blocked into groups.

  19. MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential

    PubMed Central

    Sun, Chao; Liu, Xiongxiong; Di, Cuixia; Wang, Zhenhua; Mi, Xiangquan; Liu, Yang; Zhao, Qiuyue; Mao, Aihong; Chen, Weiqiang; Gan, Lu; Zhang, Hong

    2017-01-01

    ABSTRACT During the process of oxidative phosphorylation, protons are pumped into the mitochondrial intermembrane space to establish a mitochondrial membrane potential (MMP). The electrochemical gradient generated allows protons to return to the matrix through the ATP synthase complex and generates ATP in the process. MitoQ is a lipophilic cationic drug that is adsorbed to the inner mitochondrial membrane; however, the cationic moiety of MitoQ remains in the intermembrane space. We found that the positive charges in MitoQ inhibited the activity of respiratory chain complexes I, III, and IV, reduced proton production, and decreased oxygen consumption. Therefore, a pseudo-MMP (PMMP) was formed via maintenance of exogenous positive charges. Proton backflow was severely impaired, leading to a decrease in ATP production and an increase in AMP production. Excess AMP activates AMP kinase, which inhibits the MTOR (mechanistic target of rapamycin) pathway and induces macroautophagy/autophagy. Therefore, we conclude that MitoQ increases PMMP via proton displacement with exogenous positive charges. In addition, PMMP triggered autophagy in hepatocellular carcinoma HepG2 cells via modification of mitochondrial bioenergetics pathways. PMID:28121478

  20. MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential.

    PubMed

    Sun, Chao; Liu, Xiongxiong; Di, Cuixia; Wang, Zhenhua; Mi, Xiangquan; Liu, Yang; Zhao, Qiuyue; Mao, Aihong; Chen, Weiqiang; Gan, Lu; Zhang, Hong

    2017-04-03

    During the process of oxidative phosphorylation, protons are pumped into the mitochondrial intermembrane space to establish a mitochondrial membrane potential (MMP). The electrochemical gradient generated allows protons to return to the matrix through the ATP synthase complex and generates ATP in the process. MitoQ is a lipophilic cationic drug that is adsorbed to the inner mitochondrial membrane; however, the cationic moiety of MitoQ remains in the intermembrane space. We found that the positive charges in MitoQ inhibited the activity of respiratory chain complexes I, III, and IV, reduced proton production, and decreased oxygen consumption. Therefore, a pseudo-MMP (PMMP) was formed via maintenance of exogenous positive charges. Proton backflow was severely impaired, leading to a decrease in ATP production and an increase in AMP production. Excess AMP activates AMP kinase, which inhibits the MTOR (mechanistic target of rapamycin) pathway and induces macroautophagy/autophagy. Therefore, we conclude that MitoQ increases PMMP via proton displacement with exogenous positive charges. In addition, PMMP triggered autophagy in hepatocellular carcinoma HepG2 cells via modification of mitochondrial bioenergetics pathways.

  1. A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process

    NASA Astrophysics Data System (ADS)

    Jia, B.; Tsau, J. S.; Barati, R.

    2017-12-01

    Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.

  2. On the context-dependent nature of the contribution of the ventral premotor cortex to speech perception

    PubMed Central

    Tremblay, Pascale; Small, Steven L.

    2011-01-01

    What is the nature of the interface between speech perception and production, where auditory and motor representations converge? One set of explanations suggests that during perception, the motor circuits involved in producing a perceived action are in some way enacting the action without actually causing movement (covert simulation) or sending along the motor information to be used to predict its sensory consequences (i.e., efference copy). Other accounts either reject entirely the involvement of motor representations in perception, or explain their role as being more supportive than integral, and not employing the identical circuits used in production. Using fMRI, we investigated whether there are brain regions that are conjointly active for both speech perception and production, and whether these regions are sensitive to articulatory (syllabic) complexity during both processes, which is predicted by a covert simulation account. A group of healthy young adults (1) observed a female speaker produce a set of familiar words (perception), and (2) observed and then repeated the words (production). There were two types of words, varying in articulatory complexity, as measured by the presence or absence of consonant clusters. The simple words contained no consonant cluster (e.g. “palace”), while the complex words contained one to three consonant clusters (e.g. “planet”). Results indicate that the left ventral premotor cortex (PMv) was significantly active during speech perception and speech production but that activation in this region was scaled to articulatory complexity only during speech production, revealing an incompletely specified efferent motor signal during speech perception. The right planum temporal (PT) was also active during speech perception and speech production, and activation in this region was scaled to articulatory complexity during both production and perception. These findings are discussed in the context of current theories theory of speech perception, with particular attention to accounts that include an explanatory role for mirror neurons. PMID:21664275

  3. Manual and computer-aided materials selection for industrial production: An exercise in decision making

    NASA Technical Reports Server (NTRS)

    Bates, Seth P.

    1990-01-01

    Students are introduced to methods and concepts for systematic selection and evaluation of materials which are to be used to manufacture specific products in industry. For this laboratory exercise, students are asked to work in groups to identify and describe a product, then to proceed through the process to select a list of three candidates to make the item from. The exercise draws on knowledge of mechanical, physical, and chemical properties, common materials test techniques, and resource management skills in finding and assessing property data. A very important part of the exercise is the students' introduction to decision making algorithms, and learning how to apply them to a complex decision making process.

  4. Protein engineering approaches to chemical biotechnology.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  5. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    PubMed

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  6. Developing, delivering and evaluating primary mental health care: the co-production of a new complex intervention.

    PubMed

    Reeve, Joanne; Cooper, Lucy; Harrington, Sean; Rosbottom, Peter; Watkins, Jane

    2016-09-06

    Health services face the challenges created by complex problems, and so need complex intervention solutions. However they also experience ongoing difficulties in translating findings from research in this area in to quality improvement changes on the ground. BounceBack was a service development innovation project which sought to examine this issue through the implementation and evaluation in a primary care setting of a novel complex intervention. The project was a collaboration between a local mental health charity, an academic unit, and GP practices. The aim was to translate the charity's model of care into practice-based evidence describing delivery and impact. Normalisation Process Theory (NPT) was used to support the implementation of the new model of primary mental health care into six GP practices. An integrated process evaluation evaluated the process and impact of care. Implementation quickly stalled as we identified problems with the described model of care when applied in a changing and variable primary care context. The team therefore switched to using the NPT framework to support the systematic identification and modification of the components of the complex intervention: including the core components that made it distinct (the consultation approach) and the variable components (organisational issues) that made it work in practice. The extra work significantly reduced the time available for outcome evaluation. However findings demonstrated moderately successful implementation of the model and a suggestion of hypothesised changes in outcomes. The BounceBack project demonstrates the development of a complex intervention from practice. It highlights the use of Normalisation Process Theory to support development, and not just implementation, of a complex intervention; and describes the use of the research process in the generation of practice-based evidence. Implications for future translational complex intervention research supporting practice change through scholarship are discussed.

  7. [Applications and prospects of on-line near infrared spectroscopy technology in manufacturing of Chinese materia medica].

    PubMed

    Li, Yang; Wu, Zhi-Sheng; Pan, Xiao-Ning; Shi, Xin-Yuan; Guo, Ming-Ye; Xu, Bing; Qiao, Yan-Jiang

    2014-10-01

    The quality of Chinese materia medica (CMM) is affected by every process in CMM manufacturing. According to multi-unit complex features in the production of CMM, on-line near infrared spectroscopy (NIR) is used as an evaluating technology with its rapid, non-destructive and non-pollution etc. advantages. With the research in institutions, the on-line NIR applied in process analysis and control of CMM was described systematically, and the on-line NIR platform building was used as an example to clarify the feasibility of on-line NIR technology in CMM manufacturing process. Then, from the point of application by pharmaceutical companies, the current on-line NIR research on CMM and its production in pharmaceutical companies was relatively comprehensively summarized. Meanwhile, the types of CMM productions were classified in accordance with two formulations (liquid and solid dosage formulations). The different production processes (extraction, concentration and alcohol precipitation, etc. ) were used as liquid formulation diacritical points; the different types (tablets, capsules and plasters, etc.) were used as solid dosage formulation diacritical points, and the reliability of on-line NIR used in the whole process in CMM production was proved in according to the summary of literatures in recent 10 years, which could support the modernization of CMM production.

  8. Microscale to Manufacturing Scale-up of Cell-Free Cytokine Production—A New Approach for Shortening Protein Production Development Timelines

    PubMed Central

    Zawada, James F; Yin, Gang; Steiner, Alexander R; Yang, Junhao; Naresh, Alpana; Roy, Sushmita M; Gold, Daniel S; Heinsohn, Henry G; Murray, Christopher J

    2011-01-01

    Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins. Biotechnol. Bioeng. 2011; 108:1570–1578. © 2011 Wiley Periodicals, Inc. PMID:21337337

  9. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects.

    PubMed

    Al Loman, Abdullah; Ju, Lu-Kwang

    2017-11-01

    Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Closed-Loop Multitarget Optimization for Discovery of New Emulsion Polymerization Recipes

    PubMed Central

    2015-01-01

    Self-optimization of chemical reactions enables faster optimization of reaction conditions or discovery of molecules with required target properties. The technology of self-optimization has been expanded to discovery of new process recipes for manufacture of complex functional products. A new machine-learning algorithm, specifically designed for multiobjective target optimization with an explicit aim to minimize the number of “expensive” experiments, guides the discovery process. This “black-box” approach assumes no a priori knowledge of chemical system and hence particularly suited to rapid development of processes to manufacture specialist low-volume, high-value products. The approach was demonstrated in discovery of process recipes for a semibatch emulsion copolymerization, targeting a specific particle size and full conversion. PMID:26435638

  11. Provision of wear resistance and fatigue strength of surfaces during electroerosive processing

    NASA Astrophysics Data System (ADS)

    Fedonin, O. N.; Syanov, S. Yu; Papikyan, A. M.

    2018-03-01

    This article is a generalization of the results of theoretical studies of the effect of erosion control regimes on the operational properties of mold-forming parts of molds. The main problem is the provision of wear resistance and fatigue strength in the electroerosion processing of these types of products. The analysis showed that the fatigue strength is affected by the processing regimes and the coefficient after the erosion treatment. The index of wear resistance is determined both by the treatment modes and by the physical-mechanical properties of the billet materials. To ensure the operational performance of products, it is necessary to establish the physical picture of the processing of complex profile parts by finding the optimum eroding regime.

  12. Computer-aided solvent selection for multiple scenarios operation of limited-known properties solute

    NASA Astrophysics Data System (ADS)

    Anantpinijwatna, Amata

    2017-12-01

    Solvents have been applied for both production and separation of the complex chemical substance such as the pyrrolidine-2-carbonyl chloride (C5H8ClNO). Since the properties of the target substance itself are largely unknown, the selection of the solvent is limited by experiment only. However, the reaction carried out in conventional solvents are either afforded low yields or obtained slow reaction rates. Moreover, the solvents are also highly toxic and environmental unfriendly. Alternative solvents are required to enhance the production and lessen the harmful effect toward both organism and environment. A costly, time-consuming, and laborious experiments are required for acquiring a better solvent suite for production and separation of these complex compounds; whereas, a limited improvement can be obtained. On the other hand, the combination of the state-of-the-art thermodynamic models can provide faster and more robust solutions to this solvent selection problem. In this work, a framework for solvents selection in complex chemical production process is presented. The framework combines a group-contribution thermodynamic model and a segment activity coefficient model for predicting chemical properties and solubilities of the target chemical in newly formulated solvents. A guideline for solvent selection is also included. The potential of the selected solvents is then analysed and verified. The improvement toward the production yield, production rate, and product separation is then discussed.

  13. Coagulation under flow: the influence of flow-mediated transport on the initiation and inhibition of coagulation.

    PubMed

    Fogelson, Aaron L; Tania, Nessy

    2005-01-01

    A mathematical model of intravascular coagulation is presented; it encompasses the biochemistry of the tissue factor pathway, platelet activation and deposition on the subendothelium, and flow- and diffusion-mediated transport of coagulation proteins and platelets. Simulation experiments carried out with the model indicate the predominant role played by the physical processes of platelet deposition and flow-mediated removal of enzymes in inhibiting coagulation in the vicinity of vascular injury. Sufficiently rapid production of factors IXa and Xa by the TF:VIIa complex can overcome this inhibition and lead to formation of significant amounts of the tenase complex on the surface of activated platelets and, as a consequence, to substantial thrombin production. Chemical inhibitors are seen to play almost no (TFPI) or little (AT-III and APC) role in determining whether substantial thrombin production will occur. The role of APC is limited by the necessity for diffusion of thrombin from the site of injury to nearby endothelial cells to form the thrombomodulin-thrombin complex and for diffusion in the reverse direction of the APC made by this complex. TFPI plays an insignificant part in inhibiting the TF:VIIa complex under the conditions studied whether its action involves sequential binding of TFPI to Xa and then TFPI:Xa to TF:VIIa, or direct binding of TFPI to Xa already bound to the TF:VIIa complex. Copyright 2005 S. Karger AG, Basel.

  14. Product Quality Improvement Using FMEA for Electric Parking Brake (EPB)

    NASA Astrophysics Data System (ADS)

    Dumitrescu, C. D.; Gruber, G. C.; Tişcă, I. A.

    2016-08-01

    One of the most frequently used methods to improve product quality is complex FMEA. (Failure Modes and Effects Analyses). In the literature various FMEA is known, depending on the mode and depending on the targets; we mention here some of these names: Failure Modes and Effects Analysis Process, or analysis Failure Mode and Effects Reported (FMECA). Whatever option is supported by the work team, the goal of the method is the same: optimize product design activities in research, design processes, implementation of manufacturing processes, optimization of mining product to beneficiaries. According to a market survey conducted on parts suppliers to vehicle manufacturers FMEA method is used in 75%. One purpose of the application is that after the research and product development is considered resolved, any errors which may be detected; another purpose of applying the method is initiating appropriate measures to avoid mistakes. Achieving these two goals leads to a high level distribution in applying, to avoid errors already in the design phase of the product, thereby avoiding the emergence and development of additional costs in later stages of product manufacturing. During application of FMEA method using standardized forms; with their help will establish the initial assemblies of product structure, in which all components will be viewed without error. The work is an application of the method FMEA quality components to optimize the structure of the electrical parking brake (Electric Parching Brake - E.P.B). This is a component attached to the roller system which ensures automotive replacement of conventional mechanical parking brake while ensuring its comfort, functionality, durability and saves space in the passenger compartment. The paper describes the levels at which they appealed in applying FMEA, working arrangements in the 4 distinct levels of analysis, and how to determine the number of risk (Risk Priority Number); the analysis of risk factors and established authors who have imposed measures to reduce / eliminate risk completely exploiting this complex product.

  15. Benthic Marine Cyanobacterial Mat Ecosystems: Biogeochemistry and Biomarkers

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Cyanobacterial mats are complete ecosystems that can include processes of primary production, diagenesis and lithification. Light sustains oxygenic photosynthesis, which in turn provides energy, organic matter and oxygen to the community. Due to both absorption and scattering phenomena, incident light is transformed with depth in the mat, both in intensity and spectral composition. Mobile photo synthesizers optimize their position with respect to this light gradient. When photosynthesis ceases at night, the upper layers of the mat become reduced and sulfidic. Counteracting gradients of oxygen and sulfide combine to provide daily-contrasting environments separated on a scale of a few mm. The functional complexity of mats, coupled with the highly proximal and ordered spatial arrangement of biota, offers the potential for a staggering number of interactions. At a minimum, the products of each functional group of microorganisms affect the other groups both positively and negatively. For example, cyanobacteria generate organic matter (potential substrates) but also oxygen (a toxin for many anaerobes). Anaerobic activity recycles nutrients to the photosynthesizers but also generates potentially toxic sulfide. The combination of benefits and hazards of light, oxygen and sulfide promotes the allocation of the various essential mat processes between light and dark periods, and to various depths in the mat. Observations of mats have produced numerous surprises. For example, obligately anaerobic processes can occur in the presence of abundant oxygen, highly reduced gases are produced in the presence of abundant sulfate, meiofauna thrive at high sulfide concentrations, and the mats' constituent populations respond to environmental changes in complex ways. While photosynthetic bacteria dominate the biomass and productivity of the mat, nonphotosynthetic, anaerobic processes constitute the ultimate biological filter on the ecosystem's emergent biosignatures, including those sedimentary textures, organic compounds, and minerals that enter the fossil record. The ability of cyanobacterial mats to channel abundant solar energy into the creation and maintenance of complex structures and processes has created a multitude of consequences, both for sedimentation and for the early evolution of our biosphere.

  16. Modern trends in industrial technology of production of optical polymeric components for night vision devices

    NASA Astrophysics Data System (ADS)

    Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.

    2005-06-01

    The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.

  17. Rhenium, Molybdenum, Tungsten - Prospects for Production and Industrial Applications

    DTIC Science & Technology

    1998-06-18

    concentrates from unique complex copper -containing porphyry deposit of the Almalyk region. The ore containing over 10 associated valuable constituents is...L.I.Ruzin, M .F.Sherem etyev ............................................... 71 Recovery of rhenium as by-product of treatment of molybdenite and copper ...for processing copper -molybdenum ores from "Erdenet- Ovoo" deposit S.Davaanyam, I.Sh.Sataev, Zh.Baatarkhuu, A.M.Desyatov, M.I.Khersonsky

  18. Complexity and Productivity Differentiation Models of Metallogenic Indicator Elements in Rocks and Supergene Media Around Daijiazhuang Pb-Zn Deposit in Dangchang County, Gansu Province

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jin-zhong, E-mail: viewsino@163.com; Yao, Shu-zhen; Zhang, Zhong-ping

    2013-03-15

    With the help of complexity indices, we quantitatively studied multifractals, frequency distributions, and linear and nonlinear characteristics of geochemical data for exploration of the Daijiazhuang Pb-Zn deposit. Furthermore, we derived productivity differentiation models of elements from thermodynamics and self-organized criticality of metallogenic systems. With respect to frequency distributions and multifractals, only Zn in rocks and most elements except Sb in secondary media, which had been derived mainly from weathering and alluviation, exhibit nonlinear distributions. The relations of productivity to concentrations of metallogenic elements and paragenic elements in rocks and those of elements strongly leached in secondary media can be seenmore » as linear addition of exponential functions with a characteristic weak chaos. The relations of associated elements such as Mo, Sb, and Hg in rocks and other elements in secondary media can be expressed as an exponential function, and the relations of one-phase self-organized geological or metallogenic processes can be represented by a power function, each representing secondary chaos or strong chaos. For secondary media, exploration data of most elements should be processed using nonlinear mathematical methods or should be transformed to linear distributions before processing using linear mathematical methods.« less

  19. The Papers Printing Quality Complex Assessment Algorithm Development Taking into Account the Composition and Production Technological Features

    NASA Astrophysics Data System (ADS)

    Babakhanova, Kh A.; Varepo, L. G.; Nagornova, I. V.; Babluyk, E. B.; Kondratov, A. P.

    2018-04-01

    Paper is one of the printing system key components causing the high-quality printed products output. Providing the printing companies with the specified printing properties paper, while simultaneously increasing the paper products range and volume by means of the forecasting methods application and evaluation during the production process, is certainly a relevant problem. The paper presents the printing quality control algorithm taking into consideration the paper printing properties quality assessment depending on the manufacture technological features and composition variation. The information system including raw material and paper properties data and making possible pulp and paper enterprises to select paper composition optimal formulation is proposed taking into account the printing process procedure peculiarities of the paper manufacturing with specified printing properties.

  20. Bioreactor process parameter screening utilizing a Plackett-Burman design for a model monoclonal antibody.

    PubMed

    Agarabi, Cyrus D; Schiel, John E; Lute, Scott C; Chavez, Brittany K; Boyne, Michael T; Brorson, Kurt A; Khan, Mansoora; Read, Erik K

    2015-06-01

    Consistent high-quality antibody yield is a key goal for cell culture bioprocessing. This endpoint is typically achieved in commercial settings through product and process engineering of bioreactor parameters during development. When the process is complex and not optimized, small changes in composition and control may yield a finished product of less desirable quality. Therefore, changes proposed to currently validated processes usually require justification and are reported to the US FDA for approval. Recently, design-of-experiments-based approaches have been explored to rapidly and efficiently achieve this goal of optimized yield with a better understanding of product and process variables that affect a product's critical quality attributes. Here, we present a laboratory-scale model culture where we apply a Plackett-Burman screening design to parallel cultures to study the main effects of 11 process variables. This exercise allowed us to determine the relative importance of these variables and identify the most important factors to be further optimized in order to control both desirable and undesirable glycan profiles. We found engineering changes relating to culture temperature and nonessential amino acid supplementation significantly impacted glycan profiles associated with fucosylation, β-galactosylation, and sialylation. All of these are important for monoclonal antibody product quality. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. A mammalian nervous system-specific plasma membrane proteasome complex that modulates neuronal function

    PubMed Central

    Ramachandran, Kapil V.; Margolis, Seth S.

