Sample records for complex projective spaces

  1. Risk Reduction for Use of Complex Devices in Space Projects

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; Poivey, Christian; Friendlich, Mark; Petrick, Dave; LaBel, Kenneth; Stansberry, Scott

    2007-01-01

    We present guidel!nes to reduce risk to an acceptable level when using complex devices in space applications. Application to Virtex 4 Field Programmable Gate Array (FPGA) on Express Logistic Carrier (ELC) project is presented.

  2. The Characteristics of Project Managers: An Exploration of Complex Projects in the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.

    2000-01-01

    Study of characteristics and relationships of project managers of complex projects in the National Aeronautics and Space Administration. Study is based on Research Design, Data Collection, Interviews, Case Studies, and Data Analysis across varying disciplines such as biological research, space research, advanced aeronautical test facilities, aeronautic flight demonstrations, and projects at different NASA centers to ensure that findings were not endemic to one type of project management, or to one Center's management philosophies. Each project is treated as a separate case with the primary data collected during semi-structured interviews with the project manager responsible for the overall project. Results of the various efforts show some definite similarities of characteristics and relationships among the project managers in the study. A model for how the project managers formulated and managed their projects is included.

  3. Managing Programmatic Risk for Complex Space System Developments

    NASA Technical Reports Server (NTRS)

    Panetta, Peter V.; Hastings, Daniel; Brumfield, Mark (Technical Monitor)

    2001-01-01

    Risk management strategies have become a recent important research topic to many aerospace organizations as they prepare to develop the revolutionary complex space systems of the future. Future multi-disciplinary complex space systems will make it absolutely essential for organizations to practice a rigorous, comprehensive risk management process, emphasizing thorough systems engineering principles to succeed. Project managers must possess strong leadership skills to direct high quality, cross-disciplinary teams for successfully developing revolutionary space systems that are ever increasing in complexity. Proactive efforts to reduce or eliminate risk throughout a project's lifecycle ideally must be practiced by all technical members in the organization. This paper discusses some of the risk management perspectives that were collected from senior managers and project managers of aerospace and aeronautical organizations by the use of interviews and surveys. Some of the programmatic risks which drive the success or failure of projects are revealed. Key findings lead to a number of insights for organizations to consider for proactively approaching the risks which face current and future complex space systems projects.

  4. Noncommutative complex structures on quantum homogeneous spaces

    NASA Astrophysics Data System (ADS)

    Ó Buachalla, Réamonn

    2016-01-01

    A new framework for noncommutative complex geometry on quantum homogeneous spaces is introduced. The main ingredients used are covariant differential calculi and Takeuchi's categorical equivalence for quantum homogeneous spaces. A number of basic results are established, producing a simple set of necessary and sufficient conditions for noncommutative complex structures to exist. Throughout, the framework is applied to the quantum projective spaces endowed with the Heckenberger-Kolb calculus.

  5. How Project Managers Really Manage: An Indepth Look at Some Managers of Large, Complex NASA Projects

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald M.; Impaeilla, Cliff (Technical Monitor)

    2000-01-01

    This paper reports on a research study by the author that examined ten contemporary National Aeronautics and Space Administration (NASA) complex projects. In-depth interviews with the project managers of these projects provided qualitative data about the inner workings of the project and the methodologies used in establishing and managing the projects. The inclusion of a variety of space, aeronautics, and ground based projects from several different NASA research centers helped to reduce potential bias in the findings toward any one type of project, or technical discipline. The findings address the participants and their individual approaches. The discussion includes possible implications for project managers of other large, complex, projects.

  6. Planning Complex Projects Automatically

    NASA Technical Reports Server (NTRS)

    Henke, Andrea L.; Stottler, Richard H.; Maher, Timothy P.

    1995-01-01

    Automated Manifest Planner (AMP) computer program applies combination of artificial-intelligence techniques to assist both expert and novice planners, reducing planning time by orders of magnitude. Gives planners flexibility to modify plans and constraints easily, without need for programming expertise. Developed specifically for planning space shuttle missions 5 to 10 years ahead, with modifications, applicable in general to planning other complex projects requiring scheduling of activities depending on other activities and/or timely allocation of resources. Adaptable to variety of complex scheduling problems in manufacturing, transportation, business, architecture, and construction.

  7. Projective limits of state spaces II. Quantum formalism

    NASA Astrophysics Data System (ADS)

    Lanéry, Suzanne; Thiemann, Thomas

    2017-06-01

    In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013), which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). After discussing the formalism at the classical level in a first paper (Lanéry, 2017), the present second paper is devoted to the quantum theory. In particular, we inspect in detail how such quantum projective state spaces relate to inductive limit Hilbert spaces and to infinite tensor product constructions (Lanéry, 2016, subsection 3.1) [1]. Regarding the quantization of classical projective structures into quantum ones, we extend the results by Okołów (2013), that were set up in the context of linear configuration spaces, to configuration spaces given by simply-connected Lie groups, and to holomorphic quantization of complex phase spaces (Lanéry, 2016, subsection 2.2) [1].

  8. Some thoughts on the management of large, complex international space ventures

    NASA Technical Reports Server (NTRS)

    Lee, T. J.; Kutzer, Ants; Schneider, W. C.

    1992-01-01

    Management issues relevant to the development and deployment of large international space ventures are discussed with particular attention given to previous experience. Management approaches utilized in the past are labeled as either simple or complex, and signs of efficient management are examined. Simple approaches include those in which experiments and subsystems are developed for integration into spacecraft, and the Apollo-Soyuz Test Project is given as an example of a simple multinational approach. Complex approaches include those for ESA's Spacelab Project and the Space Station Freedom in which functional interfaces cross agency and political boundaries. It is concluded that individual elements of space programs should be managed by individual participating agencies, and overall configuration control is coordinated by level with a program director acting to manage overall objectives and project interfaces.

  9. Projection x-space magnetic particle imaging.

    PubMed

    Goodwill, Patrick W; Konkle, Justin J; Zheng, Bo; Saritas, Emine U; Conolly, Steven M

    2012-05-01

    Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

  10. Twistor Geometry of Null Foliations in Complex Euclidean Space

    NASA Astrophysics Data System (ADS)

    Taghavi-Chabert, Arman

    2017-01-01

    We give a detailed account of the geometric correspondence between a smooth complex projective quadric hypersurface Q^n of dimension n ≥ 3, and its twistor space PT, defined to be the space of all linear subspaces of maximal dimension of Q^n. Viewing complex Euclidean space CE^n as a dense open subset of Q^n, we show how local foliations tangent to certain integrable holomorphic totally null distributions of maximal rank on CE^n can be constructed in terms of complex submanifolds of PT. The construction is illustrated by means of two examples, one involving conformal Killing spinors, the other, conformal Killing-Yano 2-forms. We focus on the odd-dimensional case, and we treat the even-dimensional case only tangentially for comparison.

  11. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  12. Tailoring Enterprise Systems Engineering Policy for Project Scale and Complexity

    NASA Technical Reports Server (NTRS)

    Cox, Renee I.; Thomas, L. Dale

    2014-01-01

    Space systems are characterized by varying degrees of scale and complexity. Accordingly, cost-effective implementation of systems engineering also varies depending on scale and complexity. Recognizing that systems engineering and integration happen everywhere and at all levels of a given system and that the life cycle is an integrated process necessary to mature a design, the National Aeronautic and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) has developed a suite of customized implementation approaches based on project scale and complexity. While it may be argued that a top-level system engineering process is common to and indeed desirable across an enterprise for all space systems, implementation of that top-level process and the associated products developed as a result differ from system to system. The implementation approaches used for developing a scientific instrument necessarily differ from those used for a space station. .

  13. Planning for the scientific use of the international Space Station complex

    NASA Technical Reports Server (NTRS)

    Halpern, R. E.

    1988-01-01

    Plans for the development of an international Space Station complex in cooperation with Japan, Canada, and the European Space Agency are reviewed. The discussion covers the planned uses of the Space Station, the principal research facilities, allocation of the resources available to the research facilities, and tactical and strategic planning related to the Space Station project. Particular attention is given to problems related to microgravity sciences and approaches to the solutions of these problems.

  14. Space Traveler Project.

    ERIC Educational Resources Information Center

    Instructor, 1981

    1981-01-01

    Describes the winners of the Space Traveler Project, a contest jointly sponsored by Rockwell International, NASA, and this magazine to identify worthwhile elementary science programs relating to the Space Shuttle. (SJL)

  15. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Youngsoo; Carlberg, Kevin Thomas

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less

  16. Space Human Factors Engineering Gap Analysis Project Final Report

    NASA Technical Reports Server (NTRS)

    Hudy, Cynthia; Woolford, Barbara

    2006-01-01

    Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.

  17. 2008 ESMD Space Grant Faculty Project

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; Conrad, James; Guo, Jiang; Lackey, Ellen; Lambright, Jonathan; Misra, Prabhakar; Prasad, Nadipuram; Radcliff, Roger; Selby, Gregory; Wersinger, Jean-Marie; hide

    2008-01-01

    Objectives of this project was to: Gather senior design project ideas and internship opportunities: Relative to space explorationnd In support of the ESMD Space Grant Student Project Support NASAs Educational Framework Outcome 1: Contribute to the development of the STEM workforce

  18. The Classroom Space Project.

    ERIC Educational Resources Information Center

    Verbickas, Sarah

    2002-01-01

    Introduces the Classroom Space project aimed at revitalizing science education at Key Stages 3 and 4 by using exciting examples from Space Science and Astronomy to illustrate key science concepts. (Author/YDS)

  19. Radiation Risk Projections for Space Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis

    2003-01-01

    Space travelers are exposed to solar and galactic cosmic rays comprised of protons and heavy ions moving with velocities close to the speed of light. Cosmic ray heavy ions are known to produce more severe types of biomolecular damage in comparison to terrestrial forms of radiation, however the relationship between such damage and disease has not been fully elucidated. On Earth, we are protected from cosmic rays by atmospheric and magnetic shielding, and only the remnants of cosmic rays in the form of ground level muons and other secondary radiations are present. Because human epidemiology data is lacking for cosmic rays, risk projection must rely on theoretical understanding and data from experimental models exposed to space radiation using charged particle accelerators to simulate space radiation. Although the risks of cancer and other late effects from cosmic rays are currently believed to present a severe challenge to space travel, this challenge is centered on our lack of confidence in risk projections methodologies. We review biophysics and radiobiology data on the effects of the cosmic ray heavy ions, and the current methods used to project radiation risks . Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Risk projections for space travel are described using Monte-Carlo sampling from subjective error di stributions that represent the lack of knowledge in each factor that contributes to the projection model in order to quantify the overall uncertainty in risk projections. This analysis is applied to space mi ssion scenarios including lunar colony, deep space outpost, and a Mars mission. Results suggest that the number of days in space where cancer mortality risks can be assured at a 95% confidence level to be below the maximum acceptable risk for radi ation workers on Earth or the International Space Station is only on the order

  20. Space Shuttle Project

    NASA Image and Video Library

    1990-12-02

    Space Shuttle Columbia (STS-35) blasts off into a dark Florida sky. Columbia's payload included the ASTRO project which was designed to obtain ultraviolet (UV) data on astronomical objects using a UV telescope flying on Spacelab.

  1. Space-based bias of covert visual attention in complex regional pain syndrome.

    PubMed

    Bultitude, Janet H; Walker, Ian; Spence, Charles

    2017-09-01

    See Legrain (doi:10.1093/awx188) for a scientific commentary on this article. Some patients with complex regional pain syndrome report that movements of the affected limb are slow, more effortful, and lack automaticity. These symptoms have been likened to the syndrome that sometimes follows brain injury called hemispatial neglect, in which patients exhibit attentional impairments and problems with movements affecting the contralesional side of the body and space. Psychophysical testing of patients with complex regional pain syndrome has found evidence for spatial biases when judging visual targets distanced at 2 m, but not in directions that indicate reduced attention to the affected side. In contrast, when judging visual or tactile stimuli presented on their own body surface, or pictures of hands and feet within arm's reach, patients with complex regional pain syndrome exhibited a bias away from the affected side. What is not yet known is whether patients with complex regional pain syndrome only have biased attention for bodily-specific information in the space within arm's reach, or whether they also show a bias for information that is not associated with the body, suggesting a more generalized attention deficit. Using a temporal order judgement task, we found that patients with complex regional pain syndrome processed visual stimuli more slowly on the affected side (relative to the unaffected side) when the lights were projected onto a blank surface (i.e. when no bodily information was visible), and when the lights were projected onto the dorsal surfaces of their uncrossed hands. However, with the arms crossed (such that the left and right lights projected onto the right and left hands, respectively), patients' responses were no different than controls. These results provide the first demonstration of a generalized attention bias away from the affected side of space in complex regional pain syndrome patients that is not specifically related to bodily

  2. Chinese Manned Space Utility Project

    NASA Astrophysics Data System (ADS)

    Gu, Y.

    Since 1992 China has been carrying out a conspicuous manned space mission A utility project has been defined and created during the same period The Utility Project of the Chinese Manned Space Mission involves wide science areas such as earth observation life science micro-gravity fluid physics and material science astronomy space environment etc In the earth observation area it is focused on the changes of global environments and relevant exploration technologies A Middle Revolution Image Spectrometer and a Multi-model Micro-wave Remote Sensor have been developed The detectors for cirrostratus distribution solar constant earth emission budget earth-atmosphere ultra-violet spectrum and flux have been manufactured and tested All of above equipment was engaged in orbital experiments on-board the Shenzhou series spacecrafts Space life science biotechnologies and micro-gravity science were much concerned with the project A series of experiments has been made both in ground laboratories and spacecraft capsules The environmental effect in different biological bodies in space protein crystallization electrical cell-fusion animal cells cultural research on separation by using free-low electrophoresis a liquid drop Marangoni migration experiment under micro-gravity as well as a set of crystal growth and metal processing was successfully operated in space The Gamma-ray burst and high-energy emission from solar flares have been explored A set of particle detectors and a mass spectrometer measured

  3. Interference in the classical probabilistic model and its representation in complex Hilbert space

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei Yu.

    2005-10-01

    The notion of a context (complex of physical conditions, that is to say: specification of the measurement setup) is basic in this paper.We show that the main structures of quantum theory (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present already in a latent form in the classical Kolmogorov probability model. However, this model should be considered as a calculus of contextual probabilities. In our approach it is forbidden to consider abstract context independent probabilities: “first context and only then probability”. We construct the representation of the general contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function (in particular, Schrödinger's dynamics) can be considered as Hilbert space projections of a realistic dynamics in a “prespace”. The basic condition for representing of the prespace-dynamics is the law of statistical conservation of energy-conservation of probabilities. In general the Hilbert space projection of the “prespace” dynamics can be nonlinear and even irreversible (but it is always unitary). Methods developed in this paper can be applied not only to quantum mechanics, but also to classical statistical mechanics. The main quantum-like structures (e.g., interference of probabilities) might be found in some models of classical statistical mechanics. Quantum-like probabilistic behavior can be demonstrated by biological systems. In particular, it was recently found in some psychological experiments.

  4. Girls InSpace project: A new space physics outreach initiative.

    NASA Astrophysics Data System (ADS)

    Abe Pacini, A.; Tegbaru, D.; Max, A., Sr.

    2017-12-01

    We present here the concept and state-of-art of the new space physics youth education and outreach initiative called "Girls InSpace project". The project goal is to spread quality scientific information to underrepresented groups, motivate girls in STEM and promote gender equality in the Space Physics area. Initially, the "Girls InSpace project" will be available in two languages (Portuguese and English) aiming to reach out to the youth of Brazil, United States, Nigeria, South Africa, Ethiopia and Angola. Eventually, the material will be translated to French and Spanish, focusing on French-speaking countries in Africa and Latin America. The project spans a collection of four books about a group of young girls and their adventures (always related to the sky and simultaneously introducing earth and space science concepts). Ancillary content such as a webpage, mobile applications and lesson plans are also in development. The books were written by a Space Physicist PhD woman, illustrated by a Brazilian young artist and commented by senior female scientists, creating positive role models for the next generation of girls in STEM. The story lines were drawn around the selected topics of astronomy and space physics, introducing scientific information to the target readers (girls from 8-13 years old) and enhancing their curiosity and critical thinking. The books instill the readers to explore the available extra web-content (with images, videos, interviews with scientists, real space data, coding and deeper scientific information) and game apps (with Virtual Reality components and real space images). Moreover, for teachers K-12, a collection of lesson plans will be made available, aiming to facilitate scientific content discussed in the books and inside classroom environments. Gender bias in STEM reported earlier this year in Nature and based on a study of the American Geophysical Union's member database showed a competitive disadvantage for women in the Earth and Space

  5. Cal Poly Space Project G-279

    NASA Technical Reports Server (NTRS)

    Farley, David R.

    1987-01-01

    The Cal Poly Space Project is an effort on the part of several highly motivated students to deploy a space canister which will examine the effects of microgravity on electroplating and immiscible metals. The experiments will be controlled and monitored by a specialized triple redundancy system developed to defer the possible electronic errors due to uncontrollable factors such as photons from the Sun. With the finalization of the payload design and the near completion of the data control system, the integration phase of the project is anticipated to be completed and the project ready for launching by early 1987. It is hoped that the experiments will lead to new insights in space research and also prove profitable to industry.

  6. Life sciences space biology project planning

    NASA Technical Reports Server (NTRS)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  7. Information Theoretic Characterization of Physical Theories with Projective State Space

    NASA Astrophysics Data System (ADS)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  8. Space Shuttle Projects Overview to Columbia Air Forces War College

    NASA Technical Reports Server (NTRS)

    Singer, Jody; McCool, Alex (Technical Monitor)

    2000-01-01

    This paper presents, in viewgraph form, a general overview of space shuttle projects. Some of the topics include: 1) Space Shuttle Projects; 2) Marshall Space Flight Center Space Shuttle Projects Office; 3) Space Shuttle Propulsion systems; 4) Space Shuttle Program Major Sites; 5) NASA Office of Space flight (OSF) Center Roles in Space Shuttle Program; 6) Space Shuttle Hardware Flow; and 7) Shuttle Flights To Date.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1993-10-01

    Designed by the mission crew members, the STS-61 crew insignia depicts the astronaut symbol superimposed against the sky with the Earth underneath. Also seen are two circles representing the optical configuration of the Hubble Space Telescope (HST). Light is focused by reflections from a large primary mirror and a smaller secondary mirror. The light is analyzed by various instruments and, according to the crew members, brings to us on Earth knowledge about planets, stars, galaxies and other celestial objects, allowing us to better understand the complex physical processes at work in the universe. The Space Shuttle Endeavour is also represented as the fundamental tool that allows the crew to perform the first servicing of the Hubble Space Telescope so its scientific deep space mission may be extended for several years to come. The overall design of the emblem, with lines converging to a high point, is also a symbolic representation of the large-scale Earth-based effort which involves space agencies, industry, and the universities to reach goals of knowledge and perfection.

  10. Space market model development project

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.

    1987-01-01

    The objectives of the research program, Space Market Model Development Project, (Phase 1) were: (1) to study the need for business information in the commercial development of space; and (2) to propose a design for an information system to meet the identified needs. Three simultaneous research strategies were used in proceeding toward this goal: (1) to describe the space business information which currently exists; (2) to survey government and business representatives on the information they would like to have; and (3) to investigate the feasibility of generating new economical information about the space industry.

  11. Sample-space-based feature extraction and class preserving projection for gene expression data.

    PubMed

    Wang, Wenjun

    2013-01-01

    In order to overcome the problems of high computational complexity and serious matrix singularity for feature extraction using Principal Component Analysis (PCA) and Fisher's Linear Discrinimant Analysis (LDA) in high-dimensional data, sample-space-based feature extraction is presented, which transforms the computation procedure of feature extraction from gene space to sample space by representing the optimal transformation vector with the weighted sum of samples. The technique is used in the implementation of PCA, LDA, Class Preserving Projection (CPP) which is a new method for discriminant feature extraction proposed, and the experimental results on gene expression data demonstrate the effectiveness of the method.

  12. Space Shuttle Project

    NASA Image and Video Library

    1997-11-19

    Onboard Space Shuttle Columbia's (STS-87) first ever Extravehicular Activity (EVA), astronaut Takao Doi works with a 156-pound crane carried onboard for the first time. The crane's inclusion and the work with it are part of a continuing preparation effort for future work on the International Space Station (ISS). The ongoing project allows for evaluation of tools and operating methods to be applied to the construction of the Space Station. This crane device is designed to aid future space walkers in transporting Orbital Replacement Units (ORU), with a mass up to 600 pounds (like the simulated battery pictured here), from translating carts on the exterior of ISS to various worksites on the truss structure. Earlier Doi, an international mission specialist representing Japan, and astronaut Winston E. Scott, mission specialist, had installed the crane in a socket along the middle port side of Columbia's cargo bay for the evaluation. The two began the crane operations after completing a contingency EVA to snag the free-flying Spartan 201 and berth it in the payload bay (visible in the background).

  13. The Â-genus as a Projective Volume form on the Derived Loop Space

    NASA Astrophysics Data System (ADS)

    Grady, Ryan

    2018-06-01

    In the present work, we extend our previous work with Gwilliam by realizing \\hat {A}(X) as the projective volume form associated to the BV operator in our quantization of a one-dimensional sigma model. We also discuss the associated integration/expectation map. We work in the formalism of L ∞ spaces, objects of which are computationally convenient presentations for derived stacks. Both smooth and complex geometry embed into L ∞ spaces and we specialize our results in both of these cases.

  14. Space Projects: Improvements Needed in Selecting Future Projects for Private Financing

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Office of Management and Budget (OMB) and NASA jointly selected seven projects for commercialization to reduce NASA's fiscal year 1990 budget request and to help achieve the goal of increasing private sector involvement in space. However, the efforts to privately finance these seven projects did not increase the commercial sector's involvement in space to the extent desired. The General Accounting Office (GAO) determined that the projects selected were not a fair test of the potential of increasing commercial investment in space at an acceptable cost to the government, primarily because the projects were not properly screened. That is, neither their suitability for commercialization nor the economic consequences of seeking private financing for them were adequately evaluated before selection. Evaluations and market tests done after selection showed that most of the projects were not viable candidates for private financing. GAO concluded that projects should not be removed from NASA's budget for commercial development until after careful screening has been done to determine whether adequate commercial demand exists, development risks are commercially acceptable and private financing is found or judged to be highly likely, and the cost effectiveness of such a decision is acceptable. Premature removal of projects from NASA's budget ultimately can cause project delays and increased costs when unsuccessful commercialization candidates must be returned to the budget. NASA also needs to ensure appropriate comparisons of government and private financing options for future commercialization projects.

  15. Cross-domain latent space projection for person re-identification

    NASA Astrophysics Data System (ADS)

    Pu, Nan; Wu, Song; Qian, Li; Xiao, Guoqiang

    2018-04-01

    In this paper, we research the problem of person re-identification and propose a cross-domain latent space projection (CDLSP) method to address the problems of the absence or insufficient labeled data in the target domain. Under the assumption that the visual features in the source domain and target domain share the similar geometric structure, we transform the visual features from source domain and target domain to a common latent space by optimizing the object function defined in the manifold alignment method. Moreover, the proposed object function takes into account the specific knowledge in the re-id with the aim to improve the performance of re-id under complex situations. Extensive experiments conducted on four benchmark datasets show the proposed CDLSP outperforms or is competitive with stateof- the-art methods for person re-identification.

  16. Liberty Bell 7 Space Capsule Exhibit previews at Visitor Complex

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Children on a tour at the KSC Visitor Complex get an early look at the Discovery Channel's Liberty Bell 7 Space Capsule Exhibit, which opens to the public on Saturday, June 17. They are on a re- creation of the deck of Ocean Project, the ship that located and recovered the space capsule from the floor of the Atlantic Ocean. Liberty Bell 7 launched U.S. Air Force Captain Virgil '''Gus''' Grissom July 21, 1961, on a mission that lasted 15 minutes and 37 seconds before sinking. It lay undetected for nearly four decades before a Discovery Channel expedition located it and recovered it. The space capsule, now restored and preserved, is part of an interactive exhibit touring science centers and museums in 12 cities throughout the United States until 2003. The exhibit also includes hands-on elements such as a capsule simulator, a centrifuge, and ROV pilot.

  17. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-01

    The STS-109 crew of seven waved to onlookers as they emerged from the Operations and Checkout Buildings at Kennedy Space Flight Center eager to get to the launch pad to embark upon the Space Shuttle Orbiter Columbia's 27th flight into space. Crew members included, from front to back, Duane G. Carey (left) and Scott D. Altman (right); Nancy J. Currie, mission specialist; John M. Grunsfield (left), payload commander, and Richard M. Linneham (right); James H. Newman (left) and Michael J. Massimino (right), all mission specialists. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. By using Columbia's robotic arm, the telescope was captured and secured on a work stand in Columbia's payload bay where four members of the crew performed five spacewalks to complete system upgrades to the HST. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  18. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-11

    On the Space Shuttle Columbia's mid deck, the STS-109 crew of seven pose for the traditional in-flight portrait. From the left (front row), are astronauts Nancy J. Currie, mission specialist; Scott D. Altman, mission commander; and Duane G. Carey, pilot. Pictured on the back row from left to right are astronauts John M. Grunsfield, payload commander; and Richard M. Lirneham, James H. Newman, and Michael J. Massimino, all mission specialists. The 108th flight overall in NASA's Space Shuttle Program, the STS-109 mission launched March 1, 2002, and lasted 10 days, 22 hours, and 11 minutes. The goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). Using Columbia's robotic arm, the telescope was captured and secured on a work stand in Columbia's payload bay where four members of the crew performed five space walks to complete system upgrades to the HST. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit.

  19. A Correlational Study Assessing the Relationships among Information Technology Project Complexity, Project Complication, and Project Success

    ERIC Educational Resources Information Center

    Williamson, David J.

    2011-01-01

    The specific problem addressed in this study was the low success rate of information technology (IT) projects in the U.S. Due to the abstract nature and inherent complexity of software development, IT projects are among the most complex projects encountered. Most existing schools of project management theory are based on the rational systems…

  20. Project Explorer - Student experiments aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Buckbee, E.; Dannenberg, K.; Driggers, G.; Orillion, A.

    1979-01-01

    Project Explorer, a program of high school student experiments in space in a Space Shuttle self-contained payload unit (Getaway Special), sponsored by the Alabama Space and Rocket Center (ASRC) in cooperation with four Alabama universities is presented. Organizations aspects of the project, which is intended to promote public awareness of the space program and encourage space research, are considered, and the proposal selection procedure is outlined. The projects selected for inclusion in the self-contained payload canister purchased in 1977 and expected to be flown on an early shuttle mission include experiments on alloy solidification, electric plating, whisker growth, chick embryo development and human blood freezing, and an amateur radio experiment. Integration support activities planned and underway are summarized, and possible uses for a second payload canister purchased by ASRC are discussed.

  1. Demonstrating artificial intelligence for space systems - Integration and project management issues

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Difilippo, Denise M.

    1990-01-01

    As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.

  2. Recommendations to Improve Space Projection Models and University Space Usage

    ERIC Educational Resources Information Center

    Stigall, Sam W.

    2007-01-01

    In today"s economy, public university administrators need to reflect on current practices for reporting and projecting space requirements to government entities as the cost of constructing new facilities or renovating space rises while income from legislative appropriations diminishes. As stewards of public buildings and funds, institutions…

  3. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-03

    The Hubble Space Telescope (HST), with its normal routine temporarily interrupted, is about to be captured by the Space Shuttle Columbia prior to a week of servicing and upgrading by the STS-109 crew. The telescope was captured by the shuttle's Remote Manipulator System (RMS) robotic arm and secured on a work stand in Columbia's payload bay where 4 of the 7-member crew performed 5 space walks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. Launched March 1, 2002, the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1994-02-25

    This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.

  5. Insectivorous bats respond to vegetation complexity in urban green spaces.

    PubMed

    Suarez-Rubio, Marcela; Ille, Christina; Bruckner, Alexander

    2018-03-01

    Structural complexity is known to determine habitat quality for insectivorous bats, but how bats respond to habitat complexity in highly modified areas such as urban green spaces has been little explored. Furthermore, it is uncertain whether a recently developed measure of structural complexity is as effective as field-based surveys when applied to urban environments. We assessed whether image-derived structural complexity (MIG) was as/more effective than field-based descriptors in this environment and evaluated the response of insectivorous bats to structural complexity in urban green spaces. Bat activity and species richness were assessed with ultrasonic devices at 180 locations within green spaces in Vienna, Austria. Vegetation complexity was assessed using 17 field-based descriptors and by calculating the mean information gain (MIG) using digital images. Total bat activity and species richness decreased with increasing structural complexity of canopy cover, suggesting maneuverability and echolocation (sensorial) challenges for bat species using the canopy for flight and foraging. The negative response of functional groups to increased complexity was stronger for open-space foragers than for edge-space foragers. Nyctalus noctula , a species foraging in open space, showed a negative response to structural complexity, whereas Pipistrellus pygmaeus , an edge-space forager, was positively influenced by the number of trees. Our results show that MIG is a useful, time- and cost-effective tool to measure habitat complexity that complemented field-based descriptors. Response of insectivorous bats to structural complexity was group- and species-specific, which highlights the need for manifold management strategies (e.g., increasing or reinstating the extent of ground vegetation cover) to fulfill different species' requirements and to conserve insectivorous bats in urban green spaces.

  6. Space market model development project, phase 3

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Hamel, Gary P.

    1989-01-01

    The results of a research project investigating information needs for space commercialization is described. The Space Market Model Development Project (SMMDP) was designed to help NASA identify the information needs of the business community and to explore means to meet those needs. The activity of the SMMDP is reviewed and a report of its operation via three sections is presented. The first part contains a brief historical review of the project since inception. The next part reports results of Phase 3, the most recent stage of activity. Finally, overall conclusions and observations based on the SMMDP research results are presented.

  7. Superluminal transformations in complex Minkowski spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramon, C.; Rauscher, E.A.

    1980-08-01

    We calculate the mixing of real and imaginary components of space and time under the influence of superluminal boots in the x direction. A unique mixing is determined for this superluminal Lorentz transformation when we consider the symmetry properties afforded by the inclusion of three temporal directions. Superluminal transformations in complex six-dimensional space exhibit unique tachyonic connections which have both remote and local space--time event connections.

  8. Space Shuttle Projects

    NASA Image and Video Library

    2001-01-01

    The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1975-01-01

    The Space Shuttle represented an entirely new generation of space vehicle, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds. The SRB's provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  10. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-08

    After five days of service and upgrade work on the Hubble Space Telescope (HST), the STS-109 crew photographed the giant telescope in the shuttle's cargo bay. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where 4 of the 7-member crew performed 5 space walks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. Launched March 1, 2002, the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  11. Saturn 1B space vehicle for ASTP moves from VAB to launch complex

    NASA Image and Video Library

    1975-03-24

    S75-24007 (24 March 1975) --- The Saturn 1B space vehicle for the Apollo-Soyuz Test Project mission, with its launch umbilical tower, rides atop a huge crawler-transporter as it moves slowly away from the Vehicle Assembly Building on its 4.24-mile journey to Pad B, Launch Complex 39, at NASA's Kennedy Space Center. The ASTP vehicle is composed of a Saturn 1B (first) stage, a Saturn IVB (second) stage, and a payload consisting of a Command/Service Module and a Docking Module. The joint U.S.-USSR ASTP docking mission in Earth orbit is scheduled for July 1975.

  12. Space Object and Light Attribute Rendering (SOLAR) Projection System

    DTIC Science & Technology

    2017-05-08

    AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT A state of the art planetarium style projection system...Rendering (SOLAR) Projection System 1 Abstract A state of the art planetarium style projection system called Space Object and Light Attribute Rendering...planetarium style projection system for emulation of a variety of close proximity and long range imaging experiments. University at Buffalo’s Space

  13. Software Process Assurance for Complex Electronics (SPACE)

    NASA Technical Reports Server (NTRS)

    Plastow, Richard A.

    2007-01-01

    Complex Electronics (CE) are now programmed to perform tasks that were previously handled in software, such as communication protocols. Many of the methods used to develop software bare a close resemblance to CE development. For instance, Field Programmable Gate Arrays (FPGAs) can have over a million logic gates while system-on-chip (SOC) devices can combine a microprocessor, input and output channels, and sometimes an FPGA for programmability. With this increased intricacy, the possibility of software-like bugs such as incorrect design, logic, and unexpected interactions within the logic is great. Since CE devices are obscuring the hardware/software boundary, we propose that mature software methodologies may be utilized with slight modifications in the development of these devices. Software Process Assurance for Complex Electronics (SPACE) is a research project that looks at using standardized S/W Assurance/Engineering practices to provide an assurance framework for development activities. Tools such as checklists, best practices and techniques can be used to detect missing requirements and bugs earlier in the development cycle creating a development process for CE that will be more easily maintained, consistent and configurable based on the device used.

  14. Hidden Figures Tour Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2016-12-12

    In the IMAX Theater of the Kennedy Space Center Visitor Complex Cast and crew members of the upcoming motion picture "Hidden Figures" participate in a question and answer session. From the left are Ted Melfi, writer and director of “Hidden Figures,” and Octavia Spencer, who portrays Dorothy Vaughan in the film. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  15. Live from Space Station Learning Technologies Project

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This is the Final Report for the Live From Space Station (LFSS) project under the Learning Technologies Project FY 2001 of the MSFC Education Programs Department. AZ Technology, Inc. (AZTek) has developed and implemented science education software tools to support tasks under the LTP program. Initial audience consisted of 26 TreK in the Classroom schools and thousands of museum visitors to the International Space Station: The Earth Tour exhibit sponsored by Discovery Place museum.

  16. Collective space of high-rise housing complex

    NASA Astrophysics Data System (ADS)

    Bakaeva, Tatyana

    2018-03-01

    The article considers the problems of support of citizens a comfortable living environment in the conditions of the limited territory of the megalopolis, the typological principles of formation of space-planning structure high-rise residence complexes with public space. The collective space for residents of high-rise housing estates on the example of international experience of design and construction is in detail considered. The collective space and the area of the standard apartment are analysed on comfort classes: a social - complex Pinnacle @ Duxton, a business - Monde Condos and an elite - Hamilton Scotts. Interdependence the area of the standard flat and the total area of housing collective space, in addiction on the comfort level, is revealed. In the conditions of high-density urban development, the collective space allows to form the comfortable environment for accommodation. The recommendations for achievement of integrity and improvement of quality of the city environment are made. The convenient collective space makes a contribution to civil policy, it creates the socializing sense of interaction of residents, coagulates social effect.

  17. TRI-Worthy Projects for the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Wotring, V. E.; Strangman, G. E.; Donoviel, D.

    2018-02-01

    Preparations for exploration will require exposure to the actual deep space environment. The new TRI for Space Health proposes innovative projects using real space radiation to make medically-relevant measurements affecting human physiology.

  18. Space Synthetic Biology Project

    NASA Technical Reports Server (NTRS)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  19. On deformation of complex continuum immersed in a plane space

    NASA Astrophysics Data System (ADS)

    Kovalev, V. A.; Murashkin, E. V.; Radayev, Y. N.

    2018-05-01

    The present paper is devoted to mathematical modelling of complex continua deformations considered as immersed in an external plane space. The complex continuum is defined as a differential manifold supplied with metrics induced by the external space. A systematic derivation of strain tensors by notion of isometric immersion of the complex continuum into a plane space of a higher dimension is proposed. Problem of establishing complete systems of irreducible objective strain and extrastrain tensors for complex continuum immersed in an external plane space is resolved. The solution to the problem is obtained by methods of the field theory and the theory of rational algebraic invariants. Strain tensors of the complex continuum are derived as irreducible algebraic invariants of contravariant vectors of the external space emerging as functional arguments in the complex continuum action density. Present analysis is restricted to rational algebraic invariants. Completeness of the considered systems of rational algebraic invariants is established for micropolar elastic continua. Rational syzygies for non-quadratic invariants are discussed. Objective strain tensors (indifferent to frame rotations in the external plane space) for micropolar continuum are alternatively obtained by properly combining multipliers of polar decompositions of deformation and extra-deformation gradients. The latter is realized only for continua immersed in a plane space of the equal mathematical dimension.

  20. Space Radiation Effects on Inflatable Habitat Materials Project

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Nichols, Charles

    2015-01-01

    The Space Radiation Effects on Inflatable Habitat Materials project provides much needed risk reduction data to assess space radiation damage of existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage will be quantified for materials used in inflatable structures (1st priority), as well as for habitable composite structures and space suits materials (2nd priority). The data acquired will have relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes. This project also will help to determine the service lifetimes for habitable inflatable, composite, and space suit materials.

  1. Space construction system analysis study: Project systems and missions descriptions

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Three project systems are defined and summarized. The systems are: (1) a Solar Power Satellite (SPS) Development Flight Test Vehicle configured for fabrication and compatible with solar electric propulsion orbit transfer; (2) an Advanced Communications Platform configured for space fabrication and compatible with low thrust chemical orbit transfer propulsion; and (3) the same Platform, configured to be space erectable but still compatible with low thrust chemical orbit transfer propulsion. These project systems are intended to serve as configuration models for use in detailed analyses of space construction techniques and processes. They represent feasible concepts for real projects; real in the sense that they are realistic contenders on the list of candidate missions currently projected for the national space program. Thus, they represent reasonable configurations upon which to base early studies of alternative space construction processes.

  2. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation formore » the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.« less

  3. An Overview of the Distributed Space Exploration Simulation (DSES) Project

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Chung, Victoria I.; Blum, Michael G.; Bowman, James D.

    2007-01-01

    This paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which investigates technologies, and processes related to integrated, distributed simulation of complex space systems in support of NASA's Exploration Initiative. In particular, it describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. With regard to network infrastructure, DSES is developing a Distributed Simulation Network for use by all NASA centers. With regard to software, DSES is developing software models, tools and procedures that streamline distributed simulation development and provide an interoperable infrastructure for agency-wide integrated simulation. Finally, with regard to simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper presents the current status and plans for these three areas, including examples of specific simulations.

  4. Hybrid function projective synchronization in complex dynamical networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng

    2014-02-15

    This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.

  5. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  6. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-01

    A scaled-down 24-inch version of the Space Shuttle's Reusable Solid Rocket Motor was successfully fired for 21 seconds at a Marshall Space Flight Center (MSFC) Test Stand. The motor was tested to ensure a replacement material called Lycocel would meet the criteria set by the Shuttle's Solid Motor Project Office. The current material is a heat-resistant, rayon-based, carbon-cloth phenolic used as an insulating material for the motor's nozzle. Lycocel, a brand name for Tencel, is a cousin to rayon and is an exceptionally strong fiber made of wood pulp produced by a special "solvent-spirning" process using a nontoxic solvent. It will also be impregnated with a phenolic resin. This new material is expected to perform better under the high temperatures experienced during launch. The next step will be to test the material on a 48-inch solid rocket motor. The test, which replicates launch conditions, is part of Shuttle's ongoing verification of components, materials, and manufacturing processes required by MSFC, which oversees the Reusable Solid Rocket Motor project. Manufactured by the ATK Thiokol Propulsion Division in Promontory, California, the Reusable Solid Rocket Motor measures 126 feet (38.4 meters) long and 12 feet (3.6 meters) in diameter. It is the largest solid rocket motor ever flown and the first designed for reuse. During its two-minute burn at liftoff, each motor generates an average thrust of 2.6 million pounds (1.2 million kilograms).

  7. Modular space station Phase B extension preliminary performance specification. Volume 2: Project

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The four systems of the modular space station project are described, and the interfaces between this project and the shuttle project, the tracking and data relay satellite project, and an arbitrarily defined experiment project are defined. The experiment project was synthesized from internal experiments, detached research and application modules, and attached research and application modules to derive a set of interface requirements which will support multiple combinations of these elements expected during the modular space station mission. The modular space station project element defines a 6-man orbital program capable of growth to a 12-man orbital program capability. The modular space station project element specification defines the modular space station system, the premission operations support system, the mission operations support system, and the cargo module system and their interfaces.

