Maudet, Claire; Sourisce, Adèle; Dragin, Loïc; Lahouassa, Hichem; Rain, Jean-Christophe; Bouaziz, Serge; Ramirez, Bertha Cécilia; Margottin-Goguet, Florence
2013-01-01
The Vpr protein from type 1 and type 2 Human Immunodeficiency Viruses (HIV-1 and HIV-2) is thought to inactivate several host proteins through the hijacking of the DCAF1 adaptor of the Cul4A ubiquitin ligase. Here, we identified two transcriptional regulators, ZIP and sZIP, as Vpr-binding proteins degraded in the presence of Vpr. ZIP and sZIP have been shown to act through the recruitment of the NuRD chromatin remodeling complex. Strikingly, chromatin is the only cellular fraction where Vpr is present together with Cul4A ubiquitin ligase subunits. Components of the NuRD complex and exogenous ZIP and sZIP were also associated with this fraction. Several lines of evidence indicate that Vpr induces ZIP and sZIP degradation by hijacking DCAF1: (i) Vpr induced a drastic decrease of exogenously expressed ZIP and sZIP in a dose-dependent manner, (ii) this decrease relied on the proteasome activity, (iii) ZIP or sZIP degradation was impaired in the presence of a DCAF1-binding deficient Vpr mutant or when DCAF1 expression was silenced. Vpr-mediated ZIP and sZIP degradation did not correlate with the growth-related Vpr activities, namely G2 arrest and G2 arrest-independent cytotoxicity. Nonetheless, infection with HIV-1 viruses expressing Vpr led to the degradation of the two proteins. Altogether our results highlight the existence of two host transcription factors inactivated by Vpr. The role of Vpr-mediated ZIP and sZIP degradation in the HIV-1 replication cycle remains to be deciphered. PMID:24116224
Brethour, Dylan; Mehrabian, Mohadeseh; Williams, Declan; Wang, Xinzhu; Ghodrati, Farinaz; Ehsani, Sepehr; Rubie, Elizabeth A; Woodgett, James R; Sevalle, Jean; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold
2017-01-18
The prion protein (PrP) evolved from the subbranch of ZIP metal ion transporters comprising ZIPs 5, 6 and 10, raising the prospect that the study of these ZIPs may reveal insights relevant for understanding the function of PrP. Building on data which suggested PrP and ZIP6 are critical during epithelial-to-mesenchymal transition (EMT), we investigated ZIP6 in an EMT paradigm using ZIP6 knockout cells, mass spectrometry and bioinformatic methods. Reminiscent of PrP, ZIP6 levels are five-fold upregulated during EMT and the protein forms a complex with NCAM1. ZIP6 also interacts with ZIP10 and the two ZIP transporters exhibit interdependency during their expression. ZIP6 contributes to the integration of NCAM1 in focal adhesion complexes but, unlike cells lacking PrP, ZIP6 deficiency does not abolish polysialylation of NCAM1. Instead, ZIP6 mediates phosphorylation of NCAM1 on a cluster of cytosolic acceptor sites. Substrate consensus motif features and in vitro phosphorylation data point toward GSK3 as the kinase responsible, and interface mapping experiments identified histidine-rich cytoplasmic loops within the ZIP6/ZIP10 heteromer as a novel scaffold for GSK3 binding. Our data suggests that PrP and ZIP6 inherited the ability to interact with NCAM1 from their common ZIP ancestors but have since diverged to control distinct posttranslational modifications of NCAM1.
Perry, Jason; Kleckner, Nancy; Börner, G. Valentin
2005-01-01
Zip2 and Zip3 are meiosis-specific proteins that, in collaboration with several partners, act at the sites of crossover-designated, axis-associated recombinational interactions to mediate crossover/chiasma formation. Here, Spo22 (also called Zip4) is identified as a probable functional collaborator of Zip2/3. The molecular roles of Zip2, Zip3, and Spo22/Zip4 are unknown. All three proteins are part of a small evolutionary cohort comprising similar homologs in four related yeasts. Zip3 is shown to contain a RING finger whose structural features most closely match those of known ubiquitin E3s. Further, Zip3 exhibits major domainal homologies to Rad18, a known DNA-binding ubiquitin E3. Also described is an approach to the identification and mapping of repeated protein sequence motifs, Alignment Based Repeat Annotation (ABRA), that we have developed. When ABRA is applied to Zip2 and Spo22/Zip4, they emerge as a 14-blade WD40-like repeat protein and a 22-unit tetratricopeptide repeat protein, respectively. WD40 repeats of Cdc20, Cdh1, and Cdc16 and tetratricopeptide repeats of Cdc16, Cdc23, and Cdc27, all components of the anaphase-promoting complex, are also analyzed. These and other findings suggest that Zip2, Zip3, and Zip4 act together to mediate a process that involves Zip3-mediated ubiquitin labeling, potentially as a unique type of ubiquitin-conjugating complex. PMID:16314568
Li, Qingliang; Wei, Hai; Liu, Lijing; Yang, Xiaoyuan; Zhang, Xiansheng; Xie, Qi
2017-07-01
Abiotic stresses often disrupt protein folding and induce endoplasmic reticulum (ER) stress. There is a sophisticated ER quality control (ERQC) system to mitigate the effects of malfunctioning proteins and maintain ER homeostasis. The accumulation of misfolded proteins in the ER activates the unfolded protein response (UPR) to enhance ER protein folding and the degradation of misfolded proteins mediate by ER-associated degradation (ERAD). That ERQC reduces abiotic stress damage has been well studied in mammals and yeast. However, in plants, both ERAD and UPR have been studied separately and found to be critical for plant abiotic stress tolerance. In this study, we discovered that UPR-associated transcription factors AtbZIP17, AtbZIP28 and AtbZIP60 responded to tunicamycin (TM) and NaCl induced ER stress and subsequently enhanced Arabidopsis thaliana abiotic stress tolerance. They regulated the expression level of ER chaperones and the HRD1-complex components. Moreover, overexpression of AtbZIP17, AtbZIP28 and AtbZIP60 could restore stress tolerance via ERAD in the HRD1-complex mutant hrd3a-2, which suggested that UPR and ERAD have an interactive mechanism in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.
Conformation of Tax-response elements in the human T-cell leukemia virus type I promoter.
Cox, J M; Sloan, L S; Schepartz, A
1995-12-01
HTLV-I Tax is believed to activate viral gene expression by binding bZIP proteins (such as CREB) and increasing their affinities for proviral TRE target sites. Each 21 bp TRE target site contains an imperfect copy of the intrinsically bent CRE target site (the TRE core) surrounded by highly conserved flanking sequences. These flanking sequences are essential for maximal increases in DNA affinity and transactivation, but they are not, apparently, contacted by protein. Here we employ non-denaturing gel electrophoresis to evaluate TRE conformation in the presence and absence of bZIP proteins, and to explore the role of DNA conformation in viral transactivation. Our results show that the TRE-1 flanking sequences modulate the structure and modestly increase the affinity of a CREB bZIP peptide for the TRE-1 core recognition sequence. These flanking sequences are also essential for a maximal increase in stability of the CREB-DNA complex in the presence of Tax. The CRE-like TRE core and the TRE flanking sequences are both essential for formation of stable CREB-TRE-1 and Tax-CREB-TRE-1 complexes. These two DNA segments may have co-evolved into a unique structure capable of recognizing Tax and a bZIP protein.
Tron, Adriana E; Comelli, Raúl N; Gonzalez, Daniel H
2005-12-27
Homeodomain-leucine zipper (HD-Zip) proteins, unlike most homeodomain proteins, bind a pseudopalindromic DNA sequence as dimers. We have investigated the structure of the DNA complexes formed by two HD-Zip proteins with different nucleotide preferences at the central position of the binding site using footprinting and interference methods. The results indicate that the respective complexes are not symmetric, with the strand bearing a central purine (top strand) showing higher protection around the central region and the bottom strand protected toward the 3' end. Binding to a sequence with a nonpreferred central base pair produces a decrease in protection in either the top or the bottom strand, depending upon the protein. Modeling studies derived from the complex formed by the monomeric Antennapedia homeodomain with DNA indicate that in the HD-Zip/DNA complex the recognition helix of one of the monomers is displaced within the major groove respective to the other one. This monomer seems to lose contacts with a part of the recognition sequence upon binding to the nonpreferred site. The results show that the structure of the complex formed by HD-Zip proteins with DNA is dependent upon both protein intrinsic characteristics and the nucleotides present at the central position of the recognition sequence.
Ruberti, Cristina; Lai, YaShiuan; Brandizzi, Federica
2018-01-01
The unfolded protein response (UPR) is an ancient signaling pathway that commits to life-or-death outcomes in response to proteotoxic stress in the endoplasmic reticulum (ER). In plants, the membrane-tethered transcription factor bZIP28 and the ribonuclease-kinase IRE1 along with its splicing target, bZIP60, govern the two cytoprotective UPR signaling pathways known to date. The conserved ER membrane-associated BAX inhibitor 1 (BI1) modulates ER stress-induced programmed cell death through yet-unknown mechanisms. Despite the significance of the UPR for cell homeostasis, in plants the regulatory circuitry underlying ER stress resolution is still largely unmapped. To gain insights into the coordination of plant UPR strategies, we analyzed the functional relationship of the UPR modulators through the analysis of single and higher order mutants of IRE1, bZIP60, bZIP28 and BI1 in experimental conditions causing either temporary or chronic ER stress. We established a functional duality of bZIP28 and bZIP60, as they exert partially independent tissue-specific roles in recovery from ER stress, but redundantly actuate survival strategies in chronic ER stress. We also discovered that BI1 attenuates the pro-survival function of bZIP28 in ER stress resolution and, differently to animal cells, it does not temper the ribonuclease activity of inositol-requiring enzyme 1 (IRE1) under temporary ER stress. Together these findings reveal a functional independence of bZIP28 and bZIP60 in plant UPR, and identify an antagonizing role of BI1 in the pro-adaptive signaling mediated by bZIP28, bringing to light the distinctive complexity of the unfolded protein response (UPR) in plants. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax.
Baranger, A M; Palmer, C R; Hamm, M K; Giebler, H A; Brauweiler, A; Nyborg, J K; Schepartz, A
1995-08-17
Tax protein activates transcription of the human T-cell leukaemia virus type I (HTLV-I) genome through three imperfect cyclic AMP-responsive element (CRE) target sites located within the viral promoter. Previous work has shown that Tax interacts with the bZIP element of proteins that bind the CRE target site to promote peptide dimerization, suggesting an association between Tax and bZIP coiled coil. Here we show that the site of interaction with Tax is not the coiled coil, but the basic segment. This interaction increases the stability of the GCN4 bZIP dimer by 1.7 kcal mol-1 and the DNA affinity of the dimer by 1.9 kcal mol-1. The differential effect of Tax on several bZip-DNA complexes that differ in peptide sequence or DNA conformation suggests a model for Tax action based on stabilization of a distinct DNA-bound protein structure. This model may explain how Tax interacts with transcription factors of considerable sequence diversity to alter patterns of gene expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Boo-Ja; Park, Chang-Jin; Kim, Sung-Kyu
2006-05-26
We find that salicylic acid and ethephon treatment in hot pepper increases the expression of a putative basic/leucine zipper (bZIP) transcription factor gene, CabZIP1. CabZIP1 mRNA is expressed ubiquitously in various organs. The green fluorescent protein-fused transcription factor, CabZIP1::GFP, can be specifically localized to the nucleus, an action that is consistent with the presence of a nuclear localization signal in its protein sequence. Transient overexpression of the CabZIP1 transcription factor results in an increase in PR-1 transcripts level in Nicotiana benthamiana leaves. Using chromatin immunoprecipitation, we demonstrate that CabZIP1 binds to the G-box elements in native promoter of the hotmore » pepper pathogenesis-related protein 1 (CaPR-1) gene in vivo. Taken together, our results suggest that CabZIP1 plays a role as a transcriptional regulator of the CaPR-1 gene.« less
Zhang, Gang; Li, Yi-Min; Li, Biao; Zhang, Da-Wei; Guo, Shun-Xing
2015-01-01
The zinc-regulated transporters (ZRT), iron-regulated transporter (IRT)-like protein (ZIP) plays an important role in the growth and development of plant. In this study, a full length cDNA of ZIP encoding gene, designed as DoZIP1 (GenBank accession KJ946203), was identified from Dendrobium officinale using RT-PCR and RACE. Bioinformatics analysis showed that DoZIP1 consisted of a 1,056 bp open reading frame (ORF) encoded a 351-aa protein with a molecular weight of 37.57 kDa and an isoelectric point (pI) of 6.09. The deduced DoZIP1 protein contained the conserved ZIP domain, and its secondary structure was composed of 50.71% alpha helix, 11.11% extended strand, 36.18% random coil, and beta turn 1.99%. DoZIP1 protein exhibited a signal peptide and eight transmembrane domains, presumably locating in cell membrane. The amino acid sequence had high homology with ZIP proteins from Arabidopsis, alfalfa and rice. A phylogenetic tree analysis demonstrated that DoZIP1 was closely related to AtZIP10 and OsZIP3, and they were clustered into one clade. Real time quantitative PCR analysis demonstrated that the transcription level of DoZIP1 in D. officinale roots was the highest (4.19 fold higher than that of stems), followed by that of leaves (1.12 fold). Molecular characters of DoZIP1 will be useful for further functional determination of the gene involving in the growth and development of D. officinale.
The ZIP family zinc transporters support the virulence of Cryptococcus neoformans
Do, Eunsoo; Hu, Guanggan; Caza, Mélissa; Kronstad, James W.; Jung, Won Hee
2016-01-01
Zinc is an essential element in living organisms and a cofactor for various metalloproteins. To disseminate and survive, a pathogenic microbe must obtain zinc from the host, which is an environment with extremely limited zinc availability. In this study, we investigated the roles of the ZIP family zinc transporters Zip1 and Zip2 in the human pathogenic fungus Cryptococcus neoformans. Zip1 and Zip2 are homologous to Zrt1 and Zrt2 of the model fungus, Saccharomyces cerevisiae, respectively. We found that the expression of ZIP1 was regulated by the zinc concentration in the environment. Furthermore, the mutant lacking ZIP1 displayed a severe growth defect under zinc-limited conditions, while the mutant lacking ZIP2 displayed normal growth. Inductively coupled plasma–atomic emission spectroscopy analysis showed that the absence of Zip1 expression significantly reduced total cellular zinc levels relative to that in the wild type, while overexpression of Zip1 was associated with increased cellular zinc levels. These findings suggested that Zip1 plays roles in zinc uptake in C. neoformans. We also constructed a Zip1-FLAG fusion protein and found, by immunofluorescence, not only that the protein was localized to the periphery implying it is a membrane transporter, but also that the protein was N-glycosylated. Furthermore, the mutant lacking ZIP1 showed attenuated virulence in a murine inhalation model of cryptococcosis and reduced survival within murine macrophages. Overall, our data suggest that Zip1 plays essential roles in zinc transport and the virulence of C. neoformans. PMID:27118799
Mechanism of DNA binding enhancement by hepatitis B virus protein pX.
Palmer, C R; Gegnas, L D; Schepartz, A
1997-12-09
At least three hundred million people worldwide are infected with the hepatitis B virus (HBV), and epidemiological studies show a clear correlation between chronic HBV infection and the development of hepatocellular carcinoma. HBV encodes a protein, pX, which abducts the cellular transcriptional machinery in several ways including direct interactions with bZIP transcription factors. These interactions increase the DNA affinities of target bZIP proteins in a DNA sequence-dependent manner. Here we use a series of bZIP peptide models to explore the mechanism by which pX interacts with bZIP proteins. Our results suggest that pX increases bZIP.DNA stability by increasing the stability of the bZIP dimer as well as the affinity of the dimer for DNA. Additional experiments provide evidence for a mechanism in which pX recognizes the composite structure of the peptide.DNA complex, not simply the primary peptide sequence. These experiments provide a framework for understanding how pX alters the patterns of transcription within the nucleus. The similarities between the mechanism proposed for pX and the mechanism previously proposed for the human T-cell leukemia virus protein Tax are discussed.
Wang, Xiuna; Wu, Fan; Liu, Ling; Liu, Xingzhong; Che, Yongsheng; Keller, Nancy P; Guo, Liyun; Yin, Wen-Bing
2015-08-01
The bZIP transcription factors are conserved in all eukaryotes and play critical roles in organismal responses to environmental challenges. In filamentous fungi, several lines of evidence indicate that secondary metabolism (SM) is associated with oxidative stress mediated by bZIP proteins. Here we uncover a connection with a bZIP protein and oxidative stress induction of SM in the plant endophytic fungus Pestalotiopsis fici. A homology search of the P. fici genome with the bZIP protein RsmA, involved in SM and the oxidative stress response in Aspergillus nidulans, identified PfZipA. Deletion of PfzipA resulted in a strain that displayed resistant to the oxidative reagents tert-butylhydroperoxide (tBOOH), diamide, and menadione sodium bisulfite (MSB), but increased sensitivity to H2O2 as compared to wild type (WT). Secondary metabolite production presented a complex pattern dependent on PfzipA and oxidative reagents. Without oxidative treatment, the ΔPfzipA strain produced less isosulochrin and ficipyroneA than WT; addition of tBOOH further decreased production of iso-A82775C and pestaloficiol M in ΔPfzipA; diamide treatment resulted in equivalent production of isosulochrin and ficipyroneA in the two strains; MSB treatment further decreased production of RES1214-1 and iso-A82775C but increased pestaloficiol M production in the mutant; and H2O2 treatment resulted in enhanced production of isosulochrin, RES1214-1 and pestheic acid but decreased ficipyroneA and pestaloficiol M in ΔPfzipA compared to WT. Our results suggest that PfZipA regulation of SM is modified by oxidative stress pathways and provide insights into a possible role of PfZipA in mediating SM synthesis in the endophytic lifestyle of P. fici. Copyright © 2015 Elsevier Inc. All rights reserved.
Arabidopsis HD-Zip II transcription factors control apical embryo development and meristem function.
Turchi, Luana; Carabelli, Monica; Ruzza, Valentino; Possenti, Marco; Sassi, Massimiliano; Peñalosa, Andrés; Sessa, Giovanna; Salvi, Sergio; Forte, Valentina; Morelli, Giorgio; Ruberti, Ida
2013-05-01
The Arabidopsis genome encodes ten Homeodomain-Leucine zipper (HD-Zip) II proteins. ARABIDOPSIS THALIANA HOMEOBOX 2 (ATHB2), HOMEOBOX ARABIDOPSIS THALIANA 1 (HAT1), HAT2, HAT3 and ATHB4 are regulated by changes in the red/far red light ratio that induce shade avoidance in most of the angiosperms. Here, we show that progressive loss of HAT3, ATHB4 and ATHB2 activity causes developmental defects from embryogenesis onwards in white light. Cotyledon development and number are altered in hat3 athb4 embryos, and these defects correlate with changes in auxin distribution and response. athb2 gain-of-function mutation and ATHB2 expression driven by its promoter in hat3 athb4 result in significant attenuation of phenotypes, thus demonstrating that ATHB2 is functionally redundant to HAT3 and ATHB4. In analogy to loss-of-function mutations in HD-Zip III genes, loss of HAT3 and ATHB4 results in organ polarity defects, whereas triple hat3 athb4 athb2 mutants develop one or two radialized cotyledons and lack an active shoot apical meristem (SAM). Consistent with overlapping expression pattern of HD-Zip II and HD-Zip III gene family members, bilateral symmetry and SAM defects are enhanced when hat3 athb4 is combined with mutations in PHABULOSA (PHB), PHAVOLUTA (PHV) or REVOLUTA (REV). Finally, we show that ATHB2 is part of a complex regulatory circuit directly involving both HD-Zip II and HD-Zip III proteins. Taken together, our study provides evidence that a genetic system consisting of HD-Zip II and HD-Zip III genes cooperates in establishing bilateral symmetry and patterning along the adaxial-abaxial axis in the embryo as well as in controlling SAM activity.
Structural insights of ZIP4 extracellular domain critical for optimal zinc transport
NASA Astrophysics Data System (ADS)
Zhang, Tuo; Sui, Dexin; Hu, Jian
2016-06-01
The ZIP zinc transporter family is responsible for zinc uptake from the extracellular milieu or intracellular vesicles. The LIV-1 subfamily, containing nine out of the 14 human ZIP proteins, is featured with a large extracellular domain (ECD). The critical role of the ECD is manifested by disease-causing mutations on ZIP4, a representative LIV-1 protein. Here we report the first crystal structure of a mammalian ZIP4-ECD, which reveals two structurally independent subdomains and an unprecedented dimer centred at the signature PAL motif. Structure-guided mutagenesis, cell-based zinc uptake assays and mapping of the disease-causing mutations indicate that the two subdomains play pivotal but distinct roles and that the bridging region connecting them is particularly important for ZIP4 function. These findings lead to working hypotheses on how ZIP4-ECD exerts critical functions in zinc transport. The conserved dimeric architecture in ZIP4-ECD is also demonstrated to be a common structural feature among the LIV-1 proteins.
Zhu, Mingku; Meng, Xiaoqing; Cai, Jing; Li, Ge; Dong, Tingting; Li, Zongyun
2018-05-08
Basic region/leucine zipper (bZIP) transcription factors perform as crucial regulators in ABA-mediated stress response in plants. Nevertheless, the functions for most bZIP family members in tomato remain to be deciphered. Here we examined the functional characterization of SlbZIP1 under salt and drought stresses in tomato. Silencing of SlbZIP1 in tomato resulted in reduced expression of multiple ABA biosynthesis- and signal transduction-related genes in transgenic plants. In stress assays, SlbZIP1-RNAi transgenic plants exhibited reduced tolerance to salt and drought stresses compared with WT plants, as are evaluated by multiple physiological parameters associated with stress responses, such as decreased ABA, chlorophyll contents and CAT activity, and increased MDA content. In addition, RNA-seq analysis of transgenic plants revealed that the transcription levels of multiple genes encoding defense proteins related to responses to abiotic stress (e.g. endochitinase, peroxidases, and lipid transfer proteins) and biotic stress (e.g. pathogenesis-related proteins) were downregulated in SlbZIP1-RNAi plants, suggesting that SlbZIP1 plays a role in regulating the genes related to biotic and abiotic stress response. Collectively, the data suggest that SlbZIP1 exerts an essential role in salt and drought stress tolerance through modulating an ABA-mediated pathway, and SlbZIP1 may hold potential applications in the engineering of salt- and drought-tolerant tomato cultivars.
Kumimoto, Roderick W.; Siriwardana, Chamindika L.; Gayler, Krystal K.; Risinger, Jan R.; Siefers, Nicholas; Holt, Ben F.
2013-01-01
In the model organism Arabidopsis thaliana the heterotrimeric transcription factor NUCLEAR FACTOR Y (NF-Y) has been shown to play multiple roles in facilitating plant growth and development. Although NF-Y itself represents a multi-protein transcriptional complex, recent studies have shown important interactions with other transcription factors, especially those in the bZIP family. Here we add to the growing evidence that NF-Y and bZIP form common complexes to affect many processes. We carried out transcriptional profiling on nf-yc mutants and through subsequent analyses found an enrichment of bZIP binding sites in the promoter elements of misregulated genes. Using NF-Y as bait, yeast two hybrid assays yielded interactions with bZIP proteins that are known to control ABA signaling. Accordingly, we find that plants mutant for several NF-Y subunits show characteristic phenotypes associated with the disruption of ABA signaling. While previous reports have shown additive roles for NF-YC family members in photoperiodic flowering, we found that they can have opposing roles in ABA signaling. Collectively, these results demonstrated the importance and complexity of NF-Y in the integration of environmental and hormone signals. PMID:23527203
Zhang, C H; Ma, R J; Shen, Z J; Sun, X; Korir, N K; Yu, M L
2014-04-08
In this study, 33 homeodomain-leucine zipper (HD-ZIP) genes were identified in peach using the HD-ZIP amino acid sequences of Arabidopsis thaliana as a probe. Based on the phylogenetic analysis and the individual gene or protein characteristics, the HD-ZIP gene family in peach can be classified into 4 subfamilies, HD-ZIP I, II, III, and IV, containing 14, 7, 4, and 8 members, respectively. The most closely related peach HD-ZIP members within the same subfamilies shared very similar gene structure in terms of either intron/exon numbers or lengths. Almost all members of the same subfamily shared common motif compositions, thereby implying that the HD-ZIP proteins within the same subfamily may have functional similarity. The 33 peach HD-ZIP genes were distributed across scaffolds 1 to 7. Although the primary structure varied among HD-ZIP family proteins, their tertiary structures were similar. The results from this study will be useful in selecting candidate genes from specific subfamilies for functional analysis.
Structure and function of homodomain-leucine zipper (HD-Zip) proteins.
Elhiti, Mohamed; Stasolla, Claudio
2009-02-01
Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.
Chew, William; Hrmova, Maria; Lopato, Sergiy
2013-04-12
Homeobox genes comprise an important group of genes that are responsible for regulation of developmental processes. These genes determine cell differentiation and cell fate in all eukaryotic organisms, starting from the early stages of embryo development. Homeodomain leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom. Members of the HD-Zip IV subfamily have a complex domain topology and can bind several cis-elements with overlapping sequences. Many of the reported HD-Zip IV genes were shown to be specifically or preferentially expressed in plant epidermal or sub-epidermal cells. HD-Zip IV TFs were found to be associated with differentiation and maintenance of outer cell layers, and regulation of lipid biosynthesis and transport. Insights about the role of these proteins in plant cuticle formation, and hence their possible involvement in plant protection from pathogens and abiotic stresses has just started to emerge. These roles make HD-Zip IV proteins an attractive tool for genetic engineering of crop plants. To this end, there is a need for in-depth studies to further clarify the function of each HD-Zip IV subfamily member in commercially important plant species.
Chew, William; Hrmova, Maria; Lopato, Sergiy
2013-01-01
Homeobox genes comprise an important group of genes that are responsible for regulation of developmental processes. These genes determine cell differentiation and cell fate in all eukaryotic organisms, starting from the early stages of embryo development. Homeodomain leucine zipper (HD-Zip) transcription factors are unique to the plant kingdom. Members of the HD-Zip IV subfamily have a complex domain topology and can bind several cis-elements with overlapping sequences. Many of the reported HD-Zip IV genes were shown to be specifically or preferentially expressed in plant epidermal or sub-epidermal cells. HD-Zip IV TFs were found to be associated with differentiation and maintenance of outer cell layers, and regulation of lipid biosynthesis and transport. Insights about the role of these proteins in plant cuticle formation, and hence their possible involvement in plant protection from pathogens and abiotic stresses has just started to emerge. These roles make HD-Zip IV proteins an attractive tool for genetic engineering of crop plants. To this end, there is a need for in-depth studies to further clarify the function of each HD-Zip IV subfamily member in commercially important plant species. PMID:23584027
Specificity determinants for the abscisic acid response element.
Sarkar, Aditya Kumar; Lahiri, Ansuman
2013-01-01
Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.
Cai, Wangting; Yang, Yaling; Wang, Weiwei; Guo, Guangyan; Liu, Wei; Bi, Caili
2018-03-01
The basic leucine zipper (bZIP) proteins play important roles against abiotic stress in plants, including cold stress. However, most bZIPs involved in plant freezing tolerance are positive regulators. Only a few bZIPs function negatively in cold stress response. In this study, TabZIP6, a Group C bZIP transcription factor gene from common wheat (Triticum aestivum L.), was cloned and characterized. The transcript of TabZIP6 was strongly induced by cold treatment (4 °C). TabZIP6 is a nuclear-localized protein with transcriptional activation activity. Arabidopsis plants overexpressing TabZIP6 showed decreased tolerance to freezing stress. Microarray as well as quantitative real-time PCR (qRT-PCR) analysis showed that CBFs and some key COR genes, including COR47 and COR15B, were down-regulated by cold treatment in TabZIP6-overexpressing Arabidopsis lines. TabZIP6 was capable of binding to the G-box motif and the CBF1 and CBF3 promoters in yeast cells. A yeast two-hybrid assay revealed that TabZIP6, as well as the other two Group S bZIP proteins involved in cold stress tolerance in wheat, Wlip19 and TaOBF1, can form homodimers by themselves and heterodimers with each other. These results suggest that TabZIP6 may function negatively in the cold stress response by binding to the promoters of CBFs, and thereby decreasing the expression of downstream COR genes in TabZIP6-overexpressing Arabidopsis seedlings. Copyright © 2018. Published by Elsevier Masson SAS.
Raaij, Sanne van; Swelm, Rachel van; Bouman, Karlijn; Cliteur, Maaike; Heuvel, Marius van den; Pertijs, Jeanne; Patel, Dominic; Bass, Paul; Goor, Harry van; Unwin, Robert; Srai, Surjit Kaila; Swinkels, Dorine
2018-06-19
Iron is suggested to play a detrimental role in the progression of chronic kidney disease (CKD). The kidney recycles iron back into the circulation. However, the localization of proteins relevant for physiological tubular iron handling and their potential role in CKD remain unclear. We examined associations between iron deposition, expression of iron handling proteins and tubular injury in kidney biopsies from CKD patients and healthy controls using immunohistochemistry. Iron was deposited in proximal (PT) and distal tubules (DT) in 33% of CKD biopsies, predominantly in pathologies with glomerular dysfunction, but absent in controls. In healthy kidney, PT contained proteins required for iron recycling including putative iron importers ZIP8, ZIP14, DMT1, iron storage proteins L- and H-ferritin and iron exporter ferroportin, while DT only contained ZIP8, ZIP14, and DMT1. In CKD, iron deposition associated with increased intensity of iron importers (ZIP14, ZIP8), storage proteins (L-, H-ferritin), and/or decreased ferroportin abundance. This demonstrates that tubular iron accumulation may result from increased iron uptake and/or inadequate iron export. Iron deposition associated with oxidative injury as indicated by heme oxygenase-1 abundance. In conclusion, iron deposition is relatively common in CKD, and may result from altered molecular iron handling and may contribute to renal injury.
Duan, Dehui; Sigano, Dina M.; Kelley, James A.; Lai, Christopher C.; Lewin, Nancy E.; Kedei, Noemi; Peach, Megan L.; Lee, Jeewoo; Abeyweera, Thushara P.; Rotenberg, Susan A.; Kim, Hee; Kim, Young Ho; Kazzouli, Saïd El; Chung, Jae-Uk; Young, Howard A.; Young, Matthew R.; Baker, Alyson; Colburn, Nancy H.; Haimovitz-Friedman, Adriana; Truman, Jean-Philip; Parrish, Damon A.; Deschamps, Jeffrey R.; Perry, Nicholas A.; Surawski, Robert J.; Blumberg, Peter M.; Marquez, Victor E.
2008-01-01
Diacylglycerol-lactone (DAG-lactone) libraries generated by a solid-phase approach using IRORI technology produced a variety of unique biological activities. Subtle differences in chemical diversity in two areas of the molecule, the combination of which generates what we have termed “chemical zip codes”, are able to transform a relatively small chemical space into a larger universe of biological activities, as membrane-containing organelles within the cell appear to be able to decode these “chemical zip codes”. It is postulated that after binding to protein kinase C (PKC) isozymes or other non-kinase target proteins that contain diacylglycerol responsive, membrane interacting domains (C1 domains), the resulting complexes are directed to diverse intracellular sites where different sets of substrates are accessed. Multiple cellular bioassays show that DAG-lactones, which bind in vitro to PKCα to varying degrees, expand their biological repertoire into a larger domain, eliciting distinct cellular responses. PMID:18698758
Hepatic ZIP14-mediated zinc transport is required for adaptation to endoplasmic reticulum stress
Kim, Min-Hyun; Aydemir, Tolunay B.; Kim, Jinhee; Cousins, Robert J.
2017-01-01
Extensive endoplasmic reticulum (ER) stress damages the liver, causing apoptosis and steatosis despite the activation of the unfolded protein response (UPR). Restriction of zinc from cells can induce ER stress, indicating that zinc is essential to maintain normal ER function. However, a role for zinc during hepatic ER stress is largely unknown despite important roles in metabolic disorders, including obesity and nonalcoholic liver disease. We have explored a role for the metal transporter ZIP14 during pharmacologically and high-fat diet–induced ER stress using Zip14−/− (KO) mice, which exhibit impaired hepatic zinc uptake. Here, we report that ZIP14-mediated hepatic zinc uptake is critical for adaptation to ER stress, preventing sustained apoptosis and steatosis. Impaired hepatic zinc uptake in Zip14 KO mice during ER stress coincides with greater expression of proapoptotic proteins. ER stress-induced Zip14 KO mice show greater levels of hepatic steatosis due to higher expression of genes involved in de novo fatty acid synthesis, which are suppressed in ER stress-induced WT mice. During ER stress, the UPR-activated transcription factors ATF4 and ATF6α transcriptionally up-regulate Zip14 expression. We propose ZIP14 mediates zinc transport into hepatocytes to inhibit protein-tyrosine phosphatase 1B (PTP1B) activity, which acts to suppress apoptosis and steatosis associated with hepatic ER stress. Zip14 KO mice showed greater hepatic PTP1B activity during ER stress. These results show the importance of zinc trafficking and functional ZIP14 transporter activity for adaptation to ER stress associated with chronic metabolic disorders. PMID:28673968
Hepatic ZIP14-mediated zinc transport is required for adaptation to endoplasmic reticulum stress.
Kim, Min-Hyun; Aydemir, Tolunay B; Kim, Jinhee; Cousins, Robert J
2017-07-18
Extensive endoplasmic reticulum (ER) stress damages the liver, causing apoptosis and steatosis despite the activation of the unfolded protein response (UPR). Restriction of zinc from cells can induce ER stress, indicating that zinc is essential to maintain normal ER function. However, a role for zinc during hepatic ER stress is largely unknown despite important roles in metabolic disorders, including obesity and nonalcoholic liver disease. We have explored a role for the metal transporter ZIP14 during pharmacologically and high-fat diet-induced ER stress using Zip14 -/- (KO) mice, which exhibit impaired hepatic zinc uptake. Here, we report that ZIP14-mediated hepatic zinc uptake is critical for adaptation to ER stress, preventing sustained apoptosis and steatosis. Impaired hepatic zinc uptake in Zip14 KO mice during ER stress coincides with greater expression of proapoptotic proteins. ER stress-induced Zip14 KO mice show greater levels of hepatic steatosis due to higher expression of genes involved in de novo fatty acid synthesis, which are suppressed in ER stress-induced WT mice. During ER stress, the UPR-activated transcription factors ATF4 and ATF6α transcriptionally up-regulate Zip14 expression. We propose ZIP14 mediates zinc transport into hepatocytes to inhibit protein-tyrosine phosphatase 1B (PTP1B) activity, which acts to suppress apoptosis and steatosis associated with hepatic ER stress. Zip14 KO mice showed greater hepatic PTP1B activity during ER stress. These results show the importance of zinc trafficking and functional ZIP14 transporter activity for adaptation to ER stress associated with chronic metabolic disorders.
USDA-ARS?s Scientific Manuscript database
To understand how plants from the Fabaceae family maintain zinc (Zn) homeostasis, we have characterized the kinetics of the Zn transporting proteins from the ZIP family of divalent metal transporters in the model legume Medicago truncatula. MtZIP1, MtZIP5, and MtZIP6 were the only members from this ...
Bin, Bum-Ho; Hojyo, Shintaro; Hosaka, Toshiaki; Bhin, Jinhyuk; Kano, Hiroki; Miyai, Tomohiro; Ikeda, Mariko; Kimura-Someya, Tomomi; Shirouzu, Mikako; Cho, Eun-Gyung; Fukue, Kazuhisa; Kambe, Taiho; Ohashi, Wakana; Kim, Kyu-Han; Seo, Juyeon; Choi, Dong-Hwa; Nam, Yeon-Ju; Hwang, Daehee; Fukunaka, Ayako; Fujitani, Yoshio; Yokoyama, Shigeyuki; Superti-Furga, Andrea; Ikegawa, Shiro; Lee, Tae Ryong; Fukada, Toshiyuki
2014-01-01
The zinc transporter protein ZIP13 plays critical roles in bone, tooth, and connective tissue development, and its dysfunction is responsible for the spondylocheirodysplastic form of Ehlers-Danlos syndrome (SCD-EDS, OMIM 612350). Here, we report the molecular pathogenic mechanism of SCD-EDS caused by two different mutant ZIP13 proteins found in human patients: ZIP13G64D, in which Gly at amino acid position 64 is replaced by Asp, and ZIP13ΔFLA, which contains a deletion of Phe-Leu-Ala. We demonstrated that both the ZIP13G64D and ZIP13ΔFLA protein levels are decreased by degradation via the valosin-containing protein (VCP)-linked ubiquitin proteasome pathway. The inhibition of degradation pathways rescued the protein expression levels, resulting in improved intracellular Zn homeostasis. Our findings uncover the pathogenic mechanisms elicited by mutant ZIP13 proteins. Further elucidation of these degradation processes may lead to novel therapeutic targets for SCD-EDS. PMID:25007800
Yang, Qinsong; Niu, Qingfeng; Li, Jianzhao; Zheng, Xiaoyan; Ma, Yunjing; Bai, Songling; Teng, Yuanwen
2018-06-01
Homeodomain-leucine zipper (HD-Zip) proteins, which form one of the largest and most diverse families, regulate many biological processes in plants, including differentiation, flowering, vascular development, and stress signaling. Abscisic acid (ABA) has been proved to be one of the key regulators of bud dormancy and to influence several HD-Zip genes expression. However, the role of HD-Zip genes in regulating bud dormancy remains unclear. We identified 47 pear (P. pyrifolia White Pear Group) HD-Zip genes, which were classified into four subfamilies (HD-Zip I-IV). We further revealed that gene expression levels of some HD-Zip members were closely related to ABA concentrations in flower buds during dormancy transition. Exogenous ABA treatment confirmed that PpHB22 and several other HD-Zip genes responded to ABA. Yeast one-hybrid and dual luciferase assay results combining subcellular localization showed that PpHB22 was present in nucleus and directly induced PpDAM1 (dormancy associated MADS-box 1) expression. Thus, PpHB22 is a negative regulator of plant growth associated with the ABA response pathway and functions upstream of PpDAM1. These findings enrich our understanding of the function of HD-Zip genes related to the bud dormancy transition. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein.
Pazos, Manuel; Natale, Paolo; Vicente, Miguel
2013-02-01
In Escherichia coli, the cell division protein FtsZ is anchored to the cytoplasmic membrane by the action of the bitopic membrane protein ZipA and the cytoplasmic protein FtsA. Although the presence of both ZipA and FtsA is strictly indispensable for cell division, an FtsA gain-of-function mutant FtsA* (R286W) can bypass the ZipA requirement for cell division. This observation casts doubts on the role of ZipA and its need for cell division. Maxicells are nucleoid-free bacterial cells used as a whole cell in vitro system to probe protein-protein interactions without the need of protein purification. We show that ZipA protects FtsZ from the ClpXP-directed degradation observed in E. coli maxicells and that ZipA-stabilized FtsZ forms membrane-attached spiral-like structures in the bacterial cytoplasm. The overproduction of the FtsZ-binding ZipA domain is sufficient to protect FtsZ from degradation, whereas other C-terminal ZipA partial deletions lacking it are not. Individual overproduction of the proto-ring component FtsA or its gain-of-function mutant FtsA* does not result in FtsZ protection. Overproduction of FtsA or FtsA* together with ZipA does not interfere with the FtsZ protection. Moreover, neither FtsA nor FtsA* protects FtsZ when overproduced together with ZipA mutants lacking the FZB domain. We propose that ZipA protects FtsZ from degradation by ClpP by making the FtsZ site of interaction unavailable to the ClpX moiety of the ClpXP protease. This role cannot be replaced by either FtsA or FtsA*, suggesting a unique function for ZipA in proto-ring stability.
Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters
Schmitt-Ulms, Gerold; Ehsani, Sepehr; Watts, Joel C.; Westaway, David; Wille, Holger
2009-01-01
In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease. PMID:19784368
Bin, Bum-Ho; Bhin, Jinhyuk; Seo, Juyeon; Kim, Se-Young; Lee, Eunyoung; Park, Kyuhee; Choi, Dong-Hwa; Takagishi, Teruhisa; Hara, Takafumi; Hwang, Daehee; Koseki, Haruhiko; Asada, Yoshinobu; Shimoda, Shinji; Mishima, Kenji; Fukada, Toshiyuki
2017-08-01
Skin is the first area that manifests zinc deficiency. However, the molecular mechanisms by which zinc homeostasis affects skin development remain largely unknown. Here, we show that zinc-regulation transporter-/iron-regulation transporter-like protein 7 (ZIP7) localized to the endoplasmic reticulum plays critical roles in connective tissue development. Mice lacking the Slc39a7/Zip7 gene in collagen 1-expressing tissue exhibited dermal dysplasia. Ablation of ZIP7 in mesenchymal stem cells inhibited cell proliferation thereby preventing proper dermis formation, indicating that ZIP7 is required for dermal development. We also found that mesenchymal stem cells lacking ZIP7 accumulated zinc in the endoplasmic reticulum, which triggered zinc-dependent aggregation and inhibition of protein disulfide isomerase, leading to endoplasmic reticulum dysfunction. These results suggest that ZIP7 is necessary for endoplasmic reticulum function in mesenchymal stem cells and, as such, is essential for dermal development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Tsai, Li-Chun Lisa; Xie, Lei; Dore, Kim; Xie, Li; Del Rio, Jason C; King, Charles C; Martinez-Ariza, Guillermo; Hulme, Christopher; Malinow, Roberto; Bourne, Philip E; Newton, Alexandra C
2015-09-04
Atypical protein kinase C (aPKC) enzymes signal on protein scaffolds, yet how they are maintained in an active conformation on scaffolds is unclear. A myristoylated peptide based on the autoinhibitory pseudosubstrate fragment of the atypical PKCζ, zeta inhibitory peptide (ZIP), has been extensively used to inhibit aPKC activity; however, we have previously shown that ZIP does not inhibit the catalytic activity of aPKC isozymes in cells (Wu-Zhang, A. X., Schramm, C. L., Nabavi, S., Malinow, R., and Newton, A. C. (2012) J. Biol. Chem. 287, 12879-12885). Here we sought to identify a bona fide target of ZIP and, in so doing, unveiled a novel mechanism by which aPKCs are maintained in an active conformation on a protein scaffold. Specifically, we used protein-protein interaction network analysis, structural modeling, and protein-protein docking to predict that ZIP binds an acidic surface on the Phox and Bem1 (PB1) domain of p62, an interaction validated by peptide array analysis. Using a genetically encoded reporter for PKC activity fused to the p62 scaffold, we show that ZIP inhibits the activity of wild-type aPKC, but not a construct lacking the pseudosubstrate. These data support a model in which the pseudosubstrate of aPKCs is tethered to the acidic surface on p62, locking aPKC in an open, signaling-competent conformation. ZIP competes for binding to the acidic surface, resulting in displacement of the pseudosubstrate of aPKC and re-engagement in the substrate-binding cavity. This study not only identifies a cellular target for ZIP, but also unveils a novel mechanism by which scaffolded aPKC is maintained in an active conformation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A.
2016-01-01
Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. PMID:27257060
Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio
2016-03-01
Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.
Carvalho, Sandra; da Silva, Rosa Barreira; Shawki, Ali; Castro, Helena; Lamy, Márcia; Eide, David; Costa, Vítor; Mackenzie, Bryan; Tomás, Ana M.
2016-01-01
Summary Cellular zinc homeostasis ensures that the intracellular concentration of this element is kept within limits that enable its participation in critical physiological processes without exerting toxic effects. We report here the identification and characterization of the first mediator of zinc homeostasis in Leishmania infantum, LiZIP3, a member of the ZIP family of divalent metal-ion transporters. The zinc transporter activity of LiZIP3 was first disclosed by its capacity to rescue the growth of Saccharomyces cerevisiae strains deficient in zinc acquisition. Subsequent expression of LiZIP3 in Xenopus laevis oocytes was shown to stimulate the uptake of a broad range of metal ions, among which Zn2+ was the preferred LiZIP3 substrate (K0.5 ≈ 0.1 μM). Evidence that LiZIP3 functions as a zinc importer in L. infantum came from the observations that the protein locates to the cell membrane and that its overexpression leads to augmented zinc internalization. Importantly, expression and cell-surface location of LiZIP3 are lost when parasites face high zinc bioavailability. LiZIP3 decline in response to zinc is regulated at the mRNA level in a process involving (a) short-lived protein(s). Collectively, our data reveal that LiZIP3 enables L. infantum to acquire zinc in a highly regulated manner, hence contributing to zinc homeostasis. PMID:25644708
NASA Technical Reports Server (NTRS)
Stankovic, B.; Vian, A.; Henry-Vian, C.; Davies, E.
2000-01-01
Localized wounding of one leaf in intact tomato (Lycopersicon esculentum Mill.) plants triggers rapid systemic transcriptional responses that might be involved in defense. To better understand the mechanism(s) of intercellular signal transmission in wounded tomatoes, and to identify the array of genes systemically up-regulated by wounding, a subtractive cDNA library for wounded tomato leaves was constructed. A novel cDNA clone (designated LebZIP1) encoding a DNA-binding protein was isolated and identified. This clone appears to be encoded by a single gene, and belongs to the family of basic leucine zipper domain (bZIP) transcription factors shown to be up-regulated by cold and dark treatments. Analysis of the mRNA levels suggests that the transcript for LebZIP1 is both organ-specific and up-regulated by wounding. In wounded wild-type tomatoes, the LebZIP1 mRNA levels in distant tissue were maximally up-regulated within only 5 min following localized wounding. Exogenous abscisic acid (ABA) prevented the rapid wound-induced increase in LebZIP1 mRNA levels, while the basal levels of LebZIP1 transcripts were higher in the ABA mutants notabilis (not), sitiens (sit), and flacca (flc), and wound-induced increases were greater in the ABA-deficient mutants. Together, these results suggest that ABA acts to curtail the wound-induced synthesis of LebZIP1 mRNA.
Li, Xueyin; Feng, Biane; Zhang, Fengjie; Tang, Yimiao; Zhang, Liping; Ma, Lingjian; Zhao, Changping; Gao, Shiqing
2016-01-01
Extensive studies in Arabidopsis and rice have demonstrated that Subgroup-A members of the bZIP transcription factor family play important roles in plant responses to multiple abiotic stresses. Although common wheat (Triticum aestivum) is one of the most widely cultivated and consumed food crops in the world, there are limited investigations into Subgroup A of the bZIP family in wheat. In this study, we performed bioinformatic analyses of the 41 Subgroup-A members of the wheat bZIP family. Phylogenetic and conserved motif analyses showed that most of the Subgroup-A bZIP proteins involved in abiotic stress responses of wheat, Arabidopsis, and rice clustered in Clade A1 of the phylogenetic tree, and shared a majority of conserved motifs, suggesting the potential importance of Clade-A1 members in abiotic stress responses. Gene structure analysis showed that TabZIP genes with close phylogenetic relationships tended to possess similar exon–intron compositions, and the positions of introns in the hinge regions of the bZIP domains were highly conserved, whereas introns in the leucine zipper regions were at variable positions. Additionally, eleven groups of homologs and two groups of tandem paralogs were also identified in Subgroup A of the wheat bZIP family. Expression profiling analysis indicated that most Subgroup-A TabZIP genes were responsive to abscisic acid and various abiotic stress treatments. TabZIP27, TabZIP74, TabZIP138, and TabZIP174 proteins were localized in the nucleus of wheat protoplasts, whereas TabZIP9-GFP fusion protein was simultaneously present in the nucleus, cytoplasm, and cell membrane. Transgenic Arabidopsis overexpressing TabZIP174 displayed increased seed germination rates and primary root lengths under drought treatments. Overexpression of TabZIP174 in transgenic Arabidopsis conferred enhanced drought tolerance, and transgenic plants exhibited lower water loss rates, higher survival rates, higher proline, soluble sugar, and leaf chlorophyll contents, as well as more stable osmotic potential under drought conditions. Additionally, overexpression of TabZIP174 increased the expression of stress-responsive genes (RD29A, RD29B, RAB18, DREB2A, COR15A, and COR47). The improved drought resistance might be attributed to the increased osmotic adjustment capacity. Our results indicate that TabZIP174 may participate in regulating plant response to drought stress and holds great potential for genetic improvement of abiotic stress tolerance in crops. PMID:27899926
Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter
2016-09-01
The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.
Fricke, Julia; Hillebrand, Andrea; Twyman, Richard M; Prüfer, Dirk; Schulze Gronover, Christian
2013-04-01
Natural rubber is a high-molecular-mass biopolymer found in the latex of >2,500 plant species, including Hevea brasiliensis, Parthenium argentatum and Taraxacum spp. The active sites of rubber biosynthesis are rubber particles, which comprise a hydrophobic rubber core surrounded by a phospholipid monolayer membrane containing species-dependent lipids and associated proteins. Small rubber particle proteins are the most abundant rubber particle-associated proteins in Taraxacum brevicorniculatum (TbSRPPs) and may promote rubber biosynthesis by stabilizing the rubber particle architecture. We investigated the transcriptional regulation of genes encoding SRPPs and identified a bZIP transcription factor (TbbZIP.1) similar to the Arabidopsis thaliana ABI5-ABF-AREB subfamily, which is thought to include downstream targets of ABA and/or abiotic stress-inducible protein kinases. The TbbZIP.1 gene was predominantly expressed in laticifers and regulates the expression of TbSRPP genes in an ABA-dependent manner. The individual TbSRPP genes showed distinct induction profiles, suggesting diverse roles in rubber biosynthesis and stress adaptation. The potential involvement of TbSRPPs in the adaptation of T. brevicorniculatum plants to environmental stress is discussed based on our current knowledge of the stress-response roles of SRPPs and their homologs, and the protective function of latex and rubber against pathogens. Our data suggest that TbSRPPs contribute to stress tolerance in T. brevicorniculatum and that their effects are mediated by TbbZIP.1.
Salt and drought stress and ABA responses related to bZIP genes from V. radiata and V. angularis.
Wang, Lanfen; Zhu, Jifeng; Li, Xiaoming; Wang, Shumin; Wu, Jing
2018-04-20
Mung bean and adzuki bean are warm-season legumes widely cultivated in China. However, bean production in major producing regions is limited by biotic and abiotic stress, such as drought and salt stress. Basic leucine zipper (bZIP) genes play key roles in responses to various biotic and abiotic stresses. However, only several bZIP genes involved in drought and salt stress in legumes, especially Vigna radiata and Vigna angularis, have been identified. In this study, we identified 54 and 50 bZIP proteins from whole-genome sequences of V. radiata and V. angularis, respectively. First, we comprehensively surveyed the characteristics of all bZIP genes, including their gene structure, chromosome distribution and motif composition. Phylogenetic trees showed that VrbZIP and VabZIP proteins were divided into ten clades comprising nine known and one unknown subgroup. The results of the nucleotide substitution rate of the orthologous gene pairs showed that bZIP proteins have undergone strong purifying selection: V. radiata and V. angularis diverged 1.25 million years ago (mya) to 9.20 mya (average of 4.95 mya). We also found that many cis-acting regulatory elements (CAREs) involved in abiotic stress and plant hormone responses were detected in the putative promoter regions of the bZIP genes. Finally, using the quantitative real-time PCR (qRT-PCR) method, we performed expression profiling of the bZIP genes in response to drought, salt and abscisic acid (ABA). We identified several bZIP genes that may be involved in drought and salt responses. Generally, our results provided useful and rich resources of VrbZIP and VabZIP genes for the functional characterization and understanding of bZIP transcription factors (TFs) in warm-season legumes. In addition, our results revealed important and interesting data - a subset of VrbZIP and VabZIP gene expression profiles in response to drought, salt and ABA stress. These results provide gene expression evidence for the selection of candidate genes under drought and salt stress for future study. Copyright © 2018 Elsevier B.V. All rights reserved.
hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer
Franklin, Renty B; Feng, Pei; Milon, B; Desouki, Mohamed M; Singh, Keshav K; Kajdacsy-Balla, André; Bagasra, Omar; Costello, Leslie C
2005-01-01
Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1) as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands). In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN). These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down-regulation in adenocarcinomatous glands is likely due to in situ gene silencing. These observations, coupled with the numerous and consistent reports of loss of zinc accumulation in malignant cells in prostate cancer, lead to the plausible proposal that down regulation of hZIP1 is a critical early event in the development prostate cancer. PMID:16153295
VIP1 is very important/interesting protein 1 regulating touch responses of Arabidopsis.
Tsugama, Daisuke; Liu, Shenkui; Takano, Tetsuo
2016-06-02
VIP1 (VIRE2-INTERACTING PROTEIN 1) is a bZIP transcription factor in Arabidopsis thaliana. VIP1 and its close homologs (i.e., Arabidopsis group I bZIP proteins) are present in the cytoplasm under steady conditions, but are transiently localized to the nucleus when cells are exposed to hypo-osmotic conditions, which mimic mechanical stimuli such as touch. Recently we have reported that overexpression of a repression domain-fused form of VIP1 represses the expression of some touch-responsive genes, changes structures and/or local auxin responses of the root cap cells, and enhances the touch-induced root waving. This raises the possibility that VIP1 suppresses touch-induced responses. VIP1 should be useful to further characterize touch responses of plants. Here we discuss 2 seemingly interesting perspectives about VIP1: (1) What factors are involved in regulating the nuclear localization of VIP1?; (2) What can be done to further characterize the physiological functions of VIP1 and other Arabidopsis group I bZIP proteins?
Leonhardt, Tereza; Sácký, Jan; Kotrba, Pavel
2018-04-01
A search of R. atropurpurea transcriptome for sequences encoding the transporters of the Zrt-, Irt-like Protein (ZIP) family, which are in eukaryotes integral to Zn supply into cytoplasm, allowed the identification of RaZIP1 cDNA with a predicted product belonging to ZIP I subfamily; it was subjected to functional studies in mutant Saccharomyces cerevisiae strains. The expression of RaZIP1, but not RaZIP1 H208A or RaZIP1 H232A mutants lacking conserved-among-ZIPs transmembrane histidyls, complemented Zn uptake deficiency in zrt1Δzrt2Δ yeasts. RaZIP1 substantially increased cellular Zn uptake in this strain and added to Zn sensitivity in zrc1Δcot1Δ mutant. The Fe uptake deficiency in ftr1Δ strain was not rescued and Mn uptake was insufficient for toxicity in Mn-sensitive pmr1Δ yeasts. By contrast, RaZIP1 increased Cd sensitivity in yap1Δ strain and conferred Cd transport activity in yeasts, albeit with substantially lower efficiency compared to Zn transport. In metal uptake assays, the accumulation of Zn in zrt1Δzrt2Δ strain remained unaffected by Cd, Fe, and Mn present in 20-fold molar excess over Zn. Immunofluorescence microscopy detected functional hemagglutinin-tagged HA::RaZIP1 on the yeast cell protoplast periphery. Altogether, these data indicate that RaZIP1 is a high-affinity plasma membrane transporter specialized in Zn uptake, and improve the understanding of the cellular and molecular biology of Zn in R. atropurpurea that is known for its ability to accumulate remarkably high concentrations of Zn.
Dysregulation of hepatic zinc transporters in a mouse model of alcoholic liver disease
Sun, Qian; Li, Qiong; Zhong, Wei; Zhang, Jiayang; Sun, Xiuhua; Tan, Xiaobing; Yin, Xinmin; Sun, Xinguo; Zhang, Xiang
2014-01-01
Zinc deficiency is a consistent phenomenon observed in patients with alcoholic liver disease, but the mechanisms have not been well defined. The objective of this study was to determine if alcohol alters hepatic zinc transporters in association with reduction of hepatic zinc levels and if oxidative stress mediates the alterations of zinc transporters. C57BL/6 mice were pair-fed with the Lieber-DeCarli control or ethanol diets for 2, 4, or 8 wk. Chronic alcohol exposure reduced hepatic zinc levels, but increased plasma and urine zinc levels, at all time points. Hepatic zinc finger proteins, peroxisome proliferator-activated receptor-α (PPAR-α) and hepatocyte nuclear factor 4α (HNF-4α), were downregulated in ethanol-fed mice. Four hepatic zinc transporter proteins showed significant alterations in ethanol-fed mice compared with the controls. ZIP5 and ZIP14 proteins were downregulated, while ZIP7 and ZnT7 proteins were upregulated, by ethanol exposure at all time points. Immunohistochemical staining demonstrated that chronic ethanol exposure upregulated cytochrome P-450 2E1 and caused 4-hydroxynonenal accumulation in the liver. For the in vitro study, murine FL-83B hepatocytes were treated with 5 μM 4-hydroxynonenal or 100 μM hydrogen peroxide for 72 h. The results from in vitro studies demonstrated that 4-hydroxynonenal treatment altered ZIP5 and ZIP7 protein abundance, and hydrogen peroxide treatment changed ZIP7, ZIP14, and ZnT7 protein abundance. These results suggest that chronic ethanol exposure alters hepatic zinc transporters via oxidative stress, which might account for ethanol-induced hepatic zinc deficiency. PMID:24924749
Increasing the affinity of selective bZIP-binding peptides through surface residue redesign.
Kaplan, Jenifer B; Reinke, Aaron W; Keating, Amy E
2014-07-01
The coiled-coil dimer is a prevalent protein interaction motif that is important for many cellular processes. The basic leucine-zipper (bZIP) transcription factors are one family of proteins for which coiled-coil mediated dimerization is essential for function, and misregulation of bZIPs can lead to disease states including cancer. This makes coiled coils attractive protein-protein interaction targets to disrupt using engineered molecules. Previous work designing peptides to compete with native coiled-coil interactions focused primarily on designing the core residues of the interface to achieve affinity and specificity. However, folding studies on the model bZIP GCN4 show that coiled-coil surface residues also contribute to binding affinity. Here we extend a prior study in which peptides were designed to bind tightly and specifically to representative members of each of 20 human bZIP families. These "anti-bZIP" peptides were designed with an emphasis on target-binding specificity, with contributions to design-target specificity and affinity engineered considering only the coiled-coil core residues. High-throughput testing using peptide arrays indicated many successes. We have now measured the binding affinities and specificities of anti-bZIPs that bind to FOS, XBP1, ATF6, and CREBZF in solution and tested whether redesigning the surface residues can increase design-target affinity. Incorporating residues that favor helix formation into the designs increased binding affinities in all cases, providing low-nanomolar binders of each target. However, changes in surface electrostatic interactions sometimes changed the binding specificity of the designed peptides. © 2014 The Protein Society.
Herruzo, Esther; Ontoso, David; González-Arranz, Sara; Cavero, Santiago; Lechuga, Ana; San-Segundo, Pedro A
2016-09-19
Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier
2017-01-01
Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana , its iron-sulfur subunit (SDH2) is encoded by three genes, one of them ( SDH2.3 ) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis -elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.
Wu, Jiahe; Zhu, Chuanfeng; Pang, Jinhuan; Zhang, Xiangrong; Yang, Chunlin; Xia, Guixian; Tian, Yingchuan; He, Chaozu
2014-12-01
Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Thomas, Peter; Pang, Yefei; Dong, Jing
2017-05-15
Characteristics of novel human membrane androgen receptor (mAR), ZIP9 (SLC39A9), were investigated in ZIP9-transfected PC-3 cells (PC3-ZIP9). Ligand blot analysis showed plasma membrane [ 3 H]-T binding corresponds to the position of ZIP9 on Western blots which suggests ZIP9 can bind [ 3 H]-T alone, without a protein partner. Progesterone antagonized testosterone actions, blocking increases in zinc, Erk phosphorylation and apoptosis, further evidence that ZIP9 is specifically activated by androgens. Pre-treatment with GTPγS and pertussis toxin decreased plasma membrane [ 3 H]-T binding and blocked testosterone-induced increases in Erk phosphorylation and intracellular zinc, indicating ZIP9 is coupled to an inhibitory G protein (Gi) that mediates both MAP kinase and zinc signaling. Testosterone treatment of nuclei and mitochondria which express ZIP9 decreased their zinc contents, suggesting ZIP9 also regulates free zinc through releasing it from these intracellular organelles. The results show ZIP9 is a specific Gi coupled-mAR mediating testosterone-induced MAP kinase and zinc signaling in PC3-ZIP9 cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Furuta, Takahiro; Ohshima, Chiaki; Matsumura, Mayu; Takebayashi, Naoto; Hirota, Emi; Mawaribuchi, Toshiki; Nishida, Kentaro; Nagasawa, Kazuki
2016-04-15
Zinc released from glutamatergic boutons and astrocytes acts as neuro- and glio-transmitters, and thus its extracellular level has to be strictly regulated. We previously revealed that uptake of zinc by astrocytes plays a critical role in its clearance, and zinc transporter Zrt/Irt-like protein 1 (ZIP1) is the molecule responsible for the uptake. However, it is unknown whether or not the functionality of the zinc clearance system is altered under oxidative stress-loaded conditions. Here, we characterized zinc uptake by oxidative stress-loaded astrocytes. Cultured mouse astrocytes were treated with hydrogen peroxide (H2O2) to load oxidative stress. Functional expression of ZIP1 in astrocytes was evaluated by means of (65)Zn uptake, Western blotting and immunocytochemical analysis. Treatment of astrocytes with 0.4mM H2O2 for 24h increased the expression levels of glial fibrillary acidic protein and 4-hydroxynonenal without significant decreases in their viability, indicating that induction of oxidative stress in astrocytes. Under oxidative stress-loaded conditions, astrocytes exhibited increased (65)Zn uptake activity, and the maximum uptake velocity for the uptake was significantly increased compared to that in the control group, while there was no change in the Michaelis constants, which were almost identical to that of mouse ZIP1. In the H2O2-treated astrocytes, the expression levels of ZIP1 were significantly increased in the cellular and plasma membrane fractions. It appears that under oxidative stress-loaded conditions, astrocytes exhibit increased zinc clearance activity and this is due, at least in part, to increased ZIP1 expression. Copyright © 2016 Elsevier Inc. All rights reserved.
Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds.
González-Grandío, Eduardo; Pajoro, Alice; Franco-Zorrilla, José M; Tarancón, Carlos; Immink, Richard G H; Cubas, Pilar
2017-01-10
Shoot-branching patterns determine key aspects of plant life and are important targets for crop breeding. However, we are still largely ignorant of the genetic networks controlling locally the most important decision during branch development: whether the axillary bud, or branch primordium, grows out to give a lateral shoot or remains dormant. Here we show that, inside the buds, the TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factor BRANCHED1 (BRC1) binds to and positively regulates the transcription of three related Homeodomain leucine zipper protein (HD-ZIP)-encoding genes: HOMEOBOX PROTEIN 21 (HB21), HOMEOBOX PROTEIN 40 (HB40), and HOMEOBOX PROTEIN 53 (HB53). These three genes, together with BRC1, enhance 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) expression, lead to abscisic acid accumulation, and trigger hormone response, thus causing suppression of bud development. This TCP/HD-ZIP genetic module seems to be conserved in dicot and monocotyledonous species to prevent branching under light-limiting conditions.
Hivin, P; Gaudray, G; Devaux, C; Mesnard, J-M
2004-01-20
The human T-cell leukemia virus type I (HTLV-I) Tax protein trans-activates viral transcription through three imperfect tandem repeats of a 21-bp sequence called Tax-responsive element (TxRE). Tax regulates transcription via direct interaction with some members of the activating transcription factor/CRE-binding protein (ATF/CREB) family including CREM, CREB, and CREB-2. By interacting with their ZIP domain, Tax stimulates the binding of these cellular factors to the CRE-like sequence present in the TxREs. Recent observations have shown that CCAAT/enhancer binding protein beta (C/EBPbeta) forms stable complexes on the CRE site in the presence of CREB-2. Given that C/EBPbeta has also been found to interact with Tax, we analyzed the effects of C/EBPbeta on viral Tax-dependent transcription. We show here that C/EBPbeta represses viral transcription and that Tax is no more able to form a stable complex with CREB-2 on the TxRE site in the presence of C/EBPbeta. We also analyzed the physical interactions between Tax and C/EBPbeta and found that the central region of C/EBPbeta, excluding its ZIP domain, is required for direct interaction with Tax. It is the first time that Tax is described to interact with a basic leucine-zipper (bZIP) factor without recognizing its ZIP domain. Although unexpected, this result explains why C/EBPbeta would be unable to form a stable complex with Tax on the TxRE site and could then down-regulate viral transcription. Lastly, we found that C/EBPbeta was able to inhibit Tax expression in vivo from an infectious HTLV-I molecular clone. In conclusion, we propose that during cell activation events, which stimulate the Tax synthesis, C/EBPbeta may down-regulate the level of HTLV-I expression to escape the cytotoxic-T-lymphocyte response.
Ching, Yick-Pang; Chun, Abel CS; Chin, King-Tung; Zhang, Zhi-Qing; Jeang, Kuan-Teh; Jin, Dong-Yan
2004-01-01
Background Human T-cell leukemia virus type I (HTLV-I) Tax protein is a transcriptional regulator of viral and cellular genes. In this study we have examined in detail the determinants for Tax-mediated transcriptional activation. Results Whereas previously the LTR enhancer elements were thought to be the sole Tax-targets, herein, we find that the core HTLV-I TATAA motif also provides specific responsiveness not seen with either the SV40 or the E1b TATAA boxes. When enhancer elements which can mediate Tax-responsiveness were compared, the authentic HTLV-I 21-bp repeats were found to be the most effective. Related bZIP factors such as CREB, ATF4, c-Jun and LZIP are often thought to recognize the 21-bp repeats equivalently. However, amongst bZIP factors, we found that CREB, by far, is preferred by Tax for activation. When LTR transcription was reconstituted by substituting either κB or serum response elements in place of the 21-bp repeats, Tax activated these surrogate motifs using surfaces which are different from that utilized for CREB interaction. Finally, we employed artificial recruitment of TATA-binding protein to the HTLV-I promoter in "bypass" experiments to show for the first time that Tax has transcriptional activity subsequent to the assembly of an initiation complex at the promoter. Conclusions Optimal activation of the HTLV-I LTR by Tax specifically requires the core HTLV-I TATAA promoter, CREB and the 21-bp repeats. In addition, we also provide the first evidence for transcriptional activity of Tax after the recruitment of TATA-binding protein to the promoter. PMID:15285791
Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family
Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua
2016-01-01
Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones. PMID:27066030
Evolutionary and Expression Analyses of the Apple Basic Leucine Zipper Transcription Factor Family.
Zhao, Jiao; Guo, Rongrong; Guo, Chunlei; Hou, Hongmin; Wang, Xiping; Gao, Hua
2016-01-01
Transcription factors (TFs) play essential roles in the regulatory networks controlling many developmental processes in plants. Members of the basic leucine (Leu) zipper (bZIP) TF family, which is unique to eukaryotes, are involved in regulating diverse processes, including flower and vascular development, seed maturation, stress signaling, and defense responses to pathogens. The bZIP proteins have a characteristic bZIP domain composed of a DNA-binding basic region and a Leu zipper dimerization region. In this study, we identified 112 apple (Malus domestica Borkh) bZIP TF-encoding genes, termed MdbZIP genes. Synteny analysis indicated that segmental and tandem duplication events, as well as whole genome duplication, have contributed to the expansion of the apple bZIP family. The family could be divided into 11 groups based on structural features of the encoded proteins, as well as on the phylogenetic relationship of the apple bZIP proteins to those of the model plant Arabidopsis thaliana (AtbZIP genes). Synteny analysis revealed that several paired MdbZIP genes and AtbZIP gene homologs were located in syntenic genomic regions. Furthermore, expression analyses of group A MdbZIP genes showed distinct expression levels in 10 different organs. Moreover, changes in these expression profiles in response to abiotic stress conditions and various hormone treatments identified MdbZIP genes that were responsive to high salinity and drought, as well as to different phytohormones.
Chan, I-San; Al-Sarraj, Taufik; Shahravan, S Hesam; Fedorova, Anna V; Shin, Jumi A
2012-08-21
Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4 bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR) and that 5H-LR comprises two 4 bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explore how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP-DNA interactions at a number of full-sites that contain 5H-LR versus either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo.
Zhang, Jing; Pawlowski, Wojciech P.; Han, Fangpu
2013-01-01
Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize STRUCTURAL MAINTENANCE OF CHROMOSOMES6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species. PMID:24143803
Zhang, Jing; Pawlowski, Wojciech P; Han, Fangpu
2013-10-01
Pairing of homologous chromosomes in meiosis is critical for their segregation to daughter cells. In most eukaryotes, clustering of telomeres precedes and facilitates chromosome pairing. In several species, centromeres also form pairwise associations, known as coupling, before the onset of pairing. We found that, in maize (Zea mays), centromere association begins at the leptotene stage and occurs earlier than the formation of the telomere bouquet. We established that centromere pairing requires centromere activity and the sole presence of centromeric repeats is not sufficient for pairing. In several species, homologs of the ZIP1 protein, which forms the central element of the synaptonemal complex in budding yeast (Saccharomyces cerevisiae), play essential roles in centromere coupling. However, we found that the maize ZIP1 homolog ZYP1 installs in the centromeric regions of chromosomes after centromeres form associations. Instead, we found that maize structural maintenance of chromosomes6 homolog forms a central element of the synaptonemal complex, which is required for centromere associations. These data shed light on the poorly understood mechanism of centromere interactions and suggest that this mechanism may vary somewhat in different species.
Kawatsuki, A; Yasunaga, J-i; Mitobe, Y; Green, PL; Matsuoka, M
2016-01-01
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that induces a fatal T-cell malignancy, adult T-cell leukemia (ATL). Among several regulatory/accessory genes in HTLV-1, HTLV-1 bZIP factor (HBZ) is the only viral gene constitutively expressed in infected cells. Our previous study showed that HBZ functions in two different molecular forms, HBZ protein and HBZ RNA. In this study, we show that HBZ protein targets retinoblastoma protein (Rb), which is a critical tumor suppressor in many types of cancers. HBZ protein interacts with the Rb/E2F-1 complex and activates the transcription of E2F-target genes associated with cell cycle progression and apoptosis. Mouse primary CD4+ T cells transduced with HBZ show accelerated G1/S transition and apoptosis, and importantly, T cells from HBZ transgenic (HBZ-Tg) mice also demonstrate enhanced cell proliferation and apoptosis. To evaluate the functions of HBZ protein alone in vivo, we generated a new transgenic mouse strain that expresses HBZ mRNA altered by silent mutations but encoding intact protein. In these mice, the numbers of effector/memory and Foxp3+ T cells were increased, and genes associated with proliferation and apoptosis were upregulated. This study shows that HBZ protein promotes cell proliferation and apoptosis in primary CD4+ T cells through activation of the Rb/E2F pathway, and that HBZ protein also confers onto CD4+ T-cell immunophenotype similar to those of ATL cells, suggesting that HBZ protein has important roles in dysregulation of CD4+ T cells infected with HTLV-1. PMID:26804169
Hartmann, Laura; Pedrotti, Lorenzo; Weiste, Christoph; Fekete, Agnes; Schierstaedt, Jasper; Göttler, Jasmin; Kempa, Stefan; Krischke, Markus; Dietrich, Katrin; Mueller, Martin J.; Vicente-Carbajosa, Jesus; Hanson, Johannes; Dröge-Laser, Wolfgang
2015-01-01
Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity. PMID:26276836
Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development.
Turchi, L; Baima, S; Morelli, G; Ruberti, I
2015-08-01
The homeodomain-leucine zipper (HD-Zip) class of transcription factors is unique to plants. HD-Zip proteins bind to DNA exclusively as dimers recognizing dyad symmetric sequences and act as positive or negative regulators of gene expression. On the basis of sequence homology in the HD-Zip DNA-binding domain, HD-Zip proteins have been grouped into four families (HD-Zip I-IV). Each HD-Zip family can be further divided into subfamilies containing paralogous genes that have arisen through genome duplication. Remarkably, all the members of the HD-Zip IIγ and -δ clades are regulated by light quality changes that induce in the majority of the angiosperms the shade-avoidance response, a process regulated at multiple levels by auxin. Intriguingly, it has recently emerged that, apart from their function in shade avoidance, the HD-Zip IIγ and -δ transcription factors control several auxin-regulated developmental processes, including apical embryo patterning, lateral organ polarity, and gynoecium development, in a white-light environment. This review presents recent advances in our understanding of HD-Zip II protein function in plant development, with particular emphasis on the impact of loss-of-function HD-Zip II mutations on auxin distribution and response. The review also describes evidence demonstrating that HD-Zip IIγ and -δ genes are directly and positively regulated by HD-Zip III transcription factors, primary determinants of apical shoot development, known to control the expression of several auxin biosynthesis, transport, and response genes. Finally, the interplay between HD-Zip II and III transcription factors in embryo apical patterning and organ polarity is discussed. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Huang, Chengjian; Zhou, Jinghua; Jie, Yucheng; Xing, Hucheng; Zhong, Yingli; Yu, Weilin; She, Wei; Ma, Yushen; Liu, Zehang; Zhang, Ying
2016-12-01
bZIP transcription factors play key roles in plant growth, development, and stress signaling. A bZIP gene BnbZIP2 (GenBank accession number: KP642148) was cloned from ramie. BnbZIP2 has a 1416 base pair open reading frame, encoding a 471 amino acid protein containing a characteristic bZIP domain and a leucine zipper. BnbZIP2 shares high sequence similarity with bZIP factors from other plants. The BnbZIP2 protein is localized to both nuclei and cytoplasm. Transcripts of BnbZIP2 were found in various tissues in ramie, with significantly higher levels in female and male flowers. Its expression was induced by drought, high salinity, and abscisic acid treatments. Analysis of the cis-elements in promoters of BnbZIP2 identified cis-acting elements involved in growth, developmental processes, and a variety of stress responses. Transgenic Arabidopsis plants' overexpression of BnbZIP2 exhibited more sensitivity to drought and heavy metal Cd stress during seed germination, whereas more tolerance to high-salinity stress than the wild type during both seed germination and plant development. Thus, BnbZIP2 may act as a positive regulator in plants' response to high-salinity stress and be an important candidate gene for molecular breeding of salt-tolerant plants.
Gibalová, Antónia; Steinbachová, Lenka; Hafidh, Said; Bláhová, Veronika; Gadiou, Zuzana; Michailidis, Christos; Műller, Karel; Pleskot, Roman; Dupľáková, Nikoleta; Honys, David
2017-03-01
KEY MESSAGE : bZIP TF network in pollen. Transcriptional control of gene expression represents an important mechanism guiding organisms through developmental processes and providing plasticity towards environmental stimuli. Because of their sessile nature, plants require effective gene regulation for rapid response to variation in environmental and developmental conditions. Transcription factors (TFs) provide such control ensuring correct gene expression in spatial and temporal manner. Our work reports the interaction network of six bZIP TFs expressed in Arabidopsis thaliana pollen and highlights the potential functional role for AtbZIP18 in pollen. AtbZIP18 was shown to interact with three other pollen-expressed bZIP TFs-AtbZIP34, AtbZIP52, and AtbZIP61 in yeast two-hybrid assays. AtbZIP18 transcripts are highly expressed in pollen, and at the subcellular level, an AtbZIP18-GFP fusion protein was located in the nucleus and cytoplasm/ER. To address the role of AtbZIP18 in the male gametophyte, we performed phenotypic analysis of a T-DNA knockout allele, which showed slightly reduced transmission through the male gametophyte. Some of the phenotype defects in atbzip18 pollen, although observed at low penetrance, were similar to those seen at higher frequency in the T-DNA knockout of the interacting partner, AtbZIP34. To gain deeper insight into the regulatory role of AtbZIP18, we analysed atbzip18/- pollen microarray data. Our results point towards a potential repressive role for AtbZIP18 and its functional redundancy with AtbZIP34 in pollen.
Chan, I-San; Al-Sarraj, Taufik; Shahravan, S. Hesam; Fedorova, Anna V.; Shin, Jumi A.
2012-01-01
Crystal structures of the GCN4 bZIP (basic region/leucine zipper) with the AP-1 or CRE site show how each GCN4 basic region binds to a 4-bp cognate half-site as a single DNA target; however, this may not always fully describe how bZIP proteins interact with their target sites. Previously, we showed that the GCN4 basic region interacts with all 5 bp in half-site TTGCG (termed 5H-LR), and that 5H-LR comprises two 4-bp subsites, TTGC and TGCG, which individually are also target sites of the basic region. In this work, we explored how the basic region interacts with 5H-LR when the bZIP dimer localizes to full-sites. Using AMBER molecular modeling, we simulated GCN4 bZIP complexes with full-sites containing 5H-LR to investigate in silico the interface between the basic region and 5H-LR. We also performed in vitro investigation of bZIP–DNA interactions at a number of full-sites that contain 5H-LR vs. either subsite: we analyzed results from DNase I footprinting and electrophoretic mobility shift assay (EMSA) and from EMSA titrations to quantify binding affinities. Our computational and experimental results together support a highly dynamic DNA-binding model: when a bZIP dimer localizes to its target full-site, the basic region can alternately recognize either subsite as a distinct target at 5H-LR and translocate between the subsites, potentially by sliding and hopping. This model provides added insights into how α-helical DNA-binding domains of transcription factors can localize to their gene regulatory sequences in vivo. PMID:22856882
USDA-ARS?s Scientific Manuscript database
The inositol requiring enzyme (IRE1) is an endoplasmic reticulum (ER) stress sensor and when activated it splices the bZIP60 mRNA producing a truncated transcription factor that upregulates expression of genes involved in the unfolded protein response (UPR). Bax inhibitor 1 (BI-1) is another ER stre...
Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters.
Taylor, Kathryn M; Morgan, Helen E; Johnson, Andrea; Nicholson, Robert I
2004-01-01
The KE4 proteins are an emerging group of proteins with little known functional data. In the present study, we report the first characterization of the recombinant human KE4 protein in mammalian cells. The KE4 sequences are included in the subfamily of ZIP (Zrt-, Irt-like Proteins) zinc transporters, which we have termed LZT (LIV-1 subfamily of ZIP zinc Transporters). All these LZT sequences contain similarities to ZIP transporters, including the consensus sequence in transmembrane domain IV, which is essential for zinc transport. However, the new LZT subfamily can be separated from other ZIP transporters by the presence of a highly conserved potential metalloprotease motif (HEXPHEXGD) in transmembrane domain V. Here we report the location of HKE4 on intracellular membranes, including the endoplasmic reticulum, and its ability to increase the intracellular free zinc as measured with the zinc-specific fluorescent dye, Newport Green, in a time-, temperature- and concentration-dependent manner. This is in contrast with the zinc influx ability of another LZT protein, LIV-1, which was due to its plasma membrane location. Therefore we have added to the functionality of LZT proteins by reporting their ability to increase intracellular-free zinc, whether they are located on the plasma membrane or on intracellular membranes. This result, in combination with the crucial role that zinc plays in cell growth, emphasizes the importance of this new LZT subfamily, including the KE4 sequences, in the control of intracellular zinc homoeostasis, aberrations of which can lead to diseases such as cancer, immunological disorders and neurological dysfunction. PMID:14525538
Genome-Wide Analysis of bZIP-Encoding Genes in Maize
Wei, Kaifa; Chen, Juan; Wang, Yanmei; Chen, Yanhui; Chen, Shaoxiang; Lin, Yina; Pan, Si; Zhong, Xiaojun; Xie, Daoxin
2012-01-01
In plants, basic leucine zipper (bZIP) proteins regulate numerous biological processes such as seed maturation, flower and vascular development, stress signalling and pathogen defence. We have carried out a genome-wide identification and analysis of 125 bZIP genes that exist in the maize genome, encoding 170 distinct bZIP proteins. This family can be divided into 11 groups according to the phylogenetic relationship among the maize bZIP proteins and those in Arabidopsis and rice. Six kinds of intron patterns (a–f) within the basic and hinge regions are defined. The additional conserved motifs have been identified and present the group specificity. Detailed three-dimensional structure analysis has been done to display the sequence conservation and potential distribution of the bZIP domain. Further, we predict the DNA-binding pattern and the dimerization property on the basis of the characteristic features in the basic and hinge regions and the leucine zipper, respectively, which supports our classification greatly and helps to classify 26 distinct subfamilies. The chromosome distribution and the genetic analysis reveal that 58 ZmbZIP genes are located in the segmental duplicate regions in the maize genome, suggesting that the segment chromosomal duplications contribute greatly to the expansion of the maize bZIP family. Across the 60 different developmental stages of 11 organs, three apparent clusters formed represent three kinds of different expression patterns among the ZmbZIP gene family in maize development. A similar but slightly different expression pattern of bZIPs in two inbred lines displays that 22 detected ZmbZIP genes might be involved in drought stress. Thirteen pairs and 143 pairs of ZmbZIP genes show strongly negative and positive correlations in the four distinct fungal infections, respectively, based on the expression profile and Pearson's correlation coefficient analysis. PMID:23103471
Tang, Ning; Yang, Jun; Peng, Lei; Ma, Siqi; Xu, Yan; Li, Guoliang
2016-01-01
The OsbZIP23 transcription factor has been characterized for its essential role in drought resistance in rice (Oryza sativa), but the mechanism is unknown. In this study, we first investigated the transcriptional activation of OsbZIP23. A homolog of SnRK2 protein kinase (SAPK2) was found to interact with and phosphorylate OsbZIP23 for its transcriptional activation. SAPK2 also interacted with OsPP2C49, an ABI1 homolog, which deactivated the SAPK2 to inhibit the transcriptional activation activity of OsbZIP23. Next, we performed genome-wide identification of OsbZIP23 targets by immunoprecipitation sequencing and RNA sequencing analyses in the OsbZIP23-overexpression, osbzip23 mutant, and wild-type rice under normal and drought stress conditions. OsbZIP23 directly regulates a large number of reported genes that function in stress response, hormone signaling, and developmental processes. Among these targets, we found that OsbZIP23 could positively regulate OsPP2C49, and overexpression of OsPP2C49 in rice resulted in significantly decreased sensitivity of the abscisic acid (ABA) response and rapid dehydration. Moreover, OsNCED4 (9-cis-epoxycarotenoid dioxygenase4), a key gene in ABA biosynthesis, was also positively regulated by OsbZIP23. Together, our results suggest that OsbZIP23 acts as a central regulator in ABA signaling and biosynthesis, and drought resistance in rice. PMID:27325665
Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking
Creelman, Robert A.; Griffith, Cara; Ahrens, Jeffrey E.; Taylor, J. Philip; Murphy, Lesley R.; Manjunath, Siva; Thompson, Rebecca L.; Lingard, Matthew J.; Back, Stephanie L.; Larue, Huachun; Brayton, Bonnie R.; Burek, Amanda J.; Tiwari, Shiv; Adam, Luc; Morrell, James A.; Caldo, Rico A.; Huai, Qing; Kouadio, Jean-Louis K.; Kuehn, Rosemarie; Sant, Anagha M.; Wingbermuehle, William J.; Sala, Rodrigo; Foster, Matt; Kinser, Josh D.; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E.; Huang, Mingya G.; Kuriakose, Saritha V.; Skottke, Kyle; Repetti, Peter P.; Reuber, T. Lynne; Ruff, Thomas G.; Petracek, Marie E.; Loida, Paul J.