    2017-01-01

    In the nervous system, rapidly occurring processes such as neuronal transmission and calcium signaling are affected by short-term inhibition of proteasome function. It remains unclear how proteasomes can acutely regulate such processes, as this is inconsistent with their canonical role in proteostasis. Here, we made the discovery of a mammalian nervous system-specific membrane proteasome complex that directly and rapidly modulates neuronal function by degrading intracellular proteins into extracellular peptides that can stimulate neuronal signaling. This proteasome complex is tightly associated with neuronal plasma membranes, exposed to the extracellular space, and catalytically active. Selective inhibition of this membrane proteasome complex by a cell-impermeable proteasome inhibitor blocked extracellular peptide production and attenuated neuronal activity-induced calcium signaling. Moreover, membrane proteasome-derived peptides are sufficient to induce neuronal calcium signaling. Our discoveries challenge the prevailing notion that proteasomes primarily function to maintain proteostasis, and highlight a form of neuronal communication through a membrane proteasome complex. PMID:28287632

  2. The Nasa-Isro SAR Mission Science Data Products and Processing Workflows

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.; Agram, P. S.; Lavalle, M.; Cohen, J.; Buckley, S.; Kumar, R.; Misra-Ray, A.; Ramanujam, V.; Agarwal, K. M.

    2017-12-01

    The NASA-ISRO SAR (NISAR) Mission is currently in the development phase and in the process of specifying its suite of data products and algorithmic workflows, responding to inputs from the NISAR Science and Applications Team. NISAR will provide raw data (Level 0), full-resolution complex imagery (Level 1), and interferometric and polarimetric image products (Level 2) for the entire data set, in both natural radar and geocoded coordinates. NASA and ISRO are coordinating the formats, meta-data layers, and algorithms for these products, for both the NASA-provided L-band radar and the ISRO-provided S-band radar. Higher level products will be also be generated for the purpose of calibration and validation, over large areas of Earth, including tectonic plate boundaries, ice sheets and sea-ice, and areas of ecosystem disturbance and change. This level of comprehensive product generation has been unprecedented for SAR missions in the past, and leads to storage processing challenges for the production system and the archive center. Further, recognizing the potential to support applications that require low latency product generation and delivery, the NISAR team is optimizing the entire end-to-end ground data system for such response, including exploring the advantages of cloud-based processing, algorithmic acceleration using GPUs, and on-demand processing schemes that minimize computational and transport costs, but allow rapid delivery to science and applications users. This paper will review the current products, workflows, and discuss the scientific and operational trade-space of mission capabilities.

  3. A recent Cleanroom success story: The Redwing project

    NASA Technical Reports Server (NTRS)

    Hausler, Philip A.

    1992-01-01

    Redwing is the largest completed Cleanroom software engineering project in IBM, both in terms of lines of code and project staffing. The product provides a decision-support facility that utilizes artificial intelligence (AI) technology for predicting and preventing complex operating problems in an MVS environment. The project used the Cleanroom process for development and realized a defect rate of 2.6 errors/KLOC, measured from first execution. This represents the total amount of errors that were found in testing and installation at three field test sites. Development productivity was 486 LOC/PM, which included all development labor expended in design specification through completion of incremental testing. In short, the Redwing team produced a complex systems software product with an extraordinarily low error rate, while maintaining high productivity. All of this was accomplished by a project team using Cleanroom for the first time. An 'introductory implementation' of Cleanroom was defined and used on Redwing. This paper describes the quality and productivity results, the Redwing project, and how Cleanroom was implemented.

  4. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review.

    PubMed

    Hung, Chun-Hsiung; Chang, Yi-Tang; Chang, Yu-Jie

    2011-09-01

    Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products.

    PubMed

    Levi, Peter G; Cullen, Jonathan M

    2018-02-20

    Chemical products are ubiquitous in modern society. The chemical sector is the largest industrial energy consumer and the third largest industrial emitter of carbon dioxide. The current portfolio of mitigation options for the chemical sector emphasizes upstream "supply side" solutions, whereas downstream mitigation options, such as material efficiency, are given comparatively short shrift. Key reasons for this are the scarcity of data on the sector's material flows, and the highly intertwined nature of its complex supply chains. We provide the most up to date, comprehensive and transparent data set available publicly, on virgin production routes in the chemical sector: from fossil fuel feedstocks to chemical products. We map global mass flows for the year 2013 through a complex network of transformation processes, and by taking account of secondary reactants and by-products, we maintain a full mass balance throughout. The resulting data set partially addresses the dearth of publicly available information on the chemical sector's supply chain, and can be used to prioritise downstream mitigation options.

  6. Development of Six Sigma methodology for CNC milling process improvements

    NASA Astrophysics Data System (ADS)

    Ismail, M. N.; Rose, A. N. M.; Mohammed, N. Z.; Rashid, M. F. F. Ab

    2017-10-01

    Quality and productivity have been identified as an important role in any organization, especially for manufacturing sectors to gain more profit that leads to success of a company. This paper reports a work improvement project in Kolej Kemahiran Tinggi MARA Kuantan. It involves problem identification in production of “Khufi” product and proposing an effective framework to improve the current situation effectively. Based on the observation and data collection on the work in progress (WIP) product, the major problem has been identified related to function of the product which is the parts can’t assemble properly due to dimension of the product is out of specification. The six sigma has been used as a methodology to study and improve of the problems identified. Six Sigma is a highly statistical and data driven approach to solving complex business problems. It uses a methodical five phase approach define, measure, analysis, improve and control (DMAIC) to help understand the process and the variables that affect it so that can be optimized the processes. Finally, the root cause and solution for the production of “Khufi” problem has been identified and implemented then the result for this product was successfully followed the specification of fitting.

  7. DREAMS and IMAGE: A Model and Computer Implementation for Concurrent, Life-Cycle Design of Complex Systems

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Computing architectures are being assembled that extend concurrent engineering practices by providing more efficient execution and collaboration on distributed, heterogeneous computing networks. Built on the successes of initial architectures, requirements for a next-generation design computing infrastructure can be developed. These requirements concentrate on those needed by a designer in decision-making processes from product conception to recycling and can be categorized in two areas: design process and design information management. A designer both designs and executes design processes throughout design time to achieve better product and process capabilities while expanding fewer resources. In order to accomplish this, information, or more appropriately design knowledge, needs to be adequately managed during product and process decomposition as well as recomposition. A foundation has been laid that captures these requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design requirements defined in DREAMS and incorporates enabling computational technologies.

  8. Simulation of Ejecta Production and Mixing Process of Sn Sample under shock loading

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Chen, Dawei; Sun, Haiquan; Ma, Dongjun

    2017-06-01

    Ejection may occur when a strong shock wave release at the free surface of metal material and the ejecta of high-speed particulate matter will be formed and further mixed with the surrounding gas. Ejecta production and its mixing process has been one of the most difficult problems in shock physics remain unresolved, and have many important engineering applications in the imploding compression science. The present paper will introduce a methodology for the theoretical modeling and numerical simulation of the complex ejection and mixing process. The ejecta production is decoupled with the particle mixing process, and the ejecta state can be achieved by the direct numerical simulation for the evolution of initial defect on the metal surface. Then the particle mixing process can be simulated and resolved by a two phase gas-particle model which uses the aforementioned ejecta state as the initial condition. A preliminary ejecta experiment of planar Sn metal Sample has validated the feasibility of the proposed methodology.

  9. Launching the dialogue: Safety and innovation as partners for success in advanced manufacturing.

    PubMed

    Geraci, C L; Tinkle, S S; Brenner, S A; Hodson, L L; Pomeroy-Carter, C A; Neu-Baker, N

    2018-06-01

    Emerging and novel technologies, materials, and information integrated into increasingly automated and networked manufacturing processes or into traditional manufacturing settings are enhancing the efficiency and productivity of manufacturing. Globally, there is a move toward a new era in manufacturing that is characterized by: (1) the ability to create and deliver more complex designs of products; (2) the creation and use of materials with new properties that meet a design need; (3) the employment of new technologies, such as additive and digital techniques that improve on conventional manufacturing processes; and (4) a compression of the time from initial design concept to the creation of a final product. Globally, this movement has many names, but "advanced manufacturing" has become the shorthand for this complex integration of material and technology elements that enable new ways to manufacture existing products, as well as new products emerging from new technologies and new design methods. As the breadth of activities associated with advanced manufacturing suggests, there is no single advanced manufacturing industry. Instead, aspects of advanced manufacturing can be identified across a diverse set of business sectors that use manufacturing technologies, ranging from the semiconductors and electronics to the automotive and pharmaceutical industries. The breadth and diversity of advanced manufacturing may change the occupational and environmental risk profile, challenge the basic elements of comprehensive health and safety (material, process, worker, environment, product, and general public health and safety), and provide an opportunity for development and dissemination of occupational and environmental health and safety (OEHS) guidance and best practices. It is unknown how much the risk profile of different elements of OEHS will change, thus requiring an evolution of health and safety practices. These changes may be accomplished most effectively through multi-disciplinary, multi-sector, public-private dialogue that identifies issues and offers solutions.

  10. The multiBac protein complex production platform at the EMBL.

    PubMed

    Berger, Imre; Garzoni, Frederic; Chaillet, Maxime; Haffke, Matthias; Gupta, Kapil; Aubert, Alice

    2013-07-11

    Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.(1,2) Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.(3) BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.(4) A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.(5-8) The platform is installed in an open-access mode at EMBL Grenoble and has supported many scientists from academia and industry to accelerate protein complex research projects.

  11. USSR Report, Agriculture

    DTIC Science & Technology

    1984-06-05

    The linking module may be a methane tank, processing manure of the livestock complex into biogas and fertilizer. Biogas is good for generating...As already noted, the beef production process under conditions of interfarm cooperation is broken down into two independent stages ? reproduction at...hectare must be obtained. Such have been the yields obtained at the 40 Let Oktyabrya Kolkhoz in Stolinskiy Rayon. However, during two - stage harvesting

  12. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    PubMed

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  13. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study.

    PubMed

    Ma, Yingying; Sun, Qiao; Smith, Sean C

    2017-05-24

    Oxidation is viewed as the second and rate-limiting step in the chromophore maturation process of the wild-type green fluorescent protein (GFP) under aerobic conditions. Molecular oxygen is the necessary oxidant for GFP chromophore biosynthesis. In this study, density functional theory (DFT) calculations were employed to study the mechanism of oxidation. Our results indicate that the deprotonation of the Tyr66 α-carbon is probably the rate-limiting step in the oxidation step. Electron transfer from the enolate form of the five-membered heterocycle (EFMH) to molecular oxygen, generating the triplet radical complex [EFMH˙O 2 - ˙] T , is an important step. This complex undergoes intersystem crossing to form an open-shell singlet diradical complex before it forms the closed-shell singlet hydroperoxy adduct. The formation of the hydroperoxy adduct is a proton-coupled electron transfer process. The energy barrier of H 2 O 2 elimination is 16.5 kcal mol -1 . The oxidation product IFMHH 2 O 2 that we discovered is a hydroxylated cyclic imine structure, which is consistent with the crystal structure trapped in the colorless Y66L variant. The relative energy of the oxidation product is -48.7 kcal mol -1 , which is in accordance with the experimental observation that the thermodynamically unfavourable cyclized product is trapped by oxidation. The results herein support the cyclization-oxidation-dehydration mechanism for the chromophore maturation of GFP.

  14. Asymmetric flow field flow fractionation for the characterization of globule size distribution in complex formulations: A cyclosporine ophthalmic emulsion case.

    PubMed

    Qu, Haiou; Wang, Jiang; Wu, Yong; Zheng, Jiwen; Krishnaiah, Yellela S R; Absar, Mohammad; Choi, Stephanie; Ashraf, Muhammad; Cruz, Celia N; Xu, Xiaoming

    2018-03-01

    Commonly used characterization techniques such as cryogenic-transmission electron microscopy (cryo-TEM) and batch-mode dynamic light scattering (DLS) are either time consuming or unable to offer high resolution to discern the poly-dispersity of complex drug products like cyclosporine ophthalmic emulsions. Here, a size-based separation and characterization method for globule size distribution using an asymmetric flow field flow fractionation (AF4) is reported for comparative assessment of cyclosporine ophthalmic emulsion drug products (model formulation) with a wide size span and poly-dispersity. Cyclosporine emulsion formulations that are qualitatively (Q1) and quantitatively (Q2) the same as Restasis® were prepared in house with varying manufacturing processes and analyzed using the optimized AF4 method. Based on our results, the commercially available cyclosporine ophthalmic emulsion has a globule size span from 30 nm to a few hundred nanometers with majority smaller than 100 nm. The results with in-house formulations demonstrated the sensitivity of AF4 in determining the differences in the globule size distribution caused by the changes to the manufacturing process. It is concluded that the optimized AF4 is a potential analytical technique for comprehensive understanding of the microstructure and assessment of complex emulsion drug products with high poly-dispersity. Published by Elsevier B.V.

  15. Development of a Premium Quality Plasma-derived IVIg (IQYMUNE®) Utilizing the Principles of Quality by Design-A Worked-through Case Study.

    PubMed

    Paolantonacci, Philippe; Appourchaux, Philippe; Claudel, Béatrice; Ollivier, Monique; Dennett, Richard; Siret, Laurent

    2018-01-01

    Polyvalent human normal immunoglobulins for intravenous use (IVIg), indicated for rare and often severe diseases, are complex plasma-derived protein preparations. A quality by design approach has been used to develop the Laboratoire Français du Fractionnement et des Biotechnologies new-generation IVIg, targeting a high level of purity to generate an enhanced safety profile while maintaining a high level of efficacy. A modular approach of quality by design was implemented consisting of five consecutive steps to cover all the stages from the product design to the final product control strategy.A well-defined target product profile was translated into 27 product quality attributes that formed the basis of the process design. In parallel, a product risk analysis was conducted and identified 19 critical quality attributes among the product quality attributes. Process risk analysis was carried out to establish the links between process parameters and critical quality attributes. Twelve critical steps were identified, and for each of these steps a risk mitigation plan was established.Among the different process risk mitigation exercises, five process robustness studies were conducted at qualified small scale with a design of experiment approach. For each process step, critical process parameters were identified and, for each critical process parameter, proven acceptable ranges were established. The quality risk management and risk mitigation outputs, including verification of proven acceptable ranges, were used to design the process verification exercise at industrial scale.Finally, the control strategy was established using a mix, or hybrid, of the traditional approach plus elements of the quality by design enhanced approach, as illustrated, to more robustly assign material and process controls and in order to securely meet product specifications.The advantages of this quality by design approach were improved process knowledge for industrial design and process validation and a clear justification of the process and product specifications as a basis for control strategy and future comparability exercises. © PDA, Inc. 2018.

  16. Separation science is the key to successful biopharmaceuticals.

    PubMed

    Guiochon, Georges; Beaver, Lois Ann

    2011-12-09

    The impact of economic change, advances in science, therapy and production processes resulted in considerable growth in the area of biopharmaceuticals. Progress in selection of microorganisms and improvements in cell culture and bioreactors is evidenced by increased yields of the desired products in the complex fermentation mixture. At this stage the downstream process of extraction and purification of the desired biopharmaceutical requires considerable attention in the design and operation of the units used for preparative chromatography. Understanding of the process, optimization of column design and experimental conditions have become critical to the biopharmaceutical industry in order to minimize production costs while satisfying new regulatory requirements. Optimization of the purification of biopharmaceuticals by preparative liquid chromatography including an examination of column preparation and bed properties is the focus of this manuscript. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Using explanatory crop models to develop simple tools for Advanced Life Support system studies

    NASA Technical Reports Server (NTRS)

    Cavazzoni, J.

    2004-01-01

    System-level analyses for Advanced Life Support require mathematical models for various processes, such as for biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of specific processes. However, implementing such models at the system level may not always be practicable because of their complexity. For the area of biomass production, explanatory models were used to generate parameters and multivariable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling for both nominal and off-nominal growing conditions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Deployment Threats to Rapid Deployment Forces

    DTIC Science & Technology

    1982-12-01

    may take two weeks. The same process occurs in people who move rapidly from a time zone in which they are well-adapted to a time zone that is hours...travel is a complex process involving change and transition. Some of these changes are small and apparently insignificant, others loom large in their... process of depart- ing is not innocuous. It must be viewed as a personsal transition that may have a significant potential for stress production

  19. The Twenty-four Hour Workday: Proceedings of a Symposium on Variations in Work-Sleep Schedules

    DTIC Science & Technology

    1980-10-01

    medical care, transportation facilities, and security); (2) technological (continuous process operations, e.g., steel production, petrochemical refineries...able, has stL-nulated measurement of variations across time series. In the 2 process , it has identified a wide and important range of behavioral and phy...dimensions. However, this is a complex and interdependent process and a comprehensive understanding of work/rest schedules will be ulti- mately dependent

  20. Photofragmentation of Gas-Phase Lanthanide Cyclopentadienyl Complexes: Experimental and Time-Dependent Excited-State Molecular Dynamics

    PubMed Central

    2015-01-01

    Unimolecular gas-phase laser-photodissociation reaction mechanisms of open-shell lanthanide cyclopentadienyl complexes, Ln(Cp)3 and Ln(TMCp)3, are analyzed from experimental and computational perspectives. The most probable pathways for the photoreactions are inferred from photoionization time-of-flight mass spectrometry (PI-TOF-MS), which provides the sequence of reaction intermediates and the distribution of final products. Time-dependent excited-state molecular dynamics (TDESMD) calculations provide insight into the electronic mechanisms for the individual steps of the laser-driven photoreactions for Ln(Cp)3. Computational analysis correctly predicts several key reaction products as well as the observed branching between two reaction pathways: (1) ligand ejection and (2) ligand cracking. Simulations support our previous assertion that both reaction pathways are initiated via a ligand-to-metal charge-transfer (LMCT) process. For the more complex chemistry of the tetramethylcyclopentadienyl complexes Ln(TMCp)3, TMESMD is less tractable, but computational geometry optimization reveals the structures of intermediates deduced from PI-TOF-MS, including several classic “tuck-in” structures and products of Cp ring expansion. The results have important implications for metal–organic catalysis and laser-assisted metal–organic chemical vapor deposition (LCVD) of insulators with high dielectric constants. PMID:24910492

  1. Drug delivery system innovation and Health Technology Assessment: Upgrading from Clinical to Technological Assessment.

    PubMed

    Panzitta, Michele; Bruno, Giorgio; Giovagnoli, Stefano; Mendicino, Francesca R; Ricci, Maurizio

    2015-11-30

    Health Technology Assessment (HTA) is a multidisciplinary health political instrument that evaluates the consequences, mainly clinical and economical, of a health care technology; the HTA aim is to produce and spread information on scientific and technological innovation for health political decision making process. Drug delivery systems (DDS), such as nanocarriers, are technologically complex but they have pivotal relevance in therapeutic innovation. The HTA process, as commonly applied to conventional drug evaluation, should upgrade to a full pharmaceutical assessment, considering the DDS complexity. This is useful to study more in depth the clinical outcome and to broaden its critical assessment toward pharmaceutical issues affecting the patient and not measured by the current clinical evidence approach. We draw out the expertise necessary to perform the pharmaceutical assessment and we propose a format to evaluate the DDS technological topics such as formulation and mechanism of action, physicochemical characteristics, manufacturing process. We integrated the above-mentioned three points in the Evidence Based Medicine approach, which is data source for any HTA process. In this regard, the introduction of a Pharmaceutics Expert figure in the HTA could be fundamental to grant a more detailed evaluation of medicine product characteristics and performances and to help optimizing DDS features to overcome R&D drawbacks. Some aspects of product development, such as manufacturing processes, should be part of the HTA as innovative manufacturing processes allow new products to reach more effectively patient bedside. HTA so upgraded may encourage resource allocating payers to invest in innovative technologies and providers to focus on innovative material properties and manufacturing processes, thus contributing to bring more medicines in therapy in a sustainable manner. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Chemistry of rubber processing and disposal.