  8. Environmental projects. Volume 13: Underground storage tanks, removal and replacement. Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Bengelsdorf, Irv

    1991-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 40 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of the National Aeronautics and Space Administration's (NASA's) Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. Activities at the GDSCC are carried out in support of six large parabolic dish antennas. As a large-scale facility located in a remote, isolated desert region, the GDSCC operations require numerous on-site storage facilities for gasoline, diesel oil, hydraulic oil, and waste oil. These fluids are stored in underground storage tanks (USTs). This present volume describes what happened to the 26 USTs that remained at the GDSCC. Twenty-four of these USTs were constructed of carbon steel without any coating for corrosion protection, and without secondary containment or leak detection. Two remaining USTs were constructed of fiberglass-coated carbon steel but without secondary containment or leak protection. Of the 26 USTs that remained at the GDSCC, 23 were cleaned, removed from the ground, cut up, and hauled away from the GDSCC for environmentally acceptable disposal. Three USTs were permanently closed (abandoned in place).

  9. 2009 ESMD Space Grant Faculty Project Final Report

    NASA Technical Reports Server (NTRS)

    Murphy, Gloria; Ghanashyam, Joshi; Guo, Jiang; Conrad, James; Bandyopadhyay, Alak; Cross, William

    2009-01-01

    The Constellation Program is the medium by which we will maintain a presence in low Earth orbit, return to the moon for further exploration and develop procedures for Mars exploration. The foundation for its presence and success is built by the many individuals that have given of their time, talent and even lives to help propel the mission and objectives of NASA. The Exploration Systems Mission Directorate (ESMD) Faculty Fellows Program is a direct contributor to the success of directorate and Constellation Program objectives. It is through programs such as the ESMD Space Grant program that students are inspired and challenged to achieve the technological heights that will propel us to meet the goals and objectives of ESMD and the Constellation Program. It is through ESMD Space Grant programs that future NASA scientists, engineers, and mathematicians begin to dream of taking America to newer heights of space exploration. The ESMD Space Grant program is to be commended for taking the initiative to develop and implement programs that help solidify the mission of NASA. With the concerted efforts of the Kennedy Space Center educational staff, the 2009 ESMD Space Grant Summer Faculty Fellows Program allowed faculty to become more involved with NASA personnel relating to exploration topics for the senior design projects. The 2009 Project was specifically directed towards NASA's Strategic Educational Outcome 1. In-situ placement of Faculty Fellows at the NASA field Centers was essential; this allowed personal interactions with NASA scientists and engineers. In particular, this was critical to better understanding the NASA problems and begin developing a senior design effort to solve the problems. The Faculty Fellows are pleased that the ESMD Space Grant program is taking interest in developing the Senior Design courses at the university level. These courses are needed to help develop the NASA engineers and scientists of the very near future. It has been a pleasure to be

  10. Projective loop quantum gravity. I. State space

    NASA Astrophysics Data System (ADS)

    Lanéry, Suzanne; Thiemann, Thomas

    2016-12-01

    Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski to describe quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces. Beside the physical motivations for this approach, it could help designing a quantum state space holding the states we need. In a latter work by Okolów, the description of a theory of Abelian connections within this framework was developed, an important insight being to use building blocks labeled by combinations of edges and surfaces. The present work generalizes this construction to an arbitrary gauge group G (in particular, G is neither assumed to be Abelian nor compact). This involves refining the definition of the label set, as well as deriving explicit formulas to relate the Hilbert spaces attached to different labels. If the gauge group happens to be compact, we also have at our disposal the well-established Ashtekar-Lewandowski Hilbert space, which is defined as an inductive limit using building blocks labeled by edges only. We then show that the quantum state space presented here can be thought as a natural extension of the space of density matrices over this Hilbert space. In addition, it is manifest from the classical counterparts of both formalisms that the projective approach allows for a more balanced treatment of the holonomy and flux variables, so it might pave the way for the development of more satisfactory coherent states.

  11. Space Mission Human Reliability Analysis (HRA) Project

    NASA Technical Reports Server (NTRS)

    Boyer, Roger

    2014-01-01

    The purpose of the Space Mission Human Reliability Analysis (HRA) Project is to extend current ground-based HRA risk prediction techniques to a long-duration, space-based tool. Ground-based HRA methodology has been shown to be a reasonable tool for short-duration space missions, such as Space Shuttle and lunar fly-bys. However, longer-duration deep-space missions, such as asteroid and Mars missions, will require the crew to be in space for as long as 400 to 900 day missions with periods of extended autonomy and self-sufficiency. Current indications show higher risk due to fatigue, physiological effects due to extended low gravity environments, and others, may impact HRA predictions. For this project, Safety & Mission Assurance (S&MA) will work with Human Health & Performance (HH&P) to establish what is currently used to assess human reliabiilty for human space programs, identify human performance factors that may be sensitive to long duration space flight, collect available historical data, and update current tools to account for performance shaping factors believed to be important to such missions. This effort will also contribute data to the Human Performance Data Repository and influence the Space Human Factors Engineering research risks and gaps (part of the HRP Program). An accurate risk predictor mitigates Loss of Crew (LOC) and Loss of Mission (LOM).The end result will be an updated HRA model that can effectively predict risk on long-duration missions.

  12. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-01

    This is the insignia of the STS-109 Space Shuttle mission. Carrying a crew of seven, the Space Shuttle Orbiter Columbia was launched with goals of maintenance and upgrades to the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm where four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: The replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 27th flight of the Orbiter Columbia and the 108th flight overall in NASA's Space Shuttle Program.

  13. Space Shuttle Projects

    NASA Image and Video Library

    2001-01-01

    This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.

  14. NASA Space Flight Program and Project Management Handbook

    NASA Technical Reports Server (NTRS)

    Blythe, Michael P.; Saunders, Mark P.; Pye, David B.; Voss, Linda D.; Moreland, Robert J.; Symons, Kathleen E.; Bromley, Linda K.

    2014-01-01

    This handbook is a companion to NPR 7120.5E, NASA Space Flight Program and Project Management Requirements and supports the implementation of the requirements by which NASA formulates and implements space flight programs and projects. Its focus is on what the program or project manager needs to know to accomplish the mission, but it also contains guidance that enhances the understanding of the high-level procedural requirements. (See Appendix C for NPR 7120.5E requirements with rationale.) As such, it starts with the same basic concepts but provides context, rationale, guidance, and a greater depth of detail for the fundamental principles of program and project management. This handbook also explores some of the nuances and implications of applying the procedural requirements, for example, how the Agency Baseline Commitment agreement evolves over time as a program or project moves through its life cycle.

  15. Space Sciences Education and Outreach Project of Moscow State University

    NASA Astrophysics Data System (ADS)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  16. Current Space Projects of the Bolivarian Republic of Venezuela

    NASA Astrophysics Data System (ADS)

    Hernández, R.; Acevedo R.; Varela, F.; Otero, S.

    2014-06-01

    Since 2008, with the successful launch of the first Venezuelan telecommunication satellite VENESAT-1, the Bolivarian Republic of Venezuela became an active player in the international space sector aimed at using space science and technology as a powerful tool to promote the national development. Based on that, through the Bolivarian Agency for Space Activities (ABAE), Venezuela has been implemented several space projects such as the manufacturing and launch of the first Venezuelan remote sensing satellite, the construction of a design center for small satellite technologies, as well as research and development activities related with the estimation of the physical properties of the Earth. This paper presents a brief description of the current space projects that are being developed by Venezuela.

  17. Space Engineering Projects in Design Methodology

    NASA Technical Reports Server (NTRS)

    Crawford, R.; Wood, K.; Nichols, S.; Hearn, C.; Corrier, S.; DeKunder, G.; George, S.; Hysinger, C.; Johnson, C.; Kubasta, K.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design courses of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, focusing on the first-semester design methodology course. The philosophical basis and pedagogical structure of this course is summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper includes a summary of the projects completed during the 1992-93 Academic Year in the methodology course, and concludes with an example of two projects completed by student design teams.

  18. Some thoughts on the management of large, complex international space ventures

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Kutzer, Ants; Schneider, W. C.

    The nations of the world have already collaborated on a number of joint space ventures of varying complexities. To name a few of the variations in management arrangements, the schemes have included the utilization of one nation's spacecraft to orbit another's experiment, the launch of another's spacecraft, the development of an offline article (such as the Spacelab), and the cooperative development of the Space Station Freedom (S.S. Freedom). Today, as the scope of the problems and solutions involved in establishing a permanently manned colony on the Moon and exploring the surface of Mars become clearer, the idea of a major sharing of the enormous tasks among the spacefaring nations seems more and more necessary and, indeed, required. For such a major, complex project, success depends upon the management as much as it does on the technology. If the project is not organized in a logical and workable manner with clear areas of responsibility and with an agreed-to chain of command, it is in as much jeopardy as it is if the resources are not available. It is vital that thought and analysis be put on this aspect of a "Mission from Planet Earth" early, to insure that the project is not divided into an impractical organizational structure and that agreements are not made which are unsound. As an example of the questions to be explored, the lead organization can take many forms. Clearly, there must be a recognized leader to make the many difficult programmatic decisions which will arise. The lead could be assigned to one nation; it could be assigned to a new international group; it could be assigned to a consortium; or granted to a committee. Each has implications and problems to be explored. This paper will open the discussions. It is the intent of this paper to begin the process based upon the authors' experiences in various international projects. It is to arouse interest and discussion not to select a final solution. Final solutions will depend upon capabilities

  19. Hidden Figures Tour Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2016-12-12

    In the IMAX Theater of the Kennedy Space Center Visitor Complex Cast and crew members of the upcoming motion picture "Hidden Figures" participate in a question and answer session. From the left are Ted Melfi, writer and director of “Hidden Figures,” Octavia Spencer, who portrays Dorothy Vaughan in the film, Taraji P. Henson, who portrays Katherine Johnson, Pharrell Williams, musician and producer of “Hidden Figures," and Janelle Monáe, who portrays Mary Jackson. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  20. Global Change Encyclopedia - A project for the international space year

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Simard, R.; Manore, M.; Baker, R.; Clark, D.; Kineman, J.; Allen, J.; Ruzek, M.

    1991-01-01

    'Global Change Encyclopedia' is a project for the International Space Year in 1992. The project will produce a comprehensive set of satellite and other global data with relevance to studies of global change and of the earth as a system. These data will be packaged on CD-ROMs, accompanied by appropriate software for access, display and manipulation. On behalf of the Canadian Space Agency, the project is being carried out by the Canada Centre for Remote Sensing, with the U.S. National Oceanic and Atmospheric Administration and the U.S. National Aeronautics and Space Administration as major contributors. This paper highlights the background leading to the project, the concept and principal characteristics of the Encyclopedia itself, and the current status and plans.

  1. Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.

    PubMed

    Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios

    2012-03-01

    This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.

  2. Space Station Biological Research Project.

    PubMed

    Johnson, C C; Wade, C E; Givens, J J

    1997-06-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  3. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Wade, C. E.; Givens, J. J.

    1997-01-01

    To meet NASA's objective of using the unique aspects of the space environment to expand fundamental knowledge in the biological sciences, the Space Station Biological Research Project at Ames Research Center is developing, or providing oversight, for two major suites of hardware which will be installed on the International Space Station (ISS). The first, the Gravitational Biology Facility, consists of Habitats to support plants, rodents, cells, aquatic specimens, avian and reptilian eggs, and insects and the Habitat Holding Rack in which to house them at microgravity; the second, the Centrifuge Facility, consists of a 2.5 m diameter centrifuge that will provide acceleration levels between 0.01 g and 2.0 g and a Life Sciences Glovebox. These two facilities will support the conduct of experiments to: 1) investigate the effect of microgravity on living systems; 2) what level of gravity is required to maintain normal form and function, and 3) study the use of artificial gravity as a countermeasure to the deleterious effects of microgravity observed in the crew. Upon completion, the ISS will have three complementary laboratory modules provided by NASA, the European Space Agency and the Japanese space agency, NASDA. Use of all facilities in each of the modules will be available to investigators from participating space agencies. With the advent of the ISS, space-based gravitational biology research will transition from 10-16 day short-duration Space Shuttle flights to 90-day-or-longer ISS increments.

  4. Improving Space Project Cost Estimating with Engineering Management Variables

    NASA Technical Reports Server (NTRS)

    Hamaker, Joseph W.; Roth, Axel (Technical Monitor)

    2001-01-01

    Current space project cost models attempt to predict space flight project cost via regression equations, which relate the cost of projects to technical performance metrics (e.g. weight, thrust, power, pointing accuracy, etc.). This paper examines the introduction of engineering management parameters to the set of explanatory variables. A number of specific engineering management variables are considered and exploratory regression analysis is performed to determine if there is statistical evidence for cost effects apart from technical aspects of the projects. It is concluded that there are other non-technical effects at work and that further research is warranted to determine if it can be shown that these cost effects are definitely related to engineering management.

  5. An Overview of the James Webb Space Telescope (JWST) Project

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Phillip A.

    2004-01-01

    The JWST project at the GSFC is responsible for the development, launch, operations and science data processing for the James Webb Space Telescope. The JWST project is currently in phase B with its launch scheduled for August 2011. The project is a partnership between NASA, ESA and CSA. The U.S. JWST team is now fully in place with the recent selection of Northrop Grumman Space Technology (NGST) as the prime contractor for the telescope and the Space Telescope Science Institute (STScI) as the mission operations and science data processing lead. This paper will provide an overview of the current JWST architecture and mission status including technology developments and risks.

  6. An Overview of the James Webb Space Telescope (JWST) Project

    NASA Technical Reports Server (NTRS)

    Sabelhaus, Phillip A.; Campbell, Doug; Clampin, Mark; Decker, John; Greenhouse, Matt; Johns, Alan; Menzel, Mike; Smith, Robert; Sullivan, Pam

    2005-01-01

    The JWST project at the GSFC is responsible for the development, launch, operations and science data processing for the James Webb Space Telescope. The JWST project is currently in phase B with its launch scheduled for August 2011. The project is a partnership between NASA, ESA and CSA. The U.S. JWST team is now fully in place with the selection of Northrop Grumman Space Technology (NGST) as the prime contractor for the telescope and the Space Telescope Science Institute (STScI) as the mission operations and science data processing lead. This paper will provide an overview of the current JWST architecture and mission status including technology developments and risks.

  7. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-03

    This is a photo of the Hubble Space Telescope (HST),in its origianl configuration, berthed in the cargo bay of the Space Shuttle Columbia during the STS-109 mission silhouetted against the airglow of the Earth's horizon. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where 4 of the 7-member crew performed 5 spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  8. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-01

    Carrying a crew of seven, the Space Shuttle Orbiter Columbia soared through some pre-dawn clouds into the sky as it began its 27th flight, STS-109. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST). The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. During the STS-109 mission, the telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm. Here four members of the crew performed five spacewalks completing system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  9. Space Radiation Cancer Risk Projections and Uncertainties - 2010

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.

    2011-01-01

    Uncertainties in estimating health risks from galactic cosmic rays greatly limit space mission lengths and potential risk mitigation evaluations. NASA limits astronaut exposures to a 3% risk of exposure-induced death and protects against uncertainties using an assessment of 95% confidence intervals in the projection model. Revisions to this model for lifetime cancer risks from space radiation and new estimates of model uncertainties are described here. We review models of space environments and transport code predictions of organ exposures, and characterize uncertainties in these descriptions. We summarize recent analysis of low linear energy transfer radio-epidemiology data, including revision to Japanese A-bomb survivor dosimetry, longer follow-up of exposed cohorts, and reassessments of dose and dose-rate reduction effectiveness factors. We compare these projections and uncertainties with earlier estimates. Current understanding of radiation quality effects and recent data on factors of relative biological effectiveness and particle track structure are reviewed. Recent radiobiology experiment results provide new information on solid cancer and leukemia risks from heavy ions. We also consider deviations from the paradigm of linearity at low doses of heavy ions motivated by non-targeted effects models. New findings and knowledge are used to revise the NASA risk projection model for space radiation cancer risks.

  10. Hidden Figures Tour Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2016-12-12

    Cast and crew members of the upcoming motion picture "Hidden Figures" participate in a question and answer session at the Kennedy Space Center Visitor Complex. From the left are Pharrell Williams, musician and producer of “Hidden Figures," Taraji P. Henson, who portrays Katherine Johnson in the film, Janelle Monáe, who portrays Mary Jackson, and Octavia Spencer, who portrays Dorothy Vaughan. They are seated in front of the original consoles of the Mercury Mission Control room with the world map that was used to follow the path of capsules between tracking stations. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  11. Hidden Figures Tour Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2016-12-12

    In the IMAX Theater of the Kennedy Space Center Visitor Complex Cast and crew members of the upcoming motion picture "Hidden Figures" participate in a question and answer session. From the left are Octavia Spencer, who portrays Dorothy Vaughan in the film, Taraji P. Henson, who portrays Katherine Johnson, Janelle Monáe, who portrays Mary Jackson, Pharrell Williams, musician and producer of “Hidden Figures," Ted Melfi, writer and director of “Hidden Figures,” center director Bob Cabana, and Janet Petro, deputy center director. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  12. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian

    2014-03-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1976-01-01

    This image illustrates the solid rocket motor (SRM)/solid rocket booster (SRB) configuration. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the SRM's were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  14. Space Shuttle Projects

    NASA Image and Video Library

    1977-01-01

    This illustration is a cutaway of the solid rocket booster (SRB) sections with callouts. The Shuttle's two SRB's are the largest solids ever built and the first designed for refurbishment and reuse. Standing nearly 150-feet high, the twin boosters provide the majority of thrust for the first two minutes of flight, about 5.8 million pounds, augmenting the Shuttle's main propulsion system during liftoff. The major design drivers for the solid rocket motors (SRM's) were high thrust and reuse. The desired thrust was achieved by using state-of-the-art solid propellant and by using a long cylindrical motor with a specific core design that allows the propellant to burn in a carefully controlled marner. At burnout, the boosters separate from the external tank and drop by parachute to the ocean for recovery and subsequent refurbishment. The boosters are designed to survive water impact at almost 60 miles per hour, maintain flotation with minimal damage, and preclude corrosion of the hardware exposed to the harsh seawater environment. Under the project management of the Marshall Space Flight Center, the SRB's are assembled and refurbished by the United Space Boosters. The SRM's are provided by the Morton Thiokol Corporation.

  15. Starfleet Deferred: Project Orion in the 1962 Air Force Space Program

    NASA Astrophysics Data System (ADS)

    Ziarnick, B.

    Project Orion, the Cold War American program (1957-1965) studying nuclear pulse propulsion for space applications, has long interested space enthusiasts for what it was and what it might have been, but it has long been believed that neither the United States government nor the US Air Force took the program very seriously. However, recently declassified US Air Force documents shed more light on the classified history of Project Orion. Far from being ignored by Air Force leadership, through the efforts of the Strategic Air Command, Air Force leaders like General Curtis LeMay were convinced that Project Orion should be funded as a major weapons system. The high water mark of Project Orion was the 1962 Air Force Space Program proposal by the Air Force Chief of Staff to devote almost twenty percent of the Air Force space budget from 1962-1967 to Orion development before the program was cancelled by the civilian Secretary of the Air Force under pressure from the Department of Defense. This paper details the history of Project Orion in the 1962 Air Force Space Program proposal, and concludes with a few lessons learned for use by modern interstellar advocates.

  16. Space weather in the EU's FP7 Space Theme. Preface to the special issue on "EU-FP7 funded space weather projects"

    NASA Astrophysics Data System (ADS)

    Chiarini, Paola

    2013-11-01

    Technological infrastructures in space and on ground provide services on which modern society and economies rely. Space weather related research is funded under the 7th Framework Programme for Research and Innovation (FP7) of the European Union in response to the need of protecting such critical infrastructures from the damage which could be caused by extreme space weather events. The calls for proposals published under the topic "Security of space assets from space weather events" of the FP7 Space Theme aimed to improve forecasts and predictions of disruptive space weather events as well as identify best practices to limit the impacts on space- and ground-based infrastructures and their data provision. Space weather related work was also funded under the topic "Exploitation of space science and exploration data", which aims to add value to space missions and Earth-based observations by contributing to the effective scientific exploitation of collected data. Since 2007 a total of 20 collaborative projects have been funded, covering a variety of physical phenomena associated with space weather, from ionospheric disturbances and scintillation, to geomagnetically induced currents at Earth's surface, to coronal mass ejections and solar energetic particles. This article provides an overview of the funded projects, touching upon some results and referring to specific websites for a more exhaustive description of the projects' outcomes.

  17. Management of Service Projects in Support of Space Flight Research

    NASA Technical Reports Server (NTRS)

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  18. Design methodology and projects for space engineering

    NASA Technical Reports Server (NTRS)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  19. NASA's In-Space Manufacturing Project: A Roadmap for a Multimaterial Fabrication Laboratory in Space

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS) provides a unique opportunity for NASA to partner with private industry for development and demonstration of the technologies needed to support exploration initiatives. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing (ISM) project, its past and current activities (2014-2017), and how technologies under development will ultimately culminate in a multimaterial fabrication laboratory ("ISM FabLab") to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit, through a resupply launch or a return to earth, may instead result in a loss of mission while in transit to Mars. To have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The presentation provides a broad overview of ISM projects activities culminating with the Fabrication Laboratory for ISS. In 2017, the in-space manufacturing project issued a broad agency announcement for this capability. Requirements of the Fabrication Laboratory as stated in the solicitation will be discussed. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the current ISM FabLab will be tested on ISS, future systems are eventually intended for use in a deep space habitat or transit vehicle. The work of commercial companies funded under NASA's Small Business

  20. The Hubble Space Telescope's Student ERO Pilot Project: Implementing Formal and Informal Collaborative Projects

    NASA Astrophysics Data System (ADS)

    Eisenhamer, Bonnie; Ryer, H.; McCallister, D.; Taylor, J.; Bishop, M.

    2010-05-01

    The Hubble Space Telescope's Early Release Observations (EROs) were revealed to the public on September 9, 2009, and K-12 students and educators in six states across the country are joining in the celebration. Students and educators in Maryland, Ohio, New York, California, New Mexico, and Delaware have been invited to participate in the Hubble Space Telescope's Student ERO Pilot Project. This is an interdisciplinary project created by STScI's Office of Public Outreach in which students research the four ERO objects and create various types of projects. In recognition of their participation, the projects are displayed at host institutions in each state (museum, science center, school, planetarium or library) during a special public event for participating students, their families, and teachers. As part of its evaluation program, STScI's Office of Public Outreach has been conducting an evaluation of the project to determine the viability and potential of conducting large-scale, formal/informal collaborative projects in the future. This poster will highlight preliminary findings and share lessons learned.

  1. Space and the complexity of European rules and policies: The common projects Galileo and GMES—precedence for a new European legal approach?

    NASA Astrophysics Data System (ADS)

    Froehlich, Annette

    2010-04-01

    The two European flagship space projects, Galileo and GMES, clearly show that the current existing legal rules of the two organisations involved (European Union and European Space Agency) are not compatible. Moreover, it is quite impossible to implement a common project if every single organisation insists on the application of its own rules strictu sensu. Nevertheless, due to the political desire to advance these projects rapidly and to make them a success, legal obstacles were to be overcome. Consequently, recently concluded agreements between ESA and the EU-Commission concerning the financial and governmental matters of the Galileo and GMES implementation feature a new approach to cooperation between these two organisations. However, the question remains if they can be taken as precedence for a future institutionalised cooperation? It follows that the agreements have to be analysed in order to understand how a mutually acceptable agreement was reached despite the disparity in the rules of both organisations. In this regard, especially the financial decision agreement concerning Galileo in December 2007 shows a very interesting and unique way in applying EU-competition law. In the same way, the GMES-Delegation Agreement of spring 2008 is a good example of how two different legal systems can be applied to make a project success. Additionally, the reasons and arguments of both organisations have to be considered, especially once the Treaty of Lisbon will be in force. As these two main projects of the European Space Policy are characterized by the desire for a successful European cooperation, they can be regarded as an important step forward for a new legal approach. A new system emerges which could be taken into consideration for further common projects undertaken by ESA and the EU.

  2. A low complexity reweighted proportionate affine projection algorithm with memory and row action projection

    NASA Astrophysics Data System (ADS)

    Liu, Jianming; Grant, Steven L.; Benesty, Jacob

    2015-12-01

    A new reweighted proportionate affine projection algorithm (RPAPA) with memory and row action projection (MRAP) is proposed in this paper. The reweighted PAPA is derived from a family of sparseness measures, which demonstrate performance similar to mu-law and the l 0 norm PAPA but with lower computational complexity. The sparseness of the channel is taken into account to improve the performance for dispersive system identification. Meanwhile, the memory of the filter's coefficients is combined with row action projections (RAP) to significantly reduce computational complexity. Simulation results demonstrate that the proposed RPAPA MRAP algorithm outperforms both the affine projection algorithm (APA) and PAPA, and has performance similar to l 0 PAPA and mu-law PAPA, in terms of convergence speed and tracking ability. Meanwhile, the proposed RPAPA MRAP has much lower computational complexity than PAPA, mu-law PAPA, and l 0 PAPA, etc., which makes it very appealing for real-time implementation.

  3. Project LAUNCH: Bringing Space into Math and Science Classrooms

    NASA Technical Reports Server (NTRS)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  4. Therapeutic Use of Space: One Agency's Transformation Project

    ERIC Educational Resources Information Center

    Goelitz, Ann; Stewart-Kahn, Abigail

    2007-01-01

    The project described in this article addresses the therapeutic use of physical space in an outpatient counseling facility. It was theorized that an improved facility environment could be used as a practice tool when working with a vulnerable population. The authors undertook the project with limited time and finances. The process of the change…

  5. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-01

    This is an onboard photo of the Hubble Space Telescope (HST) power control unit (PCU), the heart of the HST's power system. STS-109 payload commander John M. Grunsfeld, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its PCU while participating in the third of five spacewalks dedicated to servicing and upgrading the HST. Other upgrades performed were: replacement of the solar array panels; replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed the system upgrades. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  6. Space infrared telescope facility project

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.

    1988-01-01

    The functions undertaken during this reporting period were: to inform the planetary science community of the progress and status of the Space Infrared Telescope Facility (SIRTF) Project; to solicit input from the planetary science community on needs and requirements of planetary science in the use of SIRTF at such time that it becomes an operational facility; and a white paper was prepared on the use of the SIRTF for solar system studies.

  7. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Dr. Amber Straughn, Lead Scientist for James Webb Space Telescope Education & Public Outreach at NASA's Goddard Space Flight Center, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014 Photo Credit: (NASA/Joel Kowsky)

  8. The NEUF-DIX space project - Non-EquilibriUm Fluctuations during DIffusion in compleX liquids.

    PubMed

    Baaske, Philipp; Bataller, Henri; Braibanti, Marco; Carpineti, Marina; Cerbino, Roberto; Croccolo, Fabrizio; Donev, Aleksandar; Köhler, Werner; Ortiz de Zárate, José M; Vailati, Alberto

    2016-12-01

    Diffusion and thermal diffusion processes in a liquid mixture are accompanied by long-range non-equilibrium fluctuations, whose amplitude is orders of magnitude larger than that of equilibrium fluctuations. The mean-square amplitude of the non-equilibrium fluctuations presents a scale-free power law behavior q -4 as a function of the wave vector q, but the divergence of the amplitude of the fluctuations at small wave vectors is prevented by the presence of gravity. In microgravity conditions the non-equilibrium fluctuations are fully developed and span all the available length scales up to the macroscopic size of the systems in the direction parallel to the applied gradient. Available theoretical models are based on linearized hydrodynamics and provide an adequate description of the statics and dynamics of the fluctuations in the presence of small temperature/concentration gradients and under stationary or quasi-stationary conditions. We describe a project aimed at the investigation of Non-EquilibriUm Fluctuations during DIffusion in compleX liquids (NEUF-DIX). The focus of the project is on the investigation in micro-gravity conditions of the non-equilibrium fluctuations in complex liquids, trying to tackle several challenging problems that emerged during the latest years, such as the theoretical predictions of Casimir-like forces induced by non-equilibrium fluctuations; the understanding of the non-equilibrium fluctuations in multi-component mixtures including a polymer, both in relation to the transport coefficients and to their behavior close to a glass transition; the understanding of the non-equilibrium fluctuations in concentrated colloidal suspensions, a problem closely related with the detection of Casimir forces; and the investigation of the development of fluctuations during transient diffusion. We envision to parallel these experiments with state-of-the-art multi-scale simulations.

  9. Military space station implications. Study project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourne, G.D.; Skirvin, G.D.; Wilson, G.R.

    1987-03-23

    Justifying the relevancy of a Manned Military Space Station (MMSS) and subsequently proposing its deployment to capitalize upon the United States' national security interests is the essence and purpose of this group study project. The MMSS is intended to perform a two-fold purpose: (1) facilitate military peacetime operations while simultaneously supporting and promoting civilian space initiatives; and, (2) act as a force multiplier for space and terrestrial force operations in the event of conventional, theater nuclear, and/or strategic nuclear war. Data to support the future value of the MMSS was obtained from individual and group research using unclassified sources suchmore » as professional journals, books, US Air Force Staff College reference material, and information from the US Air Force space coordinating staff in Washington, DC. The importance of space to our future and especially of a MMSS by America's national leaders and its people has yet to be fully appreciated and/or realized. The significance of space and its nexus to the United States' national security has been growing dramatically in importance since the launching of the Sputnik in 1957 by Russian. Space, as the forth dimension, cannot and should not be understated in importance as it relates to commercialism, deterrence to war, and to the stability of world order.« less

  10. Space Processing Applications Rocket (SPAR) project: SPAR 10

    NASA Technical Reports Server (NTRS)

    Poorman, R. (Compiler)

    1986-01-01

    The Space Processing Applications Rocket Project (SPAR) X Final Report contains the compilation of the post-flight reports from each of the Principal Investigators (PIs) on the four selected science payloads, in addition to the engineering report as documented by the Marshall Space Flight Center (MSFC). This combined effort also describes pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication and testing, all of which are expected to contribute to an improved comprehension of materials processing in space. The SPAR project was coordinated and managed by MSFC as part of the Microgravity Science and Applications (MSA) program of the Office of Space Science and Applications (OSSA) of NASA Headquarters. This technical memorandum is directed entirely to the payload manifest flown in the tenth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled, Containerless Processing Technology, SPAR Experiment 76-20/3; Directional Solidification of Magnetic Composites, SPAR Experiment 76-22/3; Comparative Alloy Solidification, SPAR Experiment 76-36/3; and Foam Copper, SPAR Experiment 77-9/1R.

  11. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks to students from Mapletown Jr/Sr High School and Margaret Bell Middle School about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Grunsfeld flew on three of the five servicing missions to the Hubble Space Telescope. Photo Credit: (NASA/Joel Kowsky)

  12. Min-Max Spaces and Complexity Reduction in Min-Max Expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaubert, Stephane, E-mail: Stephane.Gaubert@inria.fr; McEneaney, William M., E-mail: wmceneaney@ucsd.edu

    2012-06-15

    Idempotent methods have been found to be extremely helpful in the numerical solution of certain classes of nonlinear control problems. In those methods, one uses the fact that the value function lies in the space of semiconvex functions (in the case of maximizing controllers), and approximates this value using a truncated max-plus basis expansion. In some classes, the value function is actually convex, and then one specifically approximates with suprema (i.e., max-plus sums) of affine functions. Note that the space of convex functions is a max-plus linear space, or moduloid. In extending those concepts to game problems, one finds amore » different function space, and different algebra, to be appropriate. Here we consider functions which may be represented using infima (i.e., min-max sums) of max-plus affine functions. It is natural to refer to the class of functions so represented as the min-max linear space (or moduloid) of max-plus hypo-convex functions. We examine this space, the associated notion of duality and min-max basis expansions. In using these methods for solution of control problems, and now games, a critical step is complexity-reduction. In particular, one needs to find reduced-complexity expansions which approximate the function as well as possible. We obtain a solution to this complexity-reduction problem in the case of min-max expansions.« less

  13. The Impact of Early Design Phase Risk Identification Biases on Space System Project Performance

    NASA Technical Reports Server (NTRS)

    Reeves, John D., Jr.; Eveleigh, Tim; Holzer, Thomas; Sarkani, Shahryar

    2012-01-01

    Risk identification during the early design phases of complex systems is commonly implemented but often fails to result in the identification of events and circumstances that truly challenge project performance. Inefficiencies in cost and schedule estimation are usually held accountable for cost and schedule overruns, but the true root cause is often the realization of programmatic risks. A deeper understanding of frequent risk identification trends and biases pervasive during space system design and development is needed, for it would lead to improved execution of existing identification processes and methods.

  14. Quantum Bundle Description of Quantum Projective Spaces

    NASA Astrophysics Data System (ADS)

    Ó Buachalla, Réamonn

    2012-12-01

    We realise Heckenberger and Kolb's canonical calculus on quantum projective ( N - 1)-space C q [ C p N-1] as the restriction of a distinguished quotient of the standard bicovariant calculus for the quantum special unitary group C q [ SU N ]. We introduce a calculus on the quantum sphere C q [ S 2 N-1] in the same way. With respect to these choices of calculi, we present C q [ C p N-1] as the base space of two different quantum principal bundles, one with total space C q [ SU N ], and the other with total space C q [ S 2 N-1]. We go on to give C q [ C p N-1] the structure of a quantum framed manifold. More specifically, we describe the module of one-forms of Heckenberger and Kolb's calculus as an associated vector bundle to the principal bundle with total space C q [ SU N ]. Finally, we construct strong connections for both bundles.

  15. Strategic Project Management at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Lavelle, Jerome P.

    2000-01-01

    This paper describes Project Management at NASA's Kennedy Space Center (KSC) from a strategic perspective. It develops the historical context of the agency and center's strategic planning process and illustrates how now is the time for KSC to become a center which has excellence in project management. The author describes project management activities at the center and details observations on those efforts. Finally the author describes the Strategic Project Management Process Model as a conceptual model which could assist KSC in defining an appropriate project management process system at the center.

  16. Space Shuttle Projects

    NASA Image and Video Library

    1989-11-27

    The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide and a virus. More than 200 scientists from 16 countries participated in the investigations. This is the logo or emblem that was designed to represent the IML-1 payload.

  17. A complex reaction time study (Sternberg) in space flight

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Uri, John; Moore, Tom

    1993-01-01

    Simple and complex (Sternberg) reaction time studies were flown on three and seven day Shuttle flights in 1985. Three subjects did selftesting with an onboard handheld calculator without difficulty. There was little change in simple reaction time. One subject demonstrated a decrease in the processing rate during space motion sickness while a second exhibited an increase in complex reaction time without a change in processing rate during a period of high work load. The population was too small to demonstrate significant changes. This study demonstrates the ease and practicality of such measurements and indicates the potential value of such studies in space.

  18. NASA Hubble Space Telescope (HST) Research Project Capstone Even

    NASA Image and Video Library

    2014-05-05

    Students and faculty from Mapletown Jr/Sr High School and Margaret Bell Middle School listen as John Grunsfeld, NASA Associate Administrator for the Science Mission Directorate, speaks about his experiences on the final space shuttle servicing mission to the Hubble Space Telescope during the NASA Hubble Space Telescope (HST) Research Project Capstone Event in the James E. Webb Auditorium at NASA Headquarters on Monday, May 5, 2014. Photo Credit: (NASA/Joel Kowsky)

  19. Evaluating Quality in Educational Spaces: OECD/CELE Pilot Project

    ERIC Educational Resources Information Center

    von Ahlefeld, Hannah

    2009-01-01

    CELE's International Pilot Project on Evaluating Quality in Educational Spaces aims to assist education authorities, schools and others to maximise the use of and investment in learning environments. This article provides an update on the pilot project, which is currently being implemented in Brazil, Mexico, New Zealand, Portugal and the United…

  20. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-06

    This is an onboard photo of Astronaut John M. Grunsfield, STS-109 payload commander, participating in the third of five spacewalks to perform work on the Hubble Space Telescope (HST). On this particular walk, Grunsfield, joined by Astronaut Richard M. Lirnehan, turned off the telescope in order to replace its power control unit (PCU), the heart of the HST's power system. The telescope was captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, where crew members completed system upgrades to the HST. Included in those upgrades were: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center had the responsibility for the design, development, and construction of the HST, which is the most complex and sensitive optical telescope ever made, to study the cosmos from a low-Earth orbit. The HST detects objects 25 times fainter than the dimmest objects seen from Earth and provides astronomers with an observable universe 250 times larger than is visible from ground-based telescopes, perhaps as far away as 14 billion light-years. The HST views galaxies, stars, planets, comets, possibly other solar systems, and even unusual phenomena such as quasars, with 10 times the clarity of ground-based telescopes. Launched March 1, 2002 the STS-109 HST servicing mission lasted 10 days, 22 hours, and 11 minutes. It was the 108th flight overall in NASA's Space Shuttle Program.

  1. Project Mercury: Man-In-Space Program of the National Aeronautics and Space Administration. [Report of the Committee on Aeronautical and Space Sciences United States Senate

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.

  2. NASA Space Radiation Risk Project: Overview and Recent Results

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Chappell, Lori J.; George, Kerry A.; Hada, Megumi; Hu, Shaowen; Kidane, Yared H.; Kim, Myung-Hee Y.; Kovyrshina, Tatiana; Norman, Ryan B.; Nounu, Hatem N.; hide

    2015-01-01

    The NASA Space Radiation Risk project is responsible for integrating new experimental and computational results into models to predict risk of cancer and acute radiation syndrome (ARS) for use in mission planning and systems design, as well as current space operations. The project has several parallel efforts focused on proving NASA's radiation risk projection capability in both the near and long term. This presentation will give an overview, with select results from these efforts including the following topics: verification, validation, and streamlining the transition of models to use in decision making; relative biological effectiveness and dose rate effect estimation using a combination of stochastic track structure simulations, DNA damage model calculations and experimental data; ARS model improvements; pathway analysis from gene expression data sets; solar particle event probabilistic exposure calculation including correlated uncertainties for use in design optimization.

  3. The Ares Projects: Building America's Future in Space

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.

    2009-01-01

    NASA's Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. In 2009, the Ares Projects plan to conduct the first test flight of Ares I, Ares I-X; the first firing of a five-segment development solid rocket motor for the Ares I first stage; building the first integrated Ares I upper stage; continue component testing for the J-2X upper stage engine; and perform more-detailed design studies for the Ares V cargo launch vehicle. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond.

  4. Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks.

    PubMed

    Yang, Shuai; Yu, Juan; Hu, Cheng; Jiang, Haijun

    2018-08-01

    In this paper, without separating the complex-valued neural networks into two real-valued systems, the quasi-projective synchronization of fractional-order complex-valued neural networks is investigated. First, two new fractional-order inequalities are established by using the theory of complex functions, Laplace transform and Mittag-Leffler functions, which generalize traditional inequalities with the first-order derivative in the real domain. Additionally, different from hybrid control schemes given in the previous work concerning the projective synchronization, a simple and linear control strategy is designed in this paper and several criteria are derived to ensure quasi-projective synchronization of the complex-valued neural networks with fractional-order based on the established fractional-order inequalities and the theory of complex functions. Moreover, the error bounds of quasi-projective synchronization are estimated. Especially, some conditions are also presented for the Mittag-Leffler synchronization of the addressed neural networks. Finally, some numerical examples with simulations are provided to show the effectiveness of the derived theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Space processing applications rocket project. SPAR 8

    NASA Technical Reports Server (NTRS)

    Chassay, R. P. (Editor)

    1984-01-01

    The Space Processing Applications Rocket Project (SPAR) VIII Final Report contains the engineering report prepared at the Marshall Space Flight Center (MSFC) as well as the three reports from the principal investigators. These reports also describe pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication, and testing, all of which are expected to contribute immeasurably to an improved comprehension of materials processing in space. This technical memorandum is directed entirely to the payload manifest flown in the eighth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled Glass Formation Experiment SPAR 74-42/1R, Glass Fining Experiment in Low-Gravity SPAR 77-13/1, and Dynamics of Liquid Bubbles SPAR Experiment 77-18/2.

  6. Risk management integration into complex project organizations

    NASA Technical Reports Server (NTRS)

    Fisher, K.; Greanias, G.; Rose, J.; Dumas, R.

    2002-01-01

    This paper describes the approach used in designing and adapting the SIRTF prototype, discusses some of the lessons learned in developing the SIRTF prototype, and explains the adaptability of the risk management database to varying levels project complexity.