2014-01-01
ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658
Expression of a truncated ATHB17 protein in maize increases ear weight at silking.
Rice, Elena A; Khandelwal, Abha; Creelman, Robert A; Griffith, Cara; Ahrens, Jeffrey E; Taylor, J Philip; Murphy, Lesley R; Manjunath, Siva; Thompson, Rebecca L; Lingard, Matthew J; Back, Stephanie L; Larue, Huachun; Brayton, Bonnie R; Burek, Amanda J; Tiwari, Shiv; Adam, Luc; Morrell, James A; Caldo, Rico A; Huai, Qing; Kouadio, Jean-Louis K; Kuehn, Rosemarie; Sant, Anagha M; Wingbermuehle, William J; Sala, Rodrigo; Foster, Matt; Kinser, Josh D; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E; Huang, Mingya G; Kuriakose, Saritha V; Skottke, Kyle; Repetti, Peter P; Reuber, T Lynne; Ruff, Thomas G; Petracek, Marie E; Loida, Paul J
2014-01-01
ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.
Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho
2015-12-01
Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans. © 2015 Authors; published by Portland Press Limited.
Gálvez-Peralta, Marina; Wang, Zhifang; Bao, Shengying; Knoell, Daren L; Nebert, Daniel W
2014-01-01
Mouse Slc39a8 and Slc39a14 genes encode ZIP8 and ZIP14, respectively, which are ubiquitous divalent cation/(HCO3−)2 symporters responsible for uptake of Zn2+, Fe2+ and Mn2+ into cells. Cd2+ and other toxic nonessential metals can displace essential cations, thereby entering vertebrate cells. Whereas Slc39a8 encodes a single protein, Slc39a14 has two exons 4 which, via alternative splicing, give rise to ZIP14A and ZIP14B; why differences exist in cell-type-specific expression of ZIP14A and ZIP14B remains unknown. Inflammatory stimuli have been associated with ZIP8 and ZIP14 up-regulation, but a systematic study of many tissues simultaneously in a laboratory animal following inflammatory cytokine exposure has not yet been reported. Herein we show that C57BL/6J male mice—treated intraperitoneally with lipopolysaccharide (LPS), or the proinflammatory cytokines tumor necrosis factor (TNF) or interleukin-6 (IL6)—exhibited quantatively very different, highly tissue-specific, and markedly time-dependent up- and down-regulation of ZIP8, ZIP14A and ZIP14B mRNA levels in twelve tissues. Magnitude of the inflammatory response was confirmed by measuring the proinflammatory cytokine TNF, IL6 and interleukin-1β (IL1B) mRNA levels in the same tissues of these animals. Our data suggest that most if not all tissues use ZIP8, ZIP14A and/or ZIP14B) for Zn2+ uptake, some tissues under basal conditions and others moreso when inflammatory stressors are present; collectively, this might lead to substantial alterations in plasma Zn2+ levels, due to Zn2+ redistribution not just in liver, but across many vital organs. In the context of cadmium-mediated toxicity, our data suggest that tissues other than liver, kidney and lung should also be considered. PMID:24728862
Evuarherhe, Obaro; Barker, Gareth R. I.; Savalli, Giorgia; Warburton, Elizabeth C.; Brown, Malcolm W.
2014-01-01
Atypical isoforms of protein kinase C (aPKCs; particularly protein kinase M zeta: PKMζ) have been hypothesised to be necessary and sufficient for the maintenance of long-term potentiation (LTP) and long term memory by maintaining postsynaptic AMPA receptors via the GluR2 subunit. A myristoylated PKMζ pseudosubstrate peptide (ZIP) blocks PKMζ activity. We examined the actions of ZIP in medial prefrontal cortex (mPFC) and hippocampus in associative recognition memory in rats during early memory formation and memory maintenance. ZIP infusion in either hippocampus or mPFC impaired memory maintenance. However, early memory formation was impaired by ZIP in mPFC but not hippocampus; and blocking GluR2-dependent removal of AMPA receptors did not affect this impairment caused by ZIP in the mPFC. The findings indicate: (i) a difference in the actions of ZIP in hippocampus and medial prefrontal cortex, and (ii) a GluR2-independent target of ZIP (possibly PKCλ) in the mPFC during early memory formation. PMID:24729442
Nadarajan, Saravanapriah; Mohideen, Firaz; Tzur, Yonatan B; Ferrandiz, Nuria; Crawley, Oliver; Montoya, Alex; Faull, Peter; Snijders, Ambrosius P; Cutillas, Pedro R; Jambhekar, Ashwini; Blower, Michael D; Martinez-Perez, Enrique; Harper, J Wade; Colaiacovo, Monica P
2016-01-01
Asymmetric disassembly of the synaptonemal complex (SC) is crucial for proper meiotic chromosome segregation. However, the signaling mechanisms that directly regulate this process are poorly understood. Here we show that the mammalian Rho GEF homolog, ECT-2, functions through the conserved RAS/ERK MAP kinase signaling pathway in the C. elegans germline to regulate the disassembly of SC proteins. We find that SYP-2, a SC central region component, is a potential target for MPK-1-mediated phosphorylation and that constitutively phosphorylated SYP-2 impairs the disassembly of SC proteins from chromosomal domains referred to as the long arms of the bivalents. Inactivation of MAP kinase at late pachytene is critical for timely disassembly of the SC proteins from the long arms, and is dependent on the crossover (CO) promoting factors ZHP-3/RNF212/Zip3 and COSA-1/CNTD1. We propose that the conserved MAP kinase pathway coordinates CO designation with the disassembly of SC proteins to ensure accurate chromosome segregation. DOI: http://dx.doi.org/10.7554/eLife.12039.001 PMID:26920220
Evens, Nicholas P; Buchner, Peter; Williams, Lorraine E; Hawkesford, Malcolm J
2017-10-01
Understanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in hexaploid wheat. Promoter analysis revealed the presence of Zn-deficiency-response elements (ZDREs) in a number of the ZIPs. Functional complementation of the zrt1/zrt2 yeast mutant by TaZIP3, -6, -7, -9 and -13 supported an ability to transport Zn. Group F TabZIPs contain the group-defining cysteine-histidine-rich motifs, which are the predicted binding site of Zn 2+ in the Zn-deficiency response. Conservation of these motifs varied between the TabZIPs suggesting that individual TabZIPs may have specific roles in the wheat Zn-homeostatic network. Increased expression in response to low Zn levels was observed for several of the wheat ZIPs and bZIPs; this varied temporally and spatially suggesting specific functions in the response mechanism. The ability of the group F TabZIPs to bind to specific ZDREs in the promoters of TaZIPs indicates a conserved mechanism in monocots and dicots in responding to Zn deficiency. In support of this, TabZIPF1-7DL and TabZIPF4-7AL afforded a strong level of rescue to the Arabidopsis hypersensitive bzip19 bzip23 double mutant under Zn deficiency. These results provide a greater understanding of Zn-homeostatic mechanisms in wheat, demonstrating an expanded repertoire of group F bZIP transcription factors, adding to the complexity of Zn homeostasis. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Small Maf proteins (MafF, MafG, MafK): History, structure and function.
Katsuoka, Fumiki; Yamamoto, Masayuki
2016-07-25
The small Maf proteins (sMafs) are basic region leucine zipper (bZIP)-type transcription factors. The basic region of the Maf family is unique among the bZIP factors, and it contributes to the distinct DNA-binding mode of this class of proteins. MafF, MafG and MafK are the three vertebrate sMafs, and no functional differences have been observed among them in terms of their bZIP structures. sMafs form homodimers by themselves, and they form heterodimers with cap 'n' collar (CNC) proteins (p45 NF-E2, Nrf1, Nrf2, and Nrf3) and also with Bach proteins (Bach1 and Bach2). Because CNC and Bach proteins cannot bind to DNA as monomers, sMafs are indispensable partners that are required by CNC and Bach proteins to exert their functions. sMafs lack the transcriptional activation domain; hence, their homodimers act as transcriptional repressors. In contrast, sMafs participate in transcriptional activation or repression depending on their heterodimeric partner molecules and context. Mouse genetic analyses have revealed that various biological pathways are under the regulation of CNC-sMaf heterodimers. In this review, we summarize the history and current progress of sMaf studies in relation to their partners. Copyright © 2016 Elsevier B.V. All rights reserved.
Lichten, Louis A; Liuzzi, Juan P; Cousins, Robert J
2009-04-01
Zinc metabolism during chronic disease is dysregulated by inflammatory cytokines. Experiments with IL-6 knockout mice show that LPS regulates expression of the zinc transporter, Zip14, by a mechanism that is partially independent of IL-6. The LPS-induced model of sepsis may occur by a mechanism signaled by nitric oxide (NO) as a secondary messenger. To address the hypothesis that NO can modulate Zip14 expression, we treated primary hepatocytes from wild-type mice with the NO donor S-nitroso N-acetyl penicillamine (SNAP). After treatment with SNAP, steady-state Zip14 mRNA levels displayed a maximal increase after 8 h and a concomitant increase in the transcriptional activity of the gene. Chromatin immunoprecipitation documented the kinetics of activator protein (AP)-1 and RNA polymerase II association with the Zip14 promoter after NO exposure, indicating a role of AP-1 in transcription of Zip14. We then stimulated the primary murine hepatocytes with IL-1beta, an LPS-induced proinflammatory cytokine and a potent activator of inducible NO synthase (iNOS) and NO production. In support of our hypothesis, IL-1beta treatment led to a threefold increase in Zip14 mRNA and enhanced zinc transport, as measured with a zinc fluorophore, in wild-type but not iNOS-/- hepatocytes. These data suggest that signaling pathways activated by NO are factors in the upregulation of Zip14, which in turn mediates hepatic zinc accumulation and hypozincemia during inflammation and sepsis.
Mayanagi, Taira; Yasuda, Hiroki; Sobue, Kenji
2015-10-21
Dysregulation of synapse formation and plasticity is closely related to the pathophysiology of psychiatric and neurodevelopmental disorders. The prefrontal cortex (PFC) is particularly important for executive functions such as working memory, cognition, and emotional control, which are impaired in the disorders. PSD-Zip70 (Lzts1/FEZ1) is a postsynaptic density (PSD) protein predominantly expressed in the frontal cortex, olfactory bulb, striatum, and hippocampus. Here we found that PSD-Zip70 knock-out (PSD-Zip70KO) mice exhibit working memory and cognitive defects, and enhanced anxiety-like behaviors. These abnormal behaviors are caused by impaired glutamatergic synapse transmission accompanied by tiny-headed immature dendritic spines in the PFC, due to aberrant Rap2 activation, which has roles in synapse formation and plasticity. PSD-Zip70 modulates the Rap2 activity by interacting with SPAR (spine-associated RapGAP) and PDZ-GEF1 (RapGEF) in the postsynapse. Furthermore, suppression of the aberrant Rap2 activation in the PFC rescued the behavioral defects in PSD-Zip70KO mice. Our data demonstrate a critical role for PSD-Zip70 in Rap2-dependent spine synapse development in the PFC and underscore the importance of this regulation in PFC-dependent behaviors. PSD-Zip70 deficiency causes behavioral defects in working memory and cognition, and enhanced anxiety due to prefrontal hypofunction. This study revealed that PSD-Zip70 plays essential roles in glutamatergic synapse maturation via modulation of the Rap2 activity in the PFC. PSD-Zip70 interacts with both SPAR (spine-associated RapGAP) and PDZ-GEF1 (RapGEF) and modulates the Rap2 activity in postsynaptic sites. Our results provide a novel Rap2-specific regulatory mechanism in synaptic maturation involving PSD-Zip70. Copyright © 2015 the authors 0270-6474/15/3514327-14$15.00/0.
Das, Rahul K; Crick, Scott L; Pappu, Rohit V
2012-02-17
Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs). Copyright © 2011 Elsevier Ltd. All rights reserved.
2012-01-01
Background Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. Results We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Conclusions Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development. PMID:22824090
Gainza-Cortés, Felipe; Pérez-Dïaz, Ricardo; Pérez-Castro, Ramón; Tapia, Jaime; Casaretto, José A; González, Sebastián; Peña-Cortés, Hugo; Ruiz-Lara, Simón; González, Enrique
2012-07-23
Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regulated transporter-like Protein (ZIP) gene family have been characterized in plants, and have shown to be involved in metal uptake and transport. This study describes the first putative Zn transporter in grapevine. Unravelling its function may explain an important symptom of Zn deficiency in grapevines, which is the production of clusters with fewer and usually smaller berries than normal. We identified and characterized a putative Zn transporter from berries of Vitis vinifera L., named VvZIP3. Compared to other members of the ZIP family identified in the Vitis vinifera L. genome, VvZIP3 is mainly expressed in reproductive tissue - specifically in developing flowers - which correlates with the high Zn accumulation in these organs. Contrary to this, the low expression of VvZIP3 in parthenocarpic berries shows a relationship with the lower Zn accumulation in this tissue than in normal seeded berries where its expression is induced by Zn. The predicted protein sequence indicates strong similarity with several members of the ZIP family from Arabidopsis thaliana and other species. Moreover, VvZIP3 complemented the growth defect of a yeast Zn-uptake mutant, ZHY3, and is localized in the plasma membrane of plant cells, suggesting that VvZIP3 has the function of a Zn uptake transporter. Our results suggest that VvZIP3 encodes a putative plasma membrane Zn transporter protein member of the ZIP gene family that might play a role in Zn uptake and distribution during the early reproductive development in Vitis vinifera L., indicating that the availability of this micronutrient may be relevant for reproductive development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morand, Patrice; Laboratoire de Virologie Moléculaire et Structurale, EA 2939, Université Joseph Fourier, Grenoble; Budayova-Spano, Monika
A C-terminal fragment of the Epstein–Barr virus lytic switch protein ZEBRA has been crystallized in complex with DNA. A C-terminal fragment of the Epstein–Barr virus immediate-early transcription factor ZEBRA has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. The fragment behaves as a dimer in solution, consistent with the presence of a basic region leucine-zipper (bZIP) domain. Crystals of the fragment in complex with a DNA duplex were grown by the hanging-drop vapour-diffusion technique using polyethylene glycol 4000 and magnesium acetate as crystallization agents. Crystals diffract to better than 2.5 Å resolution using synchrotron radiationmore » (λ = 0.976 Å). Crystals belong to space group C2, with unit-cell parameters a = 94.2, b = 26.5, c = 98.1 Å, β = 103.9°.« less
Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis.
Roodbarkelari, Farshad; Groot, Edwin P
2017-01-01
Homeodomain-leucine zipper proteins (HD-ZIPs) form a plant-specific family of transcription factors functioning as homo- or heterodimers. Certain members of all four classes of this family are involved in embryogenesis, the focus of this review. They support auxin biosynthesis, transport and response, which are in turn essential for the apical-basal patterning of the embryo, radicle formation and outgrowth of the cotyledons. They transcriptionally regulate meristem regulators to maintain the shoot apical meristem once it is initiated. Some members are specific to the protoderm, the outermost layer of the embryo, and play a role in shoot apical meristem function. Within classes, homeodomain-leucine zippers tend to act redundantly during embryo development, and there are many examples of regulation within and between classes of homeodomain-leucine zippers. This indicates a complex network of regulation that awaits future experiments to uncover. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Maxel, Trine; Svendsen, Pernille Fog; Smidt, Kamille; Lauridsen, Jesper Krogh; Brock, Birgitte; Pedersen, Steen Bønlykke; Rungby, Jørgen; Larsen, Agnete
2017-01-01
Polycystic ovary syndrome (PCOS) is associated with infertility, increased androgen levels, and insulin resistance. In adipose tissue, zinc facilitates insulin signaling. Circulating zinc levels are altered in obesity, diabetes, and PCOS; and zinc supplementation can ameliorate metabolic disturbances in PCOS. In adipose tissue, expression of zinc influx transporter ZIP14 varies with body mass index (BMI), clinical markers of metabolic syndrome, and peroxisome proliferator-activated receptor gamma (PPARG). In this study, we investigated expression levels of ZIP14 and PPARG in subcutaneous adipose tissue of 36 PCOS women (17 lean and 19 obese women) compared with 23 healthy controls (7 lean and 16 obese women). Further, expression levels of zinc transporter ZIP9, a recently identified androgen receptor, and zinc efflux transporter ZNT1 were investigated, alongside lipid profile and markers of glucose metabolism [insulin degrading enzyme, retinol-binding protein 4 (RBP4), and glucose transporter 4 (GLUT4)]. We find that ZIP14 expression is reduced in obesity and positively correlates with PPARG expression, which is downregulated with increasing BMI. ZNT1 is upregulated in obesity, and both ZIP14 and ZNT1 expression significantly correlates with clinical markers of altered glucose metabolism. In addition, RBP4 and GLUT4 associate with obesity, but an association with PCOS as such was present only for PPARG and RBP4. ZIP14 and ZNT1 does not relate to clinical androgen status and ZIP9 is unaffected by all parameters investigated. In conclusion, our findings support the existence of a zinc dyshomeostasis in adipose tissue in metabolic disturbances including PCOS-related obesity. PMID:28303117
Bhattacharya, Sayak; Mahavadi, Sunila; Al-Shboul, Othman; Rajagopal, Senthilkumar; Grider, John R; Murthy, Karnam S
2013-08-01
Caveolae act as scaffolding proteins for several G protein-coupled receptor signaling molecules to regulate their activity. Caveolin-1, the predominant isoform in smooth muscle, drives the formation of caveolae. The precise role of caveolin-1 and caveolae as scaffolds for G protein-coupled receptor signaling and contraction in gastrointestinal muscle is unclear. Thus the aim of this study was to examine the role of caveolin-1 in the regulation of Gq- and Gi-coupled receptor signaling. RT-PCR, Western blot, and radioligand-binding studies demonstrated the selective expression of M2 and M3 receptors in gastric smooth muscle cells. Carbachol (CCh) stimulated phosphatidylinositol (PI) hydrolysis, Rho kinase and zipper-interacting protein (ZIP) kinase activity, induced myosin phosphatase 1 (MYPT1) phosphorylation (at Thr(696)) and 20-kDa myosin light chain (MLC20) phosphorylation (at Ser(19)) and muscle contraction, and inhibited cAMP formation. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activity, phosphorylation of MYPT1 and MLC20, and muscle contraction in response to CCh were attenuated by methyl β-cyclodextrin (MβCD) or caveolin-1 small interfering RNA (siRNA). Similar inhibition of PI hydrolysis, Rho kinase, and ZIP kinase activity and muscle contraction in response to CCh and gastric emptying in vivo was obtained in caveolin-1-knockout mice compared with wild-type mice. Agonist-induced internalization of M2, but not M3, receptors was blocked by MβCD or caveolin-1 siRNA. Stimulation of PI hydrolysis, Rho kinase, and ZIP kinase activities in response to other Gq-coupled receptor agonists such as histamine and substance P was also attenuated by MβCD or caveolin-1 siRNA. Taken together, these results suggest that caveolin-1 facilitates signaling by Gq-coupled receptors and contributes to enhanced smooth muscle function.
Functional Analysis of Maize Silk-Specific ZmbZIP25 Promoter.
Li, Wanying; Yu, Dan; Yu, Jingjuan; Zhu, Dengyun; Zhao, Qian
2018-03-12
ZmbZIP25 ( Zea mays bZIP (basic leucine zipper) transcription factor 25) is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction). In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5' RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from -2083 to +367) and a 2600 bp sequence of ZmbZIP25 (from -2083 to +517, the transcription start site was denoted +1). Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5'-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5'-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5'-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5'-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from -1117 to -957 that were responsible for the specificity of the ZmbZIP25 5'-flanking sequence.
Functional Analysis of Maize Silk-Specific ZmbZIP25 Promoter
Li, Wanying; Yu, Dan; Yu, Jingjuan; Zhu, Dengyun; Zhao, Qian
2018-01-01
ZmbZIP25 (Zea mays bZIP (basic leucine zipper) transcription factor 25) is a function-unknown protein that belongs to the D group of the bZIP transcription factor family. RNA-seq data showed that the expression of ZmbZIP25 was tissue-specific in maize silks, and this specificity was confirmed by RT-PCR (reverse transcription-polymerase chain reaction). In situ RNA hybridization showed that ZmbZIP25 was expressed exclusively in the xylem of maize silks. A 5′ RACE (rapid amplification of cDNA ends) assay identified an adenine residue as the transcription start site of the ZmbZIP25 gene. To characterize this silk-specific promoter, we isolated and analyzed a 2450 bp (from −2083 to +367) and a 2600 bp sequence of ZmbZIP25 (from −2083 to +517, the transcription start site was denoted +1). Stable expression assays in Arabidopsis showed that the expression of the reporter gene GUS driven by the 2450 bp ZmbZIP25 5′-flanking fragment occurred exclusively in the papillae of Arabidopsis stigmas. Furthermore, transient expression assays in maize indicated that GUS and GFP expression driven by the 2450 bp ZmbZIP25 5′-flanking sequences occurred only in maize silks and not in other tissues. However, no GUS or GFP expression was driven by the 2600 bp ZmbZIP25 5′-flanking sequences in either stable or transient expression assays. A series of deletion analyses of the 2450 bp ZmbZIP25 5′-flanking sequence was performed in transgenic Arabidopsis plants, and probable elements prediction analysis revealed the possible presence of negative regulatory elements within the 161 bp region from −1117 to −957 that were responsible for the specificity of the ZmbZIP25 5′-flanking sequence. PMID:29534529
Liuzzi, Juan P.; Lichten, Louis A.; Rivera, Seth; Blanchard, Raymond K.; Aydemir, Tolunay Beker; Knutson, Mitchell D.; Ganz, Tomas; Cousins, Robert J.
2005-01-01
Infection and inflammation produce systemic responses that include hypozincemia and hypoferremia. The latter involves regulation of the iron transporter ferroportin 1 by hepcidin. The mechanism of reduced plasma zinc is not known. Transcripts of the two zinc transporter gene families (ZnT and Zip) were screened for regulation in mouse liver after turpentine-induced inflammation and LPS administration. Zip14 mRNA was the transporter transcript most up-regulated by inflammation and LPS. IL-6 knockout (IL-6–/–) mice did not exhibit either hypozincemia or the induction of Zip14 with turpentine inflammation. However, in IL-6–/– mice, LPS produced a milder hypozincemic response but no Zip14 induction. Northern analysis showed Zip14 up-regulation was specific for the liver, with one major transcript. Immunohistochemistry, using an antibody to an extracellular Zip14 epitope, showed both LPS and turpentine increased abundance of Zip14 at the plasma membrane of hepatocytes. IL-6 produced increased expression of Zip14 in primary hepatocytes cultures and localization of the protein to the plasma membrane. Transfection of mZip14 cDNA into human embryonic kidney cells increased zinc uptake as measured by both a fluorescent probe for free Zn2+ and 65Zn accumulation, as well as by metallothionein mRNA induction, all indicating that Zip14 functions as a zinc importer. Zip14 was localized in plasma membrane of the transfected cells. These in vivo and in vitro experiments demonstrate that Zip14 expression is up-regulated through IL-6, and that this zinc transporter most likely plays a major role in the mechanism responsible for hypozincemia that accompanies the acute-phase response to inflammation and infection. PMID:15863613
Chatterjee, Anwesha; Ronghe, Amruta; Singh, Bhupendra; Bhat, Nimee K; Chen, Jie; Bhat, Hari K
2014-12-01
The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17β-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17β-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways. © 2014 Wiley Periodicals, Inc.
2014-01-01
Background Basic leucine zipper (bZIP) transcription factor gene family is one of the largest and most diverse families in plants. Current studies have shown that the bZIP proteins regulate numerous growth and developmental processes and biotic and abiotic stress responses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant bZIP family members remains very limited. Results We identified 55 bZIP transcription factor-encoding genes in the grapevine (Vitis vinifera) genome, and divided them into 10 groups according to the phylogenetic relationship with those in Arabidopsis. The chromosome distribution and the collinearity analyses suggest that expansion of the grapevine bZIP (VvbZIP) transcription factor family was greatly contributed by the segment/chromosomal duplications, which may be associated with the grapevine genome fusion events. Nine intron/exon structural patterns within the bZIP domain and the additional conserved motifs were identified among all VvbZIP proteins, and showed a high group-specificity. The predicted specificities on DNA-binding domains indicated that some highly conserved amino acid residues exist across each major group in the tree of land plant life. The expression patterns of VvbZIP genes across the grapevine gene expression atlas, based on microarray technology, suggest that VvbZIP genes are involved in grapevine organ development, especially seed development. Expression analysis based on qRT-PCR indicated that VvbZIP genes are extensively involved in drought- and heat-responses, with possibly different mechanisms. Conclusions The genome-wide identification, chromosome organization, gene structures, evolutionary and expression analyses of grapevine bZIP genes provide an overall insight of this gene family and their potential involvement in growth, development and stress responses. This will facilitate further research on the bZIP gene family regarding their evolutionary history and biological functions. PMID:24725365
Peter, Emanuel K; Pivkin, Igor V; Shea, Joan-Emma
2015-04-14
In Monte-Carlo simulations of protein folding, pathways and folding times depend on the appropriate choice of the Monte-Carlo move or process path. We developed a generalized set of process paths for a hybrid kinetic Monte Carlo-Molecular dynamics algorithm, which makes use of a novel constant time-update and allows formation of α-helical and β-stranded secondary structures. We apply our new algorithm to the folding of 3 different proteins: TrpCage, GB1, and TrpZip4. All three systems are seen to fold within the range of the experimental folding times. For the β-hairpins, we observe that loop formation is the rate-determining process followed by collapse and formation of the native core. Cluster analysis of both peptides reveals that GB1 folds with equal likelihood along a zipper or a hydrophobic collapse mechanism, while TrpZip4 follows primarily a zipper pathway. The difference observed in the folding behavior of the two proteins can be attributed to the different arrangements of their hydrophobic core, strongly packed, and dry in case of TrpZip4, and partially hydrated in the case of GB1.
Nieva, Claudia; Busk, Peter K; Domínguez-Puigjaner, Eva; Lumbreras, Victoria; Testillano, Pilar S; Risueño, Maria-Carmen; Pagès, Montserrat
2005-08-01
The plant hormone abscisic acid regulates gene expression in response to growth stimuli and abiotic stress. Previous studies have implicated members of the bZIP family of transcription factors as mediators of abscisic acid dependent gene expression through the ABRE cis-element. Here, we identify two new maize bZIP transcription factors, EmBP-2 and ZmBZ-1 related to EmBP-1 and OsBZ-8 families. They are differentially expressed during embryo development; EmBP-2 is constitutive, whereas ZmBZ-1 is abscisic acid-inducible and accumulates during late embryogenesis. Both factors are nuclear proteins that bind to ABREs and activate transcription of the abscisic acid-inducible gene rab28 from maize. EmBP-2 and ZmBZ-1 are phosphorylated by protein kinase CK2 and phosphorylation alters their DNA binding properties. Our data suggest that EmBP-2 and ZmBZ-1 are involved in the expression of abscisic acid inducible genes such as rab28 and their activity is modulated by ABA and by phosphorylation.
2013-01-01
Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361
Darlyuk-Saadon, Ilona; Weidenfeld-Baranboim, Keren; Yokoyama, Kazunari K; Hai, Tsonwin; Aronheim, Ami
2012-01-01
JDP2, is a basic leucine zipper (bZIP) protein displaying a high degree of homology with the stress inducible transcription factor, ATF3. Both proteins bind to cAMP and TPA response elements and repress transcription by multiple mechanisms. Histone deacetylases (HDACs) play a key role in gene inactivation by deacetylating lysine residues on histones. Here we describe the association of JDP2 and ATF3 with HDACs 1, 2-6 and 10. Association of HDAC3 and HDAC6 with JDP2 and ATF3 occurs via direct protein-protein interactions. Only part of the N-terminal bZIP motif of JDP2 and ATF3 basic domain is necessary and sufficient for the interaction with HDACs in a manner that is independent of coiled-coil dimerization. Class I HDACs associate with the bZIP repressors via the DAC conserved domain whereas the Class IIb HDAC6 associates through its C-terminal unique binder of ubiquitin Zn finger domain. Both JDP2 and ATF3 are known to bind and repress the ATF3 promoter. MEF cells treated with histone deacetylase inhibitor, trichostatin A (TSA) display enhanced ATF3 transcription. ATF3 enhanced transcription is significantly reduced in MEF cells lacking both ATF3 and JDP2. Collectively, we propose that the recruitment of multiple HDAC members to JDP2 and ATF3 is part of their transcription repression mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.
Song, Aiping; Li, Peiling; Xin, Jingjing; Chen, Sumei; Zhao, Kunkun; Wu, Dan; Fan, Qingqing; Gao, Tianwei; Chen, Fadi; Guan, Zhiyong
2016-01-01
The homeodomain-leucine zipper (HD-Zip) transcription factor family is a key transcription factor family and unique to the plant kingdom. It consists of a homeodomain and a leucine zipper that serve in combination as a dimerization motif. The family can be classified into four subfamilies, and these subfamilies participate in the development of hormones and mediation of hormone action and are involved in plant responses to environmental conditions. However, limited information on this gene family is available for the important chrysanthemum ornamental species (Chrysanthemum morifolium). Here, we characterized 17 chrysanthemum HD-Zip genes based on transcriptome sequences. Phylogenetic analyses revealed that 17 CmHB genes were distributed in the HD-Zip subfamilies I and II and identified two pairs of putative orthologous proteins in Arabidopsis and chrysanthemum and four pairs of paralogous proteins in chrysanthemum. The software MEME was used to identify 7 putative motifs with E values less than 1e-3 in the chrysanthemum HD-Zip factors, and they can be clearly classified into two groups based on the composition of the motifs. A bioinformatics analysis predicted that 8 CmHB genes could be targeted by 10 miRNA families, and the expression of these 17 genes in response to phytohormone treatments and abiotic stresses was characterized. The results presented here will promote research on the various functions of the HD-Zip gene family members in plant hormones and stress responses. PMID:27196930
Cheng, Q; Zhou, Y; Liu, Z; Zhang, L; Song, G; Guo, Z; Wang, W; Qu, X; Zhu, Y; Yang, D
2015-03-01
As sessile organisms, plants have evolved a wide range of defence pathways to cope with environmental stress such as heat shock. However, the molecular mechanism of these defence pathways remains unclear in rice. In this study, we found that OsHSFA2d, a heat shock transcriptional factor, encodes two main splice variant proteins, OsHSFA2dI and OsHSFA2dII in rice. Under normal conditions, OsHSFA2dII is the dominant but transcriptionally inactive spliced form. However, when the plant suffers heat stress, OsHSFA2d is alternatively spliced into a transcriptionally active form, OsHSFA2dI, which participates in the heat stress response (HSR). Further study found that this alternative splicing was induced by heat shock rather than photoperiod. We found that OsHSFA2dI is localised to the nucleus, whereas OsHSFA2dII is localised to the nucleus and cytoplasm. Moreover, expression of the unfolded protein response (UNFOLDED PROTEIN RESPONSE) sensors, OsIRE1, OsbZIP39/OsbZIP60 and the UNFOLDED PROTEIN RESPONSE marker OsBiP1, was up-regulated. Interestingly, OsbZIP50 was also alternatively spliced under heat stress, indicating that UNFOLDED PROTEIN RESPONSE signalling pathways were activated by heat stress to re-establish cellular protein homeostasis. We further demonstrated that OsHSFA2dI participated in the unfolded protein response by regulating expression of OsBiP1. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Cifuentes-Esquivel, Nicolás; Celiz-Balboa, Jonathan; Henriquez-Valencia, Carlos; Mitina, Irina; Arraño-Salinas, Paulina; Moreno, Adrián A; Meneses, Claudio; Blanco-Herrera, Francisca; Orellana, Ariel
2018-04-25
Low temperatures, salinity, and drought cause significant crop losses. These conditions involve osmotic stress, triggering transcriptional remodeling, and consequently, the restitution of cellular homeostasis and growth recovery. Protein transcription factors regulate target genes, thereby mediating plant responses to stress. bZIP17 is a transcription factor involved in cellular responses to salinity and the unfolded protein response. Because salinity can also produce osmotic stress, the role of bZIP17 in response to osmotic stress was assessed. Mannitol treatments induced the transcript accumulation and protein processing of bZIP17. Transcriptomic analyses showed that several genes associated with seed storage and germination showed lower expression in bzip17 mutants than in wild-type plants. Interestingly, bZIP17 transcript was more abundant in seeds, and germination analyses revealed that wild-type plants germinated later than bzip17 mutants in the presence of mannitol, but no effects were observed when the seeds were exposed to ABA. Finally, the transcript levels of bZIP17 target genes that control seed storage and germination were assessed in seeds exposed to mannitol treatments, which showed lower expression levels in bzip17 mutants compared to the wild-type seeds. These results suggest that bZIP17 plays a role in osmotic stress, acting as a negative regulator of germination through the regulation of genes involved in seed storage and germination. © 2018 Wiley Periodicals, Inc.
Zha, Liangping; Liu, Shuang; Liu, Juan; Jiang, Chao; Yu, Shulin; Yuan, Yuan; Yang, Jian; Wang, Yaolong; Huang, Luqi
2017-01-01
The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ) and L. japonica var. chinensis (rFLJ). Chlorogenic acid (CGAs) were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5'-UTR of phenylalanine ammonia-lyase 2 ( PAL2 ). We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5'-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica .
Zha, Liangping; Liu, Shuang; Liu, Juan; Jiang, Chao; Yu, Shulin; Yuan, Yuan; Yang, Jian; Wang, Yaolong; Huang, Luqi
2017-01-01
The content of active compounds differ in buds and flowers of Lonicera japonica (FLJ) and L. japonica var. chinensis (rFLJ). Chlorogenic acid (CGAs) were major active compounds of L. japonica and regarded as measurements for quality evaluation. However, little is known concerning the formation of active compounds at the molecular level. We quantified the major CGAs in FLJ and rFLJ, and found the concentrations of CGAs were higher in the buds of rFLJ than those of FLJ. Further analysis of CpG methylation of CGAs biosynthesis genes showed differences between FLJ and rFLJ in the 5′-UTR of phenylalanine ammonia-lyase 2 (PAL2). We identified 11 LjbZIP proteins and 24 rLjbZIP proteins with conserved basic leucine zipper domains, subcellular localization, and electrophoretic mobility shift assay showed that the transcription factor LjbZIP8 is a nuclear-localized protein that specifically binds to the G-box element of the LjPAL2 5′-UTR. Additionally, a transactivation assay and LjbZIP8 overexpression in transgenic tobacco indicated that LjbZIP8 could function as a repressor of transcription. Finally, treatment with 5-azacytidine decreased the transcription level of LjPAL2 and CGAs content in FLJ leaves. These results raise the possibility that DNA methylation might influence the recruitment of LjbZIP8, regulating PAL2 expression level and CGAs content in L. japonica. PMID:28740500
Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu
2017-01-01
The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143
The prion-ZIP connection: From cousins to partners in iron uptake
Singh, Neena; Asthana, Abhishek; Baksi, Shounak; Desai, Vilok; Haldar, Swati; Hari, Sahi; Tripathi, Ajai K
2015-01-01
ABSTRACT Converging observations from disparate lines of inquiry are beginning to clarify the cause of brain iron dyshomeostasis in sporadic Creutzfeldt-Jakob disease (sCJD), a neurodegenerative condition associated with the conversion of prion protein (PrPC), a plasma membrane glycoprotein, from α-helical to a β-sheet rich PrP-scrapie (PrPSc) isoform. Biochemical evidence indicates that PrPC facilitates cellular iron uptake by functioning as a membrane-bound ferrireductase (FR), an activity necessary for the transport of iron across biological membranes through metal transporters. An entirely different experimental approach reveals an evolutionary link between PrPC and the Zrt, Irt-like protein (ZIP) family, a group of proteins involved in the transport of zinc, iron, and manganese across the plasma membrane. Close physical proximity of PrPC with certain members of the ZIP family on the plasma membrane and increased uptake of extracellular iron by cells that co-express PrPC and ZIP14 suggest that PrPC functions as a FR partner for certain members of this family. The connection between PrPC and ZIP proteins therefore extends beyond common ancestry to that of functional cooperation. Here, we summarize evidence supporting the facilitative role of PrPC in cellular iron uptake, and implications of this activity on iron metabolism in sCJD brains. PMID:26689487
Zhang, Zhenzhu; Chen, Xiuling; Guan, Xin; Liu, Yang; Chen, Hongyu; Wang, Tingting; Mouekouba, Liana Dalcantara Ongouya; Li, Jingfu; Wang, Aoxue
2014-01-01
Homeodomain-leucine zipper (HD-Zip) proteins are a kind of transcriptional factors that play a vital role in plant growth and development. However, no detailed information of HD-Zip family in tomato has been reported till now. In this study, 51 HD-Zip genes (SlHZ01-51) in this family were identified and categorized into 4 classes by exon-intron and protein structure in tomato (Solanum lycopersicum) genome. The synthetical phylogenetic tree of tomato, Arabidopsis and rice HD-Zip genes were established for an insight into their evolutionary relationships and putative functions. The results showed that the contribution of segmental duplication was larger than that of tandem duplication for expansion and evolution of genes in this family of tomato. The expression profile results under abiotic stress suggested that all SlHZ I genes were responsive to cold stress. This study will provide a clue for the further investigation of functional identification and the role of tomato HD-Zip I subfamily in plant cold stress responses and developmental events.
Wang, Jie-Chen; Xu, Heng; Zhu, Ying; Liu, Qiao-Quan; Cai, Xiu-Ling
2013-08-01
Starch composition and the amount in endosperm, both of which contribute dramatically to seed yield, cooking quality, and taste in cereals, are determined by a series of complex biochemical reactions. However, the mechanism regulating starch biosynthesis in cereal seeds is not well understood. This study showed that OsbZIP58, a bZIP transcription factor, is a key transcriptional regulator controlling starch synthesis in rice endosperm. OsbZIP58 was expressed mainly in endosperm during active starch synthesis. osbzip58 null mutants displayed abnormal seed morphology with altered starch accumulation in the white belly region and decreased amounts of total starch and amylose. Moreover, osbzip58 had a higher proportion of short chains and a lower proportion of intermediate chains of amylopectin. Furthermore, OsbZIP58 was shown to bind directly to the promoters of six starch-synthesizing genes, OsAGPL3, Wx, OsSSIIa, SBE1, OsBEIIb, and ISA2, and to regulate their expression. These findings indicate that OsbZIP58 functions as a key regulator of starch synthesis in rice seeds and provide new insights into seed quality control.