    PubMed Central

    Bebb, R L

    1976-01-01

    The major chemical changes during the processing of rubber occur with the breakdown in mastication and during vulcanization of the molded tire. There is little chemical change during the compounding, calendering, extrusion, and molding steps. Reclaiming is the process of converting scrap rubber into an unsaturated, processible product that can be vulcanized with sulfur. Pyrolysis of scrap rubber yields a complex mixture of liquids, gas, and residue in varying ratios dependent on the nature of the scrap and the conditions of pyrolysis. PMID:799964

  3. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  4. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the other strongly carcinogenic methylating agents.

  5. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs.

    PubMed

    Planque, M; Arnould, T; Dieu, M; Delahaut, P; Renard, P; Gillard, N

    2016-09-16

    Sensitive detection of food allergens is affected by food processing and foodstuff complexity. It is therefore a challenge to detect cross-contamination in food production that could endanger an allergic customer's life. Here we used ultra-high performance liquid chromatography coupled to tandem mass spectrometry for simultaneous detection of traces of milk (casein, whey protein), egg (yolk, white), soybean, and peanut allergens in different complex and/or heat-processed foodstuffs. The method is based on a single protocol (extraction, trypsin digestion, and purification) applicable to the different tested foodstuffs: chocolate, ice cream, tomato sauce, and processed cookies. The determined limits of quantitation, expressed in total milk, egg, peanut, or soy proteins (and not soluble proteins) per kilogram of food, are: 0.5mg/kg for milk (detection of caseins), 5mg/kg for milk (detection of whey), 2.5mg/kg for peanut, 5mg/kg for soy, 3.4mg/kg for egg (detection of egg white), and 30.8mg/kg for egg (detection of egg yolk). The main advantage is the ability of the method to detect four major food allergens simultaneously in processed and complex matrices with very high sensitivity and specificity. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 9, July 1--September 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Liquid Phase Methanol (LPMEOH{trademark}) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The LPMEOH{trademark} Process Demonstration Unit is being built at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The project involves the construction of an 80,000 gallons per day (260 tons per day (TPD)) methanol unit utilizing coal-derived synthesis gas from Eastman`s integrated coal gasification facility. The new equipment consists of synthesis gas feed preparation and compression facilities, the liquid phase reactor and auxiliaries,more » product distillation facilities, and utilities. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst and allowing the methanol synthesis reaction to proceed at higher rates. At the Eastman complex, the technology is being integrated with existing coal-gasifiers.« less

  7. Neo-Industrial and Sustainable Development of Russia as Mineral Resources Exploiting Country

    NASA Astrophysics Data System (ADS)

    Prokudina, Marina; Zhironkina, Olga; Kalinina, Oksana; Gasanov, Magerram; Agafonov, Felix

    2017-11-01

    In the Russian economy, the world leadership in the extraction of different mineral resources is combined with the potential for their processing and a significant scientific sector. Innovative development of raw materials extraction is impossible without the parallel technological modernization of the high-tech sector. In general, the complex of these processes is a neo-industrialization of the economy. Neo-industrially oriented transformation of the economy reflects complex changes in its structure, the transformation of established stable relationships between various elements of the system of social production that determine macroeconomic proportions. Neo-industrial transformations come along with the modification of economic relations associated with investments, innovations, labor and income distribution, with the process of locating productive forces and regulating the economy by the government. Neo-industrialization of economy is not only significant changes in its technological and reproductive structure (the development of high-tech industries, the integration of science and industry), but, above all, the implementation of a system structural policy of innovative development of raw material industry and the recovery of manufacturing industries on a new technological basis.

  8. Creativity in ergonomic design: a supplemental value-adding source for product and service development.

    PubMed

    Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel

    2010-08-01

    This article investigates the role of creativity in ergonomic design and the generic process of developing creative products and services. Creativity is gaining increased emphasis in both academia and industry. More than 50 years of research in creativity indicates that creativity is key to product and service innovation. Nevertheless, there is scarcely any comprehensive review dedicated to appraising the complex construct of creativity, the underlying cognitive process, and the role of creativity in product and service development. We review relevant literature regarding creativity, creative cognition, and the engineering design process to appraise the role of creativity in ergonomic design and to construct a conceptual model of creative product and service development. A framework of ergodesign creativity is advanced that highlights the central role of creativity in synergistically addressing the four dimensions of ergonomic design: functionality, safety, usability, and affectivity. A conceptual model of creative design process is then constructed that is goal oriented and is initiated by active problem finding and problem formulating. This process is carried out in a recursive and dynamic way, facilitated by creative thinking strategies. It is proposed that ergodesign creativity can add supplemental value to products and services, which subsequently affects consumer behavior and helps organizations gain competitive advantage. The proposed conceptual framework of ergodesign creativity and creative design process can serve as the ground for future theory development. Propositions advanced in this study should facilitate designers generating products and services that are creative and commercially competitive.

  9. Overview of DYMCAS, the Y-12 Material Control And Accountability System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alspaugh, D. H.

    2001-07-01

    This paper gives an overview of DYMCAS, the material control and accountability information system for the Y-12 National Security Complex. A common misconception, even within the DOE community, understates the nature and complexity of material control and accountability (MC and A) systems, likening them to parcel delivery systems tracking packages at various locations or banking systems that account for money, down to the penny. A major point set forth in this paper is that MC and A systems such as DYMCAS can be and often are very complex. Given accountability reporting requirements and the critical and sensitive nature of themore » task, no MC and A system can be simple. The complexity of site-level accountability systems, however, varies dramatically depending on the amounts, kinds, and forms of nuclear materials and the kinds of processing performed at the site. Some accountability systems are tailored to unique and highly complex site-level materials and material processing and, consequently, are highly complex systems. Sites with less complexity require less complex accountability systems, and where processes and practices are the same or similar, sites on the mid-to-low end of the complexity scale can effectively utilize a standard accountability system. In addition to being complex, a unique feature of DYMCAS is its integration with the site production control and manufacturing system. This paper will review the advantages of such integration, as well as related challenges, and make the point that the effectiveness of complex MC and A systems can be significantly enhanced through appropriate systems integration.« less

  10. Biosimilars--global issues, national solutions.

    PubMed

    Knezevic, Ivana; Griffiths, Elwyn

    2011-09-01

    Biotechnology derived medicinal products are presently the best characterized biologicals with considerable production and clinical experience, and have revolutionized the treatment of some of the most difficult-to-treat diseases, prolonging and improving the quality of life and patient care. They are also currently one of the fastest growing segments of the pharmaceutical industry market. The critical challenge that the biopharmaceutical industry is facing is the expiry of patents for the first generation of biopharmaceuticals, mainly recombinant DNA derived products, such as interferons, growth hormone and erythropoetin. The question that immediately arose was how should such copies of the originator products be licensed, bearing in mind that they are highly complex biological molecules produced by equally complex biological production processes with their inherent problem of biological variability. Copying biologicals is much more complex than copying small molecules and the critical issue was how to handle the licensing of products if relying in part on data from an innovator product. Since 2004 there has been considerable international consultation on how to deal with biosimilars and biological copy products. This has led to a better understanding of the challenges in the regulatory evaluation of the quality, safety and efficacy of "biosimilars", to the exchange of information between regulators, as well as to the identification of key issues. The aim of this article is to provide a brief overview of the scientific and regulatory challenges faced in developing and evaluating similar biotherapeutic products for global use. It is intended as an introduction to the series of articles in this special issue of Biologicals devoted to similar biotherapeutic products. Copyright © 2011. Published by Elsevier Ltd.

  11. An Optimization of Manufacturing Systems using a Feedback Control Scheduling Model

    NASA Astrophysics Data System (ADS)

    Ikome, John M.; Kanakana, Grace M.

    2018-03-01

    In complex production system that involves multiple process, unplanned disruption often turn to make the entire production system vulnerable to a number of problems which leads to customer’s dissatisfaction. However, this problem has been an ongoing problem that requires a research and methods to streamline the entire process or develop a model that will address it, in contrast to this, we have developed a feedback scheduling model that can minimize some of this problem and after a number of experiment, it shows that some of this problems can be eliminated if the correct remedial actions are implemented on time.

  12. Evaluation of C4 diphosphine ligands in rhodium catalysed methanol carbonylation under a syngas atmosphere: synthesis, structure, stability and reactivity of rhodium(I) carbonyl and rhodium(III) acetyl intermediates.

    PubMed

    Lamb, Gareth; Clarke, Matthew; Slawin, Alexandra M Z; Williams, Bruce; Key, Lesley

    2007-12-21

    The carbonylation of methanol to acetic acid is a hugely important catalytic process, and there are considerable cost and environmental advantages if a process could be designed that was tolerant of hydrogen impurities in the CO feed gas, while eliminating by-products such as propionic acid and acetaldehyde altogether. This paper reports on an investigation into the application of rhodium complexes of several C(4) bridged diphosphines, namely BINAP, 1,4-bis(diphenylphosphino)butane (dppb), bis(diphenylphosphino)xylene (dppx) and 1,4-bis(dicyclohexylphosphino)butane (dcpb) as catalysts for hydrogen tolerant methanol carbonylation. An investigation into the structure, reactivity and stability of pre-catalysts and catalyst resting states of these complexes has also been carried out in order to understand the observations in catalysis. Rh(I) carbonyl halide complexes of each of the ligands have been prepared from both [Rh(2)(CO)(4)Cl(2)] and dimeric mu-Cl-[Rh(L)Cl](2) complexes. These Rh(I) carbonyl complexes are either dimeric with bridging phosphine ligands (dppb, dcpb, dppx) or monomeric chelate complexes. The reaction of the complexes with methyl iodide at 140 degrees C has been studied, which has revealed clear differences in the stability of the corresponding Rh(III) complexes. Surprisingly, the dimeric Rh(I) carbonyls react cleanly with MeI with rearrangement of the diphosphine to a chelate co-ordination mode to give stable Rh(III) acetyl complexes. The Rh acetyls for L=dppb and dppx have been fully characterised by X-ray crystallography. During the catalytic studies, the more rigid dppx and BINAP ligands were found to be nearly 5 times more hydrogen tolerant than [Rh(CO)(2)I(2)](-), as revealed by by-product analysis. The origin of this hydrogen tolerance is explained based on the differing reactivities of the Rh acetyls with hydrogen gas, and by considering the structure of the complexes.

  13. Understanding the Data Complexity continuum to reduce data management costs and increase data usability through partnerships with the National Centers for Environmental Information

    NASA Astrophysics Data System (ADS)

    Mesick, S.; Weathers, K. W.

    2017-12-01

    Data complexity can be seen as a continuum from complex to simple. The term data complexity refers to data collections that are disorganized, poorly documented, and generally do not follow best data management practices. Complex data collections are challenging and expensive to manage. Simplified collections readily support automated archival processes, enhanced discovery and data access, as well as production of services that make data easier to reuse. In this session, NOAA NCEI scientific data stewards will discuss the data complexity continuum. This talk will explore data simplification concepts, methods, and tools that data managers can employ which may offer more control over data management costs and processes, while achieving policy goals for open data access and ready reuse. Topics will include guidance for data managers on best allocation of limited data management resources; models for partnering with NCEI to accomplish shared data management goals; and will demonstrate through case studies the benefits of investing in documentation, accessibility, and services to increase data value and return on investment.

  14. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    NASA Astrophysics Data System (ADS)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  15. A Rare Terminal Dinitrogen Complex of Chromium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mock, Michael T.; Chen, Shentan; Rousseau, Roger J.

    The reduction of dinitrogen to ammonia from N2 and H2 is currently carried out by the Haber-Bosch process, an energy intensive process that requires high pressures and high temperatures and accounts for the production of millions of tons of ammonia per year. The development of a catalytic, energy-efficient process for N2 reduction is of great interest and remains a formidable challenge. In this communication, we are reporting the preparation, characterization and computational electronic structure analysis of a rare 'Chatt-type' ((P-P)2M(N2)2, P-P = diphosphine ligand) complex of chromium, cis-[Cr(N2)2(PPh2NBn2)2] and its reactivity with CO. This complex is supported by the diphosphinemore » ligand PPh2NBn2, containing non-coordinating pendant amine bases, to serve as proton relays. Future studies for this complex are aimed at answering fundamental questions regarding the role of proton relays in the second coordination sphere in their ability to facilitate proton movement from an external acid to metal-bound dinitrogen ligands in the challenging multi-proton/electron reduction of N2 to ammonia.« less

  16. Expert systems for superalloy studies

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    There are many areas in science and engineering which require knowledge of an extremely complex foundation of experimental results in order to design methodologies for developing new materials or products. Superalloys are an area which fit well into this discussion in the sense that they are complex combinations of elements which exhibit certain characteristics. Obviously the use of superalloys in high performance, high temperature systems such as the Space Shuttle Main Engine is of interest to NASA. The superalloy manufacturing process is complex and the implementation of an expert system within the design process requires some thought as to how and where it should be implemented. A major motivation is to develop a methodology to assist metallurgists in the design of superalloy materials using current expert systems technology. Hydrogen embrittlement is disasterous to rocket engines and the heuristics can be very complex. Attacking this problem as one module in the overall design process represents a significant step forward. In order to describe the objectives of the first phase implementation, the expert system was designated Hydrogen Environment Embrittlement Expert System (HEEES).

  17. Exploiting mAb structure characteristics for a directed QbD implementation in early process development.

    PubMed

    Karlberg, Micael; von Stosch, Moritz; Glassey, Jarka

    2018-03-07

    In today's biopharmaceutical industries, the lead time to develop and produce a new monoclonal antibody takes years before it can be launched commercially. The reasons lie in the complexity of the monoclonal antibodies and the need for high product quality to ensure clinical safety which has a significant impact on the process development time. Frameworks such as quality by design are becoming widely used by the pharmaceutical industries as they introduce a systematic approach for building quality into the product. However, full implementation of quality by design has still not been achieved due to attrition mainly from limited risk assessment of product properties as well as the large number of process factors affecting product quality that needs to be investigated during the process development. This has introduced a need for better methods and tools that can be used for early risk assessment and predictions of critical product properties and process factors to enhance process development and reduce costs. In this review, we investigate how the quantitative structure-activity relationships framework can be applied to an existing process development framework such as quality by design in order to increase product understanding based on the protein structure of monoclonal antibodies. Compared to quality by design, where the effect of process parameters on the drug product are explored, quantitative structure-activity relationships gives a reversed perspective which investigates how the protein structure can affect the performance in different unit operations. This provides valuable information that can be used during the early process development of new drug products where limited process understanding is available. Thus, quantitative structure-activity relationships methodology is explored and explained in detail and we investigate the means of directly linking the structural properties of monoclonal antibodies to process data. The resulting information as a decision tool can help to enhance the risk assessment to better aid process development and thereby overcome some of the limitations and challenges present in QbD implementation today.

  18. Design of two-column batch-to-batch recirculation to enhance performance in ion-exchange chromatography.

    PubMed

    Persson, Oliver; Andersson, Niklas; Nilsson, Bernt

    2018-01-05

    Preparative liquid chromatography is a separation technique widely used in the manufacturing of fine chemicals and pharmaceuticals. A major drawback of traditional single-column batch chromatography step is the trade-off between product purity and process performance. Recirculation of impure product can be utilized to make the trade-off more favorable. The aim of the present study was to investigate the usage of a two-column batch-to-batch recirculation process step to increase the performance compared to single-column batch chromatography at a high purity requirement. The separation of a ternary protein mixture on ion-exchange chromatography columns was used to evaluate the proposed process. The investigation used modelling and simulation of the process step, experimental validation and optimization of the simulated process. In the presented case the yield increases from 45.4% to 93.6% and the productivity increases 3.4 times compared to the performance of a batch run for a nominal case. A rapid concentration build-up product can be seen during the first cycles, before the process reaches a cyclic steady-state with reoccurring concentration profiles. The optimization of the simulation model predicts that the recirculated salt can be used as a flying start of the elution, which would enhance the process performance. The proposed process is more complex than a batch process, but may improve the separation performance, especially while operating at cyclic steady-state. The recirculation of impure fractions reduces the product losses and ensures separation of product to a high degree of purity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Analysis and Optimization of the Production Process of Cooked Sausage Meat Matrices

    NASA Astrophysics Data System (ADS)

    Diez, L.; Rauh, C.; Delgado, A.

    2010-09-01

    In the production of cooked sausages a critical step for product quality is the cutting process, where the comminuting and mixing of meat, fat, ice and spices are carried out. These processes take usually place in bowl cutters, which main control parameters are the working time, knife geometry (shape and sharpness) and rotational velocities of the knives and the bowl. The choice of the geometry and sharpness of the knives influences not only the meat matrix properties (mechanical, rheological, etc.) and, as a consequence, the sensory value of the sausages (size of connective tissue particles, water binding, etc.), but also the energetic demand for the production. However, the cutting process proves to be understood only fragmentarily due to the complex colloid chemical and mechanical behavior of the product. This is documented on the one hand by numerous knife types on the market, extremely empirical approach during determination of geometry and process parameters in practice as well as, on the other hand, by contradictory statements and explanation approaches of observed phenomena present in literature. The present contribution applies numerical simulations to analyze thermo fluid mechanical phenomena, e.g. shear stresses, during the cutting process of the non-Newtonian meat matrix. Combining these results with selected experimental investigations from literature, e.g. sensory properties, knife geometry, velocity of the knife and bowl, improvements of the cutting and mixing process are proposed using cognitive algorithms (Artificial neural networks) aiming at an optimization regarding energy and time demand and product quality.

  20. A framework for unravelling the complexities of unsustainable water resource use

    NASA Astrophysics Data System (ADS)

    Dermody, Brian; Bierkens, Marc; Wassen, Martin; Dekker, Stefan

    2016-04-01

    The majority of unsustainable water resource use is associated with food production, with the agricultural sector accounting for up to 70% of total freshwater use by humans. Water resource use in food production emerges as a result of dynamic interactions between humans and their environment in importing and exporting regions as well as the physical and socioeconomic trade infrastructure linking the two. Thus in order to understand unsustainable water resource use, it is essential to understand the complex socioecological food production and trade system. We present a modelling framework of the food production and trade system that facilitates an understanding of complex socioenvironmental processes that lead to unsustainable water resource use. Our framework is based on a coupling of the global hydrological model PC Raster Global Water Balance (PCR-GLOBWB) with a multi-agent socioeconomic food production and trade network. In our framework, agents perceive environmental conditions. They make food supply decisions based upon those perceptions and the heterogeneous socioeconomic conditions in which they exist. Agent decisions modify land and water resources. Those environmental changes feedback to influence decision making further. The framework presented has the potential to go beyond a diagnosis of the causes of unsustainable water resource and provide pathways towards a sustainable food system in terms of water resources.

  1. Bioactive Natural Products Prioritization Using Massive Multi-informational Molecular Networks.

    PubMed

    Olivon, Florent; Allard, Pierre-Marie; Koval, Alexey; Righi, Davide; Genta-Jouve, Gregory; Neyts, Johan; Apel, Cécile; Pannecouque, Christophe; Nothias, Louis-Félix; Cachet, Xavier; Marcourt, Laurence; Roussi, Fanny; Katanaev, Vladimir L; Touboul, David; Wolfender, Jean-Luc; Litaudon, Marc

    2017-10-20

    Natural products represent an inexhaustible source of novel therapeutic agents. Their complex and constrained three-dimensional structures endow these molecules with exceptional biological properties, thereby giving them a major role in drug discovery programs. However, the search for new bioactive metabolites is hampered by the chemical complexity of the biological matrices in which they are found. The purification of single constituents from such matrices requires such a significant amount of work that it should be ideally performed only on molecules of high potential value (i.e., chemical novelty and biological activity). Recent bioinformatics approaches based on mass spectrometry metabolite profiling methods are beginning to address the complex task of compound identification within complex mixtures. However, in parallel to these developments, methods providing information on the bioactivity potential of natural products prior to their isolation are still lacking and are of key interest to target the isolation of valuable natural products only. In the present investigation, we propose an integrated analysis strategy for bioactive natural products prioritization. Our approach uses massive molecular networks embedding various informational layers (bioactivity and taxonomical data) to highlight potentially bioactive scaffolds within the chemical diversity of crude extracts collections. We exemplify this workflow by targeting the isolation of predicted active and nonactive metabolites from two botanical sources (Bocquillonia nervosa and Neoguillauminia cleopatra) against two biological targets (Wnt signaling pathway and chikungunya virus replication). Eventually, the detection and isolation processes of a daphnane diterpene orthoester and four 12-deoxyphorbols inhibiting the Wnt signaling pathway and exhibiting potent antiviral activities against the CHIKV virus are detailed. Combined with efficient metabolite annotation tools, this bioactive natural products prioritization pipeline proves to be efficient. Implementation of this approach in drug discovery programs based on natural extract screening should speed up and rationalize the isolation of bioactive natural products.