  7. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  8. Near-Space Science: A Ballooning Project to Engage Students with Space beyond the Big Screen

    ERIC Educational Resources Information Center

    Hike, Nina; Beck-Winchatz, Bernhard

    2015-01-01

    Many students probably know something about space from playing computer games or watching movies and TV shows. Teachers can expose them to the real thing by launching their experiments into near space on a weather balloon. This article describes how to use high-altitude ballooning (HAB) as a culminating project to a chemistry unit on experimental…

  9. HAL/S programmer's guide. [for space shuttle project

    NASA Technical Reports Server (NTRS)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    The structure and symbology of the HAL/S programming language are described; this language is to be used among the flight software for the space shuttle project. The data declaration, input/output statements, and replace statements are also discussed.

  10. Infrared space astrometry project JASMINE

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, T.; Yano

    2008-07-01

    A Japanese plan of an infrared (z-band:0.9 μas or k-band:2.2 μas) space astrometry (JASMINE-project) is introduced. JASMINE (Japan Astrometry Satellite Mission for INfrared Exploration) will measure distances and tangential motions of stars in the bulge of the Milky Way. It will measure parallaxes, positions with an accuracy of 10 μas and proper motions with an accuracy of 10 μas/year for stars brighter than z=14 mag or k=11 mag. JASMINE will observe about ten million stars belonging to the bulge component of our Galaxy. With a completely new “map” of the Galactic bulge, it is expected that many new exciting scientific results will be obtained in various fields of astronomy. Presently, JASMINE is in a development phase, with a targeted launch date around 2016. Science targets, preliminary design of instruments, observing strategy, critical technical issues in JASMINE and also Nano-JASMINE project are described in this paper.

  11. Express Payload Project - A new method for rapid access to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Uhran, Mark L.; Timm, Marc G.

    1993-01-01

    The deployment and permanent operation of Space Station Freedom will enable researchers to enter a new era in the 21st century, in which continuous on-orbit experimentation and observation become routine. In support of this objective, the Space Station Freedom Program Office has initiated the Express Payload Project. The fundamental project goal is to reduce the marginal cost associated with small payload development, integration, and operation. This is to be accomplished by developing small payload accommodations hardware and a new streamlined small payload integration process. Standardization of small payload interfaces, certification of small payload containers, and increased payload developer responsibility for mission success are key aspects of the Express Payload Project. As the project progresses, the principles will be applied to both pressurized payloads flown inside the station laboratories and unpressurized payloads attached to the station external structures. The increased access to space afforded by Space Station Freedom and the Express Payload Project has the potential to significantly expand the scope, magnitude, and success of future research in the microgravity environment.

  12. Uncertainties in Projecting Risks of Late Effects from Space Radiation

    NASA Astrophysics Data System (ADS)

    Cucinotta, F.; Schimmerling, W.; Peterson, L.; Wilson, J.; Saganti, P.; Dicello, J.

    The health risks faced by astronauts from space radiation include cancer, cataracts, hereditary effects, CNS risks, and non - cancer morbidity and mortality risks related to the diseases of the old age. Methods used to project risks in low -Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Within the linear-additivity model, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain a maximum likelihood estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including ISS, lunar station, deep space outpost, and Mar's missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of the primary factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time, and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative objectives, i.e., number of days in space without exceeding a given risk level within well defined confidence limits

  13. Projective limits of state spaces IV. Fractal label sets

    NASA Astrophysics Data System (ADS)

    Lanéry, Suzanne; Thiemann, Thomas

    2018-01-01

    Instead of formulating the state space of a quantum field theory over one big Hilbert space, it has been proposed by Kijowski (1977) to represent quantum states as projective families of density matrices over a collection of smaller, simpler Hilbert spaces (see Lanéry (2016) [1] for a concise introduction to this formalism). One can thus bypass the need to select a vacuum state for the theory, and still be provided with an explicit and constructive description of the quantum state space, at least as long as the label set indexing the projective structure is countable. Because uncountable label sets are much less practical in this context, we develop in the present article a general procedure to trim an originally uncountable label set down to countable cardinality. In particular, we investigate how to perform this tightening of the label set in a way that preserves both the physical content of the algebra of observables and its symmetries. This work is notably motivated by applications to the holonomy-flux algebra underlying Loop Quantum Gravity. Building on earlier work by Okołów (2013), a projective state space was introduced for this algebra in Lanéry and Thiemann (2016). However, the non-trivial structure of the holonomy-flux algebra prevents the construction of satisfactory semi-classical states (Lanéry and Thiemann, 2017). Implementing the general procedure just mentioned in the case of a one-dimensional version of this algebra, we show how a discrete subalgebra can be extracted without destroying universality nor diffeomorphism invariance. On this subalgebra, quantum states can then be constructed which are more regular than was possible on the original algebra. In particular, this allows the design of semi-classical states whose semi-classicality is enforced step by step, starting from collective, macroscopic degrees of freedom and going down progressively toward smaller and smaller scales.

  14. NASA's In-Space Manufacturing Project: Materials and Manufacturing Process Development Update

    NASA Technical Reports Server (NTRS)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ledbetter, Frank

    2017-01-01

    The mission of NASA's In-Space Manufacturing (ISM) project is to identify, design, and implement on-demand, sustainable manufacturing solutions for fabrication, maintenance and repair during exploration missions. ISM has undertaken a phased strategy of incrementally increasing manufacturing capabilities to achieve this goal. The ISM project began with the development of the first 3D printer for the International Space Station. To date, the printer has completed two phases of flight operations. Results from phase I specimens indicated some differences in material properties between ground-processed and ISS-processed specimens, but results of follow-on analyses of these parts and a ground-based study with an equivalent printer strongly indicate that this variability is likely attributable to differences in manufacturing process settings between the ground and flight prints rather than microgravity effects on the fused deposition modeling (FDM) process. Analysis of phase II specimens from the 3D Printing in Zero G tech demo, which shed further light on the sources of material variability, will be presented. The ISM project has also developed a materials characterization plan for the Additive Manufacturing Facility, the follow-on commercial multimaterial 3D printing facility developed for ISS by Made in Space. This work will yield a suite of characteristic property values that can inform use of AMF by space system designers. Other project activities include development of an integrated 3D printer and recycler, known as the Refabricator, by Tethers Unlimited, which will be operational on ISS in 2018. The project also recently issued a broad area announcement for a multimaterial fabrication laboratory, which may include in-space manufacturing capabilities for metals, electronics, and polymeric materials, to be deployed on ISS in the 2022 timeframe.

  15. The ESA Space Weather Applications Pilot Project

    NASA Astrophysics Data System (ADS)

    Glover, A.; Hilgers, A.; Daly, E.

    Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field

  16. Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry

    NASA Astrophysics Data System (ADS)

    Moretti, Valter; Oppio, Marco

    As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the

  17. Holidays in Space

    NASA Image and Video Library

    2017-12-20

    Snowflakes are projected onto a Saturn IB rocket on display in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida. The rockets in the exhibit are lit in green and red for Holidays in Space 2017. The event kicked off Dec. 20 with a dazzling performance by the dance group Fighting Gravity, followed by a fireworks finale. Holidays in Space 2017 includes nightly performances from Dec. 20 through 31, excluding Dec. 25.

  18. Costing Future Complex and Novel Projects

    DTIC Science & Technology

    2016-04-30

    qÜáêíÉÉåíÜ=^ååì~ä= ^Åèìáëáíáçå=oÉëÉ~êÅÜ= póãéçëáìã= qÜìêëÇ~ó=pÉëëáçåë= sçäìãÉ=ff= = Costing Future Complex & Novel Projects Michael Pryce, Centre for Defence ...Novel Projects Michael Pryce, Centre for Defence Acquisition, Cranfield University Controlling Costs: The 6-3-5 Method—Case Studies at NAVSEA and...a Lecturer in defence acquisition at Cranfield University. He teaches across a range of subjects, including the use of costing in acquisition and

  19. An Open Specification for Space Project Mission Operations Control Architectures

    NASA Technical Reports Server (NTRS)

    Hooke, A.; Heuser, W. R.

    1995-01-01

    An 'open specification' for Space Project Mission Operations Control Architectures is under development in the Spacecraft Control Working Group of the American Institute for Aeronautics and Astro- nautics. This architecture identifies 5 basic elements incorporated in the design of similar operations systems: Data, System Management, Control Interface, Decision Support Engine, & Space Messaging Service.

  20. Economic evaluation of environmental epidemiological projects in national industrial complexes.

    PubMed

    Shin, Youngchul

    2017-01-01

    In this economic evaluation of environmental epidemiological monitoring projects, we analyzed the economic feasibility of these projects by determining the social cost and benefit of these projects and conducting a cost/benefit analysis. Here, the social cost was evaluated by converting annual budgets for these research and survey projects into present values. Meanwhile, the societal benefit of these projects was evaluated by using the contingent valuation method to estimate the willingness-to-pay of residents living in or near industrial complexes. In addition, the extent to which these projects reduced negative health effects (i.e., excess disease and premature death) was evaluated through expert surveys, and the analysis was conducted to reflect the unit of economic value, based on the cost of illness and benefit transfer method. The results were then used to calculate the benefit of these projects in terms of the decrease in negative health effects. For residents living near industrial complexes, the benefit/cost ratio was 1.44 in the analysis based on resident surveys and 5.17 in the analysis based on expert surveys. Thus, whichever method was used for the economic analysis, the economic feasibility of these projects was confirmed.

  1. Elliptic complexes over C∗-algebras of compact operators

    NASA Astrophysics Data System (ADS)

    Krýsl, Svatopluk

    2016-03-01

    For a C∗-algebra A of compact operators and a compact manifold M, we prove that the Hodge theory holds for A-elliptic complexes of pseudodifferential operators acting on smooth sections of finitely generated projective A-Hilbert bundles over M. For these C∗-algebras and manifolds, we get a topological isomorphism between the cohomology groups of an A-elliptic complex and the space of harmonic elements of the complex. Consequently, the cohomology groups appear to be finitely generated projective C∗-Hilbert modules and especially, Banach spaces. We also prove that in the category of Hilbert A-modules and continuous adjointable Hilbert A-module homomorphisms, the property of a complex of being self-adjoint parametrix possessing characterizes the complexes of Hodge type.

  2. The space optical clocks project

    NASA Astrophysics Data System (ADS)

    Schiller, S.; Tino, G. M.; Lemonde, P.; Sterr, U.; Lisdat, Ch.; Görlitz, A.; Poli, N.; Nevsky, A.; Salomon, C.

    2017-11-01

    The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of fundamental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007- 10), funded partially by ESA and DLR, included the implementation of several optical lattice clock systems using Strontium and Ytterbium as atomic species and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and have been validated. This included demonstration of laser-cooling and magneto-optical trapping of Sr atoms in a compact breadboard apparatus and demonstration of a transportable clock laser with 1 Hz linewidth. With two laboratory Sr lattice clock systems a number of fundamental results were obtained, such as observing atomic resonances with linewidths as low as 3 Hz, non-destructive detection of atom excitation, determination of decoherence effects and reaching a frequency instability of 1×10-16.

  3. The Family Writing Project: Creating Space for Sustaining Teacher Identity

    ERIC Educational Resources Information Center

    McKinney, Marilyn; Lasley, Saralyn; Holmes-Gull, Rosemary

    2008-01-01

    Family writing projects can change the nature of classroom writing instruction and rejuvenate teachers. Marilyn McKinney, Saralyn Lasley, and Rosemary Holmes-Gull report on their study of one such project in an urban school district. Using the concept of "third space," they describe the influence of this family literacy program on…

  4. Space Shuttle Project

    NASA Image and Video Library

    1981-01-01

    A Space Shuttle Main Engine undergoes test-firing at the National Space Technology Laboratories (now the Sternis Space Center) in Mississippi. The Marshall Space Flight Center had management responsibility of Space Shuttle propulsion elements, including the Main Engines.

  5. Large-viewing-angle electroholography by space projection

    NASA Astrophysics Data System (ADS)

    Sato, Koki; Obana, Kazuki; Okumura, Toshimichi; Kanaoka, Takumi; Nishikawa, Satoko; Takano, Kunihiko

    2004-06-01

    The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel ( time shared CGH of RGB three colors ). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.

  6. Scientific and technical complex for modeling, researching and testing of rocket-space vehicles’ electric power installations

    NASA Astrophysics Data System (ADS)

    Bezruchko, Konstantin; Davidov, Albert

    2009-01-01

    In the given article scientific and technical complex for modeling, researching and testing of rocket-space vehicles' power installations which was created in Power Source Laboratory of National Aerospace University "KhAI" is described. This scientific and technical complex gives the opportunity to replace the full-sized tests on model tests and to reduce financial and temporary inputs at modeling, researching and testing of rocket-space vehicles' power installations. Using the given complex it is possible to solve the problems of designing and researching of rocket-space vehicles' power installations efficiently, and also to provide experimental researches of physical processes and tests of solar and chemical batteries of rocket-space complexes and space vehicles. Scientific and technical complex also allows providing accelerated tests, diagnostics, life-time control and restoring of chemical accumulators for rocket-space vehicles' power supply systems.

  7. Enhancing the Design Process for Complex Space Systems through Early Integration of Risk and Variable-Fidelity Modeling

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri; Osburg, Jan

    2005-01-01

    An important enabler of the new national Vision for Space Exploration is the ability to rapidly and efficiently develop optimized concepts for the manifold future space missions that this effort calls for. The design of such complex systems requires a tight integration of all the engineering disciplines involved, in an environment that fosters interaction and collaboration. The research performed under this grant explored areas where the space systems design process can be enhanced: by integrating risk models into the early stages of the design process, and by including rapid-turnaround variable-fidelity tools for key disciplines. Enabling early assessment of mission risk will allow designers to perform trades between risk and design performance during the initial design space exploration. Entry into planetary atmospheres will require an increased emphasis of the critical disciplines of aero- and thermodynamics. This necessitates the pulling forward of EDL disciplinary expertise into the early stage of the design process. Radiation can have a large potential impact on overall mission designs, in particular for the planned nuclear-powered robotic missions under Project Prometheus and for long-duration manned missions to the Moon, Mars and beyond under Project Constellation. This requires that radiation and associated risk and hazards be assessed and mitigated at the earliest stages of the design process. Hence, RPS is another discipline needed to enhance the engineering competencies of conceptual design teams. Researchers collaborated closely with NASA experts in those disciplines, and in overall space systems design, at Langley Research Center and at the Jet Propulsion Laboratory. This report documents the results of this initial effort.

  8. Solid State Pathways towards Molecular Complexity in Space

    NASA Astrophysics Data System (ADS)

    Linnartz, Harold; Bossa, Jean-Baptiste; Bouwman, Jordy; Cuppen, Herma M.; Cuylle, Steven H.; van Dishoeck, Ewine F.; Fayolle, Edith C.; Fedoseev, Gleb; Fuchs, Guido W.; Ioppolo, Sergio; Isokoski, Karoliina; Lamberts, Thanja; Öberg, Karin I.; Romanzin, Claire; Tenenbaum, Emily; Zhen, Junfeng

    2011-12-01

    It has been a long standing problem in astrochemistry to explain how molecules can form in a highly dilute environment such as the interstellar medium. In the last decennium more and more evidence has been found that the observed mix of small and complex, stable and highly transient species in space is the cumulative result of gas phase and solid state reactions as well as gas-grain interactions. Solid state reactions on icy dust grains are specifically found to play an important role in the formation of the more complex ``organic'' compounds. In order to investigate the underlying physical and chemical processes detailed laboratory based experiments are needed that simulate surface reactions triggered by processes as different as thermal heating, photon (UV) irradiation and particle (atom, cosmic ray, electron) bombardment of interstellar ice analogues. Here, some of the latest research performed in the Sackler Laboratory for Astrophysics in Leiden, the Netherlands is reviewed. The focus is on hydrogenation, i.e., H-atom addition reactions and vacuum ultraviolet irradiation of interstellar ice analogues at astronomically relevant temperatures. It is shown that solid state processes are crucial in the chemical evolution of the interstellar medium, providing pathways towards molecular complexity in space.

  9. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director Robert Cabana welcomes community leaders, business executives, educators, community organizers, and state and local government leaders to the Kennedy Space Center Visitor Complex Debus Center for the Kennedy Space Center Director Update. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  10. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director Robert Cabana addresses the community leaders, business executives, educators, community organizers, and state and local government leaders attending the Kennedy Space Center Director in the Kennedy Space Center Visitor Complex Debus Center. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  11. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. – NASA Kennedy Space Center Director Robert Cabana briefs the community leaders, business executives, educators, community organizers, and state and local government leaders attending the Kennedy Space Center Director in the Kennedy Space Center Visitor Complex Debus Center. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  12. Are Model Transferability And Complexity Antithetical? Insights From Validation of a Variable-Complexity Empirical Snow Model in Space and Time

    NASA Astrophysics Data System (ADS)

    Lute, A. C.; Luce, Charles H.

    2017-11-01

    The related challenges of predictions in ungauged basins and predictions in ungauged climates point to the need to develop environmental models that are transferable across both space and time. Hydrologic modeling has historically focused on modelling one or only a few basins using highly parameterized conceptual or physically based models. However, model parameters and structures have been shown to change significantly when calibrated to new basins or time periods, suggesting that model complexity and model transferability may be antithetical. Empirical space-for-time models provide a framework within which to assess model transferability and any tradeoff with model complexity. Using 497 SNOTEL sites in the western U.S., we develop space-for-time models of April 1 SWE and Snow Residence Time based on mean winter temperature and cumulative winter precipitation. The transferability of the models to new conditions (in both space and time) is assessed using non-random cross-validation tests with consideration of the influence of model complexity on transferability. As others have noted, the algorithmic empirical models transfer best when minimal extrapolation in input variables is required. Temporal split-sample validations use pseudoreplicated samples, resulting in the selection of overly complex models, which has implications for the design of hydrologic model validation tests. Finally, we show that low to moderate complexity models transfer most successfully to new conditions in space and time, providing empirical confirmation of the parsimony principal.

  13. Space Geodesy Project Information and Configuration Management Procedure

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen M.

    2016-01-01

    This plan defines the Space Geodesy Project (SGP) policies, procedures, and requirements for Information and Configuration Management (CM). This procedure describes a process that is intended to ensure that all proposed and approved technical and programmatic baselines and changes to the SGP hardware, software, support systems, and equipment are documented.

  14. Investigating the feasibility of Visualising Complex Space Weather Data in a CAVE

    NASA Astrophysics Data System (ADS)

    Loughlin, S.; Habash Krause, L.

    2013-12-01

    The purpose of this study was to investigate the feasibility of visualising complex space weather data in a Cave Automatic Virtual Environment (CAVE). Space weather is increasingly causing disruptions on Earth, such as power outages and disrupting communication to satellites. We wanted to display this space weather data within the CAVE since the data from instruments, models and simulations are typically too complex to understand on their own, especially when they are of 7 dimensions. To accomplish this, I created a VTK to NetCDF converter. NetCDF is a science data format, which stores array oriented scientific data. The format is maintained by the University Corporation for Atmospheric Research, and is used extensively by the atmospheric and space communities.

  15. EpiCollect+: linking smartphones to web applications for complex data collection projects

    PubMed Central

    Aanensen, David M.; Huntley, Derek M.; Menegazzo, Mirko; Powell, Chris I.; Spratt, Brian G.

    2014-01-01

    Previously, we have described the development of the generic mobile phone data gathering tool, EpiCollect, and an associated web application, providing two-way communication between multiple data gatherers and a project database. This software only allows data collection on the phone using a single questionnaire form that is tailored to the needs of the user (including a single GPS point and photo per entry), whereas many applications require a more complex structure, allowing users to link a series of forms in a linear or branching hierarchy, along with the addition of any number of media types accessible from smartphones and/or tablet devices (e.g., GPS, photos, videos, sound clips and barcode scanning). A much enhanced version of EpiCollect has been developed (EpiCollect+). The individual data collection forms in EpiCollect+ provide more design complexity than the single form used in EpiCollect, and the software allows the generation of complex data collection projects through the ability to link many forms together in a linear (or branching) hierarchy. Furthermore, EpiCollect+ allows the collection of multiple media types as well as standard text fields, increased data validation and form logic. The entire process of setting up a complex mobile phone data collection project to the specification of a user (project and form definitions) can be undertaken at the EpiCollect+ website using a simple ‘drag and drop’ procedure, with visualisation of the data gathered using Google Maps and charts at the project website. EpiCollect+ is suitable for situations where multiple users transmit complex data by mobile phone (or other Android devices) to a single project web database and is already being used for a range of field projects, particularly public health projects in sub-Saharan Africa. However, many uses can be envisaged from education, ecology and epidemiology to citizen science. PMID:25485096

  16. EpiCollect+: linking smartphones to web applications for complex data collection projects.

    PubMed

    Aanensen, David M; Huntley, Derek M; Menegazzo, Mirko; Powell, Chris I; Spratt, Brian G

    2014-01-01

    Previously, we have described the development of the generic mobile phone data gathering tool, EpiCollect, and an associated web application, providing two-way communication between multiple data gatherers and a project database. This software only allows data collection on the phone using a single questionnaire form that is tailored to the needs of the user (including a single GPS point and photo per entry), whereas many applications require a more complex structure, allowing users to link a series of forms in a linear or branching hierarchy, along with the addition of any number of media types accessible from smartphones and/or tablet devices (e.g., GPS, photos, videos, sound clips and barcode scanning). A much enhanced version of EpiCollect has been developed (EpiCollect+). The individual data collection forms in EpiCollect+ provide more design complexity than the single form used in EpiCollect, and the software allows the generation of complex data collection projects through the ability to link many forms together in a linear (or branching) hierarchy. Furthermore, EpiCollect+ allows the collection of multiple media types as well as standard text fields, increased data validation and form logic. The entire process of setting up a complex mobile phone data collection project to the specification of a user (project and form definitions) can be undertaken at the EpiCollect+ website using a simple 'drag and drop' procedure, with visualisation of the data gathered using Google Maps and charts at the project website. EpiCollect+ is suitable for situations where multiple users transmit complex data by mobile phone (or other Android devices) to a single project web database and is already being used for a range of field projects, particularly public health projects in sub-Saharan Africa. However, many uses can be envisaged from education, ecology and epidemiology to citizen science.

  17. MSFC Skylab student project report. [selected space experiments

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Skylab Student Project some 4000 students submitted experiments from which twenty-five national winners were selected. Of these, eleven required special flight hardware, eight were allowed to obtain data using hardware available for professional investigations, and the remaining six were affiliated with researchers in alternate fields, since their proposals could not be accommodated due to complexity or similar incompatibility. The background of the project is elaborated and experiment performance results and evaluations are touched upon.

  18. Project Mercury: NASA's first manned space programme

    NASA Astrophysics Data System (ADS)

    Catchpole, John

    Project Mercury will offer a developmental resume of the first American manned spaceflight programme and its associated infrastructure, including accounts of space launch vehicles. The book highlights the differences in Redstone/Atlas technology, drawing similar comparisons between ballistic capsules and alternative types of spacecraft. The book also covers astronaut selection and training, as well as tracking systems, flight control, basic principles of spaceflight and detailed accounts of individual flights.

  19. Space Weather Studies Using Ground-based Experimental Complex in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kryakunova, O.; Yakovets, A.; Monstein, C.; Nikolayevskiy, N.; Zhumabayev, B.; Gordienko, G.; Andreyev, A.; Malimbayev, A.; Levin, Yu.; Salikhov, N.; Sokolova, O.; Tsepakina, I.

    2015-12-01

    Kazakhstan ground-based experimental complex for space weather study is situated near Almaty. Results of space environment monitoring are accessible via Internet on the web-site of the Institute of Ionosphere (http://www.ionos.kz/?q=en/node/21) in real time. There is a complex database with hourly data of cosmic ray intensity, geomagnetic field intensity, and solar radio flux at 10.7 cm and 27.8 cm wavelengths. Several studies using those data are reported. They are an estimation of speed of a coronal mass ejection, a study of large scale traveling distrubances, an analysis of geomagnetically induced currents using the geomagnetic field data, and a solar energetic proton event on 27 January 2012.

  20. The Unification of Space Qualified Integrated Circuits by Example of International Space Project GAMMA-400

    NASA Astrophysics Data System (ADS)

    Bobkov, S. G.; Serdin, O. V.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Suchkov, S. I.; Topchiev, N. P.

    The problem of electronic component unification at the different levels (circuits, interfaces, hardware and software) used in space industry is considered. The task of computer systems for space purposes developing is discussed by example of scientific data acquisition system for space project GAMMA-400. The basic characteristics of high reliable and fault tolerant chips developed by SRISA RAS for space applicable computational systems are given. To reduce power consumption and enhance data reliability, embedded system interconnect made hierarchical: upper level is Serial RapidIO 1x or 4x with rate transfer 1.25 Gbaud; next level - SpaceWire with rate transfer up to 400 Mbaud and lower level - MIL-STD-1553B and RS232/RS485. The Ethernet 10/100 is technology interface and provided connection with the previously released modules too. Systems interconnection allows creating different redundancy systems. Designers can develop heterogeneous systems that employ the peer-to-peer networking performance of Serial RapidIO using multiprocessor clusters interconnected by SpaceWire.

  1. Space Shuttle Projects

    NASA Image and Video Library

    1996-04-01

    STS-79 was the fourth in a series of NASA docking missions to the Russian Mir Space Station, leading up to the construction and operation of the International Space Station (ISS). As the first flight of the Spacehab Double Module, STS-79 encompassed research, test and evaluation of ISS, as well as logistics resupply for the Mir Space Station. STS-79 was also the first NASA-Mir American crew member exchange mission, with John E. Blaha (NASA-Mir-3) replacing Shannon W. Lucid (NASA-Mir-2) aboard the Mir Space Station. The lettering of their names either up or down denotes transport up to the Mir Space Station or return to Earth on STS-79. The patch is in the shape of the Space Shuttle’s airlock hatch, symbolizing the gateway to international cooperation in space. The patch illustrates the historic cooperation between the United States and Russia in space. With the flags of Russia and the United States as a backdrop, the handshake of Extravehicular Mobility Unit (EMU) which are suited crew members symbolizes mission teamwork, not only of the crew members but also the teamwork between both countries space personnel in science, engineering, medicine and logistics.

  2. A multi-element cosmological model with a complex space-time topology

    NASA Astrophysics Data System (ADS)

    Kardashev, N. S.; Lipatova, L. N.; Novikov, I. D.; Shatskiy, A. A.

    2015-02-01

    Wormhole models with a complex topology having one entrance and two exits into the same space-time of another universe are considered, as well as models with two entrances from the same space-time and one exit to another universe. These models are used to build a model of a multi-sheeted universe (a multi-element model of the "Multiverse") with a complex topology. Spherical symmetry is assumed in all the models. A Reissner-Norström black-hole model having no singularity beyond the horizon is constructed. The strength of the central singularity of the black hole is analyzed.

  3. The Complex Case of Fear and Safe Space

    ERIC Educational Resources Information Center

    Stengel, Barbara S.

    2010-01-01

    Here I shine light on the concept of and call for safe space and on the implicit argument that seems to undergird both the concept and the call, complicating and problematizing the taken for granted view of this issue with the goal of revealing a more complex dynamic worthy of interpretive attention when determining educational response. I…

  4. Reducing the complexity of NASA's space communications infrastructure

    NASA Technical Reports Server (NTRS)

    Miller, Raymond E.; Liu, Hong; Song, Junehwa

    1995-01-01

    This report describes the range of activities performed during the annual reporting period in support of the NASA Code O Success Team - Lifecycle Effectiveness for Strategic Success (COST LESS) team. The overall goal of the COST LESS team is to redefine success in a constrained fiscal environment and reduce the cost of success for end-to-end mission operations. This goal is more encompassing than the original proposal made to NASA for reducing complexity of NASA's Space Communications Infrastructure. The COST LESS team approach for reengineering the space operations infrastructure has a focus on reversing the trend of engineering special solutions to similar problems.

  5. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-10

    Space Shuttle Orbiter Discovery lifted off for the STS-105 mission on August 10, 2001. The main purpose of the mission was the rotation of the International Space Station (ISS) Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Another payload was the Materials International Space Station Experiment (MISSE). The MISSE experiment was to fly materials and other types of space exposure experiments on the Space Station and was the first externally mounted experiment conducted on the ISS.

  6. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-19

    Space Shuttle Orbiter Discovery lifted off for the STS-105 mission on August 10, 2001. The main purpose of the mission was the rotation of the International Space Station (ISS) Expedition Two crew with the Expedition Three crew and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Another payload was the Materials International Space Station Experiment (MISSE). The MISSE experiment was to fly materials and other types of space exposure experiments on the Space Station and was the first externally mounted experiment conducted on the ISS.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1996-04-01

    The crew assigned to the STS-78 mission included (seated left to right) Terrence T. (Tom) Henricks, commander; and Kevin R. Kregel, pilot. Standing, left to right, are Jean-Jacques Favier (CNES), payload specialist; Richard M. Linneham, mission specialist; Susan J. Helms, payload commander; Charles E. Brady, mission specialist; and Robert Brent Thirsk (CSA). Launched aboard the Space Shuttle Columbia on June 20, 1996 at 10:49:00 am (EDT), the STS-78 mission’s primary payloads was the Life and Microgravity Spacelab (LMS). Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS.

  8. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-07

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  9. El Paso/Yslete schools Get-Away Special Space Shuttle student projects

    NASA Technical Reports Server (NTRS)

    Azar, S. S.

    1984-01-01

    Student projects for the Get Away Special (GAS) space shuttle program were summarized. Experimental topics included: seed germination, shrimp growth, liquid lasers, planaria regeneration, fluid dynamics (wicking), soil molds, antibiotics, crystallization, the symbiosis of yeast and fungi, and the performance of electronic chips. A brief experimental design is included for each project.

  10. Space astrometry project JASMINE

    NASA Astrophysics Data System (ADS)

    Gouda, N.; Kobayashi, Y.; Yamada, Y.; Yano, Y.; Jasmine Working Group

    A Japanese plan for an infrared ( z-band: 0.9 m) space astrometry project, JASMINE, is introduced. JASMINE is a satellite (Japan Astrometry Satellite Mission for INfrared Exploration) to measure distances and apparent motions of stars in the bulge of the Milky Way with yet unprecedented precision. It will measure parallaxes and positions with an accuracy of 10 μarcsec and proper motions with an accuracy of 4 μarcsec/year for stars brighter than z = 14 mag. JASMINE will observe about 10 million stars belonging to the bulge component of our Galaxy. With a completely new "map of the Galactic bulge", it is expected that many new exciting scientific results will be obtained in various fields of astronomy. Presently, JASMINE is in the development phase, with a target launch date around 2015. Overall system (bus) design is presently ongoing, in cooperation with the Japanese Aerospace Exploration Agency (JAXA). Preliminary design of instruments, observing strategy, data reduction, and critical technical issues for JASMINE will be described.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1995-11-12

    The STS-76 crew patch depicts the Space Shuttle Atlantis and Russia's Mir Space Station as the space ships prepare for a rendezvous and docking. The Spirit of 76, an era of new beginnings, is represented by the Space Shuttle rising through the circle of 13 stars in the Betsy Ross flag. STS-76 begins a new period of international cooperation in space exploration with the first Shuttle transport of a United States astronaut, Shannon W. Lucid, to the Mir Space Station for extended joint space research. Frontiers for future exploration are represented by stars and the planets. The three gold trails and the ring of stars in union form the astronaut logo. Two suited extravehicular activity (EVA) crew members in the outer ring represent the first EVA during Shuttle-Mir docked operations. The EVA objectives were to install science experiments on the Mir exterior and to develop procedures for future EVA's on the International Space Station. The surnames of the crew members encircle the patch: Kevin P. Chilton, mission commander; Richard A. Searfoss, pilot; Ronald M. Sega, Michael R. ( Rich) Clifford, Linda M. Godwin and Lucid, all mission specialists. This patch was designed by Brandon Clifford, age 12, and the crew members of STS-76.

  12. Self mobile space manipulator project

    NASA Technical Reports Server (NTRS)

    Brown, H. Ben; Friedman, Mark; Xu, Yangsheng; Kanade, Takeo

    1992-01-01

    A relatively simple, modular, low mass, low cost robot is being developed for space EVA that is large enough to be independently mobile on a space station or platform exterior, yet versatile enough to accomplish many vital tasks. The robot comprises two long flexible links connected by a rotary joint, with 2-DOF 'wrist' joints and grippers at each end. It walks by gripping pre-positioned attachment points, such as trusswork nodes, and alternately shifting its base of support from one foot (gripper) to the other. The robot can perform useful tasks such as visual inspection, material transport, and light assembly by manipulating objects with one gripper, while stabilizing itself with the other. At SOAR '90, we reported development of 1/3 scale robot hardware, modular trusswork to serve as a locomotion substrate, and a gravity compensation system to allow laboratory tests of locomotion strategies on the horizontal face of the trusswork. In this paper, we report on project progress including the development of: (1) adaptive control for automatic adjustment to loads; (2) enhanced manipulation capabilities; (3) machine vision, including the use of neural nets, to guide autonomous locomotion; (4) locomotion between orthogonal trusswork faces; and (5) improved facilities for gravity compensation and telerobotic control.

  13. Appreciating the Complexity of Project Management Execution: Using Simulation in the Classroom

    ERIC Educational Resources Information Center

    Hartman, Nathan S.; Watts, Charles A.; Treleven, Mark D.

    2013-01-01

    As the popularity and importance of project management increase, so does the need for well-prepared project managers. This article discusses our experiences using a project management simulation in undergraduate and MBA classes to help students better grasp the complexity of project management. This approach gives students hands-on experience with…

  14. Space Shuttle Project

    NASA Image and Video Library

    1992-09-12

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  15. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - NASA Kennedy Space Center Director Robert Cabana, second from right, welcomes community leaders, business executives, educators, community organizers, and state and local government leaders to the Kennedy Space Center Visitor Complex Debus Center for the Kennedy Space Center Director Update. At far right is Brevard County District 1 Commissioner Robin Fisher. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  16. Experiences in managing the Prometheus Project

    NASA Technical Reports Server (NTRS)

    Lehman, David H.; Clark, Karla B.; Cook, Beverly A.; Gavit, Sarah A.; Kayali, Sammy A.; McKinney, John C.; Milkovich, David C.; Reh, Kim R.; Taylor, Randall L.; Casani, John R.

    2006-01-01

    Congress authorized NASA?s Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter. The Project had two major objectives: (1) to develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration, deep-space exploration and (2) to explore the three icy moons of Jupiter - Callisto, Ganymede, and Europa - and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences. Early in Project planning, it was determined that the development of the Prometheus nuclear powered Spaceship would be complex and require the intellectual knowledge residing at numerous organizations across the country. In addition, because of the complex nature of the Project and the multiple partners, approaches beyond those successfully used to manage a typical JPL project would be needed. This paper1 will describe the key experiences in managing Prometheus that should prove useful for future projects of similar scope and magnitude

  17. Project management for complex ground-based instruments: MEGARA plan

    NASA Astrophysics Data System (ADS)

    García-Vargas, María. Luisa; Pérez-Calpena, Ana; Gil de Paz, Armando; Gallego, Jesús; Carrasco, Esperanza; Cedazo, Raquel; Iglesias, Jorge

    2014-08-01

    The project management of complex instruments for ground-based large telescopes is a challenge itself. A good management is a clue for project success in terms of performance, schedule and budget. Being on time has become a strict requirement for two reasons: to assure the arrival at the telescope due to the pressure on demanding new instrumentation for this first world-class telescopes and to not fall in over-costs. The budget and cash-flow is not always the expected one and has to be properly handled from different administrative departments at the funding centers worldwide distributed. The complexity of the organizations, the technological and scientific return to the Consortium partners and the participation in the project of all kind of professional centers working in astronomical instrumentation: universities, research centers, small and large private companies, workshops and providers, etc. make the project management strategy, and the tools and procedures tuned to the project needs, crucial for success. MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is a facility instrument of the 10.4m GTC (La Palma, Spain) working at optical wavelengths that provides both Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) capabilities at resolutions in the range R=6,000-20,000. The project is an initiative led by Universidad Complutense de Madrid (Spain) in collaboration with INAOE (Mexico), IAA-CSIC (Spain) and Universidad Politécnica de Madrid (Spain). MEGARA is being developed under contract with GRANTECAN.

  18. Space Shuttle Projects

    NASA Image and Video Library

    1995-11-01

    This image of the Russian Mir Space Station was photographed by a crewmember of the STS-74 mission when the Orbiter Atlantis was approaching the Mir Space Station. STS-74 was the second Space Shuttle/Mir docking mission. The Docking Module was delivered and installed, making it possible for the Space Shuttle to dock easily with Mir. The Orbiter Atlantis delivered water, supplies, and equipment, including two new solar arrays to upgrade the Mir, and returned to Earth with experiment samples, equipment for repair and analysis, and products manufactured on the Station. Mir was constructed in orbit by cornecting different modules, seperately launched from 1986 to 1996, providing a large and livable scientific laboratory in space. The 100-ton Mir was as big as six school buses and commonly housed three crewmembers. Mir was continuously occupied, except for two short periods, and hosted international scientists and American astronauts until August 1999. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as Mir re-entered the Earth's atmosphere and fell into the south Pacific ocean . STS-74 was launched on November 12, 1995, and landed at the Kennedy Space Center on November 20, 1995.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1995-09-09

    Astronaut and mission specialist Kalpana Chawla, receives assistance in donning a training version of the Extravehicular Mobility Unit (EMU) space suit, prior to an underwater training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center. This particular training was in preparation for the STS-87 mission. The Space Shuttle Columbia (STS-87) was the fourth flight of the United States Microgravity Payload (USMP-4) and Spartan-201 satellite, both managed by scientists and engineers from the Marshall Space Flight Center.

  20. Space Shuttle Project

    NASA Image and Video Library

    1992-09-12

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Orbiter Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke on September 12, 1992. The primary payload for the plarned seven-day flight was the Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  1. Formal methods demonstration project for space applications

    NASA Technical Reports Server (NTRS)

    Divito, Ben L.

    1995-01-01

    The Space Shuttle program is cooperating in a pilot project to apply formal methods to live requirements analysis activities. As one of the larger ongoing shuttle Change Requests (CR's), the Global Positioning System (GPS) CR involves a significant upgrade to the Shuttle's navigation capability. Shuttles are to be outfitted with GPS receivers and the primary avionics software will be enhanced to accept GPS-provided positions and integrate them into navigation calculations. Prior to implementing the CR, requirements analysts at Loral Space Information Systems, the Shuttle software contractor, must scrutinize the CR to identify and resolve any requirements issues. We describe an ongoing task of the Formal Methods Demonstration Project for Space Applications whose goal is to find an effective way to use formal methods in the GPS CR requirements analysis phase. This phase is currently under way and a small team from NASA Langley, ViGYAN Inc. and Loral is now engaged in this task. Background on the GPS CR is provided and an overview of the hardware/software architecture is presented. We outline the approach being taken to formalize the requirements, only a subset of which is being attempted. The approach features the use of the PVS specification language to model 'principal functions', which are major units of Shuttle software. Conventional state machine techniques form the basis of our approach. Given this background, we present interim results based on a snapshot of work in progress. Samples of requirements specifications rendered in PVS are offered to illustration. We walk through a specification sketch for the principal function known as GPS Receiver State processing. Results to date are summarized and feedback from Loral requirements analysts is highlighted. Preliminary data is shown comparing issues detected by the formal methods team versus those detected using existing requirements analysis methods. We conclude by discussing our plan to complete the remaining

  2. Space Shuttle Projects

    NASA Image and Video Library

    1997-01-14

    The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-07

    This is an onboard photo of the deployment of the Long Duration Exposure Facility (LDEF) from the cargo bay of the Space Shuttle Orbiter Challenger STS-41C mission, April 7, 1984. After a five year stay in space, the LDEF was retrieved during the STS-32 mission by the Space Shuttle Orbiter Columbia in January 1990 and was returned to Earth for close examination and analysis. The LDEF was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids, space debris, radiation particles, atomic oxygen, and solar radiation for an extended period of time. Proving invaluable to the development of both future spacecraft and the International Space Station (ISS), the LDEF carried 57 science and technology experiments, the work of more than 200 investigators, 33 private companies, 21 universities, 7 NASA centers, 9 Department of Defense laboratories, and 8 forein countries.