Chai, Wenbo; Si, Weina; Ji, Wei; Qin, Qianqian; Zhao, Manli; Jiang, Haiyang
2018-01-01
HD-Zip proteins represent the major transcription factors in higher plants, playing essential roles in plant development and stress responses. Foxtail millet is a crop to investigate the systems biology of millet and biofuel grasses and the HD-Zip gene family has not been studied in foxtail millet. For further investigation of the expression profile of the HD-Zip gene family in foxtail millet, a comprehensive genome-wide expression analysis was conducted in this study. We found 47 protein-encoding genes in foxtail millet using BLAST search tools; the putative proteins were classified into four subfamilies, namely, subfamilies I, II, III, and IV. Gene structure and motif analysis indicate that the genes in one subfamily were conserved. Promotor analysis showed that HD-Zip gene was involved in abiotic stress. Duplication analysis revealed that 8 (~17%) hdz genes were tandemly duplicated and 28 (58%) were segmentally duplicated; purifying duplication plays important roles in gene expansion. Microsynteny analysis revealed the maximum relationship in foxtail millet-sorghum and foxtail millet-rice. Expression profiling upon the abiotic stresses of drought and high salinity and the biotic stress of ABA revealed that some genes regulated responses to drought and salinity stresses via an ABA-dependent process, especially sihdz29 and sihdz45. Our study provides new insight into evolutionary and functional analyses of HD-Zip genes involved in environmental stress responses in foxtail millet.
Genetic analysis of the role of amyloplasts in shoot gravisensing
NASA Astrophysics Data System (ADS)
Tasaka, M.; Morita, M.
Plant can change the growth direction after sensing the gravity orientation This response calls gravitropism and the initial step is the gravisensing We have isolated many Arabidopsis mutants shoot gravitropism sgr with reduced or no gravitropic response in inflorescence stems The analysis of sgr1 and sgr7 revealed that endoderm cells in the inflorescence stems were gravisensing sites zig zigzag sgr4 and sgr3 showed no or reduced gravitropism in shoot respectively and their amyloplasts thought to be statoliths did not sedimented to the orientation of gravity in the endoderm cells ZIG encoded a SNARE AtVTI11 and SGR3 encoded other SNARE AtVAM3 These two SNAREs made a complex in the shoot endoderm cells suggesting that the vesicle transport from trans-Golgi network TGN to prevacuolar compartment PVC and or vacuole was involved in the amyloplasts localization and movement The analysis to visualize amyloplasts and vacuolar membrane in living endoderm cells supported that the vacuole function was important for the amyloplasts movement Recently we have isolated many suppressor mutants of zig One of them named zig suppressor zip 1 had a point mutation in the gene encoded other SNARE of AtVTI12 This protein is a homologous to ZIG AtVTI11 and these two proteins have partially redundant functions Although wild type At VTI 12 could not rescued zig mutated AtVTI12 protein ZIP1 could almost completely play the part of ZIG In zigzip1 amyloplasts in endoderm cells sedimented normally and the shoots showed normal gravitropic response The other
Role for the Silencing Protein Dot1 in Meiotic Checkpoint Control
San-Segundo, Pedro A.; Roeder, G. Shirleen
2000-01-01
During the meiotic cell cycle, a surveillance mechanism called the “pachytene checkpoint” ensures proper chromosome segregation by preventing meiotic progression when recombination and chromosome synapsis are defective. The silencing protein Dot1 (also known as Pch1) is required for checkpoint-mediated pachytene arrest of the zip1 and dmc1 mutants of Saccharomyces cerevisiae. In the absence of DOT1, the zip1 and dmc1 mutants inappropriately progress through meiosis, generating inviable meiotic products. Other components of the pachytene checkpoint include the nucleolar protein Pch2 and the heterochromatin component Sir2. In dot1, disruption of the checkpoint correlates with the loss of concentration of Pch2 and Sir2 in the nucleolus. In addition to its checkpoint function, Dot1 blocks the repair of meiotic double-strand breaks by a Rad54-dependent pathway of recombination between sister chromatids. In vegetative cells, mutation of DOT1 results in delocalization of Sir3 from telomeres, accounting for the impaired telomeric silencing in dot1. PMID:11029058
Pazos, Manuel; Natale, Paolo; Margolin, William; Vicente, Miguel
2013-12-01
We used bimolecular fluorescence complementation (BiFC) assays to detect protein-protein interactions of all possible pairs of the essential Escherichia coli proto-ring components, FtsZ, FtsA and ZipA, as well as the non-essential FtsZ-associated proteins ZapA and ZapB. We found an unexpected interaction between ZipA and ZapB at potential cell division sites, and when co-overproduced, they induced long narrow constrictions at division sites that were dependent on FtsZ. These assays also uncovered an interaction between ZipA and ZapA that was mediated by FtsZ. BiFC with ZapA and ZapB showed that in addition to their expected interaction at midcell, they also interact at the cell poles. BiFC detected interaction between FtsZ and ZapB at midcell and close to the poles. Results from the remaining pairwise combinations confirmed known interactions between FtsZ and ZipA, and ZapB with itself. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Deshpande, Paresh; Dapkekar, Ashwin; Oak, Manoj; Paknikar, Kishore; Rajwade, Jyutika
2018-01-01
Wheat is the staple food for most of the world's population; however, it is a poor source of zinc. Foliar fertilization of zinc via zinc loaded chitosan nanocarriers (Zn-CNP) post-anthesis has proved to be a promising approach for grain zinc enhancement in durum wheat as evidenced in our earlier study. However, the molecular mechanism of uptake of zinc via Zn-CNP remains unclear. Foliar application of Zn-CNP was performed at post anthesis stages in two durum wheat cultivars (MACS 3125 and UC1114, containing the Gpc-B1 gene), and expression levels of several metal-related genes were analyzed during early senescence. Zn-CNP application indeed caused changes in gene expression as revealed by qPCR data on representative genes involved in metal homeostasis, phloem transporters, and leaf senescence. Furthermore, zinc-regulated transporters and iron (Fe)-regulated transporter-like protein (ZIP) family [ZIP1, ZIP7, ZIP15], CA (carbonic anhydrase), and DMAS (2'-deoxymugineic acid synthase) in flag leaves exhibited significant correlation with zinc content in the seeds. The analysis of grain endosperm proteins showed enhancement of gamma gliadins while other gluten subunits decreased. Gene expression within ZIP family members varied with the type of cultivar mostly attributed to the Gpc-B1, concentration of external zinc ions as well as the type of tissue analyzed. Correlation analysis revealed the involvement of the selected genes in zinc enhancement. At the molecular level, uptake of zinc via Zn-CNP nanocarrier was comparable to the uptake of zinc via common zinc fertilizers i.e. ZnSO4.
Xi, Hualong; Zhang, Kaixin; Yin, Yanchun; Gu, Tiejun; Sun, Qing; Li, Zhuang; Cheng, Yue; Jiang, Chunlai; Kong, Wei; Wu, Yongge
2017-06-01
Rabies is an acute zoonotic infectious disease with a high fatality rate but is preventable with vaccination and rabies immunoglobulin (RIG). The single-chain Fv fragment (scFv), a small engineered antigen-binding protein derived from antibody variable heavy (V H ) and light (V L ) chains connected by a peptide linker, can potentially be used to replace RIG. Here, we produced two peptides V H -JUN-HIS and V L -FOS-HA separately in Escherichia coli and assembled them to form zipFv successfully in vitro. The new zipFv utilizes FOS and JUN leucine zippers to form an antibody structure similar to the IgG counterpart with two free N-terminal ends of V H and V L . The zipFv protein showed notable improvement in binding ability and affinity over its corresponding scFv. The zipFv also demonstrated greater stability in serum and the same protective rate as RIG against challenge with a standard rabies virus (CVS-24) in mice. Our results indicated zipFv as a novel and efficient antibody form with enhanced neutralizing potency. Copyright © 2017. Published by Elsevier B.V.
A Petunia Homeodomain-Leucine Zipper Protein, PhHD-Zip, Plays an Important Role in Flower Senescence
Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S.; Jiang, Cai-Zhong
2014-01-01
Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence. PMID:24551088
Chang, Xiaoxiao; Donnelly, Linda; Sun, Daoyang; Rao, Jingping; Reid, Michael S; Jiang, Cai-Zhong
2014-01-01
Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.
Characterization of a new family of metal transport proteins. 1998 annual progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerinot, M.L.
1998-06-01
'Soils at many DOE sites are contaminated with metals and radionuclides. Such soils obviously pose a risk to human and animal health. Unlike organic wastes which can be metabolized, metals are immutable and cannot be degraded into harmless constituents. Phytoremediation, the use of plants to remove toxic materials from soil and water, may prove to be an environmentally friendly and cost effective solution for cleaning up metal-contaminated sites. The success of phytoremediation will rely on the availability of plants that absorb, translocate, and tolerate the contaminating metals. However, before the authors can engineer such plants, they need more basic informationmore » on how plants acquire metals. An important long term goal of the research program is to understand how metals such as zinc, cadmium and copper are transported across membranes. The research is focused on a new family of metal transporters which they have identified through combined studies in the yeast Saccharomyces cerevisiae and in the model plant Arabidopsis thaliana. They have identified a family of 19 presumptive metal transport genes in a variety of organisms including yeast, trypanosomes, plants, nematodes, and humans. This family, which the authors have designated the ZIP genes, provides a rich source of material with which to undertake studies on metal transport in eukaryotes. The project has three main objectives: Objective 1: Determine the sub-cellular location of the ZIP proteins in Arabidopsis. Objective 2: Carry out a structure/function analysis of the proteins encoded by the ZIP gene family to identify regions of the protein responsible for substrate specificity and affinity. Objective 3: Engineer plants to overexpress and underexpress members of the ZIP gene family and analyze these transgenic plants for alterations in metal accumulation. They now know that manipulation of transporter levels will also require an understanding of post-transcriptional control of ZIP gene expression. They are currently in year one of a three-year project.'« less
Activator Protein-1: redox switch controlling structure and DNA-binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Zhou; Machius, Mischa; Nestler, Eric J.
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-pointmore » redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.« less
Ortiz-Espín, Ana; Iglesias-Fernández, Raquel; Calderón, Aingeru; Carbonero, Pilar; Sevilla, Francisca
2017-01-01
Abstract Mitochondrial thioredoxin-o (AtTrxo1) was characterized and its expression examined in different organs of Arabidopsis thaliana. AtTrxo1 transcript levels were particularly high in dry seeds and cotyledons where they reached a maximum 36 h after imbibition with water, coinciding with 50% germination. Expression was lower in seeds germinating in 100 mM NaCl. To gain insight into the transcriptional regulation of the AtTrxo1 gene, a phylogenomic analysis was coupled with the screening of an arrayed library of Arabidopsis transcription factors in yeast. The basic leucine zipper AtbZIP9 and the zinc finger protein AZF2 were identified as putative transcriptional regulators. Transcript regulation of AtbZIP9 and AtAFZ2 during germination was compatible with the proposed role in transcriptional regulation of AtTrxo1. Transient over-expression of AtbZIP9 and AtAZF2 in Nicotiana benthamiana leaves demonstrated an activation effect of AtbZIP9 and a repressor effect of AtAZF2 on AtTrxo1 promoter-driven reporter expression. Although moderate concentrations of salt delayed germination in Arabidopsis wild-type seeds, those of two different AtTrxo1 knock-out mutants germinated faster and accumulated higher H2O2 levels than the wild-type. All these data indicate that AtTrxo1 has a role in redox homeostasis during seed germination under salt conditions. PMID:28184497
Dialogue between E. coli free radical pathways and the mitochondria of C. elegans.
Govindan, J Amaranath; Jayamani, Elamparithi; Zhang, Xinrui; Mylonakis, Eleftherios; Ruvkun, Gary
2015-10-06
The microbial world presents a complex palette of opportunities and dangers to animals, which have developed surveillance and response strategies to hints of microbial intent. We show here that the mitochondrial homeostatic response pathway of the nematode Caenorhabditis elegans responds to Escherichia coli mutations that activate free radical detoxification pathways. Activation of C. elegans mitochondrial responses could be suppressed by additional mutations in E. coli, suggesting that C. elegans responds to products of E. coli to anticipate challenges to its mitochondrion. Out of 50 C. elegans gene inactivations known to mediate mitochondrial defense, we found that 7 genes were required for C. elegans response to a free radical producing E. coli mutant, including the bZip transcription factor atfs-1 (activating transcription factor associated with stress). An atfs-1 loss-of-function mutant was partially resistant to the effects of free radical-producing E. coli mutant, but a constitutively active atfs-1 mutant growing on wild-type E. coli inappropriately activated the pattern of mitochondrial responses normally induced by an E. coli free radical pathway mutant. Carbonylated proteins from free radical-producing E. coli mutant may directly activate the ATFS-1/bZIP transcription factor to induce mitochondrial stress response: feeding C. elegans with H2O2-treated E. coli induces the mitochondrial unfolded protein response, and inhibition of a gut peptide transporter partially suppressed C. elegans response to free radical damaged E. coli.
Wang, Zhihui; Cheng, Ke; Wan, Liyun; Yan, Liying; Jiang, Huifang; Liu, Shengyi; Lei, Yong; Liao, Boshou
2015-12-10
Plant bZIP proteins characteristically harbor a highly conserved bZIP domain with two structural features: a DNA-binding basic region and a leucine (Leu) zipper dimerization region. They have been shown to be diverse transcriptional regulators, playing crucial roles in plant development, physiological processes, and biotic/abiotic stress responses. Despite the availability of six completely sequenced legume genomes, a comprehensive investigation of bZIP family members in legumes has yet to be presented. In this study, we identified 428 bZIP genes encoding 585 distinct proteins in six legumes, Glycine max, Medicago truncatula, Phaseolus vulgaris, Cicer arietinum, Cajanus cajan, and Lotus japonicus. The legume bZIP genes were categorized into 11 groups according to their phylogenetic relationships with genes from Arabidopsis. Four kinds of intron patterns (a-d) within the basic and hinge regions were defined and additional conserved motifs were identified, both presenting high group specificity and supporting the group classification. We predicted the DNA-binding patterns and the dimerization properties, based on the characteristic features in the basic and hinge regions and the Leu zipper, respectively, which indicated that some highly conserved amino acid residues existed across each major group. The chromosome distribution and analysis for WGD-derived duplicated blocks revealed that the legume bZIP genes have expanded mainly by segmental duplication rather than tandem duplication. Expression data further revealed that the legume bZIP genes were expressed constitutively or in an organ-specific, development-dependent manner playing roles in multiple seed developmental stages and tissues. We also detected several key legume bZIP genes involved in drought- and salt-responses by comparing fold changes of expression values in drought-stressed or salt-stressed roots and leaves. In summary, this genome-wide identification, characterization and expression analysis of legume bZIP genes provides valuable information for understanding the molecular functions and evolution of the legume bZIP transcription factor family, and highlights potential legume bZIP genes involved in regulating tissue development and abiotic stress responses.
Boundary Conditions for the Maintenance of Memory by PKM[zeta] in Neocortex
ERIC Educational Resources Information Center
Shema, Reul; Hazvi, Shoshi; Sacktor, Todd C.; Dudai, Yadin
2009-01-01
We report here that ZIP, a selective inhibitor of the atypical protein kinase C isoform PKM[zeta], abolishes very long-term conditioned taste aversion (CTA) associations in the insular cortex of the behaving rat, at least 3 mo after encoding. The effect of ZIP is not replicated by a general serine/threonine protein kinase inhibitor that is…
Chopperla, Ramakrishna; Singh, Sonam; Mohanty, Sasmita; Reddy, Nanja; Padaria, Jasdeep C; Solanke, Amolkumar U
2017-10-01
Basic leucine zipper (bZIP) transcription factors comprise one of the largest gene families in plants. They play a key role in almost every aspect of plant growth and development and also in biotic and abiotic stress tolerance. In this study, we report isolation and characterization of EcbZIP17 , a group B bZIP transcription factor from a climate smart cereal, finger millet ( Eleusine coracana L.). The genomic sequence of EcbZIP17 is 2662 bp long encompassing two exons and one intron with ORF of 1722 bp and peptide length of 573 aa. This gene is homologous to AtbZIP17 ( Arabidopsis ), ZmbZIP17 (maize) and OsbZIP60 (rice) which play a key role in endoplasmic reticulum (ER) stress pathway. In silico analysis confirmed the presence of basic leucine zipper (bZIP) and transmembrane (TM) domains in the EcbZIP17 protein. Allele mining of this gene in 16 different genotypes by Sanger sequencing revealed no variation in nucleotide sequence, including the 618 bp long intron. Expression analysis of EcbZIP17 under heat stress exhibited similar pattern of expression in all the genotypes across time intervals with highest upregulation after 4 h. The present study established the conserved nature of EcbZIP17 at nucleotide and expression level.
Lu, Yuwen; Yin, Mingyuan; Wang, Xiaodan; Chen, Binghua; Yang, Xue; Peng, Jiejun; Zheng, Hongying; Zhao, Jinping; Lin, Lin; Yu, Chulang; MacFarlane, Stuart; He, Jianqing; Liu, Yong; Chen, Jianping; Dai, Liangying; Yan, Fei
2016-06-01
Garlic virus X (GarVX) ORF3 encodes a p11 protein, which contributes to virus cell-to-cell movement and forms granules on the endoplasmic reticulum (ER) in Nicotiana benthamiana. Expression of p11 either from a binary vector, PVX or TMV induced ER stress and the unfolded protein response (UPR), as demonstrated by an increase in transcription of the ER luminal binding protein (BiP) and bZIP60 genes. UPR-related programmed cell death (PCD) was elicited by PVX : p11 or TMV : p11 in systemic infected leaves. Examination of p11 mutants with deletions of two transmembrane domains (TM) revealed that both were required for generating granules and for inducing necrosis. TRV-based VIGS was used to investigate the correlation between bZIP60 expression and p11-induced UPR-related PCD. Less necrosis was observed on local and systemic leaves of bZIP60 knockdown plants when infected with PVXp11, suggesting that bZIP60 plays an important role in the UPR-related PCD response to p11 in N. benthamiana.
The IRE1/bZIP60 pathway are activated by potexvirus and potyvirus small membrane binding proteins
USDA-ARS?s Scientific Manuscript database
The endoplasmic reticulum provides an environment for protein synthesis, folding and distribution to all corners of the cell. With respect to protein synthesis and folding, quality production is central to maintaining homeostasis. When conditions occur that disrupt the folding capacity of the ER cau...
Prion protein functions as a ferrireductase partner for ZIP14 and DMT1
Qian, Juan; Beserra, Amber; Suda, Srinivas; Singh, Ajay; Hopfer, Ulrich; Chen, Shu G.; Garrick, Michael D.; Turner, Jerrold R.; Knutson, Mitchell D.; Singh, Neena
2015-01-01
Excess circulating iron is stored in the liver, and requires reduction of non-Tf-bound-iron (NTBI) and transferrin (Tf)-iron at the plasma membrane and endosomes respectively by ferrireductase (FR) proteins for transport across biological membranes through divalent metal transporters. Here, we report that prion-protein (PrPC), a ubiquitously expressed glycoprotein most abundant on neuronal cells, functions as a FR partner for divalent-metal transporter-1 (DMT1) and ZIP14. Thus, absence of PrPC in PrP-knock-out (PrP−/−) mice resulted in markedly reduced liver iron stores, a deficiency that was not corrected by chronic or acute administration of iron by the oral or intra-peritoneal routes. Likewise, preferential radiolabeling of circulating NTBI with 59Fe revealed significantly reduced uptake and storage of NTBI by the liver of PrP−/− mice relative to matched PrP+/+ controls. However, uptake, storage, and utilization of ferritin-bound iron that does not require reduction for uptake was increased in PrP−/− mice, indicating a compensatory response to the iron-deficiency. Expression of exogenous PrPC in HepG2-cells increased uptake and storage of ferric-iron (Fe3+), not ferrous-iron (Fe2+) from the medium, supporting the function of PrPC as a plasma membrane FR. Co-expression of PrPC with ZIP14 and DMT1 in HepG2 cells increased uptake of Fe3+ significantly, and surprisingly, increased the ratio of N-terminally truncated PrPC forms lacking the FR domain relative to full-length PrPC. Together, these observations indicate that PrPC promotes, and possibly regulates the uptake of NTBI through DMT1 and Zip14 via its FR activity. Implications of these observations for neuronal iron homeostasis under physiological and pathological conditions are discussed. PMID:25862412
Ko, Jae-Heung; Prassinos, Constantinos; Han, Kyung-Hwan
2006-01-01
In contrast to our knowledge of the shoot apical meristem, our understanding of cambium meristem differentiation and maintenance is limited. Class III homeodomain leucine-zipper (HD-Zip) proteins have been shown to play a regulatory role in vascular differentiation. The hybrid aspen (Populus tremulaxPopulus alba) class III HD-Zip transcription factor (PtaHB1) and microRNA 166 (Pta-miR166) family were cloned from hybrid aspen using a combination of in silico and polymerase chain reaction methods. Expression analyses of PtaHB1 and Pta-miR166 were performed by Northern blot analysis. The expression of PtaHB1 was closely associated with wood formation and regulated both developmentally and seasonally, with the highest expression during the active growing season. Also, its expression was inversely correlated with the level of Pta-miR166. Pta-miR166-directed cleavage of PtaHB1 in vivo was confirmed using modified 5'-rapid amplification of cDNA ends (RACE). The expression of Pta-miR166 was much higher in the winter than in the growing seasons, suggesting seasonal and developmental regulation of microRNA in this perennial plant species.
Murata, Ken; Hayashibara, Toshihisa; Sugahara, Kazuyuki; Uemura, Akiko; Yamaguchi, Taku; Harasawa, Hitomi; Hasegawa, Hiroo; Tsuruda, Kazuto; Okazaki, Toshiro; Koji, Takehiko; Miyanishi, Takayuki; Yamada, Yasuaki; Kamihira, Shimeru
2006-01-01
Adult T-cell leukemia (ATL) is associated with prior infection with human T-cell leukemia virus type 1 (HTLV-1); however, the mechanism by which HTLV-1 causes adult T-cell leukemia has not been fully elucidated. Recently, a functional basic leucine zipper (bZIP) protein coded in the minus strand of HTLV-1 genome (HBZ) was identified. We report here a novel isoform of the HTLV-1 bZIP factor (HBZ), HBZ-SI, identified by means of reverse transcription-PCR (RT-PCR) in conjunction with 5′ and 3′ rapid amplification of cDNA ends (RACE). HBZ-SI is a 206-amino-acid-long protein and is generated by alternative splicing between part of the HBZ gene and a novel exon located in the 3′ long terminal repeat of the HTLV-1 genome. Consequently, these isoforms share >95% amino acid sequence identity, and differ only at their N termini, indicating that HBZ-SI is also a functional protein. Duplex RT-PCR and real-time quantitative RT-PCR analyses showed that the mRNAs of these isoforms were expressed at equivalent levels in all ATL cell samples examined. Nonetheless, we found by Western blotting that the HBZ-SI protein was preferentially expressed in some ATL cell lines examined. A key finding was obtained from the subcellular localization analyses of these isoforms. Despite their high sequence similarity, each isoform was targeted to distinguishable subnuclear structures. These data show the presence of a novel isoform of HBZ in ATL cells, and in addition, shed new light on the possibility that each isoform may play a unique role in distinct regions in the cell nucleus. PMID:16474156
Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Lu, Kun; Xu, Xinfu; Wang, Rui; Li, Jiana; Qu, Cunmin
2017-10-24
The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed ( Brassica napus ). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B . napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B . napus and its parental lines and for molecular breeding studies of bZIP genes in B . napus .
Zhou, Yan; Xu, Daixiang; Jia, Ledong; Huang, Xiaohu; Ma, Guoqiang; Wang, Shuxian; Zhu, Meichen; Zhang, Aoxiang; Guan, Mingwei; Xu, Xinfu; Wang, Rui; Li, Jiana
2017-01-01
The basic region/leucine zipper motif (bZIP) transcription factor family is one of the largest families of transcriptional regulators in plants. bZIP genes have been systematically characterized in some plants, but not in rapeseed (Brassica napus). In this study, we identified 247 BnbZIP genes in the rapeseed genome, which we classified into 10 subfamilies based on phylogenetic analysis of their deduced protein sequences. The BnbZIP genes were grouped into functional clades with Arabidopsis genes with similar putative functions, indicating functional conservation. Genome mapping analysis revealed that the BnbZIPs are distributed unevenly across all 19 chromosomes, and that some of these genes arose through whole-genome duplication and dispersed duplication events. All expression profiles of 247 bZIP genes were extracted from RNA-sequencing data obtained from 17 different B. napus ZS11 tissues with 42 various developmental stages. These genes exhibited different expression patterns in various tissues, revealing that these genes are differentially regulated. Our results provide a valuable foundation for functional dissection of the different BnbZIP homologs in B. napus and its parental lines and for molecular breeding studies of bZIP genes in B. napus. PMID:29064393
Mei, Zhengrong; Yan, Pengke; Wang, Ying; Liu, Shaozhi; He, Fang
2018-05-02
Neuroblastoma is one of the leading causes of cancer‑associated mortality worldwide, particularly in children, partially due to the absence of effective therapeutic targets and diagnostic biomarkers. Therefore, novel molecular targets are critical to the development of therapeutic approaches for neuroblastoma. In the present study, the functions of zinc transporter ZIP8 (Zip8), a member of the zinc transporting protein family, were investigated as novel molecular targets in neuroblastoma cancer cells. The proliferation rates of neuroblastoma cancer cells were significantly decreased when Zip8 was knocked down by lentiviral‑mediated RNA interference. Study of the molecular mechanism suggested that Zip8 modulated the expression of key genes involved in the nuclear factor‑κB signaling pathway. Furthermore, Zip8 depletion suppressed the migratory potential of neuroblastoma cancer cells by reducing the expression levels of matrix metalloproteinases. In conclusion, the results of the present study suggested that Zip8 was an important regulator of neuroblastoma cell proliferation and migration, indicating that Zip8 may be a potential anticancer therapeutic target and a promising diagnostic biomarker for human neuroblastoma.
Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress
Ohashi, Wakana; Kimura, Shunsuke; Iwanaga, Toshihiko; Furusawa, Yukihiro; Irié, Tarou; Izumi, Hironori; Watanabe, Takashi; Hara, Takafumi; Ohara, Osamu; Koseki, Haruhiko; Sato, Toshiro; Robine, Sylvie; Mori, Hisashi; Hattori, Yuichi; Mishima, Kenji; Ohno, Hiroshi; Hase, Koji; Fukada, Toshiyuki
2016-01-01
Zinc transporters play a critical role in spatiotemporal regulation of zinc homeostasis. Although disruption of zinc homeostasis has been implicated in disorders such as intestinal inflammation and aberrant epithelial morphology, it is largely unknown which zinc transporters are responsible for the intestinal epithelial homeostasis. Here, we show that Zrt-Irt-like protein (ZIP) transporter ZIP7, which is highly expressed in the intestinal crypt, is essential for intestinal epithelial proliferation. Mice lacking Zip7 in intestinal epithelium triggered endoplasmic reticulum (ER) stress in proliferative progenitor cells, leading to significant cell death of progenitor cells. Zip7 deficiency led to the loss of Olfm4+ intestinal stem cells and the degeneration of post-mitotic Paneth cells, indicating a fundamental requirement for Zip7 in homeostatic intestinal regeneration. Taken together, these findings provide evidence for the importance of ZIP7 in maintenance of intestinal epithelial homeostasis through the regulation of ER function in proliferative progenitor cells and maintenance of intestinal stem cells. Therapeutic targeting of ZIP7 could lead to effective treatment of gastrointestinal disorders. PMID:27736879
Activator Protein-1: redox switch controlling structure and DNA-binding.
Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby
2017-11-02
The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kim, H-E; Rhee, J; Park, S; Yang, J; Chun, J-S
2017-03-01
In a preliminary study, we found that recently identified catabolic regulators of osteoarthritis (OA), including hypoxia-inducible factor (HIF)-2α and members of the zinc-ZIP8-MTF1 axis, upregulate the E3 ubiquitin ligase, Atrogin-1 (encoded by Fbxo32), in chondrocytes. As the ubiquitination/proteasomal degradation pathways are tightly regulated to modulate the expression of catabolic factors in chondrocytes, we examined the in vivo functions of Atrogin-1 in mouse models of OA. The mRNA and protein levels of Atrogin-1 and other regulators of OA were determined in primary cultured mouse chondrocytes, OA human cartilage, and OA cartilage from wild-type (WT) and Fbxo32-knockout (KO) mice subjected to destabilization of the medial meniscus or intra-articular (IA) injection of adenoviruses expressing HIF-2α (Ad-Epas1), ZIP8 (Ad-Zip8), or Atrogin-1 (Ad-Fbxo32). The effect of Atrogin-1 overexpression on the cartilage of WT mice was examined by IA injection of Ad-Fbxo32. Atrogin-1 mRNA levels in chondrocytes were markedly increased by treatment with interleukin-1β, HIF-2α, and members of the zinc-ZIP8-MTF1 axis. Atrogin-1 protein levels were also increased in OA cartilage from humans and various mouse OA models. However, the forced overexpression of Atrogin-1 in chondrocytes did not modulate the expression of cartilage matrix molecules or matrix-degrading enzymes. Moreover, overexpression of Atrogin-1 in the mouse joint tissues failed to cause OA pathogenesis, and Fbxo32 knockout failed to affect post-traumatic OA cartilage destruction in mice. Although Atrogin-1 is upregulated in OA cartilage, overexpression of Atrogin-1 in the joint tissues or knockout of Fbxo32 does not affect OA cartilage destruction in mice. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Pourabed, Ehsan; Ghane Golmohamadi, Farzan; Soleymani Monfared, Peyman; Razavi, Seyed Morteza; Shobbar, Zahra-Sadat
2015-01-01
The basic leucine zipper (bZIP) family is one of the largest and most diverse transcription factors in eukaryotes participating in many essential plant processes. We identified 141 bZIP proteins encoded by 89 genes from the Hordeum vulgare genome. HvbZIPs were classified into 11 groups based on their DNA-binding motif. Amino acid sequence alignment of the HvbZIPs basic-hinge regions revealed some highly conserved residues within each group. The leucine zipper heptads were analyzed predicting their dimerization properties. 34 conserved motifs were identified outside the bZIP domain. Phylogenetic analysis indicated that major diversification within the bZIP family predated the monocot/dicot divergence, although intra-species duplication and parallel evolution seems to be occurred afterward. Localization of HvbZIPs on the barley chromosomes revealed that different groups have been distributed on seven chromosomes of barley. Six types of intron pattern were detected within the basic-hinge regions. Most of the detected cis-elements in the promoter and UTR sequences were involved in seed development or abiotic stress response. Microarray data analysis revealed differential expression pattern of HvbZIPs in response to ABA treatment, drought, and cold stresses and during barley grain development and germination. This information would be helpful for functional characterization of bZIP transcription factors in barley.
Zhang, Lina; Zhang, Lichao; Xia, Chuan; Gao, Lifeng; Hao, Chenyang; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying
2017-01-01
The group C-bZIP transcription factors (TFs) are involved in diverse biological processes, such as the regulation of seed storage protein (SSP) production and the responses to pathogen challenge and abiotic stress. However, our knowledge of the abiotic functions of group C-bZIP genes in wheat remains limited. Here, we present the function of a novel TabZIP14-B gene in wheat. This gene belongs to the group C-bZIP TFs and contains six exons and five introns; three haplotypes were identified among accessions of tetraploid and hexaploid wheat. A subcellular localization analysis indicated that TabZIP14-B was targeted to the nucleus of tobacco epidermal cells. A transactivation assay demonstrated that TabZIP14-B showed transcriptional activation ability and was capable of binding the abscisic acid (ABA) responsive element (ABRE) in yeast. RT-qPCR revealed that TabZIP14-B was expressed in the roots, stems, leaves, and young spikes and was up-regulated by exogenous ABA, salt, low-temperature, and polyethylene glycol (PEG) stress treatments. Furthermore, Arabidopsis plants overexpressing TabZIP14-B exhibited enhanced tolerance to salt, freezing stresses and ABA sensitivity. Overexpression of TabZIP14-B resulted in increased expression of the AtRD29A, AtCOR47, AtRD20, AtGSTF6, and AtRAB18 genes and changes in several physiological characteristics. These results suggest that TabZIP14-B could function as a positive regulator in mediating the abiotic stress response. PMID:28536588
Chromosomal localization and cDNA cloning of the human DBP and TEF genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatib, Z.A.; Inaba, T.; Valentine, M.
1994-09-15
The authors have isolated cDNA and genomic clones and determined the human chromosome positions of two genes encoding transcription factors expressed in the liver and the pituitary gland: albumin D-site-binding protein (DBP) and thyrotroph embryonic factor (TEF). Both proteins have been identified as members of the PAR (proline and acidic amino acid-rich) subfamily of bZIP transcription factors in the rat, but human homologues have not been characterized. Using a fluorescence in situ hybridization technique, the DBP locus was assigned to chromosome 19q13, and TEF to chromosome 22q13. Each assignment was confirmed by means of human chromosome segregation in somatic cellmore » hybrids. Coding sequences of DBP and TEF, extending beyond the bZIP domain to the PAR region, were highly conserved in both human-human and interspecies comparisons. Conservation of the exon-intron boundaries of each bZIP domain-encoding exon suggested derivation from a common ancestral gene. DBP and TEF mRNAs were expressed in all tissues and cell lines examined, including brain, lung, liver, spleen, and kidney. Knowledge of the human chromosome locations of these PAR proteins will facilitate studies to assess their involvement in carcinogenesis and other fundamental biological processes. 37 refs., 5 figs., 1 tab.« less
Kang, Xing; Chen, Rong; Zhang, Jie; Li, Gang; Dai, Peng-Gao; Chen, Chao; Wang, Hui-Juan
2015-01-01
Zinc transporters have been considered as essential regulators in many cancers; however, their mechanisms remain unknown, especially in gliomas. Isocitrate dehydrogenase 1(IDH1) mutation is crucial to glioma. This study aimed to investigate whether zinc transporters are correlated with glioma grade and IDH1 mutation status. IDH1 mutation status and mRNA expression of four zinc transporters (ZIP4, ZIP9, ZIP11, and ZnT9) were determined by subjecting a panel of 74 glioma tissue samples to quantitative real-time PCR and pyrosequencing. The correlations between the expression levels of these zinc transporter genes and the grade of glioma, as well as IDH1 mutation status, were investigated. Among the four zinc transporter genes, high ZIP4 expression and low ZIP11 expression were significantly associated with higher grade (grades III and IV) tumors compared with lower grade (grades I and II) counterparts (p<0.0001). However, only ZIP11 exhibited weak correlation with IDH1 mutation status (p=0.045). Samples with mutations in IDH1 displayed higher ZIP11 expression than those without IDH1 mutations. This finding indicated that zinc transporters may interact with IDH1 mutation by direct modulation or action in some shared pathways or genes to promote the development of glioma. Zinc transporters may play an important role in glioma. ZIP4 and ZIP11 are promising molecular diagnostic markers and novel therapeutic targets. Nevertheless, the detailed biological function of zinc transporters and the mechanism of the potential interaction between ZIP11 and IDH1 mutation in gliomagenesis should be further investigated.
2012-01-01
Background ZIP8 functions endogenously as a Zn+2/HCO3- symporter that can also bring cadmium (Cd+2) into the cell. It has also been proposed that ZIP8 participates in Cd-induced testicular necrosis and renal disease. In this study real-time PCR, western analysis, immunostaining and fluorescent localization were used to define the expression of ZIP8 in human kidney, cultured human proximal tubule (HPT) cells, normal and malignant human urothelium and Cd+2 and arsenite (As+3) transformed urothelial cells. Results It was shown that in the renal system both the non-glycosylated and glycosylated form of ZIP8 was expressed in the proximal tubule cells with localization of ZIP8 to the cytoplasm and cell membrane; findings in line with previous studies on ZIP8. The studies in the bladder were the first to show that ZIP8 was expressed in normal urothelium and that ZIP8 could be localized to the paranuclear region. Studies in the UROtsa cell line confirmed a paranuclear localization of ZIP8, however addition of growth medium to the cells increased the expression of the protein in the UROtsa cells. In archival human samples of the normal urothelium, the expression of ZIP8 was variable in intensity whereas in urothelial cancers ZIP8 was expressed in 13 of 14 samples, with one high grade invasive urothelial cancer showing no expression. The expression of ZIP8 was similar in the Cd+2 and As+3 transformed UROtsa cell lines and their tumor transplants. Conclusion This is the first study which shows that ZIP8 is expressed in the normal urothelium and in bladder cancer. In addition the normal UROtsa cell line and its transformed counterparts show similar expression of ZIP8 compared to the normal urothelium and the urothelial cancers suggesting that the UROtsa cell line could serve as a model system to study the expression of ZIP8 in bladder disease. PMID:22550998
Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunz, Sabine; Gardestrom, Per; Pesquet, Edouard
Simple sugars, like glucose (Glc) and sucrose (Suc), act as signals to modulate the expression of hundreds of genes in plants. Frequently, however, it remains unclear whether this regulation is induced by the sugars themselves or by their derivatives generated in the course of carbohydrate (CH) metabolism. In the present study, we tested the relevance of different CH metabolism and allocation pathways affecting expression patterns of five selected sugar-responsive genes ( bZIP63, At5g22920, BT2, MGD2, and TPS9) in Arabidopsis thaliana. In general, the expression followed diurnal changes in the overall sugar availability. However, under steady growth conditions, this response wasmore » hardly impaired in the mutants for CH metabolizing/ transporting proteins ( adg1, sex1, sus1-4, sus5/6, and tpt2), including also hexokinase1 (HXK1) loss- and gain-of-function plants— gin2.1 and oe3.2, respectively. In addition, transgenic plants carrying pbZIP63::GUS showed no changes in reporter-gene-expression when grown on sugar under steady-state conditions. In contrast, short-term treatments of agar-grown seedlings with 1% Glc or Suc induced pbZIP63::GUS repression, which became even more apparent in seedlings grown in liquid media. Subsequent analyses of liquid-grown gin2.1 and oe3.2 seedlings revealed that Glc -dependent regulation of the five selected genes was not affected in gin2.1, whereas it was enhanced in oe3.2 plants for bZIP63, At5g22920, and BT. The sugar treatments had no effect on ATP/ADP ratio, suggesting that changes in gene expression were not linked to cellular energy status. Altogether, the data suggest that HXK1 does not act as Glc sensor controlling bZIP63, At5g22920, and BT2 expression, but it is nevertheless required for the production of a downstream metabolic signal regulating their expression« less
Hexokinase 1 is required for glucose-induced repression of bZIP63, At5g22920, and BT2 in Arabidopsis
Kunz, Sabine; Gardestrom, Per; Pesquet, Edouard; ...
2015-07-14
Simple sugars, like glucose (Glc) and sucrose (Suc), act as signals to modulate the expression of hundreds of genes in plants. Frequently, however, it remains unclear whether this regulation is induced by the sugars themselves or by their derivatives generated in the course of carbohydrate (CH) metabolism. In the present study, we tested the relevance of different CH metabolism and allocation pathways affecting expression patterns of five selected sugar-responsive genes ( bZIP63, At5g22920, BT2, MGD2, and TPS9) in Arabidopsis thaliana. In general, the expression followed diurnal changes in the overall sugar availability. However, under steady growth conditions, this response wasmore » hardly impaired in the mutants for CH metabolizing/ transporting proteins ( adg1, sex1, sus1-4, sus5/6, and tpt2), including also hexokinase1 (HXK1) loss- and gain-of-function plants— gin2.1 and oe3.2, respectively. In addition, transgenic plants carrying pbZIP63::GUS showed no changes in reporter-gene-expression when grown on sugar under steady-state conditions. In contrast, short-term treatments of agar-grown seedlings with 1% Glc or Suc induced pbZIP63::GUS repression, which became even more apparent in seedlings grown in liquid media. Subsequent analyses of liquid-grown gin2.1 and oe3.2 seedlings revealed that Glc -dependent regulation of the five selected genes was not affected in gin2.1, whereas it was enhanced in oe3.2 plants for bZIP63, At5g22920, and BT. The sugar treatments had no effect on ATP/ADP ratio, suggesting that changes in gene expression were not linked to cellular energy status. Altogether, the data suggest that HXK1 does not act as Glc sensor controlling bZIP63, At5g22920, and BT2 expression, but it is nevertheless required for the production of a downstream metabolic signal regulating their expression« less
39 CFR Appendix A to Part 121 - Tables Depicting Service Standard Day Ranges
Code of Federal Regulations, 2014 CFR
2014-07-01
... (Days) Alaska Hawaii, Guam, & American Samoa Puerto Rico & USVI Periodicals 1 1-3 1 1-3 1-4 (AK)11 (JNU... 2-3 12 11 11 AK = Alaska 3-digit ZIP Codes 995-997; JNU = Juneau AK 3-digit ZIP Code 998; KTN = Ketchikan AK 3-digit ZIP Code 999; HI = Hawaii 3-digit ZIP Codes 967 and 968; GU = Guam 3-digit ZIP Code 969...