  2. AGILE integration into APC for high mix logic fab

    NASA Astrophysics Data System (ADS)

    Gatefait, M.; Lam, A.; Le Gratiet, B.; Mikolajczak, M.; Morin, V.; Chojnowski, N.; Kocsis, Z.; Smith, I.; Decaunes, J.; Ostrovsky, A.; Monget, C.

    2015-09-01

    For C040 technology and below, photolithographic depth of focus control and dispersion improvement is essential to secure product functionality. Critical 193nm immersion layers present initial focus process windows close to machine control capability. For previous technologies, the standard scanner sensor (Level sensor - LS) was used to map wafer topology and expose the wafer at the right Focus. Such optical embedded metrology, based on light reflection, suffers from reading issues that cannot be neglected anymore. Metrology errors are correlated to inspected product area for which material types and densities change, and so optical properties are not constant. Various optical phenomena occur across the product field during wafer inspection and have an effect on the quality and position of the reflected light. This can result in incorrect heights being recorded and exposures possibly being done out of focus. Focus inaccuracy associated to aggressive process windows on critical layers will directly impact product realization and therefore functionality and yield. ASML has introduced an air gauge sensor to complement the optical level sensor and lead to optimal topology metrology. The use of this new sensor is managed by the AGILE (Air Gauge Improved process LEveling) application. This measurement with no optical dependency will correct for optical inaccuracy of level sensor, and so improve best focus dispersion across the product. Due to the fact that stack complexity is more and more important through process steps flow, optical perturbation of standard Level sensor metrology is increasing and is becoming maximum for metallization layers. For these reasons AGILE feature implementation was first considered for contact and all metal layers. Another key point is that standard metrology will be sensitive to layer and reticle/product density. The gain of Agile will be enhanced for multiple product contribution mask and for complex System on Chip. Into ST context (High mix logic Fab) in term of product and technology portfolio AGILE corrects for up to 120nm of product topography error on process layer with less than 50nm depth of focus Based on tool functionalities delivered by ASML and on high volume manufacturing requirement, AGILE integration is a real challenge. Regarding ST requirements "Automatic AGILE" functionality developed by ASML was not a turnkey solution and a dedicated functionality was needed. A "ST homemade AGILE integration" has been fully developed and implemented within ASML and ST constraints. This paper describes this integration in our Advanced Process Control platform (APC).

  3. Development and implementation of an automatic integration system for fibre optic sensors in the braiding process with the objective of online-monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin

    2014-04-01

    Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies

  4. Indigenous Bacteria and Fungi Drive Traditional Kimoto Sake Fermentations

    PubMed Central

    Bokulich, Nicholas A.; Ohta, Moe; Lee, Morgan

    2014-01-01

    Sake (Japanese rice wine) production is a complex, multistage process in which fermentation is performed by a succession of mixed fungi and bacteria. This study employed high-throughput rRNA marker gene sequencing, quantitative PCR, and terminal restriction fragment length polymorphism to characterize the bacterial and fungal communities of spontaneous sake production from koji to product as well as brewery equipment surfaces. Results demonstrate a dynamic microbial succession, with koji and early moto fermentations dominated by Bacillus, Staphylococcus, and Aspergillus flavus var. oryzae, succeeded by Lactobacillus spp. and Saccharomyces cerevisiae later in the fermentations. The microbiota driving these fermentations were also prevalent in the production environment, illustrating the reservoirs and routes for microbial contact in this traditional food fermentation. Interrogating the microbial consortia of production environments in parallel with food products is a valuable approach for understanding the complete ecology of food production systems and can be applied to any food system, leading to enlightened perspectives for process control and food safety. PMID:24973064

  5. Indigenous bacteria and fungi drive traditional kimoto sake fermentations.

    PubMed

    Bokulich, Nicholas A; Ohta, Moe; Lee, Morgan; Mills, David A

    2014-09-01

    Sake (Japanese rice wine) production is a complex, multistage process in which fermentation is performed by a succession of mixed fungi and bacteria. This study employed high-throughput rRNA marker gene sequencing, quantitative PCR, and terminal restriction fragment length polymorphism to characterize the bacterial and fungal communities of spontaneous sake production from koji to product as well as brewery equipment surfaces. Results demonstrate a dynamic microbial succession, with koji and early moto fermentations dominated by Bacillus, Staphylococcus, and Aspergillus flavus var. oryzae, succeeded by Lactobacillus spp. and Saccharomyces cerevisiae later in the fermentations. The microbiota driving these fermentations were also prevalent in the production environment, illustrating the reservoirs and routes for microbial contact in this traditional food fermentation. Interrogating the microbial consortia of production environments in parallel with food products is a valuable approach for understanding the complete ecology of food production systems and can be applied to any food system, leading to enlightened perspectives for process control and food safety. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Autonomous Agents for Dynamic Process Planning in the Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Nik Nejad, Hossein Tehrani; Sugimura, Nobuhiro; Iwamura, Koji; Tanimizu, Yoshitaka

    Rapid changes of market demands and pressures of competition require manufacturers to maintain highly flexible manufacturing systems to cope with a complex manufacturing environment. This paper deals with development of an agent-based architecture of dynamic systems for incremental process planning in the manufacturing systems. In consideration of alternative manufacturing processes and machine tools, the process plans and the schedules of the manufacturing resources are generated incrementally and dynamically. A negotiation protocol is discussed, in this paper, to generate suitable process plans for the target products real-timely and dynamically, based on the alternative manufacturing processes. The alternative manufacturing processes are presented by the process plan networks discussed in the previous paper, and the suitable process plans are searched and generated to cope with both the dynamic changes of the product specifications and the disturbances of the manufacturing resources. We initiatively combine the heuristic search algorithms of the process plan networks with the negotiation protocols, in order to generate suitable process plans in the dynamic manufacturing environment.

  7. Process yield improvements with process control terminal for varian serial ion implanters

    NASA Astrophysics Data System (ADS)

    Higashi, Harry; Soni, Ameeta; Martinez, Larry; Week, Ken

    Implant processes in a modern wafer production fab are extremely complex. There can be several types of misprocessing, i.e. wrong dose or species, double implants and missed implants. Process Control Terminals (PCT) for Varian 350Ds installed at Intel fabs were found to substantially reduce the number of misprocessing steps. This paper describes those misprocessing steps and their subsequent reduction with use of PCTs. Reliable and simple process control with serial process ion implanters has been in increasing demand. A well designed process control terminal greatly increases device yield by monitoring all pertinent implanter functions and enabling process engineering personnel to set up process recipes for simple and accurate system operation. By programming user-selectable interlocks, implant errors are reduced and those that occur are logged for further analysis and prevention. A process control terminal should also be compatible with office personal computers for greater flexibility in system use and data analysis. The impact from the capability of a process control terminal is increased productivity, ergo higher device yield.

  8. Adding Semantics and OPM Ontology for the Provenance of Multi-sensor Merged Climate Data Records. Now What About Reproducibility?

    NASA Astrophysics Data System (ADS)

    Hua, H.; Wilson, B. D.; Manipon, G.; Pan, L.; Fetzer, E.

    2011-12-01

    Multi-decadal climate data records are critical to studying climate variability and change. These often also require merging data from multiple instruments such as those from NASA's A-Train that contain measurements covering a wide range of atmospheric conditions and phenomena. Multi-decadal climate data record of water vapor measurements from sensors on A-Train, operational weather, and other satellites are being assembled from existing data sources, or produced from well-established methods published in peer-reviewed literature. However, the immense volume and inhomogeneity of data often requires an "exploratory computing" approach to product generation where data is processed in a variety of different ways with varying algorithms, parameters, and code changes until an acceptable intermediate product is generated. This process is repeated until a desirable final merged product can be generated. Typically the production legacy is often lost due to the complexity of processing steps that were tried along the way. The data product information associated with source data, processing methods, parameters used, intermediate product outputs, and associated materials are often hidden in each of the trials and scattered throughout the processing system(s). We will discuss methods to help users better capture and explore the production legacy of the data, metadata, ancillary files, code, and computing environment changes used during the production of these merged and multi-sensor data products. By leveraging existing semantic and provenance tools, we can capture sufficient information to enable users to track, perform faceted searches, and visualize the provenance of the products and processing lineage. We will explore if sufficient provenance information can be captured to enable science reproducibility of these climate data records.

  9. Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Young, C.; Stoeser, D.; Edmunson, J.

    2014-01-01

    The availability of pure, high calcium plagioclase would be a significant asset in any attempt to manufacture high-quality lunar simulants. A suitable plagioclase product can be obtained from materials obtained from the Stillwater Complex of Montana. The access, geology, petrology, and mineralogy of the relevant rocks and the mill tailings are described here. This study demonstrates successful plagioclase recovery from mill tailings produced by the Stillwater Mine Company. Hydrogen peroxide was used to remove carboxymethyl cellulose from the tailing. The characteristics of the plagioclase products are shown and locked grains are identified as a limit to achievable purity. Based on the experimental results, flowsheets were developed showing how these resources could be processed and made into 'separates' of (1) high calcium plagioclase and (2) orthopyroxene/clinopyroxene with the thought that they would be combined later to make simulant.

  10. Tracing origins of complex pharmaceutical preparations using surface desorption atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Zhang, Xinglei; Jia, Bin; Huang, Keke; Hu, Bin; Chen, Rong; Chen, Huanwen

    2010-10-01

    A novel strategy to trace the origins of commercial pharmaceutical products has been developed based on the direct chemical profiling of the pharmaceutical products by surface desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Besides the unambiguous identification of active drug components, various compounds present in the matrixes are simultaneously detected without sample pretreatment, providing valuable information for drug quality control and origin differentiation. Four sources of commercial amoxicillin products made by different manufacturers have been successfully differentiated. This strategy has been extended to secerning six sources of Liuwei Dihuang Teapills, which are herbal medicine preparations with extremely complex matrixes. The photolysis status of chemical drug products and the inferior natural herd medicine products prepared with different processes (e.g., extra heating) were also screened using the method reported here. The limit of detection achieved in the MS/MS experiments was estimated to be 1 ng/g for amoxicillin inside the capsule product. Our experimental data demonstrate that DAPCI-MS is a useful tool for rapid pharmaceutical analysis, showing promising perspectives for tracking the entire pharmaceutical supply chain to prevent counterfeit intrusions.

  11. Tryptophan oxidation catabolite, N-formylkynurenine, in photo degraded cell culture medium results in reduced cell culture performance.

    PubMed

    McElearney, Kyle; Ali, Amr; Gilbert, Alan; Kshirsagar, Rashmi; Zang, Li

    2016-01-01

    Chemically defined media have been widely used in the biopharmaceutical industry to enhance cell culture productivities and ensure process robustness. These media, which are quite complex, often contain a mixture of many components such as vitamins, amino acids, metals and other chemicals. Some of these components are known to be sensitive to various stress factors including photodegradation. Previous work has shown that small changes in impurity concentrations induced by these potential stresses can have a large impact on the cell culture process including growth and product quality attributes. Furthermore, it has been shown to be difficult to detect these modifications analytically due to the complexity of the cell culture media and the trace level of the degradant products. Here, we describe work performed to identify the specific chemical(s) in photodegraded medium that affect cell culture performance. First, we developed a model system capable of detecting changes in cell culture performance. Second, we used these data and applied an LC-MS analytical technique to characterize the cell culture media and identify degradant products which affect cell culture performance. Riboflavin limitation and N-formylkynurenine (NFK), a tryptophan oxidation catabolite, were identified as chemicals which results in a reduction in cell culture performance. © 2015 American Institute of Chemical Engineers.

  12. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property.

    PubMed

    McCann, Maureen C; Carpita, Nicholas C

    2015-07-01

    Recalcitrance of plant biomass to enzymatic hydrolysis for biofuel production is thought to be a property conferred by lignin or lignin-carbohydrate complexes. However, chemical catalytic and thermochemical conversion pathways, either alone or in combination with biochemical and fermentative pathways, now provide avenues to utilize lignin and to expand the product range beyond ethanol or butanol. To capture all of the carbon in renewable biomass, both lignin-derived aromatics and polysaccharide-derived sugars need to be transformed by catalysts to liquid hydrocarbons and high-value co-products. We offer a new definition of recalcitrance as those features of biomass which disproportionately increase energy requirements in conversion processes, increase the cost and complexity of operations in the biorefinery, and/or reduce the recovery of biomass carbon into desired products. The application of novel processing technologies applied to biomass reveal new determinants of recalcitrance that comprise a broad range of molecular, nanoscale, and macroscale factors. Sampling natural genetic diversity within a species, transgenic approaches, and synthetic biology approaches are all strategies that can be used to select biomass for reduced recalcitrance in various pretreatments and conversion pathways. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Visual Perception-Based Statistical Modeling of Complex Grain Image for Product Quality Monitoring and Supervision on Assembly Production Line

    PubMed Central

    Chen, Qing; Xu, Pengfei; Liu, Wenzhong

    2016-01-01

    Computer vision as a fast, low-cost, noncontact, and online monitoring technology has been an important tool to inspect product quality, particularly on a large-scale assembly production line. However, the current industrial vision system is far from satisfactory in the intelligent perception of complex grain images, comprising a large number of local homogeneous fragmentations or patches without distinct foreground and background. We attempt to solve this problem based on the statistical modeling of spatial structures of grain images. We present a physical explanation in advance to indicate that the spatial structures of the complex grain images are subject to a representative Weibull distribution according to the theory of sequential fragmentation, which is well known in the continued comminution of ore grinding. To delineate the spatial structure of the grain image, we present a method of multiscale and omnidirectional Gaussian derivative filtering. Then, a product quality classifier based on sparse multikernel–least squares support vector machine is proposed to solve the low-confidence classification problem of imbalanced data distribution. The proposed method is applied on the assembly line of a food-processing enterprise to classify (or identify) automatically the production quality of rice. The experiments on the real application case, compared with the commonly used methods, illustrate the validity of our method. PMID:26986726

  14. New surface smoothing technologies for manufacturing of complex shaped glass components

    NASA Astrophysics Data System (ADS)

    Henkel, Sebastian; Schwager, Anne-Marie; Bliedtner, Jens; Götze, Kerstin; Rädlein, Edda; Schulze, Christian; Gerhardt, Martin; Fuhr, Michael

    2017-10-01

    The production of complex glass components with 2.5D or 3D-structures involves great effort and the need for advanced CNC-technology. Especially the final surface treatment, for generation of transparent surfaces, represents a timeconsuming and costly process. The ultrasonic-assisted grinding procedure is used to generate arbitrary shaped components and freeform-surfaces. The special kinematic principle, containing a high-frequency tool oscillation, enables efficient manufacturing processes. Surfaces produced in this way allow for application of novel smoothing methods, providing considerable advantages compared to classic polishing. It is shown, that manufacturing of transparent glass surfaces with low roughness down to Rq = 10 nm is possible, using an ultra-fine grinding process. By adding a CO2-laser polishing process, roughness can be reduced even further with a very short polishing time.

  15. Single metal catalysis: DFT and CAS modelling of species involved in the Fe cation assisted transformation of acetylene to benzene

    NASA Astrophysics Data System (ADS)

    Altun, Zikri; Bleda, Erdi; Trindle, Carl

    2017-09-01

    Gas phase conversion of acetylene to benzene, assisted by a single metal cation such as Fe(+), Ru(+) and Rh(+), offers an attractive prospect for application of computational modelling techniques to catalytic processes. Gas phase processes are not complicated by environmental effects and the participation of a single metal atom is a significant simplification. Still the process is complex, owing to the possibility of several low-energy spin states and the abundance of alternative structures. By density functional theory modelling using recently developed models with range and dispersion corrections, we locate and characterise a number of extreme points on the FeC6H6(+) surface, some of which have not been described previously. These include eta-1, eta-2 and eta-3 complexes of Fe(+) with the C4H4 ring. We identify new FeC6H6(+) structures as well, which may be landmarks for the Fe(+)-catalysed production of benzene from acetylene. The Fe(+) benzene complex is the most stable species on the FeC6H6 cation surface. With the abundant energy of complexation available in the isolated gas phase species, detachment of the Fe(+) and production of benzene can be efficient. We address the issue raised by other investigators whether multi-configurational self-consistent field methods are essential to the proper description of these systems. We find that the relative energy of intrinsically multi-determinant doublets is strongly affected, but judge that the density functional theory (DFT) description provides more accurate estimates of energetics and a more plausible reaction path.

  16. The Role of Fresh Water in Fish Processing in Antiquity

    NASA Astrophysics Data System (ADS)

    Sánchez López, Elena H.

    2018-04-01

    Water has been traditionally highlighted (together with fish and salt) as one of the essential elements in fish processing. Indeed, the need for large quantities of fresh water for the production of salted fish and fish sauces in Roman times is commonly asserted. This paper analyses water-related structures within Roman halieutic installations, arguing that their common presence in the best known fish processing installations in the Western Roman world should be taken as evidence of the use of fresh water during the production processes, even if its role in the activities carried out in those installations is not clear. In addition, the text proposes some first estimates on the amount of water that could be needed by those fish processing complexes for their functioning, concluding that water needs to be taken into account when reconstructing fish-salting recipes.

  17. Systems engineering and integration processes involved with manned mission operations

    NASA Technical Reports Server (NTRS)

    Kranz, Eugene F.; Kraft, Christopher C.

    1993-01-01

    This paper will discuss three mission operations functions that are illustrative of the key principles of operations SE&I and of the processes and products involved. The flight systems process was selected to illustrate the role of the systems product line in developing the depth and cross disciplinary skills needed for SE&I and providing the foundation for dialogue between participating elements. FDDD was selected to illustrate the need for a structured process to assure that SE&I provides complete and accurate results that consistently support program needs. The flight director's role in mission operations was selected to illustrate the complexity of the risk/gain tradeoffs involved in the development of the flight techniques and flight rules process as well as the absolute importance of the leadership role in developing the technical, operational, and political trades.

  18. Digitalization in roll forming manufacturing

    NASA Astrophysics Data System (ADS)

    Sedlmaier, A.; Dietl, T.; Ferreira, P.

    2017-09-01

    Roll formed profiles are used in automotive chassis production as building blocks for the body-in-white. The ability to produce profiles with discontinuous cross sections, both in width and in depth, allows weight savings in the final automotive chassis through the use of load optimized cross sections. This has been the target of the 3D Roll Forming process. A machine concept is presented where a new forming concept for roll formed parts in combination with advanced robotics allowing freely positioned roll forming tooling in 3D space enables the production of complex shapes by roll forming. This is a step forward into the digitalization of roll forming manufacturing by making the process flexible and capable of rapid prototyping and production of small series of parts. Moreover, data collection in a large scale through the control system and integrated sensors lead to an increased understanding of the process and provide the basis to develop self-optimizing roll forming machines, increasing the productivity, quality and predictability of the roll-forming process. The first parts successfully manufactured with this new forming concept are presented.

  19. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    PubMed

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-06-01

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  20. Metric integration architecture for product development

    NASA Astrophysics Data System (ADS)

    Sieger, David B.

    1997-06-01

    Present-day product development endeavors utilize the concurrent engineering philosophy as a logical means for incorporating a variety of viewpoints into the design of products. Since this approach provides no explicit procedural provisions, it is necessary to establish at least a mental coupling with a known design process model. The central feature of all such models is the management and transformation of information. While these models assist in structuring the design process, characterizing the basic flow of operations that are involved, they provide no guidance facilities. The significance of this feature, and the role it plays in the time required to develop products, is increasing in importance due to the inherent process dynamics, system/component complexities, and competitive forces. The methodology presented in this paper involves the use of a hierarchical system structure, discrete event system specification (DEVS), and multidimensional state variable based metrics. This approach is unique in its capability to quantify designer's actions throughout product development, provide recommendations about subsequent activity selection, and coordinate distributed activities of designers and/or design teams across all design stages. Conceptual design tool implementation results are used to demonstrate the utility of this technique in improving the incremental decision making process.