  4. The Space Optical Clock project: status and perspectives

    NASA Astrophysics Data System (ADS)

    Schiller, Stephan; Tino, Guglielmo M.; Sterr, Uwe; Lemonde, Pierre; Görlitz, Axel; Salomon, Christophe

    The Space Optical Clocks project aims at operating lattice clocks on the ISS for tests of funda-mental physics and for providing high-accuracy comparisons of future terrestrial optical clocks. A pre-phase-A study (2007-10), funded partially by ESA and DLR, includes the implementa-tion of several optical lattice clock systems using Strontium and Ytterbium as atomic systems and their characterization. Subcomponents of clock demonstrators with the added specification of transportability and using techniques that are suitable for later space use, such as all-solid-state lasers, low power consumption, and compact dimensions, have been developed and are being validated. The talk will give a brief overview over the achieved results and outline future developments.

  5. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during KSC Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  6. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  7. Improvements and Lingering Challenges with Modeling Low-Level Winds Over Complex Terrain during the Wind Forecast Improvement Project 2

    NASA Astrophysics Data System (ADS)

    Olson, J.; Kenyon, J.; Brown, J. M.; Angevine, W. M.; Marquis, M.; Pichugina, Y. L.; Choukulkar, A.; Bonin, T.; Banta, R. M.; Bianco, L.; Djalalova, I.; McCaffrey, K.; Wilczak, J. M.; Lantz, K. O.; Long, C. N.; Redfern, S.; McCaa, J. R.; Stoelinga, M.; Grimit, E.; Cline, J.; Shaw, W. J.; Lundquist, J. K.; Lundquist, K. A.; Kosovic, B.; Berg, L. K.; Kotamarthi, V. R.; Sharp, J.; Jiménez, P.

    2017-12-01

    The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR) are NOAA real-time operational hourly updating forecast systems run at 13- and 3-km grid spacing, respectively. Both systems use the Advanced Research version of the Weather Research and Forecasting (WRF-ARW) as the model component of the forecast system. During the second installment of the Wind Forecast Improvement Project (WFIP 2), the RAP/HRRR have been targeted for the improvement of low-level wind forecasts in the complex terrain within the Columbia River Basin (CRB), which requires much finer grid spacing to resolve important terrain peaks in the Cascade Mountains as well as the Columbia River Gorge. Therefore, this project provides a unique opportunity to test and develop the RAP/HRRR physics suite within a very high-resolution nest (Δx = 750 m) over the northwestern US. Special effort is made to incorporate scale-aware aspects into the model physical parameterizations to improve RAP/HRRR wind forecasts for any application at any grid spacing. Many wind profiling and scanning instruments have been deployed in the CRB in support the WFIP 2 field project, which spanned 01 October 2015 to 31 March 2017. During the project, several forecast error modes were identified, such as: (1) too-shallow cold pools during the cool season, which can mix-out more frequently than observed and (2) the low wind speed bias in thermal trough-induced gap flows during the warm season. Development has been focused on the column-based turbulent mixing scheme to improve upon these biases, but investigating the effects of horizontal (and 3D) mixing has also helped improve some of the common forecast failure modes. This presentation will highlight the testing and development of various model components, showing the improvements over original versions for temperature and wind profiles. Examples of case studies and retrospective periods will be presented to illustrate the improvements. We will demonstrate that the

  8. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. Back dropped by the blackness of space and Earth’s horizon, astronaut Stephen K. Robinson, STS-114 mission specialist, is anchored to a foot restraint on the extended ISS’s Canadarm-2.

  9. 10 Steps to Building an Architecture for Space Surveillance Projects

    NASA Astrophysics Data System (ADS)

    Gyorko, E.; Barnhart, E.; Gans, H.

    Space surveillance is an increasingly complex task, requiring the coordination of a multitude of organizations and systems, while dealing with competing capabilities, proprietary processes, differing standards, and compliance issues. In order to fully understand space surveillance operations, analysts and engineers need to analyze and break down their operations and systems using what are essentially enterprise architecture processes and techniques. These techniques can be daunting to the first- time architect. This paper provides a summary of simplified steps to analyze a space surveillance system at the enterprise level in order to determine capabilities, services, and systems. These steps form the core of an initial Model-Based Architecting process. For new systems, a well defined, or well architected, space surveillance enterprise leads to an easier transition from model-based architecture to model-based design and provides a greater likelihood that requirements are fulfilled the first time. Both new and existing systems benefit from being easier to manage, and can be sustained more easily using portfolio management techniques, based around capabilities documented in the model repository. The resulting enterprise model helps an architect avoid 1) costly, faulty portfolio decisions; 2) wasteful technology refresh efforts; 3) upgrade and transition nightmares; and 4) non-compliance with DoDAF directives. The Model-Based Architecting steps are based on a process that Harris Corporation has developed from practical experience architecting space surveillance systems and ground systems. Examples are drawn from current work on documenting space situational awareness enterprises. The process is centered on DoDAF 2 and its corresponding meta-model so that terminology is standardized and communicable across any disciplines that know DoDAF architecting, including acquisition, engineering and sustainment disciplines. Each step provides a guideline for the type of data to

  10. The Alabama Space and Rocket Center: The Second Decade.

    ERIC Educational Resources Information Center

    Buckbee, Edward O.

    1983-01-01

    The Alabama Space and Rocket Center in Huntsville, the world's largest rocket and space museum, includes displays illustrating American rocket history, exhibits and demonstrations on rocketry principles and experiences, and simulations of space travel. A new project includes an integrated recreational-educational complex, described in the three…

  11. Infrared Space Observatory (ISO) Key Project: the Birth and Death of Planets

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Creech-Eakman, Michelle; Fajardo-Acosta, Sergio; Backman, Dana

    1999-01-01

    This program was designed to continue to analyze observations of stars thought to be forming protoplanets, using the European Space Agency's Infrared Space Observatory, ISO, as one of NASA Key Projects with ISO. A particular class of Infrared Astronomy Satellite (IRAS) discovered stars, known after the prototype, Vega, are principal targets for these observations aimed at examining the evidence for processes involved in forming, or failing to form, planetary systems around other stars. In addition, this program continued to provide partial support for related science in the WIRE, SOFIA and Space Infrared Telescope Facility (SIRTF) projects, plus approved ISO supplementary time observations under programs MCREE1 29 and VEGADMAP. Their goals include time dependent changes in SWS spectra of Long Period Variable stars and PHOT P32 mapping experiments of recognized protoplanetary disk candidate stars.

  12. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1988-11-07

    The STS-28 insignia was designed by the astronaut crew, who said it portrays the pride the American people have in their manned spaceflight program. It depicts America (the eagle) guiding the space program (the Space Shuttle) safely home from an orbital mission. The view looks south on Baja California and the west coast of the United States as the space travelers re-enter the atmosphere. The hypersonic contrails created by the eagle and Shuttle represent the American flag. The crew called the simple boldness of the design symbolic of America's unfaltering commitment to leadership in the exploration and development of space.

  14. New observational project for revealing natural and anthropogenic threats at the near-Earth space

    NASA Astrophysics Data System (ADS)

    Harutyunian, Haik A.; Nikoghosyan, Elena H.; Melikian, Norayr D.; Azatyan, Naira M.; Abrahamyan, Hayk V.; Paronyan, Gurgen M.; Andreasyan, Hasmik R.; Ohanian, Gabriel A.; Gevorgyan, Mkrtich H.; Mikayelyan, Gor A.

    2017-12-01

    In 2014, a new monitoring project started at the observational base Saravand of the Byurakan astrophysical observatory. This project initiated for revealing natural and artificial objects at the near-Earth space. This is a kind of continuation of earlier observational projects implemented at the observatory prior the collapse of Soviet Union. This time, near-Earth space monitoring is carried out at the request of the Russian agency ROSKOSMOS. For observations, the EOP-1 module is used, which includes small telescopes with a mirror diameter of 40cm, 25cm and 19cm.

  15. Space Shuttle Projects

    NASA Image and Video Library

    2004-04-15

    The Apollo program demonstrated that men could travel into space, perform useful tasks there, and return safely to Earth. But space had to be more accessible. This led to the development of the Space Shuttle. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRBs), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components.

  16. Nighttime view of Apollo 9 space vehicle at Pad A, Launch Complex 39

    NASA Image and Video Library

    1969-02-23

    S69-25879 (23 Feb. 1969) --- Nighttime view of the 363-feet-high Apollo 9 space vehicle at Pad A, Launch Complex 39, Kennedy Space Center, during preparations for the scheduled 10-day Earth-orbital space mission. The crew of the Apollo 9 (Spacecraft 104/Lunar Module 3/Saturn 504) space flight will be astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart.

  17. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. This close up of the thermal tiles was taken by astronaut Stephen K. Robinson, STS-114 mission specialist (out of frame). Astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration (JAXA), can be seen in the background perched on a Space Station truss.

  18. Implementation of the 64-meter-diameter Antennas at the Deep Space Stations in Australia and Spain

    NASA Technical Reports Server (NTRS)

    Bartos, K. P.; Bell, H. B.; Phillips, H. P.; Sweetser, B. M.; Rotach, O. A.

    1975-01-01

    The management and construction aspects of the Overseas 64-m Antenna Project in which two 64-m antennas were constructed at the Tidbinbilla Deep Space Communications Complex in Australia, and at the Madrid Deep Space Communications Complex in Spain are described. With the completion of these antennas the Deep Space Network is equipped with three 64-m antennas spaced around the world to maintain continuous coverage of spacecraft operations. These antennas provide approximately a 7-db gain over the capabilities of the existing 26-m antenna nets. The report outlines the project organization and management, resource utilization, fabrication, quality assurance, and construction methods by which the project was successfully completed. Major problems and their solutions are described as well as recommendations for future projects.

  19. A Project Management Approach to Using Simulation for Cost Estimation on Large, Complex Software Development Projects

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn; Malone, Linda

    2007-01-01

    It is very difficult for project managers to develop accurate cost and schedule estimates for large, complex software development projects. None of the approaches or tools available today can estimate the true cost of software with any high degree of accuracy early in a project. This paper provides an approach that utilizes a software development process simulation model that considers and conveys the level of uncertainty that exists when developing an initial estimate. A NASA project will be analyzed using simulation and data from the Software Engineering Laboratory to show the benefits of such an approach.

  20. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Application of ARAMIS capabilities to space project functional elements

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities and their related ground support functions are studied, so that informed decisions can be made on which aspects of ARAMIS to develop. The specific tasks which will be required by future space project tasks are identified and the relative merits of these options are evaluated. The ARAMIS options defined and researched span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  1. Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach.

    PubMed

    Zhang, Hou-Dao; Yan, YiJing

    2016-05-19

    Kinetic rate kernels in general multisite systems are formulated on the basis of a nonperturbative quantum dissipation theory, the hierarchical equations of motion (HEOM) formalism, together with the Nakajima-Zwanzig projection operator technique. The present approach exploits the HEOM-space linear algebra. The quantum non-Markovian site-to-site transfer rate can be faithfully evaluated via projected HEOM dynamics. The developed method is exact, as evident by the comparison to the direct HEOM evaluation results on the population evolution.

  2. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction. In this STS-61B onboard photo, astronaut Ross was working on the ACCESS experiment during an Extravehicular Activity (EVA).

  3. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo astronaut Ross, located on the Manipulator Foot Restraint (MFR) over the cargo bay, erects ACCESS. The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Ross works on ACCESS high above the orbiter. The primary objective of these experiments was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  5. Space Shuttle Projects

    NASA Image and Video Library

    1999-08-01

    Designed by the crew members, the STS-103 emblem depicts the Space Shuttle Discovery approaching the Hubble Space Telescope (HST) prior to its capture and berthing. The purpose of the mission was to remove and replace some of the Telescope's older and out-of-date systems with newer, more reliable and more capable ones, and to make repairs to HST's exterior thermal insulation that had been damaged by more than nine years of exposure to the space environment. The horizontal and vertical lines centered on the Telescope symbolize the ability to reach and maintain a desired attitude in space, essential to the instrument's scientific operation. The preservation of this ability was one of the primary objectives of the mission. After the flight, the Telescope resumed its successful exploration of deep space and will continue to be used to study solar system objects, stars in the making, late phases of stellar evolution, galaxies and the early history of the universe. HST, as represented on this emblem was inspired by views from previous servicing missions, with its solar arrays illuminated by the Sun, providing a striking contrast with the blackness of space and the night side of Earth.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1985-11-30

    The crew assigned to the STS-61B mission included Bryan D. O’Conner, pilot; Brewster H. Shaw, commander; Charles D. Walker, payload specialist; mission specialists Jerry L. Ross, Mary L. Cleave, and Sherwood C. Spring; and Rodolpho Neri Vela, payload specialist. Launched aboard the Space Shuttle Atlantis November 28, 1985 at 7:29:00 pm (EST), the STS-61B mission’s primary payload included three communications satellites: MORELOS-B (Mexico); AUSSAT-2 (Australia); and SATCOM KU-2 (RCA Americom). Two experiments were conducted to test assembling erectable structures in space: EASE (Experimental Assembly of Structures in Extravehicular Activity), and ACCESS (Assembly Concept for Construction of Erectable Space Structure). In a joint venture between NASA/Langley Research Center in Hampton, Virginia, and the Marshall Space Flight Center (MSFC), the EASE and ACCESS were developed and demonstrated at MSFC's Neutral Buoyancy Simulator (NBS). In this STS-61B onboard photo, astronaut Spring was working on the EASE during an Extravehicular Activity (EVA). The primary objective of this experiment was to test the structural assembly concepts for suitability as the framework for larger space structures and to identify ways to improve the productivity of space construction.

  7. International Space Station Medical Project

    NASA Technical Reports Server (NTRS)

    Starkey, Blythe A.

    2008-01-01

    The goals and objectives of the ISS Medical Project (ISSMP) are to: 1) Maximize the utilization the ISS and other spaceflight platforms to assess the effects of longduration spaceflight on human systems; 2) Devise and verify strategies to ensure optimal crew performance; 3) Enable development and validation of a suite of integrated physical (e.g., exercise), pharmacologic and/or nutritional countermeasures against deleterious effects of space flight that may impact mission success or crew health. The ISSMP provides planning, integration, and implementation services for Human Research Program research tasks and evaluation activities requiring access to space or related flight resources on the ISS, Shuttle, Soyuz, Progress, or other spaceflight vehicles and platforms. This includes pre- and postflight activities; 2) ISSMP services include operations and sustaining engineering for HRP flight hardware; experiment integration and operation, including individual research tasks and on-orbit validation of next generation on-orbit equipment; medical operations; procedures development and validation; and crew training tools and processes, as well as operation and sustaining engineering for the Telescience Support Center; and 3) The ISSMP integrates the HRP approved flight activity complement and interfaces with external implementing organizations, such as the ISS Payloads Office and International Partners, to accomplish the HRP's objectives. This effort is led by JSC with Baseline Data Collection support from KSC.

  8. Space Shuttle Project

    NASA Image and Video Library

    1997-07-01

    The Space Shuttle Columbia (STS-94) soared from Launch Pad 39A begirning its 16-day Microgravity Science Laboratory -1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time to improve the opportunity to lift off before Florida summer rain showers reached the space center. During the space flight, the MSL-1 was used to test some of the hardware, facilities and procedures that were planned for use on the International Space Station which were managed by scientists and engineers from the Marshall Space Flight Center, while the flight crew conducted combustion, protein crystal growth and materials processing experiments. Also onboard was the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which was attached to the right side of Columbia's payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 was a reflight of that mission.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1995-05-27

    The crew patch of STS-72 depicts the Space Shuttle Endeavour and some of the payloads on the flight. The Japanese satellite, Space Flyer Unit (SFU) is shown in a free-flying configuration with the solar array panels deployed. The inner gold border of the patch represents the SFU's distinct octagonal shape. Endeavour’s rendezvous with and retrieval of SFU at an altitude of approximately 250 nautical miles. The Office of Aeronautics and Space Technology's (OAST) flyer satellite is shown just after release from the Remote Manipulator System (RMS). The OAST satellite was deployed at an altitude of 165 nautical miles. The payload bay contains equipment for the secondary payloads - the Shuttle Laser Altimeter (SLA) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV). There were two space walks planned to test hardware for assembly of the International Space Station. The stars represent the hometowns of the crew members in the United States and Japan.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-01

    This image of the Space Shuttle Orbiter Atlantis, with cargo bay doors open showing Spacelab Module for the Spacelab Life Science and the docking port, was photographed from the Russian Mir Space Station during STS-71 mission. The STS-71 mission performed the first docking with the Russian Mir Space Station to exchange crews. The Mir 19 crew, cosmonauts Anatoly Solovyev and Nikolai Budarin, replaced the Mir 18 crew, cosmonauts Valdamir Dezhurov and Gernady Strekalov, and astronaut Norman Thagard. Astronaut Thagard was launched aboard a Soyuz spacecraft in March 1995 for a three-month stay on the Mir Space Station as part of the Mir 18 crew. The Orbiter Atlantis was modified to carry a docking system compatible with the Mir Space Station. The Orbiter also carried a Spacelab module for the Spacelab Life Science mission in the payload bay in which various life science experiments and data collection took place throughout the 10-day mission.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-24

    The official mission insignia for the 41-D Space Shuttle flight features the Discovery - NASA's third orbital vehicle - as it makes its maiden voyage. The ghost ship represents the orbiter's namesakes which have figured prominently in the history of exploration. The Space Shuttle Discovery heads for new horizons to extend that proud tradition. Surnames for the crewmembers of NASA's eleventh Space Shuttle mission encircle the red, white, and blue scene.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1997-09-01

    Five astronauts and a payload specialist take a break from training at the Johnson Space Center (JSC) to pose for the STS-87 crew portrait. Wearing the orange partial pressure launch and entry suits, from the left, are Kalpana Chawla, mission specialist; Steven W. Lindsey, pilot; Kevin R. Kregel, mission commander; and Leonid K. Kadenyuk, Ukrainian payload specialist. Wearing the white Extravehicular Mobility Unit (EMU) space suits are mission specialists Winston E. Scott (left) and Takao Doi (right). Doi represents Japan’s National Space Development Agency (NASDA). The STS-87 mission launched aboard the Space Shuttle Columbia on November 19, 1997. The primary payload for the mission was the U.S. Microgravity Payload-4 (USMP-4).

  13. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Rob Mueller, senior technologist, talks with attendees at the Swamp Works display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  14. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Rob Mueller, a senior technologist, talks to an attendee about Kennedy’s Swamp Works Laboratory. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  15. Space Shuttle Projects

    NASA Image and Video Library

    1995-11-01

    This fish-eye view of the Russian Mir Space Station was photographed by a crewmember of the STS-74 mission after the separation. The image shows the installed Docking Module at bottom. The Docking Module was delivered and installed, making it possible for the Space Shuttle to dock easily with Mir. The Orbiter Atlantis delivered water, supplies, and equipment, including two new solar arrays to upgrade the Mir; and returned to Earth with experiment samples, equipment for repair and analysis, and products manufactured on the Station. Mir was constructed in orbit by cornecting different modules, each launched separately from 1986 to 1996, providing a large and livable scientific laboratory in space. The 100-ton Mir was as big as six school buses and commonly housed three crewmembers. Mir was continuously occupied, except for two short periods, and hosted international scientists and American astronauts until August 1999. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as Mir re-entered the Earth's atmosphere and fell into the south Pacific ocean. STS-74 was the second Space Shuttle/Mir docking mission launched on November 12, 1995, and landed at the Kennedy Space Center on November 20, 1995.

  16. Space Shuttle Projects

    NASA Image and Video Library

    1997-12-08

    The STS-90 crew patch reflects the dedication of the mission to neuroscience in celebration of the decade of the brain. Earth is revealed through a neuron-shaped window, which symbolizes new perspectives in the understanding of nervous system development, structure and function, both here on Earth and in the microgravity environment of space. The Space Shuttle Columbia is depicted with its open payload bay doors revealing the Spacelab within. An integral component of the mission, the laboratory/science module provided by the European Space Agency (ESA), signifies the strong international involvement in the mission. The seven crew members and two alternate payload specialists, Chiaki Naito-Mukai and Alexander W. Dunlap, are represented by the nine major stars of the constellation Cetus (the whale) in recognition of the International Year of the Ocean. The distant stars illustrate the far reaching implications of the mission science to the many sponsoring agencies, helping prepare for long-duration space flight aboard the International Space Station (ISS). The moon and Mars are depicted to reflect the crew's recognition that those two celestial bodies will be the next great challenges in human exploration of space and represent the key role that life science research will play in supporting such missions.

  17. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. This particular photo was taken by astronaut Stephen K. Robinson, STS-114 mission specialist, whose shadow is visible on the thermal protection tiles.

  18. VLBI2010 in NASA's Space Geodesy Project

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2012-01-01

    In the summer of 20 11 NASA approved the proposal for the Space Geodesy Project (SGP). A major element is developing at the Goddard Geophysical and Astronomical Observatory a prototype of the next generation of integrated stations with co-located VLBI, SLR, GNSS and DORIS instruments as well as a system for monitoring the vector ties. VLBI2010 is a key component of the integrated station. The objectives ofSGP, the role of VLBI20 lOin the context of SGP, near term plans and possible future scenarios will be discussed.

  19. Methodology of project management at implementation of projects of high-rise construction

    NASA Astrophysics Data System (ADS)

    Papelniuk, Oksana

    2018-03-01

    High-rise construction is the perspective direction in urban development. An opportunity to arrange on rather small land plot a huge number of the living and commercial space makes high-rise construction very attractive for developers. However investment projects of high-rise buildings' construction are very expensive and complex that sets a task of effective management of such projects for the company builder. The best tool in this area today is the methodology of project management, which becomes a key factor of efficiency.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1995-03-13

    The STS-70 crew patch depicts the Space Shuttle Discovery orbiting Earth in the vast blackness of space. The primary mission of deploying a NASA Tracking and Data Relay Satellite (TDRS) is depicted by three gold stars. They represent the triad composed of spacecraft transmitting data to Earth through the TDRS system. The stylized red, white, and blue ribbon represents the American goal of linking space exploration to the advancement of all humankind.

  1. Space Shuttle Projects

    NASA Image and Video Library

    1999-07-01

    The STS-103 crew portrait includes (from left) C. Michael Foale, mission specialist; Claude Nicollier, mission specialist representing the European Space Agency (ESA) ; Scott J. Kelly, pilot; Curtis L. Brown, commander; and mission specialists Jean-Francois Clervoy (ESA), John M. Grunsfeld, and Steven L. Smith. Launched aboard the Space Shuttle Discovery on December 19, 1999 at 6:50 p.m. (CST), the STS-103 mission served as the third Hubble Space Telescope (HST) servicing mission.

  2. Dot-Projection Photogrammetry and Videogrammetry of Gossamer Space Structures

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Black, Jonathan T.; Blandino, Joseph R.; Jones, Thomas W.; Danehy, Paul M.; Dorrington, Adrian A.

    2003-01-01

    This paper documents the technique of using hundreds or thousands of projected dots of light as targets for photogrammetry and videogrammetry of gossamer space structures. Photogrammetry calculates the three-dimensional coordinates of each target on the structure, and videogrammetry tracks the coordinates versus time. Gossamer structures characteristically contain large areas of delicate, thin-film membranes. Examples include solar sails, large antennas, inflatable solar arrays, solar power concentrators and transmitters, sun shields, and planetary balloons and habitats. Using projected-dot targets avoids the unwanted mass, stiffness, and installation costs of traditional retroreflective adhesive targets. Four laboratory applications are covered that demonstrate the practical effectiveness of white-light dot projection for both static-shape and dynamic measurement of reflective and diffuse surfaces, respectively. Comparisons are made between dot-projection videogrammetry and traditional laser vibrometry for membrane vibration measurements. The paper closes by introducing a promising extension of existing techniques using a novel laser-induced fluorescence approach.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1993-03-30

    Designed by the mission’s crew members, the STS-57 crew patch depicts the Space Shuttle Endeavour maneuvering to retrieve the European Space Agency's microgravity experiment satellite EURECA. SpaceHab, the first commercial space laboratory, is depicted in the cargo bay, and its characteristic shape is represented by the inner red border of the patch. The three gold plumes surrounded by the five stars trailing EURECA are suggestive of the U.S. astronaut logo. The five gold stars together with the shape of the orbiter's mechanical arm form the mission's numerical designation. The six stars on the American flag represent the U.S. astronauts who comprise the crew. With detailed input from the crew members, the final artwork was accomplished by artist Tim Hall.

  4. PlasmaLab/Eco-Plasma - The future of complex plasma research in space

    NASA Astrophysics Data System (ADS)

    Knapek, Christina; Thomas, Hubertus; Huber, Peter; Mohr, Daniel; Hagl, Tanja; Konopka, Uwe; Lipaev, Andrey; Morfill, Gregor; Molotkov, Vladimir

    The next Russian-German cooperation for the investigation of complex plasmas under microgravity conditions on the International Space Station (ISS) is the PlasmaLab/Eco-Plasma project. Here, a new plasma chamber -- the ``Zyflex'' chamber -- is being developed. The chamber is a cylindrical plasma chamber with parallel electrodes and a flexible system geometry. It is designed to extend the accessible plasma parameter range, i.e. neutral gas pressure, plasma density and electron temperature, and also to allow an independent control of the plasma parameters, therefore increasing the experimental quality and expected knowledge gain significantly. With this system it will be possible to reach low neutral gas pressures (which means weak damping of the particle motion) and to generate large, homogeneous 3D particle systems for studies of fundamental phenomena such as phase transitions, dynamics of liquids or phase separation. The Zyflex chamber has already been operated in several parabolic flight campaigns with different configurations during the last years, yielding a promising outlook for its future development. Here, we will present the current status of the project, the technological advancements the Zyflex chamber will offer compared to its predecessors, and the latest scientific results from experiments on ground and in microgravity conditions during parabolic flights. This work and some of the authors are funded by DLR/BMWi (FKZ 50 WP 0700).

  5. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-01

    Carrying the STS-109 crew of seven, the Space Shuttle Orbiter Columbia blasted from its launch pad as it began its 27th flight and 108th flight overall in NASA's Space Shuttle Program. Launched March 1, 2002, the goal of the mission was the maintenance and upgrade of the Hubble Space Telescope (HST) which was developed, designed, and constructed by the Marshall Space Flight Center. Captured and secured on a work stand in Columbia's payload bay using Columbia's robotic arm, the HST received the following upgrades: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when it original coolant ran out. Four of the crewmembers performed 5 space walks in the 10 days, 22 hours, and 11 minutes of the the STS-109 mission.

  6. EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization

    NASA Astrophysics Data System (ADS)

    Payandeh, Farrin

    2015-07-01

    Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space

  7. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-07

    STS-109 Astronaut Michael J. Massimino, mission specialist, perched on the Shuttle's robotic arm, is preparing to install the Electronic Support Module (ESM) in the aft shroud of the Hubble Space telescope (HST), with the assistance of astronaut James H. Newman (out of frame). The module will support a new experimental cooling system to be installed during the next day's fifth and final space walk of the mission. That cooling system is designed to bring the telescope's Near-Infrared Camera and Multi Spectrometer (NICMOS) back to life the which had been dormant since January 1999 when its original coolant ran out. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. In addition to the installation of the experimental cooling system for the Hubble's Near-Infrared Camera and NICMOS, STS-109 upgrades to the HST included replacement of the solar array panels, replacement of the power control unit (PCU), and replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS). Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  8. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. This particular photo was taken by astronaut Stephen K. Robinson, STS-114 mission specialist, whose shadow is visible on the thermal protection tiles, and a portion of the Canadian built Remote Manipulator System (RMS) robotic arm and the Nile River is visible at the bottom.

  9. Space Shuttle Projects

    NASA Image and Video Library

    2005-08-03

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission’s third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter’s heat-shielding tiles located on the craft’s underbelly. Never before had any repairs been done to an orbiter while still in space. Astronaut Stephen K. Robinson, STS-114 mission specialist, used the pictured still digital camera to expose a photo of his helmet visor during the EVA. Also visible in the reflection are thermal protection tiles on Discovery’s underside.

  10. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1990-07-08

    The STS-40 patch makes a contemporary statement focusing on human beings living and working in space. Against a background of the universe, seven silver stars, interspersed about the orbital path of Columbia, represent the seven crew members. The orbiter's flight path forms a double-helix, designed to represent the DNA molecule common to all living creatures. In the words of a crew spokesman, ...(the helix) affirms the ceaseless expansion of human life and American involvement in space while simultaneously emphasizing the medical and biological studies to which this flight is dedicated. Above Columbia, the phrase Spacelab Life Sciences 1 defines both the Shuttle mission and its payload. Leonardo Da Vinci's Vitruvian man, silhouetted against the blue darkness of the heavens, is in the upper center portion of the patch. With one foot on Earth and arms extended to touch Shuttle's orbit, the crew feels, he serves as a powerful embodiment of the extension of human inquiry from the boundaries of Earth to the limitless laboratory of space. Sturdily poised amid the stars, he serves to link scentists on Earth to the scientists in space asserting the harmony of efforts which produce meaningful scientific spaceflight missions. A brilliant red and yellow Earth limb (center) links Earth to space as it radiates from a native American symbol for the sun. At the frontier of space, the traditional symbol for the sun vividly links America's past to America's future, the crew states. Beneath the orbiting Shuttle, darkness of night rests peacefully over the United States. Drawn by artist Sean Collins, the STS 40 Space Shuttle patch was designed by the crewmembers for the flight.

  12. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  13. Supporting Multiple Programs and Projects at NASA's Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    With the conclusion of the shuttle program in 2011, the National Aeronautics and Space Administration (NASA) had found itself at a crossroads for finding transportation of United States astronauts and experiments to space. The agency would eventually hand off the taxiing of American astronauts to the International Space Station (ISS) that orbits in Low Earth Orbit (LEO) about 210 miles above the earth under the requirements of the Commercial Crew Program (CCP). By privatizing the round trip journey from Earth to the ISS, the space agency has been given the additional time to focus funding and resources to projects that operate beyond LEO; however, adding even more stress to the agency, the premature cancellation of the program that would succeed the Shuttle Program - The Constellation Program (CxP) -it would inevitably delay the goal to travel beyond LEO for a number of years. Enter the Space Launch System (SLS) and the Orion Multipurpose Crew Vehicle (MPCV). Currently, the SLS is under development at NASA's Marshall Spaceflight Center in Huntsville, Alabama, while the Orion Capsule, built by government contractor Lockheed Martin Corporation, has been assembled and is currently under testing at the Kennedy Space Center (KSC) in Florida. In its current vision, SLS will take Orion and its crew to an asteroid that had been captured in an earlier mission in lunar orbit. Additionally, this vehicle and its configuration is NASA's transportation to Mars. Engineers at the Kennedy Space Center are currently working to test the ground systems that will facilitate the launch of Orion and the SLS within its Ground Services Development and Operations (GSDO) Program. Firing Room 1 in the Launch Control Center (LCC) has been refurbished and outfitted to support the SLS Program. In addition, the Spaceport Command and Control System (SCCS) is the underlying control system for monitoring and launching manned launch vehicles. As NASA finds itself at a junction, so does all of its

  14. Complex Teichmüller Space below the Planck Length for the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2014-03-01

    As Newton's mysterious action at a distance law of gravity was explained as a Riemannian geometry by Einstein, it is proposed that the likewise mysterious non-local quantum mechanics is explained by the analytic continuation below the Planck length into a complex Teichmüller space. Newton's theory worked extremely well, as does quantum mechanics, but no satisfactory explanation has been given for quantum mechanics. In one space dimension, sufficient to explain the EPR paradox, the Teichmüller space is reduced to a space of complex Riemann surfaces. Einstein's curved space-time theory of gravity was confirmed by a tiny departure from Newton's theory in the motion of the planet Mercury, and an experiment is proposed to demonstrate the possible existence of a Teichmüller space below the Planck length.

  15. Experiences from a French-German project - on the integration of pupils in an actual space experiment

    NASA Astrophysics Data System (ADS)

    Horn, Eberhard R.; Dournon, Christian

    2007-09-01

    The German-French biological experiment AQUARIUS-XENO-PUS which flew on the French Soyuz taxi flight Andromède to the International Space Station ISS was extended by an outreach project. Pupils of class 10 to 12, age 16 to 18 years from Ulm/Germany and Tomblaine-Nancy/France were involved in this space experiment. They recorded swimming behavior of Xenopus laevis tadpoles by video. They used this as the 1gground control for similar observations in microgravity exposed tadpoles on the International Space Station, ISS. The pupils were instructed to perform all experimental steps following the protocol of the video recordings on ISS which were done by the French cosmonaut Claudie Haigneré. After the flight, they evaluated swimming activity of both ground controls and space animals using parameters such as type, velocity and acceleration of swimming, or the distribution patterns of tadpoles within the miniaquaria. The pupil project included theoretical components to introduce them to the field of gravitational biology. Nancy pupils established a homepage (www.xenope.com) about background and aim of their scientific project while Ulm pupils received an extended theoretical and practical education about gravity effects on biological systems, what gravity means for life on Earth, and about hardware used for biological research in Space. A feature of the project was the exchange of ideas between all pupils by internet and meetings which took place in Ulm (June 2001), Nancy (February 2002) and Paris (May 2002). Selected pupils presented the work at international conferences on Life Science Research in Space. The project lasted about 18 months; only 1 of 20 participants left the project after 6 months. - We consider our approach as a successful way to include high school students in space experiments on a cheap cost level and to bring the ideas of gravitational biology into curricula of European schools. The project also showed that personal engagement from the teachers

  16. Methods of treating complex space vehicle geometry for charged particle radiation transport

    NASA Technical Reports Server (NTRS)

    Hill, C. W.

    1973-01-01

    Current methods of treating complex geometry models for space radiation transport calculations are reviewed. The geometric techniques used in three computer codes are outlined. Evaluations of geometric capability and speed are provided for these codes. Although no code development work is included several suggestions for significantly improving complex geometry codes are offered.

  17. Marshall Space Flight Center Technology Capabilities for Use in Space Situational Awareness Activities

    NASA Technical Reports Server (NTRS)

    Gagliano, Larry; McLeod, Todd; Hovater, Mary A.

    2017-01-01

    Marshall performs research, integrates information, matures technologies, and enhances science to bring together a diverse portfolio of products and services of interest for Space Situational Awareness (SSA) and Space Asset Management (SAM), all of which can be accessed through partnerships with Marshall. Integrated Space Situational Awareness and Asset Management (ISSAAM) is an initiative of NASA's Marshall Space Flight Center to improve space situational awareness and space asset management through technical innovation, collaboration, and cooperation with U.S. Government agencies and the global space community. Marshall Space Flight Center provides solutions for complex issues with in-depth capabilities, a broad range of experience, and expertise unique in the world, and all available in one convenient location. NASA has longstanding guidelines that are used to assess space objects. Specifically, Marshall Space Flight Center has the capabilities, facilities and expertise to address the challenges that space objects, such as near-Earth objects (NEO) or Orbital Debris pose. ISSAAM's three pronged approach brings together vital information and in-depth tools working simultaneously toward examining the complex problems encountered in space situational awareness. Marshall's role in managing, understanding and planning includes many projects grouped under each prong area: Database/Analyses/Visualization; Detection/Tracking/ Mitigation/Removal. These are not limited to those listed below.

  18. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-07

    Inside the Space Shuttle Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) on the crew cabin's aft flight deck to assist fellow astronauts during the STS-109 mission Extra Vehicular Activities (EVA). The RMS was used to capture the telescope and secure it into Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  19. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-05

    STS-109 Astronauts Michael J. Massimino and James H. Newman were making their second extravehicular activity (EVA) of their mission when astronaut Massimino, mission specialist, peered into Columbia's crew cabin during a brief break from work on the Hubble Space Telescope (HST). The HST is latched down just a few feet behind him in Columbia's cargo bay. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the Hubble Space Telescope (HST). STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1990-10-06

    Launched aboard the Space Shuttle Discovery on October 6, 1990 at 7:47:15 am (EDT), the STS-41 mission consisted of 5 crew members. Included were Richard N. Richards, commander; Robert D. Cabana, pilot; and Bruce E. Melnick, Thomas D. Akers, and William M. Shepherd, all mission specialists. The primary payload for the mission was the European Space Agency (ESA) built Ulysses Space Craft made to explore the polar regions of the Sun. Other main payloads and experiments included the Shuttle Solar Backscatter Ultraviolet (SSBUV) experiment and the INTELSAT Solar Array Coupon (ISAC).

  1. Space Shuttle Project

    NASA Image and Video Library

    1972-03-07

    This early chart conceptualizes the use of two parallel Solid Rocket Motor Boosters in conjunction with three main engines to launch the proposed Space Shuttle to orbit. At approximately twenty-five miles altitude, the boosters would detach from the Orbiter and parachute back to Earth where they would be recovered and refurbished for future use. The Shuttle was designed as NASA's first reusable space vehicle, launching vertically like a spacecraft and landing on runways like conventional aircraft. Marshall Space Flight Center had management responsibility for the Shuttle's propulsion elements, including the Solid Rocket Boosters.

  2. Space Shuttle Project

    NASA Image and Video Library

    1992-10-15

    On the 500th arniversary of Christopher Columbus' discovery of the New World, replicas of his three ships sailed past the launch pad at the Kennedy Space Center (KSC) while the space shuttle Columbia sat poised for lift off.

  3. To Create Space on Earth: The Space Environment Simulation Laboratory and Project Apollo

    NASA Technical Reports Server (NTRS)

    Walters, Lori C.

    2003-01-01

    Few undertakings in the history of humanity can compare to the great technological achievement known as Project Apollo. Among those who witnessed Armstrong#s flickering television image were thousands of people who had directly contributed to this historic moment. Amongst those in this vast anonymous cadre were the personnel of the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center (MSC) in Houston, Texas. SESL houses two large thermal-vacuum chambers with solar simulation capabilities. At a time when NASA engineers had a limited understanding of the effects of extremes of space on hardware and crews, SESL was designed to literally create the conditions of space on Earth. With interior dimensions of 90 feet in height and a 55-foot diameter, Chamber A dwarfed the Apollo command/service module (CSM) it was constructed to test. The chamber#s vacuum pumping capacity of 1 x 10(exp -6) torr can simulate an altitude greater than 130 miles above the Earth. A "lunar plane" capable of rotating a 150,000-pound test vehicle 180 deg replicates the revolution of a craft in space. To reproduce the temperature extremes of space, interior chamber walls cool to -280F as two banks of carbon arc modules simulate the unfiltered solar light/heat of the Sun. With capabilities similar to that of Chamber A, early Chamber B tests included the Gemini modular maneuvering unit, Apollo EVA mobility unit and the lunar module. Since Gemini astronaut Charles Bassett first ventured into the chamber in 1966, Chamber B has assisted astronauts in testing hardware and preparing them for work in the harsh extremes of space.

  4. SpaceScience@Home: Authentic Research Projects that Use Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Méndez, B. J. H.

    2008-06-01

    In recent years, several space science research projects have enlisted the help of large numbers of non-professional volunteers, ``citizen scientists'', to aid in performing tasks that are critical to a project, but require more person-time (or computing time) than a small professional research team can practically perform themselves. Examples of such projects include SETI@home, which uses time from volunteers computers to process radio-telescope observation looking for signals originating from extra-terrestrial intelligences; Clickworkers, which asks volunteers to review images of the surface of Mars to identify craters; Spacewatch, which used volunteers to review astronomical telescopic images of the sky to identify streaks made by possible Near Earth Asteroids; and Stardust@home, which asks volunteers to review ``focus movies'' taken of the Stardust interstellar dust aerogel collector to search for possible impacts from interstellar dust particles. We shall describe these and other similar projects and discuss lessons learned from carrying out such projects, including the educational opportunities they create.