Balaban, Pavel M.; Roshchin, Matvey; Timoshenko, Alia Kh.; Zuzina, Alena B.; Lemak, Maria; Ierusalimsky, Victor N.; Aseyev, Nikolay A.; Malyshev, Aleksey Y.
2015-01-01
It has been shown that a variety of long-term memories in different regions of the brain and in different species are quickly erased by local inhibition of protein kinase Mζ (PKMζ), a persistently active protein kinase. Using antibodies to mammalian PKMζ, we describe in the present study the localization of immunoreactive molecules in the nervous system of the terrestrial snail Helix lucorum. Presence of a homolog of PKMζ was confirmed with transcriptomics. We have demonstrated in behavioral experiments that contextual fear memory disappeared under a blockade of PKMζ with a selective peptide blocker of PKMζ zeta inhibitory peptide (ZIP), but not with scrambled ZIP. If ZIP was combined with a “reminder” (20 min in noxious context), no impairment of the long-term contextual memory was observed. In electrophysiological experiments we investigated whether PKMζ takes part in the maintenance of long-term facilitation (LTF) in the neural circuit mediating tentacle withdrawal. LTF of excitatory synaptic inputs to premotor interneurons was induced by high-frequency nerve stimulation combined with serotonin bath applications and lasted at least 4 h. We found that bath application of 2 × 10−6 M ZIP at the 90th min after the tetanization reduced the EPSP amplitude to the non-tetanized EPSP values. Applications of the scrambled ZIP peptide at a similar time and concentration didn’t affect the EPSP amplitudes. In order to test whether effects of ZIP are specific to the synapses, we performed experiments with LTF of somatic membrane responses to local glutamate applications. It was shown earlier that serotonin application in such an “artificial synapse” condition elicits LTF of responses to glutamate. It was found that ZIP had no effect on LTF in these conditions, which may be explained by the very low concentration of PKMζ molecules in somata of these identified neurons, as evidenced by immunochemistry. Obtained results suggest that the Helix homolog of PKMζ might be involved in post-induction maintenance of long-term changes in the nervous system of the terrestrial snail. PMID:26157359
Chen, Xue; Chen, Zhu; Zhao, Hualin; Zhao, Yang; Cheng, Beijiu; Xiang, Yan
2014-01-01
Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development.
Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.
2013-01-01
Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081
Li, Zhiqian; Zhang, Chen; Guo, Yurui; Niu, Weili; Wang, Yuejin; Xu, Yan
2017-09-21
The HD-Zip family has a diversity of functions during plant development. In this study, we identify 33 HD-Zip transcription factors in grape and detect their expressions in ovules and somatic embryos, as well as in various vegetative organs. A genome-wide survey for HD-Zip transcription factors in Vitis was conducted based on the 12 X grape genome (V. vinifera L.). A total of 33 members were identified and classified into four subfamilies (I-IV) based on phylogeny analysis with Arabidopsis, rice and maize. VvHDZs in the same subfamily have similar protein motifs and intron/exon structures. An evaluation of duplication events suggests several HD-Zip genes arose before the divergence of the grape and Arabidopsis lineages. The 33 members of HD-Zip were differentially expressed in ovules of the stenospermic grape, Thompson Seedless and of the seeded grape, Pinot noir. Most have higher expressions during ovule abortion in Thompson Seedless. In addition, transcripts of the HD-Zip family were also detected in somatic embryogenesis of Thompson Seedless and in different vegetative organs of Thompson Seedless at varying levels. Additionally, VvHDZ28 is located in the nucleus and had transcriptional activity consistent with the typical features of the HD-Zip family. Our results provide a foundation for future grape HD-Zip gene function research. The identification and expression profiles of the HD-Zip transcription factors in grape, reveal their diverse roles during ovule abortion and organ development. Our results lay a foundation for functional analysis of grape HDZ genes.
Misra, Jagannath; Chanda, Dipanjan; Kim, Don-kyu; Li, Tiangang; Koo, Seung-Hoi; Back, Sung-Hoon; Chiang, John Y L; Choi, Hueng-Sik
2011-12-09
Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), is a natural polyphenolic compound. Herein the effect of curcumin on endoplasmic reticulum (ER) stress responsive gene expression was investigated. We report that curcumin induces transcriptional corepressor small heterodimer partner-interacting leucine zipper protein (SMILE) gene expression through liver kinase B1 (LKB1)/adenosine monophosphate-activated kinase (AMPK) signaling pathway and represses ER stress-responsive gene transcription in an ER-bound transcription factor specific manner. cAMP responsive element-binding protein H (CREBH) and activating transcription factor 6 (ATF6) are both ER-bound bZIP family transcription factors that are activated upon ER stress. Of interest, we observed that both curcumin treatment and SMILE overexpression only represses CREBH-mediated transactivation of the target gene but not ATF6-mediated transactivation. Knockdown of endogenous SMILE significantly releases the inhibitory effect of curcumin on CREBH transactivation. Intrinsic repressive activity of SMILE is observed in the Gal4 fusion system, and the intrinsic repressive domain is mapped to the C terminus of SMILE spanning amino acid residues 203-269, corresponding to the basic region leucine zipper (bZIP) domain. In vivo interaction assay revealed that through its bZIP domain, SMILE interacts with CREBH and inhibits its transcriptional activity. Interestingly, we observed that SMILE does not interact with ATF6. Furthermore, competition between SMILE and the coactivator peroxisome proliferator-activated receptor α (PGC-1α) on CREBH transactivation has been demonstrated in vitro and in vivo. Finally, chromatin immunoprecipitation assays revealed that curcumin decreases the binding of PGC-1α and CREBH on target gene promoter in a SMILE-dependent manner. Overall, for the first time we suggest a novel phenomenon that the curcumin/LKB1/AMPK/SMILE/PGC1α pathway differentially regulates ER stress-mediated gene transcription.
Que, Feng; Wang, Guang-Long; Li, Tong; Wang, Ya-Hui; Xu, Zhi-Sheng; Xiong, Ai-Sheng
2018-06-16
The homeobox gene family, a large family represented by transcription factors, has been implicated in secondary growth, early embryo patterning, and hormone response pathways in plants. However, reports about the information and evolutionary history of the homeobox gene family in carrot are limited. In the present study, a total of 130 homeobox family genes were identified in the carrot genome. Specific codomain and phylogenetic analyses revealed that the genes were classified into 14 subgroups. Whole genome and proximal duplication participated in the homeobox gene family expansion in carrot. Purifying selection also contributed to the evolution of carrot homeobox genes. In Gene Ontology (GO) analysis, most members of the HD-ZIP III and IV subfamilies were found to have a lipid binding (GO:0008289) term. Most HD-ZIP III and IV genes also harbored a steroidogenic acute regulatory protein-related lipid transfer (START) domain. These results suggested that the HD-ZIP III and IV subfamilies might be related to lipid transfer. Transcriptome and quantitative real-time PCR (RT-qPCR) data indicated that members of the WOX and KNOX subfamilies were likely implicated in carrot root development. Our study provided a useful basis for further studies on the complexity and function of the homeobox gene family in carrot.
The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective
Kimura, Tomoki; Kambe, Taiho
2016-01-01
Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives. PMID:26959009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Sang-Keun; Yoon, Joonseon; Choi, Gyung Ja
Highlights: •The CaHB1 is a nuclear factor, belonging to HD-Zip proteins. •SA and ET, as signal molecules, modulate CaHB1-mediated responses. •Overexpression of CaHB1 in tomato resulted in a thicker cell wall. •CaHB1-transgenic tomato confers resistance to Phytophthora infestans. •CaHB1 enhanced tolerance to saline stress in tomato. -- Abstract: Homeodomain-leucine zipper (HD-Zip) family proteins are unique to plants, but little is known about their role in defense responses. CaHB1 is a nuclear factor in peppers, belonging to subfamily II of HD-Zip proteins. Here, we determined the role of CaHB1 in the defense response. CaHB1 expression was induced when pepper plants weremore » challenged with Phytophthora capsici, a plant pathogen to which peppers are susceptible, or environmental stresses such as drought and salt stimuli. CaHB1 was also highly expressed in pepper leaves following application of SA, whereas ethephon and MeJA had a moderate effect. To further investigate the function of CaHB1 in plants, we performed gain-of-function study by overexpression of CaHB1 in tomato. CaHB1-transgenic tomatoes showed significant growth enhancement including increased leaf thickness and enlarged cell size (1.8-fold larger than control plants). Microscopic analysis revealed that leaves from CaHB1-transgenic plants had thicker cell walls and cuticle layers than those from controls. Moreover, CaHB1-transgenic plants displayed enhanced resistance against Phytophthora infestans and increased tolerance to salt stress. Additionally, RT-PCR analysis of CaHB1-transgenic tomatoes revealed constitutive up-regulation of multiple genes involved in plant defense and osmotic stress. Therefore, our findings suggest roles for CaHB1 in development, salt stress, and pathogen defense.« less
The regulatory network of ThbZIP1 in response to abscisic acid treatment
Ji, Xiaoyu; Liu, Guifeng; Liu, Yujia; Nie, Xianguang; Zheng, Lei; Wang, Yucheng
2015-01-01
Previously, a bZIP transcription factor from Tamarix hispida, ThbZIP1, was characterized: plants overexpressing ThbZIP1 displayed improved salt stress tolerance but were sensitive to abscisic acid (ABA). In the current study, we further characterized the regulatory network of ThbZIP1 and the mechanism of ABA sensitivity mediated by ThbZIP1. An ABF transcription factor from T. hispida, ThABF1, directly regulates the expression of ThbZIP1. Microarray analysis identified 1662 and 1609 genes that were respectively significantly upregulated or downregulated by ThbZIP1 when exposed to ABA. Gene ontology (GO) analysis showed that the processes including “response to stimulus,” “catalytic activity,” “binding function,” and “metabolic process” were highly altered in ThbZIP1 expressing plants exposed to ABA. The gene expression in ThbZIP1 transformed plants were compared between exposed to ABA and salt on the genome scale. Genes differentially regulated by both salt and ABA treatment only accounted for 9.75% of total differentially regulated genes. GO analysis showed that structural molecule activity, organelle part, membrane-enclosed lumen, reproduction, and reproductive process are enhanced by ABA but inhibited by salt stress. Conversely, immune system and multi-organism process were improved by salt but inhibited by ABA. Transcription regulator activity, enzyme regulator activity, and developmental process were significantly altered by ABA but were not affected by salt stress. Our study provides insights into how ThbZIP1 mediates ABA and salt stress response at the molecular level. PMID:25713576
Han, Jeongsoo; Kwon, Minjee; Cha, Myeounghoon; Tanioka, Motomasa; Hong, Seong-Karp; Bai, Sun Joon; Lee, Bae Hwan
2015-01-01
The insular cortex (IC) is associated with important functions linked with pain and emotions. According to recent reports, neural plasticity in the brain including the IC can be induced by nerve injury and may contribute to chronic pain. Continuous active kinase, protein kinase Mζ (PKMζ), has been known to maintain the long-term potentiation. This study was conducted to determine the role of PKMζ in the IC, which may be involved in the modulation of neuropathic pain. Mechanical allodynia test and immunohistochemistry (IHC) of zif268, an activity-dependent transcription factor required for neuronal plasticity, were performed after nerve injury. After ζ-pseudosubstrate inhibitory peptide (ZIP, a selective inhibitor of PKMζ) injection, mechanical allodynia test and immunoblotting of PKMζ, phospho-PKMζ (p-PKMζ), and GluR1 and GluR2 were observed. IHC demonstrated that zif268 expression significantly increased in the IC after nerve injury. Mechanical allodynia was significantly decreased by ZIP microinjection into the IC. The analgesic effect lasted for 12 hours. Moreover, the levels of GluR1, GluR2, and p-PKMζ were decreased after ZIP microinjection. These results suggest that peripheral nerve injury induces neural plasticity related to PKMζ and that ZIP has potential applications for relieving chronic pain. PMID:26457205
Alagarasan, Ganesh; Dubey, Mahima; Aswathy, Kumar S; Chandel, Girish
2017-01-01
Genes in the ZIP family encode transcripts to store and transport bivalent metal micronutrient, particularly iron (Fe) and or zinc (Zn). These transcripts are important for a variety of functions involved in the developmental and physiological processes in many plant species, including most, if not all, Poaceae plant species and the model species Arabidopsis. Here, we present the report of a genome wide investigation of orthologous ZIP genes in Setaria italica and the identification of 7 single copy genes. RT-PCR shows 4 of them could be used to increase the bio-availability of zinc and iron content in grains. Of 36 ZIP members, 25 genes have traces of signal peptide based sub-cellular localization, as compared to those of plant species studied previously, yet translocation of ions remains unclear. In silico analysis of gene structure and protein nature suggests that these two were preeminent in shaping the functional diversity of the ZIP gene family in S. italica . NAC, bZIP and bHLH are the predominant Fe and Zn responsive transcription factors present in SiZIP genes. Together, our results provide new insights into the signal peptide based/independent iron and zinc translocation in the plant system and allowed identification of ZIP genes that may be involved in the zinc and iron absorption from the soil, and thus transporting it to the cereal grain underlying high micronutrient accumulation.
39 CFR Appendix A to Part 121 - Tables Depicting Service Standard Day Ranges
Code of Federal Regulations, 2011 CFR
2011-07-01
... 1-3 (AK)7 (JNU) 7 (KTN) 1 (HI)7 (GU) 1-2 1-2 6-7 5-6 Standard Mail 2 3 3 3-4 10 10 9 Package Services 1 2 2 2-3 8 8 7 AK = Alaska 3-digit ZIP Codes 995-997; JNU = Juneau AK 3-digit ZIP Code 998; KTN = Ketchikan AK 3-digit ZIP Code 999; HI = Hawaii 3-digit ZIP Codes 967 and 968; GU = Guam 3-digit ZIP Code 969...
39 CFR Appendix A to Part 121 - Tables Depicting Service Standard Day Ranges
Code of Federal Regulations, 2010 CFR
2010-07-01
... 1-3 (AK)7 (JNU) 7 (KTN) 1 (HI)7 (GU) 1-2 1-2 6-7 5-6 Standard Mail 2 3 3 3-4 10 10 9 Package Services 1 2 2 2-3 8 8 7 AK = Alaska 3-digit ZIP Codes 995-997; JNU = Juneau AK 3-digit ZIP Code 998; KTN = Ketchikan AK 3-digit ZIP Code 999; HI = Hawaii 3-digit ZIP Codes 967 and 968; GU = Guam 3-digit ZIP Code 969...
Kim, Sihyun; An, Chung Sun; Hong, Young-Nam; Lee, Kwang-Woong
2004-12-31
C-Repeat/drought responsive element binding factor (CBF1/DREB1b) is a well known transcriptional activator that is induced at low temperature and in turn induces the CBF regulon (CBF-targeted genes). We have cloned and characterized two CBF1-like cDNAs, CaCBF1A and CaCBF1B, from hot pepper. CaCBF1A and CaCBF1B were not produced in response to mechanical wounding or abscisic acid but were induced by low-temperature stress at 4 degrees . When plants were returned to 25 degrees , their transcript levels of the CBF1-like genes decreased markedly within 40 min. Long-term exposure to chilling resulted in continuous expression of these genes. The critical temperature for induction of CaCBF1A was between 10 and 15 degrees . Low temperature led to its transcription in roots, stems, leaves, fruit without seeds, and apical meristems, and a monoclonal antibody against it revealed a significant increase in CaCBF1A protein by 4 h at 4 degrees . Two-hybrid screening led to the isolation of an homeodomain leucine zipper (HD-Zip) protein that interacts with CaCBF1B. Expression of HD-Zip was elevated by low temperature and drought.
Exploring the bZIP transcription factor regulatory network in Neurospora crassa
Tian, Chaoguang; Li, Jingyi; Glass, N. Louise
2011-01-01
Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution. PMID:21081763
Exploring the bZIP transcription factor regulatory network in Neurospora crassa.
Tian, Chaoguang; Li, Jingyi; Glass, N Louise
2011-03-01
Transcription factors (TFs) are key nodes of regulatory networks in eukaryotic organisms, including filamentous fungi such as Neurospora crassa. The 178 predicted DNA-binding TFs in N. crassa are distributed primarily among six gene families, which represent an ancient expansion in filamentous ascomycete genomes; 98 TF genes show detectable expression levels during vegetative growth of N. crassa, including 35 that show a significant difference in expression level between hyphae at the periphery versus hyphae in the interior of a colony. Regulatory networks within a species genome include paralogous TFs and their respective target genes (TF regulon). To investigate TF network evolution in N. crassa, we focused on the basic leucine zipper (bZIP) TF family, which contains nine members. We performed baseline transcriptional profiling during vegetative growth of the wild-type and seven isogenic, viable bZIP deletion mutants. We further characterized the regulatory network of one member of the bZIP family, NCU03905. NCU03905 encodes an Ap1-like protein (NcAp-1), which is involved in resistance to multiple stress responses, including oxidative and heavy metal stress. Relocalization of NcAp-1 from the cytoplasm to the nucleus was associated with exposure to stress. A comparison of the NcAp-1 regulon with Ap1-like regulons in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida albicans and Aspergillus fumigatus showed both conservation and divergence. These data indicate how N. crassa responds to stress and provide information on pathway evolution.
An insight into the sialome of the bed bug, Cimex lectularius
Francischetti, Ivo M.B.; Calvo, Eric; Andersen, John F.; Pham, Van M.; Favreau, Amanda J.; Barbian, Kent D.; Romero, Alvaro; Valenzuela, Jesus G.; Ribeiro., José M.C.
2010-01-01
The evolution of insects to a blood diet leads to the development of a saliva that antagonizes their hosts' hemostasis and inflammation. Hemostasis and inflammation are redundant processes, and thus a complex salivary potion comprised of dozens or near one hundred different polypeptides is commonly found by transcriptome or proteome analysis of these organisms. Several insect orders or families evolved independently to hematophagy creating unique salivary potions in the form of novel pharmacological use of endogenous substances, and in the form of unique proteins not matching other known proteins, these probably arriving by fast evolution of salivary proteins as they evade their hosts' immune response. In this work we present a preliminary description of the sialome (from the Greek Sialo = saliva) of the common bed bug Cimex lectularius, the first such work from a member of the Cimicidae family. This manuscript is a guide for the supplemental database files http://exon.niaid.nih.gov/transcriptome/C_lectularius/S1/Cimex-S1.zip and http://exon.niaid.nih.gov/transcriptome/C_lectularius/S2/Cimex-S2.xls PMID:20441151
Insight into the Sialome of the Bed Bug, Cimex lectularius.
Francischetti, Ivo M B; Calvo, Eric; Andersen, John F; Pham, Van M; Favreau, Amanda J; Barbian, Kent D; Romero, Alvaro; Valenzuela, Jesus G; Ribeiro, José M C
2010-08-06
The evolution of insects to a blood diet leads to the development of a saliva that antagonizes their hosts' hemostasis and inflammation. Hemostasis and inflammation are redundant processes, and thus a complex salivary potion composed of dozens or near 100 different polypeptides is commonly found by transcriptome or proteome analysis of these organisms. Several insect orders or families evolved independently to hematophagy, creating unique salivary potions in the form of novel pharmacological use of endogenous substances and in the form of unique proteins not matching other known proteins, these probably arriving by fast evolution of salivary proteins as they evade their hosts' immune response. In this work we present a preliminary description of the sialome (from the Greek Sialo = saliva) of the common bed bug Cimex lectularius, the first such work from a member of the Cimicidae family. This manuscript is a guide for the supplemental database files http://exon.niaid.nih.gov/transcriptome/C_lectularius/S1/Cimex-S1.zip and http://exon.niaid.nih.gov/transcriptome/C_lectularius/S2/Cimex-S2.xls.
Zhang, Fangyuan; Fu, Xueqing; Lv, Zongyou; Lu, Xu; Shen, Qian; Zhang, Ling; Zhu, Mengmeng; Wang, Guofeng; Sun, Xiaofen; Liao, Zhihua; Tang, Kexuan
2015-01-01
Artemisinin is a sesquiterpenoid especially synthesized in the Chinese herbal plant, Artemisia annua, which is widely used in the treatment of malaria. Artemisinin accumulation can be enhanced by exogenous abscisic acid (ABA) treatment. However, it is not known how ABA signaling regulates artemisinin biosynthesis. A global expression profile and phylogenetic analysis as well as the dual-LUC screening revealed that a basic leucine zipper family transcription factor from A. annua (namely AabZIP1) was involved in ABA signaling to regulate artemisinin biosynthesis. AabZIP1 had a higher expression level in the inflorescences than in other tissues; ABA treatment, drought, and salt stress strongly induced the expression of AabZIP1. Yeast one-hybrid assay and electrophoretic mobility shift assay (EMSA) showed that AabZIP1 bound to the ABA-responsive elements (ABRE) in the promoter regions of the amorpha-4,11-diene synthase (ADS) gene and CYP71AV1, which are two key structural genes of the artemisinin biosynthetic pathway. A mutagenesis assay showed that the C1 domain in the N-terminus of AabZIP1 was important for its transactivation activity. Furthermore, the activation of ADS and CYP71AV1 promoters by AabZIP1 was enhanced by ABA treatment in transient dual-LUC analysis. The AabZIP1 variant with C1 domain deletion lost the ability to activate ADS and CYP71AV1 promoters regardless of ABA treatment. Notably, overexpression of AabZIP1 in A. annua resulted in significantly increased accumulation of artemisinin. Our results indicate that ABA promotes artemisinin biosynthesis, likely through 1 activation of ADS and CYP71AV1 expression by AabZIP in A. annua. Meanwhile, our findings reveal the potential value of AabZIP1 in genetic engineering of artemisinin production. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Using ZIP Code Business Patterns Data to Measure Alcohol Outlet Density
Matthews, Stephen A.; McCarthy, John D.; Rafail, Patrick S.
2014-01-01
Some states maintain high-quality alcohol outlet databases but quality varies by state, making comprehensive comparative analysis across US communities difficult. This study assesses the adequacy of using ZIP Code Business Patterns (ZIP-BP) data on establishments as estimates of the number of alcohol outlets by ZIP code. Specifically we compare ZIP-BP alcohol outlet counts with high-quality data from state and local records surrounding 44 college campus communities across 10 states plus the District of Columbia. Results show that a composite measure is strongly correlated (R=0.89) with counts of alcohol outlets generated from official state records. Analyses based on Generalized Estimation Equation models show that community and contextual factors have little impact on the concordance between the two data sources. There are also minimal inter-state differences in the level of agreement. To validate the use of a convenient secondary data set (ZIP-BP) it is important to have a high correlation with the more complex, high quality and more costly data product (i.e., datasets based on the acquisition and geocoding of state and local records) and then to clearly demonstrate that the discrepancy between the two to be unrelated to relevant explanatory variables. Thus our overall findings support the adequacy of using a conveniently available data set (ZIP-BP data) to estimate alcohol outlet densities in ZIP code areas in future research. PMID:21411233
Using ZIP code business patterns data to measure alcohol outlet density.
Matthews, Stephen A; McCarthy, John D; Rafail, Patrick S
2011-07-01
Some states maintain high-quality alcohol outlet databases but quality varies by state, making comprehensive comparative analysis across US communities difficult. This study assesses the adequacy of using ZIP Code Business Patterns (ZIP-BP) data on establishments as estimates of the number of alcohol outlets by ZIP code. Specifically we compare ZIP-BP alcohol outlet counts with high-quality data from state and local records surrounding 44 college campus communities across 10 states plus the District of Columbia. Results show that a composite measure is strongly correlated (R=0.89) with counts of alcohol outlets generated from official state records. Analyses based on Generalized Estimation Equation models show that community and contextual factors have little impact on the concordance between the two data sources. There are also minimal inter-state differences in the level of agreement. To validate the use of a convenient secondary data set (ZIP-BP) it is important to have a high correlation with the more complex, high quality and more costly data product (i.e., datasets based on the acquisition and geocoding of state and local records) and then to clearly demonstrate that the discrepancy between the two to be unrelated to relevant explanatory variables. Thus our overall findings support the adequacy of using a conveniently available data set (ZIP-BP data) to estimate alcohol outlet densities in ZIP code areas in future research. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Xue; Chen, Zhu; Zhao, Hualin; Zhao, Yang; Cheng, Beijiu; Xiang, Yan
2014-01-01
Background Homeodomain-leucine zipper (HD-Zip) proteins, a group of homeobox transcription factors, participate in various aspects of normal plant growth and developmental processes as well as environmental responses. To date, no overall analysis or expression profiling of the HD-Zip gene family in soybean (Glycine max) has been reported. Methods and Findings An investigation of the soybean genome revealed 88 putative HD-Zip genes. These genes were classified into four subfamilies, I to IV, based on phylogenetic analysis. In each subfamily, the constituent parts of gene structure and motif were relatively conserved. A total of 87 out of 88 genes were distributed unequally on 20 chromosomes with 36 segmental duplication events, indicating that segmental duplication is important for the expansion of the HD-Zip family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the HD-Zip family basically underwent purifying selection with restrictive functional divergence after the duplication events. Analysis of expression profiles showed that 80 genes differentially expressed across 14 tissues, and 59 HD-Zip genes are differentially expressed under salinity and drought stress, with 20 paralogous pairs showing nearly identical expression patterns and three paralogous pairs diversifying significantly under drought stress. Quantitative real-time RT-PCR (qRT-PCR) analysis of six paralogous pairs of 12 selected soybean HD-Zip genes under both drought and salinity stress confirmed their stress-inducible expression patterns. Conclusions This study presents a thorough overview of the soybean HD-Zip gene family and provides a new perspective on the evolution of this gene family. The results indicate that HD-Zip family genes may be involved in many plant responses to stress conditions. Additionally, this study provides a solid foundation for uncovering the biological roles of HD-Zip genes in soybean growth and development. PMID:24498296
Pybus, Marc; Andrews, Glen K.; Lalueza-Fox, Carles; Comas, David; Sekler, Israel; de la Rasilla, Marco; Rosas, Antonio; Stoneking, Mark; Valverde, Miguel A.; Vicente, Rubén; Bosch, Elena
2014-01-01
Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk. PMID:24586184
An Insight into the Sialome of the Black Fly, Simulium vittatum
Andersen, John F.; Pham, Van M.; Meng, Zhaojing; Champagne, Donald E.; Ribeiro, José M. C.
2009-01-01
Adaptation to vertebrate blood feeding includes development of a salivary ‘magic potion’ that can disarm host hemostasis and inflammatory reactions. Within the lower Diptera, a vertebrate blood-sucking mode evolved in the Psychodidae (sand flies), Culicidae (mosquitoes), Ceratopogonidae (biting midges), Simuliidae (black flies), and in the frog-feeding Corethrellidae. Sialotranscriptome analyses from several species of mosquitoes and sand flies and from one biting midge indicate divergence in the evolution of the blood-sucking salivary potion, manifested in the finding of many unique proteins within each insect family, and even genus. Gene duplication and divergence events are highly prevalent, possibly driven by vertebrate host immune pressure. Within this framework, we describe the sialome (from Greek sialo, saliva) of the black fly Simulium vittatum and discuss the findings within the context of the protein families found in other blood-sucking Diptera. Sequences and results of Blast searches against several protein family databases are given in Supplemental Tables S1 and S2, which can be obtained from http://exon.niaid.nih.gov/transcriptome/S_vittatum/T1/SV-tb1.zip and http://exon.niaid.nih.gov/transcriptome/S_vittatum/T2/SV-tb2.zip. PMID:19166301
Huang, Xi; Duan, Min; Liao, Jiakai; Yuan, Xi; Chen, Hui; Feng, Jiejie; Huang, Ji; Zhang, Hong-Sheng
2014-01-01
Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.
Tron, Adriana E.; Bertoncini, Carlos W.; Palena, Claudia M.; Chan, Raquel L.; Gonzalez, Daniel H.
2001-01-01
Four groups of plant homeodomain proteins contain a dimerization motif closely linked to the homeodomain. We here show that two sunflower homeodomain proteins, Hahb-4 and HAHR1, which belong to the Hd-Zip I and GL2/Hd-Zip IV groups, respectively, show different binding preferences at a defined position of a pseudopalindromic DNA-binding site used as a target. HAHR1 shows a preference for the sequence 5′-CATT(A/T)AATG-3′, rather than 5′-CAAT(A/T)ATTG-3′, recognized by Hahb-4. To analyze the molecular basis of this behavior, we have constructed a set of mutants with exchanged residues (Phe→Ile and Ile→Phe) at position 47 of the homeodomain, together with chimeric proteins between HAHR1 and Hahb-4. The results obtained indicate that Phe47, but not Ile47, allows binding to 5′-CATT(A/T)AATG-3′. However, the preference for this sequence is determined, in addition, by amino acids located C-terminal to residue 53 of the HAHR1 homeodomain. A double mutant of Hahb-4 (Ile47→Phe/Ala54→Thr) shows the same binding behavior as HAHR1, suggesting that combinatorial interactions of amino acid residues at positions 47 and 54 of the homeodomain are involved in establishing the affinity and selectivity of plant dimeric homeodomain proteins with different DNA target sequences. PMID:11726696
Hunter, Olga V.; Sei, Emi; Richardson, R. Blake
2013-01-01
The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 57 (ORF57)-encoded protein (Mta) is a multifunctional regulator of viral gene expression. ORF57 is essential for viral replication, so elucidation of its molecular mechanisms is important for understanding KSHV infection. ORF57 has been implicated in nearly every aspect of viral gene expression, including transcription, RNA stability, splicing, export, and translation. Here we demonstrate that ORF57 interacts with the KSHV K-bZIP protein in vitro and in cell extracts from lytically reactivated infected cells. To further test the biological relevance of the interaction, we performed a chromatin immunoprecipitation and microarray (ChIP-chip) analysis using anti-ORF57 antibodies and a KSHV tiling array. The results revealed four specific areas of enrichment, including the ORF4 and K8 (K-bZIP) promoters, as well as oriLyt, all of which interact with K-bZIP. In addition, ORF57 associated with DNA corresponding to the PAN RNA transcribed region, a known posttranscriptional target of ORF57. All of the peaks were RNase insensitive, demonstrating that ORF57 association with the viral genome is unlikely to be mediated exclusively by an RNA tether. Our data demonstrate that ORF57 associates with the viral genome by using at least two modes of recruitment, and they suggest that ORF57 and K-bZIP coregulate viral gene expression during lytic infection. PMID:23365430
Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress
Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana; ...
2017-02-10
Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less
Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dash, Madhumita; Yordanov, Yordan S.; Georgieva, Tatyana
Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here in this study, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) genemore » with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.« less
The quantum physics of synaptic communication via the SNARE protein complex.
Georgiev, Danko D; Glazebrook, James F
2018-07-01
Twenty five years ago, Sir John Carew Eccles together with Friedrich Beck proposed a quantum mechanical model of neurotransmitter release at synapses in the human cerebral cortex. The model endorsed causal influence of human consciousness upon the functioning of synapses in the brain through quantum tunneling of unidentified quasiparticles that trigger the exocytosis of synaptic vesicles, thereby initiating the transmission of information from the presynaptic towards the postsynaptic neuron. Here, we provide a molecular upgrade of the Beck and Eccles model by identifying the quantum quasiparticles as Davydov solitons that twist the protein α-helices and trigger exocytosis of synaptic vesicles through helical zipping of the SNARE protein complex. We also calculate the observable probabilities for exocytosis based on the mass of this quasiparticle, along with the characteristics of the potential energy barrier through which tunneling is necessary. We further review the current experimental evidence in support of this novel bio-molecular model as presented. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hu, Ruibo; Chi, Xiaoyuan; Chai, Guohua; Kong, Yingzhen; He, Guo; Wang, Xiaoyu; Shi, Dachuan; Zhang, Dongyuan; Zhou, Gongke
2012-01-01
Background Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I–IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles. PMID:22359569
Peptide-DNA conjugates as tailored bivalent binders of the oncoprotein c-Jun.
Pazos, Elena; Portela, Cecilia; Penas, Cristina; Vázquez, M Eugenio; Mascareñas, José L
2015-05-21
We describe a ds-oligonucleotide-peptide conjugate that is able to efficiently dismount preformed DNA complexes of the bZIP regions of oncoproteins c-Fos and c-Jun (AP-1), and therefore might be useful as disrupters of AP-1-mediated gene expression pathways.
ERIC Educational Resources Information Center
Gamiz, Fernando; Gallo, Milagros
2011-01-01
We have investigated the effect of protein kinase Mzeta (PKM[zeta]) inhibition in the basolateral amygdala (BLA) upon the retention of a nonspatial learned active avoidance response and conditioned taste-aversion (CTA) acquisition in rats. ZIP (10 nmol/[mu]L) injected into the BLA 24 h after training impaired retention of a learned…
39 CFR Appendix A to Part 121 - Tables Depicting Service Standard Day Ranges
Code of Federal Regulations, 2012 CFR
2012-07-01
... & USVI Periodicals 1 1-3 1 1-3 1-4 (AK) 11 (JNU) 11 (KTN) 1 (HI) 2 (GU) 1-4 10-11 10 8-10 Standard Mail 2 3 3-4 3-4 14 13 12 Package Services 1 2 2-3 2-3 12 11 11 AK = Alaska 3-digit ZIP Codes 995-997; JNU = Juneau AK 3-digit ZIP Code 998; KTN = Ketchikan AK 3-digit ZIP Code 999; HI = Hawaii 3-digit ZIP Codes...
39 CFR Appendix A to Part 121 - Tables Depicting Service Standard Day Ranges
Code of Federal Regulations, 2013 CFR
2013-07-01
... & USVI Periodicals 1 1-3 1 1-3 1-4 (AK) 11 (JNU) 11 (KTN) 1 (HI) 2 (GU) 1-4 10-11 10 8-10 Standard Mail 2 3 3-4 3-4 14 13 12 Package Services 1 2 2-3 2-3 12 11 11 AK = Alaska 3-digit ZIP Codes 995-997; JNU = Juneau AK 3-digit ZIP Code 998; KTN = Ketchikan AK 3-digit ZIP Code 999; HI = Hawaii 3-digit ZIP Codes...
Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin
2016-04-01
CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The Zn finger protein Iguana impacts Hedgehog signaling by promoting ciliogenesis.
Glazer, Andrew M; Wilkinson, Alex W; Backer, Chelsea B; Lapan, Sylvain W; Gutzman, Jennifer H; Cheeseman, Iain M; Reddien, Peter W
2010-01-01
Hedgehog signaling is critical for metazoan development and requires cilia for pathway activity. The gene iguana was discovered in zebrafish as required for Hedgehog signaling, and encodes a novel Zn finger protein. Planarians are flatworms with robust regenerative capacities and utilize epidermal cilia for locomotion. RNA interference of Smed-iguana in the planarian Schmidtea mediterranea caused cilia loss and failure to regenerate new cilia, but did not cause defects similar to those observed in hedgehog(RNAi) animals. Smed-iguana gene expression was also similar in pattern to the expression of multiple other ciliogenesis genes, but was not required for expression of these ciliogenesis genes. iguana-defective zebrafish had too few motile cilia in pronephric ducts and in Kupffer's vesicle. Kupffer's vesicle promotes left-right asymmetry and iguana mutant embryos had left-right asymmetry defects. Finally, human Iguana proteins (dZIP1 and dZIP1L) localize to the basal bodies of primary cilia and, together, are required for primary cilia formation. Our results indicate that a critical and broadly conserved function for Iguana is in ciliogenesis and that this function has come to be required for Hedgehog signaling in vertebrates.
Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.; Fu, D.; Chai, J.
2010-12-10
All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstratedmore » that ZIPB is selective for two group 12 transition metal ions, Zn{sup 2+} and Cd{sup 2+}, whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.« less
Tuncay, Erkan; Bitirim, Verda C; Durak, Aysegul; Carrat, Gaelle R J; Taylor, Kathryn M; Rutter, Guy A; Turan, Belma
2017-05-01
Changes in cellular free Zn 2+ concentration, including those in the sarco(endo)plasmic reticulum [S(E)R], are primarily coordinated by Zn 2+ transporters (ZnTs) whose identity and role in the heart are not well established. We hypothesized that ZIP7 and ZnT7 transport Zn 2+ in opposing directions across the S(E)R membrane in cardiomyocytes and that changes in their activity play an important role in the development of ER stress during hyperglycemia. The subcellular S(E)R localization of ZIP7 and ZnT7 was determined in cardiomyocytes and in isolated S(E)R preparations. Markedly increased mRNA and protein levels of ZIP7 were observed in ventricular cardiomyocytes from diabetic rats or high-glucose-treated H9c2 cells while ZnT7 expression was low. In addition, we observed increased ZIP7 phosphorylation in response to high glucose in vivo and in vitro. By using recombinant-targeted Förster resonance energy transfer sensors, we show that hyperglycemia induces a marked redistribution of cellular free Zn 2+ , increasing cytosolic free Zn 2+ and lowering free Zn 2+ in the S(E)R. These changes involve alterations in ZIP7 phosphorylation and were suppressed by small interfering RNA-mediated silencing of CK2α. Opposing changes in the expression of ZIP7 and ZnT7 were also observed in hyperglycemia. We conclude that subcellular free Zn 2+ redistribution in the hyperglycemic heart, resulting from altered ZIP7 and ZnT7 activity, contributes to cardiac dysfunction in diabetes. © 2017 by the American Diabetes Association.
1991-05-03
REPORT NUJMBER(S) 1148-18_________ 6,1. NAMFEFPERrORMIIG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION (If applicable ) Unikcrsily of...8b. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGAN17AT ION (If applicable ) I N00014-904J-1 148 tr. AIIRSS (City, 51ni-w.aid ZIP...potential bioelectronic, optical and protein structure research applications . 1 ~ i m rl u l~=iml~lmll emmlllillm Lynne A. Samuelson et al. Introduction Two
López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio
2010-07-01
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.
Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie
2013-12-01
Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1. Copyright © 2013 Elsevier Inc. All rights reserved.
Identification and functional expression of ZIP1 transporter protein in Triticum dicoccoides
USDA-ARS?s Scientific Manuscript database
Zinc (Zn) deficiency is a common problem, especially in cereal-growing areas, leading to severe decreases in grain yield and nutritional quality. Among the cereal species, durum wheat is the most sensitive crop to Zn deficiency. One major reason for this high sensitivity of durum wheat is its poor ...
A modified detector concept for SuperCDMS: The HiZIP and its charge performance
NASA Astrophysics Data System (ADS)
Page, Kedar Mohan
SuperCDMS is a leading direct dark matter search experiment which uses solid state detectors (Ge crystals) at milliKelvin temperatures to look for nuclear recoils caused by dark matter interactions in the detector. 'Weakly Interacting Massive Particles' (WIMPs) are the most favoured dark matter candidate particles. SuperCDMS, like many other direct dark matter search experiments, primarily looks for WIMPs. The measurement of both the ionization and the lattice vibration (phonon) signals from an interaction in the detector allow it to discriminate against electron recoils which are the main source of background for WIMP detection. SuperCDMS currently operates about 9 kgs worth of germanium detectors at the Soudan underground lab in northern Minnesota. In its next phase, SuperCDMS SNOLAB, it plans to use 100-200 kg of target mass (Ge) which would allow it to probe more of the interesting and unexplored parameter space for WIMPs predicted by theoretical models. The SuperCDMS Queen's Test Facility is a detector testing facility which is intended to serve detector testing and detector research and development purposes for the SuperCDMS experiment. A modified detector called the 'HiZIP' (Half-iZIP), which is reduced in complexity in comparison to the currently used iZIP (interleaved Z-sensitive Ionization and Phonon mediated) detectors, is studied in this thesis. The HiZIP detector design also serves to discriminate against background from multiple scatter events occurring close to the surfaces in a single detector. Studies carried out to compare the surface event leakage in the HiZIP detector using limited information from iZIP data taken at SuperCDMS test facility at UC Berkley produce a highly conservative upper limit of 5 out of 10,000 events at 90% confidence level. This upper limit is the best among many different HiZIP configurations that were investigated and is comparable to the upper limit calculated for an iZIP detector in the same way using the same data. A real HiZIP device operated at Queen's Test Facility produced an exposure limited 90% upper limit of about 1 in 100 events for surface event leakage. The data used in these studies contain true nuclear recoil events from cosmogenic and ambient neutrons. This background was not subtracted in the calculation of the upper limits stated above and hence they are highly conservative. A surface event source was produced by depositing lead-210 from radon exposure onto a copper plate. This source was then used to take data for a surface event discrimination study of the HiZIP detector operated at Queen's Test Facility. A study of the contribution of the noise from capacitive crosstalk between charge sensors in a HiZIP detector configuration was investigated, confirming the expectation that no significant drop in performance is to be expected due to this effect.