  1. WRF Improves Downscaled Precipitation During El Niño Events over Complex Terrain in Northern South America: Implications for Deforestation Studies

    NASA Astrophysics Data System (ADS)

    Rendón, A.; Posada, J. A.; Salazar, J. F.; Mejia, J.; Villegas, J.

    2016-12-01

    Precipitation in the complex terrain of the tropical Andes of South America can be strongly reduced during El Niño events, with impacts on numerous societally-relevant services, including hydropower generation, the main electricity source in Colombia. Simulating rainfall patterns and behavior in such areas of complex terrain has remained a challenge for regional climate models. Current data products such as ERA-Interim and other reanalysis and modelling products generally fail to correctly represent processes at scales that are relevant for these processes. Here we assess the added value to ERA-Interim by dynamical downscaling using the WRF regional climate model, including a comparison of different cumulus parameterization schemes. We found that WRF improves the representation of precipitation during the dry season of El Niño (DJF) events using a 1996-2014 observation period. Further, we use these improved capability to simulate an extreme deforestation scenario under El Niño conditions for an area in the central Andes of Colombia, where a big proportion of the country's hydropower is generated. Our results suggest that forests dampen the effects of El Niño on precipitation. In synthesis, our results illustrate the utility of regional modelling to improve data sources, as well as their potential for predicting the local-to-regional effects of global-change-type processes in regions with limited data availability.

  2. Scaling and universality in the human voice.

    PubMed

    Luque, Jordi; Luque, Bartolo; Lacasa, Lucas

    2015-04-06

    Speech is a distinctive complex feature of human capabilities. In order to understand the physics underlying speech production, in this work, we empirically analyse the statistics of large human speech datasets ranging several languages. We first show that during speech, the energy is unevenly released and power-law distributed, reporting a universal robust Gutenberg-Richter-like law in speech. We further show that such 'earthquakes in speech' show temporal correlations, as the interevent statistics are again power-law distributed. As this feature takes place in the intraphoneme range, we conjecture that the process responsible for this complex phenomenon is not cognitive, but it resides in the physiological (mechanical) mechanisms of speech production. Moreover, we show that these waiting time distributions are scale invariant under a renormalization group transformation, suggesting that the process of speech generation is indeed operating close to a critical point. These results are put in contrast with current paradigms in speech processing, which point towards low dimensional deterministic chaos as the origin of nonlinear traits in speech fluctuations. As these latter fluctuations are indeed the aspects that humanize synthetic speech, these findings may have an impact in future speech synthesis technologies. Results are robust and independent of the communication language or the number of speakers, pointing towards a universal pattern and yet another hint of complexity in human speech. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-07

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

  4. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum

    PubMed Central

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-01-01

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels. PMID:26100881

  5. Entropy production and nonlinear Fokker-Planck equations.

    PubMed

    Casas, G A; Nobre, F D; Curado, E M F

    2012-12-01

    The entropy time rate of systems described by nonlinear Fokker-Planck equations--which are directly related to generalized entropic forms--is analyzed. Both entropy production, associated with irreversible processes, and entropy flux from the system to its surroundings are studied. Some examples of known generalized entropic forms are considered, and particularly, the flux and production of the Boltzmann-Gibbs entropy, obtained from the linear Fokker-Planck equation, are recovered as particular cases. Since nonlinear Fokker-Planck equations are appropriate for the dynamical behavior of several physical phenomena in nature, like many within the realm of complex systems, the present analysis should be applicable to irreversible processes in a large class of nonlinear systems, such as those described by Tsallis and Kaniadakis entropies.

  6. Diagnosis of the Computer-Controlled Milling Machine, Definition of the Working Errors and Input Corrections on the Basis of Mathematical Model

    NASA Astrophysics Data System (ADS)

    Starikov, A. I.; Nekrasov, R. Yu; Teploukhov, O. J.; Soloviev, I. V.; Narikov, K. A.

    2016-10-01

    Manufactures, machinery and equipment improve of constructively as science advances and technology, and requirements are improving of quality and longevity. That is, the requirements for surface quality and precision manufacturing, oil and gas equipment parts are constantly increasing. Production of oil and gas engineering products on modern machine tools with computer numerical control - is a complex synthesis of technical and electrical equipment parts, as well as the processing procedure. Technical machine part wears during operation and in the electrical part are accumulated mathematical errors. Thus, the above-mentioned disadvantages of any of the following parts of metalworking equipment affect the manufacturing process of products in general, and as a result lead to the flaw.

  7. Optical surface analysis: a new technique for the inspection and metrology of optoelectronic films and wafers

    NASA Astrophysics Data System (ADS)

    Bechtler, Laurie; Velidandla, Vamsi

    2003-04-01

    In response to demand for higher volumes and greater product capability, integrated optoelectronic device processing is rapidly increasing in complexity, benefiting from techniques developed for conventional silicon integrated circuit processing. The needs for high product yield and low manufacturing cost are also similar to the silicon wafer processing industry. This paper discusses the design and use of an automated inspection instrument called the Optical Surface Analyzer (OSA) to evaluate two critical production issues in optoelectronic device manufacturing: (1) film thickness uniformity, and (2) defectivity at various process steps. The OSA measurement instrument is better suited to photonics process development than most equipment developed for conventional silicon wafer processing in two important ways: it can handle both transparent and opaque substrates (unlike most inspection and metrology tools), and it is a full-wafer inspection method that captures defects and film variations over the entire substrate surface (unlike most film thickness measurement tools). Measurement examples will be provided in the paper for a variety of films and substrates used for optoelectronics manufacturing.

  8. Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    2000-01-01

    This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.

  9. Treatment of sentence comprehension and production in aphasia: is there cross-modal generalisation?

    PubMed

    Adelt, Anne; Hanne, Sandra; Stadie, Nicole

    2016-09-09

    Exploring generalisation following treatment of language deficits in aphasia can provide insights into the functional relation of the cognitive processing systems involved. In the present study, we first review treatment outcomes of interventions targeting sentence processing deficits and, second report a treatment study examining the occurrence of practice effects and generalisation in sentence comprehension and production. In order to explore the potential linkage between processing systems involved in comprehending and producing sentences, we investigated whether improvements generalise within (i.e., uni-modal generalisation in comprehension or in production) and/or across modalities (i.e., cross-modal generalisation from comprehension to production or vice versa). Two individuals with aphasia displaying co-occurring deficits in sentence comprehension and production were trained on complex, non-canonical sentences in both modalities. Two evidence-based treatment protocols were applied in a crossover intervention study with sequence of treatment phases being randomly allocated. Both participants benefited significantly from treatment, leading to uni-modal generalisation in both comprehension and production. However, cross-modal generalisation did not occur. The magnitude of uni-modal generalisation in sentence production was related to participants' sentence comprehension performance prior to treatment. These findings support the assumption of modality-specific sub-systems for sentence comprehension and production, being linked uni-directionally from comprehension to production.

  10. Development of parametric material, energy, and emission inventories for wafer fabrication in the semiconductor industry.

    PubMed

    Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E

    2003-12-01

    Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.

  11. GEOSPATIAL IT/IM QA CHECKLIST

    EPA Science Inventory

    Quality assurance (QA) of information technology (IT) and Information Management (IM) systems help to ensure that the end product is of known quality and integrity. As the complexity of IT & IM processes increase, so does the need for regular QA evaluation.

    The areas revi...

  12. Clarification of vaccines: An overview of filter based technology trends and best practices.

    PubMed

    Besnard, Lise; Fabre, Virginie; Fettig, Michael; Gousseinov, Elina; Kawakami, Yasuhiro; Laroudie, Nicolas; Scanlan, Claire; Pattnaik, Priyabrata

    2016-01-01

    Vaccines are derived from a variety of sources including tissue extracts, bacterial cells, virus particles, recombinant mammalian, yeast and insect cell produced proteins and nucleic acids. The most common method of vaccine production is based on an initial fermentation process followed by purification. Production of vaccines is a complex process involving many different steps and processes. Selection of the appropriate purification method is critical to achieving desired purity of the final product. Clarification of vaccines is a critical step that strongly impacts product recovery and subsequent downstream purification. There are several technologies that can be applied for vaccine clarification. Selection of a harvesting method and equipment depends on the type of cells, product being harvested, and properties of the process fluids. These techniques include membrane filtration (microfiltration, tangential-flow filtration), centrifugation, and depth filtration (normal flow filtration). Historically vaccine harvest clarification was usually achieved by centrifugation followed by depth filtration. Recently membrane based technologies have gained prominence in vaccine clarification. The increasing use of single-use technologies in upstream processes necessitated a shift in harvest strategies. This review offers a comprehensive view on different membrane based technologies and their application in vaccine clarification, outlines the challenges involved and presents the current state of best practices in the clarification of vaccines. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Catalysts and process for liquid hydrocarbon fuel production

    DOEpatents

    White, Mark G.; Ranaweera, Samantha A.; Henry, William P.

    2016-08-02

    The present invention provides a novel process and system in which a mixture of carbon monoxide and hydrogen synthesis gas, or syngas, is converted into hydrocarbon mixtures composed of high quality distillates, gasoline components, and lower molecular weight gaseous olefins in one reactor or step. The invention utilizes a novel supported bimetallic ion complex catalyst for conversion, and provides methods of preparing such novel catalysts and use of the novel catalysts in the process and system of the invention.

  14. Usability in product development practice; an exploratory case study comparing four markets.

    PubMed

    van Kuijk, Jasper; van Driel, Liesbeth; van Eijk, Daan

    2015-03-01

    This study explored how usability was dealt with in four product development organizations active in different sectors: high-end automotive, professional printers and copiers, office coffee makers and fast moving consumer goods. The primary differentiators of the selected cases were whether they were targeting businesses or consumers and the degree of product complexity. Interviews with 19 product development practitioners were conducted, focussing on three topics: 1) the product development process and the integration of user involvement, 2) multidisciplinary teamwork, and 3) organizational attitude towards usability. Based on the interviews, context descriptions of the companies were created and barriers and enablers for usability were identified. To verify the findings and to discuss remaining issues a feedback workshop was held in which the primary contact from each company participated. The results indicate that differences in product-market combination lead to differences in organizational attitude towards usability. The prioritization of usability in an organization seems to be influenced by the degree of product complexity (complex products are more prone to suffer from usability issues) and whether developers think that usability is a purchase consideration for their clients. The product-market combination a company targets also affects the methods for user-centred design that a company can apply and that are relevant. What methods for user-centred design are used also seems to be influenced by the attitude towards usability: if usability is considered more important, methods that require more resources can be applied. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Preparation of Lentinula edodes polysaccharide-calcium complex and its immunoactivity.

    PubMed

    Cui, Yujiao; Yan, Huidan; Zhang, Xuewu

    2015-01-01

    Polysaccharide is a major bioactive component of mushrooms. In this study, for the first time, starting from a new Lentinula edodes polysaccharide L2, we prepared a novel L2-calcium complex and the process was optimized. Scanning electron microscopy and Fourier Transform infrared spectrometry were used for characterization. The immunostimulating activities of L2 and L2-calcium complex were measured by enhancing the production of two cytokines TNF-α and IL-6 in RAW264.7 cells. While L2-calcium complex significantly stimulates the secretions of TNF-α and IL-6 compared with the control, complex with calcium ion decreased the secretion of them. These facts indicate that calcium ion can modulate immune stimulating activity of Lentinula edodes polysaccharide L2.

  16. Multicriteria analysis of product operational effectiveness at design stages

    NASA Astrophysics Data System (ADS)

    Irzaev, G. Kh

    2018-03-01

    The multicriteria rapid assessment method of techno-economic parameters of new products is developed. It avoids expensive engineering changes during the operational stages through the analysis of external and internal factors at an early stage in the design that affect the maintainability and manufacturability of the product. The expert selection of the initial multitude of indicators from the five enlarged criteria groups and their subsequent pairwise comparison allow one to distinguish the complex compliance criteria of product design with the average and optimum values of the operational effectiveness. The values comparison provides an opportunity to decide on the continuation of the process for designing and preparation of the product manufacture.

  17. International Trade: Rules of Origin

    DTIC Science & Technology

    2009-03-06

    products has been subcontracted to a global manufacturing company that operates in many countries. While some major retailers and brand -name distributors...often the case in today’s global trading environment—determining origin can be a very complex, sometimes subjective, and time-consuming process. U.S...CBP origin determinations, and the effects of the global manufacturing process on ROO. Third, we conclude with some alternatives and options that

  18. Integrative Mapping of Global-Scale Processes and Patterns on "Imaginary Earth" Continental Geometries: A Teaching Tool in an Earth History Course

    ERIC Educational Resources Information Center

    Sunderlin, David

    2009-01-01

    The complexity and interrelatedness of aspects of the geosciences is an important concept to convey in an undergraduate geoscience curriculum. A synthesis capstone project has served to integrate pattern-based learning of an introductory Earth History course into an active and process-based exercise in hypothesis production. In this exercise,…

  19. A 3D bioprinting exemplar of the consequences of the regulatory requirements on customized processes.

    PubMed

    Hourd, Paul; Medcalf, Nicholas; Segal, Joel; Williams, David J

    2015-01-01

    Computer-aided 3D printing approaches to the industrial production of customized 3D functional living constructs for restoration of tissue and organ function face significant regulatory challenges. Using the manufacture of a customized, 3D-bioprinted nasal implant as a well-informed but hypothetical exemplar, we examine how these products might be regulated. Existing EU and USA regulatory frameworks do not account for the differences between 3D printing and conventional manufacturing methods or the ability to create individual customized products using mechanized rather than craft approaches. Already subject to extensive regulatory control, issues related to control of the computer-aided design to manufacture process and the associated software system chain present additional scientific and regulatory challenges for manufacturers of these complex 3D-bioprinted advanced combination products.

  20. Reciprocal Allocation Method in Service Departments. The Case of a Production Enterprise

    NASA Astrophysics Data System (ADS)

    Papaj, Ewelina

    2017-12-01

    The main aim of this article is to indicate the role of reciprocal allocation method in the process of costs calculation. In the environment of nowadays companies, often taking very complex organisational forms, the existence of service departments becomes of great importance. Although, as far as management accounting processes are concerned, which lead to identifying the product cost, the service departments' costs come out to be of minor importance. This article means to prove that the service departments' costs and their reliable settlement are a desirable source of information about the products. This work consists of two parts. First of them features theoretical considerations and a critical analysis of subject literature. In the latter part, the service departments' costs calculation will be presented, basing on reciprocal services in a production enterprise from chemical industry.

  1. Adsorption of saturated fatty acid in urea complexation: Kinetics and equilibrium studies

    NASA Astrophysics Data System (ADS)

    Setyawardhani, Dwi Ardiana; Sulistyo, Hary; Sediawan, Wahyudi Budi; Fahrurrozi, Mohammad

    2018-02-01

    Urea complexation is fractionation process for concentrating poly-unsaturated fatty acids (PUFAs) from vegetable oil or animal fats. For process design and optimization in commercial industries, it is necessary to provide kinetics and equilibrium data. Urea inclusion compounds (UICs) as the product is a unique complex form which one molecule (guest) is enclosed within another molecule (host). In urea complexation, the guest-host bonding exists between saturated fatty acids (SFAs) and crystalline urea. This research studied the complexation is analogous to an adsorption process. The Batch adsorption process was developed to obtain the experimental data. The ethanolic urea solution was mixed with SFA in certain compositions and adsorption times. The mixture was heated until it formed homogenous and clear solution, then it cooled very slowly until the first numerous crystal appeared. Adsorption times for the kinetic data were determined since the crystal formed. The temperature was maintained constant at room temperature. Experimental sets of data were observed with adsorption kinetics and equilibrium models. High concentration of saturated fatty acid (SFA) was used to represent adsorption kinetics and equilibrium parameters. Kinetic data were examined with pseudo first-order, pseudo second-order and intra particle diffusion models. Linier, Freundlich and Langmuir isotherm were used to study the equilibrium model of this adsorption. The experimental data showed that SFA adsorption in urea crystal followed pseudo second-order model. The compatibility of the data with Langmuir isotherm showed that urea complexation was a monolayer adsorption.

  2. Reaction-diffusion controlled growth of complex structures

    NASA Astrophysics Data System (ADS)

    Noorduin, Willem; Mahadevan, L.; Aizenberg, Joanna

    2013-03-01

    Understanding how the emergence of complex forms and shapes in biominerals came about is both of fundamental and practical interest. Although biomineralization processes and organization strategies to give higher order architectures have been studied extensively, synthetic approaches to mimic these self-assembled structures are highly complex and have been difficult to emulate, let alone replicate. The emergence of solution patterns has been found in reaction-diffusion systems such as Turing patterns and the BZ reaction. Intrigued by this spontaneous formation of complexity we explored if similar processes can lead to patterns in the solid state. We here identify a reaction-diffusion system in which the shape of the solidified products is a direct readout of the environmental conditions. Based on insights in the underlying mechanism, we developed a toolbox of engineering strategies to deterministically sculpt patterns and shapes, and combine different morphologies to create a landscape of hierarchical multi scale-complex tectonic architectures with unprecedented levels of complexity. These findings may hold profound implications for understanding, mimicking and ultimately expanding upon nature's morphogenesis strategies, allowing the synthesis of advanced highly complex microscale materials and devices. WLN acknowledges the Netherlands Organization for Scientific Research for financial support

  3. Artificial neural networks to model formulation-property correlations in the process of inline-compounding on an injection moulding machine

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Müller, Ellen; Martin, Yannick; Kleeschulte, Rainer

    2015-05-01

    Today the global market poses great challenges for industrial product development. Complexity, diversity of variants, flexibility and individuality are just some of the features that products have to offer today. In addition, the product series have shorter lifetimes. Because of their high capacity for adaption, polymers are increasingly able to displace traditional materials such as wood, glass and metals from various fields of application. Polymers can only be used to substitute other materials, however, if they are optimally suited to the applications in question. Hence, product-specific material development is becoming increasingly important. Integrating the compounding step in the injection moulding process permits a more efficient and faster development process for a new polymer formulation, making it possible to create new product-specific materials. This process is called inline-compounding on an injection moulding machine. The entire process sequence is supported by software from Bayer Technology called Product Design Workbench (PDWB), which provides assistance in all the individual steps from data management, via analysis and model compilation, right through to the optimization of the formulation and the design of experiments. The software is based on artificial neural networks and can model the formulation-property correlations and thus enable different formulations to be optimized. In the study presented, the workflow and the modelling with the software are presented.

  4. Development of a sterilizing in-place application for a production machine using Vaporized Hydrogen Peroxide.

    PubMed

    Mau, T; Hartmann, V; Burmeister, J; Langguth, P; Häusler, H

    2004-01-01

    The use of steam in sterilization processes is limited by the implementation of heat-sensitive components inside the machines to be sterilized. Alternative low-temperature sterilization methods need to be found and their suitability evaluated. Vaporized Hydrogen Peroxide (VHP) technology was adapted for a production machine consisting of highly sensitive pressure sensors and thermo-labile air tube systems. This new kind of "cold" surface sterilization, known from the Barrier Isolator Technology, is based on the controlled release of hydrogen peroxide vapour into sealed enclosures. A mobile VHP generator was used to generate the hydrogen peroxide vapour. The unit was combined with the air conduction system of the production machine. Terminal vacuum pumps were installed to distribute the gas within the production machine and for its elimination. In order to control the sterilization process, different physical process monitors were incorporated. The validation of the process was based on biological indicators (Geobacillus stearothermophilus). The Limited Spearman Karber Method (LSKM) was used to statistically evaluate the sterilization process. The results show that it is possible to sterilize surfaces in a complex tube system with the use of gaseous hydrogen peroxide. A total microbial reduction of 6 log units was reached.

  5. Development of the Gliding Hole of the Dynamics Compression Plate

    NASA Astrophysics Data System (ADS)

    Salim, U. A.; Suyitno; Magetsari, R.; Mahardika, M.

    2017-02-01

    The gliding hole of the dynamics compression plate is designed to facilitate relative movement of pedicle screw during surgery application. The gliding hole shape is then geometrically complex. The gliding hole manufactured using machining processes used to employ ball-nose cutting tool. Then, production cost is expensive due to long production time. This study proposed to increase productivity of DCP products by introducing forming process (cold forming). The forming process used to involve any press tool devices. In the closed die forming press tool is designed with little allowance, then work-pieces is trapped in the mould after forming. Therefore, it is very important to determine hole geometry and dimensions of raw material in order to success on forming process. This study optimized the hole sizes with both geometry analytics and experiments. The success of the forming process was performed by increasing the holes size on the raw materials. The holes size need to be prepared is diameter of 5.5 mm with a length of 11.4 mm for the plate thickness 3 mm and diameter of 6 mm with a length of 12.5 mm for the plate thickness 4 mm.