  5. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. At left, Susan Fernandez from the Office of Senator Marco Rubio talks with another attendee near the Education display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  6. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Attendees mingled and visited various displays, including Ground Systems Development and Operations Program and Education Office displays. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  7. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. An attendee talks with engineers Jason Hopkins and Lisa Lutz, at the Ground Systems Development and Operations display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  8. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. An attendee talks with Scott Thurston, Kennedy deputy of the spacecraft office at the Commercial Crew Program display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  9. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. An attendee talks with Trent Smith, program manager, and Tammy Belk, a program specialist, at the ISS Ground Processing and Research Office display. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  10. Point-in-convex polygon and point-in-convex polyhedron algorithms with O(1) complexity using space subdivision

    NASA Astrophysics Data System (ADS)

    Skala, Vaclav

    2016-06-01

    There are many space subdivision and space partitioning techniques used in many algorithms to speed up computations. They mostly rely on orthogonal space subdivision, resp. using hierarchical data structures, e.g. BSP trees, quadtrees, octrees, kd-trees, bounding volume hierarchies etc. However in some applications a non-orthogonal space subdivision can offer new ways for actual speed up. In the case of convex polygon in E2 a simple Point-in-Polygon test is of the O(N) complexity and the optimal algorithm is of O(log N) computational complexity. In the E3 case, the complexity is O(N) even for the convex polyhedron as no ordering is defined. New Point-in-Convex Polygon and Point-in-Convex Polyhedron algorithms are presented based on space subdivision in the preprocessing stage resulting to O(1) run-time complexity. The presented approach is simple to implement. Due to the principle of duality, dual problems, e.g. line-convex polygon, line clipping, can be solved in a similarly.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1997-01-01

    This is a view of the Russian Mir Space Station photographed by a crewmember of the fifth Shuttle/Mir docking mission, STS-81. The image shows: upper center - Progress supply vehicle, Kvant-1 module, and Core module; center left - Priroda module; center right - Spektr module; bottom left - Kvant-2 module; bottom center - Soyuz; and bottom right - Kristall module and Docking module. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars, by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. Priroda's main purpose was Earth remote sensing. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1995-11-01

    This is a view of the Russian Mir Space Station photographed by a crewmember of the second Shuttle/Mir docking mission, STS-74. The image shows: top - Progress supply vehicle, Kvant-1 module, and the Core module; middle left - Spektr module; middle center - Kristall module and Docking module; middle right - Kvant-2 module; and bottom - Soyuz. The Progress was an unmarned, automated version of the Soyuz crew transfer vehicle, designed to resupply the Mir. The Kvant-1 provided research in the physics of galaxies, quasars, and neutron stars by measuring electromagnetic spectra and x-ray emissions. The Core module served as the heart of the space station and contained the primary living and working areas, life support, and power, as well as the main computer, communications, and control equipment. The Spektr module provided Earth observation. It also supported research into biotechnology, life sciences, materials science, and space technologies. American astronauts used the Spektr as their living quarters. A main purpose of the Kristall module was to develop biological and materials production technologies in the space environment. The Docking module made it possible for the Space Shuttle to dock easily with the Mir. Kvant-2 was a scientific and airlock module, providing biological research, Earth observations, and EVA (extravehicular activity) capability. The Soyuz typically ferried three crewmembers to and from the Mir. The journey of the 15-year-old Russian Mir Space Station ended March 23, 2001, as the Mir re-entered the Earth's atmosphere and fell into the south Pacific Ocean.

  13. The Complexity of Human Walking: A Knee Osteoarthritis Study

    PubMed Central

    Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.

    2014-01-01

    This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more

  14. Individualized Instruction in Science, Earth-Space Project, Self-Directed Activities.

    ERIC Educational Resources Information Center

    Kuczma, R. M.

    As a supplement to Learning Activity Packages (LAP) of the earth-space project, this manual presents self-directed activities especially designed for individualized instruction. Besides an introduction to LAP characteristics, sets of instructions are given in connection with the metric system, the earth's dimensions, indirect evidence for atomic…

  15. Space Shuttle Projects

    NASA Image and Video Library

    1978-03-01

    A liquid hydrogen tank of the Shuttle's external tank (ET) is installed into the S-1C Test Stand for a structural test at the Marshall Space Flight Center. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  16. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-12

    This is a view of the Space Shuttle Discovery as it approaches the International Space Station (ISS) during the STS-105 mission. Visible in the payload bay of Discovery are the Multipurpose Logistics Module (MPLM) Leonardo at right, which stores various supplies and experiments to be transferred into the ISS; at center, the Integrated Cargo Carrier (ICC) which carries the Early Ammonia Servicer (EAS); and two Materials International Space Station Experiment (MISSE) containers at left. Aboard Discovery were the ISS Expedition Three crew, who were to replace the Expedition Two crew that had been living on the ISS for the past five months.

  17. Space Shuttle Projects

    NASA Image and Video Library

    1999-11-30

    These five STS-97 crew members posed for a traditional portrait during training. On the front row, left to right, are astronauts Michael J. Bloomfield, pilot; Marc Garneau, mission specialist representing the Canadian Space Agency (CSA); and Brent W. Jett, Jr., commander. In the rear, wearing training versions of the extravehicular mobility unit (EMU) space suits, (left to right) are astronauts Carlos I. Noriega, and Joseph R. Tarner, both mission specialists. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  18. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-07

    STS-109 Astronaut Michael J. Massimino, mission specialist, perched on the Shuttle's robotic arm is working at the stowage area for the Hubble Space Telescope's port side solar array. Working in tandem with James. H. Newman, Massimino removed the old port solar array and stored it in Columbia's payload bay for return to Earth. The two went on to install a third generation solar array and its associated electrical components. Two crew mates had accomplished the same feat with the starboard array on the previous day. In addition to the replacement of the solar arrays, the STS-109 crew also installed the experimental cooling system for the Hubble's Near-Infrared Camera (NICMOS), replaced the power control unit (PCU), and replaced the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS). The 108th flight overall in NASA's Space Shuttle Program, the Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 for 10 days, 22 hours, and 11 minutes. Five space walks were conducted to complete the HST upgrades. The Marshall Space Flight Center in Huntsville, Alabama had the responsibility for the design, development, and construction of the HST, which is the most powerful and sophisticated telescope ever built.

  19. Monitoring of Space and Earth electromagnetic environment by MAGDAS project: Collaboration with IKIR - Introduction to ICSWSE/MAGDAS project

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akimasa; Fujimoto, Akiko; Ikeda, Akihiro; Uozumi, Teiji; Abe, Shuji

    2017-10-01

    For study of coupling processes in the Solar-Terrestrial System, International Center for Space Weather Science and Education (ICSWSE), Kyushu University has developed a real time magnetic data acquisition system (the MAGDAS project) around the world. The number of observational sites is increasing every year with the collaboration of host countries. Now at this time, the MAGDAS Project has installed 78 real time magnetometers - so it is the largest magnetometer array in the world. The history of global observation at Kyushu University is over 30 years and number of developed observational sites is over 140. Especially, Collaboration between IKIR is extended back to 1990's. Now a time, we are operating Flux-gate magnetometer and FM-CW Radar. It is one of most important collaboration for space weather monitoring. By using MAGDAS data, ICSWSE produces many types of space weather index, such as EE-index (for monitoring long tern and shot term variation of equatorial electrojet), Pc5 index (for monitoring solar-wind velocity and high energy electron flux), Sq-index (for monitoring global change of ionospheric low and middle latitudinal current system), and Pc3 index (for monitoring of plasma density variation at low latitudes). In this report, we will introduce recent development of MAGDAS/ICSWSE Indexes project and topics for new open policy for MAGDAS data will be also discussed.

  20. Projecting technology change to improve space technology planning and systems management

    NASA Astrophysics Data System (ADS)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  1. Space Radiation Cancer Risk Projections for Exploration Missions: Uncertainty Reduction and Mitigation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis; Badhwar, Gautam; Saganti, Premkumar; Schimmerling, Walter; Wilson, John; Peterson, Leif; Dicello, John

    2002-01-01

    In this paper we discuss expected lifetime excess cancer risks for astronauts returning from exploration class missions. For the first time we make a quantitative assessment of uncertainties in cancer risk projections for space radiation exposures. Late effects from the high charge and energy (HZE) ions present in the galactic cosmic rays including cancer and the poorly understood risks to the central nervous system constitute the major risks. Methods used to project risk in low Earth orbit are seen as highly uncertain for projecting risks on exploration missions because of the limited radiobiology data available for estimating HZE ion risks. Cancer risk projections are described as a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Monte-Carlo sampling from subjective error distributions represents the lack of knowledge in each factor to quantify risk projection overall uncertainty. Cancer risk analysis is applied to several exploration mission scenarios. At solar minimum, the number of days in space where career risk of less than the limiting 3% excess cancer mortality can be assured at a 95% confidence level is found to be only of the order of 100 days.

  2. Space Shuttle Project

    NASA Image and Video Library

    1977-08-01

    A workman reams holes to the proper size and aligment in the Space Shuttle Main Engine's main injector body, through which propellants will pass through on their way into the engine's combustion chamber. Rockwell International's Rocketdyne Division plant produced the engines under contract to the Marshall Space Flight Center.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1989-04-25

    An STS-41D onboard photo shows the Solar Array Experiment (SAE) panel deployment for the Office of Aeronautics and space Technology-1 (OAST-1). OAST-1 is several advanced space technology experiments utilizing a common data system and is mounted on a platform in the Shuttle cargo bay.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-01

    The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.

  5. Space Shuttle Projects

    NASA Image and Video Library

    1994-10-08

    Designed by the crew members, the STS-63 crew patch depicts the orbiter maneuvering to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission.

  6. A segmentation algorithm based on image projection for complex text layout

    NASA Astrophysics Data System (ADS)

    Zhu, Wangsheng; Chen, Qin; Wei, Chuanyi; Li, Ziyang

    2017-10-01

    Segmentation algorithm is an important part of layout analysis, considering the efficiency advantage of the top-down approach and the particularity of the object, a breakdown of projection layout segmentation algorithm. Firstly, the algorithm will algorithm first partitions the text image, and divided into several columns, then for each column scanning projection, the text image is divided into several sub regions through multiple projection. The experimental results show that, this method inherits the projection itself and rapid calculation speed, but also can avoid the effect of arc image information page segmentation, and also can accurate segmentation of the text image layout is complex.

  7. The scientific data acquisition system of the GAMMA-400 space project

    NASA Astrophysics Data System (ADS)

    Bobkov, S. G.; Serdin, O. V.; Gorbunov, M. S.; Arkhangelskiy, A. I.; Topchiev, N. P.

    2016-02-01

    The description of scientific data acquisition system (SDAS) designed by SRISA for the GAMMA-400 space project is presented. We consider the problem of different level electronics unification: the set of reliable fault-tolerant integrated circuits fabricated on Silicon-on-Insulator 0.25 mkm CMOS technology and the high-speed interfaces and reliable modules used in the space instruments. The characteristics of reliable fault-tolerant very large scale integration (VLSI) technology designed by SRISA for the developing of computation systems for space applications are considered. The scalable net structure of SDAS based on Serial RapidIO interface including real-time operating system BAGET is described too.

  8. Discovering Recurring Anomalies in Text Reports Regarding Complex Space Systems

    NASA Technical Reports Server (NTRS)

    Zane-Ulman, Brett; Srivastava, Ashok N.

    2005-01-01

    Many existing complex space systems have a significant amount of historical maintenance and problem data bases that are stored in unstructured text forms. For some platforms, these reports may be encoded as scanned images rather than even searchable text. The problem that we address in this paper is the discovery of recurring anomalies and relationships between different problem reports that may indicate larger systemic problems. We will illustrate our techniques on data from discrepancy reports regarding software anomalies in the Space Shuttle. These free text reports are written by a number of different penp!e, thus the emphasis and wording varies considerably.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1984-01-01

    The Space Shuttle Challenger, making its fourth space flight, highlights the 41B insignia. The reusable vehicle is flanked in the oval by an illustration of a Payload Assist Module-D solid rocket motor (PAM-D) for assisted satellite deployment; an astronaut making the first non-tethered extravehicular activity (EVA); and eleven stars.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1985-04-01

    In this photograph the SYNCOM IV-3, also known as LEASAT 3, satellite moves away from the Space Shuttle Orbiter Discovery. SYNCOM (Hughes Geosynchronous Communication Satellite) provides communication services from geosynchronous orbit, principally to the U.S. Government. The satellite was launched on April 12, 1985, aboard the Space Shuttle Orbiter Discovery.

  11. A systematic approach to the application of Automation, Robotics, and Machine Intelligence Systems /ARAMIS/ to future space projects

    NASA Technical Reports Server (NTRS)

    Smith, D. B. S.

    1982-01-01

    The potential applications of Automation, Robotics, and Machine Intelligence Systems (ARAMIS) to space projects are investigated, through a systematic method. In this method selected space projects are broken down into space project tasks, and 69 of these tasks are selected for study. Candidate ARAMIS options are defined for each task. The relative merits of these options are evaluated according to seven indices of performance. Logical sequences of ARAMIS development are also defined. Based on this data, promising applications of ARAMIS are

  12. Conceptual planning for Space Station life sciences human research project

    NASA Technical Reports Server (NTRS)

    Primeaux, Gary R.; Miller, Ladonna J.; Michaud, Roger B.

    1986-01-01

    The Life Sciences Research Facility dedicated laboratory is currently undergoing system definition within the NASA Space Station program. Attention is presently given to the Humam Research Project portion of the Facility, in view of representative experimentation requirement scenarios and with the intention of accommodating the Facility within the Initial Operational Capability configuration of the Space Station. Such basic engineering questions as orbital and ground logistics operations and hardware maintenance/servicing requirements are addressed. Biospherics, calcium homeostasis, endocrinology, exercise physiology, hematology, immunology, muscle physiology, neurosciences, radiation effects, and reproduction and development, are among the fields of inquiry encompassed by the Facility.

  13. Moving Parts in Imagined Spaces: Community Arts Zone's Movement Project

    ERIC Educational Resources Information Center

    Rowsell, Jennifer; McQueen-Fuentes, Glenys

    2017-01-01

    Movement is relatively invisible in literacy theory and pedagogy. There has been more recent scholarship on the body and embodiment, but less on connections between movements, body and literacy. In this article, we present the Community Arts Zone movement project and ways that the study opened up spaces for creativity, experimentation, and…

  14. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-01

    This is a photograph of the free-flying Solar Maximum Mission Satellite (SMMS), or Solar Max, as seen by the approaching Space Shuttle Orbiter Challenger STS-41C mission. Launched April 6, 1984, one of the goals of the STS-41C mission was to repair the damaged Solar Max. The original plan was to make an excursion out to the SMMS for capture to make necessary repairs, however, this attempted feat was unsuccessful. It was necessary to capture the satellite via the orbiter's Remote Manipulator System (RMS) and secure it into the cargo bay in order to perform the repairs, which included replacing the altitude control system and the coronograph/polarimeter electronics box. The SMMS was originally launched into space via the Delta Rocket in February 1980, with the purpose to provide a means of studying solar flares during the most active part of the current sunspot cycle. Dr. Einar Tandberg-Hanssen of Marshall Space Flight Center's Space Sciences Lab was principal investigator for the Ultraviolet Spectrometer and Polarimeter, one of the seven experiments on the Solar Max.

  15. Twenty Years of Rad-Hard K14 SPAD in Space Projects

    PubMed Central

    Michálek, Vojtěch; Procházka, Ivan; Blažej, Josef

    2015-01-01

    During last two decades, several photon counting detectors have been developed in our laboratory. One of the most promising detector coming from our group silicon K14 Single Photon Avalanche Diode (SPAD) is presented with its valuable features and space applications. Based on the control electronics, it can be operated in both gated and non-gated mode. Although it was designed for photon counting detection, it can be employed for multiphoton detection as well. With respect to control electronics employed, the timing jitter can be as low as 20 ps RMS. Detection efficiency is about 40 % in range of 500 nm to 800 nm. The detector including gating and quenching circuitry has outstanding timing stability. Due to its radiation resistivity, the diode withstands 100 krad gamma ray dose without parameters degradation. Single photon detectors based on K14 SPAD were used for planetary altimeter and atmospheric lidar in MARS92/96 and Mars Surveyor ’98 space projects, respectively. Recent space applications of K14 SPAD comprises LIDAR and mainly time transfer between ground stations and artificial satellites. These include Laser Time Transfer, Time Transfer by Laser Link, and European Laser Timing projects. PMID:26213945

  16. Space Shuttle Projects

    NASA Image and Video Library

    1977-02-01

    This photograph shows an inside view of a liquid hydrogen tank for the Space Shuttle external tank (ET) Main Propulsion Test Article (MPTA). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  17. Space Shuttle Projects

    NASA Image and Video Library

    1978-05-01

    This photograph shows a liquid oxygen tank for the Shuttle External Tank (ET) during a hydroelastic modal survey test at the Marshall Space Flight Center. The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  18. Complexity and Intermittent Turbulence in Space Plasmas

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Tam, Sunny W. Y.; Wu, Cheng-Chin

    2004-01-01

    Sporadic and localized interactions of coherent structures arising from plasma resonances can be the origin of "complexity" of the coexistence of non- propagating spatiotemporal fluctuations and propagating modes in space plasmas. Numerical simulation results are presented to demonstrate the intermittent character of the non-propagating fluctuations. The technique of the dynamic renormalization-group is introduced and applied to the study of scale invariance of such type of multiscale fluctuations. We also demonstrate that the particle interactions with the intermittent turbulence can lead to the efficient energization of the plasma populations. An example related to the ion acceleration processes in the auroral zone is provided.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1989-11-22

    On November 22, 1989, at 7:23:30pm (EST), five astronauts were launched into space aboard the Space Shuttle Orbiter Discovery for the 5th Department of Defense (DOD) mission, STS-33. Crew members included Frederick D. Gregory, commander; John E. Blaha, pilot; and mission specialists Kathryn C. Thornton, Manley L. (Sonny) Carter, and F. Story Musgrave.

  20. Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project

    NASA Technical Reports Server (NTRS)

    Holden, Kristina L.; Sandor, Aniko; Thompson, Shelby G.; Kaiser, Mary K.; McCann, Robert S.; Begault, D. R.; Adelstein, B. D.; Beutter, B. R.; Wenzel, E. M.; Godfroy, M.; hide

    2010-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center. T

  1. Space Shuttle Projects

    NASA Image and Video Library

    2002-03-05

    Astronaut James H. Newman, mission specialist, floats about in the Space Shuttle Columbia's cargo bay while working in tandem with astronaut Michael J. Massimino (out of frame),mission specialist, during the STS-109 mission's second day of extravehicular activity (EVA). Inside Columbia's cabin, astronaut Nancy J. Currie, mission specialist, controlled the Remote Manipulator System (RMS) to assist the two in their work on the Hubble Space Telescope (HST). The RMS was used to capture the telescope and secure it into Columbia's cargo bay.Part of the giant telescope's base, latched down in the payload bay, can be seen behind Newman. The Space Shuttle Columbia STS-109 mission lifted off March 1, 2002 with goals of repairing and upgrading the HST. The Marshall Space Flight Center in Huntsville, Alabama had responsibility for the design, development, and contruction of the HST, which is the most powerful and sophisticated telescope ever built. STS-109 upgrades to the HST included: replacement of the solar array panels; replacement of the power control unit (PCU); replacement of the Faint Object Camera (FOC) with a new advanced camera for Surveys (ACS); and installation of the experimental cooling system for the Hubble's Near-Infrared Camera and Multi-object Spectrometer (NICMOS), which had been dormant since January 1999 when its original coolant ran out. Lasting 10 days, 22 hours, and 11 minutes, the STS-109 mission was the 108th flight overall in NASA's Space Shuttle Program.

  2. Project SPARC: Space-Based Aeroassisted Reusable Craft

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Future United States' space facilities include a Space Station in low Earth orbit (LEO) and a Geosynchronous Operations Support Center, or GeoShack, in geosynchronous orbit (GEO). One possible mode of transfer between the two orbits is an aerobraking vehicle. When traveling from GEO to LEO, the Earth's atmosphere can be used to aerodynamically reduce the velocity of the vehicle, which reduces the amount of propulsive change in velocity required for the mission. An aerobrake is added to the vehicle for this purpose, but the additional mass increases propellant requirements. This increase must not exceed the amount of propellant saved during the aeropass. The design and development of an aerobraking vehicle that will transfer crew and cargo between the Space Station and GeoShack is examined. The vehicle is referred to as Project SPARC, a SPace-based Aeroassisted Reusable Craft. SPARC consists of a removable 45 ft diameter aerobrake, two modified Pratt and Whitney Advanced Expander Engines with a liquid oxygen/liquid hydrogen propellant, a removable crew module with a maximum capacity of five, and standard sized payload bays providing a maximum payload capacity of 28,000 lbm. The aerobrake, a rigid, ellipsoidally blunted elliptical cone, provides lift at zero angle-of-attack due to a 73 deg rake angle, and is covered with a flexible multi-layer thermal protection system. Maximum dry mass of the vehicle without payload is 20,535 lbm, and the maximum propellant requirement is 79,753 lbm at an oxidizer to fuel ratio of 6/1. Key advantages of SPARC include its capability to meet mission changes, and its removable aerobrake and crew module.

  3. In-Space Assembly and Construction Technology Project Summary: Infrastructure Operations Area of the Operations Technology Program

    NASA Technical Reports Server (NTRS)

    Bush, Harold

    1991-01-01

    Viewgraphs describing the in-space assembly and construction technology project of the infrastructure operations area of the operation technology program are presented. Th objective of the project is to develop and demonstrate an in-space assembly and construction capability for large and/or massive spacecraft. The in-space assembly and construction technology program will support the need to build, in orbit, the full range of spacecraft required for the missions to and from planet Earth, including: earth-orbiting platforms, lunar transfer vehicles, and Mars transfer vehicles.

  4. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. From left, Scott Thurston, Kennedy deputy of the spacecraft office of the Commercial Crew Program, talks with Scott Colloredo, director of the Center Planning and Development Directorate. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  5. Kennedy Space Center Director Update

    NASA Image and Video Library

    2014-03-06

    CAPE CANAVERAL, Fla. - Community leaders, business executives, educators, and state and local government leaders were updated on NASA Kennedy Space Center programs and accomplishments during Center Director Bob Cabana’s Center Director Update at the Debus Center at the Kennedy Space Center Visitor Complex in Florida. Attendees talk with Trey Carlson, Kennedy Master Planner, at the Center Planning and Development Directorate, or CPDD, display. In the background is Mario Busacca, chief of CPDD’s Spaceport Planning Office. Attendees talked with Cabana and other senior Kennedy managers and visited displays featuring updates on Kennedy programs and projects, including International Space Station, Commercial Crew, Ground System Development and Operations, Launch Services, Center Planning and Development, Technology, KSC Swamp Works and NASA Education. The morning concluded with a tour of the new Space Shuttle Atlantis exhibit at the visitor complex. For more information, visit http://www.nasa.gov/kennedy. Photo credit: NASA/Daniel Casper

  6. Upper ankle joint space detection on low contrast intraoperative fluoroscopic C-arm projections

    NASA Astrophysics Data System (ADS)

    Thomas, Sarina; Schnetzke, Marc; Brehler, Michael; Swartman, Benedict; Vetter, Sven; Franke, Jochen; Grützner, Paul A.; Meinzer, Hans-Peter; Nolden, Marco

    2017-03-01

    Intraoperative mobile C-arm fluoroscopy is widely used for interventional verification in trauma surgery, high flexibility combined with low cost being the main advantages of the method. However, the lack of global device-to- patient orientation is challenging, when comparing the acquired data to other intrapatient datasets. In upper ankle joint fracture reduction accompanied with an unstable syndesmosis, a comparison to the unfractured contralateral site is helpful for verification of the reduction result. To reduce dose and operation time, our approach aims at the comparison of single projections of the unfractured ankle with volumetric images of the reduced fracture. For precise assessment, a pre-alignment of both datasets is a crucial step. We propose a contour extraction pipeline to estimate the joint space location for a prealignment of fluoroscopic C-arm projections containing the upper ankle joint. A quadtree-based hierarchical variance comparison extracts potential feature points and a Hough transform is applied to identify bone shaft lines together with the tibiotalar joint space. By using this information we can define the coarse orientation of the projections independent from the ankle pose during acquisition in order to align those images to the volume of the fractured ankle. The proposed method was evaluated on thirteen cadaveric datasets consisting of 100 projections each with manually adjusted image planes by three trauma surgeons. The results show that the method can be used to detect the joint space orientation. The correlation between angle deviation and anatomical projection direction gives valuable input on the acquisition direction for future clinical experiments.

  7. Visualizing the Complex Process for Deep Learning with an Authentic Programming Project

    ERIC Educational Resources Information Center

    Peng, Jun; Wang, Minhong; Sampson, Demetrios

    2017-01-01

    Project-based learning (PjBL) has been increasingly used to connect abstract knowledge and authentic tasks in educational practice, including computer programming education. Despite its promising effects on improving learning in multiple aspects, PjBL remains a struggle due to its complexity. Completing an authentic programming project involves a…

  8. In-space propellant logistics. Volume 4: Project planning data

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The prephase A conceptual project planning data as it pertains to the development of the selected logistics module configuration transported into earth orbit by the space shuttle orbiter. The data represents the test, implementation, and supporting research and technology requirements for attaining the propellant transfer operational capability for early 1985. The plan is based on a propellant module designed to support the space-based tug with cryogenic oxygen-hydrogen propellants. A logical sequence of activities that is required to define, design, develop, fabricate, test, launch, and flight test the propellant logistics module is described. Included are the facility and ground support equipment requirements. The schedule of activities are based on the evolution and relationship between the R and T, the development issues, and the resultant test program.

  9. A Review of NASA's Radiation-Hardened Electronics for Space Environments Project

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Patrick, Marshall C.; Johnson, Michael A.; Cressler, John D.

    2008-01-01

    NASA's Radiation Hardened Electronics for Space Exploration (RHESE) project develops the advanced technologies required to produce radiation hardened electronics, processors, and devices in support of the requirements of NASA's Constellation program. Over the past year, multiple advancements have been made within each of the RHESE technology development tasks that will facilitate the success of the Constellation program elements. This paper provides a brief review of these advancements, discusses their application to Constellation projects, and addresses the plans for the coming year.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1989-12-05

    The mission insignia for NASA's STS-31 mission features the Hubble Space Telescope (HST) in its observing configuration against a background of the universe it will study. The cosmos includes a stylistic depiction of galaxies in recognition of the contribution made by Sir Edwin Hubble to our understanding of the nature of galaxies and the expansion of the universe. The STS-31 crew points out that is it in honor of Hubble's work that this great observatory in space bears his name. The depicted Space Shuttle trails a spectrum symbolic of both the red shift observations that were so important to Hubble's work and new information which will be obtained with the HST. Encircling the art work, designed by the crew, are the names of its members.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1984-09-08

    The crew assigned to the STS-41G mission included (seated left to right) Jon A. McBride, pilot; mission specialists Sally K. Ride, Kathryn D. Sullivan, and David C. Leestma. Standing in the rear, left to right, are payload specialists Marc Garneau, and Paul D. Scully-Power. Launched aboard the Space Shuttle Challenger on October 5, 1984 at 7:03:00 am (EDT), the STS-41G mission marked the first flight to include two women. Sullivan was the first woman to walk in space. The crew deployed the Earth Radiation Budget Satellite (ERBS), connected the components of the Orbital Refueling System (ORS) which demonstrated the possibility of refueling satellites in orbit, and carried 3 experiments of the Office of Space Terrestrial Applications-3 (OSTA-3).

  12. Space Shuttle Projects

    NASA Image and Video Library

    1977-03-01

    This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.

  13. High Efficiency Space Power Systems Project Advanced Space-Rated Batteries

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.

    2011-01-01

    Case Western Reserve University (CWRU) has an agreement with China National Offshore Oil Corporation New Energy Investment Company, Ltd. (CNOOC), under the United States-China EcoPartnerships Framework, to create a bi-national entity seeking to develop technically feasible and economically viable solutions to energy and environmental issues. Advanced batteries have been identified as one of the initial areas targeted for collaborations. CWRU invited NASA Glenn Research Center (GRC) personnel from the Electrochemistry Branch to CWRU to discuss various aspects of advanced battery development as they might apply to this partnership. Topics discussed included: the process for the selection of a battery chemistry; the establishment of an integrated development program; project management/technical interactions; new technology developments; and synergies between batteries for automotive and space operations. Additional collaborations between CWRU and NASA GRC's Electrochemistry Branch were also discussed.

  14. The Projection of Space Radiation Environments with a Solar Cycle Statistical Model

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Cucinotta, Francis A.; Wilson, John W.

    2006-01-01

    A solar cycle statistical model has been developed to project sunspot numbers which represent the variations in the space radiation environment. The resultant projection of sunspot numbers in near future were coupled to space-related quantities of interest in radiation protection, such as the galactic cosmic radiation (GCR) deceleration potential (f) and the mean occurrence frequency of solar particle event (SPE). Future GCR fluxes have been derived from a predictive model, in which GCR temporal dependence represented by f was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. Results showed that the point dose equivalent inside a typical spacecraft in interplanetary radiation fields was influenced by solar modulation up to a factor of three. One important characteristic of sporadic SPEs is their mean frequency of occurrence, which is dependent on solar activity. Projections of future mean frequency of SPE occurrence were estimated from a power law function of sunspot number. Furthermore, the cumulative probabilities of SPE during short-period missions were defined with the continuous database of proton fluences of SPE. The analytic representation of energy spectra of SPE was constructed by the Weibull distribution for different event sizes. The representative exposure level at each event size was estimated for the guideline of protection systems for astronauts during future space exploration missions.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1989-10-25

    On November 22, 1989, at 7:23:30pm (EST), 5 astronauts were launched into space aboard the Space Shuttle Orbiter Discovery for the 5th Department of Defense mission, STS-33. Photographed from left to right are Kathryn C. Thornton, mission specialist 3; Manley L. (Sonny) Carter, mission specialist 2; Frederick D. Gregory, commander; John E. Blaha, pilot; and F. Story Musgrave, mission specialist 1.

  16. Space Shuttle Project

    NASA Image and Video Library

    1988-01-01

    Marshall Space Flight Center workers install Structural Test Article Number Three (STA-3) into a Center test facility. From December 1987 to April 1988, STA-3 (a test model of the Redesigned Solid Rocket Motor) underwent a series of six tests at the Marshall Center designed to demonstrate the structural strength of the Space Shuttle's Solid Rocket Booster, redesigned after the January 1986 Challenger accident.

  17. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  18. Instanton tunneling for de Sitter space with real projective spatial sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Yen Chin; Yeom, Dong-han, E-mail: ongyenchin@sjtu.edu.cn, E-mail: innocent.yeom@gmail.com

    The physics of tunneling from one spacetime to another is often understood in terms of instantons. For some instantons, it was recently shown in the literature that there are two complementary ''interpretations'' for their analytic continuations. Dubbed ''something-to-something'' and ''nothing-to-something'' interpretations, respectively, the former involves situation in which the initial and final hypersurfaces are connected by a Euclidean manifold, whereas the initial and final hypersurfaces in the latter case are not connected in such a way. We consider a de Sitter space with real projective space RP{sup 3} spatial sections, as was originally understood by de Sitter himself. This originalmore » version of de Sitter space has several advantages over the usual de Sitter space with S{sup 3} spatial sections. In particular, the interpretation of the de Sitter entropy as entanglement entropy is much more natural. We discuss the subtleties involved in the tunneling of such a de Sitter space.« less

  19. Space radiation hazards to Project Skylab photographic film, phase 2

    NASA Technical Reports Server (NTRS)

    Hill, C. W.; Neville, C. F.

    1971-01-01

    The results of a study of space radiation hazards to Project Skylab photographic film are presented. Radiation components include trapped protons, trapped electrons, bremsstrahlung, and galactic cosmic radiation. The shielding afforded by the Skylab cluster is taken into account with a 5000 volume element mathematical model. A preliminary survey of expected proton spectrometer data is reported.

  20. Teacher in Space Project.

    ERIC Educational Resources Information Center

    Social Education, 1986

    1986-01-01

    Prepared by NASA, this guide contains lessons dealing with space for use in elementary and secondary social studies classes. Activities are many and varied. For example, students analyze the costs and benefits of space travel, develop their own space station, and explore the decision-making processes involved in the shuttle. (RM)

  1. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000, carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  2. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Nearby waters reflect the flames of the Space Shuttle Endeavor as she lifts off November 30, 2000 carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  3. Planning and managing future space facility projects. [management by objectives and group dynamics

    NASA Technical Reports Server (NTRS)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  4. Exploration of complex visual feature spaces for object perception

    PubMed Central

    Leeds, Daniel D.; Pyles, John A.; Tarr, Michael J.

    2014-01-01

    The mid- and high-level visual properties supporting object perception in the ventral visual pathway are poorly understood. In the absence of well-specified theory, many groups have adopted a data-driven approach in which they progressively interrogate neural units to establish each unit's selectivity. Such methods are challenging in that they require search through a wide space of feature models and stimuli using a limited number of samples. To more rapidly identify higher-level features underlying human cortical object perception, we implemented a novel functional magnetic resonance imaging method in which visual stimuli are selected in real-time based on BOLD responses to recently shown stimuli. This work was inspired by earlier primate physiology work, in which neural selectivity for mid-level features in IT was characterized using a simple parametric approach (Hung et al., 2012). To extend such work to human neuroimaging, we used natural and synthetic object stimuli embedded in feature spaces constructed on the basis of the complex visual properties of the objects themselves. During fMRI scanning, we employed a real-time search method to control continuous stimulus selection within each image space. This search was designed to maximize neural responses across a pre-determined 1 cm3 brain region within ventral cortex. To assess the value of this method for understanding object encoding, we examined both the behavior of the method itself and the complex visual properties the method identified as reliably activating selected brain regions. We observed: (1) Regions selective for both holistic and component object features and for a variety of surface properties; (2) Object stimulus pairs near one another in feature space that produce responses at the opposite extremes of the measured activity range. Together, these results suggest that real-time fMRI methods may yield more widely informative measures of selectivity within the broad classes of visual features

  5. Space Shuttle Projects

    NASA Image and Video Library

    1976-01-01

    This is a cutaway illustration of the Space Shuttle external tank (ET) with callouts. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. Separate pressurized tank sections within the external tank hold the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts that branch off into smaller lines that feed directly into the main engines. The main engines consume 64,000 gallons (242,260 liters) of fuel each minute. Machined from aluminum alloys, the Space Shuttle's external tank is currently the only part of the launch vehicle that is not reused. After its 526,000-gallons (1,991,071 liters) of propellants are consumed during the first 8.5-minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1996-02-23

    An STS-75 onboard photo of the Tethered Satellite System-1 Reflight (TSS-1R) atop its extended boom. The TSS-1R was a reflight of TSS-1, which was flown on the Space Shuttle in July/August, 1992. Building on the knowledge gained on the TSS-1 about tether dynamics, the TSS will circle the Earth at an altitude of 296 kilometers (184 miles), placing the tether system well within the rarefield, electrically charged layer of the atmosphere known as the ionosphere. The satellite was plarned to be deployed 20.7 kilometers (12.9 miles) above the Shuttle. The conducting tether, generating high voltage and electrical currents as it moves through the ionosphere cutting magnetic field lines, would allow scientists to examine the electrodynamics of a conducting tether system. In addition, the TSS would increase our understanding of physical processes in the near-Earth space environment, such as plasma waves and currents. The tether on the TSS broke as the Satellite was nearing the full extent of its 12.5 mile deployment from the Shuttle. The TSS was a cooperative development effort by the Italian Space Agency (ASI) and NASA, and was managed by scientists at the Marshall Space Flight Center.

  7. Space Shuttle Projects

    NASA Image and Video Library

    2000-11-30

    Back dropped by a cloudless blue sky, Space Shuttle Endeavor stands ready for launch after the rollback of the Rotating Service Structure, at left. The orbiter launched that night carrying the STS-97 crew of five. The STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure, consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electric system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  8. Space Shuttle Projects

    NASA Image and Video Library

    1997-05-08

    Five NASA astronauts and a Canadian payload specialist pause from their training schedule to pose for the traditional crew portrait for their mission, STS-85. In front are astronauts Curtis L. Brown, Jr. (right), mission commander, and Kent V. Rominger, pilot. On the back row, from the left, are astronauts Robert L. Curbeam, Jr., Stephen K. Robinson, and N. Jan Davis, all mission specialists, along with the Canadian Space Agency’s (CSA) payload specialist, Bjarni Tryggvason. The five launched into space aboard the Space Shuttle Discovery on August 7, 1997 at 10:41:00 a.m. (EDT). Major payloads included the satellite known as Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 CRISTA-SPAS-02. CRISTA; a Japanese Manipulator Flight Development (MFD); the Technology Applications and Science (TAS-01); and the International Extreme Ultraviolet Hitchhiker (IEH-02).

  9. The Systems Autonomy Demonstration Project - Catalyst for Space Station advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1988-01-01

    The Systems Autonomy Demonstration Project (SADP) was initiated by NASA to address the advanced automation needs for the Space Station program. The application of advanced automation to the Space Station's operations management system (OMS) is discussed. The SADP's future goals and objectives are discussed with respect to OMS functional requirements, design, and desired evolutionary capabilities. Major technical challenges facing the designers, developers, and users of the OMS are identified in order to guide the definition of objectives, plans, and scenarios for future SADP demonstrations, and to focus the efforts on the supporting research.

  10. Space Shuttle Project

    NASA Image and Video Library

    1995-03-18

    The Space Shuttle Endeavour (STS-67) lands at Edwards Air Force Base in southern California after successfully completing NASA's longest plarned shuttle mission. The seven-member crew conducted round-the-clock observations with the ASTRO-2 observatory, a trio of telescopes designed to study the universe of ultraviolet astronomy. Because of Earth's protective ozone layer ultraviolet light from celestial objects does not reach gound-based telescopes, and such studies can only be conducted from space.

  11. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-06

    A Virginia student wears gloves inside a water tank to simulate the awkward feel and dexterity that astronauts experience when working in spacesuits. He is directed by Brad McLain for the Space Biology Museum Network. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1984-11-08

    Astronauts are clowning around in space in this STS-51A onboard photo. Astronaut Gardner, holds a “For Sale” sign after the retrieval of two malfunctioning satellites; the Western Union Telegraph Communication Satellite (WESTAR VI); and the PALAPA-B2 Satellite. Astronaut Allen, who is standing on the RMS (Remote Manipulator System) is reflected in Gardner’s helmet visor. The 51A mission launched aboard the Space Shuttle Discovery on November 8, 1984.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1984-11-08

    Astronauts are clowning around in space in this STS-51A onboard photo. Astronaut Gardner, holds a “For Sale” sign after the retrieval of two malfunctioning satellites; the Western Union Telegraph Communication Satellite (WESTAR VI); and the PALAPA-B2 Satellite. Astronaut Allen, who is standing on the Remote Manipulator System (RMS) is reflected in Gardner’s helmet visor. The 51A mission launched aboard the Space Shuttle Discovery on November 8, 1984.

  14. The Next-Generation Infrared Space Mission Spica: Project Updates

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takao; Shibai, Hiroshi; Kaneda, Hidehiro; Kohno, Kotaro; Matsuhara, Hideo; Ogawa, Hiroyuki; Onaka, Takashi; Roelfsema, Peter; SPICA Team

    2017-03-01

    We present project updates of the next-generation infrared space mission SPICA (Space Infrared Telescope for Cosmology and Astrophysics) as of November 2015. SPICA is optimized for mid- and far-infrared astronomy with unprecedented sensitivity, which will be achieved with a cryogenically cooled (below 8 K), large (2.5~m) telescope. SPICA is expected to address a number of key questions in various fields of astrophysics, ranging from studies of the star-formation history in the universe to the formation and evolution of planetary systems. The international collaboration framework of SPICA has been revisited. SPICA under the new framework passed the Mission Definition Review by JAXA in 2015. A proposal under the new framework to ESA is being prepared. The target launch year in the new framework is 2027/28.

  15. Status of the Space-Rated Lithium-Ion Battery Advanced Development Project in Support of the Exploration Vision

    NASA Technical Reports Server (NTRS)

    Miller, Thomas

    2007-01-01

    The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.

  16. Expert-guided evolutionary algorithm for layout design of complex space stations

    NASA Astrophysics Data System (ADS)

    Qian, Zhiqin; Bi, Zhuming; Cao, Qun; Ju, Weiguo; Teng, Hongfei; Zheng, Yang; Zheng, Siyu

    2017-08-01

    The layout of a space station should be designed in such a way that different equipment and instruments are placed for the station as a whole to achieve the best overall performance. The station layout design is a typical nondeterministic polynomial problem. In particular, how to manage the design complexity to achieve an acceptable solution within a reasonable timeframe poses a great challenge. In this article, a new evolutionary algorithm has been proposed to meet such a challenge. It is called as the expert-guided evolutionary algorithm with a tree-like structure decomposition (EGEA-TSD). Two innovations in EGEA-TSD are (i) to deal with the design complexity, the entire design space is divided into subspaces with a tree-like structure; it reduces the computation and facilitates experts' involvement in the solving process. (ii) A human-intervention interface is developed to allow experts' involvement in avoiding local optimums and accelerating convergence. To validate the proposed algorithm, the layout design of one-space station is formulated as a multi-disciplinary design problem, the developed algorithm is programmed and executed, and the result is compared with those from other two algorithms; it has illustrated the superior performance of the proposed EGEA-TSD.