Muñiz García, María Noelia; Giammaria, Verónica; Grandellis, Carolina; Téllez-Iñón, María Teresa; Ulloa, Rita María; Capiati, Daniela Andrea
2012-04-01
ABF/AREB bZIP transcription factors mediate plant abiotic stress responses by regulating the expression of stress-related genes. These proteins bind to the abscisic acid (ABA)-responsive element (ABRE), which is the major cis-acting regulatory sequence in ABA-dependent gene expression. In an effort to understand the molecular mechanisms of abiotic stress resistance in cultivated potato (Solanum tuberosum L.), we have cloned and characterized an ABF/AREB-like transcription factor from potato, named StABF1. The predicted protein shares 45-57% identity with A. thaliana ABFs proteins and 96% identity with the S. lycopersicum SlAREB1 and presents all of the distinctive features of ABF/AREB transcription factors. Furthermore, StABF1 is able to bind to the ABRE in vitro. StABF1 gene is induced in response to ABA, drought, salt stress and cold, suggesting that it might be a key regulator of ABA-dependent stress signaling pathways in cultivated potato. StABF1 is phosphorylated in response to ABA and salt stress in a calcium-dependent manner, and we have identified a potato CDPK isoform (StCDPK2) that phosphorylates StABF1 in vitro. Interestingly, StABF1 expression is increased during tuber development and by tuber-inducing conditions (high sucrose/nitrogen ratio) in leaves. We also found that StABF1 calcium-dependent phosphorylation is stimulated by tuber-inducing conditions and inhibited by gibberellic acid, which inhibits tuberization.
Dissection of Ire1 Functions Reveals Stress Response Mechanisms Uniquely Evolved in Candida glabrata
Miyazaki, Taiga; Nakayama, Hironobu; Nagayoshi, Yohsuke; Kakeya, Hiroshi; Kohno, Shigeru
2013-01-01
Proper protein folding in the endoplasmic reticulum (ER) is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR), is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata. PMID:23382685
2011-01-01
Background Transcription factors (TFs) play a central role in regulating gene expression by interacting with cis-regulatory DNA elements associated with their target genes. Recent surveys have examined the DNA binding specificities of most Saccharomyces cerevisiae TFs, but a comprehensive evaluation of their data has been lacking. Results We analyzed in vitro and in vivo TF-DNA binding data reported in previous large-scale studies to generate a comprehensive, curated resource of DNA binding specificity data for all characterized S. cerevisiae TFs. Our collection comprises DNA binding site motifs and comprehensive in vitro DNA binding specificity data for all possible 8-bp sequences. Investigation of the DNA binding specificities within the basic leucine zipper (bZIP) and VHT1 regulator (VHR) TF families revealed unexpected plasticity in TF-DNA recognition: intriguingly, the VHR TFs, newly characterized by protein binding microarrays in this study, recognize bZIP-like DNA motifs, while the bZIP TF Hac1 recognizes a motif highly similar to the canonical E-box motif of basic helix-loop-helix (bHLH) TFs. We identified several TFs with distinct primary and secondary motifs, which might be associated with different regulatory functions. Finally, integrated analysis of in vivo TF binding data with protein binding microarray data lends further support for indirect DNA binding in vivo by sequence-specific TFs. Conclusions The comprehensive data in this curated collection allow for more accurate analyses of regulatory TF-DNA interactions, in-depth structural studies of TF-DNA specificity determinants, and future experimental investigations of the TFs' predicted target genes and regulatory roles. PMID:22189060
A role for the Drosophila zinc transporter Zip88E in protecting against dietary zinc toxicity.
Richards, Christopher D; Warr, Coral G; Burke, Richard
2017-01-01
Zinc absorption in animals is thought to be regulated in a local, cell autonomous manner with intestinal cells responding to dietary zinc content. The Drosophila zinc transporter Zip88E shows strong sequence similarity to Zips 42C.1, 42C.2 and 89B as well as mammalian Zips 1, 2 and 3, suggesting that it may act in concert with the apically-localised Drosophila zinc uptake transporters to facilitate dietary zinc absorption by importing ions into the midgut enterocytes. However, the functional characterisation of Zip88E presented here indicates that Zip88E may instead play a role in detecting and responding to zinc toxicity. Larvae homozygous for a null Zip88E allele are viable yet display heightened sensitivity to elevated levels of dietary zinc. This decreased zinc tolerance is accompanied by an overall decrease in Metallothionein B transcription throughout the larval midgut. A Zip88E reporter gene is expressed only in the salivary glands, a handful of enteroendocrine cells at the boundary between the anterior and middle midgut regions, and in two parallel strips of sensory cell projections connecting to the larval ventral ganglion. Zip88E expression solely in this restricted subset of cells is sufficient to rescue the Zip88E mutant phenotype. Together, our data suggest that Zip88E may be functioning in a small subset of cells to detect excessive zinc levels and induce a systemic response to reduce dietary zinc absorption and hence protect against toxicity.
Doidy, Joan; Li, Ying; Neymotin, Benjamin; Edwards, Molly B; Varala, Kranthi; Gresham, David; Coruzzi, Gloria M
2016-02-03
Dynamic transcriptional regulation is critical for an organism's response to environmental signals and yet remains elusive to capture. Such transcriptional regulation is mediated by master transcription factors (TF) that control large gene regulatory networks. Recently, we described a dynamic mode of TF regulation named "hit-and-run". This model proposes that master TF can interact transiently with a set of targets, but the transcription of these transient targets continues after the TF dissociation from the target promoter. However, experimental evidence validating active transcription of the transient TF-targets is still lacking. Here, we show that active transcription continues after transient TF-target interactions by tracking de novo synthesis of RNAs made in response to TF nuclear import. To do this, we introduced an affinity-labeled 4-thiouracil (4tU) nucleobase to specifically isolate newly synthesized transcripts following conditional TF nuclear import. Thus, we extended the TARGET system (Transient Assay Reporting Genome-wide Effects of Transcription factors) to include 4tU-labeling and named this new technology TARGET-tU. Our proof-of-principle example is the master TF Basic Leucine Zipper 1 (bZIP1), a central integrator of metabolic signaling in plants. Using TARGET-tU, we captured newly synthesized mRNAs made in response to bZIP1 nuclear import at a time when bZIP1 is no longer detectably bound to its target. Thus, the analysis of de novo transcripomics demonstrates that bZIP1 may act as a catalyst TF to initiate a transcriptional complex ("hit"), after which active transcription by RNA polymerase continues without the TF being bound to the gene promoter ("run"). Our findings provide experimental proof for active transcription of transient TF-targets supporting a "hit-and-run" mode of action. This dynamic regulatory model allows a master TF to catalytically propagate rapid and broad transcriptional responses to changes in environment. Thus, the functional read-out of de novo transcripts produced by transient TF-target interactions allowed us to capture new models for genome-wide transcriptional control.
Cabello, Julieta V; Arce, Agustín L; Chan, Raquel L
2012-01-01
Plants deal with cold temperatures via different signal transduction pathways. The HD-Zip I homologous transcription factors HaHB1 from sunflower and AtHB13 from Arabidopsis were identified as playing a key role in such cold response. The expression patterns of both genes were analyzed indicating an up-regulation by low temperatures. When these genes were constitutively expressed in Arabidopsis, the transgenic plants showed similar phenotypes including cell membrane stabilization under freezing treatments and cold tolerance. An exploratory transcriptomic analysis of HaHB1 transgenic plants indicated that several transcripts encoding glucanases and chitinases were induced. Moreover, under freezing conditions some proteins accumulated in HaHB1 plants apoplasts and these extracts exerted antifreeze activity in vitro. Three genes encoding two glucanases and a chitinase were overexpressed in Arabidopsis and these plants were able to tolerate freezing temperatures. All the obtained transgenic plants exhibited cell membrane stabilization after a short freezing treatment. Finally, HaHB1 and AtHB13 were used to transiently transform sunflower and soybean leading to the up-regulation of HaHB1/AtHB13-target homologues thus indicating the conservation of cold response pathways. We propose that HaHB1 and AtHB13 are involved in plant cold tolerance via the induction of proteins able to stabilize cell membranes and inhibit ice growth. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Overlapping ETS and CRE Motifs (G/CCGGAAGTGACGTCA) Preferentially Bound by GABPα and CREB Proteins
Chatterjee, Raghunath; Zhao, Jianfei; He, Ximiao; Shlyakhtenko, Andrey; Mann, Ishminder; Waterfall, Joshua J.; Meltzer, Paul; Sathyanarayana, B. K.; FitzGerald, Peter C.; Vinson, Charles
2012-01-01
Previously, we identified 8-bps long DNA sequences (8-mers) that localize in human proximal promoters and grouped them into known transcription factor binding sites (TFBS). We now examine split 8-mers consisting of two 4-mers separated by 1-bp to 30-bps (X4-N1-30-X4) to identify pairs of TFBS that localize in proximal promoters at a precise distance. These include two overlapping TFBS: the ETS⇔ETS motif (C/GCCGGAAGCGGAA) and the ETS⇔CRE motif (C/GCGGAAGTGACGTCAC). The nucleotides in bold are part of both TFBS. Molecular modeling shows that the ETS⇔CRE motif can be bound simultaneously by both the ETS and the B-ZIP domains without protein-protein clashes. The electrophoretic mobility shift assay (EMSA) shows that the ETS protein GABPα and the B-ZIP protein CREB preferentially bind to the ETS⇔CRE motif only when the two TFBS overlap precisely. In contrast, the ETS domain of ETV5 and CREB interfere with each other for binding the ETS⇔CRE. The 11-mer (CGGAAGTGACG), the conserved part of the ETS⇔CRE motif, occurs 226 times in the human genome and 83% are in known regulatory regions. In vivo GABPα and CREB ChIP-seq peaks identified the ETS⇔CRE as the most enriched motif occurring in promoters of genes involved in mRNA processing, cellular catabolic processes, and stress response, suggesting that a specific class of genes is regulated by this composite motif. PMID:23050235
Reassessment of the transport mechanism of the human zinc transporter SLC39A2.
Franz, Marie Christine; Pujol-Gimenez, Jonai; Montalbetti, Nicolas; Fernandez-Tenorio, Miguel; DeGrado, Timothy R; Niggli, Ernst; Romero, Michael F; Hediger, Matthias A
2018-05-23
The human zinc transporter SLC39A2, also known as ZIP2, was shown to mediate zinc transport that could be inhibited at pH values below 7.0 and stimulated by HCO3-, suggesting a Zn2+/HCO3- cotransport mechanism (1). In contrast, recent experiments in our laboratory indicated that the functional activity of ZIP2 increases at acidic pH (2). The present study was therefore designed to reexamine the findings on the pH-dependence and to extend the functional characterization of ZIP2. Our current results show that ZIP2-mediated transport is modulated by extracellular pH, but independent of the H+ driving force. Also, in our experiments, ZIP2-mediated transport is not modulated by extracellular HCO3-. Moreover, high extracellular [K+], which induces depolarization, inhibited ZIP2-mediated transport, indicating that the transport mechanism is voltage-dependent. We also show that ZIP2-mediates the uptake of Cd2+ (Km~ 1.57 µM) in a pH-dependent manner (KH+ of ~66 nM). Cd2+ transport is inhibited by extracellular [Zn2+] (IC50~ 0.32 µM), [Cu2+] (IC50~ 1.81 µM) and to a lower extend by [Co2+], but not by [Mn2+] or [Ba2+]. Fe2+ is not transported by ZIP2. Accordingly, the substrate selectivity of ZIP2 decreases in the order Zn2+ > Cd2+ ≥ Cu2+ > Co2+. Altogether, we propose that ZIP2 is a facilitated divalent metal ion transporter that can be modulated by extracellular pH and membrane potential. Given that ZIP2 expression has been reported in acidic environments (3-5), we suggest that the herein described H+-mediated regulatory mechanism might be important to determine the velocity and direction of the transport process.
Gauthier, Nicole A.; Karki, Shakun; Olley, Bryony J.; Thomas, W. Kelly
2008-01-01
A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 µmol Zn/L) in cell culture and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression, and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2), and Zip1 (SLC39A1). Zinc release by cells of the BBB model was significantly increased after 12–24 h of exposure, but decreased back to control levels after 48–96 h, as indicated by transport across the BBB from both the ablumenal (brain) and lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and ablumenal directions within 12–24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB’s response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cell’s capacity to sequester zinc with additional MT and increase zinc export with the ZnT-1 protein. But, the longer term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and maintain brain zinc homeostasis. PMID:18061429
Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach.
Zhang, C H; Zhang, B B; Ma, R J; Yu, M L; Guo, S L; Guo, L
2015-10-30
MicroRNA166 (miR166) is known to have highly conserved targets that encode proteins of the class III homeodomain-leucine zipper (HD-ZIP III) family, in a broad range of plant species. To further understand the relationship between HD-ZIP III genes and miR166, four HD-ZIP III family genes (PpHB14, PpHB15, PpHB8, and PpREV) were isolated from peach (Prunus persica) tissue and characterized. Spatio-temporal expression profiles of the genes were analyzed. Genes of the peach HD-ZIP III family were predicted to encode five conserved domains. Deduced amino acid sequences and tertiary structures of the four peach HD-ZIP III genes were highly conserved, with corresponding genes in Arabidopsis thaliana. The expression level of four targets displayed the opposite trend to that of miR166 throughout fruit development, with the exception of PpHB14 from 35 to 55 days after full bloom (DAFB). This finding indicates that miR166 may negatively regulate its four targets throughout fruit development. As for leaf and phloem, the same trend in expression level was observed between four targets and miR166 from 75 to 105 DAFB. However, the opposite trend was observed for the transcript level between four targets and miR166 from 35 to 55 DAFB. miRNA166 may negatively regulate four targets in some but not all developmental stages for a given tissue. The four genes studied were observed to have, exactly or generally, the same change tendency as individual tissue development, a finding that suggests genes of the HD-ZIP III family in peach may have complementary or cooperative functions in various tissues.
Jobarteh, Modou Lamin; McArdle, Harry J; Holtrop, Grietje; Sise, Ebrima A; Prentice, Andrew M; Moore, Sophie E
2017-07-01
Background: The role of the placenta in regulating micronutrient transport in response to maternal status is poorly understood. Objective: We investigated the effect of prenatal nutritional supplementation on the regulation of placental iron and zinc transport. Methods: In a randomized trial in rural Gambia [ENID (Early Nutrition and Immune Development)], pregnant women were allocated to 1 of 4 nutritional intervention arms: 1 ) iron and folic acid (FeFol) tablets (FeFol group); 2 ) multiple micronutrient (MMN) tablets (MMN group); 3 ) protein energy (PE) as a lipid-based nutrient supplement (LNS; PE group); and 4 ) PE and MMN (PE+MMN group) as LNS. All arms included iron (60 mg/d) and folic acid (400 μg/d). The MMN and PE+MMN arms included 30 mg supplemental Zn/d. In a subgroup of ∼300 mother-infant pairs, we measured maternal iron status, mRNA levels of genes encoding for placental iron and zinc transport proteins, and cord blood iron levels. Results: Maternal plasma iron concentration in late pregnancy was 45% and 78% lower in the PE and PE+MMN groups compared to the FeFol and MMN groups, respectively ( P < 0.001). The mRNA levels of the placental iron uptake protein transferrin receptor 1 were 30-49% higher in the PE and PE+MMN arms than in the FeFol arm ( P < 0.031), and also higher in the PE+MMN arm (29%; P = 0.042) than in the MMN arm. Ferritin in infant cord blood was 18-22% lower in the LNS groups ( P < 0.024). Zinc supplementation in the MMN arm was associated with higher maternal plasma zinc concentrations (10% increase; P < 0.001) than in other intervention arms. mRNA levels for intracellular zinc-uptake proteins, in this case zrt, irt-like protein (ZIP) 4 and ZIP8, were 96-205% lower in the PE+MMN arm than in the intervention arms without added zinc ( P < 0.025). Furthermore, mRNA expression of ZIP1 was 85% lower in the PE+MMN group than in the PE group ( P = 0.003). Conclusion: In conditions of low maternal iron and in the absence of supplemental zinc, the placenta upregulates the gene expression of iron and zinc uptake proteins, presumably in order to meet fetal demands in the face of low maternal supply. The ENID trial was registered at www.controlled-trials.com as ISRCTN49285450.
López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Di Pietro, Antonio
2010-01-01
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source–independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the ΔmeaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi. PMID:20639450
Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K
2001-04-01
Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.
Analysis of Gene Regulatory Networks of Maize in Response to Nitrogen.
Jiang, Lu; Ball, Graham; Hodgman, Charlie; Coules, Anne; Zhao, Han; Lu, Chungui
2018-03-08
Nitrogen (N) fertilizer has a major influence on the yield and quality. Understanding and optimising the response of crop plants to nitrogen fertilizer usage is of central importance in enhancing food security and agricultural sustainability. In this study, the analysis of gene regulatory networks reveals multiple genes and biological processes in response to N. Two microarray studies have been used to infer components of the nitrogen-response network. Since they used different array technologies, a map linking the two probe sets to the maize B73 reference genome has been generated to allow comparison. Putative Arabidopsis homologues of maize genes were used to query the Biological General Repository for Interaction Datasets (BioGRID) network, which yielded the potential involvement of three transcription factors (TFs) (GLK5, MADS64 and bZIP108) and a Calcium-dependent protein kinase. An Artificial Neural Network was used to identify influential genes and retrieved bZIP108 and WRKY36 as significant TFs in both microarray studies, along with genes for Asparagine Synthetase, a dual-specific protein kinase and a protein phosphatase. The output from one study also suggested roles for microRNA (miRNA) 399b and Nin-like Protein 15 (NLP15). Co-expression-network analysis of TFs with closely related profiles to known Nitrate-responsive genes identified GLK5, GLK8 and NLP15 as candidate regulators of genes repressed under low Nitrogen conditions, while bZIP108 might play a role in gene activation.
Kim, Gyuyoup; Shin, Ki-Hyuk; Pae, Eung-Kwon
2016-12-13
Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers-particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases.
Regulation of Neurotransmitter Responses in the Central Nervous System
1990-02-05
A~~ C-DSP 6C. ADORtESS tCIY State ad lip CodeA 7b. ADDRESS IYit. Stele end ZIP COO) ~ AJ C 6200 Freeport Centre Boiling Air Force Base P .A1...considered binding (Table 2). significantly different for a p value of :!0.05. Protein concentrations were determined using reagent kits from Bio -Rad (Richmond
Pauli, Wolfgang M; Clark, Alexandra D; Guenther, Heidi J; O'Reilly, Randall C; Rudy, Jerry W
2012-06-20
Evidence suggests that two regions of the striatum contribute differential support to instrumental response selection. The dorsomedial striatum (DMS) is thought to support expectancy-mediated actions, and the dorsolateral striatum (DLS) is thought to support habits. Currently it is unclear whether these regions store task-relevant information or just coordinate the learning and retention of these solutions by other brain regions. To address this issue, we developed a two-lever concurrent variable-interval reinforcement operant conditioning task and used it to assess the trained rat's sensitivity to contingency shifts. Consistent with the view that these two regions make different contributions to actions and habits, injecting the NMDA antagonist DL-AP5 into the DMS just prior to the shift impaired the rat's performance but enhanced performance when injected into the DLS. To determine if these regions support memory content, we first trained rats on a biased concurrent schedule (Lever 1: VI 40" and Lever 2: VI 10"). With the intent of "erasing" the memory content stored in striatum, after this training we inhibited the putative memory-maintenance protein kinase C isozyme protein kinase Mζ (PKMζ). Infusing zeta inhibitory peptide (ZIP) into the DLS enhanced the rat's ability to adapt to the contingency shift 2 d later, whereas injecting it into the DMS had the opposite effect. Infusing GluR2(3Y) into the DMS 1 h before ZIP infusions prevented ZIP from impairing the rat's sensitivity to the contingency shift. These results support the hypothesis that the DMS stores information needed to support actions and the DLS stores information needed to support habits.
Hales, Jena B.; Ocampo, Amber C.; Broadbent, Nicola J.; Clark, Robert E.
2015-01-01
Spatial memory in rodents can be erased following the infusion of zeta inhibitory peptide (ZIP) into the dorsal hippocampus via indwelling guide cannulas. It is believed that ZIP impairs spatial memory by reversing established late-phase long-term potentiation (LTP). However, it is unclear whether other forms of hippocampus-dependent memory, such as recognition memory, are also supported by hippocampal LTP. In the current study, we tested recognition memory in rats following hippocampal ZIP infusion. In order to combat the limited targeting of infusions via cannula, we implemented a stereotaxic approach for infusing ZIP throughout the dorsal, intermediate, and ventral hippocampus. Rats infused with ZIP 3–7 days after training on the novel object recognition task exhibited impaired object recognition memory compared to control rats (those infused with aCSF). In contrast, rats infused with ZIP 1 month after training performed similar to control rats. The ability to form new memories after ZIP infusions remained intact. We suggest that enhanced recognition memory for recent events is supported by hippocampal LTP, which can be reversed by hippocampal ZIP infusion. PMID:26380123
Knockdown of Zinc Transporter ZIP5 by RNA Interference Inhibits Esophageal Cancer Growth In Vivo.
Li, Qian; Jin, Jing; Liu, Jianghui; Wang, Liqun; He, Yutong
2016-01-01
We recently found that SLC39A5 (ZIP5), a zinc transporter, is overexpressed in esophageal cancer. Downregulation of ZIP5 inhibited the proliferation, migration, and invasion of the esophageal cancer cell line KYSE170 in vitro. In this study, we found that downregulation of SLC39A5 (ZIP5) by interference resulted in a significant reduction in esophageal cancer tumor volume and weight in vivo. COX2 (cyclooxygenase 2) expression was decreased and E-cadherin expression was increased in the KYSE170K xenografts, which was caused by the downregulation of ZIP5. However, we did not find that the downregulation of ZIP5 caused a change in the relative expressions of cyclin D1, VEGF (vascular endothelial growth factor), MMP9 (matrix metalloprotein 9), and Bcl-2 (B-cell lymphoma/leukmia-2) mRNA or an alteration in the average level of zinc in the peripheral blood and xenografts in vivo. Collectively, these findings indicate that knocking down ZIP5 by small interfering RNA (siRNA) might be a novel treatment strategy for esophageal cancer with ZIP5 overexpression.
Ortiz, Cristina; Casanova, Mercedes; Palacios, Pilar
2017-01-01
Assembly of the proto-ring, formed by the essential FtsZ, FtsA and ZipA proteins, and its progression into a divisome, are essential events for Escherichia coli division. ZapC is a cytoplasmic protein that belongs to a group of non-essential components that assist FtsZ during proto-ring assembly. Any overproduction of these proteins leads to faulty FtsZ-rings, resulting in a cell division block. We show that ZapC overproduction can be counteracted by an excess of the ZipA-independent hypermorph FtsA* mutant, but not by similar amounts of wild type FtsA+. An excess of FtsA+ allowed regular spacing of the ZapC-blocked FtsZ-rings, but failed to promote recruitment of the late-assembling proteins FtsQ, FtsK and FtsN and therefore, to activate constriction. In contrast, overproduction of FtsA*, besides allowing correct FtsZ-ring localization at midcell, restored the ability of FtsQ, FtsK and FtsN to be incorporated into active divisomes. PMID:28877250
Zhao, Yang; Zhou, Yuqiong; Jiang, Haiyang; Li, Xiaoyu; Gan, Defang; Peng, Xiaojian; Zhu, Suwen; Cheng, Beijiu
2011-01-01
Background Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). Methods and Findings In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. Conclusions Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development. PMID:22164299
Zhao, Yang; Zhou, Yuqiong; Jiang, Haiyang; Li, Xiaoyu; Gan, Defang; Peng, Xiaojian; Zhu, Suwen; Cheng, Beijiu
2011-01-01
Members of the homeodomain-leucine zipper (HD-Zip) gene family encode transcription factors that are unique to plants and have diverse functions in plant growth and development such as various stress responses, organ formation and vascular development. Although systematic characterization of this family has been carried out in Arabidopsis and rice, little is known about HD-Zip genes in maize (Zea mays L.). In this study, we described the identification and structural characterization of HD-Zip genes in the maize genome. A complete set of 55 HD-Zip genes (Zmhdz1-55) were identified in the maize genome using Blast search tools and categorized into four classes (HD-Zip I-IV) based on phylogeny. Chromosomal location of these genes revealed that they are distributed unevenly across all 10 chromosomes. Segmental duplication contributed largely to the expansion of the maize HD-ZIP gene family, while tandem duplication was only responsible for the amplification of the HD-Zip II genes. Furthermore, most of the maize HD-Zip I genes were found to contain an overabundance of stress-related cis-elements in their promoter sequences. The expression levels of the 17 HD-Zip I genes under drought stress were also investigated by quantitative real-time PCR (qRT-PCR). All of the 17 maize HD-ZIP I genes were found to be regulated by drought stress, and the duplicated genes within a sister pair exhibited the similar expression patterns, suggesting their conserved functions during the process of evolution. Our results reveal a comprehensive overview of the maize HD-Zip gene family and provide the first step towards the selection of Zmhdz genes for cloning and functional research to uncover their roles in maize growth and development.
Gachon, F; Thebault, S; Peleraux, A; Devaux, C; Mesnard, J M
2000-05-01
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation.
Gachon, Frederic; Thebault, Sabine; Peleraux, Annick; Devaux, Christian; Mesnard, Jean-Michel
2000-01-01
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein activates viral transcription through three 21-bp repeats located in the U3 region of the HTLV-1 long terminal repeat and called Tax-responsive elements (TxREs). Each TxRE contains nucleotide sequences corresponding to imperfect cyclic AMP response elements (CRE). In this study, we demonstrate that the bZIP transcriptional factor CREB-2 is able to bind in vitro to the TxREs and that CREB-2 binding to each of the 21-bp motifs is enhanced by Tax. We also demonstrate that Tax can weakly interact with CREB-2 bound to a cellular palindromic CRE motif such as that found in the somatostatin promoter. Mutagenesis of Tax and CREB-2 demonstrates that both N- and C-terminal domains of Tax and the C-terminal region of CREB-2 are required for direct interaction between the two proteins. In addition, the Tax mutant M47, defective for HTLV-1 activation, is unable to form in vitro a ternary complex with CREB-2 and TxRE. In agreement with recent results suggesting that Tax can recruit the coactivator CREB-binding protein (CBP) on the HTLV-1 promoter, we provide evidence that Tax, CREB-2, and CBP are capable of cooperating to stimulate viral transcription. Taken together, our data highlight the major role played by CREB-2 in Tax-mediated transactivation. PMID:10779337
Tuncay, Erkan; Bitirim, C Verda; Olgar, Yusuf; Durak, Aysegul; Rutter, Guy A; Turan, Belma
2018-01-04
Functional contribution of S(E)R-mitochondria coupling to normal cellular processes is crucial and any alteration in S(E)R-mitochondria axis may be responsible for the onset of diseases. Mitochondrial free Zn 2+ level in cardiomyocytes ([Zn 2+ ] Mit ) is lower comparison to either its cytosolic or S(E)R level under physiological condition. However, there is little information about distribution of Zn 2+ -transporters on mitochondria and role of Zn 2+ -dependent mitochondrial-function associated with [Zn 2+ ] Mit . Since we recently have shown how hyperglycemia (HG)-induced changes in ZIP7 and ZnT7 contribute to Zn 2+ -transport across S(E)R and contribute to S(E)R-stress in the heart, herein, we hypothesized that these transporters can also be localized to mitochondria and affect the S(E)R-mitochondria coupling, and thereby contribute to cellular Zn 2+ -muffling between S(E)R-mitochondria in HG-cells. Mitochondrial localizations of ZIP7 and ZnT7 were demonstrated using fluorescence technique while they were confirmed in isolated mitochondrial fractions using biochemical analysis. Markedly decreased ZIP7 and increased ZnT7 levels were measured in isolated mitochondrial fractions from either HG- or doxorubicin, DOX (as positive control)-treated cardiomyocytes. Significantly increases in [Zn 2+ ] Mit and ROS production levels and depolarized mitochondrial membrane potential were also measured in HG cells. The expression levels of some key proteins, responsible for proper S(E)R-mitochondria coupling such as Mfn-1, Fis-1, OPA1, BAP31, STIM1 and PML in either HG- or DOX-cells were supported our above hypothesis, strongly. Overall, this study provides an important description about the role of ZIP7 and ZnT7, localized to both mitochondria and S(E)R and contribute to cellular Zn 2+ -muffling between cellular-compartments in HG or hypertrophic cardiomyocytes via affecting S(E)R-mitochondria coupling. Any alteration in this axis and/or cellular [Zn 2+ ] may provide new insight for prevention/therapy of HF in diabetes and/or hypertrophy. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling.
Yoshii, Akira; Constantine-Paton, Martha
2014-01-01
Brain-derived neurotrophic factor (BDNF) and its receptor TrkB regulate synaptic plasticity. TrkB triggers three downstream signaling pathways; Phosphatidylinositol 3-kinase (PI3K), Phospholipase Cγ (PLCγ) and Mitogen activated protein kinases/Extracellular signal-regulated kinases (MAPK/ERK). We previously showed two distinct mechanisms whereby BDNF-TrkB pathway controls trafficking of PSD-95, which is the major scaffold at excitatory synapses and is critical for synapse maturation. BDNF activates the PI3K-Akt pathway and regulates synaptic delivery of PSD-95 via vesicular transport (Yoshii and Constantine-Paton, 2007). BDNF-TrkB signaling also triggers PSD-95 palmitoylation and its transport to synapses through the phosphorylation of the palmitoylation enzyme ZDHHC8 by a protein kinase C (PKC; Yoshii etal., 2011). The second study used PKC inhibitors chelerythrine as well as a synthetic zeta inhibitory peptide (ZIP) which was originally designed to block the brain-specific PKC isoform protein kinase Mϖ (PKMϖ). However, recent studies raise concerns about specificity of ZIP. Here, we assessed the contribution of TrkB and its three downstream pathways to the synaptic distribution of endogenous PSD-95 in cultured neurons using chemical and genetic interventions. We confirmed that TrkB, PLC, and PI3K were critical for the postsynaptic distribution of PSD-95. Furthermore, suppression of MAPK/ERK also disrupted PSD-95 expression. Next, we examined the contribution of PKC. While both chelerythrine and ZIP suppressed the postsynaptic localization of PSD-95, RNA interference for PKMϖ did not have a significant effect. This result suggests that the ZIP peptide, widely used as the "specific" PKMϖ antagonist by many investigators may block a PKC variant other than PKMϖ such as PKCλ/ι. Our results indicate that TrkB regulates postsynaptic localization of PSD-95 through all three downstream pathways, but also recommend further work to identify other PKC variants that regulate palmitoylation and synaptic localization of PSD-95.
A credit-card library approach for disrupting protein-protein interactions.
Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D
2006-04-15
Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.
Park, Seong C; Finnell, John T
2012-01-01
In 2009, Indianapolis launched an electronic medical record system within their ambulances1 and started to exchange patient data with the Indiana Network for Patient Care (INPC) This unique system allows EMS personnel to get important information prior to the patient's arrival to the hospital. In this descriptive study, we found EMS personnel requested patient data on 14% of all transports, with a "success" match rate of 46%, and a match "failure" rate of 17%. The three major factors for causing match "failure" were ZIP code 55%, Patient Name 22%, and Birth date 12%. We conclude that the ZIP code matching process needs to be improved by applying a limitation of 5 digits in ZIP code instead of using ZIP+4 code. Non-ZIP code identifiers may be a better choice due to inaccuracies and changes of the ZIP code in a patient's record.
Choi, W-S; Chun, J-S
2017-03-01
Lipocalin-2 (LCN2) is a recently characterized adipokine that is upregulated in chondrocytes treated with pro-inflammatory mediators and in the synovial fluid of osteoarthritis (OA) patients. Here, we explored the in vivo functions of LCN2 in OA cartilage destruction in mice. The expression levels of LCN2 were determined at the mRNA and protein levels in primary cultured mouse chondrocytes and in human and mouse OA cartilage. Experimental OA was induced in wild-type (WT) or Lcn2-knockout (KO) mice by destabilization of the medial meniscus (DMM) or intra-articular (IA) injection of adenoviruses expressing hypoxia-inducible factor (HIF)-2α (Ad-Epas1), ZIP8 (Ad-Zip8), or LCN2 (Ad-Lcn2). The effect of LCN2 overexpression on the cartilage of WT mice was examined by IA injection of Ad-Lcn2. LCN2 mRNA levels in chondrocytes were markedly increased by the pro-inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor-α (TNF-α), and by previously identified catabolic regulators of OA, such as HIF-2α and components of the zinc-ZIP8-MTF1 axis. LCN2 protein levels were also markedly increased in human OA cartilage and cartilage from various experimental mouse models of OA. However, overexpression of LCN2 in chondrocytes did not modulate the expression of cartilage matrix molecules or matrix-degrading enzymes. Furthermore, LCN2 overexpression in mouse cartilage via IA injection of Ad-Lcn2 did not cause OA pathogenesis, and Lcn2 KO mice showed no alteration in DMM-induced OA cartilage destruction. Our observations collectively suggest that upregulation of LCN2 in OA cartilage is not sufficient or necessary for OA cartilage destruction in mice. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Chao, Lily; Marcus-Samuels, Bernice; Mason, Mark M.; Moitra, Jaideep; Vinson, Charles; Arioglu, Elif; Gavrilova, Oksana; Reitman, Marc L.
2000-01-01
There is uncertainty about the site(s) of action of the antidiabetic thiazolidinediones (TZDs). These drugs are agonist ligands of the transcription factor PPARγ, which is abundant in adipose tissue but is normally present at very low levels in liver and muscle. We have studied the effects of TZDs in A-ZIP/F-1 mice, which lack white adipose tissue. The A-ZIP/F-1 phenotype strikingly resembles that of humans with severe lipoatrophic diabetes, including the lack of fat, marked insulin resistance and hyperglycemia, hyperlipidemia, and fatty liver. Rosiglitazone or troglitazone treatment did not reduce glucose or insulin levels, suggesting that white adipose tissue is required for the antidiabetic effects of TZDs. However, TZD treatment was effective in lowering circulating triglycerides and increasing whole body fatty acid oxidation in the A-ZIP/F-1 mice, indicating that this effect occurs via targets other than white adipose tissue. A-ZIP/F-1 mice have markedly increased liver PPARγ mRNA levels, which may be a general property of fatty livers. Rosiglitazone treatment increased the triglyceride content of the steatotic livers of A-ZIP/F-1 and ob/ob mice, but not the “lean” livers of fat-transplanted A-ZIP/F-1 mice. In light of this evidence that rosiglitazone acts differently in steatotic livers, the effects of rosiglitazone, particularly on hepatic triglyceride levels, should be examined in humans with hepatic steatosis. PMID:11086023
Lapham, Rachelle; Lee, Lan-Ying; Tsugama, Daisuke; Lee, Sanghun; Mengiste, Tesfaye; Gelvin, Stanton B.
2018-01-01
The bZIP transcription factor VIP1 interacts with the Agrobacterium virulence protein VirE2, but the role of VIP1 in Agrobacterium-mediated transformation remains controversial. Previously tested vip1-1 mutant plants produce a truncated protein containing the crucial bZIP DNA-binding domain. We generated the CRISPR/Cas mutant vip1-2 that lacks this domain. The transformation susceptibility of vip1-2 and wild-type plants is similar. Because of potential functional redundancy among VIP1 homologs, we tested transgenic lines expressing VIP1 fused to a SRDX repression domain. All VIP1-SRDX transgenic lines showed wild-type levels of transformation, indicating that neither VIP1 nor its homologs are required for Agrobacterium-mediated transformation. Because VIP1 is involved in innate immune response signaling, we tested the susceptibility of vip1 mutant and VIP1-SRDX plants to Pseudomonas syringae and Botrytis cinerea. vip1 mutant and VIP1-SRDX plants show increased susceptibility to B. cinerea but not to P. syringae infection, suggesting a role for VIP1 in B. cinerea, but not in P. syringae, defense signaling. B. cinerea susceptibility is dependent on abscisic acid (ABA) which is also important for abiotic stress responses. The germination of vip1 mutant and VIP1-SRDX seeds is sensitive to exogenous ABA, suggesting a role for VIP1 in response to ABA. vip1 mutant and VIP1-SRDX plants show increased tolerance to growth in salt, indicating a role for VIP1 in response to salt stress. PMID:29946325
Force Identification from Structural Response
1999-12-01
STUDENT AT (If applicable) AFIT/CIA Univ of New Mexico A 6c. ADDRESS (City, State, and ZIP Code ) 7b. ADDRESS (City, State, and ZIP Code ) Wright...ADDRESS (City, State, and ZIP Code ) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (h,,clude...FOR PUBLIC RELEASE IAW AFR 190-1 ERNEST A. HAYGOOD, 1st Lt, USAF Executive Officer, Civilian Institution Programs 17. COSATI CODES 18. SUBJECT TERMS
Li, Xiaolin; Fan, Shuhong; Hu, Wei; Liu, Guoyin; Wei, Yunxie; He, Chaozu; Shi, Haitao
2017-01-01
Basic domain-leucine zipper (bZIP) transcription factor, one type of conserved gene family, plays an important role in plant development and stress responses. Although 77 MebZIPs have been genome-wide identified in cassava, their in vivo roles remain unknown. In this study, we analyzed the expression pattern and the function of two MebZIPs ( MebZIP3 and MebZIP5 ) in response to pathogen infection. Gene expression analysis indicated that MebZIP3 and MebZIP5 were commonly regulated by flg22, Xanthomonas axonopodis pv. manihotis ( Xam ), salicylic acid (SA), and hydrogen peroxide (H 2 O 2 ). Subcellular localization analysis showed that MebZIP3 and MebZIP5 are specifically located in cell nucleus. Through overexpression in tobacco, we found that MebZIP3 and MebZIP5 conferred improved disease resistance against cassava bacterial blight, with more callose depositions. On the contrary, MebZIP3- and MebZIP5 -silenced plants by virus-induced gene silencing (VIGS) showed disease sensitive phenotype, lower transcript levels of defense-related genes and less callose depositions. Taken together, this study highlights the positive role of MebZIP3 and MebZIP5 in disease resistance against cassava bacterial blight for further utilization in genetic improvement of cassava disease resistance.
Shen, Huaishun; Cao, Kaiming; Wang, Xiping
2007-10-19
Two putative Arabidopsis E group bZIP transcript factors, AtbZIP34 and AtbZIP61, are nuclear-localized and their transcriptional activation domain is in their N-terminal region. By searching GenBank, we found other eight plant homologues of AtbZIP34 and AtbZIP61. All of them have a proline residue in the third heptad of zipper region. Yeast two-hybrid assay and EMSA showed that AtbZIP34 and AtbZIP61 could not form homodimer while their mutant forms, AtbZIP34m and AtbZIP61m, which the proline residue was replaced by an alanine residue in the zipper region, could form homodimer and bind G-box element. These results suggest that the conserved proline residue interferes with the homodimer formation. However, both AtbZIP34 and AtbZIP61 could form heterodimers with members of I group and S group transcription factors in which some members involved in vascular development. So we speculate that AtbZIP34 and AtbZIP61 may participate in plant development via interacting with other group bZIP transcription factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xun; Guanga, Gerald P; Wan, Cheng
2012-11-13
MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA–DNA complex. MafA forms base-specific hydrogen bonds with the flanking G –5C –4 andmore » central C 0/G 0 bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse–chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.« less
Pressure Studies of Protein Dynamics.
1987-02-20
applicable ) Office of Naval Research ONR N00014-86-K-0270 kc. ADDRESS (City, State,and ZIP Code) 10. SOURCE OF FUNDING NUMBERS - PROGRAM PROJECT I TASK IWORK...Pressure Studies of Protein Dynamics 12. PERSONAL AUTHOR(S) Hans Frauenfelder and Robert D. Young 13a. TYPE OF REPORT |13b. TIME COVERED 114 DATE OF...relatioihbetween dynamic structure and function of protein protein dyna -bsey observing the phenomena induced by flash photolysis using near ultravfilet
Mm-size bistable zipping dielectric elastomer actuators for integrated microfluidics
NASA Astrophysics Data System (ADS)
Maffli, Luc; Rosset, Samuel; Shea, Herbert R.