  6. Adaptive management for ecosystem services (j/a) | Science ...

    EPA Pesticide Factsheets

    Management of natural resources for the production of ecosystem services, which are vital for human well-being, is necessary even when there is uncertainty regarding system response to management action. This uncertainty is the result of incomplete controllability, complex internal feedbacks, and non-linearity that often interferes with desired management outcomes, and insufficient understanding of nature and people. Adaptive management was developed to reduce such uncertainty. We present a framework for the application of adaptive management for ecosystem services that explicitly accounts for cross-scale tradeoffs in the production of ecosystem services. Our framework focuses on identifying key spatiotemporal scales (plot, patch, ecosystem, landscape, and region) that encompass dominant structures and processes in the system, and includes within- and cross-scale dynamics, ecosystem service tradeoffs, and management controllability within and across scales. Resilience theory recognizes that a limited set of ecological processes in a given system regulate ecosystem services, yet our understanding of these processes is poorly understood. If management actions erode or remove these processes, the system may shift into an alternative state unlikely to support the production of desired services. Adaptive management provides a process to assess the underlying within and cross-scale tradeoffs associated with production of ecosystem services while proceeding with manage

  7. About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture

    NASA Astrophysics Data System (ADS)

    Grauer, Manfred; Barth, Thomas

    2004-06-01

    Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.

  8. Supramolecular complexation for environmental control.

    PubMed

    Albelda, M Teresa; Frías, Juan C; García-España, Enrique; Schneider, Hans-Jörg

    2012-05-21

    Supramolecular complexes offer a new and efficient way for the monitoring and removal of many substances emanating from technical processes, fertilization, plant and animal protection, or e.g. chemotherapy. Such pollutants range from toxic or radioactive metal ions and anions to chemical side products, herbicides, pesticides to drugs including steroids, and include degradation products from natural sources. The applications involve usually fast and reversible complex formation, due to prevailing non-covalent interactions. This is of importance for sensing as well as for separation techniques, where the often expensive host compounds can then be reused almost indefinitely. Immobilization of host compounds, e.g. on exchange resins or on membranes, and their implementation in smart new materials hold particular promise. The review illustrates how the design of suitable host compounds in combination with modern sensing and separation methods can contribute to solve some of the biggest problems facing chemistry, which arise from the everyday increasing pollution of the environment.

  9. Kinetics of thermolysis of lanthanum nitrate with hexamethylenetetramine: Crystal structure, TG-DSC, impact and friction sensitivity studies, Part-96

    NASA Astrophysics Data System (ADS)

    Nibha; Baranwal, B. P.; Singh, Gurdip; Singh, C. P.; Daniliuc, Constantin G.; Soni, P. K.; Nath, Yogeshwar

    2014-11-01

    The development of high energetic materials includes process ability and the ability to attain insensitive munitions (IM). This paper investigates the preparation of lanthanum metal nitrate complex of hexamethylenetetramine in water at room temperature. This complex of molecular formulae [La (NO3)2(H2O)6] (2HMTA) (NO3-) (H2O) was characterized by X-ray crystallography. Thermal decomposition was investigated using TG, TG-DSC and ignition delay measurements. Kinetic analysis of isothermal TG data has been investigated using model fitting methods as well as model free isoconversional methods. The sensitivity measurements towards mechanical destructive stimuli such as impact and friction were carried out and the complex was found to be insensitive. In order to identify the end product of thermolysis, X-ray diffraction patterns of end product was carried out which proves the formation of La2O3.

  10. Overlapping Networks Engaged during Spoken Language Production and Its Cognitive Control

    PubMed Central

    Wise, Richard J.S.; Mehta, Amrish; Leech, Robert

    2014-01-01

    Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and “rest,” to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. PMID:24966373

  11. Overlapping networks engaged during spoken language production and its cognitive control.

    PubMed

    Geranmayeh, Fatemeh; Wise, Richard J S; Mehta, Amrish; Leech, Robert

    2014-06-25

    Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and "rest," to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production. Copyright © 2014 Geranmayeh et al.

  12. Neurophysiology of speech differences in childhood apraxia of speech.

    PubMed

    Preston, Jonathan L; Molfese, Peter J; Gumkowski, Nina; Sorcinelli, Andrea; Harwood, Vanessa; Irwin, Julia R; Landi, Nicole

    2014-01-01

    Event-related potentials (ERPs) were recorded during a picture naming task of simple and complex words in children with typical speech and with childhood apraxia of speech (CAS). Results reveal reduced amplitude prior to speaking complex (multisyllabic) words relative to simple (monosyllabic) words for the CAS group over the right hemisphere during a time window thought to reflect phonological encoding of word forms. Group differences were also observed prior to production of spoken tokens regardless of word complexity during a time window just prior to speech onset (thought to reflect motor planning/programming). Results suggest differences in pre-speech neurolinguistic processes.

  13. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.

    PubMed

    Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J

    2013-01-01

    Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.

  14. Production of Copper as a Complex Mining and Metallurgical Processing System in Polish Copper Mines of the Legnica-Glogów Copper Belt

    NASA Astrophysics Data System (ADS)

    Malewski, Jerzy

    2017-12-01

    Geological and technological conditions of Cu production in the Polish copper mines of the Legnica-Glogów Copper Belt are presented. Cu production is recognized as a technological fractal consisting of subsystems for mineral exploration, ore extraction and processing, and metallurgical treatment. Qualitative and quantitative models of these operations have been proposed, including estimation of their costs of process production. Numerical calculations of such a system have been performed, which allow optimize the system parameters according to economic criteria under variable Cu mineralization in the ore deposit. The main objective of the study is to develop forecasting tool for analysis of production efficiency in domestic copper mines based on available sources of information. Such analyses are primarily of social value, allowing for assessment of the efficiency of management of local mineral resources in the light of current technological and market constraints. At the same time, this is a concept of the system analysis method to manage deposit exploitation on operational and strategic level.

  15. Downstream reactions and engineering in the microbially reconstituted pathway for Taxol.

    PubMed

    Jiang, Ming; Stephanopoulos, Gregory; Pfeifer, Blaine A

    2012-05-01

    Taxol (a trademarked product of Bristol-Myers Squibb) is a complex isoprenoid natural product which has displayed potent anticancer activity. Originally isolated from the Pacific yew tree (Taxus brevifolia), Taxol has been mass-produced through processes reliant on plant-derived biosynthesis. Recently, there have been alternative efforts to reconstitute the biosynthetic process through technically convenient microbial hosts, which offer unmatched growth kinetics and engineering potential. Such an approach is made challenging by the need to successfully introduce the significantly foreign enzymatic steps responsible for eventual biosynthesis. Doing so, however, offers the potential to engineer more efficient and economical production processes and the opportunity to design and produce tailored analog compounds with enhanced properties. This mini review will specifically focus on heterologous biosynthesis as it applies to Taxol with an emphasis on the challenges associated with introducing and reconstituting the downstream reaction steps needed for final bioactivity.

  16. Arsenic behavior in river sediments under redox gradient: a review.

    PubMed

    Gorny, Josselin; Billon, Gabriel; Lesven, Ludovic; Dumoulin, David; Madé, Benoît; Noiriel, Catherine

    2015-02-01

    The fate of arsenic - a redox sensitive metalloid - in surface sediments is closely linked to early diagenetic processes. The review presents the main redox mechanisms and final products of As that have been evidenced over the last years. Oxidation of organic matter and concomitant reduction of oxidants by bacterial activity result in redox transformations of As species. The evolution of the sediment reactivity will also induce secondary abiotic reactions like complexation/de-complexation, sorption, precipitation/dissolution and biotic reactions that could, for instance, lead to the detoxification of some As species. Overall, abiotic redox reactions that govern the speciation of As mostly involve manganese (hydr)-oxides and reduced sulfur species produced by the sulfate-reducing bacteria. Bacterial activity is also responsible for the inter-conversion between As(V) and As(III), as well as for the production of methylated arsenic species. In surficial sediments, sorption processes also control the fate of inorganic As(V), through the formation of inner sphere complexes with iron (hydr)-oxides, that are biologically reduced in buried sediment. Arsenic species can also be bound to organic matter, either directly to functional groups or indirectly through metal complexes. Finally, even if the role of reduced sulfur species in the cycling of arsenic in sediments has been evidenced, some of the transformations remain hypothetical and deserve further investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effects of Voice Harmonic Complexity on ERP Responses to Pitch-Shifted Auditory Feedback

    PubMed Central

    Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R.

    2011-01-01

    Objective The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Methods Event-related potentials (ERPs) were recorded in response to +200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. Results During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. Conclusions These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. Significance This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. PMID:21719346

  18. A chemical–biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6gc01147k Click here for additional data file.

    PubMed Central

    Grimm, Fabian A.; Iwata, Yasuhiro; Sirenko, Oksana; Chappell, Grace A.; Wright, Fred A.; Reif, David M.; Braisted, John; Gerhold, David L.; Yeakley, Joanne M.; Shepard, Peter; Seligmann, Bruce; Roy, Tim; Boogaard, Peter J.; Ketelslegers, Hans B.; Rohde, Arlean M.

    2016-01-01

    Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health impacts of both existing substances and their chemical alternatives. PMID:28035192

  19. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  20. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration.

    PubMed

    Li, Xiukai; Wu, Di; Lu, Ting; Yi, Guangshun; Su, Haibin; Zhang, Yugen

    2014-04-14

    The production of bulk chemicals and fuels from renewable bio-based feedstocks is of significant importance for the sustainability of human society. Adipic acid, as one of the most-demanded drop-in chemicals from a bioresource, is used primarily for the large-volume production of nylon-6,6 polyamide. It is highly desirable to develop sustainable and environmentally friendly processes for the production of adipic acid from renewable feedstocks. However, currently there is no suitable bio-adipic acid synthesis process. Demonstrated herein is the highly efficient synthetic protocol for the conversion of mucic acid into adipic acid through the oxorhenium-complex-catalyzed deoxydehydration (DODH) reaction and subsequent Pt/C-catalyzed transfer hydrogenation. Quantitative yields (99 %) were achieved for the conversion of mucic acid into muconic acid and adipic acid either in separate sequences or in a one-step process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Software and Dataware for Energy Generation and Consumption Analysis System of Gas Processing Enterprises

    NASA Astrophysics Data System (ADS)

    Dolotovskii, I. V.; Dolotovskaya, N. V.; Larin, E. A.

    2018-05-01

    The article presents the architecture and content of a specialized analytical system for monitoring operational conditions, planning of consumption and generation of energy resources, long-term planning of production activities and development of a strategy for the development of the energy complex of gas processing enterprises. A compositional model of structured data on the equipment of the main systems of the power complex is proposed. The correctness of the use of software modules and the database of the analytical system is confirmed by comparing the results of measurements on the equipment of the electric power system and simulation at the operating gas processing plant. A high accuracy in the planning of consumption of fuel and energy resources has been achieved (the error does not exceed 1%). Information and program modules of the analytical system allow us to develop a strategy for improving the energy complex in the face of changing technological topology and partial uncertainty of economic factors.

  2. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane.

    PubMed

    Lindeboom, J; Mulder, B M; Vos, J W; Ketelaar, T; Emons, A M C

    2008-08-01

    Plant cell wall production is a membrane-bound process. Cell walls are composed of cellulose microfibrils, embedded inside a matrix of other polysaccharides and glycoproteins. The cell wall matrix is extruded into the existing cell wall by exocytosis. This same process also inserts the cellulose synthase complexes into the plasma membrane. These complexes, the nanomachines that produce the cellulose microfibrils, move inside the plasma membrane leaving the cellulose microfibrils in their wake. Cellulose microfibril angle is an important determinant of cell development and of tissue properties and as such relevant for the industrial use of plant material. Here, we provide an integrated view of the events taking place in the not more than 100 nm deep area in and around the plasma membrane, correlating recent results provided by the distinct field of plant cell biology. We discuss the coordinated activities of exocytosis, endocytosis, and movement of cellulose synthase complexes while producing cellulose microfibrils and the link of these processes to the cortical microtubules.

  3. The design briefing process matters: a case study on telehealthcare device providers in the UK.

    PubMed

    Yang, Fan; Renda, Gianni

    2018-01-23

    The telehealthcare sector has been expanding steadily in the UK. However, confusing, complex and unwieldy designs of telehealthcare devices are at best, less effective than they could be, at worst, they are potentially dangerous to the users. This study investigated the factors within the new product development process that hindered satisfactory product design outcomes, through working collaboratively with a leading provider based in the UK. This study identified that there are too many costly late-stage design changes; a critical and persistent problem area ripe for improvement. The findings from analyzing 30 recent devices, interviewing key stakeholders and observing on-going projects further revealed that one major cause of the issue was poor practice in defining and communicating the product design criteria and requirements. Addressing the characteristics of the telehealthcare industry, such as multiple design commissioners and frequent deployment of design subcontracts, this paper argues that undertaking a robust process of creating the product design brief is the key to improving the outcomes of telehealthcare device design, particularly for the small and medium-sized enterprises dominating the sector. Implications for rehabilitation Product design criteria and requirements are frequently ill-defined and ineffectively communicated to the designers within the processes of developing new telehealthcare devices. The absence of a (robust) process of creating the design brief is the root cause of the identified issues in defining and communicating the design task. Deploying a formal process of creating the product design brief is particularly important for the telehealthcare sector.

  4. In situ magnetic separation of antibody fragments from Escherichia coli in complex media

    PubMed Central

    2013-01-01

    Background In situ magnetic separation (ISMS) has emerged as a powerful tool to overcome process constraints such as product degradation or inhibition of target production. In the present work, an integrated ISMS process was established for the production of his-tagged single chain fragment variable (scFv) D1.3 antibodies (“D1.3”) produced by E. coli in complex media. This study investigates the impact of ISMS on the overall product yield as well as its biocompatibility with the bioprocess when metal-chelate and triazine-functionalized magnetic beads were used. Results Both particle systems are well suited for separation of D1.3 during cultivation. While the triazine beads did not negatively impact the bioprocess, the application of metal-chelate particles caused leakage of divalent copper ions in the medium. After the ISMS step, elevated copper concentrations above 120 mg/L in the medium negatively influenced D1.3 production. Due to the stable nature of the model protein scFv D1.3 in the biosuspension, the application of ISMS could not increase the overall D1.3 yield as was shown by simulation and experiments. Conclusions We could demonstrate that triazine-functionalized beads are a suitable low-cost alternative to selectively adsorb D1.3 fragments, and measured maximum loads of 0.08 g D1.3 per g of beads. Although copper-loaded metal-chelate beads did adsorb his-tagged D1.3 well during cultivation, this particle system must be optimized by minimizing metal leakage from the beads in order to avoid negative inhibitory effects on growth of the microorganisms and target production. Hereby, other types of metal chelate complexes should be tested to demonstrate biocompatibility. Such optimized particle systems can be regarded as ISMS platform technology, especially for the production of antibodies and their fragments with low stability in the medium. The proposed model can be applied to design future ISMS experiments in order to maximize the overall product yield while the amount of particles being used is minimized as well as the number of required ISMS steps. PMID:23688064

  5. From path models to commands during additive printing of large-scale architectural designs

    NASA Astrophysics Data System (ADS)

    Chepchurov, M. S.; Zhukov, E. M.; Yakovlev, E. A.; Matveykin, V. G.

    2018-05-01

    The article considers the problem of automation of the formation of large complex parts, products and structures, especially for unique or small-batch objects produced by a method of additive technology [1]. Results of scientific research in search for the optimal design of a robotic complex, its modes of operation (work), structure of its control helped to impose the technical requirements on the technological process for manufacturing and design installation of the robotic complex. Research on virtual models of the robotic complexes allowed defining the main directions of design improvements and the main goal (purpose) of testing of the the manufactured prototype: checking the positioning accuracy of the working part.

  6. Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production.

    PubMed

    Shanmugam, Saravanan R; Adhikari, Sushil; Wang, Zhouhang; Shakya, Rajdeep

    2017-01-01

    Hydrothermal liquefaction of wet biomass such as algae is a promising thermochemical process for the production of bio-oil. Bio-oil aqueous phase generated during liquefaction process is rich in complex organics and can be utilized for biogas production following its pre-treatment with granular activated carbon. In our study, use of 30% activated carbon resulted in higher chemical oxygen demand (COD) reduction (53±0.3%) from aqueous phase. Higher CH 4 production (84±12mL/gCOD) was also observed in 30% carbon-treated aqueous phase fed cultures, whereas only 32±6mLCH 4 /gCOD was observed in control (non-carbon treated) cultures. The results from this study indicate that almost 67±0.3% initial COD of aqueous phase can be reduced using a combination of both carbon treatment and biogas production. This study shows that aqueous phase can be utilized for CH 4 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain

    PubMed Central

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Pivtoraiko, Violetta N.; Zeak, Jennifer; Sukhomlin, Tatiana; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2011-01-01

    Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC. PMID:21483483

  8. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1998-04-28

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  9. Process for the production of ethylidene diacetate from dimethyl ether using a heterogeneous catalyst

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of dimethyl ether, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled for 3 consecutive runs without loss in activity.

  10. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling.

    PubMed

    Sorokin, Andrey

    2016-01-01

    The cellular reaction to external challenges is a tightly regulated process consisting of integrated processes mediated by a variety of signaling molecules, generated as a result of modulation of corresponding biosynthetic systems. Both, nitric oxide synthase (NOS) and cyclooxygenase (COX) systems, consist of constitutive forms (NOS1, NOS3 and COX-1), which are mostly involved in housekeeping tasks, and inducible forms (NOS2 and COX-2), which shape the cellular response to stress and variety of bioactive agents. The complex interplay between NOS and COX pathways can be observed at least at three levels. Firstly, products of NOS and Cox systems can mediate the regulation and the expression of inducible forms (NOS2 and COX-2) in response of similar and dissimilar stimulus. Secondly, the reciprocal modulation of cyclooxygenase activity by nitric oxide and NOS activity by prostaglandins at the posttranslational level has been shown to occur. Mechanisms by which nitric oxide can modulate prostaglandin synthesis include direct S-nitrosylation of COX and inactivation of prostaglandin I synthase by peroxynitrite, product of superoxide reaction with nitric oxide. Prostaglandins, conversely, can promote an increased association of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase) with NOS1, thereby reducing its activity. The third level of interplay is provided by intracellular crosstalk of signaling pathways stimulated by products of NOS and COX which contributes significantly to the complexity of cellular signaling. Since modulation of COX and NOS pathways was shown to be principally involved in a variety of pathological conditions, the dissection of their complex relationship is needed for better understanding of possible therapeutic strategies. This review focuses on implications of interplay between NOS and COX for cellular function and signal integration.

  11. Industry's Struggle for Skilled Workers.

    ERIC Educational Resources Information Center

    Barker, Don

    1979-01-01

    The growing shortage of skilled workers in industrial maintenance, the growing complexity of equipment, and the automation of production processes call for improved and increased employee training and retraining. A General Motors training supervisor notes how education and industry can cooperate to provide this education and training. (MF)

  12. Arginine production in the neonate

    USDA-ARS?s Scientific Manuscript database

    Endogenous arginine synthesis in adults is a complex multiorgan process, in which citrulline is synthesized in the gut, enters the general circulation, and is converted into arginine in the kidney, by what is known as the intestinal-renal axis. In neonates, the enzymes required to convert citrulline...

  13. Digital Video--From the Desktop to Antarctica.

    ERIC Educational Resources Information Center

    Hutto, David N.

    This narrative describes the processes and technologies employed to produce and deliver a series of complex interactive learning experiences that brought together working scientists in Antarctic and students and teachers across North America. This multifaceted program included field production in the Antarctic, the use of experimental…

  14. Entropy production rate as a criterion for inconsistency in decision theory

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.

    2018-05-01

    Individual and group decisions are complex, often involving choosing an apt alternative from a multitude of options. Evaluating pairwise comparisons breaks down such complex decision problems into tractable ones. Pairwise comparison matrices (PCMs) are regularly used to solve multiple-criteria decision-making problems, for example, using Saaty’s analytic hierarchy process (AHP) framework. However, there are two significant drawbacks of using PCMs. First, humans evaluate PCMs in an inconsistent manner. Second, not all entries of a large PCM can be reliably filled by human decision makers. We address these two issues by first establishing a novel connection between PCMs and time-irreversible Markov processes. Specifically, we show that every PCM induces a family of dissipative maximum path entropy random walks (MERW) over the set of alternatives. We show that only ‘consistent’ PCMs correspond to detailed balanced MERWs. We identify the non-equilibrium entropy production in the induced MERWs as a metric of inconsistency of the underlying PCMs. Notably, the entropy production satisfies all of the recently laid out criteria for reasonable consistency indices. We also propose an approach to use incompletely filled PCMs in AHP. Potential future avenues are discussed as well.