  17. Aerogel Use as a Skin Protective Liner In Space Suits and Prosthetic Limbs Project

    NASA Technical Reports Server (NTRS)

    Roberson, Luke Bennett

    2014-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications for use in space suits and orthopedics. Three tests were performed on several types of aerogel to assess the properties of each material, and our initial findings demonstrated that these materrials would be excellent candidates for liner applications for prosthetics and space suits. The project is currently on hold until additional funding is obtained for application testing at the VH Hospitals in Tampa

  18. The Space Shuttle Columbia Preservation Project - The Debris Loan Process

    NASA Technical Reports Server (NTRS)

    Thurston, Scott; Comer, Jim; Marder, Arnold; Deacon, Ryan

    2005-01-01

    The purpose of this project is to provide a process for loan of Columbia debris to qualified researchers and technical educators to: (1) Aid in advanced spacecraft design and flight safety development (2) Advance the study of hypersonic re-entry to enhance ground safety. (3) Train and instruct accident investigators and (4) Establish an enduring legacy for Space Shuttle Columbia and her crew.

  19. NASA's In-Space Propulsion Technology Project Overview, Near-term Products and Mission Applicability

    NASA Technical Reports Server (NTRS)

    Dankanich, John; Anderson, David J.

    2008-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved (1) guidance, navigation, and control models of blunt-body rigid aeroshells, 2) atmospheric models for Earth, Titan, Mars and Venus, and 3) models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  20. Space Shuttle Projects

    NASA Image and Video Library

    1983-07-01

    This photograph was taken during the final assembly phase of the Space Shuttle light weight external tanks (LWT) 5, 6, and 7 at the Michoud Assembly Facility in New Orleans, Louisiana. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27.5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the external tank (ET) acts as a backbone for the orbiter and solid rocket boosters. In separate, internal pressurized tank sections, the ET holds the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts which branch off into smaller lines that feed directly into the main engines. Some 64,000 gallons (242,260 liters) of fuel are consumed by the main engines each minute. Machined from aluminum alloys, the Space Shuttle's ET is the only part of the launch vehicle that currently is not reused. After its 526,000 gallons (1,991,071 liters) of propellants are consumed during the first 8.5 minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET

  1. [Prospect of the Advanced Life Support Program Breadboard Project at Kennedy Space Center in USA].

    PubMed

    Guo, S S; Ai, W D

    2001-04-01

    The Breadboard Project at Kennedy Space Center in NASA of USA was focused on the development of the bioregenerative life support components, crop plants for water, air, and food production and bioreactors for recycling of wastes. The keystone of the Breadboard Project was the Biomass Production Chamber (BPC), which was supported by 15 environmentally controlled chambers and several laboratory facilities holding a total area of 2150 m2. In supporting the Advanced Life Support Program (ALS Program), the Project utilizes these facilities for large-scale testing of components and development of required technologies for human-rated test-beds at Johnson Space Center in NASA, in order to enable a Lunar and a Mars mission finally.

  2. Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-12-01

    This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demandmore » when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from

  3. Status and Mission Applicability of NASA's In-Space Propulsion Technology Project

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed

  4. Space Shuttle Projects

    NASA Image and Video Library

    1984-10-01

    The Space Shuttle Discovery en route to Earth orbit for NASA's 51-A mission is reminiscent of a soaring Eagle. The red and white trailing stripes and the blue background, along with the presence of the Eagle, generate memories of America's 208 year-old history and traditions. The two satellites orbiting the Earth backgrounded amidst a celestial scene are a universal representation of the versatility of the Space Shuttle. White lettering against the blue border lists the surnames of the five-member crew.

  5. Space Shuttle Projects

    NASA Image and Video Library

    1978-09-29

    This photo depicts the installation of an External Tank (ET) into the Marshall Space Flight Center Dynamic Test Stand, building 4550. It is being mated to the Solid Rocket Boosters (SRB's) for a Mated Vertical Ground Vibration Test (MVGVT). At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and is the only part of the vehicle that is not reusable.

  6. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-06

    Gary Coulter, a special assistant to NASA's life sciences researchers, explains the workings of the irner ear to a Virginia student. The chair rotates to disorient the vestibular system in a simulation of research on how astronauts adapt to space and readapt to Earth. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1985-05-30

    The crewmembers of Space Shuttle mission 51-F have chosen as their insignia this design by Houston artist Skip Bradley. The Space Shuttle Challenger is depicted ascending toward the heavens in search of new knowledge in the field of solar and steallar astronomy, with its Spacelab 2 payload. The constellations Leo and Orion are in the positions they will be in, relative to the sun during the flight. The nineteen stars signify that this will be the 19th STS flight.

  8. Complexity of Fit, with Application to Space Suits

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar; Benson, Elizabeth

    2009-01-01

    Although fitting a garment is often considered more of an art than a science, experts suggest that a subjectively poor fit is a symptom of inappropriate ease, the space between the wearer and the garment. The condition of poor suit fit is a unique problem for the space program and it can be attributed primarily to: a) NASA s policy to accommodate a wide variety of people (males and females from 1st to 99th percentile range and with various shapes and sizes) and b) its requirement to deploy a minimum number of suit sizes for logistical reasons. These factors make the space suit fit difficult to assess, where a wide range of people must be fit by the minimum possible number of suits, and yet, fit is crucial for operability and safety. Existing simplistic sizing scheme do not account for wide variations in shape within a diverse population with very limited sizing options. The complex issue of fit has been addressed by a variety of methods, many of which have been developed by the military, which has always had a keen interest in fitting its diverse population but with a multitude of sizing options. The space program has significantly less sizing options, so a combination of these advanced methods should be used to optimize space suit size and assess space suit fit. Multivariate methods can be used to develop sizing schemes that better reflect the wearer population, and integrated sizing systems can form a compromise between fitting men and women. Range of motion and operability testing can be combined with subjective feedback to provide a comprehensive evaluation of fit. The amount of ease can be tailored using these methods, to provide enough extra room where it is needed, without compromising mobility and comfort. This paper discusses the problem of fit in one of its most challenging applications: providing a safe and comfortable spacesuit that will protect its wearer from the extreme environment of space. It will discuss the challenges and necessity of closely

  9. Complex networks in the Euclidean space of communicability distances

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto

    2012-06-01

    We study the properties of complex networks embedded in a Euclidean space of communicability distances. The communicability distance between two nodes is defined as the difference between the weighted sum of walks self-returning to the nodes and the weighted sum of walks going from one node to the other. We give some indications that the communicability distance identifies the least crowded routes in networks where simultaneous submission of packages is taking place. We define an index Q based on communicability and shortest path distances, which allows reinterpreting the “small-world” phenomenon as the region of minimum Q in the Watts-Strogatz model. It also allows the classification and analysis of networks with different efficiency of spatial uses. Consequently, the communicability distance displays unique features for the analysis of complex networks in different scenarios.

  10. Global services systems - Space communication

    NASA Technical Reports Server (NTRS)

    Shepphird, F. H.; Wolbers, H. L.

    1979-01-01

    The requirements projected to the year 2000 for space-based global service systems, including both personal communications and innovative services, are developed based on historic trends and anticipated worldwide demographic and economic growth patterns. The growing demands appear to be best satisfied by developing larger, more sophisticated space systems in order to reduce the size, complexity, and expense of ground terminals. The availability of low-cost ground terminals will, in turn, further stimulate the generation of new services and new customers.

  11. Space Shuttle Projects

    NASA Image and Video Library

    2001-04-01

    The STS-105 crew patch symbolizes the exchange of the Expedition Two and Expedition Three crews aboard the International Space Station (ISS). The three gold stars near the ascending orbiter represent the U.S. commanded Expedition Three Crew journeying into space, while the two gold stars near the descending orbiter represent the Russian commanded Expedition Two crew on their return to Earth. The ascending and descending Orbiters form a circle that represents both the crew rotation and the continuous presence in space aboard the station. The plumes of each orbiter represent the flags of the U.S. and Russia, symbolizing the close cooperation between the two nations. The Astronaut office symbol, a star with three rays of light, depicts the unbroken link between Earth and the brightest star on the horizon, the ISS. The names of Discovery's crew of four astronauts are shown along the border of the patch while the names of the Expedition crews are shown on the chevron at the bottom of the patch.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1989-11-27

    The primary payload for Space Shuttle Mission STS-35, launched December 2, 1990, was the ASTRO-1 Observatory. Designed for round the clock observation of the celestial sphere in ultraviolet and X-ray astronomy, ASTRO-1 featured a collection of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo- Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-ray Telescope (BBXRT). Ultraviolet telescopes mounted on Spacelab elements in cargo bay were to be operated in shifts by flight crew. Loss of both data display units (used for pointing telescopes and operating experiments) during mission impacted crew-aiming procedures and forced ground teams at Marshall Space Flight Center to aim ultraviolet telescopes with fine-tuning by flight crew. BBXRT, also mounted in cargo bay, was directed from outset by ground-based operators at Goddard Space Flight Center. This is the logo or emblem that was designed to represent the ASTRO-1 payload.

  13. Succesful Experience of the Project "ASTROTOP" in Israel: Space-astonomy Science education in form of independent reserch projects of pupils

    NASA Astrophysics Data System (ADS)

    Pustil'Nik, Lev

    We present more then 10 year experience of educational project in Space/Astrophysics/Environment field, realized on the base of National Science- Educational Center "Blossoms of Science" of the Jordan Valley College. Our approach is based on the natural curiosity of children as driver of their self-development from the first minutes of their life and even in adult state. This approach shift center of the weight in educational process from direct lectures, sermons, explanation from teacher to children on own attempts of children to investigate problem, what is interesting for them, by themselves (individually or in group). Our approach includes four levels of the projects: "nano-projects" for children garden and basic school (up to 10-12 years), "micro-projects" for intermediate school (12-16 years), "mini-projects" for high school (16-18 years), and "macro-projects" for the best graduates high schools and students of colleges (17-22 years). These levels and projects are interconnected one with another and sometimes participants, started on the micro-projects level in intermediate school, continue their activity up to macro-projects of the graduate's diploma level. For each level we organize courses for preparation of the teachers and instructors, interested in the using of our receipts, and published books and brochures for them. The content of our activity for different levels: a) Level of kinder gardens/basic schools- special software with interactive movie -nano-projects; b) Level of intermediate school: "Days of Science" in tens schools of Israel- first contact with astronomy; c) Summer astronomy camps (4-5 of one week camps on 200-300 pupils from all country) with introduce to astronomy and with preparation of micro-projects on themes - first successful experience of research in real science fields (hundreds projects); d) ASTROTOP - one year program of preparation of short projects, with solution on the quality level of chosen astrophysical problem - mini-projects

  14. An expert systems application to space base data processing

    NASA Technical Reports Server (NTRS)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  15. Space Shuttle Project

    NASA Image and Video Library

    1995-10-20

    A Great Blue Heron seems oblivious to the tremendous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia (STS-73) soars skyward from Launch Pad 39B. Columbia's seven member crew's mission included continuing experimentation in the Marshall managed payloads including the United States Microgravity Laboratory 2 (USML-2) and the keel-mounted accelerometer that characterizes the very low frequency acceleration environment of the orbiter payload bay during space flight, known as the Orbital Acceleration Research Experiment (OARE).

  16. Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach

    NASA Astrophysics Data System (ADS)

    Drici, Nedjoua

    2018-03-01

    The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.

  17. CitySpace Air Sensor Network Project Conducted to Test New Monitoring Capabilities

    EPA Pesticide Factsheets

    The CitySpace project is a new research effort by EPA to field test new, lower-cost air pollution sensors in a mid-sized city to understand how this emerging technology can add valuable information on air pollution patterns in neighboorhoods.

  18. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1991-04-05

    Launched aboard the Space Shuttle Atlantis on April 5, 1991 at 9:22:44am (EST), the STS-37 mission hurtles toward space. Her crew included Steven R. Nagel, commander; Kenneth D. (Ken) Cameron, pilot; and Jay Apt, Jerry L. Ross, and Linda M. Godwin, all mission specialists. The crew’s major objective was the deployment of the Gamma Ray Observatory (GRO). Included in the observatory were the Burst and Transient Source Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Telescope (OSSEE).

  20. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-06

    A student tries to insert plastic blocks into the correct holes in a baby's toy. The seemingly trivial task becomes nearly impossible when the prism glasses he is wearing reverse left and right. This is similar to tests used to measure how astronauts adapt to space and then readapt to Earth. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  1. Space Shuttle Projects

    NASA Image and Video Library

    1983-11-08

    The crew assigned to the STS-41B (STS-11) mission included (seated left to right) Vance D. Brand, commander; and Robert L. Gibson, pilot. Standing left to right are mission specialists Robert L. Stewart, Ronald E. McNair, and Bruce McCandless. Launched aboard the Space Shuttle Challenger on February 3, 1984 at 8:00:00 am (EST), the STS-41B mission marked the first untethered space walks which were performed by McCandless and Stewart. The crew deployed the WESTAR-VI and PALAPA-B2 satellites.

  2. Space Shuttle Project

    NASA Image and Video Library

    1992-01-22

    Onboard Space Shuttle Discovery (STS-42) the seven crewmembers pose for a traditional in-space portrait in the shirt-sleeve environment of the International Microgravity Laboratory (IML-1) science module in the Shuttle's cargo bay. Pictured are (clockwise from top),Commander Ronald J. Grabe, payload commander Norman E. Thagard, payload specialist Roberta L. Bondar; mission specialists William F. Readdy and David C. Hilmers; pilot Stephen S. Oswald and payload specialist Ulf Merbold. The rotating chair, used often in biomedical tests on the eight-day flight, is in center frame.

  3. EGNOS Monitoring Prepared in Space Research Centre P.A.S. for SPMS Project

    NASA Astrophysics Data System (ADS)

    Swiatek, Anna; Jaworski, Leszek; Tomasik, Lukasz

    2017-12-01

    The European Geostationary Overlay Service (EGNOS) augments Global Positioning System (GPS) by providing correction data and integrity information for improving positioning over Europe. EGNOS Service Performance Monitoring Support (SPMS) project has assumed establishment, maintenance and implementation of an EGNOS performance monitoring network. The paper presents preliminary results of analyses prepared in Space Research Centre, Polish Academy of Sciences (Warsaw), as one of partners in SPMS project.

  4. Technical needs and research opportunities provided by projected aeronautical and space systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1992-01-01

    The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.

  5. Space flight risk data collection and analysis project: Risk and reliability database

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The focus of the NASA 'Space Flight Risk Data Collection and Analysis' project was to acquire and evaluate space flight data with the express purpose of establishing a database containing measurements of specific risk assessment - reliability - availability - maintainability - supportability (RRAMS) parameters. The developed comprehensive RRAMS database will support the performance of future NASA and aerospace industry risk and reliability studies. One of the primary goals has been to acquire unprocessed information relating to the reliability and availability of launch vehicles and the subsystems and components thereof from the 45th Space Wing (formerly Eastern Space and Missile Command -ESMC) at Patrick Air Force Base. After evaluating and analyzing this information, it was encoded in terms of parameters pertinent to ascertaining reliability and availability statistics, and then assembled into an appropriate database structure.

  6. Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  7. James Webb Space Telescope Project (JWST) Overview

    NASA Technical Reports Server (NTRS)

    Dutta, Mitra

    2008-01-01

    This presentation provides an overview of the James Webb Space Telescope (JWST) Project. The JWST is an infrared telescope designed to collect data in the cosmic dark zone. Specifically, the mission of the JWST is to study the origin and evolution of galaxies, stars and planetary systems. It is a deployable telescope with a 6.5 m diameter, segmented, adjustable primary mirror. outfitted with cryogenic temperature telescope and instruments for infrared performance. The JWST is several times more sensitive than previous telescope and other photographic and electronic detection methods. It hosts a near infrared camera, near infrared spectrometer, mid-infrared instrument and a fine guidance sensor. The JWST mission objection and architecture, integrated science payload, instrument overview, and operational orbit are described.

  8. Arachnoid membranes in the posterior half of the incisural space: an inverted Liliequist membrane-like arachnoid complex.

    PubMed

    Zhang, Xi-An; Qi, Song-Tao; Fan, Jun; Huang, Guang-Long; Peng, Jun-Xiang

    2014-08-01

    The aim of this study was to describe the similarity of configuration between the arachnoid complex in the posterior half of the incisural space and the Liliequist membrane. Microsurgical dissection and anatomical observation were performed in 20 formalin-fixed adult cadaver heads. The origin, distribution, and configuration of the arachnoid membranes and their relationships with the vascular structures in the posterior half of the incisural space were examined. The posterior perimesencephalic membrane and the cerebellar precentral membrane have a common origin at the tentorial edge and form an arachnoid complex strikingly resembling an inverted Liliequist membrane. Asymmetry between sides is not uncommon. If the cerebellar precentral membrane is hypoplastic on one side or both, the well-developed quadrigeminal membrane plays a prominent part in partitioning the subarachnoid space in the posterior half of the incisural space. The arachnoid complex in the posterior half of the incisural space can be regarded as an inverted Liliequist membrane. This concept can help neurosurgeons to gain better understanding of the surgical anatomy at the level of the tentorial incisura.

  9. Space processing: A projection

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.; Griffin, R. N.

    1972-01-01

    Estimates concerning space manufacturing, which might well become the largest and most specific application of space technology by the end of the century are given. Two classes of materials are considered - electronic crystals and biologicals.

  10. Development of realtime connected element interferometry at the Goldstone Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Edwards, C. D.

    1990-01-01

    Connected-element interferometry (CEI) has the potential to provide high-accuracy angular spacecraft tracking on short baselines by making use of the very precise phase delay observable. Within the Goldstone Deep Space Communications Complex (DSCC), one of three tracking complexes in the NASA Deep Space Network, baselines of up to 21 km in length are available. Analysis of data from a series of short-baseline phase-delay interferometry experiments are presented to demonstrate the potential tracking accuracy on these baselines. Repeated differential observations of pairs of angularly close extragalactic radio sources were made to simulate differential spacecraft-quasar measurements. Fiber-optic data links and a correlation processor are currently being developed and installed at Goldstone for a demonstration of real-time CEI in 1990.

  11. The role of the International Space University in building capacity in emerging space nations.

    NASA Astrophysics Data System (ADS)

    Richards, Robert

    The International Space University provides graduate-level training to the future leaders of the emerging global space community at its Central Campus in Strasbourg, France, and at locations around the world. In its two-month Summer Session and one-year Masters program, ISU offers its students a unique Core Curriculum covering all disciplines related to space programs and enterprises - space science, space engineering, systems engineering, space policy and law, business and management, and space and society. Both programs also involve an intense student research Team Project providing international graduate students and young space professionals the opportunity to solve complex problems by working together in an intercultural environment. Since its founding in 1987, ISU has graduated more than 2500 students from 96 countries. Together with hundreds of ISU faculty and lecturers from around the world, ISU alumni comprise an extremely effective network of space professionals and leaders that actively facilitates individual career growth, professional activities and international space cooperation.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1984-04-01

    Launched April 6, 1984, one of the goals of the STS-41C mission was to repair the damaged free-flying Solar Maximum Mission Satellite (SMMS), or Solar Max. The original plan was to make an excursion out to the SMMS and capture it for necessary repairs. Pictured is Mission Specialist George Nelson approaching the damaged satellite in a capture attempt. This attempted feat was unsuccessful. It was necessary to capture the satellite via the orbiter's Remote Manipulator System (RMS) and secure it into the cargo bay in order to perform the repairs, which included replacing the altitude control system and the coronograph/polarimeter electronics box. The SMMS was originally launched into space via the Delta Rocket in February 1980, with the purpose to provide a means of studying solar flares during the most active part of the current sunspot cycle. Dr. Einar Tandberg-Hanssen of Marshall Space Flight Center's Space Sciences Lab was principal investigator for the Ultraviolet Spectrometer and Polarimeter, one of the seven experiments of the Solar Max.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1994-07-01

    In this photograph, astronaut Carl Walz performs the Performance Assessment Workstation (PAWS) experiment at the flight deck of the Space Shuttle Orbiter Columbia during the STS-65 mission. Present day astronauts are subject to a variety of stresses during spaceflight. These include microgravity, physical isolation, confinement, lack of privacy, fatigue, and changing work/rest cycles. The purpose of this experiment is to determine the effects of microgravity upon thinking skills critical to the success of operational tasks in space. The principle objective is to distinguish between the effects of microgravity on specific information-processing skills affecting performance and those of fatigue caused by long work periods. To measure these skills, the investigators use a set of computerized performance tests called the Performance Assessment Workstation, which is based on current theoretical models of human performance. The tests were selected by analyzing tasks related to space missions and their hypothesized sensitivity to microgravity. Multiple subjective measures of cumulative fatigue and changing mood states are also included for interpreting performance data.

  14. Space Shuttle Projects

    NASA Image and Video Library

    1993-05-01

    Designed by members of the flight crew, the STS-58 insignia depicts the Space Shuttle Columbia with a Spacelab module in its payload bay in orbit around Earth. The Spacelab and the lettering Spacelab Life Sciences ll highlight the primary mission of the second Space Shuttle flight dedicated to life sciences research. An Extended Duration Orbiter (EDO) support pallet is shown in the aft payload bay, stressing the scheduled two-week duration of the longest Space Shuttle mission to date. The hexagonal shape of the patch depicts the carbon ring, a molecule common to all living organisms. Encircling the inner border of the patch is the double helix of DNA, representing the genetic basis of life. Its yellow background represents the sun, energy source for all life on Earth. Both medical and veterinary caducei are shown to represent the STS- 58 life sciences experiments. The position of the spacecraft in orbit about Earth with the United States in the background symbolizes the ongoing support of the American people for scientific research intended to benefit all mankind.

  15. Assisted-living spaces for end-users with complex needs: a proposed implementation and delivery model.

    PubMed

    Linskell, Jeremy; Bouamrane, Matt-Mouley

    2012-09-01

    An assisted living space (ALS) is a technology-enabled environment designed to allow people with complex health or social care needs to remain, and live independently, in their own home for longer. However, many challenges remain in order to deliver usable systems acceptable to a diverse range of stakeholders, including end-users, and their families and carers, as well as health and social care services. ALSs need to support activities of daily-living while allowing end-users to maintain important social connections. They must be dynamic, flexible and adaptable living environments. In this article, we provide an overview of the technological landscape of assisted-living technology (ALT) and recent policies to promote an increased adoption of ALT in Scotland. We discuss our experiences in implementing technology-supported ALSs and emphasise key lessons. Finally, we propose an iterative and pragmatic user-centred implementation model for delivering ALSs in complex-needs scenarios. This empirical model is derived from our past ALS implementations. The proposed model allows project stakeholders to identify requirements, allocate tasks and responsibilities, and identify appropriate technological solutions for the delivery of functional ALS systems. The model is generic and makes no assumptions on needs or technology solutions, nor on the technical knowledge, skills and experience of the stakeholders involved in the ALS design process.

  16. Space Station Biological Research Project: Reference Experiment Book

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine (Editor); Wade, Charles (Editor)

    1996-01-01

    The Space Station Biological Research Project (SSBRP), which is the combined efforts of the Centrifuge Facility (CF) and the Gravitational Biology Facility (GBF), is responsible for the development of life sciences hardware to be used on the International Space Station to support cell, developmental, and plant biology research. The SSBRP Reference Experiment Book was developed to use as a tool for guiding this development effort. The reference experiments characterize the research interests of the international scientific community and serve to identify the hardware capabilities and support equipment needed to support such research. The reference experiments also serve as a tool for understanding the operational aspects of conducting research on board the Space Station. This material was generated by the science community by way of their responses to reference experiment solicitation packages sent to them by SSBRP scientists. The solicitation process was executed in two phases. The first phase was completed in February of 1992 and the second phase completed in November of 1995. Representing these phases, the document is subdivided into a Section 1 and a Section 2. The reference experiments contained in this document are only representative microgravity experiments. They are not intended to define actual flight experiments. Ground and flight experiments will be selected through the formal NASA Research Announcement (NRA) and Announcement of Opportunity (AO) experiment solicitation, review, and selection process.

  17. Developing integrated parametric planning models for budgeting and managing complex projects

    NASA Technical Reports Server (NTRS)

    Etnyre, Vance A.; Black, Ken U.

    1988-01-01

    The applicability of integrated parametric models for the budgeting and management of complex projects is investigated. Methods for building a very flexible, interactive prototype for a project planning system, and software resources available for this purpose, are discussed and evaluated. The prototype is required to be sensitive to changing objectives, changing target dates, changing costs relationships, and changing budget constraints. To achieve the integration of costs and project and task durations, parametric cost functions are defined by a process of trapezoidal segmentation, where the total cost for the project is the sum of the various project cost segments, and each project cost segment is the integral of a linearly segmented cost loading function over a specific interval. The cost can thus be expressed algebraically. The prototype was designed using Lotus-123 as the primary software tool. This prototype implements a methodology for interactive project scheduling that provides a model of a system that meets most of the goals for the first phase of the study and some of the goals for the second phase.

  18. Dedication of the Early Space Education and Conference Center at KSC Visitor Complex.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the opening of the Early Space Education and Conference Center, KSC Visitor Complex, the facility is dedicated to Dr.Kurt H. Debus, who served as the first director of the John F. Kennedy Space Center, 1962-1974. Attending the dedication are (left to right) Delaware North President Rick Abramson, Ute Debus, Center Director Roy Bridges and Sigi Debus Northcutt. Ute and Sigi are the daughters of Dr. Debus.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1990-11-16

    The 5 member crew of the STS-41 mission included (left to right): Bruce E. Melnick, mission specialist 2; Robert D. Cabana, pilot; Thomas D. Akers, mission specialist 3; Richard N. Richards, commander; and William M. Shepherd, mission specialist 1. Launched aboard the Space Shuttle Discovery on October 6, 1990 at 7:47:15 am (EDT), the primary payload for the mission was the ESA built Ulysses Space Craft made to explore the polar regions of the Sun. Other main payloads and experiments included the Shuttle Solar Backscatter Ultraviolet (SSBUV) experiment and the INTELSAT Solar Array Coupon (ISAC).

  20. Space Shuttle Projects

    NASA Image and Video Library

    1996-02-01

    The crew assigned to the STS-77 mission included (seated left to right) Curtis L. Brown, pilot; and John H. Casper, commander. Standing, left to right, are mission specialists Daniel W. Bursch, Mario Runco, Marc Garneau (CSA), and Andrew S. W. Thomas. Launched aboard the Space Shuttle Endeavour on May 19, 1996 at 6:30:00 am (EDT), the STS-77 mission carried three primary payloads; the SPACEHAB-4 pressurized research module, the Inflatable Antenna Experiment (IAE) mounted on a Spartan 207 free-flyer, and a suite of four technology demonstration experiments known as Technology Experiments for Advancing Missions in Space (TEAMS).

  1. Autonomous space processor for orbital debris advanced design project in support of solar system exploration

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern

    1992-01-01

    This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  2. Weak convergence of a projection algorithm for variational inequalities in a Banach space

    NASA Astrophysics Data System (ADS)

    Iiduka, Hideaki; Takahashi, Wataru

    2008-03-01

    Let C be a nonempty, closed convex subset of a Banach space E. In this paper, motivated by Alber [Ya.I. Alber, Metric and generalized projection operators in Banach spaces: Properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, in: Lecture Notes Pure Appl. Math., vol. 178, Dekker, New York, 1996, pp. 15-50], we introduce the following iterative scheme for finding a solution of the variational inequality problem for an inverse-strongly-monotone operator A in a Banach space: x1=x[set membership, variant]C andxn+1=[Pi]CJ-1(Jxn-[lambda]nAxn) for every , where [Pi]C is the generalized projection from E onto C, J is the duality mapping from E into E* and {[lambda]n} is a sequence of positive real numbers. Then we show a weak convergence theorem (Theorem 3.1). Finally, using this result, we consider the convex minimization problem, the complementarity problem, and the problem of finding a point u[set membership, variant]E satisfying 0=Au.

  3. SpaceX CRS-11 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-05-31

    Miriam Sargusingh, project lead for the Capillary Structures for Exploration Life Support, or CSELS, experiment, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on experiments and instruments to be delivered to the International Space Station on SpaceX CRS-11. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  4. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.

    PubMed

    Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V

    2018-06-01

    Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.

  5. NASA Systems Autonomy Demonstration Project - Development of Space Station automation technology

    NASA Technical Reports Server (NTRS)

    Bull, John S.; Brown, Richard; Friedland, Peter; Wong, Carla M.; Bates, William

    1987-01-01

    A 1984 Congressional expansion of the 1958 National Aeronautics and Space Act mandated that NASA conduct programs, as part of the Space Station program, which will yield the U.S. material benefits, particularly in the areas of advanced automation and robotics systems. Demonstration programs are scheduled for automated systems such as the thermal control, expert system coordination of Station subsystems, and automation of multiple subsystems. The programs focus the R&D efforts and provide a gateway for transfer of technology to industry. The NASA Office of Aeronautics and Space Technology is responsible for directing, funding and evaluating the Systems Autonomy Demonstration Project, which will include simulated interactions between novice personnel and astronauts and several automated, expert subsystems to explore the effectiveness of the man-machine interface being developed. Features and progress on the TEXSYS prototype thermal control system expert system are outlined.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1988-01-01

    This artist's concept drawing depicts the Tracking and Data Relay Satellite-C (TDRS-C), which was the primary payload of the Space Shuttle Discovery on the STS-26 mission, launched on September 29, 1988. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The deployment of TDRS-G on the STS-70 mission being the latest in the series, NASA has successfully launched six TDRSs.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1992-10-20

    The STS-52 insignia, designed by the mission’s crew members, features a large gold star to symbolize the crew's mission on the frontiers of space. A gold star is often used to symbolize the frontier period of the American West. The red star in the shape of the Greek letter lambda represents both the laser measurements taken from the Laser Geodynamic Satellite (LAGEOS II) and the Lambda Point Experiment, which was part of the United States Microgravity Payload (USMP-l). The remote manipulator and maple leaf are emblematic of the Canadian payload specialist who conducted a series of Canadian flight experiments (CANEX-2), including the Space Vision System test.

  8. Advanced space power requirements and techniques. Task 1: Mission projections and requirements. Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    Wolfe, M. G.

    1978-01-01

    The objectives of this study were to: (1) develop projections of the NASA, DoD, and civil space power requirements for the 1980-1995 time period; (2) identify specific areas of application and space power subsystem type needs for each prospective user; (3) document the supporting and historical base, including relevant cost related measures of performance; and (4) quantify the benefits of specific technology projection advancements. The initial scope of the study included: (1) construction of likely models for NASA, DoD, and civil space systems; (2) generation of a number of future scenarios; (3) extraction of time phased technology requirements based on the scenarios; and (4) cost/benefit analyses of some of the technologies identified.

  9. How Robust Is Your Project? From Local Failures to Global Catastrophes: A Complex Networks Approach to Project Systemic Risk.

    PubMed

    Ellinas, Christos; Allan, Neil; Durugbo, Christopher; Johansson, Anders

    2015-01-01

    Current societal requirements necessitate the effective delivery of complex projects that can do more while using less. Yet, recent large-scale project failures suggest that our ability to successfully deliver them is still at its infancy. Such failures can be seen to arise through various failure mechanisms; this work focuses on one such mechanism. Specifically, it examines the likelihood of a project sustaining a large-scale catastrophe, as triggered by single task failure and delivered via a cascading process. To do so, an analytical model was developed and tested on an empirical dataset by the means of numerical simulation. This paper makes three main contributions. First, it provides a methodology to identify the tasks most capable of impacting a project. In doing so, it is noted that a significant number of tasks induce no cascades, while a handful are capable of triggering surprisingly large ones. Secondly, it illustrates that crude task characteristics cannot aid in identifying them, highlighting the complexity of the underlying process and the utility of this approach. Thirdly, it draws parallels with systems encountered within the natural sciences by noting the emergence of self-organised criticality, commonly found within natural systems. These findings strengthen the need to account for structural intricacies of a project's underlying task precedence structure as they can provide the conditions upon which large-scale catastrophes materialise.

  10. New opportunities offered by Cubesats for space research in Latin America: The SUCHAI project case

    NASA Astrophysics Data System (ADS)

    Diaz, M. A.; Zagal, J. C.; Falcon, C.; Stepanova, M.; Valdivia, J. A.; Martinez-Ledesma, M.; Diaz-Peña, J.; Jaramillo, F. R.; Romanova, N.; Pacheco, E.; Milla, M.; Orchard, M.; Silva, J.; Mena, F. P.

    2016-11-01

    During the last decade, a very small-standardized satellite, the Cubesat, emerged as a low-cost fast-development tool for space and technology research. Although its genesis is related to education, the change in paradigm presented by this satellite platform has motivated several countries, institutions, and companies to invest in a variety of technologies, aimed at improving Cubesat capabilities, while lowering costs of space missions. Following that trend, Latin American institutions, mostly universities, has started to develop Cubesat missions. This article describes some of the Latin American projects in this area. In particular, we discuss the achievements and scientific grounds upon which the first Cubesat projects in Chile were based and the implications that those projects have had on pursuing satellite-based research in the country and in collaboration with other countries of the region.

  11. Community Learning Campus: It Takes a Simple Message to Build a Complex Project

    ERIC Educational Resources Information Center

    Pearson, George

    2012-01-01

    Education Canada asked Tom Thompson, president of Olds College and a prime mover behind the Community Learning Campus (CLC): What were the lessons learned from this unusually ambitious education project? Thompson mentions six lessons he learned from this complex project which include: (1) Dream big, build small, act now; (2) Keep a low profile at…

  12. Information mining in weighted complex networks with nonlinear rating projection

    NASA Astrophysics Data System (ADS)

    Liao, Hao; Zeng, An; Zhou, Mingyang; Mao, Rui; Wang, Bing-Hong

    2017-10-01

    Weighted rating networks are commonly used by e-commerce providers nowadays. In order to generate an objective ranking of online items' quality according to users' ratings, many sophisticated algorithms have been proposed in the complex networks domain. In this paper, instead of proposing new algorithms we focus on a more fundamental problem: the nonlinear rating projection. The basic idea is that even though the rating values given by users are linearly separated, the real preference of users to items between the different given values is nonlinear. We thus design an approach to project the original ratings of users to more representative values. This approach can be regarded as a data pretreatment method. Simulation in both artificial and real networks shows that the performance of the ranking algorithms can be improved when the projected ratings are used.

  13. Harmonic maps of S into a complex Grassmann manifold.

    PubMed

    Chern, S S; Wolfson, J

    1985-04-01

    Let G(k, n) be the Grassmann manifold of all C(k) in C(n), the complex spaces of dimensions k and n, respectively, or, what is the same, the manifold of all projective spaces P(k-1) in P(n-1), so that G(1, n) is the complex projective space P(n-1) itself. We study harmonic maps of the two-dimensional sphere S(2) into G(k, n). The case k = 1 has been the subject of investigation by several authors [see, for example, Din, A. M. & Zakrzewski, W. J. (1980) Nucl. Phys. B 174, 397-406; Eells, J. & Wood, J. C. (1983) Adv. Math. 49, 217-263; and Wolfson, J. G. Trans. Am. Math. Soc., in press]. The harmonic maps S(2) --> G(2, 4) have been studied by Ramanathan [Ramanathan, J. (1984) J. Differ. Geom. 19, 207-219]. We shall describe all harmonic maps S(2) --> G(2, n). The method is based on several geometrical constructions, which lead from a given harmonic map to new harmonic maps, in which the image projective spaces are related by "fundamental collineations." The key result is the degeneracy of some fundamental collineations, which is a global consequence, following from the fact that the domain manifold is S(2). The method extends to G(k, n).

  14. Enabling technologies for space exploration systems: The STEPS project results and perspectives

    NASA Astrophysics Data System (ADS)

    Messidoro, Piero; Perino, Maria Antonietta; Boggiatto, Dario

    2013-05-01

    The project STEPS (Sistemi e Tecnologie per l'EsPlorazione Spaziale) is a joint development of technologies and systems for Space Exploration supported by Regione Piemonte, the European Regional Development Fund (E.R.D.F.) 2007-2013, Thales Alenia Space Italia (TAS-I), SMEs, Universities and public Research Centres belonging to the network "Comitato Distretto Aerospaziale del Piemonte" the Piedmont Aerospace District (PAD) in Italy. The project first part terminated in May 2012 with a final demonstration event that summarizes the technological results of research activities carried-out during a period the three years and half. The project developed virtual and hardware demonstrators for a range of technologies for the descent, soft landing and surface mobility of robotic and manned equipment for Moon and Mars exploration. The two key hardware demonstrators—a Mars Lander and a Lunar Rover—fit in a context of international cooperation for the exploration of Moon and Mars, as envisaged by Space Agencies worldwide. The STEPS project included also the development and utilization of a system of laboratories equipped for technology validation, teleoperations, concurrent design environments, and virtual reality simulation of the Exploration Systems in typical Moon and Mars environments. This paper presents the reached results in several technology domains like: vision-based GNC for the last portion of Mars Entry, Descent and Landing sequence, Hazard avoidance and complete spacecraft autonomy; Autonomous Rover Navigation, based on the determination of the terrain morphology by a stereo camera; Mobility and Mechanisms providing an Integrated Ground Mobility System, Rendezvous and Docking equipment, and protection from Environment effects; innovative Structures such as Inflatable, Smart and Multifunction Structures, an Active Shock Absorber for safe landing, balance restoring and walking; Composite materials Modelling and Monitoring; Human-machine interface features of a

  15. The TERESA project: from space research to ground tele-echography

    NASA Technical Reports Server (NTRS)

    Vieyres, Pierre; Poisson, Gerard; Courreges, Fabien; Merigeaux, Olivier; Arbeille, Philippe

    2003-01-01

    Ultrasound examinations represent one of the major diagnostic modalities of future healthcare. They are currently used to support medical space research but require a high skilled operator for both probe positioning on the patient's skin and image interpretation. TERESA is a tele-echography project that proposes a solution to bring astronauts and remotely located patients on ground quality ultrasound examinations despite the lack of a specialist at the location of the wanted medical act.

  16. Fault identification of rotor-bearing system based on ensemble empirical mode decomposition and self-zero space projection analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Zhu, Zhencai; Li, Wei; Zhou, Gongbo; Chen, Guoan

    2014-07-01

    Accurately identifying faults in rotor-bearing systems by analyzing vibration signals, which are nonlinear and nonstationary, is challenging. To address this issue, a new approach based on ensemble empirical mode decomposition (EEMD) and self-zero space projection analysis is proposed in this paper. This method seeks to identify faults appearing in a rotor-bearing system using simple algebraic calculations and projection analyses. First, EEMD is applied to decompose the collected vibration signals into a set of intrinsic mode functions (IMFs) for features. Second, these extracted features under various mechanical health conditions are used to design a self-zero space matrix according to space projection analysis. Finally, the so-called projection indicators are calculated to identify the rotor-bearing system's faults with simple decision logic. Experiments are implemented to test the reliability and effectiveness of the proposed approach. The results show that this approach can accurately identify faults in rotor-bearing systems.

  17. Planning the Recreational-Educational Complex of the Alabama Space and Rocket Center.

    ERIC Educational Resources Information Center

    Burkhalter, Bettye B.; Kartis, Alexia M.

    1983-01-01

    Planning for the Alabama Space and Rocket Center's new recreational-educational complex included (1) goal establishment, (2) needs assessment (including accessibility for the disabled), (3) environmental impact analysis, (4) formulation of objectives and priorities, and (5) strategy development to meet objectives, as well as preparation of a…

  18. A twenty-first century perspective. [NASA space communication infrastructure to support space missions

    NASA Technical Reports Server (NTRS)

    Aller, Robert O.; Miller, Albert

    1990-01-01

    The status of the NASA assets which are operated by the Office of Space Operations is briefly reviewed. These assets include the ground network, the space network, and communications and data handling facilities. The current plans for each element are examined, and a projection of each is made to meet the user needs in the 21st century. The following factors are noted: increasingly responsive support will be required by the users; operational support concepts must be cost-effective to serve future missions; and a high degree of system reliability and availability will be required to support manned exploration and increasingly complex missions.