2013-04-01
We report on a new structure of Dielectric Elastomer Actuators (DEAs) called zipping DEAs, which have a set of unique characteristics that are a good match for the requirements of electrically-powered integrated microfluidic pumping and/or valving units as well as Braille displays. The zipping DEAs operate by pulling electrostatically an elastomer membrane in contact with the rigid sidewalls of a sloped chamber. In this work, we report on fully functional mm-size zipping DEAs that demonstrate a complete sealing of the chamber sidewalls and a tunable bistable behavior, and compare the measurements with an analytical model. Compared to our first generation of devices, we are able vary the sidewall angle and benefit therefore from more flexibility to study the requirements to make fully functional actuators. In particular, we show that with Nusil CF19 as membrane material (1.2 MPa Young's modulus), it is possible to zip completely 2.3 mm diameter chambers with 15° and 21° sidewalls angle equibiaxially prestretched to λ0=1.12 and 15° chambers with λ0=1.27.
Oh, Sang-Keun; Yoon, Joonseon; Choi, Gyung Ja; Jang, Hyun A; Kwon, Suk-Yoon; Choi, Doil
2013-12-06
Homeodomain-leucine zipper (HD-Zip) family proteins are unique to plants, but little is known about their role in defense responses. CaHB1 is a nuclear factor in peppers, belonging to subfamily II of HD-Zip proteins. Here, we determined the role of CaHB1 in the defense response. CaHB1 expression was induced when pepper plants were challenged with Phytophthora capsici, a plant pathogen to which peppers are susceptible, or environmental stresses such as drought and salt stimuli. CaHB1 was also highly expressed in pepper leaves following application of SA, whereas ethephon and MeJA had a moderate effect. To further investigate the function of CaHB1 in plants, we performed gain-of-function study by overexpression of CaHB1 in tomato. CaHB1-transgenic tomatoes showed significant growth enhancement including increased leaf thickness and enlarged cell size (1.8-fold larger than control plants). Microscopic analysis revealed that leaves from CaHB1-transgenic plants had thicker cell walls and cuticle layers than those from controls. Moreover, CaHB1-transgenic plants displayed enhanced resistance against Phytophthora infestans and increased tolerance to salt stress. Additionally, RT-PCR analysis of CaHB1-transgenic tomatoes revealed constitutive up-regulation of multiple genes involved in plant defense and osmotic stress. Therefore, our findings suggest roles for CaHB1 in development, salt stress, and pathogen defense. Copyright © 2013 Elsevier Inc. All rights reserved.
Methods of affecting nitrogen assimilation in plants
Coruzzi, Gloria; Gutierrez, Rodrigo A.; Nero, Damion C.
2016-10-11
Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.
Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina
2013-01-01
In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.
Gaur, Vikram Singh; Kumar, Lallan; Gupta, Supriya; Jaiswal, J P; Pandey, Dinesh; Kumar, Anil
2018-03-01
In this study, we report the isolation and characterization of the mRNA encoding OPAQUE2 (O2) like TF of finger millet (FM) ( Eleusine coracana) ( EcO2 ). Full-length EcO2 mRNA was isolated using conserved primers designed by aligning O2 mRNAs of different cereals followed by 3' and 5' RACE (Rapid Amplification of cDNA Ends). The assembled full-length EcO2 mRNA was found to contain an ORF of 1248-nt coding the 416 amino acids O2 protein. Domain analysis revealed the presence of the BLZ and bZIP-C domains which is a characteristic feature of O2 proteins. Phylogenetic analysis of EcO2 protein with other bZIP proteins identified using finger millet transcriptome data and O2 proteins of other cereals showed that EcO2 shared high sequence similarity with barley BLZ1 protein. Transcripts of EcO2 were detected in root, stem, leaves, and seed development stages. Furthermore, to investigate nitrogen responsiveness and the role of EcO2 in regulating seed storage protein gene expression, the expression profiles of EcO2 along with an α-prolamin gene were studied during the seed development stages of two FM genotypes (GE-3885 and GE-1437) differing in grain protein content (13.8 and 6.2%, respectively) grown under increasing nitrogen inputs. Compared to GE-1437, the EcO2 was relatively highly expressed during the S2 stage of seed development which further increased as nitrogen input was increased. The Ecα - prolamin gene was strongly induced in the high protein genotype (GE-3885) at all nitrogen inputs. These results indicate the presence of nitrogen responsiveness regulatory elements which might play an important role in accumulating protein in FM genotypes through modulating EcO2 expression by sensing plant nitrogen status.
Haynes, Cole M.; Yang, Yun; Blais, Steven P.; Neubert, Thomas A.; Ron, David
2010-01-01
Summary Genetic analyses previously implicated the matrix-localized protease ClpP in signaling the stress of protein misfolding in the mitochondrial matrix to activate nuclear encoded mitochondrial chaperone genes in C. elegans (UPRmt). Here we report that haf-1, a gene encoding a mitochondria-localized ATP-binding cassette protein, is required for signaling within the UPRmt and for coping with misfolded protein stress. Peptide efflux from isolated mitochondria was ATP-dependent and required HAF-1 and the protease ClpP. Defective UPRmt signaling in the haf-1 deleted worms was associated with failure of the bZIP protein, ZC376.7, to localize to nuclei in worms with perturbed mitochondrial protein folding, whereas zc376.7(RNAi) strongly inhibited the UPRmt. These observations suggest a simple model whereby perturbation of the protein-folding environment in the mitochondrial matrix promotes ClpP-mediated generation of peptides whose haf-1-dependent export from the matrix contributes to UPRmt signaling across the mitochondrial inner membrane. PMID:20188671
Weiste, Christoph; Pedrotti, Lorenzo; Muralidhara, Prathibha; Ljung, Karin; Dröge-Laser, Wolfgang
2017-01-01
Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. PMID:28158182
Weiste, Christoph; Pedrotti, Lorenzo; Selvanayagam, Jebasingh; Muralidhara, Prathibha; Fröschel, Christian; Novák, Ondřej; Ljung, Karin; Hanson, Johannes; Dröge-Laser, Wolfgang
2017-02-01
Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S1 basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants' low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S1 bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S1-bZIP signalling module as gateway to integrate information on the plant's energy status into root meristem control, thereby balancing plant growth and cellular energy resources.
Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity
Coruzzi, Gloria [New York, NY; Gutierrez, Rodrigo A [Santiago, CL; Nero, Damion C [Woodside, NY
2012-04-10
Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.
Datta, Siddhartha A K; Clark, Patrick K; Fan, Lixin; Ma, Buyong; Harvin, Demetria P; Sowder, Raymond C; Nussinov, Ruth; Wang, Yun-Xing; Rein, Alan
2016-02-15
HIV-1 immature particle (virus-like particle [VLP]) assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We previously investigated the role of SP1, a "spacer" between CA and NC, in VLP assembly. We found that small changes in SP1 drastically disrupt assembly and that a peptide representing the sequence around the CA-SP1 junction is helical at high but not low concentrations. We suggested that by virtue of such a concentration-dependent change, this region could act as a molecular switch to activate HIV-1 Gag for VLP assembly. A leucine zipper domain can replace NC in Gag and still lead to the efficient assembly of VLPs. We find that SP1 mutants also disrupt assembly by these Gag-Zip proteins and have now studied a small fragment of this Gag-Zip protein, i.e., the CA-SP1 junction region fused to a leucine zipper. Dimerization of the zipper places SP1 at a high local concentration, even at low total concentrations. In this context, the CA-SP1 junction region spontaneously adopts a helical conformation, and the proteins associate into tetramers. Tetramerization requires residues from both CA and SP1. The data suggest that once this region becomes helical, its propensity to self-associate could contribute to Gag-Gag interactions and thus to particle assembly. There is complete congruence between CA/SP1 sequences that promote tetramerization when fused to zippers and those that permit the proper assembly of full-length Gag; thus, equivalent interactions apparently participate in VLP assembly and in SP1-Zip tetramerization. Assembly of HIV-1 Gag into virus-like particles (VLPs) appears to require an interaction with nucleic acid, but replacement of its principal nucleic acid-binding domain with a dimerizing leucine zipper domain leads to the assembly of RNA-free VLPs. It has not been clear how dimerization triggers assembly. Results here show that the SP1 region spontaneously switches to a helical state when fused to a leucine zipper and that these helical molecules further associate into tetramers, mediated by interactions between hydrophobic faces of the helices. Thus, the correct juxtaposition of the SP1 region makes it "association competent." Residues from both capsid and SP1 contribute to tetramerization, while mutations disrupting proper assembly in Gag also prevent tetramerization. Thus, this region is part of an associating interface within Gag, and its intermolecular interactions evidently help stabilize the immature Gag lattice. These interactions are disrupted by proteolysis of the CA-SP1 junction during virus maturation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Clark, Patrick K.; Fan, Lixin; Ma, Buyong; Harvin, Demetria P.; Sowder, Raymond C.; Nussinov, Ruth; Wang, Yun-Xing
2015-01-01
ABSTRACT HIV-1 immature particle (virus-like particle [VLP]) assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We previously investigated the role of SP1, a “spacer” between CA and NC, in VLP assembly. We found that small changes in SP1 drastically disrupt assembly and that a peptide representing the sequence around the CA-SP1 junction is helical at high but not low concentrations. We suggested that by virtue of such a concentration-dependent change, this region could act as a molecular switch to activate HIV-1 Gag for VLP assembly. A leucine zipper domain can replace NC in Gag and still lead to the efficient assembly of VLPs. We find that SP1 mutants also disrupt assembly by these Gag-Zip proteins and have now studied a small fragment of this Gag-Zip protein, i.e., the CA-SP1 junction region fused to a leucine zipper. Dimerization of the zipper places SP1 at a high local concentration, even at low total concentrations. In this context, the CA-SP1 junction region spontaneously adopts a helical conformation, and the proteins associate into tetramers. Tetramerization requires residues from both CA and SP1. The data suggest that once this region becomes helical, its propensity to self-associate could contribute to Gag-Gag interactions and thus to particle assembly. There is complete congruence between CA/SP1 sequences that promote tetramerization when fused to zippers and those that permit the proper assembly of full-length Gag; thus, equivalent interactions apparently participate in VLP assembly and in SP1-Zip tetramerization. IMPORTANCE Assembly of HIV-1 Gag into virus-like particles (VLPs) appears to require an interaction with nucleic acid, but replacement of its principal nucleic acid-binding domain with a dimerizing leucine zipper domain leads to the assembly of RNA-free VLPs. It has not been clear how dimerization triggers assembly. Results here show that the SP1 region spontaneously switches to a helical state when fused to a leucine zipper and that these helical molecules further associate into tetramers, mediated by interactions between hydrophobic faces of the helices. Thus, the correct juxtaposition of the SP1 region makes it “association competent.” Residues from both capsid and SP1 contribute to tetramerization, while mutations disrupting proper assembly in Gag also prevent tetramerization. Thus, this region is part of an associating interface within Gag, and its intermolecular interactions evidently help stabilize the immature Gag lattice. These interactions are disrupted by proteolysis of the CA-SP1 junction during virus maturation. PMID:26637452
OASIS modulates hypoxia pathway activity to regulate bone angiogenesis
Cui, Min; Kanemoto, Soshi; Cui, Xiang; Kaneko, Masayuki; Asada, Rie; Matsuhisa, Koji; Tanimoto, Keiji; Yoshimoto, Yuki; Shukunami, Chisa; Imaizumi, Kazunori
2015-01-01
OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis−/−) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis−/− osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis−/− mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development. PMID:26558437
The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling
Lee, Sung Ryul; Noh, Su Jin; Pronto, Julius Ryan; Jeong, Yu Jeong; Kim, Hyoung Kyu; Song, In Sung; Xu, Zhelong; Kwon, Hyog Young; Kang, Se Chan; Sohn, Eun-Hwa; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari
2015-01-01
Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn2+) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn2+ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn2+ levels are largely regulated by metallothioneins (MTs), Zn2+ importers (ZIPs), and Zn2+ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn2+. However, these regulatory actions of Zn2+ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn2+ levels, Zn2+-mediated signal transduction, impacts of Zn2+ on ion channels and mitochondrial metabolism, and finally, the implications of Zn2+ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn2+. PMID:26330751
Zhang, Shuang-Shuang; Yang, Hongxing; Ding, Lan; Song, Ze-Ting; Ma, Hong; Chang, Fang
2017-01-01
High temperatures have a great impact on plant reproductive development and subsequent fruit and seed set, but the underlying molecular mechanisms are not well understood. We used transcriptome profiling to investigate the effect of heat stress on reproductive development of Arabidopsis thaliana plants and observed distinct response patterns in vegetative versus reproductive tissues. Exposure to heat stress affected reproductive developmental programs, including early phases of anther/ovule development and meiosis. Also, genes participating in the unfolded protein response (UPR) were enriched in the reproductive tissue-specific genes that were upregulated by heat. Moreover, we found that the UPR-deficient bzip28 bzip60 double mutant was sensitive to heat stresses and had reduced silique length and fertility. Comparison of heat-responsive wild type versus bzip28 bzip60 plants identified 521 genes that were regulated by bZIP28 and bZIP60 upon heat stress during reproductive stages, most of which were noncanonical UPR genes. Chromatin immunoprecipitation coupled with high-throughput sequencing analyses revealed 133 likely direct targets of bZIP28 in Arabidopsis seedlings subjected to heat stress, including 27 genes that were also upregulated by heat during reproductive development. Our results provide important insights into heat responsiveness in Arabidopsis reproductive tissues and demonstrate the protective roles of the UPR for maintaining fertility upon heat stress. PMID:28442596
Lefrançois, Philippe; Rockmill, Beth; Xie, Pingxing; Roeder, G. Shirleen; Snyder, Michael
2016-01-01
During meiosis, chromosomes undergo a homology search in order to locate their homolog to form stable pairs and exchange genetic material. Early in prophase, chromosomes associate in mostly non-homologous pairs, tethered only at their centromeres. This phenomenon, conserved through higher eukaryotes, is termed centromere coupling in budding yeast. Both initiation of recombination and the presence of homologs are dispensable for centromere coupling (occurring in spo11 mutants and haploids induced to undergo meiosis) but the presence of the synaptonemal complex (SC) protein Zip1 is required. The nature and mechanism of coupling have yet to be elucidated. Here we present the first pairwise analysis of centromere coupling in an effort to uncover underlying rules that may exist within these non-homologous interactions. We designed a novel chromosome conformation capture (3C)-based assay to detect all possible interactions between non-homologous yeast centromeres during early meiosis. Using this variant of 3C-qPCR, we found a size-dependent interaction pattern, in which chromosomes assort preferentially with chromosomes of similar sizes, in haploid and diploid spo11 cells, but not in a coupling-defective mutant (spo11 zip1 haploid and diploid yeast). This pattern is also observed in wild-type diploids early in meiosis but disappears as meiosis progresses and homologous chromosomes pair. We found no evidence to support the notion that ancestral centromere homology plays a role in pattern establishment in S. cerevisiae post-genome duplication. Moreover, we found a role for the meiotic bouquet in establishing the size dependence of centromere coupling, as abolishing bouquet (using the bouquet-defective spo11 ndj1 mutant) reduces it. Coupling in spo11 ndj1 rather follows telomere clustering preferences. We propose that a chromosome size preference for centromere coupling helps establish efficient homolog recognition. PMID:27768699
Randhawa, Rohit; Sehgal, Manika; Singh, Tiratha Raj; Duseja, Ajay; Changotra, Harish
2015-05-10
Autophagy is a degradation pathway involving lysosomal machinery for degradation of damaged organelles like the endoplasmic reticulum and mitochondria into their building blocks to maintain homeostasis within the cell. ULK1, a serine/threonine kinase, is conserved across species, from yeasts to mammals, and plays a central role in autophagy pathway. It receives signals from upstream modulators such as TIP60, mTOR and AMPK and relays them to its downstream substrates like Ambra1 and ZIP kinase. The activity of this complex is regulated through protein-protein interactions and post-translational modifications. Applying in silico analysis we identified (i) conserved patterns of ULK1 that showed its evolutionary relationship between the species which were closely related in a family compared to others. (ii) A total of 23 TFBS distributed throughout ULK1 and nuclear factor (erythroid-derived) 2 (NFE2) is of utmost significance because of its high importance rate. NEF2 has already been shown experimentally to play a role in the autophagy pathway. Most of these were of zinc coordinating class and we suggest that this information could be utilized to modulate this pathway by modifying interactions of these TFs with ULK1. (iii) CATTT haplotype was prominently found with frequency 0.774 in the studied population and nsSNPs which could have harmful effect on ULK1 protein and these could further be tested. (iv) A total of 83 phosphorylation sites were identified; 26 are already known and 57 are new that include one at tyrosine residue which could further be studied for its involvement in ULK1 regulation and hence autophagy. Furthermore, 4 palmitoylation sites at positions 426, 927, 1003 and 1049 were also found which could further be studied for protein-protein interactions as well as in trafficking. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigation of a Complex Technique of Smoke Particle Deposition on Scavengers
1987-03-01
Code) 7b. ADDRESS (CiJyjoj~ e and ZIP Co* e ) Rola, O 6401P.O. BoRolla MO 6’~OlResearch Triangle Park, NC 27709 Sa. NAME OF FUNOINGiSPONSO.IING O b. OFFICE...TITLE (Inld~ e Secunty Clew V11111’ non) . IN Investigation of a Co~mplex Tecbnique of Smoke Particle Deposition on Scavengers 12 PERSONAL AUTHOR(S...was authorized under Contract No. DAAK-1l-83-K-0007. This work was started in ’u,; e 1983 and completed in August 1986. The use of trade names or
Differential Expression of Zinc Transporters in Prostate Epithelia of Racial Groups
2012-09-01
of significant genes or proteins in the prostate cancers taken from AAs versus those from European Americans (EAs)?” Because there is a well...may be differentially expressed in AAs and EAs. A study of the genes and proteins which influence the expression of any gene confirmed to be...type of TMA, based on long term clinical follow up was used to address the question of whether hZIP gene and protein expression is associated with
Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian
2016-03-07
The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.
Delatte, Thierry L.; Sedijani, Prapti; Kondou, Youichi; Matsui, Minami; de Jong, Gerhardus J.; Somsen, Govert W.; Wiese-Klinkenberg, Anika; Primavesi, Lucia F.; Paul, Matthew J.; Schluepmann, Henriette
2011-01-01
The strong regulation of plant carbon allocation and growth by trehalose metabolism is important for our understanding of the mechanisms that determine growth and yield, with obvious applications in crop improvement. To gain further insight on the growth arrest by trehalose feeding, we first established that starch-deficient seedlings of the plastidic phosphoglucomutase1 mutant were similarly affected as the wild type on trehalose. Starch accumulation in the source cotyledons, therefore, did not cause starvation and consequent growth arrest in the growing zones. We then screened the FOX collection of Arabidopsis (Arabidopsis thaliana) expressing full-length cDNAs for seedling resistance to 100 mm trehalose. Three independent transgenic lines were identified with dominant segregation of the trehalose resistance trait that overexpress the bZIP11 (for basic region/leucine zipper motif) transcription factor. The resistance of these lines to trehalose could not be explained simply through enhanced trehalase activity or through inhibition of bZIP11 translation. Instead, trehalose-6-phosphate (T6P) accumulation was much increased in bZIP11-overexpressing lines, suggesting that these lines may be insensitive to the effects of T6P. T6P is known to inhibit the central stress-integrating kinase SnRK1 (KIN10) activity. We confirmed that this holds true in extracts from seedlings grown on trehalose, then showed that two independent transgenic lines overexpressing KIN10 were insensitive to trehalose. Moreover, the expression of marker genes known to be jointly controlled by SnRK1 activity and bZIP11 was consistent with low SnRK1 or bZIP11 activity in seedlings on trehalose. These results reveal an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway involving T6P, SnRK1, and bZIP11. PMID:21753116
Chowanadisai, Winyoo
2014-01-01
The zinc transporter ZIP12, which is encoded by the gene slc39a12, has previously been shown to be important for neuronal differentiation in mouse Neuro-2a neuroblastoma cells and primary mouse neurons and necessary for neurulation during Xenopus tropicalis embryogenesis. However, relatively little is known about the biochemical properties, cellular regulation, or the physiological role of this gene. The hypothesis that ZIP12 is a zinc transporter important for nervous system function and development guided a comparative genetics approach to uncover the presence of ZIP12 in various genomes and identify conserved sequences and expression patterns associated with ZIP12. Ortholog detection of slc39a12 was conducted with reciprocal BLAST hits with the amino acid sequence of human ZIP12 in comparison to the human paralog ZIP4 and conserved local synteny between genomes. ZIP12 is present in the genomes of almost all vertebrates examined, from humans and other mammals to most teleost fish. However, ZIP12 appears to be absent from the zebrafish genome. The discrimination of ZIP12 compared to ZIP4 was unsuccessful or inconclusive in other invertebrate chordates and deuterostomes. Splice variation, due to the inclusion or exclusion of a conserved exon, is present in humans, rats, and cows and likely has biological significance. ZIP12 also possesses many putative di-leucine and tyrosine motifs often associated with intracellular trafficking, which may control cellular zinc uptake activity through the localization of ZIP12 within the cell. These findings highlight multiple aspects of ZIP12 at the biochemical, cellular, and physiological levels with likely biological significance. ZIP12 appears to have conserved function as a zinc uptake transporter in vertebrate nervous system development. Consequently, the role of ZIP12 may be an important link to reported congenital malformations in numerous animal models and humans that are caused by zinc deficiency. PMID:25375179
An Assessment of Potential Soviet Responses to Evolving Theater Nuclear Systems.
1987-06-05
ORGANIZATION REPORT NUMIBER(S) 5 MONITORING ORGANIZAODN REPORT NUMNBER(S) 6a NAM OFPERFORMING ORGANIZATION fib OFFICE SYMBOL 7& NAME OF MONITORING... ORGANIZATION 6C. ADDRESS (Oty. State, and ZIP Cod.) 7b ADDRESSC,ty, State, and ZIP Cod.) Vicksburg, MS 39180-0631 Ba AMEOF UNDNG SPOSORNG8b OFFICE SYMBOL...9 PROCuREMENT INSR~UMENT IDENTiCICATtON N%BER ORGANIZATION (If appliabe USAm op fEgnes DN’o~)1 Bk. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF
Availability and variation of publicly reported prescription drug prices.
Kullgren, Jeffrey T; Segel, Joel E; Peterson, Timothy A; Fendrick, A Mark; Singh, Simone
2017-07-01
To examine how often retail prices for prescription drugs are available on state public reporting websites, the variability of these reported prices, and zip code characteristics associated with greater price variation. Searches of state government-operated websites in Michigan, Missouri, New York, and Pennsylvania for retail prices for Advair Diskus (250/50 fluticasone propionate/salmeterol), Lyrica (pregabalin 50 mg), Nasonex (mometasone 50 mcg nasal spray), Spiriva (tiotropium 18 mcg cp-handihaler), Zetia (ezetimibe 10 mg), atorvastatin 20 mg, and metoprolol 50 mg. Data were collected for a 25% random sample of 1330 zip codes. For zip codes with at least 1 pharmacy, we used χ2 tests to compare how often prices were reported. For zip codes with at least 2 reported prices, we used Kruskal-Wallis tests to compare the median difference between the highest and lowest prices and a generalized linear model to identify zip code characteristics associated with greater price variation. Price availability varied significantly (P <.001) across states and drugs, ranging from 52% for metoprolol in Michigan to 1% for atorvastatin in Michigan. Price variation also varied significantly (P <.001) across states and drugs, ranging from a median of $159 for atorvastatin in Pennsylvania to a median of $24 for Nasonex in Missouri. The mean price variation was $52 greater (P <.001) for densely populated zip codes and $60 greater (P <.001) for zip codes with mostly nonwhite residents. Publicly reported information on state prescription drug price websites is often deficient. When prices are reported, there can be significant variation in the prices of prescriptions, which could translate into substantial savings for consumers who pay out-of-pocket for prescription drugs.
1989-06-01
and ZIP Code ) 10 SOURCE OF FUNDING NU MBERS I O KUI PROGRAM PRO ECCT TASKWOKUI E L E M E N T N O . N O .I 1 2 0 N O A 5 A C C E S S I O N N OlI I1 TITLE... source of by-products formation. Generating Data for Mathematical Modeling of Real Vapor Phase Reaction Systems (tremendously speeds multi -level, multi ...SMCC-RI1 6c AD RS(Ciry,. State, and ZIP Code ) SCRRI 7b. ADDRESS (City, State, and ZIP Code ) IA!hrueýýt Proving Ground, MD 21010-54213 a.NMOFFUNI.DNG
Rushing, A W; Hoang, K; Polakowski, N; Lemasson, I
2018-05-16
Adult T-cell leukemia (ATL) is a fatal malignancy of CD4 + T-cells infected with human T-cell leukemia virus type I (HTLV-1). ATL cells often exhibit random gross chromosomal rearrangements that are associated with the induction and improper repair of double-stranded DNA breaks (DSBs). The viral oncoprotein Tax has been reported to impair DSB repair, but is not shown to be consistently expressed throughout all phases of infection. The viral oncoprotein HTLV-1 basic leucine zipper factor (HBZ) is consistently expressed prior to and throughout disease progression, but it is unclear whether it also influences DSB repair. We report that HBZ attenuates DSB repair by non-homologous end joining (NHEJ), in a manner dependent upon the basic leucine zipper (bZIP) domain. HBZ was found to interact with two vital members of the NHEJ core machinery, Ku70 and Ku80, and to be recruited to DSBs in a bZIP-dependent manner in vitro We observed that HBZ expression also resulted in a bZIP-dependent delay in DNA-PK activation following treatment with etoposide. Though Tax is reported to interact with Ku70, we did not find Tax expression to interfere with HBZ:Ku complex formation. However, as Tax was reported to saturate NHEJ, we found this effect masked the attenuation of NHEJ by HBZ. Overall, these data suggest that DSB repair mechanisms are impaired not only by Tax, but also by HBZ, and show that HBZ expression may significantly contribute to the accumulation of chromosomal abnormalities during HTLV-1 mediated oncogenesis. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) infects 15-20 million people worldwide. Approximately 90% of infected individuals are asymptomatic and may remain undiagnosed, increasing the risk that they will unknowingly transmit the virus. About 5% of the HTLV-1 positive population to develop Adult T-cell Leukemia (ATL), a fatal disease that is not highly responsive to treatment. Though ATL development remains poorly understood, two viral proteins, Tax and HBZ, have been implicated in driving disease progression by manipulating host cell signaling and transcriptional pathways. Unlike Tax, HBZ expression is consistently observed in all infected individuals, making it important to elucidate the specific role of HBZ in disease progression. Here, we present evidence that HBZ could promote the accumulation of double-stranded DNA breaks (DSBs) through the attenuation of the non-homologous end joining (NHEJ) repair pathway. This effect may lead to genome instability, ultimately contributing to the development of ATL. Copyright © 2018 American Society for Microbiology.
Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus
Braidy, Nady; Poljak, Anne; Marjo, Chris; Rutlidge, Helen; Rich, Anne; Jugder, Bat-Erdene; Jayasena, Tharusha; Inestrosa, Nibaldo C.; Sachdev, Perminder S.
2017-01-01
The accumulation of redox-active transition metals in the brain and metal dyshomeostasis are thought to be associated with the etiology and pathogenesis of several neurodegenerative diseases, and Alzheimer’s disease (AD) in particular. As well, distinct biometal imaging and role of metal uptake transporters are central to understanding AD pathogenesis and aging but remain elusive, due inappropriate detection methods. We therefore hypothesized that Octodon degus develop neuropathological abnormalities in the distribution of redox active biometals, and this effect may be due to alterations in the expression of lysosomal protein, major Fe/Cu transporters, and selected Zn transporters (ZnTs and ZIPs). Herein, we report the distribution profile of biometals in the aged brain of the endemic Chilean rodent O. degus—a natural model to investigate the role of metals on the onset and progression of AD. Using laser ablation inductively coupled plasma mass spectrometry, our quantitative images of biometals (Fe, Ca, Zn, Cu, and Al) appear significantly elevated in the aged O. degus and show an age-dependent rise. The metals Fe, Ca, Zn, and Cu were specifically enriched in the cortex and hippocampus, which are the regions where amyloid plaques, tau phosphorylation and glial alterations are most commonly reported, whilst Al was enriched in the hippocampus alone. Using whole brain extracts, age-related deregulation of metal trafficking pathways was also observed in O. degus. More specifically, we observed impaired lysosomal function, demonstrated by increased cathepsin D protein expression. An age-related reduction in the expression of subunit B2 of V-ATPase, and significant increases in amyloid beta peptide 42 (Aβ42), and the metal transporter ATP13a2 were also observed. Although the protein expression levels of the zinc transporters, ZnT (1,3,4,6, and 7), and ZIP7,8 and ZIP14 increased in the brain of aged O. degus, ZnT10, decreased. Although no significant age-related change was observed for the major iron/copper regulator IRP2, we did find a significant increase in the expression of DMT1, a major transporter of divalent metal species, 5′-aminolevulinate synthase 2 (ALAS2), and the proto-oncogene, FOS. Collectively, our data indicate that transition metals may be enriched with age in the brains of O. degus, and metal dyshomeostasis in specific brain regions is age-related. PMID:28405187
Madroñal, Noelia; Gruart, Agnès; Sacktor, Todd C.; Delgado-García, José M.
2010-01-01
A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMζ), an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMζ is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide), a PKMζ inhibitor, on eyeblink-conditioned mice were studied. PKMζ inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs) and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMζ inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMζ inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning. PMID:20454458
Engidawork, E; Gulesserian, T; Seidl, R; Cairns, N; Lubec, G
2001-01-01
Down syndrome (DS) is a genetic disease that exhibits significant neuropathological parallels with Alzheimer's disease (AD). One of the features of DS, neuronal loss, has been hypothesized to occur as a result of apoptosis. An increasing number of proteins are implicated in apoptosis and several of them were shown to be altered in AD, however, the knowledge in DS is far from complete. To further substantiate the hypothesis that apoptosis is the underlying mechanism for neuronal loss and contribute towards the current knowledge of apoptosis in DS, we analyzed the expression of apoptosis related proteins in frontal cortex and cerebellum of DS by western blot and ELISA techniques. Quantitative analysis revealed a significant increase in DS frontal (P < 0.0001) and cerebellar (P < 0.05) Bim/BOD (Bcl-2 interacting mediator of cell death/Bcl-2 related ovarian death gene), cerebellar Bcl-2 (P < 0.01) as well as p21 (P < 0.05) levels compared to controls. No significant change was detected in Bax, RAIDD (receptor interacting protein (RIP)-associated ICH-1/CED-3-homologus protein with death domain), ZIP (Zipper interacting protein) kinase and NF-kappaB p65 levels in both regions, although frontal cortex levels of RAIDD, Bcl-2 and p21 levels tended to increase. In addition, a 45 kDa truncated form of NF-kappaB p65 displayed a significant elevation (P < 0.05) in DS cerebellum. No significant correlation had been obtained between postmortem interval and level of the proteins analyzed. With regard to age, it was only NF-kappaB p65 that showed significant correlation (r = -0.8964, P = 0.0155, n = 9) in frontal cortex of controls. These findings provide further evidence that apoptosis indeed accounts for the neuronal loss in DS but Bax and RAIDD do not appear to take part in this process.
Zhang, Shuang-Shuang; Yang, Hongxing; Ding, Lan; Song, Ze-Ting; Ma, Hong; Chang, Fang; Liu, Jian-Xiang
2017-05-01
High temperatures have a great impact on plant reproductive development and subsequent fruit and seed set, but the underlying molecular mechanisms are not well understood. We used transcriptome profiling to investigate the effect of heat stress on reproductive development of Arabidopsis thaliana plants and observed distinct response patterns in vegetative versus reproductive tissues. Exposure to heat stress affected reproductive developmental programs, including early phases of anther/ovule development and meiosis. Also, genes participating in the unfolded protein response (UPR) were enriched in the reproductive tissue-specific genes that were upregulated by heat. Moreover, we found that the UPR-deficient bzip28 bzip60 double mutant was sensitive to heat stresses and had reduced silique length and fertility. Comparison of heat-responsive wild type versus bzip28 bzip60 plants identified 521 genes that were regulated by bZIP28 and bZIP60 upon heat stress during reproductive stages, most of which were noncanonical UPR genes. Chromatin immunoprecipitation coupled with high-throughput sequencing analyses revealed 133 likely direct targets of bZIP28 in Arabidopsis seedlings subjected to heat stress, including 27 genes that were also upregulated by heat during reproductive development. Our results provide important insights into heat responsiveness in Arabidopsis reproductive tissues and demonstrate the protective roles of the UPR for maintaining fertility upon heat stress. © 2017 American Society of Plant Biologists. All rights reserved.
SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants
Mair, Andrea; Pedrotti, Lorenzo; Wurzinger, Bernhard; Anrather, Dorothea; Simeunovic, Andrea; Weiste, Christoph; Valerio, Concetta; Dietrich, Katrin; Kirchler, Tobias; Nägele, Thomas; Vicente Carbajosa, Jesús; Hanson, Johannes; Baena-González, Elena; Chaban, Christina; Weckwerth, Wolfram; Dröge-Laser, Wolfgang; Teige, Markus
2015-01-01
Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites. DOI: http://dx.doi.org/10.7554/eLife.05828.001 PMID:26263501
Enhancing the Pharmacokinetic Profile of Protein-Based Drugs
2014-06-12
policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O...activated carrier. The reactions were deglycosylated, desalted by ZipTip, and submitted for MALDI-TOF MS analysis. The 0 equivalent control reaction
Validity and reliability of the Fitbit Zip as a measure of preschool children’s step count
Sharp, Catherine A; Mackintosh, Kelly A; Erjavec, Mihela; Pascoe, Duncan M; Horne, Pauline J
2017-01-01
Objectives Validation of physical activity measurement tools is essential to determine the relationship between physical activity and health in preschool children, but research to date has not focused on this priority. The aims of this study were to ascertain inter-rater reliability of observer step count, and interdevice reliability and validity of Fitbit Zip accelerometer step counts in preschool children. Methods Fifty-six children aged 3–4 years (29 girls) recruited from 10 nurseries in North Wales, UK, wore two Fitbit Zip accelerometers while performing a timed walking task in their childcare settings. Accelerometers were worn in secure pockets inside a custom-made tabard. Video recordings enabled two observers to independently code the number of steps performed in 3 min by each child during the walking task. Intraclass correlations (ICCs), concordance correlation coefficients, Bland-Altman plots and absolute per cent error were calculated to assess the reliability and validity of the consumer-grade device. Results An excellent ICC was found between the two observer codings (ICC=1.00) and the two Fitbit Zips (ICC=0.91). Concordance between the Fitbit Zips and observer counts was also high (r=0.77), with an acceptable absolute per cent error (6%–7%). Bland-Altman analyses identified a bias for Fitbit 1 of 22.8±19.1 steps with limits of agreement between −14.7 and 60.2 steps, and a bias for Fitbit 2 of 25.2±23.2 steps with limits of agreement between −20.2 and 70.5 steps. Conclusions Fitbit Zip accelerometers are a reliable and valid method of recording preschool children’s step count in a childcare setting. PMID:29081984
Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang
2016-01-01
The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085
Zinc transport by respiratory epithelial cells and interaction with iron homeostasis.
Deng, Zhongping; Dailey, Lisa A; Soukup, Joleen; Stonehuerner, Jacqueline; Richards, Judy D; Callaghan, Kimberly D; Yang, Funmei; Ghio, Andrew J
2009-10-01
Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn(2+) transport interacts with iron homeostasis in these same cells. Zn(2+) uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn(2+) release occurred in the 4 h immediately following cell exposure to ZnSO(4). Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO(4). Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn(2+). Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-alpha, IFN-gamma, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.
1986-09-01
ORGANIZATION Gjeoteehnical Laborator WESGR-M 6c ADDRESS (City, Slate, and ZIP Code ) 7b ADDRESS(City, State. and ZIP Code ) PO Box 631 Vicksburg, MS 39180...of Engineers 8< ADDRESS(City, State, and ZIP Code ) 10 SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT.. ", 1 :, • ; I, - u It ., " ’ ~f...Springfield, VA 22161 17 COSATI CODES 18 SUBJECT TERMS (Continue-On revprse of necessary and identify by block number) " FIELD GROUP SUB GROUP
1987-09-01
Evaluation Commnand &_. ADMASS Coly, 1W~., and ZIP Code ) 7b. ADDRESS (C01y, State, wid ZIP Code ) Dugwiay, Utahi 84022-5000 Aberdeen Proving Ground...Aency_________________________ 9L AoOMS(CRY, 0to, and ZIP Code ) 10. SOURCE OF FUNDING NUMBERS Hazardous Waste Environmental RLsearch Lab PROGRAM PROJECT TASK...CLASSIFICATION 0 UNO.ASSIFIEDAIJNLIMITED 0l SAME AS RPT. 03 OTIC USERS UNCLA.SSIFIED 22a. RAWE OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code ) I
Hayashi, Ayako; Asanuma, Daisuke; Kamiya, Mako; Urano, Yasuteru; Okabe, Shigeo
2016-01-01
Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. Copyright © 2015 Elsevier Ltd. All rights reserved.
1987-02-01
apply here. The primary negative effect of the inclusion of test ports into the package is to increase its size and complexity. In summary, the...FORCE SYSTEMS COMMAND APPROVED FOR PUBLIC RELEMSE DISTRIBUTION UNLIMITED .i ROME AIR DEVELOPMENT CENTER Air Force Systems Command Griffiss Air Force...ORGANIZATION b. OPFICE SYMBOL 7&. NAME OP MONITORING OAGANIZATION 10I11110111blep Rome Air Development Center EEMA 4116 A00101163 (City. Sfte *Ad ZIP C4,40
Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming
2014-12-01
The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.
Berke, Ethan M; Shi, Xun
2009-04-29
Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.
Development of a Run Time Math Library for the 1750A Airborne Microcomputer.
1985-12-01
premiue CWUTLDK Is R: Integer :a 0; 0: Integer :ul; LNMM: UEM; -Compute the Lado (alpii) for J In 0..Ol.K-1) loop Itf 0(14 1)/ 0. 0...ORGANIZATION (If appiicable) * School of Engineering AFIT/ ENC 6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code) Air Force
Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules.
Kiessling, Anke; Sperl, Bianca; Hollis, Angela; Eick, Dirk; Berg, Thorsten
2006-07-01
bZip and bHLHZip protein family members comprise a large fraction of eukaryotic transcription factors and need to bind DNA in order to exert most of their fundamental biological roles. Their binding to DNA requires homo- or heterodimerization via alpha-helical domains, which generally do not contain obvious binding sites for small molecules. We have identified two small molecules, dubbed Mycro1 and Mycro2, which inhibit the protein-protein interactions between the bHLHZip proteins c-Myc and Max. Mycros are the first inhibitors of c-Myc/Max dimerization, which have been demonstrated to inhibit DNA binding of c-Myc with preference over other dimeric transcription factors in vitro. Mycros inhibit c-Myc-dependent proliferation, gene transcription, and oncogenic transformation in the low micromolar concentration range. Our data support the idea that dimeric transcription factors can be druggable even in the absence of obvious small-molecule binding pockets.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... SECURITIES AND EXCHANGE COMMISSION [ File No. 500-1] ZipGlobal Holdings, Inc., Symbollon Pharmaceuticals, Inc., Microholdings US, Inc., ComCam International, Inc., Outfront Companies, Augrid Global... periodic reports since the period ended March 31, 2011. 3. Microholdings US, Inc. is an Oklahoma...
An efficient and extensible approach for compressing phylogenetic trees
2011-01-01
Background Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference. Results On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. Conclusions TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community. PMID:22165819
An efficient and extensible approach for compressing phylogenetic trees.
Matthews, Suzanne J; Williams, Tiffani L
2011-10-18
Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference. On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community.
FtsZ Placement in Nucleoid-Free Bacteria
Pazos, Manuel; Casanova, Mercedes; Palacios, Pilar; Margolin, William; Natale, Paolo; Vicente, Miguel
2014-01-01
We describe the placement of the cytoplasmic FtsZ protein, an essential component of the division septum, in nucleoid-free Escherichia coli maxicells. The absence of the nucleoid is accompanied in maxicells by degradation of the SlmA protein. This protein, together with the nucleoid, prevents the placement of the septum in the regions occupied by the chromosome by a mechanism called nucleoid occlusion (NO). A second septum placement mechanism, the MinCDE system (Min) involving a pole-to-pole oscillation of three proteins, nonetheless remains active in maxicells. Both Min and NO act on the polymerization of FtsZ, preventing its assembly into an FtsZ-ring except at midcell. Our results show that even in the total absence of NO, Min oscillations can direct placement of FtsZ in maxicells. Deletion of the FtsZ carboxyl terminal domain (FtsZ*), a central hub that receives signals from a variety of proteins including MinC, FtsA and ZipA, produces a Min-insensitive form of FtsZ unable to interact with the membrane-anchoring FtsA and ZipA proteins. This protein produces a totally disorganized pattern of FtsZ localization inside the maxicell cytoplasm. In contrast, FtsZ*-VM, an artificially cytoplasmic membrane-anchored variant of FtsZ*, forms helical or repetitive ring structures distributed along the entire length of maxicells even in the absence of NO. These results show that membrane anchoring is needed to organize FtsZ into rings and underscore the role of the C-terminal hub of FtsZ for their correct placement. PMID:24638110
FtsZ placement in nucleoid-free bacteria.