  15. Experimental and computational fluid dynamic studies of mixing for complex oral health products

    NASA Astrophysics Data System (ADS)

    Garcia, Marti Cortada; Mazzei, Luca; Angeli, Panagiota

    2015-11-01

    Mixing high viscous non-Newtonian fluids is common in the consumer health industry. Sometimes this process is empirical and involves many pilot plants trials which are product specific. The first step to study the mixing process is to build on knowledge on the rheology of the fluids involved. In this research a systematic approach is used to validate the rheology of two liquids: glycerol and a gel formed by polyethylene glycol and carbopol. Initially, the constitutive equation is determined which relates the viscosity of the fluids with temperature, shear rate, and concentration. The key variable for the validation is the power required for mixing, which can be obtained both from CFD and experimentally using a stirred tank and impeller of well-defined geometries at different impeller speeds. A good agreement between the two values indicates a successful validation of the rheology and allows the CFD model to be used for the study of mixing in the complex vessel geometries and increased sizes encountered during scale up.

  16. (1)H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer.

    PubMed

    Petersen, Bent O; Nilsson, Mathias; Bøjstrup, Marie; Hindsgaul, Ole; Meier, Sebastian

    2014-05-01

    A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters. Spectroscopically resolved carbohydrates include more than ''20 different'' small carbohydrates with more than 38 isomeric forms in addition to cereal polysaccharide fragments with suspected organoleptic and prebiotic function. Structural motifs at the cleavage sites of starch, β-glucan and arabinoxylan fragments were identified, showing different extent and specificity of enzymatic polysaccharide cleavage during the production of different beer samples. Diffusion ordered spectroscopy supplied independent size information for the characterisation and identification of polysaccharide fragments, indicating the presence especially of high molecular weight arabinoxylan fragments in the final beer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A Case Study of Reverse Engineering Integrated in an Automated Design Process

    NASA Astrophysics Data System (ADS)

    Pescaru, R.; Kyratsis, P.; Oancea, G.

    2016-11-01

    This paper presents a design methodology which automates the generation of curves extracted from the point clouds that have been obtained by digitizing the physical objects. The methodology is described on a product belonging to the industry of consumables, respectively a footwear type product that has a complex shape with many curves. The final result is the automated generation of wrapping curves, surfaces and solids according to the characteristics of the customer's foot, and to the preferences for the chosen model, which leads to the development of customized products.

  18. The art of co-production of knowledge in environmental sciences and management: lessons from international practice

    NASA Astrophysics Data System (ADS)

    Djenontin, Ida Nadia S.; Meadow, Alison M.

    2018-06-01

    This review paper addresses the challenging question of "how to" design and implement co-production of knowledge in climate science and other environmental and agricultural sciences. Based on a grounded theory review of nine (9) published case studies of transdisciplinary and collaborative research projects, the paper offers a set of common themes regarding specific components and processes for the design, implementation, and achievement of co-production of knowledge work, which represent the "Modus Operandi" of knowledge co-production. The analysis focuses on practical methodological guidance based on lessons from how different research teams have approached the challenges of complex collaborative research. We begin by identifying broad factors or actions that inhibit or facilitate the process, then highlight specific practices associated with co-production of knowledge and necessary competencies for undertaking co-production. We provide insights on issues such as the integration of social and professional cultures, gender and social equity, and power dynamics, and illustrate the different ways in which researchers have addressed these issues. By exploring the specific practices involved in knowledge co-production, this paper provides guidance to researchers on how to navigate different possibilities of the process of conducting transdisciplinary and co-production of knowledge research projects that best fit their research context, stakeholder needs, and research team capacities.

  19. The art of co-production of knowledge in environmental sciences and management: lessons from international practice.

    PubMed

    Djenontin, Ida Nadia S; Meadow, Alison M

    2018-06-01

    This review paper addresses the challenging question of "how to" design and implement co-production of knowledge in climate science and other environmental and agricultural sciences. Based on a grounded theory review of nine (9) published case studies of transdisciplinary and collaborative research projects, the paper offers a set of common themes regarding specific components and processes for the design, implementation, and achievement of co-production of knowledge work, which represent the "Modus Operandi" of knowledge co-production. The analysis focuses on practical methodological guidance based on lessons from how different research teams have approached the challenges of complex collaborative research. We begin by identifying broad factors or actions that inhibit or facilitate the process, then highlight specific practices associated with co-production of knowledge and necessary competencies for undertaking co-production. We provide insights on issues such as the integration of social and professional cultures, gender and social equity, and power dynamics, and illustrate the different ways in which researchers have addressed these issues. By exploring the specific practices involved in knowledge co-production, this paper provides guidance to researchers on how to navigate different possibilities of the process of conducting transdisciplinary and co-production of knowledge research projects that best fit their research context, stakeholder needs, and research team capacities.

  20. Strategies for target identification of antimicrobial natural products.

    PubMed

    Farha, Maya A; Brown, Eric D

    2016-05-04

    Covering: 2000 to 2015Despite a pervasive decline in natural product research at many pharmaceutical companies over the last two decades, natural products have undeniably been a prolific and unsurpassed source for new lead antibacterial compounds. Due to their inherent complexity, natural extracts face several hurdles in high-throughout discovery programs, including target identification. Target identification and validation is a crucial process for advancing hits through the discovery pipeline, but has remained a major bottleneck. In the case of natural products, extremely low yields and limited compound supply further impede the process. Here, we review the wealth of target identification strategies that have been proposed and implemented for the characterization of novel antibacterials. Traditionally, these have included genomic and biochemical-based approaches, which, in recent years, have been improved with modern-day technology and better honed for natural product discovery. Further, we discuss the more recent innovative approaches for uncovering the target of new antibacterial natural products, which have resulted from modern advances in chemical biology tools. Finally, we present unique screening platforms implemented to streamline the process of target identification. The different innovative methods to respond to the challenge of characterizing the mode of action for antibacterial natural products have cumulatively built useful frameworks that may advocate a renovated interest in natural product drug discovery programs.

  1. Improved product energy intensity benchmarking metrics for thermally concentrated food products.

    PubMed

    Walker, Michael E; Arnold, Craig S; Lettieri, David J; Hutchins, Margot J; Masanet, Eric

    2014-10-21

    Product energy intensity (PEI) metrics allow industry and policymakers to quantify manufacturing energy requirements on a product-output basis. However, complexities can arise for benchmarking of thermally concentrated products, particularly in the food processing industry, due to differences in outlet composition, feed material composition, and processing technology. This study analyzes tomato paste as a typical, high-volume concentrated product using a thermodynamics-based model. Results show that PEI for tomato pastes and purees varies from 1200 to 9700 kJ/kg over the range of 8%-40% outlet solids concentration for a 3-effect evaporator, and 980-7000 kJ/kg for a 5-effect evaporator. Further, the PEI for producing paste at 31% outlet solids concentration in a 3-effect evaporator varies from 13,000 kJ/kg at 3% feed solids concentration to 5900 kJ/kg at 6%; for a 5-effect evaporator, the variation is from 9200 kJ/kg at 3%, to 4300 kJ/kg at 6%. Methods to compare the PEI of different product concentrations on a standard basis are evaluated. This paper also presents methods to develop PEI benchmark values for multiple plants. These results focus on the case of a tomato paste processing facility, but can be extended to other products and industries that utilize thermal concentration.

  2. Heparin and related polysaccharides: Synthesis using recombinant enzymes and metabolic engineering

    PubMed Central

    Suflita, Matthew; Fu, Li; He, Wenqin; Koffas, Mattheos; Linhardt, Robert J.

    2015-01-01

    Glycosaminoglycans are linear anionic polysaccharides that exhibit a number of important biological and pharmacological activities. The two most prominent members of this class of polysaccharides are heparin/heparan sulfate and the chondroitin sulfates (including dermatan sulfate). These polysaccharides, having complex structures and polydispersity, are biosynthesized in the Golgi of most animal cells. The chemical synthesis of these glycosaminoglycans is precluded by their structural complexity. Today, we depend on food animal tissues for their isolation and commercial production. Ton quantities of these glycosaminoglycans are used annually as pharmaceuticals and nutraceuticals. The variability of animal-sourced glycosaminoglycans, their inherent impurities, the limited availability of source tissues, the poor control of these source materials, and their manufacturing processes, suggest a need for new approaches for their production. Over the past decade there have been major efforts in the biotechnological production of these glycosaminoglycans. This mini-review focuses on the use of recombinant enzymes and metabolic engineering for the production of heparin and chondroitin sulfates. PMID:26219501

  3. Simulation and testing of pyramid and barrel vault skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, A.G.; Desjarlais, A.O.; Wright, J.L.

    1998-10-01

    The thermal performance of fenestration in commercial buildings can have a significant effect on building loads--yet there is little information on the performance of these products. With this in mind, ASHRAE TC 4.5, Fenestration, commissioned a research project involving test and simulation of commercial fenestration systems. The objectives of ASHRAE Research Project 877 were: to evaluate the thermal performance (U-factors) of commonly used commercial glazed roof and wall assemblies; to obtain a better fundamental understanding of the heat transfer processes that occur in these specialty fenestration products; to develop correlations for natural-convection heat transfer in complex glazing cavities; to developmore » a methodology for evaluating complex fenestration products, suitable for inclusion in ASHRAE Standard 142P (ASHRAE 1996); and to generate U-factors for common commercial fenestration products, suitable for inclusion in the ASHRAE Handbook--Fundamentals. This paper describes testing and simulation of pyramid and barrel vault skylight specimens and provides guidelines for modeling these systems based on the validated results.« less

  4. Development and application of a selective detection method for genetically modified soy and soy-derived products.

    PubMed

    Hoef, A M; Kok, E J; Bouw, E; Kuiper, H A; Keijer, J

    1998-10-01

    A method has been developed to distinguish between traditional soy beans and transgenic Roundup Ready soy beans, i.e. the glyphosate ('Roundup') resistant soy bean variety developed by Monsanto Company. Glyphosate resistance results from the incorporation of an Agrobacterium-derived 5-enol-pyruvyl-shikimate-3-phosphatesynthase (EPSPS) gene. The detection method developed is based on a nested Polymerase Chain Reaction (PCR) procedure. Ten femtograms of soy bean DNA can be detected, while, starting from whole soy beans, Roundup Ready DNA can be detected at a level of 1 Roundup Ready soy bean in 5000 non-GM soy beans (0.02% Roundup Ready soy bean). The method has been applied to samples of soy bean, soy-meal pellets and soy bean flour, as well as a number of processed complex products such as infant formula based on soy, tofu, tempeh, soy-based desserts, bakery products and complex meat and meat-replacing products. The results obtained are discussed with respect to practical application of the detection method developed.

  5. The role of branch architecture in assimilate production and partitioning: the example of apple (Malus domestica)

    PubMed Central

    Fanwoua, Julienne; Bairam, Emna; Delaire, Mickael; Buck-Sorlin, Gerhard

    2014-01-01

    Understanding the role of branch architecture in carbon production and allocation is essential to gain more insight into the complex process of assimilate partitioning in fruit trees. This mini review reports on the current knowledge of the role of branch architecture in carbohydrate production and partitioning in apple. The first-order carrier branch of apple illustrates the complexity of branch structure emerging from bud activity events and encountered in many fruit trees. Branch architecture influences carbon production by determining leaf exposure to light and by affecting leaf internal characteristics related to leaf photosynthetic capacity. The dynamics of assimilate partitioning between branch organs depends on the stage of development of sources and sinks. The sink strength of various branch organs and their relative positioning on the branch also affect partitioning. Vascular connections between branch organs determine major pathways for branch assimilate transport. We propose directions for employing a modeling approach to further elucidate the role of branch architecture on assimilate partitioning. PMID:25071813

  6. Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahony, Jennifer, E-mail: j.mahony@ucc.ie; Ainsworth, Stuart; Stockdale, Stephen

    Dairy fermentations are among the oldest food processing applications, aimed at preservation and shelf-life extension through the use of lactic acid bacteria (LAB) starter cultures, in particular strains of Lactococcus lactis, Streptococcus thermophilus, Lactobacillus spp. and Leuconostoc spp. Traditionally this was performed by continuous passaging of undefined cultures from a finished fermentation to initiate the next fermentation. More recently, consumer demands on consistent and desired flavours and textures of dairy products have led to a more defined approach to such processes. Dairy (starter) companies have responded to the need to define the nature and complexity of the starter culture mixes,more » and dairy fermentations are now frequently based on defined starter cultures of low complexity, where each starter component imparts specific technological properties that are desirable to the product. Both mixed and defined starter culture approaches create the perfect environment for the proliferation of (bacterio)phages capable of infecting these LAB. The repeated use of the same starter cultures in a single plant, coupled to the drive towards higher and consistent production levels, increases the risk and negative impact of phage infection. In this review we will discuss recent advances in tracking the adaptation of phages to the dairy industry, the advances in understanding LAB phage-host interactions, including evolutionary and genomic aspects.« less

  7. Biosynthetic processing of the oligosaccharide chains of cellular fibronectin.

    PubMed

    Olden, K; Hunter, V A; Yamada, K M

    1980-10-15

    We have examined the maturation or processing of the oligosaccharides of cellular fibronectin in cultured chick embryo fibroblasts. Fibronectin was pulse-labeled with [2-3H]mannose of [35S]methionine, and the turnover rates of carbohydrate and polypeptide portions of immunoprecipitated fibronectin were compared. The oligosaccharides on fibronectin were analyzed by gel electrophoresis for alterations in sensitivity to the enzyme endo-beta-N-acetylgluosaminidase H, which specifically cleaves the 'high-mannose' class of asparagine-linked oligosaccharide. Incorporated mannose was removed only at early time points, suggesting that the structure of fibronectin oligosaccharides was altered due to processing. This possibility was confirmed by the analysis of glycopeptides generated by exhaustive pronase digestion. Two major glycopeptide structures were detected; their properties correspond to a 'high-mannose' oligosaccharide precursor and a 'complex' carbohydrate product. The precursor-product relationship of these two forms of oligosaccharide chains was demonstrated by pulse-chase labeling experiments. The precursor glycopeptide had an apparent size (Mr 2100) comparable to (Man)9GlcNAc (Mr 2080), and was sensitive to endo-beta-N-acetylglucosaminidase H; nearly all of the labeled mannose incorporated in a 10 min pulse was released from fibronectin glycopeptides by this enzyme. During a 90 min chase period, the glycopeptides became larger and increasingly resistant to endo-beta-N-acetylglucosaminidase H cleavage. The final 'complex' or processed oligosaccharide structure contained approximately two-thirds less [3H]mannose, was insensitive to endo-beta-N-acetylglucosaminidase H and had an apparent Mr of 2300 as estimated by gel filtration. We conclude that the carbohydrate portion of fibronectin is synthesized as a 'high-mannose' intermediate and is subsequently processed to give the characteristic 'complex' oligosaccharide chains of fibronectin.

  8. High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products.

    PubMed

    Owen, Benjamin C; Haupert, Laura J; Jarrell, Tiffany M; Marcum, Christopher L; Parsell, Trenton H; Abu-Omar, Mahdi M; Bozell, Joseph J; Black, Stuart K; Kenttämaa, Hilkka I

    2012-07-17

    In the search for a replacement for fossil fuel and the valuable chemicals currently obtained from crude oil, lignocellulosic biomass has become a promising candidate as an alternative biorenewable source for crude oil. Hence, many research efforts focus on the extraction, degradation, and catalytic transformation of lignin, hemicellulose, and cellulose. Unfortunately, these processes result in the production of very complex mixtures. Further, while methods have been developed for the analysis of mixtures of oligosaccharides, this is not true for the complex mixtures generated upon degradation of lignin. For example, high-performance liquid chromatography/multiple stage tandem mass spectrometry (HPLC/MS(n)), a tool proven to be invaluable in the analysis of complex mixtures derived from many other biopolymers, such as proteins and DNA, has not been implemented for lignin degradation products. In this study, we have developed an HPLC separation method for lignin degradation products that is amenable to negative-ion-mode electrospray ionization (ESI doped with NaOH), the best method identified thus far for ionization of lignin-related model compounds without fragmentation. The separated and ionized compounds are then analyzed by MS(3) experiments to obtain detailed structural information while simultaneously performing high-resolution measurements to determine their elemental compositions in the two parts of a commercial linear quadrupole ion trap/Fourier-transform ion cyclotron resonance mass spectrometer. A lignin degradation product mixture was analyzed using this method, and molecular structures were proposed for some components. This methodology significantly improves the ability to analyze complex product mixtures that result from degraded lignin.

  9. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer.

    PubMed

    Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang

    2014-03-24

    Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the basis for a next generation production host, since the strain has still a large potential for further genetic engineering. The final amylase titer of 65% in reference to B. licheniformis protease titer suggests that the developed B. pumilus expression platform is also suitable for an efficient production of non-proteolytic enzymes reaching a final titer of several grams per liter without complex process modifications.

  10. Using artificial neural networks to model aluminium based sheet forming processes and tools details

    NASA Astrophysics Data System (ADS)

    Mekras, N.

    2017-09-01

    In this paper, a methodology and a software system will be presented concerning the use of Artificial Neural Networks (ANNs) for modeling aluminium based sheet forming processes. ANNs models’ creation is based on the training of the ANNs using experimental, trial and historical data records of processes’ inputs and outputs. ANNs models are useful in cases that processes’ mathematical models are not accurate enough, are not well defined or are missing e.g. in cases of complex product shapes, new material alloys, new process requirements, micro-scale products, etc. Usually, after the design and modeling of the forming tools (die, punch, etc.) and before mass production, a set of trials takes place at the shop floor for finalizing processes and tools details concerning e.g. tools’ minimum radii, die/punch clearance, press speed, process temperature, etc. and in relation with the material type, the sheet thickness and the quality achieved from the trials. Using data from the shop floor trials and forming theory data, ANNs models can be trained and created, and can be used to estimate processes and tools final details, hence supporting efficient set-up of processes and tools before mass production starts. The proposed ANNs methodology and the respective software system are implemented within the EU H2020 project LoCoMaTech for the aluminium-based sheet forming process HFQ (solution Heat treatment, cold die Forming and Quenching).

  11. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds.

    PubMed

    Wu, Junjun; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-10-20

    Flavonoids possess pharmaceutical potential due to their health-promoting activities. The complex structures of these products make extraction from plants difficult, and chemical synthesis is limited because of the use of many toxic solvents. Microbial production offers an alternate way to produce these compounds on an industrial scale in a more economical and environment-friendly manner. However, at present microbial production has been achieved only on a laboratory scale and improvements and scale-up of these processes remain challenging. Naringenin and pinocembrin, which are flavonoid scaffolds and precursors for most of the flavonoids, are the model molecules that are key to solving the current issues restricting industrial production of these chemicals. The emergence of systems metabolic engineering, which combines systems biology with synthetic biology and evolutionary engineering at the systems level, offers new perspectives on strain and process optimization. In this review, current challenges in large-scale fermentation processes involving flavonoid scaffolds and the strategies and tools of systems metabolic engineering used to overcome these challenges are summarized. This will offer insights into overcoming the limitations and challenges of large-scale microbial production of these important pharmaceutical compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Considerations In The Design And Specifications Of An Automatic Inspection System

    NASA Astrophysics Data System (ADS)

    Lee, David T.

    1980-05-01

    Considerable activities have been centered around the automation of manufacturing quality control and inspection functions. Several reasons can be cited for this development. The continuous pressure of direct and indirect labor cost increase is only one of the obvious motivations. With the drive for electronics miniaturization come more and more complex processes where control parameters are critical and the yield is highly susceptible to inadequate process monitor and inspection. With multi-step, multi-layer process for substrate fabrication, process defects that are not detected and corrected at certain critical points may render the entire subassembly useless. As a process becomes more complex, the time required to test the product increases significantly in the total build cycle. The urgency to reduce test time brings more pressure to improve in-process control and inspection. The advances and improvements of components, assemblies and systems such as micro-processors, micro-computers, programmable controllers, and other intelligent devices, have made the automation of quality control much more cost effective and justifiable.