  19. Integrated design and management of complex and fast track projects

    NASA Astrophysics Data System (ADS)

    Mancini, Dario

    2003-02-01

    Modern scientific and technological projects are increasingly in competition over scientific aims, technological innovation, performance, time and cost. They require a dedicated and innovative organization able to satisfy contemporarily various technical and logistic constraints imposed by the final user, and guarantee the satisfaction of technical specifications, identified on the basis of scientific aims. In order to satisfy all the above, the management has to be strategically innovative and intuitive, by removing, first of all, the bottlenecks that are pointed out, usually only at the end of the projects, as the causes of general dissatisfaction. More than 30 years spent working on complex multidisciplinary systems and 20 years of formative experience in managing contemporarily both scientific, technological and industrial projects have given the author the possibility to study, test and validate strategies for parallel project management and integrated design, merged in a sort of unique optimized task, using the newly-coined word "Technomethodology". The paper highlights useful information to be taken into consideration during project organization to minimize the program deviations from the expected goals and describe some of the basic meanings of this new advanced method that is the key for parallel successful management of multiple and interdisciplinary activities.

  20. Space Station Biological Research Project

    NASA Technical Reports Server (NTRS)

    Johnson, Catherine C.; Hargens, Alan R.; Wade, Charles E.

    1995-01-01

    NASA Ames Research Center is responsible for the development of the Space Station Biological Research Project (SSBRP) which will support non-human life sciences research on the International Space Station Alpha (ISSA). The SSBRP is designed to support both basic research to understand the effect of altered gravity fields on biological systems and applied research to investigate the effects of space flight on biological systems. The SSBRP will provide the necessary habitats to support avian and reptile eggs, cells and tissues, plants and rodents. In addition a habitat to support aquatic specimens will be provided by our international partners. Habitats will be mounted in ISSA compatible racks at u-g and will also be mounted on a 2.5 m diameter centrifuge except for the egg incubator which has an internal centrifuge. The 2.5 m centrifuge will provide artificial gravity levels over the range of 0.01 G to 2 G. The current schedule is to launch the first rack in 1999, the Life Sciences glovebox and a second rack early in 2001, a 4 habitat 2.5 in centrifuge later the same year in its own module, and to upgrade the centrifuge to 8 habitats in 2004. The rodent habitats will be derived from the Advanced Animal Habitat currently under development for the Shuttle program and will be capable of housing either rats or mice individually or in groups (6 rats/group and at least 12 mice/group). The egg incubator will be an upgraded Avian Development Facility also developed for the Shuttle program through a Small Business and Innovative Research grant. The Space Tissue Loss cell culture apparatus, developed by Walter Reed Army Institute of Research, is being considered for the cell and tissue culture habitat. The Life Sciences Glovebox is crucial to all life sciences experiments for specimen manipulation and performance of science procedures. It will provide two levels of containment between the work volume and the crew through the use of seals and negative pressure. The glovebox

  1. The design and implementation of the Technical Facilities Controller (TFC) for the Goldstone deep space communications complex

    NASA Technical Reports Server (NTRS)

    Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.

    1988-01-01

    The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.

  2. Space Shuttle Projects

    NASA Image and Video Library

    1998-06-08

    The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.

  3. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-08

    Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at Johnson Space Center to train for upcoming duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties for the fourth Hubble Space Telescope Servicing mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1992-08-24

    This STS-46 onboard photo is of the Tethered Satellite System-1 (TSS-1) being deployed from its boom as it is perched above the cargo bay of the Earth-orbiting Space Shuttle Atlantis. Circling the Earth at an altitude of 296 kilometers (184 miles), the TSS-1 will be well within the tenuous, electrically charged layer of the atmosphere known as the ionosphere. There, a satellite attached to the orbiter by a thin conducting cord, or tether, will be reeled from the Shuttle payload bay. On this mission the satellite was plarned to be deployed 20 kilometers (12.5 miles) above the Shuttle. The conducting tether will generate high voltage and electrical currents as it moves through the atmosphere allowing scientists to examine the electrodynamics of a conducting tether system. These studies will not only increase our understanding of physical processes in the near-Earth space environment, but will also help provide an explanation for events witnessed elsewhere in the solar system. The crew of the STS-46 mission were unable to reel the satellite as planned. After several unsuccessful attempts, they were only able to extend the satellite 9.8 kilometers (6.1 miles). The TSS was a cooperative development effort by the Italian Space Agency (ASI), and NASA.

  5. AMPS sciences objectives and philosophy. [Atmospheric, Magnetospheric and Plasmas-in-Space project on Spacelab

    NASA Technical Reports Server (NTRS)

    Schmerling, E. R.

    1975-01-01

    The Space Shuttle will open a new era in the exploration of earth's near-space environment, where the weight and power capabilities of Spacelab and the ability to use man in real time add important new features. The Atmospheric, Magnetospheric, and Plasmas-in-Space project (AMPS) is conceived of as a facility where flexible core instruments can be flown repeatedly to perform different observations and experiments. The twin thrusts of remote sensing of the atmosphere below 120 km and active experiments on the space plasma are the major themes. They have broader implications in increasing our understanding of plasma physics and of energy conversion processes elsewhere in the universe.

  6. High dimensional feature reduction via projection pursuit

    NASA Technical Reports Server (NTRS)

    Jimenez, Luis; Landgrebe, David

    1994-01-01

    The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many more spectral intervals than previously possible. An example of that technology is the AVIRIS system, which collects image data in 220 bands. As a result of this, new algorithms must be developed in order to analyze the more complex data effectively. Data in a high dimensional space presents a substantial challenge, since intuitive concepts valid in a 2-3 dimensional space to not necessarily apply in higher dimensional spaces. For example, high dimensional space is mostly empty. This results from the concentration of data in the corners of hypercubes. Other examples may be cited. Such observations suggest the need to project data to a subspace of a much lower dimension on a problem specific basis in such a manner that information is not lost. Projection Pursuit is a technique that will accomplish such a goal. Since it processes data in lower dimensions, it should avoid many of the difficulties of high dimensional spaces. In this paper, we begin the investigation of some of the properties of Projection Pursuit for this purpose.

  7. Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  8. Towards a Framework for Modeling Space Systems Architectures

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Skipper, Joseph

    2006-01-01

    Topics covered include: 1) Statement of the problem: a) Space system architecture is complex; b) Existing terrestrial approaches must be adapted for space; c) Need a common architecture methodology and information model; d) Need appropriate set of viewpoints. 2) Requirements on a space systems model. 3) Model Based Engineering and Design (MBED) project: a) Evaluated different methods; b) Adapted and utilized RASDS & RM-ODP; c) Identified useful set of viewpoints; d) Did actual model exchanges among selected subset of tools. 4) Lessons learned & future vision.

  9. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    During the SpaceX CRS-14 "What's On Board?" Science Briefing inside the Kennedy Space Center Press Site Auditorium, members of the media learned about the research headed to the International Space Station aboard the Dragon spacecraft. The briefing focused on several science projects including the Metabolic Tracking experiment; Atmosphere-Space Interactions Monitor (ASIM); Multi-purpose Variable-g Platform (MVP), and Veggie PONDS Validation. The Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 14th Commercial Resupply Services mission to the space station.

  10. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    NASA Technical Reports Server (NTRS)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  11. Space Shuttle Projects

    NASA Image and Video Library

    2004-09-13

    The Space Shuttle External Tank 120 is shown here during transfer in NASA’s Michoud Assembly Facility in New Orleans. Slated for launch on the Orbiter Discovery scheduled for next Spring, the tank will be erected vertically in preparation for its new foam application process on the liquid hydrogen tank-to-inter tank flange area, a tank structural connection point. The foam will be applied with an enhanced finishing procedure that requires two technicians, one for a new mold-injection procedure to the intertank’s ribbing and one for real-time videotaped surveillance of the process. Marshall Space Flight Center played a significant role in the development of the new application process designed to replace the possible debris shedding source previously used.

  12. Space Shuttle Projects

    NASA Image and Video Library

    2004-09-13

    The Space Shuttle External Tank 120 is shown here in its vertical position in NASA’s Michoud Assembly Facility in New Orleans. Slated for launch on the Orbiter Discovery scheduled for next Spring, the tank is in position for its new foam application process on the liquid hydrogen tank-to-inter tank flange area, a tank structural connection point. The foam will be applied with an enhanced finishing procedure that requires two technicians, one for a new mold-injection procedure to the intertank’s ribbing and one for real-time videotaped surveillance of the process. Marshall Space Flight Center played a significant role in the development of the new application process designed to replace the possible debris shedding source previously used.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-14

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. After securing the satellite with the Remote Manipulator System (RMS), the crew proceeded with preparing the satellite for its release into space.

  14. Progress update of NASA's free-piston Stirling space power converter technology project

    NASA Technical Reports Server (NTRS)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  15. The NASA In-Space Propulsion Technology Project's Current Products and Future Directions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry

    2010-01-01

    Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.

  16. Programs Automate Complex Operations Monitoring

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Kennedy Space Center, just off the east coast of Florida on Merritt Island, has been the starting place of every human space flight in NASA s history. It is where the first Americans left Earth during Project Mercury, the terrestrial departure point of the lunar-bound Apollo astronauts, as well as the last solid ground many astronauts step foot on before beginning their long stays aboard the International Space Station. It will also be the starting point for future NASA missions to the Moon and Mars and temporary host of the new Ares series rockets designed to take us there. Since the first days of the early NASA missions, in order to keep up with the demands of the intricate and critical Space Program, the launch complex - host to the large Vehicle Assembly Building, two launch pads, and myriad support facilities - has grown increasingly complex to accommodate the sophisticated technologies needed to manage today s space missions. To handle the complicated launch coordination safely, NASA found ways to automate mission-critical applications, resulting in streamlined decision-making. One of these methods, management software called the Control Monitor Unit (CMU), created in conjunction with McDonnell Douglas Space & Defense Systems, has since left NASA, and is finding its way into additional applications.

  17. Municipal Complex Solar Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sher, Jono; Toth, Andrew

    2015-02-12

    This project is a great benefit to the City of Perth Amboy by saving energy and savings costs. The project serves as a great example to city residents about the importance of renewable energy, energy conservation and other environmental topics. An electronic display in the City Hall shows how much energy was generated on that day, how much energy is saved, and environmental benefits. The project serves to educate people of environmental concerns and may spark the interest of individuals in other environmental topics. Hopefully, other residents will be encouraged to use solar energy. The project is also saving moneymore » for the City and its taxpayers. Anywhere we can save money means that residents can pay less in taxes and/or the City can provide improved services.« less

  18. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs

    PubMed Central

    Amézquita, Adolfo; Flechas, Sandra Victoria; Lima, Albertina Pimentel; Gasser, Herbert; Hödl, Walter

    2011-01-01

    In species-rich assemblages of acoustically communicating animals, heterospecific sounds may constrain not only the evolution of signal traits but also the much less-studied signal-processing mechanisms that define the recognition space of a signal. To test the hypothesis that the recognition space is optimally designed, i.e., that it is narrower toward the species that represent the higher potential for acoustic interference, we studied an acoustic assemblage of 10 diurnally active frog species. We characterized their calls, estimated pairwise correlations in calling activity, and, to model the recognition spaces of five species, conducted playback experiments with 577 synthetic signals on 531 males. Acoustic co-occurrence was not related to multivariate distance in call parameters, suggesting a minor role for spectral or temporal segregation among species uttering similar calls. In most cases, the recognition space overlapped but was greater than the signal space, indicating that signal-processing traits do not act as strictly matched filters against sounds other than homospecific calls. Indeed, the range of the recognition space was strongly predicted by the acoustic distance to neighboring species in the signal space. Thus, our data provide compelling evidence of a role of heterospecific calls in evolutionarily shaping the frogs' recognition space within a complex acoustic assemblage without obvious concomitant effects on the signal. PMID:21969562

  19. Adapting Project Management Practices to Research-Based Projects

    NASA Technical Reports Server (NTRS)

    Bahr, P.; Baker, T.; Corbin, B.; Keith, L.; Loerch, L.; Mullenax, C.; Myers, R.; Rhodes, B.; Skytland, N.

    2007-01-01

    From dealing with the inherent uncertainties in outcomes of scientific research to the lack of applicability of current NASA Procedural Requirements guidance documentation, research-based projects present challenges that require unique application of classical project management techniques. If additionally challenged by the creation of a new program transitioning from basic to applied research in a technical environment often unfamiliar with the cost and schedule constraints addressed by project management practices, such projects can find themselves struggling throughout their life cycles. Finally, supplying deliverables to a prime vehicle customer, also in the formative stage, adds further complexity to the development and management of research-based projects. The Biomedical Research and Countermeasures Projects Branch at NASA Johnson Space Center encompasses several diverse applied research-based or research-enabling projects within the newly-formed Human Research Program. This presentation will provide a brief overview of the organizational structure and environment in which these projects operate and how the projects coordinate to address and manage technical requirements. We will identify several of the challenges (cost, technical, schedule, and personnel) encountered by projects across the Branch, present case reports of actions taken and techniques implemented to deal with these challenges, and then close the session with an open forum discussion of remaining challenges and potential mitigations.

  20. Space data routers: Space networking for enhancing data exploitation for space weather applications

    NASA Astrophysics Data System (ADS)

    Daglis, I.; Anastasiadis, A.; Balasis, G.; Paronis, D.; Diamantopoulos, S.

    2013-09-01

    Data sharing and access are major issues in space sciences, as they influence the degree of data exploitation. The projectSpace-Data Routers” relies on space internetworking and in particular on Delay Tolerant Networking (DTN), which marks the new era in space communications, unifies space and earth communication infrastructures and delivers a set of tools and protocols for space-data exploitation. The main goal is to allow space agencies, academic institutes and research centers to share space-data generated by single or multiple missions, in an efficient, secure and automated manner. Here we are presenting the architecture and basic functionality of a DTN-based application specifically designed in the framework of the SDR project, for data query, retrieval and administration that will enable to address outstanding science questions related to space weather, by providing simultaneous real- time sampling of space plasmas from multiple points with cost-effective means and measuring of phenomena with higher resolution and better coverage. This work has received funding from the European Community's Seventh Framework Programme (FP7-SPACE-2010-1, SP1 Cooperation, Collaborative project) under grant agreement No 263330 (project title: Space-Data Routers for Exploiting Space Data). This presentation reflects only the authors’ views and the Union is not liable for any use that may be made of the information contained therein.

  1. Space Shuttle Projects

    NASA Image and Video Library

    1989-03-01

    This STS-29 mission onboard photo depicts the External Tank (ET) falling toward the ocean after separation from the Shuttle orbiter Discovery. The giant cylinder, higher than a 15-story building, with a length of 154-feet (47-meters) and a diameter of 27,5-feet (8.4-meters), is the largest single piece of the Space Shuttle. During launch, the ET also acts as a backbone for the orbiter and solid rocket boosters. In separate, internal pressurized tank sections, the ET holds the liquid hydrogen fuel and liquid oxygen oxidizer for the Shuttle's three main engines. During launch, the ET feeds the fuel under pressure through 17-inch (43.2-centimeter) ducts which branch off into smaller lines that feed directly into the main engines. Some 64,000 gallons (242,260 liters) of fuel are consumed by the main engines each minute. Machined from aluminum alloys, the Space Shuttle's ET is the only part of the launch vehicle that currently is not reused. After its 526,000 gallons (1,991,071 liters) of propellants are consumed during the first 8.5 minutes of flight, it is jettisoned from the orbiter and breaks up in the upper atmosphere, its pieces falling into remote ocean waters. The Marshall Space Flight Center was responsible for developing the ET.

  2. Space Shuttle Project

    NASA Image and Video Library

    1992-08-24

    A crewmember aboard the Space Shuttle Orbiter Atlantis (STS-46) used a 70mm handheld camera to capture this medium closeup view of early operations with the Tethered Satellite System (TSS). TSS-1 is being deployed from its boom as it is perched above the cargo bay of the Earth-orbiting Shuttle circling the Earth at an altitude of 296 kilometers (184 miles), the TSS-1 will be well within the tenuous, electrically charged layer of the atmosphere known as the ionosphere. There, a satellite attached to the orbiter by a thin conducting cord, or tether, will be reeled from the Shuttle payload bay. On this mission the satellite was plarned to be deployed 20 kilometers (12.5 miles) above the Shuttle. The conducting tether will generate high voltage and electrical currents as it moves through the atmosphere allowing scientists to examine the electrodynamics of a conducting tether system. These studies will not only increase our understanding of physical processes in the near-Earth space environment, but will also help provide an explanation for events witnessed elsewhere in the solar system. The crew of the STS-46 mission were unable to reel the satellite as planned. After several unsuccessful attempts, they were only able to extend the satellite 9.8 kilometers (6.1 miles). The TSS was a cooperative development effort by the Italian Space Agency (ASI), and NASA.

  3. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    NASA Astrophysics Data System (ADS)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  4. NASA's In-Space Propulsion Technology Project's Products for Near-term Mission Applicability

    NASA Astrophysics Data System (ADS)

    Dankanich, John

    2009-01-01

    The In-Space Propulsion Technology (ISPT) project, funded by NASA's Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. The primary investments and products currently available for technology infusion include NASA's Evolutionary Xenon Thruster (NEXT) and the Advanced Materials Bipropellant Rocket (AMBR) engine. These products will reach TRL 6 in 2008 and are available for the current and all future mission opportunities. Development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of electric propulsion, advanced chemical thrusters, and aerocapture are presented.

  5. Research in human performance related to space: A compilation of three projects/proposals

    NASA Technical Reports Server (NTRS)

    Hasson, Scott M.

    1989-01-01

    Scientific projects were developed in order to maximize performance in space and assure physiological homeostatis upon return. Three projects that are related to this common goal were either initiated or formulated during the Faculty Fellowship Summer Program. The projects were entitled: (1) Effect of simulated weightlessness (bed rest) on muscle performance and morphology; (2) Effect of submaximal eccentric muscle contractions on muscle injury, soreness and performance: A grant proposal; and (3) Correlation between isolated joint dynamic muscle strength to end-effector strength of the push and pull extravehicular activity (EVA) ratchet maneuver. The purpose is to describe each of these studies in greater detail.

  6. Space Projects and Research by Kids (SPARK): A Web Based Research Journal for Middle School Students

    NASA Astrophysics Data System (ADS)

    Limaye, S. S.; Pertzborn, R. A.

    1999-05-01

    Project SPARK is designed to facilitate opportunities for upper elementary and middle school students to develop the necessary skills to conduct investigations that focus on the subjects of astronomy, space exploration, and earth remote sensing. This program actively engages students in conducting their own research project to acquire increased understanding and content knowledge in the space sciences. While the development of scientific inquiry skills and content literacy is the primary focus, students also enhance their critical thinking, analytical, technological and communications skills. As in the professional science community, the web based SPARK Journal presents an avenue for students to effectively communicate the results of their investigations and work to classmates as well as the "global learning community" via the world wide web. Educational outreach staff at the Sapce Science and Engineering Center have developed active partnerships with teachers and schools throughout Wisconsin to facilitate the development of standards based curriculum and research projects focusing on current topics in the space sciences. Student research projects and activities arising from these initiatives were submitted in the Spring and Fall of 1998 for inclusion in SPARK, Volume 1. The second volume of SPARK will be published in Spring, 1999. Support for the development of this journal was provided by the NASA/IDEAS Program.

  7. Space Shuttle Project

    NASA Image and Video Library

    1996-12-16

    A NASA scientist displays Space Shuttle Main Engine (SSME) turbine component which underwent air flow tests at Marshall's Structures and Dynamics Lab. Such studies could improve efficiency of aircraft engines, and lower operational costs.

  8. Physics-based Space Weather Forecasting in the Project for Solar-Terrestrial Environment Prediction (PSTEP) in Japan

    NASA Astrophysics Data System (ADS)

    Kusano, K.

    2016-12-01

    Project for Solar-Terrestrial Environment Prediction (PSTEP) is a Japanese nation-wide research collaboration, which was recently launched. PSTEP aims to develop a synergistic interaction between predictive and scientific studies of the solar-terrestrial environment and to establish the basis for next-generation space weather forecasting using the state-of-the-art observation systems and the physics-based models. For this project, we coordinate the four research groups, which develop (1) the integration of space weather forecast system, (2) the physics-based solar storm prediction, (3) the predictive models of magnetosphere and ionosphere dynamics, and (4) the model of solar cycle activity and its impact on climate, respectively. In this project, we will build the coordinated physics-based model to answer the fundamental questions concerning the onset of solar eruptions and the mechanism for radiation belt dynamics in the Earth's magnetosphere. In this paper, we will show the strategy of PSTEP, and discuss about the role and prospect of the physics-based space weather forecasting system being developed by PSTEP.

  9. Space Shuttle Projects

    NASA Image and Video Library

    1996-11-01

    This STS-80 onboard photograph shows the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite II (ORFEUS-SPAS II), photographed during approach by the Space Shuttle Orbiter Columbia for retrieval. Built by the German Space Agency, DARA, the ORFEUS-SPAS II, a free-flying satellite, was dedicated to astronomical observations at very short wavelengths to: investigate the nature of hot stellar atmospheres, investigate the cooling mechanisms of white dwarf stars, determine the nature of accretion disks around collapsed stars, investigate supernova remnants, and investigate the interstellar medium and potential star-forming regions. Some 422 observations of almost 150 astronomical objects were completed, including the Moon, nearby stars, distant Milky Way stars, stars in other galaxies, active galaxies, and quasar 3C273. The STS-80 mission was launched November 19, 1996.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1994-09-13

    Designed by the mission crew members, the STS-66 emblem depicts the Space Shuttle Atlantis launching into Earth orbit to study global environmental change. The payload for the Atmospheric Laboratory for Applications and Science (ATLAS-3) and complementary experiments were part of a continuing study of the atmosphere and the Sun's influence on it. The Space Shuttle is trailed by gold plumes representing the astronaut symbol and is superimposed over Earth, much of which is visible from the flight's high inclination orbit. Sensitive instruments aboard the ATLAS pallet in the Shuttle payload bay and on the free-flying Cryogenic Infrared Spectrometers and Telescopes for the Atmospheric-Shuttle Pallet Satellite (CHRISTA-SPAS) that gazed down on Earth and toward the Sun, are illustrated by the stylized sunrise and visible spectrum.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1978-09-01

    This photograph shows stacking of the left side of the solid rocket booster (SRB) segments in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). Staging shown here are the aft skirt, aft segment, and aft center segment. The SRB was attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT is to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB's to which the ET was attached.

  12. Space Shuttle Projects

    NASA Image and Video Library

    1978-09-01

    This photograph shows the left side of the solid rocket booster (SRB) segment as it awaits being mated to the nose cone and forward skirt in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB's to which the ET was attached.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1978-09-01

    Workmen in the Dynamic Test Stand lowered the nose cone into place to complete stacking of the left side of the solid rocket booster (SRB) in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB'S to which the ET was attached.

  14. SpaceX CRS-13 What's on Board Science Briefing

    NASA Image and Video Library

    2017-12-11

    During the SpaceX CRS-13 "What's On Board?" Science Briefing inside the Kennedy Space Center Press Site Auditorium, members of social media learned about the science headed to the International Space Station aboard the Dragon spacecraft. The briefing focused on several research projects including Biorasis Glucose Biosensor; Launchpad Medical; Space Debris Sensor; Total & Spectral solar Irradiance Sensor (TSIS); Fiber Optic Payload (Made in Space); Rodent Research 6; and Plant Gravity Perception. The Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 13th Commercial Resupply Services mission to the space station.

  15. Space Shuttle Project

    NASA Image and Video Library

    1978-01-18

    Pictured is an early testing of the Solid Rocket Motor (SRM) at the Thiokol facility in Utah. The SRMs later became known as Solid Rocket Boosters (SRBs) as they were more frequently used on the Space Shuttles.

  16. Space Shuttle Project

    NASA Image and Video Library

    1977-11-18

    This photograph shows Solid Rocket Booster segments undergoing stacking operations in Marshall Space Flight Center's Building 4707. The Solid Rocket Boosters were designed in-house at the Marshall Center with the Thiokol Corporation as the prime contractor.

  17. SpaceX CRS-11 What's On Board Briefing

    NASA Image and Video Library

    2017-05-31

    NASA Television held a “What’s on Board” science mission briefing from Kennedy Space Center's Press Site to discuss some of the science headed to the International Space Station on SpaceX’s eleventh commercial resupply services mission, CRS-11. SpaceX’s Dragon spacecraft will carry almost 6,000 pounds of supplies and payloads including crucial materials to support dozens of the more than 250 science and research investigations that will occur during Expeditions 52 and 53. CRS-11 will lift off atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. Briefing participants were: -Kathryn Hambleton, NASA Communications -Camille Alleyne, Associate Program Scientist, ISS -Ken Shields, Director of Operations, CASIS/ISS National Lab -Keith Gendreau, Principle Investigator, NICER -Jason W. Mitchell, Project Manager, SEXTANT -Jeremy Banik, Principle Investigator, ROSA -Karen Ocorr, Co-investigator, Fruit Fly Lab-02 -Miriam Sargusingh, Project Lead, CSELS -Dr. Chia Soo, Principle Investigator, Systemic Therapy of NELL-1 for Osteoporosis -Paul Galloway, Program Manager, MUSES

  18. Space Shuttle Projects

    NASA Image and Video Library

    1997-05-08

    The mission patch for STS-85 is designed to reflect the broad range of science and engineering payloads on the flight. The primary objectives of the mission were to measure chemical constituents in Earth’s atmosphere with a free-flying satellite and to flight-test a new Japanese robotic arm designed for use on the International Space Station (ISS). STS-85 was the second flight of the satellite known as Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite-2 CRISTA-SPAS-02. CRISTA, depicted on the right side of the patch pointing its trio of infrared telescopes at Earth’s atmosphere, stands for Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere. The high inclination orbit is shown as a yellow band over Earth’s northern latitudes. In the Space Shuttle Discovery’s open payload bay an enlarged version of the Japanese National Space Development Agency’s (NASDA) Manipulator Flight Demonstration (MFD) robotic arm is shown. Also shown in the payload bay are two sets of multi-science experiments: the International Extreme Ultraviolet Hitchhiker (IEH-02) nearest the tail and the Technology Applications and Science (TAS-01) payload. Jupiter and three stars are shown to represent sources of ultraviolet energy in the universe. Comet Hale-Bopp, which was visible from Earth during the mission, is depicted at upper right. The left side of the patch symbolizes daytime operations over the Northern Hemisphere of Earth and the solar science objectives of several of the payloads.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1981-01-01

    The Space Shuttle main propulsion system includes three major elements. One of those elements is the External Tank (ET). The ET holds over one-half million gallons of liquid oxygen and liquid hydrogen that fuel the main engines.

  20. NASA newsletters for the Weber Student Shuttle Involvement Project

    NASA Technical Reports Server (NTRS)

    Morey-Holton, E. R.; Sebesta, P. D.; Ladwig, A. M.; Jackson, J. T.; Knott, W. M., III

    1988-01-01

    Biweekly reports generated for the Weber Student Shuttle Involvement Project (SSIP) are discussed. The reports document the evolution of science, hardware, and logistics for this Shuttle project aboard the eleventh flight of the Space Transportation System (STS-41B), launched from Kennedy Space Center on February 3, 1984, and returned to KSC 8 days later. The reports were intended to keep all members of the team aware of progress in the project and to avoid redundancy and misunderstanding. Since the Weber SSIP was NASA's first orbital rat project, documentation of all actions was essential to assure the success of this complex project. Eleven reports were generated: October 3, 17 and 31; November 14 and 28; and December 12 and 17, 1983; and January 3, 16, and 23; and May 1, 1984. A subject index of the reports is included. The final report of the project is included as an appendix.

  1. The Xicana Sacred Space: A Communal Circle of Compromiso for Educational Researchers

    ERIC Educational Resources Information Center

    Soto, Lourdes Diaz; Cervantes-Soon, Claudia G.; Villarreal, Elizabeth; Campos, Emmet E.

    2009-01-01

    The Xicana Sacred Space resulted from an effort to develop a framework that would center the complexities of Chicana ontology and epistemology as they relate to social action projects in our communities. Claiming indigenous roots and ways of knowing, the Xicana Sacred Space functions as a decolonizing tool by displacing androcentric and Western…

  2. Space moving target detection and tracking method in complex background

    NASA Astrophysics Data System (ADS)

    Lv, Ping-Yue; Sun, Sheng-Li; Lin, Chang-Qing; Liu, Gao-Rui

    2018-06-01

    The background of the space-borne detectors in real space-based environment is extremely complex and the signal-to-clutter ratio is very low (SCR ≈ 1), which increases the difficulty for detecting space moving targets. In order to solve this problem, an algorithm combining background suppression processing based on two-dimensional least mean square filter (TDLMS) and target enhancement based on neighborhood gray-scale difference (GSD) is proposed in this paper. The latter can filter out most of the residual background clutter processed by the former such as cloud edge. Through this procedure, both global and local SCR have obtained substantial improvement, indicating that the target has been greatly enhanced. After removing the detector's inherent clutter region through connected domain processing, the image only contains the target point and the isolated noise, in which the isolated noise could be filtered out effectively through multi-frame association. The proposed algorithm in this paper has been compared with some state-of-the-art algorithms for moving target detection and tracking tasks. The experimental results show that the performance of this algorithm is the best in terms of SCR gain, background suppression factor (BSF) and detection results.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-06

    The crew patch of STS-73, the second flight of the United States Microgravity Laboratory (USML-2), depicts the Space Shuttle Columbia in the vastness of space. In the foreground are the classic regular polyhedrons that were investigated by Plato and later Euclid. The Pythagoreans were also fascinated by the symmetrical three-dimensional objects whose sides are the same regular polygon. The tetrahedron, the cube, the octahedron, and the icosahedron were each associated with the Natural Elements of that time: fire (on this mission represented as combustion science); Earth (crystallography), air and water (fluid physics). An additional icon shown as the infinity symbol was added to further convey the discipline of fluid mechanics. The shape of the emblem represents a fifth polyhedron, a dodecahedron, which the Pythagoreans thought corresponded to a fifth element that represented the cosmos.

  4. Measurement of complex terahertz dielectric properties of polymers using an improved free-space technique

    NASA Astrophysics Data System (ADS)

    Chang, Tianying; Zhang, Xiansheng; Yang, Chuanfa; Sun, Zhonglin; Cui, Hong-Liang

    2017-04-01

    The complex dielectric properties of non-polar solid polymer materials were measured in the terahertz (THz) band by a free-space technique employing a frequency-extended vector network analyzer (VNA), and by THz time-domain spectroscopy (TDS). Mindful of THz wave’s unique characteristics, the free-space method for measurement of material dielectric properties in the microwave band was expanded and improved for application in the THz frequency region. To ascertain the soundness and utility of the proposed method, measurements of the complex dielectric properties of a variety of polymers were carried out, including polytetrafluoroethylene (PTFE, known also by the brand name Teflon), polypropylene (PP), polyethylene (PE), and glass fiber resin (Composite Stone). The free-space method relies on the determination of electromagnetic scattering parameters (S-parameters) of the sample, with the gated-reflect-line (GRL) calibration technique commonly employed using a VNA. Subsequently, based on the S-parameters, the dielectric constant and loss characteristic of the sample were calculated by using a Newtonian iterative algorithm. To verify the calculated results, THz TDS technique, which produced Fresnel parameters such as reflection and transmission coefficients, was also used to independently determine the dielectric properties of these polymer samples, with results satisfactorily corroborating those obtained by the free-space extended microwave technique.

  5. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Image and Video Library

    1990-09-05

    S90-48650 (5 Sept 1990) --- This rare view shows two space shuttles on adjacent pads at Launch Complex 39 with the Rotating Service Structures (RSR) retracted. Space Shuttle Columbia (foreground) is on Pad A where it awaits further processing for a September 6 early morning launch on STS-35. Discovery, its sister spacecraft, is set to begin preparations for an October liftoff on STS-41 when the Ulysses spacecraft is scheudled to be taxied into space. PLEASE NOTE: Following the taking of this photograph, STS-35 was postponed and STS-41's Discovery was successfully launched on Oct. 6.

  6. A survey of structural material issues for a space station

    NASA Technical Reports Server (NTRS)

    Hagaman, J. A.

    1985-01-01

    An NASA enters the definition phase of the space station project, one of the important issues to be considered is structural material selection. The complexity of the space station and its long life requirement are two key factors which must be considered in the material selection process. Both aluminum and graphite/epoxy are considered as potential structural materials. Advantages and disadvantages of these materials with respect to mechanical and thermal considerations, space environment, manufacturing, and cost are discussed.

  7. Massless spinning particle and null-string on AdS d : projective-space approach

    NASA Astrophysics Data System (ADS)

    Uvarov, D. V.

    2018-07-01

    The massless spinning particle and the tensionless string models on an AdS d background in the projective-space realization are proposed as constrained Hamiltonian systems. Various forms of particle and string Lagrangians are derived and classical mechanics is studied including the Lax-type representation of the equations of motion. After that, the transition to the quantum theory is discussed. The analysis of potential anomalies in the tensionless string model necessitates the introduction of ghosts and BRST charge. It is shown that a quantum BRST charge is nilpotent for any d if coordinate-momentum ordering for the phase-space bosonic variables, Weyl ordering for the fermions and cb () ordering for the ghosts is chosen, while conformal reparametrizations and space-time dilatations turn out to be anomalous for ordering in terms of positive and negative Fourier modes of the phase-space variables and ghosts.

  8. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Muscatello, A. C.; Hintze, P. E.; Caraccio, A. J.; Bayliss, J. A.; Karr, L. J.; Paley, M. S.; Marone, M. J.; Gibson, T. L.; Surma, J. M.; Mansell, J. M.; hide

    2016-01-01

    The atmosphere of Mars, which is approximately 95% carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASA's Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100% of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon is under construction.

  9. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Hintze, Paul; Meier, Anne; Bayliss, Jon; Karr, Laurel; Paley, Steve; Marone, Matt; Gibson, Tracy; Surma, Jan; Mansell, Matt; hide

    2016-01-01

    The atmosphere of Mars, which is 96 percent carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASAs Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100 of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon has been tested with encouraging results.

  10. Projection rule for complex-valued associative memory with large constant terms

    NASA Astrophysics Data System (ADS)

    Kitahara, Michimasa; Kobayashi, Masaki

    Complex-valued Associative Memory (CAM) has an inherent property of rotation invariance. Rotation invariance produces many undesirable stable states and reduces the noise robustness of CAM. Constant terms may remove rotation invariance, but if the constant terms are too small, rotation invariance does not vanish. In this paper, we eliminate rotation invariance by introducing large constant terms to complex-valued neurons. We have to make constant terms sufficiently large to improve the noise robustness. We introduce a parameter to control the amplitudes of constant terms into projection rule. The large constant terms are proved to be effective by our computer simulations.

  11. Complex Neurological and Oto-Neurological Remote Care: From Space Station to Clinic

    NASA Astrophysics Data System (ADS)

    Marchbanks, Robert J.; Good, Edward F.

    2013-02-01

    The main aim of this paper is to highlight the synergy between the remote care requirements for NASA and community/rural based medicine. It demonstrates the appropriateness of applying similar health-care models for space-based medicine, as for ‘2020 vision’ community-based medicine, and the common use of screening devices with telemedicine capabilities. There is a requirement to diagnose and manage complex cases remotely and the need to empower on-site medically trained personnel to undertake the physiological measurements and decision-making. For space exploration at greater distances, the telemedicine systems will require additional sophistication to support autonomous crew medical diagnosis and interventions.1 Non-invasive intracranial pressure measurement is a priority both for terrestrial and space medicine. Arguably it is the most important neurological physiological measurement yet to be mastered and to be routinely used.

  12. Space Station Biological Research Project Habitat: Incubator

    NASA Technical Reports Server (NTRS)

    Nakamura, G. J.; Kirven-Brooks, M.; Scheller, N. M.

    2001-01-01

    Developed as part of the suite of Space Station Biological Research Project (SSBRP) hardware to support research aboard the International Space Station (ISS), the Incubator is a temperature-controlled chamber, for conducting life science research with small animal, plant and microbial specimens. The Incubator is designed for use only on the ISS and is transported to/from the ISS, unpowered and without specimens, in the Multi-Purpose Logistics Module (MPLM) of the Shuttle. The Incubator interfaces with the three SSBRP Host Systems; the Habitat Holding Racks (HHR), the Life Sciences Glovebox (LSG) and the 2.5 m Centrifuge Rotor (CR), providing investigators with the ability to conduct research in microgravity and at variable gravity levels of up to 2-g. The temperature within the Specimen Chamber can be controlled between 4 and 45 C. Cabin air is recirculated within the Specimen Chamber and can be exchanged with the ISS cabin at a rate of approximately equal 50 cc/min. The humidity of the Specimen Chamber is monitored. The Specimen Chamber has a usable volume of approximately equal 19 liters and contains two (2) connectors at 28v dc, (60W) for science equipment; 5 dedicated thermometers for science; ports to support analog and digital signals from experiment unique sensors or other equipment; an Ethernet port; and a video port. It is currently manifested for UF-3 and will be launched integrated within the first SSBRP Habitat Holding Rack.

  13. Space Shuttle Project

    NASA Image and Video Library

    1978-10-04

    The Shuttle Orbiter Enterprise inside of Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement including Orbiter, external tank, and solid rocket boosters were vertically mated.

  14. Space Shuttle Projects

    NASA Image and Video Library

    1988-03-21

    The Marshall Space Flight Center (MSFC) successfully test fired the third in a series of Transient Pressure Test Articles (TPTA) in its east test area. The test article was a short-stack solid rocket motor 52-feet long and 12-feet in diameter. The TPTA tests were designed to evaluate the effects of temperature, pressure and external loads encountered by the SRM, primarily during ignition transients. Instrumentation on the motor recorded approximately 1,000 charnels of data to verify the structural performance, thermal response, sealing capability of the redesign field, and case-to-nozzle joints. The TPTA test stand, 14-feet wide by 26-feet long by 33-feet high, was built in 1987. The TPTA series was a joint effort among Morton Thiokol, Inc., United Space Boosters, Inc., Wyle Laboratories, and MSFC. Wyle Laboratories conducted the tests for the MSFC, which manages the redesigned SRM program for NASA.

  15. Space Shuttle Projects

    NASA Image and Video Library

    1991-08-01

    The free-flying Tracking and Data Relay Satellite-E (TDRS-E), still attached to an Inertial Upper Stage (IUS), was photographed by one of the crewmembers during the STS-43 mission. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The Space Shuttle Orbiter Atlantis for the STS-43 mission was launched on August 2, 1991.

  16. Space Shuttle Projects

    NASA Image and Video Library

    1991-08-01

    The primary payload of the STS-43 mission, Tracking and Data Relay Satellite-E (TDRS-E) attached to an Inertial Upper Stage (IUS) was photographed at the moment of its release from the cargo bay of the Space Shuttle Orbiter Atlantis. The TDRS-E was boosted by the IUS into geosynchronous orbit and positioned to remain stationary 22,400 miles above the Pacific Ocean southwest of Hawaii. The TDRS system provides almost uninterrupted communications with Earth-orbiting Shuttles and satellites, and had replaced the intermittent coverage provided by globe-encircling ground tracking stations used during the early space program. The TDRS can transmit and receive data, and track a user spacecraft in a low Earth orbit. The IUS is an unmarned transportation system designed to ferry payloads from low Earth orbit to higher orbits that are unattainable by the Shuttle. The launch of STS-43 occurred on August 2, 1991.

  17. Space Station Furnace Facility Preliminary Project Implementation Plan (PIP). Volume 2, Appendix 2

    NASA Technical Reports Server (NTRS)

    Perkey, John K.

    1992-01-01

    The Space Station Furnace Facility (SSFF) is an advanced facility for materials research in the microgravity environment of the Space Station Freedom and will consist of Core equipment and various sets of Furnace Module (FM) equipment in a three-rack configuration. This Project Implementation Plan (PIP) document was developed to satisfy the requirements of Data Requirement Number 4 for the SSFF study (Phase B). This PIP shall address the planning of the activities required to perform the detailed design and development of the SSFF for the Phase C/D portion of this contract.

  18. X-37 Flight Demonstrator Project: Capabilities for Future Space Transportation System Development

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.

    2004-01-01

    The X-37 Approach and Landing Vehicle (ALTV) is an automated (unmanned) spacecraft designed to reduce technical risk in the descent and landing phases of flight. ALTV mission requirements and Orbital Vehicle (OV) technology research and development (R&D) goals are formulated to validate and mature high-payoff ground and flight technologies such as Thermal Protection Systems (TPS). It has been more than three decades since the Space Shuttle was designed and built. Real-world hardware experience gained through the multitude of X-37 Project activities has expanded both Government and industry knowledge of the challenges involved in developing new generations of spacecraft that can fulfill the Vision for Space Exploration.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1991-04-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  20. Calibration and performance measurements for the nasa deep space network aperture enhancement project (daep)

    NASA Astrophysics Data System (ADS)

    LaBelle, Remi C.; Rochblatt, David J.

    2018-06-01

    The NASA Deep Space Network (DSN) has recently constructed two new 34-m antennas at the Canberra Deep Space Communications Complex (CDSCC). These new antennas are part of the larger DAEP project to add six new 34-m antennas to the DSN, including two in Madrid, three in Canberra and one in Goldstone (California). The DAEP project included development and implementation of several new technologies for the X, and Ka (32 GHz) -band uplink and downlink electronics. The electronics upgrades were driven by several different considerations, including parts obsolescence, cost reduction, improved reliability and maintainability, and capability to meet future performance requirements. The new antennas are required to support TT&C links for all of the NASA deep-space spacecraft, as well as for several international partners. Some of these missions, such as Voyager 1 and 2, have very limited link budgets, which results in demanding requirements for system G/T performance. These antennas are also required to support radio science missions with several spacecraft, which dictate some demanding requirements for spectral purity, amplitude stability and phase stability for both the uplink and downlink electronics. After completion of these upgrades, a comprehensive campaign of tests and measurements took place to characterize the electronics and calibrate the antennas. Radiometric measurement techniques were applied to characterize, calibrate, and optimize the performance of the antenna parameters. These included optical and RF high-resolution holographic and total power radiometry techniques. The methodology and techniques utilized for the measurement and calibration of the antennas is described in this paper. Lessons learned (not all discussed in this paper) from the commissioning of the first antenna (DSS-35) were applied to the commissioning of the second antenna (DSS-36). These resulted in achieving antenna aperture efficiency of 66% (for DSS-36), at Ka-Band (32-Ghz), which is

  1. Trading spaces: building three-dimensional nets from two-dimensional tilings

    PubMed Central

    Castle, Toen; Evans, Myfanwy E.; Hyde, Stephen T.; Ramsden, Stuart; Robins, Vanessa

    2012-01-01

    We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S2), Euclidean (E2) and hyperbolic (H2) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions. PMID:24098839

  2. Space Station Facility government estimating

    NASA Technical Reports Server (NTRS)

    Brown, Joseph A.

    1993-01-01

    This new, unique Cost Engineering Report introduces the 800-page, C-100 government estimate for the Space Station Processing Facility (SSPF) and Volume IV Aerospace Construction Price Book. At the January 23, 1991, bid opening for the SSPF, the government cost estimate was right on target. Metric, Inc., Prime Contractor, low bid was 1.2 percent below the government estimate. This project contains many different and complex systems. Volume IV is a summary of the cost associated with construction, activation and Ground Support Equipment (GSE) design, estimating, fabrication, installation, testing, termination, and verification of this project. Included are 13 reasons the government estimate was so accurate; abstract of bids, for 8 bidders and government estimate with additive alternates, special labor and materials, budget comparison and system summaries; and comments on the energy credit from local electrical utility. This report adds another project to our continuing study of 'How Does the Low Bidder Get Low and Make Money?' which was started in 1967, and first published in the 1973 AACE Transaction with 18 ways the low bidders get low. The accuracy of this estimate proves the benefits of our Kennedy Space Center (KSC) teamwork efforts and KSC Cost Engineer Tools which are contributing toward our goals of the Space Station.

  3. SpaceX CRS-13 "What's on Board?" Mission Science Briefing

    NASA Image and Video Library

    2017-12-11

    Candace Carlisle, project manager for the Total and Spectral solar Irradiance Sensor (TSIS-1), speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.

  4. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    NASA Technical Reports Server (NTRS)

    Hamaker, Joe

    2000-01-01

    This paper describes, in viewgraph form, the faster, better, cheaper approach to space missions. The topics include: 1) What drives "Faster, Better, Cheaper"? 2) Why Space Programs are Costly; 3) Background; 4) Aerospace Project Management (Old Culture); 5) Aerospace Project Management (New Culture); 6) Scope of Analysis Limited to Engineering Management Culture; 7) Qualitative Analysis; 8) Some Basic Principles of the New Culture; 9) Cause and Effect; 10) "New Ways of Doing Business" Survey Results; 11) Quantitative Analysis; 12) Recent Space System Cost Trends; 13) Spacecraft Dry Weight Trend; 14) Complexity Factor Trends; 15) Cost Normalization; 16) Cost Normalization Algorithm; 17) Unnormalized Cost vs. Normalized Cost; and 18) Concluding Observations.

  5. SpaceX CRS-10 "What's On Board" Science Briefing

    NASA Image and Video Library

    2017-02-17

    Mike Cisewski, Stratospheric Aerosol and Gas Experiment (SAGE) III Project manager at NASA’s Langley Research Center in Hampton, Virginia, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on instruments to be delivered to the International Space Station on the SpaceX CRS-10 mission. Cisewski explained that the SAGE III is designed to study ozone in the atmosphere. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.

  6. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    Howard Levine, at left, chief scientist in the Utilization and Life Sciences Office at NASA's Kennedy Space Center, and Dave Reid, a project manager with Techshot, discuss continuing research on growing food in space, as the Veggie Passive Orbital Nutrient Delivery System (PONDS) experiment tests a new way to deliver nutrients to plants. PONDS is one of the experiments that will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  7. SpaceX CRS-11 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-05-31

    Jason Mitchell, project manager for the Station Explorer for X-ray Timing and Navigation Technology, or SEXTANT, instrument, left, and Keith Gendreau, principle investigator for the Neutron star Interior Composition Explorer, or NICER, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on the purpose of their experiments and instruments to be delivered to the International Space Station on SpaceX CRS-11. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  8. A simple and fast representation space for classifying complex time series

    NASA Astrophysics Data System (ADS)

    Zunino, Luciano; Olivares, Felipe; Bariviera, Aurelio F.; Rosso, Osvaldo A.

    2017-03-01

    In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.

  9. Space Shuttle Project

    NASA Image and Video Library

    1978-04-21

    The Shuttle Orbiter Enterprise is lowered into the Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT) at the Marshall Space Flight Center. The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.

  10. "SP.ACE" 2013-2015: ASGARD Balloon and BIFROST Parabolic Flights: Latest Developments in Hands-On Space Education Projects for Secondary School Students

    NASA Astrophysics Data System (ADS)

    de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.

    2015-09-01

    Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.

  11. Space Shuttle Projects

    NASA Image and Video Library

    1991-04-05

    Aboard the Space Shuttle Atlantis, the STS-37 mission launched April 5, 1991 from launch pad 39B at the Kennedy Space Center in Florida, and landed back on Earth April 11, 1991. The 39th shuttle mission included crew members: Steven R. Nagel, commander; Kenneth D. Cameron, pilot; Jerry L,. Ross, mission specialist 1; Jay Apt, mission specialist 2; and Linda M. Godwin, mission specialist 3. The primary payload for the mission was the Gamma Ray Observatory (GRO). The GRO included the Burst and Transient Experiment (BATSE); the Imaging Compton Telescope (COMPTEL); the Energetic Gamma Ray Experiment Telescope (EGRET); and the Oriented Scintillation Spectrometer Experiment (OSSEE). Secondary payloads included Crew and Equipment Translation Aids (CETA); the Ascent Particle Monitor (APM); the Shuttle Amateur Radio Experiment II (SAREXII), the Protein Crystal Growth (PCG); the Bioserve Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA); Radiation Monitoring Equipment III (RMEIII); and Air Force Maui Optical Site (AMOS).

  12. Project LASER Volunteer, Marshall Space Flight Center Education Program

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Through Marshall Space Flight Center (MSFC) Education Department, over 400 MSFC employees have volunteered to support educational program during regular work hours. Project LASER (Learning About Science, Engineering, and Research) provides support for mentor/tutor requests, education tours, classroom presentations, and curriculum development. This program is available to teachers and students living within commuting distance of the NASA/MSFC in Huntsville, Alabama (approximately 50-miles radius). This image depicts students viewing their reflections in an x-ray mirror with Marshall optic engineer Vince Huegele at the Discovery Laboratory, which is an onsite MSFC laboratory facility that provides hands-on educational workshop sessions for teachers and students learning activities.

  13. Performance Assessment of Refractory Concrete Used on the Space Shuttle's Launch Pad

    NASA Technical Reports Server (NTRS)

    Trejo, David; Calle, Luz Marina; Halman, Ceki

    2005-01-01

    The John F. Kennedy Space Center (KSC) maintains several facilities for launching space vehicles. During recent launches it has been observed that the refractory concrete materials that protect the steel-framed flame duct are breaking away from this base structure and are being projected at high velocities. There is significant concern that these projected pieces can strike the launch complex or space vehicle during the launch, jeopardizing the safety of the mission. A qualification program is in place to evaluate the performance of different refractory concretes and data from these tests have been used to assess the performance of the refractory concretes. However, there is significant variation in the test results, possibly making the existing qualification test program unreliable. This paper will evaluate data from past qualification tests, identify potential key performance indicators for the launch complex, and will recommend a new qualification test program that can be used to better qualify refractory concrete.

  14. Space Science in Project SMART: A UNH High School Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  15. Space Shuttle Project

    NASA Image and Video Library

    1978-10-04

    The Shuttle Orbiter Enterprise is being installed into liftoff configuration at Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.

  16. Science Students Creating Hybrid Spaces When Engaging in an Expo Investigation Project

    ERIC Educational Resources Information Center

    Ramnarain, Umesh; de Beer, Josef

    2013-01-01

    In this paper, we report on the experiences of three 9th-grade South African students (13-14 years) in doing open science investigation projects for a science expo. A particular focus of this study was the manner in which these students merge the world of school science with their social world to create a hybrid space by appropriating knowledge…

  17. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  18. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station

    NASA Astrophysics Data System (ADS)

    Pustylnik, M. Y.; Fink, M. A.; Nosenko, V.; Antonova, T.; Hagl, T.; Thomas, H. M.; Zobnin, A. V.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Fortov, V. E.; Rau, C.; Deysenroth, C.; Albrecht, S.; Kretschmer, M.; Thoma, M. H.; Morfill, G. E.; Seurig, R.; Stettner, A.; Alyamovskaya, V. A.; Orr, A.; Kufner, E.; Lavrenko, E. G.; Padalka, G. I.; Serova, E. O.; Samokutyayev, A. M.; Christoforetti, S.

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (103-104 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  19. Plasmakristall-4: New complex (dusty) plasma laboratory on board the International Space Station.

    PubMed

    Pustylnik, M Y; Fink, M A; Nosenko, V; Antonova, T; Hagl, T; Thomas, H M; Zobnin, A V; Lipaev, A M; Usachev, A D; Molotkov, V I; Petrov, O F; Fortov, V E; Rau, C; Deysenroth, C; Albrecht, S; Kretschmer, M; Thoma, M H; Morfill, G E; Seurig, R; Stettner, A; Alyamovskaya, V A; Orr, A; Kufner, E; Lavrenko, E G; Padalka, G I; Serova, E O; Samokutyayev, A M; Christoforetti, S

    2016-09-01

    New complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (10 3 -10 4 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena. The main purpose of PK-4 is the investigation of flowing complex plasmas. To generate plasma, PK-4 makes use of a classical dc discharge in a glass tube, whose polarity can be switched with the frequency of the order of 100 Hz. This frequency is high enough not to be felt by the relatively heavy microparticles. The duty cycle of the polarity switching can be also varied allowing to vary the drift velocity of the microparticles and (when necessary) to trap them. The facility is equipped with two videocameras and illumination laser for the microparticle imaging, kaleidoscopic plasma glow observation system and minispectrometer for plasma diagnostics and various microparticle manipulation devices (e.g., powerful manipulation laser). Scientific experiments are programmed in the form of scripts written with the help of specially developed C scripting language libraries. PK-4 is mainly operated from the ground (control center CADMOS in Toulouse, France) with the support of the space station crew. Data recorded during the experiments are later on delivered to the ground on the removable hard disk drives and distributed to participating scientists for the detailed analysis.

  20. Protection from Induced Space Environments Effects on the International Space Station

    NASA Technical Reports Server (NTRS)

    Soares, Carlos; Mikatarian, Ron; Stegall, Courtney; Schmidl, Danny; Huang, Alvin; Olsen, Randy; Koontz, Steven

    2010-01-01

    The International Space Station (ISS) is one of the largest, most complex multinational scientific projects in history and protection from induced space environments effects is critical to its long duration mission as well as to the health of the vehicle and safety of on-orbit operations. This paper discusses some of the unique challenges that were encountered during the design, assembly and operation of the ISS and how they were resolved. Examples are provided to illustrate the issues and the risk mitigation strategies that were developed to resolve these issues. Of particular importance are issues related with the interaction of multiple spacecraft as in the case of ISS and Visiting Vehicles transporting crew, hardware elements, cargo and scientific payloads. These strategies are applicable to the development of future long duration space systems, not only during design, but also during assembly and operation of these systems.

  1. Space Shuttle Projects

    NASA Image and Video Library

    1978-04-21

    This is a double exposure of the Shuttle Orbiter Enterprise on the strong back of the Dynamic Test Stand at Marshall Space Flight Center's building 4550 as it undergoes a Mated Vertical Ground Vibration Test (MVGVT). One exposure depicts a sunset view, while the other depicts a post-sunset view.

  2. Space Shuttle Projects

    NASA Image and Video Library

    1975-01-01

    As early as September 1972, the Marshall Space Flight Center arnounced plans for a series of 20 water-entry simulation tests with a solid-fueled rocket casing assembly. The tests would provide valuable data for assessment of solid rocket booster parachute water recovery and aid in preliminary solid rocket motor design.

  3. RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M.; Rajagopalan, Ganesh; Stevenson, Thomas; Turner, Charles; Bulcha, Berhanu

    2017-01-01

    Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.

  4. Activities of NICT space weather project

    NASA Astrophysics Data System (ADS)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  5. Promoting North-South partnership in space data use and applications: Case study - East African countries space programs/projects new- concepts in document management

    NASA Astrophysics Data System (ADS)

    Mlimandago, S.

    This research paper have gone out with very simple and easy (several) new concepts in document management for space projects and programs which can be applied anywhere both in the developing and developed countries. These several new concepts are and have been applied in Tanzania, Kenya and Uganda and found out to bear very good results using simple procedures. The intergral project based its documentation management approach from the outset on electronic document sharing and archiving. The main objective of having new concepts was to provide a faster and wider availability of the most current space information to all parties rather than creating a paperless office. Implementation of the new concepts approach required the capturing of documents in an appropriate and simple electronic format at source establishing new procedures for project wide information sharing and the deployment of a new generation of simple procedure - WEB - based tools. Key success factors were the early adoption of Internet technologies and simple procedures for improved information flow new concepts which can be applied anywhere both in the developed and the developing countries.

  6. Deep Space Network-Wide Portal Development: Planning Service Pilot Project

    NASA Technical Reports Server (NTRS)

    Doneva, Silviya

    2011-01-01

    The Deep Space Network (DSN) is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. DSN provides the vital two-way communications link that guides and controls planetary explorers, and brings back the images and new scientific information they collect. In an attempt to streamline operations and improve overall services provided by the Deep Space Network a DSN-wide portal is under development. The project is one step in a larger effort to centralize the data collected from current missions including user input parameters for spacecraft to be tracked. This information will be placed into a principal repository where all operations related to the DSN are stored. Furthermore, providing statistical characterization of data volumes will help identify technically feasible tracking opportunities and more precise mission planning by providing upfront scheduling proposals. Business intelligence tools are to be incorporated in the output to deliver data visualization.

  7. de Sitter space as a tensor network: Cosmic no-hair, complementarity, and complexity

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Cao, ChunJun; Carroll, Sean M.; Chatwin-Davies, Aidan

    2017-12-01

    We investigate the proposed connection between de Sitter spacetime and the multiscale entanglement renormalization ansatz (MERA) tensor network, and ask what can be learned via such a construction. We show that the quantum state obeys a cosmic no-hair theorem: the reduced density operator describing a causal patch of the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with a positive cosmological constant asymptote to de Sitter space. The MERA is potentially compatible with a weak form of complementarity (local physics only describes single patches at a time, but the overall Hilbert space is infinite dimensional) or, with certain specific modifications to the tensor structure, a strong form (the entire theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert space). We also suggest that de Sitter evolution has an interpretation in terms of circuit complexity, as has been conjectured for anti-de Sitter space.

  8. Space Shuttle Projects

    NASA Image and Video Library

    1985-03-01

    The Space Shuttle Discovery and its science module payload are featured in the insignia for the STS-51B / Spacelab-3 mission. The seven stars of the constellation Pegasus surround the orbiting spacehip above the flag draped Earth. Surnames of the seven crewmembers encircle the scene. The artwork was done by Carol Ann Lind.

  9. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    NASA Astrophysics Data System (ADS)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal

  10. Modeling Semantic Emotion Space Using a 3D Hypercube-Projection: An Innovative Analytical Approach for the Psychology of Emotions

    PubMed Central

    Trnka, Radek; Lačev, Alek; Balcar, Karel; Kuška, Martin; Tavel, Peter

    2016-01-01

    The widely accepted two-dimensional circumplex model of emotions posits that most instances of human emotional experience can be understood within the two general dimensions of valence and activation. Currently, this model is facing some criticism, because complex emotions in particular are hard to define within only these two general dimensions. The present theory-driven study introduces an innovative analytical approach working in a way other than the conventional, two-dimensional paradigm. The main goal was to map and project semantic emotion space in terms of mutual positions of various emotion prototypical categories. Participants (N = 187; 54.5% females) judged 16 discrete emotions in terms of valence, intensity, controllability and utility. The results revealed that these four dimensional input measures were uncorrelated. This implies that valence, intensity, controllability and utility represented clearly different qualities of discrete emotions in the judgments of the participants. Based on this data, we constructed a 3D hypercube-projection and compared it with various two-dimensional projections. This contrasting enabled us to detect several sources of bias when working with the traditional, two-dimensional analytical approach. Contrasting two-dimensional and three-dimensional projections revealed that the 2D models provided biased insights about how emotions are conceptually related to one another along multiple dimensions. The results of the present study point out the reductionist nature of the two-dimensional paradigm in the psychological theory of emotions and challenge the widely accepted circumplex model. PMID:27148130

  11. The Chrysalis Opens? Photometry from the η Carinae Hubble Space Telescope Treasury Project, 2002-2006

    NASA Astrophysics Data System (ADS)

    Martin, J. C.; Davidson, Kris; Koppelman, M. D.

    2006-12-01

    During the past decade η Car has brightened markedly, possibly indicating a change of state. Here we summarize photometry gathered by the Hubble Space Telescope (HST) as part of the HST Treasury Project on this object. Our data include Space Telescope Imaging Spectrograph (STIS) CCD acquisition images, Advanced Camera for Surveys HRC images in four filters, and synthetic photometry in flux-calibrated STIS spectra. The HST's spatial resolution allows us to examine the central star separate from the bright circumstellar ejecta. Its apparent brightness continued to increase briskly during 2002-2006, especially after the mid-2003 spectroscopic event. If this trend continues, the central star will soon become brighter than its ejecta, quite different from the state that existed only a few years ago. One precedent may be the rapid change observed in 1938-1953. We conjecture that the star's mass-loss rate has been decreasing throughout the past century. This research was conducted as part of the η Car Hubble Space Telescope Treasury project via grant GO-9973 from the Space Telescope Science Institute. HST is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Some of the data presented in this paper were obtained from the Multimission Archive at the Space Telescope Science Institute (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NAG5-7584 and by other grants and contracts.

  12. Spacelab, Spacehab, and Space Station Freedom payload interface projects

    NASA Technical Reports Server (NTRS)

    Smith, Dean Lance

    1992-01-01

    Contributions were made to several projects. Howard Nguyen was assisted in developing the Space Station RPS (Rack Power Supply). The RPS is a computer controlled power supply that helps test equipment used for experiments before the equipment is installed on Space Station Freedom. Ron Bennett of General Electric Government Services was assisted in the design and analysis of the Standard Interface Rack Controller hardware and software. An analysis was made of the GPIB (General Purpose Interface Bus), looking for any potential problems while transmitting data across the bus, such as the interaction of the bus controller with a data talker and its listeners. An analysis was made of GPIB bus communications in general, including any negative impact the bus may have on transmitting data back to Earth. A study was made of transmitting digital data back to Earth over a video channel. A report was written about the study and a revised version of the report will be submitted for publication. Work was started on the design of a PC/AT compatible circuit board that will combine digital data with a video signal. Another PC/AT compatible circuit board is being designed to recover the digital data from the video signal. A proposal was submitted to support the continued development of the interface boards after the author returns to Memphis State University in the fall. A study was also made of storing circuit board design software and data on the hard disk server of a LAN (Local Area Network) that connects several IBM style PCs. A report was written that makes several recommendations. A preliminary design review was started of the AIVS (Automatic Interface Verification System). The summer was over before any significant contribution could be made to this project.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1990-02-28

    The STS-36 mission launch aboard the Space Shuttle Orbiter Atlantis on February 28, 1990 at 2:50:22am (EST). The crew featured five astronauts who served in the 6th Department of Defense (DOD) mission: John H. Creighton, commander; John H. Caster, pilot; and mission specialists Pierre J. Thuot, Richard M. (Mike) Mullane, and David. C. Hilmers.

  14. Space Shuttle Project

    NASA Image and Video Library

    1978-04-21

    This is an interior ground level view of the Shuttle Orbiter Enterprise being lowered for mating to External Tank (ET) inside Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.

  15. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space.

    PubMed

    Chawla, Amarpreet S; Lo, Joseph Y; Baker, Jay A; Samei, Ehsan

    2009-11-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular

  16. Fast Access to Space Tourism

    NASA Astrophysics Data System (ADS)

    Favata', P.; Martineau, N.

    2002-01-01

    are characterized by high packing density performance, and which decrease the mass of the module and the manufacturing costs. This reduces the overall cost, time and complexity of the configuration phase. for up to two weeks. They will be transported by two Soyuz flights. Supplies and fuel will be delivered by the Progress vehicle. The lowering of the module mass will allow extra storage volume and therefore the reduction of one logistic flight per month. production capacity. By stimulating a market use for the Soyuz and Progress, our project will increase production demand, thus, exponentially decreasing production costs over time. This private-public venture will offer Russia both significant employment opportunities as well as the investment of capital. project includes significant technological and design modifications. It utilizes traditional rigid structure but revolutionizes the interiors. In terms of engineering, the present homogeneous distribution of subsystems is replaced by a concentrated model. At the same time, we assure the facilitation of maintenance and eventual substitution of parts, through the use of mobile, modular components. Architecturally, the project is focused on the physiological and psychological needs of tourists, with particular attention paid to: circadian rhythms, and therefore, illumination, the variety of compatible materials and shapes, and noise and vibration reduction. Interchangeable and mobile furniture creates multi-functional areas, with innovative colors and details. This also guarantees the enlargement of the habitable volume in order to provide innovative tourist activities. Contributions: As stated earlier, this project, which is the result of collaboration between an engineer and an architect, reconciles the realities of current space exploration with new ideas for opening space tourism in the near future, responding to an emerging market. The project suggests a new way to utilize current technologies for commercial

  17. World, We Have Problems: Simulation for Large Complex, Risky Projects, and Events

    NASA Technical Reports Server (NTRS)

    Elfrey, Priscilla

    2010-01-01

    Prior to a spacewalk during the NASA STS/129 mission in November 2009, Columbia Broadcasting System (CBS) correspondent William Harwood reported astronauts, "were awakened again", as they had been the day previously. Fearing something not properly connected was causing a leak, the crew, both on the ground and in space, stopped and checked everything. The alarm proved false. The crew did complete its work ahead of schedule, but the incident reminds us that correctly connecting hundreds and thousands of entities, subsystems and systems, finding leaks, loosening stuck valves, and adding replacements to very large complex systems over time does not occur magically. Everywhere major projects present similar pressures. Lives are at - risk. Responsibility is heavy. Large natural and human-created disasters introduce parallel difficulties as people work across boundaries their countries, disciplines, languages, and cultures with known immediate dangers as well as the unexpected. NASA has long accepted that when humans have to go where humans cannot go that simulation is the sole solution. The Agency uses simulation to achieve consensus, reduce ambiguity and uncertainty, understand problems, make decisions, support design, do planning and troubleshooting, as well as for operations, training, testing, and evaluation. Simulation is at the heart of all such complex systems, products, projects, programs, and events. Difficult, hazardous short and, especially, long-term activities have a persistent need for simulation from the first insight into a possibly workable idea or answer until the final report perhaps beyond our lifetime is put in the archive. With simulation we create a common mental model, try-out breakdowns of machinery or teamwork, and find opportunity for improvement. Lifecycle simulation proves to be increasingly important as risks and consequences intensify. Across the world, disasters are increasing. We anticipate more of them, as the results of global warming

  18. Building HIA approaches into strategies for green space use: an example from Plymouth's (UK) Stepping Stones to Nature project.

    PubMed

    Richardson, J; Goss, Z; Pratt, A; Sharman, J; Tighe, M

    2013-12-01

    The health and well-being benefits of access to green space are well documented. Research suggests positive findings regardless of social group, however barriers exist that limit access to green space, including proximity, geography and differing social conditions. Current public health policy aims to broaden the range of environmental public health interventions through effective partnership working, providing opportunities to work across agencies to promote the use of green space. Health Impact Assessment (HIA) is a combination of methods and procedures to assess the potential health and well-being impacts of policies, developments and projects. It provides a means by which negative impacts can be mitigated and positive impacts can be enhanced, and has potential application for assessing green space use. This paper describes the application of a HIA approach to a multi-agency project (Stepping Stones to Nature--SS2N) in the UK designed to improve local green spaces and facilitate green space use in areas classified as having high levels of deprivation. The findings suggest that the SS2N project had the potential to provide significant positive benefits in the areas of physical activity, mental and social well-being. Specific findings for one locality identified a range of actions that could be taken to enhance benefits, and mitigate negative factors such as anti-social behaviour. The HIA approach proved to be a valuable process through which impacts of a community development/public health project could be enhanced and negative impacts prevented at an early stage; it illustrates how a HIA approach could enhance multi-agency working to promote health and well-being in communities.

  19. MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP)

    NASA Image and Video Library

    1975-07-15

    S75-28519 (15 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, Johnson Space Center, on the first day of the Apollo-Soyuz Test Project docking mission in Earth orbit. This photograph was taken shortly before the American ASTP launch from the Kennedy Space Center. The television monitor in the center background shows the ASTP Apollo-Saturn 1B space vehicle on Pad B at KSC?s Launch Complex 39. The American ASTP liftoff followed the Soviet ASTP launch of the Soyuz space vehicle from Baikonur, Kazakhstan by seven and one-half hours.

  20. Strategy For Implementing The UN "Zero-Gravity Instrument Project" To Promote Space Science Among School Children In Nigeria

    NASA Astrophysics Data System (ADS)

    Alabi, O.; Agbaje, G.; Akinyede, J.

    2015-12-01

    The United Nations "Zero Gravity Instrument Project" (ZGIP) is one of the activities coordinated under the Space Education Outreach Program (SEOP) of the African Regional Centre for Space Science and Technology Education in English (ARCSSTE-E) to popularize space science among pre-collegiate youths in Nigeria. The vision of ZGIP is to promote space education and research in microgravity. This paper will deliberate on the strategy used to implement the ZGIP to introduce school children to authentic scientific data and inquiry. The paper highlights how the students learned to collect scientific data in a laboratory environment, analyzed the data with specialized software, obtained results, interpreted and presented the results of their study in a standard format to the scientific community. About 100 school children, aged between 7 and 21 years, from ten public and private schools located in Osun State, Nigeria participated in the pilot phase of the ZGIP which commenced with a 1-day workshop in March 2014. During the inauguration workshop, the participants were introduced to the environment of outer space, with special emphasis on the concept of microgravity. They were also taught the basic principle of operation of the Clinostat, a Zero-Gravity Instrument donated to ARCSSTE-E by the United Nations Office for Outer Space Affairs (UN-OOSA), Vienna, under the Human Space Technology Initiative (UN-HSTI). At the end of the workshop, each school designed a project, and had a period of 1 week, on a planned time-table, to work in the laboratory of ARCSSTE-E where they utilized the clinostat to examine the germination of indigenous plant seeds in simulated microgravity conditions. The paper also documents the post-laboratory investigation activities, which included presentation of the results in a poster competition and an evaluation of the project. The enthusiasm displayed by the students, coupled with the favorable responses recorded during an oral interview conducted to

  1. Software Transition Project Retrospectives and the Application of SEL Effort Estimation Model and Boehm's COCOMO to Complex Software Transition Projects

    NASA Technical Reports Server (NTRS)

    McNeill, Justin

    1995-01-01

    The Multimission Image Processing Subsystem (MIPS) at the Jet Propulsion Laboratory (JPL) has managed transitions of application software sets from one operating system and hardware platform to multiple operating systems and hardware platforms. As a part of these transitions, cost estimates were generated from the personal experience of in-house developers and managers to calculate the total effort required for such projects. Productivity measures have been collected for two such transitions, one very large and the other relatively small in terms of source lines of code. These estimates used a cost estimation model similar to the Software Engineering Laboratory (SEL) Effort Estimation Model. Experience in transitioning software within JPL MIPS have uncovered a high incidence of interface complexity. Interfaces, both internal and external to individual software applications, have contributed to software transition project complexity, and thus to scheduling difficulties and larger than anticipated design work on software to be ported.

  2. SpaceX CRS-10 "What's On Board" Science Briefing

    NASA Image and Video Library

    2017-02-17

    Jolyn Russell, deputy Robotics program manager at NASA’s Goddard Space Flight Center’s Satellite Servicing Projects Division in Maryland, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on “Raven” research planned for the International Space Station. The Raven investigation studies a real-time robotic spacecraft navigation system that provides the eyes and intelligence to see a target and steer safely toward it. Raven will be part of experiments aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.

  3. Search for complex organic molecules in space

    NASA Astrophysics Data System (ADS)

    Ohishi, Masatoshi

    2016-07-01

    It was 1969 when the first organic molecule in space, H2CO, was discovered. Since then many organic molecules were discovered by using the NRAO 11 m (upgraded later to 12 m), Nobeyama 45 m, IRAM 30 m, and other highly sensitive radio telescopes as a result of close collaboration between radio astronomers and microwave spectroscopists. It is noteworthy that many famous organic molecules such as CH3OH, C2H5OH, (CH3)2O and CH3NH2 were detected by 1975. Organic molecules were found in so-called hot cores where molecules were thought to form on cold dust surfaces and then to evaporate by the UV photons emitted from the central star. These days organic molecules are known to exist not only in hot cores but in hot corinos (a warm, compact molecular clump found in the inner envelope of a class 0 protostar) and even protoplanetary disks. As was described above, major organic molecules were known since 1970s. It was very natural that astronomers considered a relationship between organic molecules in space and the origin of life. Several astronomers challenged to detect glycine and other prebiotic molecules without success. ALMA is expected to detect such important materials to further consider the gexogenous deliveryh hypothesis. In this paper I summarize the history in searching for complex organic molecules together with difficulties in observing very weak signals from larger species. The awfully long list of references at the end of this article may be the most useful part for readers who want to feel the exciting discovery stories.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1990-11-05

    The seventh mission dedicated to the Department of Defense (DOD), the STS-38 mission, launched aboard the Space Shuttle Atlantis on November 15, 1990 at 6:48:15 pm (EST). The STS-38 crew included the following five astronauts: Richard O. Covey, commander; Frank L. Culbertson, pilot; and mission specialists Charles D. (Sam) Gemar, Robert C. Springer, and Carl J. Meade.

  5. Space Shuttle Projects

    NASA Image and Video Library

    1989-08-08

    On August 8, 1989, the 4th mission dedicated to the Department of Defense (DOD), STS-28, lifted off from Kennedy Space Center’s (KSC) launch pad 39B. The five day mission included a crew of five: Richard N. (Dick) Richards, pilot; Brewster H. Shaw, commander; and mission specialists David C. Leestma, Mark N. Brown, and James C. (Jim) Adamson.

  6. Space Shuttle Projects

    NASA Image and Video Library

    1991-09-12

    The STS-48 mission launched aboard the Space Shuttle Discovery on September 12, 1991 at 7:11:04 pm. Five astronauts composed the crew including: John O. Creighton, commander; Kenneth S. Reightler, pilot; and Mark N. Brown, Charles D. (Sam) Gemar, and James F. Buchli, all mission specialists. The primary payload of the mission was the Upper Atmosphere Research Satellite (UARS).

  7. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex.

    PubMed

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems.

  8. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex

    PubMed Central

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987

  9. A Hardware Model Validation Tool for Use in Complex Space Systems

    NASA Technical Reports Server (NTRS)

    Davies, Misty Dawn; Gundy-Burlet, Karen L.; Limes, Gregory L.

    2010-01-01

    One of the many technological hurdles that must be overcome in future missions is the challenge of validating as-built systems against the models used for design. We propose a technique composed of intelligent parameter exploration in concert with automated failure analysis as a scalable method for the validation of complex space systems. The technique is impervious to discontinuities and linear dependencies in the data, and can handle dimensionalities consisting of hundreds of variables over tens of thousands of experiments.

  10. Space Mirror Memorial

    NASA Image and Video Library

    2007-01-27

    Former astronaut John Young addresses guests and attendees at a ceremony at the KSC Visitor Complex held in remembrance of the astronauts lost in the Apollo 1 fire: Virgil "Gus" Grissom, Edward H. White II and Roger B. Chaffee. Members of their families, along with Associate Administrator for Space Operations William Gerstenmaier, President of the Astronauts Memorial Foundation Stephen Feldman, Chairman of the Board of Directors of the Astronauts Memorial Foundation William Potter and former astronaut John Young, attended the ceremony. Behind the stage is the Space Mirror Memorial, designated as a national memorial by Congress and President George Bush in 1991 to honor fallen astronauts. Their names are emblazoned on the monument’s 42-1/2-foot-high by 50-foot-wide black granite surface as if to be projected into the heavens.

  11. Analysis of 31.4GHz Atmospheric Noise Temperature Measurements at Madrid Deep Space Communications Complex

    NASA Technical Reports Server (NTRS)

    Shambayati, S.; Keihm, S.

    1998-01-01

    The atmospheric noise temperature at 31.4GHz was measured at NASA's Deep Space Communications Complex at Madrid from September 1990 to December 1996 excluding February 1991 and May 1992 using a Water Vapor Radiometer.

  12. The ALTCRISS Project On Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Casolino, M.; Altamura, F.; Minori, M.; Picozza, P.; Fuglesang, C.; Galper, A.; Popov, A.; Benghin, V.; Petrov, V. M.

    2006-01-01

    The Altcriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above approximately equal to 60 MeV/n; a number of passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO the Life and Physical Science of 2004 and was begun in December 2005. Dosimeters and data cards are rotated every six months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end expedition 12 and 13.

  13. Space Shuttle Projects

    NASA Image and Video Library

    1992-08-08

    Sharing this scene with a half-moon is the Tethered Satellite System (TSS), in a photo captured onboard the STS-46. Circling Earth at an altitude of 296 kilometers (184 miles), the TSS-1 will be well within the tenuous, electrically charged layer of the atmosphere known as the ionosphere. There, a satellite attached to the orbiter by a thin conducting cord, or tether, will be reeled from the Shuttle payload bay. On this mission the satellite was plarned to be deployed 20 kilometers (12.5 miles) above the Shuttle. The conducting tether will generate high voltage and electrical currents as it moves through the atmosphere allowing scientists to examine the electrodynamics of a conducting tether system. These studies will not only increase our understanding of physical processes in the near-Earth space environment, but will also help provide an explanation for events witnessed elsewhere in the solar system. The crew of the STS-46 mission were unable to reel the satellite as planned. After several unsuccessful attempts, they were only able to extend the satellite 9.8 kilometers (6.1 miles). The TSS was a cooperative development effort by the Italian Space Agency (ASI), and NASA.

  14. Final report: A Broad Research Project in the Sciences of Complexity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2000-02-01

    Previous DOE support for ''A Broad Research Program in the Sciences of Complexity'' permitted the Santa Fe Institute to initiate new collaborative research within its Integrative Core activities as well as to host visitors to participate in research on specific topics that serve as motivation and testing-ground for the study of general principles of complex systems. The critical aspect of this support is its effectiveness in seeding new areas of research. Indeed, this Integrative Core has been the birthplace of dozens of projects that later became more specifically focused and then won direct grant support independent of the core grants.more » But at early stages most of this multidisciplinary research was unable to win grant support as individual projects--both because it did not match well with existing grant program guidelines, and because the amount of handing needed was often too modest to justify a formal proposal to an agency. In fact, one of the attributes of core support has been that it permitted SFI to encourage high-risk activities because the cost was quite low. What is significant is how many of those initial efforts have been productive in the SFI environment. Many of SFI'S current research foci began with a short visit from a researcher new to the SFI community, or as small working groups that brought together carefully selected experts from a variety of fields. As mentioned above, many of the ensuing research projects are now being supported by other funding agencies or private foundations. Some of these successes are described.« less

  15. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) is being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is set to begin preparations for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1269. Also see S90-48650 for similar view with alternate KSC number KSC-90PC-1268.

  16. Rare view of two space shuttles on adjacent KSC Launch Complex (LC) 39 pads

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Rare view shows two space shuttles on adjacent Kennedy Space Center (KSC) Launch Complex (LC) 39 pads with the Rotating Service Structures (RSS) retracted. STS-35 Columbia, Orbiter Vehicle (OV) 102, is on Pad A (foreground) and being readied for a September 6 early morning launch, while its sister spaceship, Discovery, OV-103, is prepared for an October liftoff on Mission STS-41. View provided by KSC with alternate number KSC-90PC-1268. Also see S90-48904 for a similar view with alternate KSC number KSC-90PC-1269.

  17. Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE.

    PubMed

    Esmiller, Bruno; Jacquelard, Christophe; Eckel, Hans-Albert; Wnuk, Edwin

    2014-11-01

    Studies show that the number of debris in low Earth orbit is exponentially growing despite future debris release mitigation measures considered. Specifically, the already existing population of small and medium debris (between 1 cm and several dozens of cm) is today a concrete threat to operational satellites. A ground-based laser solution which can remove, at low expense and in a nondestructive way, hazardous debris around selected space assets appears as a highly promising answer. This solution is studied within the framework of the CLEANSPACE project which is part of the FP7 space program. The overall CLEANSPACE objective is: to propose an efficient and affordable global system architecture, to tackle safety regulation aspects, political implications and future collaborations, to develop affordable technological bricks, and to establish a roadmap for the development and the future implantation of a fully functional laser protection system. This paper will present the main conclusions of the CLEANSPACE project.

  18. Space Shuttle Projects

    NASA Image and Video Library

    2002-08-06

    A Virginia student wears gloves to simulate the awkward feel and dexterity that astronauts experience when working in spacesuits. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107. (Digital camera image; no film original.

  19. Space Shuttle Projects

    NASA Image and Video Library

    1989-05-05

    The STS-30 mission launched aboard the Space Shuttle Atlantis on May 4, 1989 at 2:46:59pm (EDT) carrying a crew of five. Aboard were Ronald J. Grabe, pilot; David M. Walker, commander; and mission specialists Norman E. Thagard, Mary L. Cleave, and Mark C. Lee. The primary payload for the mission was the Magellan/Venus Radar mapper spacecraft and attached Inertial Upper Stage (IUS).

  20. Space Shuttle Projects

    NASA Image and Video Library

    1994-09-16

    Astronaut Mark Lee floats freely as he tests the new backpack called the Simplified Aid for EVA Rescue (SAFER) system. SAFER is designed for use in the event a crew member becomes untethered while conducting an EVA. The STS-64 mission marked the first untethered U.S. EVA in 10 years, and was launched on September 9, 1994, aboard the Space Shuttle Orbiter Discovery.