  13. Electrochemical process and production of novel complex hydrides

    DOEpatents

    Zidan, Ragaiy

    2013-06-25

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) is provided. The electrolytic cell uses a polar solvent to solubilize NaAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  14. Engineering microbial hosts for production of bacterial natural products.

    PubMed

    Zhang, Mingzi M; Wang, Yajie; Ang, Ee Lui; Zhao, Huimin

    2016-08-27

    Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.

  15. Farley Three-Dimensional-Braiding Machine

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1991-01-01

    Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong, E-mail: 83229994@qq.com; Ge, Hao, E-mail: haoge@pku.edu.cn; Xiong, Jie, E-mail: jiexiong@umac.mo

    Fluctuation theorem is one of the major achievements in the field of nonequilibrium statistical mechanics during the past two decades. There exist very few results for steady-state fluctuation theorem of sample entropy production rate in terms of large deviation principle for diffusion processes due to the technical difficulties. Here we give a proof for the steady-state fluctuation theorem of a diffusion process in magnetic fields, with explicit expressions of the free energy function and rate function. The proof is based on the Karhunen-Loève expansion of complex-valued Ornstein-Uhlenbeck process.

  17. Quantitating protein synthesis, degradation, and endogenous antigen processing.

    PubMed

    Princiotta, Michael F; Finzi, Diana; Qian, Shu-Bing; Gibbs, James; Schuchmann, Sebastian; Buttgereit, Frank; Bennink, Jack R; Yewdell, Jonathan W

    2003-03-01

    Using L929 cells, we quantitated the macroeconomics of protein synthesis and degradation and the microeconomics of producing MHC class I associated peptides from viral translation products. To maintain a content of 2.6 x 10(9) proteins, each cell's 6 x 10(6) ribosomes produce 4 x 10(6) proteins min(-1). Each of the cell's 8 x 10(5) proteasomes degrades 2.5 substrates min(-1), creating one MHC class I-peptide complex for each 500-3000 viral translation products degraded. The efficiency of complex formation is similar in dendritic cells and macrophages, which play a critical role in activating T cells in vivo. Proteasomes create antigenic peptides at different efficiencies from two distinct substrate pools: rapidly degraded newly synthesized proteins that clearly represent defective ribosomal products (DRiPs) and a less rapidly degraded pool in which DRiPs may also predominate.

  18. DEVELOPMENT OF IMPROVED FABRICATION METHODS, PROCESS AND TECHNIQUES FOR PRODUCING TYPICAL AIRCRAFT SHAPES FROM BERYLLIUM. Interim Technical Documentary Progress Report for the Period ending October 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, R.G.; Siergiej, J.M.

    1962-12-28

    In a program to develop a complete manufacturing process for ihe production of beryllium channels, techniques are being sought for drawing to obtain a flnal product meeting specifications more rigorous than are obtainable by direct extrusion. Progress in designing and procuring the special tooling required to draw complex shapes at elevated temperature is described, and the flrst set of draw dies is evaluated with respect to design and quality. Three experimental draw attempts have been made on U-channels, in addition to draw tests on flats. (auth)

  19. Hydrology

    USGS Publications Warehouse

    Eisenbies, Mark H.; Hughes, W. Brian

    2000-01-01

    Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.

  20. Designing for Cost

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.; Unal, Resit

    1991-01-01

    Designing for cost is a state of mind. Of course, a lot of technical knowledge is required and the use of appropriate tools will improve the process. Unfortunately, the extensive use of weight based cost estimating relationships has generated a perception in the aerospace community that the primary way to reduce cost is to reduce weight. Wrong! Based upon an approximation of an industry accepted formula, the PRICE H (tm) production-production equation, Dean demonstrated theoretically that the optimal trajectory for cost reduction is predominantly in the direction of system complexity reduction, not system weight reduction. Thus the phrase "keep it simple" is a primary state of mind required for reducing cost throughout the design process.

  1. Earth Science System of the Future: Observing, Processing, and Delivering Data Products Directly to Users

    NASA Technical Reports Server (NTRS)

    Crisp, David; Komar, George (Technical Monitor)

    2001-01-01

    Advancement of our predictive capabilities will require new scientific knowledge, improvement of our modeling capabilities, and new observation strategies to generate the complex data sets needed by coupled modeling networks. New observation strategies must support remote sensing from a variety of vantage points and will include "sensorwebs" of small satellites in low Earth orbit, large aperture sensors in Geostationary orbits, and sentinel satellites at L1 and L2 to provide day/night views of the entire globe. Onboard data processing and high speed computing and communications will enable near real-time tailoring and delivery of information products (i.e., predictions) directly to users.

  2. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    PubMed

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  3. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2)

    PubMed Central

    Harel, Elad; Engel, Gregory S.

    2012-01-01

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2. PMID:22215585

  4. Investigation of model-based physical design restrictions (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Lucas, Kevin; Baron, Stanislas; Belledent, Jerome; Boone, Robert; Borjon, Amandine; Couderc, Christophe; Patterson, Kyle; Riviere-Cazaux, Lionel; Rody, Yves; Sundermann, Frank; Toublan, Olivier; Trouiller, Yorick; Urbani, Jean-Christophe; Wimmer, Karl

    2005-05-01

    As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.

  5. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.

    PubMed

    Dröse, Stefan; Brandt, Ulrich; Wittig, Ilka

    2014-08-01

    The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evidence indicates that redox reactions are also involved in regulating mitochondrial function via redox-modification of specific cysteine-thiol groups in subunits of respiratory chain complexes. Vice versa the generation of reactive oxygen species (ROS) by respiratory chain complexes may have an impact on the mitochondrial redox balance through reversible and irreversible thiol-modification of specific target proteins involved in redox signaling, but also pathophysiological processes. Recent evidence indicates that thiol-based redox regulation of the respiratory chain activity and especially S-nitrosylation of complex I could be a strategy to prevent elevated ROS production, oxidative damage and tissue necrosis during ischemia-reperfusion injury. This review focuses on the thiol-based redox processes involving the respiratory chain as a source as well as a target, including a general overview on mitochondria as highly compartmentalized redox organelles and on methods to investigate the redox state of mitochondrial proteins. This article is part of a Special Issue entitled: Thiol-Based Redox Processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Synthesis, Structure, Characterization, and Decomposition of Nickel Dithiocarbamates: Effect of Precursor Structure and Processing Conditions on Solid-State Products

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Kulis, Michael J.; McNatt, Jeremiah S.; Duffy, Norman V.; Hoops, Michael D.; Gorse, Elizabeth; Fanwick, Philip E.; Masnovi, John; Cowen, Jonathan E.; Dominey, Raymond N.

    2016-01-01

    Single-crystal X-ray structures of four nickel dithiocarbamate complexes, the homoleptic mixed-organic bis-dithiocarbamates Ni[S2CN(isopropyl)(benzyl)]2, Ni[S2CN(ethyl)(n-butyl)]2, and Ni[S2CN(phenyl)(benzyl)]2, as well as the heteroleptic mixed-ligand complex NiCl[P(phenyl)3][(S2CN(phenyl)(benzyl)], were determined. Synthetic, spectroscopic, structural, thermal, and sulfide materials studies are discussed in light of prior literature. The spectroscopic results are routine. A slightly distorted square-planar nickel coordination environment was observed for all four complexes. The organic residues adopt conformations to minimize steric interactions. Steric effects also may determine puckering, if any, about the nickel and nitrogen atoms, both of which are planar or nearly so. A trans-influence affects the Ni-S bond distances. Nitrogen atoms interact with the CS2 carbons with a bond order of about 1.5, and the other substituents on nitrogen display transoid conformations. There are no strong intermolecular interactions, consistent with prior observations of the volatility of nickel dithiocarbamate complexes. Thermogravimetric analysis of the homoleptic species under inert atmosphere is consistent with production of 1:1 nickel sulfide phases. Thermolysis of nickel dithiocarbamates under flowing nitrogen produced hexagonal or -NiS as the major phase; thermolysis under flowing forming gas produced millerite (-NiS) at 300 C, godlevskite (Ni9S8) at 325 and 350 C, and heazlewoodite (Ni3S2) at 400 and 450 C. Failure to exclude oxygen results in production of nickel oxide. Nickel sulfide phases produced seem to be primarily influenced by processing conditions, in agreement with prior literature. Nickel dithiocarbamate complexes demonstrate significant promise to serve as single-source precursors to nickel sulfides, a quite interesting family of materials with numerous potential applications.

  7. Optimum Design of Forging Process Parameters and Preform Shape under Uncertainties

    NASA Astrophysics Data System (ADS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2004-06-01

    Forging is a highly complex non-linear process that is vulnerable to various uncertainties, such as variations in billet geometry, die temperature, material properties, workpiece and forging equipment positional errors and process parameters. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion and production risk. Identifying the sources of uncertainties, quantifying and controlling them will reduce risk in the manufacturing environment, which will minimize the overall cost of production. In this paper, various uncertainties that affect forging tool life and preform design are identified, and their cumulative effect on the forging process is evaluated. Since the forging process simulation is computationally intensive, the response surface approach is used to reduce time by establishing a relationship between the system performance and the critical process design parameters. Variability in system performance due to randomness in the parameters is computed by applying Monte Carlo Simulations (MCS) on generated Response Surface Models (RSM). Finally, a Robust Methodology is developed to optimize forging process parameters and preform shape. The developed method is demonstrated by applying it to an axisymmetric H-cross section disk forging to improve the product quality and robustness.

  8. Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling.

    PubMed

    Lübken, Manfred; Gehring, Tito; Wichern, Marc

    2010-02-01

    The anaerobic fermentation process has achieved growing importance in practice in recent years. Anaerobic fermentation is especially valuable because its end product is methane, a renewable energy source. While the use of renewable energy sources has accelerated substantially in recent years, their potential has not yet been sufficiently exploited. This is especially true for biogas technology. Biogas is created in a multistage process in which different microorganisms use the energy stored in carbohydrates, fats, and proteins for their metabolism. In order to produce biogas, any organic substrate that is microbiologically accessible can be used. The microbiological process in itself is extremely complex and still requires substantial research in order to be fully understood. Technical facilities for the production of biogas are thus generally scaled in a purely empirical manner. The efficiency of the process, therefore, corresponds to the optimum only in the rarest cases. An optimal production of biogas, as well as a stable plant operation requires detailed knowledge of the biochemical processes in the fermenter. The use of mathematical models can help to achieve the necessary deeper understanding of the process. This paper reviews both the history of model development and current state of the art in modeling anaerobic digestion processes.

  9. The structure of the Caenorhabditis elegans manganese superoxide dismutase MnSOD-3-azide complex

    DOE PAGES

    Hunter, Gary J.; Trinh, Chi H.; Bonetta, Rosalin; ...

    2015-08-27

    C. elegans MnSOD-3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD-3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41–54). We have determined the structure of the MnSOD-3-azide complex to 1.77-Å resolution. The analysis of this complex shows that the substrate analog, azide, binds end-on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substratemore » access funnel. This is the first structure of a eukaryotic MnSOD-azide complex that demonstrates the extended, uninterrupted hydrogen-bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5-6-5 catalytic mechanism for MnSOD. The high product dissociation constant k₄ of MnSOD-3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.« less

  10. Production of high specific activity silicon-32

    DOEpatents

    Phillips, Dennis R.; Brzezinski, Mark A.

    1994-01-01

    A process for preparation of silicon-32 is provide and includes contacting an irradiated potassium chloride target, including spallation products from a prior irradiation, with sufficient water, hydrochloric acid or potassium hydroxide to form a solution, filtering the solution, adjusting pH of the solution to from about 5.5 to about 7.5, admixing sufficient molybdate-reagent to the solution to adjust the pH of the solution to about 1.5 and to form a silicon-molybdate complex, contacting the solution including the silicon-molybdate complex with a dextran-based material, washing the dextran-based material to remove residual contaminants such as sodium-22, separating the silicon-molybdate complex from the dextran-based material as another solution, adding sufficient hydrochloric acid and hydrogen peroxide to the solution to prevent reformation of the silicon-molybdate complex and to yield an oxidization state of the molybdate adapted for subsequent separation by an anion exchange material, contacting the solution with an anion exchange material whereby the molybdate is retained by the anion exchange material and the silicon remains in solution, and optionally adding sufficient alkali metal hydroxide to adjust the pH of the solution to about 12 to 13. Additionally, a high specific activity silicon-32 product having a high purity is provided.

  11. Serum angiotensin-1 converting enzyme activity processes a human immunodeficiency virus 1 gp160 peptide for presentation by major histocompatibility complex class I molecules

    PubMed Central

    1992-01-01

    T cell stimulation by the human immunodeficiency virus 1 gp160-derived peptide p18 presented by H-2Dd class I major histocompatibility complex molecules in a cell-free system was found to require proteolytic cleavage. This extracellular processing was mediated by peptidases present in fetal calf serum. In vitro processing of p18 resulted in a distinct reverse phase high performance liquid chromatography profile, from which a biologically active product was isolated and sequenced. This peptide processing can be specifically blocked by the angiotensin- 1 converting enzyme (ACE) inhibitor captopril, and can occur by exposing p18 to purified ACE. The ability of naturally occurring extracellular proteases to convert inactive peptides to T cell antigens has important implications for understanding cytotoxic T lymphocyte responses in vivo, and for rational peptide vaccine design. PMID:1316930

  12. The Organic Complexation of Iron in the Marine Environment: A Review

    PubMed Central

    Gledhill, Martha; Buck, Kristen N.

    2012-01-01

    Iron (Fe) is an essential micronutrient for marine organisms, and it is now well established that low Fe availability controls phytoplankton productivity, community structure, and ecosystem functioning in vast regions of the global ocean. The biogeochemical cycle of Fe involves complex interactions between lithogenic inputs (atmospheric, continental, or hydrothermal), dissolution, precipitation, scavenging, biological uptake, remineralization, and sedimentation processes. Each of these aspects of Fe biogeochemical cycling is likely influenced by organic Fe-binding ligands, which complex more than 99% of dissolved Fe. In this review we consider recent advances in our knowledge of Fe complexation in the marine environment and their implications for the biogeochemistry of Fe in the ocean. We also highlight the importance of constraining the dissolved Fe concentration value used in interpreting voltammetric titration data for the determination of Fe speciation. Within the published Fe speciation data, there appear to be important temporal and spatial variations in Fe-binding ligand concentrations and their conditional stability constants in the marine environment. Excess ligand concentrations, particularly in the truly soluble size fraction, seem to be consistently higher in the upper water column, and especially in Fe-limited, but productive, waters. Evidence is accumulating for an association of Fe with both small, well-defined ligands, such as siderophores, as well as with larger, macromolecular complexes like humic substances, exopolymeric substances, and transparent exopolymers. The diverse size spectrum and chemical nature of Fe ligand complexes corresponds to a change in kinetic inertness which will have a consequent impact on biological availability. However, much work is still to be done in coupling voltammetry, mass spectrometry techniques, and process studies to better characterize the nature and cycling of Fe-binding ligands in the marine environment. PMID:22403574

  13. Computational path planner for product assembly in complex environments

    NASA Astrophysics Data System (ADS)

    Shang, Wei; Liu, Jianhua; Ning, Ruxin; Liu, Mi

    2013-03-01

    Assembly path planning is a crucial problem in assembly related design and manufacturing processes. Sampling based motion planning algorithms are used for computational assembly path planning. However, the performance of such algorithms may degrade much in environments with complex product structure, narrow passages or other challenging scenarios. A computational path planner for automatic assembly path planning in complex 3D environments is presented. The global planning process is divided into three phases based on the environment and specific algorithms are proposed and utilized in each phase to solve the challenging issues. A novel ray test based stochastic collision detection method is proposed to evaluate the intersection between two polyhedral objects. This method avoids fake collisions in conventional methods and degrades the geometric constraint when a part has to be removed with surface contact with other parts. A refined history based rapidly-exploring random tree (RRT) algorithm which bias the growth of the tree based on its planning history is proposed and employed in the planning phase where the path is simple but the space is highly constrained. A novel adaptive RRT algorithm is developed for the path planning problem with challenging scenarios and uncertain environment. With extending values assigned on each tree node and extending schemes applied, the tree can adapts its growth to explore complex environments more efficiently. Experiments on the key algorithms are carried out and comparisons are made between the conventional path planning algorithms and the presented ones. The comparing results show that based on the proposed algorithms, the path planner can compute assembly path in challenging complex environments more efficiently and with higher success. This research provides the references to the study of computational assembly path planning under complex environments.

  14. Processes regulating nitric oxide emissions from soils.

    PubMed

    Pilegaard, Kim

    2013-07-05

    Nitric oxide (NO) is a reactive gas that plays an important role in atmospheric chemistry by influencing the production and destruction of ozone and thereby the oxidizing capacity of the atmosphere. NO also contributes by its oxidation products to the formation of acid rain. The major sources of NO in the atmosphere are anthropogenic emissions (from combustion of fossil fuels) and biogenic emission from soils. NO is both produced and consumed in soils as a result of biotic and abiotic processes. The main processes involved are microbial nitrification and denitrification, and chemodenitrification. Thus, the net result is complex and dependent on several factors such as nitrogen availability, organic matter content, oxygen status, soil moisture, pH and temperature. This paper reviews recent knowledge on processes forming NO in soils and the factors controlling its emission to the atmosphere. Schemes for simulating these processes are described, and the results are discussed with the purpose of scaling up to global emission.

  15. A quality by design approach to scale-up of high-shear wet granulation process.

    PubMed

    Pandey, Preetanshu; Badawy, Sherif

    2016-01-01

    High-shear wet granulation is a complex process that in turn makes scale-up a challenging task. Scale-up of high-shear wet granulation process has been studied extensively in the past with various different methodologies being proposed in the literature. This review article discusses existing scale-up principles and categorizes the various approaches into two main scale-up strategies - parameter-based and attribute-based. With the advent of quality by design (QbD) principle in drug product development process, an increased emphasis toward the latter approach may be needed to ensure product robustness. In practice, a combination of both scale-up strategies is often utilized. In a QbD paradigm, there is also a need for an increased fundamental and mechanistic understanding of the process. This can be achieved either by increased experimentation that comes at higher costs, or by using modeling techniques, that are also discussed as part of this review.

  16. APC implementation in Chandra Asri - ethylene plant

    NASA Astrophysics Data System (ADS)

    Sidiq, Mochamad; Mustofa, Ali

    2017-05-01

    Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardin, John D; Baca, Allen G

    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  18. Outcomes-Based Authentic Learning, Portfolio Assessment, and a Systems Approach to "Complex Problem-Solving": Related Pillars for Enhancing the Innovative Role of PBL in Future Higher Education

    ERIC Educational Resources Information Center

    Richards, Cameron

    2015-01-01

    The challenge of better reconciling individual and collective aspects of innovative problem-solving can be productively addressed to enhance the role of PBL as a key focus of the creative process in future higher education. This should involve "active learning" approaches supported by related processes of teaching, assessment and…

  19. Study of phenomena related to the sintering process of silicon nitride at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Bertani, A.

    1982-01-01

    A procedure was perfected for the production of components used in engineering applications of silicon nitride. Particles of complex geometry that combine remarkable mechanical properties with a high density are obtained. The process developed, in contrast to the "hot pressing" method, does not use external pressures, and in contrast to the reaction bonding method, final densities close to the theoretical value are obtained.

  20. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509

    NASA Astrophysics Data System (ADS)

    Mosel, André; Lambarri, Jon; Degenkolb, Lars; Reuther, Franz; Hinojo, José Luis; Rößiger, Jörg; Eurich, Egbert; Albert, André; Landgrebe, Dirk; Wenzel, Holger

    2018-05-01

    Exhaust gas components of automobiles are often produced in ferritic stainless steel 1.4509 due to the low thermal expansion coefficient and the low material price. Until now, components of the stainless steel with complex geometries have been produced in series by means of multi-stage hydroforming at room temperature with intermediate annealing operations. The application of a single-stage hot-forming process, also referred to as hot metal gas forming (HMGF), offers great potential to significantly reduce the production costs of such components. The article describes a novel process chain for the HMGF process. Therefore the tube is heated in two steps. After pre-heating of the semi-finished product outside the press, the tube is heated up to forming start temperature by means of a tool-integrated conductive heating before forming. For the tube of a demonstrator geometry, a simulation model for the conduction heating was set up. In addition to the tool development for this process, experimental results are also described for the production of the demonstrator geometry.

Top