Pazos, Manuel; Casanova, Mercedes; Palacios, Pilar; Margolin, William; Natale, Paolo; Vicente, Miguel
2014-01-01
We describe the placement of the cytoplasmic FtsZ protein, an essential component of the division septum, in nucleoid-free Escherichia coli maxicells. The absence of the nucleoid is accompanied in maxicells by degradation of the SlmA protein. This protein, together with the nucleoid, prevents the placement of the septum in the regions occupied by the chromosome by a mechanism called nucleoid occlusion (NO). A second septum placement mechanism, the MinCDE system (Min) involving a pole-to-pole oscillation of three proteins, nonetheless remains active in maxicells. Both Min and NO act on the polymerization of FtsZ, preventing its assembly into an FtsZ-ring except at midcell. Our results show that even in the total absence of NO, Min oscillations can direct placement of FtsZ in maxicells. Deletion of the FtsZ carboxyl terminal domain (FtsZ*), a central hub that receives signals from a variety of proteins including MinC, FtsA and ZipA, produces a Min-insensitive form of FtsZ unable to interact with the membrane-anchoring FtsA and ZipA proteins. This protein produces a totally disorganized pattern of FtsZ localization inside the maxicell cytoplasm. In contrast, FtsZ*-VM, an artificially cytoplasmic membrane-anchored variant of FtsZ*, forms helical or repetitive ring structures distributed along the entire length of maxicells even in the absence of NO. These results show that membrane anchoring is needed to organize FtsZ into rings and underscore the role of the C-terminal hub of FtsZ for their correct placement.
Repression of transcriptional activity of C/EBPalpha by E2F-dimerization partner complexes.
Zaragoza, Katrin; Bégay, Valérie; Schuetz, Anja; Heinemann, Udo; Leutz, Achim
2010-05-01
The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, keratinocytes, and cells of the lung and placenta. C/EBPalpha transactivates lineage-specific differentiation genes and inhibits proliferation by repressing E2F-regulated genes. The myeloproliferative C/EBPalpha BRM2 mutant serves as a paradigm for recurrent human C-terminal bZIP C/EBPalpha mutations that are involved in acute myeloid leukemogenesis. BRM2 fails to repress E2F and to induce adipogenesis and granulopoiesis. The data presented here show that, independently of pocket proteins, C/EBPalpha interacts with the dimerization partner (DP) of E2F and that C/EBPalpha-E2F/DP interaction prevents both binding of C/EBPalpha to its cognate sites on DNA and transactivation of C/EBP target genes. The BRM2 mutant, in addition, exhibits enhanced interaction with E2F-DP and reduced affinity toward DNA and yet retains transactivation potential and differentiation competence that becomes exposed when E2F/DP levels are low. Our data suggest a tripartite balance between C/EBPalpha, E2F/DP, and pocket proteins in the control of proliferation, differentiation, and tumorigenesis.
Formal Models of Hardware and Their Applications to VLSI Design Automation.
1986-12-24
ORGANIZATION Universitv of Southern’iaplcbe ralifnrni Offico of ’,aval "esearch 6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. Stote and ZIP Code...Di’f-i2C-33-K-O147 8.ADESS IXity, State and ZIP Coda, 10 SOURCE OF FUNDING NODS US fr-," esearch C-f-ice PORM POET TS OKUI 2..Fc 2~1ELEMENT No NO. NO...are classified as belonging to one of six different types. The dimensions of the routing channel are defined as functions of these random variables
Rosenberg Goldstein, Rachel E; Cruz-Cano, Raul; Jiang, Chengsheng; Palmer, Amanda; Blythe, David; Ryan, Patricia; Hogan, Brenna; White, Benjamin; Dunn, John R; Libby, Tanya; Tobin-D'Angelo, Melissa; Huang, Jennifer Y; McGuire, Suzanne; Scherzinger, Karen; Lee, Mei-Ling Ting; Sapkota, Amy R
2016-07-22
Campylobacter is a leading cause of foodborne illness in the United States. Campylobacter infections have been associated with individual risk factors, such as the consumption of poultry and raw milk. Recently, a Maryland-based study identified community socioeconomic and environmental factors that are also associated with campylobacteriosis rates. However, no previous studies have evaluated the association between community risk factors and campylobacteriosis rates across multiple U.S. states. We obtained Campylobacter case data (2004-2010; n = 40,768) from the Foodborne Diseases Active Surveillance Network (FoodNet) and socioeconomic and environmental data from the 2010 Census of Population and Housing, the 2011 American Community Survey, and the 2007 U.S. Census of Agriculture. We linked data by zip code and derived incidence rate ratios using negative binomial regression models. Community socioeconomic and environmental factors were associated with both lower and higher campylobacteriosis rates. Zip codes with higher percentages of African Americans had lower rates of campylobacteriosis (incidence rate ratio [IRR]) = 0.972; 95 % confidence interval (CI) = 0.970,0.974). In Georgia, Maryland, and Tennessee, three leading broiler chicken producing states, zip codes with broiler operations had incidence rates that were 22 % (IRR = 1.22; 95 % CI = 1.03,1.43), 16 % (IRR = 1.16; 95 % CI = 0.99,1.37), and 35 % (IRR = 1.35; 95 % CI = 1.18,1.53) higher, respectively, than those of zip codes without broiler operations. In Minnesota and New York FoodNet counties, two top dairy producing areas, zip codes with dairy operations had significantly higher campylobacteriosis incidence rates (IRR = 1.37; 95 % CI = 1.22, 1.55; IRR = 1.19; 95 % CI = 1.04,1.36). Community socioeconomic and environmental factors are important to consider when evaluating the relationship between possible risk factors and Campylobacter infection.
Tobacco outlet density and converted versus native non-daily cigarette use in a national US sample
Kirchner, Thomas R; Anesetti-Rothermel, Andrew; Bennett, Morgane; Gao, Hong; Carlos, Heather; Scheuermann, Taneisha S; Reitzel, Lorraine R; Ahluwalia, Jasjit S
2017-01-01
Objective Investigate whether non-daily smokers’ (NDS) cigarette price and purchase preferences, recent cessation attempts, and current intentions to quit are associated with the density of the retail cigarette product landscape surrounding their residential address. Participants Cross-sectional assessment of N=904 converted NDS (CNDS). who previously smoked every day, and N=297 native NDS (NNDS) who only smoked non-daily, drawn from a national panel. Outcome measures Kernel density estimation was used to generate a nationwide probability surface of tobacco outlets linked to participants’ residential ZIP code. Hierarchically nested log-linear models were compared to evaluate associations between outlet density, non-daily use patterns, price sensitivity and quit intentions. Results Overall, NDS in ZIP codes with greater outlet density were less likely than NDS in ZIP codes with lower outlet density to hold 6-month quit intentions when they also reported that price affected use patterns (G2=66.1, p<0.001) and purchase locations (G2=85.2, p<0.001). CNDS were more likely than NNDS to reside in ZIP codes with higher outlet density (G2=322.0, p<0.001). Compared with CNDS in ZIP codes with lower outlet density, CNDS in high-density ZIP codes were more likely to report that price influenced the amount they smoke (G2=43.9, p<0.001), and were more likely to look for better prices (G2=59.3, p<0.001). NDS residing in high-density ZIP codes were not more likely to report that price affected their cigarette brand choice compared with those in ZIP codes with lower density. Conclusions This paper provides initial evidence that the point-of-sale cigarette environment may be differentially associated with the maintenance of CNDS versus NNDS patterns. Future research should investigate how tobacco control efforts can be optimised to both promote cessation and curb the rising tide of non-daily smoking in the USA. PMID:26969172
Schuur, Jeremiah D; Baker, Olesya; Freshman, Jaclyn; Wilson, Michael; Cutler, David M
2017-04-01
We determine the number and location of freestanding emergency departments (EDs) across the United States and determine the population characteristics of areas where freestanding EDs are located. We conducted a systematic inventory of US freestanding EDs. For the 3 states with the highest number of freestanding EDs, we linked demographic, insurance, and health services data, using the 5-digit ZIP code corresponding to the freestanding ED's location. To create a comparison nonfreestanding ED group, we matched 187 freestanding EDs to 1,048 nonfreestanding ED ZIP codes on land and population within state. We compared differences in demographic, insurance, and health services factors between matched ZIP codes with and without freestanding EDs, using univariate regressions with weights. We identified 360 freestanding EDs located in 30 states; 54.2% of freestanding EDs were hospital satellites, 36.6% were independent, and 9.2% were not classifiable. The 3 states with the highest number of freestanding EDs accounted for 66% of all freestanding EDs: Texas (181), Ohio (34), and Colorado (24). Across all 3 states, freestanding EDs were located in ZIP codes that had higher incomes and a lower proportion of the population with Medicaid. In Texas and Ohio, freestanding EDs were located in ZIP codes with a higher proportion of the population with private insurance. In Texas, freestanding EDs were located in ZIP codes that had fewer Hispanics, had a greater number of hospital-based EDs and physician offices, and had more physician visits and medical spending per year than ZIP codes without a freestanding ED. In Ohio, freestanding EDs were located in ZIP codes with fewer hospital-based EDs. In Texas, Ohio, and Colorado, freestanding EDs were located in areas with a better payer mix. The location of freestanding EDs in relation to other health care facilities and use and spending on health care varied between states. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Iron homeostasis and its disruption in mouse lung in iron deficiency and overload.
Giorgi, Gisela; D'Anna, María Cecilia; Roque, Marta Elena
2015-10-01
What is the central question of this study? The aim was to explore the role and hitherto unclear mechanisms of action of iron proteins in protecting the lung against the harmful effects of iron accumulation and the ability of pulmonary cells to mobilize iron in iron deficiency. What is the main finding and its importance? We show that pulmonary hepcidin appears not to modify cellular iron mobilization in the lung. We propose pathways for supplying iron to the lung in iron deficiency and for protecting the lung against iron excess in iron overload, mediated by the co-ordinated action of iron proteins, such as divalent metal transporter 1, ZRT-IRE-like-protein 14, transferrin receptor, ferritin, haemochromatosis-associated protein and ferroportin. Iron dyshomeostasis is associated with several forms of chronic lung disease, but its mechanisms of action remain to be elucidated. The aim of the present study was to determine the role of the lung in whole-animal models with iron deficiency and iron overload, studying the divalent metal transporter 1 (DMT1), ZRT-IRE-like protein 14 (ZIP14), transferrin receptor (TfR), haemochromatosis-associated protein (HFE), hepcidin, ferritin and ferroportin (FPN) expression. In each model, adult CF1 mice were divided into the following groups (six mice per group): (i) iron-overload model, iron saccharate i.p. and control group (iron adequate), 0.9% NaCl i.p.; and (ii) iron-deficiency model, induced by repeated bleeding, and control group (sham operated). Proteins were assessed by immunohistochemistry and Western blot. In control mice, DMT1 was localized in the cytoplasm of airway cells, and in iron deficiency and overload it was in the apical membrane. Divalent metal transporter 1 and TfR increased in iron deficiency, without changes in iron overload. ZRT-IRE-like protein 14 decreased in airway cells in iron deficiency and increased in iron overload. In iron deficiency, HFE and FPN were immunolocalized close to the apical membrane. Ferroportin increased in iron overload. Prohepcidin was present in control groups, with no changes in iron deficiency and iron overload. In iron overload, ferritin showed intracytoplasmic localization close to the apical membrane of airway cells and intense immunostaining in macrophage-like cells. The results show that pulmonary hepcidin does not appear to modify cellular iron mobilization in the lung. We propose the following two novel pathways in the lung: (i) for supplying iron in iron deficiency, mediated principally by DMT1 and TfR and regulated by the action of FPN and HFE; and (ii) for iron detoxification in order to protect the lung against iron overload, facilitated by the action of DMT1, ZIP14, FPN and ferritin. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis.
Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian
2016-01-01
AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis.
Wheat Transcription Factor TaAREB3 Participates in Drought and Freezing Tolerances in Arabidopsis
Wang, Jingyi; Li, Qian; Mao, Xinguo; Li, Ang; Jing, Ruilian
2016-01-01
AREB (ABA response element binding) proteins in plants play direct regulatory roles in response to multiple stresses, but their functions in wheat (Triticum aestivum L.) are not clear. In the present study, TaAREB3, a new member of the AREB transcription factor family, was isolated from wheat. Sequence analysis showed that the TaAREB3 protein is composed of three parts, a conserved N-terminal, a variable M region, and a conserved C-terminal with a bZIP domain. It belongs to the group A subfamily of bZIP transcription factors. TaAREB3 was constitutively expressed in stems, leaves, florets, anthers, pistils, seeds, and most highly, in roots. TaAREB3 gene expression was induced with abscisic acid (ABA) and low temperature stress, and its protein was localized in the nucleus when transiently expressed in tobacco epidermal cells and stably expressed in transgenic Arabidopsis. TaAREB3 protein has transcriptional activation activity, and can bind to the ABRE cis-element in vitro. Overexpression of TaAREB3 in Arabidopsis not only enhanced ABA sensitivity, but also strengthened drought and freezing tolerances. TaAREB3 also activated RD29A, RD29B, COR15A, and COR47 by binding to their promoter regions in transgenic Arabidopsis. These results demonstrated that TaAREB3 plays an important role in drought and freezing tolerances in Arabidopsis. PMID:26884722
A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence
USDA-ARS?s Scientific Manuscript database
Flower senescence is mediated in part by changes of plant hormones, such as ethylene, cytokinin and abscisic acid (ABA). Ethylene is known to control flower senescence in many species, especially ethylene sensitive flowers, like petunia, carnation and rose. During flower senescence in petunia and ot...
Tang, Yawei; Zeng, Xingquan; Wang, Yulin; Bai, Lijun; Xu, Qijun; Wei, Zexiu; Yuan, Hongjun; Nyima, Tashi
2017-01-01
Hulless barley, with its unique nutritional value and potential health benefits, has increasingly attracted attentions in recent years. However, the transcription dynamics during hulless barley grain development is not well understood. In the present study, we investigated the transcriptome changes during barley grain development using Illumina paired-end RNA-sequencing. Two datasets of the developing grain transcriptomes from two barley landraces with the differential seed starch synthesis traits were generated, and comparative transcriptome approach in both genotypes was performed. The results showed that 38 differentially expressed genes (DEGs) were found co-modulated in both genotypes during the barley grain development. Of those, the proteins encoded by most of those DGEs were found, such as alpha-amylase-related proteins, lipid-transfer protein, homeodomain leucine zipper (HD-Zip), NUCLEAR FACTOR-Y, subunit B (NF-YBs), as well as MYB transcription factors. More interestingly, two genes Hvulgare_GLEAN_10012370 and Hvulgare_GLEAN_10021199 encoding SuSy, AGPase (Hvulgare_GLEAN_10033640 and Hvulgare_GLEAN_10056301), as well as SBE2b (Hvulgare_GLEAN_10018352) were found to significantly contribute to the regulatory mechanism during grain development in both genotypes. Moreover, six co-expression modules associated with specific biological processes or pathways (M1 to M6) were identified by consensus co-expression network. Significantly enriched pathways of those module genes showed difference in both genotypes. These results will expand our understanding of the complex molecular mechanism of starch synthesis during barley grain development.
Steenackers, Ellen; Yorgan, Timur A.; Hermans, Christophe; Boudin, Eveline; Waterval, Jérôme J.; Jansen, Ineke D. C.; Aydemir, Tolunay Beker; Kamerling, Niels; Plumeyer, Christine; D’Haese, Patrick C.; Everts, Vincent; Lammens, Martin; Mortier, Geert; Cousins, Robert J.; Schinke, Thorsten; Stokroos, Robert J.; Manni, Johannes J.; Van Hul, Wim
2018-01-01
Hyperostosis Cranialis Interna (HCI) is a rare bone disorder characterized by progressive intracranial bone overgrowth at the skull. Here we identified by whole-exome sequencing a dominant mutation (L441R) in SLC39A14 (ZIP14). We show that L441R ZIP14 is no longer trafficked towards the plasma membrane and excessively accumulates intracellular zinc, resulting in hyper-activation of cAMP-CREB and NFAT signaling. Conditional knock-in mice overexpressing L438R Zip14 in osteoblasts have a severe skeletal phenotype marked by a drastic increase in cortical thickness due to an enhanced endosteal bone formation, resembling the underlying pathology in HCI patients. Remarkably, L438R Zip14 also generates an osteoporotic trabecular bone phenotype. The effects of osteoblastic overexpression of L438R Zip14 therefore mimic the disparate actions of estrogen on cortical and trabecular bone through osteoblasts. Collectively, we reveal ZIP14 as a novel regulator of bone homeostasis, and that manipulating ZIP14 might be a therapeutic strategy for bone diseases. PMID:29621230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin; He, Lei; Dong, Hongbin
2011-07-01
Highlights: {yields} The mouse Slc39a8 gene encodes the ZIP8 transporter. {yields} ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter. {yields} A Slc39a8(neo/neo) hypomorph mouse, due to retention of the neo mini-gene, has been created. {yields} ZIP8 expression in utero is {approx}90% decreased in all tissues examined. {yields} This mouse model will be useful for studying developmental and in utero physiological functions of ZIP8. -- Abstract: Previously this laboratory has identified the mouse Slc39a8 gene encoding the ZIP8 transporter, important in cadmium uptake. ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter, moving bothmore » ions into the cell. The overall physiological importance of ZIP8 remains unclear. Herein we describe generation of a mouse line carrying the Slc39a8(neo) allele, containing the Frt-flanked neomycin-resistance (neo) mini-cassette in intron 3 and loxP sites in introns 3 and 6. Cre recombinase functions correctly in Escherichia coli and in adeno-Cre-infected mouse fetal fibroblasts, but does not function in the intact mouse for reasons not clear. Slc39a8(neo) is a hypomorphic allele, because Slc39a8(neo/neo) homozygotes exhibit dramatically decreased ZIP8 expression in embryo, fetus, and visceral yolk sac - in comparison to their littermate wild-type controls. This ZIP8 hypomorph will be instrumental in studying developmental and in utero physiological functions of the ZIP8 transporter.« less
Thorup, Charlotte Brun; Grønkjær, Mette; Dinesen, Birthe Irene
2017-01-01
Background Step counters have been used to observe activity and support physical activity, but there is limited evidence on their accuracy. Objective The purpose was to investigate the step accuracy of the Fitbit Zip (Zip) in healthy adults during treadmill walking and in patients with cardiac disease while hospitalised at home. Methods Twenty healthy adults aged 39±13.79 (mean ±SD) wore four Zips while walking on a treadmill at different speeds (1.7–6.1 km/hour), and 24 patients with cardiac disease (age 67±10.03) wore a Zip for 24 hours during hospitalisation and for 4 weeks thereafter at home. A Shimmer3 device was used as a criterion standard. Results At a treadmill speed of 3.6 km/hour, the relative error (±SD) for the Zips on the upper body was −0.02±0.67 on the right side and −0.09 (0.67) on the left side. For the Zips on the waist, this was 0.08±0.71 for the right side and -0.08 (0.47) on the left side. At a treadmill speed of 3.6 km/hour and higher, the average per cent of relative error was <3%. The 24-hour test for the hospitalised patients showed a relative error of −47.15±24.11 (interclass correlation coefficient (ICC): 0.60), and for the 24-hour test at home, the relative error was −27.51±28.78 (ICC: 0.87). Thus, none of the 24-hour tests had less than the expected 20% error. In time periods of evident walking during the 24 h test, the Zip had an average per cent relative error of <3% at 3.6 km/hour and higher speeds. Conclusions A speed of 3.6 km/hour or higher is required to expect acceptable accuracy in step measurement using a Zip, on a treadmill and in real life. Inaccuracies are directly related to slow speeds, which might be a problem for patients with cardiac disease who walk at a slow pace. PMID:28363918
Bitirim, Ceylan Verda; Tuncay, Erkan; Turan, Belma
2018-06-01
The cellular control of glucose uptake and glycogen metabolism in mammalian tissues is in part mediated through the regulation of protein-serine/threonine kinases including CK2. Although it participates to several cellular signaling processes, however, its subcellular localization is not well-defined while some documents mentioned its localization change under pathological conditions. The activation/phosphorylation of some proteins including Zn 2+ -transporter ZIP7 in cardiomyocytes is controlled with CK2α, thereby, inducing changes in the level of intracellular free Zn 2+ ([Zn 2+ ] i ). In this regard, we aimed to examine cellular localization of CK2α in cardiomyocytes and its possible subcellular migration under hyperglycemia. Our confocal imaging together with biochemical analysis in isolated sarco(endo)plasmic reticulum [S(E)R] and nuclear fractions from hearts have shown that CK2α localized highly to S(E)R and Golgi and weakly to nuclear fractions in physiological condition. However, it can migrate from nuclear fractions to S(E)R under hyperglycemia. This migration can further underlie phosphorylation of a target protein ZIP7 as well as some endogenous kinases and phosphatases including PKA, CaMKII, and PP2A. We also have shown that CK2α activation is responsible for hyperglycemia-associated [Zn 2+ ] i increase in diabetic heart. Therefore, our present data demonstrated, for the first time, the physiological relevance of CK2α in cellular control of Zn 2+ -distribution via inducing ZIP7 phosphorylation and activation of these above endogenous actors in hyperglycemia/diabetes-associated cardiac dysfunction. Moreover, our present data also emphasized the multi-subcellular compartmental localizations of CK2α and a tightly regulation of these localizations in cardiomyocytes. Therefore, taken into consideration of all data, one can emphasize the important role of the subcellular localization of CK2α as a novel target-pathway for understanding of diabetic cardiomyopathy.
Levitan, David; Fortis-Santiago, Yaihara; Figueroa, Joshua A; Reid, Emily E; Yoshida, Takashi; Barry, Nicholas C; Russo, Abigail; Katz, Donald B
2016-10-12
In neuroscientists' attempts to understand the long-term storage of memory, topics of particular importance and interest are the cellular and system mechanisms of maintenance (e.g., those sensitive to ζ-inhibitory peptide, ZIP) and those induced by memory retrieval (i.e., reconsolidation). Much is known about each of these processes in isolation, but less is known concerning how they interact. It is known that ZIP sensitivity and memory retrieval share at least some molecular targets (e.g., recycling α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, AMPA, receptors to the plasma membrane); conversely, the fact that sensitivity to ZIP emerges only after consolidation ends suggests that consolidation (and by extension reconsolidation) and maintenance might be mutually exclusive processes, the onset of one canceling the other. Here, we use conditioned taste aversion (CTA) in rats, a cortically dependent learning paradigm, to test this hypothesis. First, we demonstrate that ZIP infusions into gustatory cortex begin interfering with CTA memory 43-45 h after memory acquisition-after consolidation ends. Next, we show that a retrieval trial administered after this time point interrupts the ability of ZIP to induce amnesia and that ZIP's ability to induce amnesia is reengaged only 45 h after retrieval. This pattern of results suggests that memory retrieval and ZIP-sensitive maintenance mechanisms are mutually exclusive and that the progression from one to the other are similar after acquisition and retrieval. They also reveal concrete differences between ZIP-sensitive mechanisms induced by acquisition and retrieval: the latency with which ZIP-sensitive mechanisms are expressed differ for the two processes. Memory retrieval and the molecular mechanisms that are sensitive to ζ-inhibitory peptide (ZIP) are the few manipulations that have been shown to effect memory maintenance. Although much is known about their effect on maintenance separately, it is unknown how they interact. Here, we describe a model for the interaction between memory retrieval and ZIP-sensitive mechanisms, showing that retrieval trials briefly (i.e., for 45 h) interrupt these mechanisms. ZIP sensitivity emerges across a similar time window after memory acquisition and retrieval; the maintenance mechanisms that follow acquisition and retrieval differ, however, in the latency with which the impact of ZIP is expressed. Copyright © 2016 the authors 0270-6474/16/3610654-09$15.00/0.
Leary, T P; Gao, Y; Splitter, G A
1992-07-01
The desire to obtain authentically glycosylated viral protein products in sufficient quantity for immunological study has led to the use of eucaryotic expression vectors for protein production. An additional advantage is that these protein products can be studied individually in the absence of their native viral environment. We have cloned a complementary DNA (cDNA) encoding bovine herpes virus-1 (BHV-1) glycoprotein 1 (gpI) into the eucaryotic expression vector, pZipNeo SVX1. Since this protein is normally embedded within the membrane of BHV-1 infected cells, we removed sequences encoding the transmembrane domain of the native protein. After transfection of the plasmid construct into the canine osteosarcoma cell line, D17, or Madin-Darby bovine kidney (MDBK) cells, a truncated BHV-1 (gpI) was secreted into the culture medium as demonstrated by radioimmunoprecipitation and SDS-PAGE. Both a CD4+ T-lymphocyte line specific for BHV-1 and freshly isolated T lymphocytes could recognize and respond to the secreted recombinant gpI. Further, recombinant gpI could elicit both antibody and cellular responses in cattle when used as an immunogen. Having established constitutively glycoprotein producing cell lines, future studies in vaccine evaluation of gpI will be facilitated.
Shaw, Kristi S; Cruz-Cano, Raul; Jiang, Chengsheng; Malayil, Leena; Blythe, David; Ryan, Patricia; Sapkota, Amy R
2016-10-01
Nontyphoidal Salmonella spp. are a leading cause of foodborne illness. Risk factors for salmonellosis include the consumption of contaminated chicken, eggs, pork and beef. Agricultural, environmental and socioeconomic factors also have been associated with rates of Salmonella infection. However, to our knowledge, these factors have not been modeled together at the community-level to improve our understanding of whether rates of salmonellosis are variable across communities defined by differing factors. To address this knowledge gap, we obtained data on culture-confirmed Salmonella Typhimurium, S. Enteritidis, S. Newport and S. Javiana cases (2004-2010; n=14,297) from the Foodborne Diseases Active Surveillance Network (FoodNet), and socioeconomic, environmental and agricultural data from the 2010 Census of Population and Housing, the 2011 American Community Survey, and the 2007 U.S. Census of Agriculture. We linked data by zip code and derived incidence rate ratios using negative binomial regressions. Multiple community-level factors were associated with salmonellosis rates; however, our findings varied by state. For example, in Georgia (Incidence Rate Ratio (IRR)=1.01; 95% Confidence Interval (CI)=1.005-1.015) Maryland (IRR=1.01; 95% CI=1.003-1.015) and Tennessee (IRR=1.01; 95% CI=1.002-1.012), zip codes characterized by greater rurality had higher rates of S. Newport infections. The presence of broiler chicken operations, dairy operations and cattle operations in a zip code also was associated with significantly higher rates of infection with at least one serotype in states that are leading producers of these animal products. For instance, in Georgia and Tennessee, rates of S. Enteritidis infection were 48% (IRR=1.48; 95% CI=1.12-1.95) and 46% (IRR=1.46; 95% CI=1.17-1.81) higher in zip codes with broiler chicken operations compared to those without these operations. In Maryland, New Mexico and Tennessee, higher poverty levels in zip codes were associated with higher rates of infection with one or more Salmonella serotypes. In Georgia and Tennessee, zip codes with higher percentages of the population composed of African Americans had significantly higher rates of infection with one or more Salmonella serotypes. In summary, our findings show that community-level agricultural, environmental and socioeconomic factors may be important with regard to rates of infection with Salmonella Typhimurium, Enteritidis, Newport and Javiana. Copyright © 2016 Elsevier Inc. All rights reserved.
The distinctive cell division interactome of Neisseria gonorrhoeae.
Zou, Yinan; Li, Yan; Dillon, Jo-Anne R
2017-12-12
Bacterial cell division is an essential process driven by the formation of a Z-ring structure, as a cytoskeletal scaffold at the mid-cell, followed by the recruitment of various proteins which form the divisome. The cell division interactome reflects the complement of different interactions between all divisome proteins. To date, only two cell division interactomes have been characterized, in Escherichia coli and in Streptococcus pneumoniae. The cell divison proteins encoded by Neisseria gonorrhoeae include FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsI, FtsW, and FtsN. The purpose of the present study was to characterize the cell division interactome of N. gonorrhoeae using several different methods to identify protein-protein interactions. We also characterized the specific subdomains of FtsA implicated in interactions with FtsZ, FtsQ, FtsN and FtsW. Using a combination of bacterial two-hybrid (B2H), glutathione S-transferase (GST) pull-down assays, and surface plasmon resonance (SPR), nine interactions were observed among the eight gonococcal cell division proteins tested. ZipA did not interact with any other cell division proteins. Comparisons of the N. gonorrhoeae cell division interactome with the published interactomes from E. coli and S. pneumoniae indicated that FtsA-FtsZ and FtsZ-FtsK interactions were common to all three species. FtsA-FtsW and FtsK-FtsN interactions were only present in N. gonorrhoeae. The 2A and 2B subdomains of FtsA Ng were involved in interactions with FtsQ, FtsZ, and FtsN, and the 2A subdomain was involved in interaction with FtsW. Results from this research indicate that N. gonorrhoeae has a distinctive cell division interactome as compared with other microorganisms.
Seismic Data from Roosevelt Hot Springs, Utah FORGE Study Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, John
This set of data contains raw and processed 2D and 3D seismic data from the Utah FORGE study area near Roosevelt Hot Springs. The zipped archives numbered from 1-100 to 1001-1122 contain 3D seismic uncorrelated shot gatherers SEG-Y files. The zipped archives numbered from 1-100C to 1001-1122C contain 3D seismic correlated shot gatherers SEG-Y files. Other data have intuitive names.
Dey, Avishek; Samanta, Milan Kumar; Gayen, Srimonta; Sen, Soumitra K.; Maiti, Mrinal K.
2016-01-01
Drought is one of the major limiting factors for productivity of crops including rice (Oryza sativa L.). Understanding the role of allelic variations of key regulatory genes involved in stress-tolerance is essential for developing an effective strategy to combat drought. The bZIP transcription factors play a crucial role in abiotic-stress adaptation in plants via abscisic acid (ABA) signaling pathway. The present study aimed to search for allelic polymorphism in the OsbZIP23 gene across selected drought-tolerant and drought-sensitive rice genotypes, and to characterize the new allele through overexpression (OE) and gene-silencing (RNAi). Analyses of the coding DNA sequence (CDS) of the cloned OsbZIP23 gene revealed single nucleotide polymorphism at four places and a 15-nucleotide deletion at one place. The single-copy OsbZIP23 gene is expressed at relatively higher level in leaf tissues of drought-tolerant genotypes, and its abundance is more in reproductive stage. Cloning and sequence analyses of the OsbZIP23-promoter from drought-tolerant O. rufipogon and drought-sensitive IR20 cultivar showed variation in the number of stress-responsive cis-elements and a 35-nucleotide deletion at 5’-UTR in IR20. Analysis of the GFP reporter gene function revealed that the promoter activity of O. rufipogon is comparatively higher than that of IR20. The overexpression of any of the two polymorphic forms (1083 bp and 1068 bp CDS) of OsbZIP23 improved drought tolerance and yield-related traits significantly by retaining higher content of cellular water, soluble sugar and proline; and exhibited decrease in membrane lipid peroxidation in comparison to RNAi lines and non-transgenic plants. The OE lines showed higher expression of target genes-OsRab16B, OsRab21 and OsLEA3-1 and increased ABA sensitivity; indicating that OsbZIP23 is a positive transcriptional-regulator of the ABA-signaling pathway. Taken together, the present study concludes that the enhanced gene expression rather than natural polymorphism in coding sequence of OsbZIP23 is accountable for improved drought tolerance and yield performance in rice genotypes. PMID:26959651
Hsia, Renee Y; Dai, Mengtao; Wei, Ran; Sabbagh, Sarah; Mann, N Clay
2017-01-01
The location of a patient's residence is often used for emergency medical services (EMS) system planning. Our objective is to evaluate the association between patient residence and emergency incident zip codes for 911 calls. We used data from the 2013 National Emergency Medical Services Information System (NEMSIS) Public-Release Research Dataset. We studied all 911 calls with a valid complaint by dispatch, identifying zip codes for both the residence and incident locations (n=12,376,784). The primary outcomes were geographic and distance discordances between patient residence and incident zip codes. We used a multivariate logistic regression model to determine geographic discordance between residence and incident zip codes by dispatch complaint, age, and sex. We also measured distances between locations with geospatial processing. The overall proportion of geographic discordance for all 911 calls was 27.7% (95% confidence interval [CI] 27.7% to 27.8%) and the median distance discordance was 11.5 miles (95% CI 11.5 to 11.5 miles). Lower geographic discordance rates were found among patients aged 65 to 79 years (20.2%; 95% CI 20.1% to 20.2%) and 80 years and older (14.5%; 95% CI 14.5% to 14.6%). Motor vehicle crashes (63.5%; 95% CI 63.5% to 63.6%), industrial accidents (59.3%; 95% CI 58.0% to 60.6%), and mass casualty incidents (50.6%; 95% CI 49.6% to 51.5%) were more likely to occur outside a patient's residence zip code. Median network distance between home and incident zip centroid codes ranged from 8.6 to 23.5 miles. In NEMSIS, there was geographic discordance between patient residence zip code and call location zip code in slightly more than one quarter of EMS responses records. The geographic discordance rates between residence and incident zip codes were associated with dispatch complaints and age. Although a patient's residence might be a valid proxy for incident location for elderly patients, this relationship holds less true for other age groups and among different complaints. Our findings have important implications for EMS system planning, resource allocation, and injury surveillance. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Dai, Mingqiu; Hu, Yongfeng; Ma, Qian; Zhao, Yu; Zhou, Dao-Xiu
2008-02-01
The homeodomain-leucine zipper (HD-Zip) putative transcription factor genes are divided into 4 families. In this work, we studied the function of a rice HD-Zip I gene, H OME O BO X4 (Oshox4). Oshox4 transcripts were detected in leaf and floral organ primordia but excluded from the shoot apical meristem and the protein was nuclear localized. Over-expression of Oshox4 in rice induced a semi-dwarf phenotype that could not be complemented by applied GA3. The over-expression plants accumulated elevated levels of bioactive GA, while the GA catabolic gene GA2ox3 was upregulated in the transgenic plants. In addition, over-expression of Oshox4 blocked GA-dependent alpha-amylase production. However, down-regulation of Oshox4 in RNAi transgenic plants induced no phenotypic alteration. Interestingly, the expression of YAB1 that is involved in the negative feedback regulation of the GA biosynthesis was upregulated in the Oshox4 over-expressing plants. One-hybrid assays showed that Oshox4 could interact with YAB1 promoter in yeast. In addition, Oshox4 expression was upregulated by GA. These data together suggest that Oshox4 may be involved in the negative regulation of GA signalling and may play a role to fine tune GA responses in rice.
Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J
2001-02-01
Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.
Effects of exogenous zinc on cell cycle, apoptosis and viability of MDAMB231, HepG2 and 293 T cells.
Wang, Yan-hong; Li, Ke-jin; Mao, Li; Hu, Xin; Zhao, Wen-jie; Hu, An; Lian, Hong-zhen; Zheng, Wei-juan
2013-09-01
As a non-toxic metal to humans, zinc is essential for cell proliferation, differentiation, regulation of DNA synthesis, genomic stability and mitosis. Zinc homeostasis in cells, which is crucial for normal cellular functioning, is maintained by various protein families including ZnT (zinc transporter/SLC30A) and ZIP (Zrt-, Irt-like proteins/SLC39A) that decrease and increase cytosolic zinc availability, respectively. In this study, we investigated the influences of a specific concentration range of ZnSO4 on cell cycle and apoptosis by flow cytometry, and cell viability by MTT method in MDAMB231, HepG2 and 293 T cell lines. Fluorescent sensors NBD-TPEA and the counterstain for nuclei Hoechst 33342 were used to stain the treated cells for observing the localisation and amount of Zn(2+) via laser scanning confocal microscope. It was found that the influence manners of ZnSO4 on cell cycle, apoptosis and cell viability in various cell lines were different and corresponding to the changes of Zn(2+) content of the three cell lines, respectively. The significant increase on intracelluar zinc content of MDAMB231 cells resulted in cell death, G1 and G2/M cell cycle arrest and increased apoptotic fraction. Additionally, the mRNA expression levels of ZnT and ZIP families in the three cell lines, when treated with high concentration of ZnSO4, increased and decreased corresponding to their functions, respectively.
An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.
Hoth, Stefan; Niedermeier, Matthias; Feuerstein, Andrea; Hornig, Julia; Sauer, Norbert
2010-09-01
Abscisic acid (ABA) and sugars regulate many aspects of plant growth and development, and we are only just beginning to understand the complex interactions between ABA and sugar signaling networks. Here, we show that ABA-dependent transcription factors bind to the promoter of the Arabidopsis thaliana AtSUC1 (At1g71880) sucrose transporter gene in vitro. We present the characterization of a cis-regulatory element by truncation of the AtSUC1 promoter and by electrophoretic mobility shift assays that is identical to a previously characterized ABA-responsive element (ABRE). In yeast 1-hybrid analyses we identified ABI5 (AtbZIP39; At2g36270) and AREB3 (AtbZIP66; At3g56850) as potential interactors. Analyses of plants expressing the beta-glucuronidase reporter gene under the control of ABI5 or AREB3 promoter sequences demonstrated that both transcription factor genes are co-expressed with AtSUC1 in pollen and seedlings, the primary sites of AtSUC1 action. Mutational analyses of the identified cis-regulatory element verified its importance for AtSUC1 expression in young seedlings. In abi5-4 seedlings, we observed an increase of sucrose-dependent anthocyanin accumulation and AtSUC1 mRNA levels. This suggests that ABI5 prevents an overshoot of sucrose-induced AtSUC1 expression and confirmed a novel cross-link between sugar and ABA signaling.
Link-Gelles, Ruth; Westreich, Daniel; Aiello, Allison E; Shang, Nong; Weber, David J; Holtzman, Corinne; Scherzinger, Karen; Reingold, Arthur; Schaffner, William; Harrison, Lee H; Rosen, Jennifer B; Petit, Susan; Farley, Monica; Thomas, Ann; Eason, Jeffrey; Wigen, Christine; Barnes, Meghan; Thomas, Ola; Zansky, Shelley; Beall, Bernard; Whitney, Cynthia G; Moore, Matthew R
2016-12-01
In 2010, 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in the US for prevention of invasive pneumococcal disease in children. Individual-level socioeconomic status (SES) is a potential confounder of the estimated effectiveness of PCV13 and is often controlled for in observational studies using zip code as a proxy. We assessed the utility of zip code matching for control of SES in a post-licensure evaluation of the effectiveness of PCV13 (calculated as [1-matched odds ratio]*100). We used a directed acyclic graph to identify subsets of confounders and collected SES variables from birth certificates, geo-coding, a parent interview, and follow-up with medical providers. Cases tended to be more affluent than eligible controls (for example, 48.3% of cases had private insurance vs. 44.6% of eligible controls), but less affluent than enrolled controls (52.9% of whom had private insurance). Control of confounding subsets, however, did not result in a meaningful change in estimated vaccine effectiveness (original estimate: 85.1%, 95% CI 74.8-91.9%; adjusted estimate: 82.5%, 95% CI 65.6-91.1%). In the context of a post-licensure vaccine effectiveness study, zip code appears to be an adequate, though not perfect, proxy for individual SES.
Shimoda, Shinji; Mishima, Kenji; Higashiyama, Hiroyuki; Idaira, Yayoi; Asada, Yoshinobu; Kitamura, Hiroshi; Yamasaki, Satoru; Hojyo, Shintaro; Nakayama, Manabu; Ohara, Osamu; Koseki, Haruhiko; dos Santos, Heloisa G.; Bonafe, Luisa; Ha-Vinh, Russia; Zankl, Andreas; Unger, Sheila; Kraenzlin, Marius E.; Beckmann, Jacques S.; Saito, Ichiro; Rivolta, Carlo; Ikegawa, Shiro; Superti-Furga, Andrea; Hirano, Toshio
2008-01-01
Background Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. Methodology/Principal Findings Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. Conclusions/Significance Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction. PMID:18985159
Tobacco outlet density and converted versus native non-daily cigarette use in a national US sample.
Kirchner, Thomas R; Anesetti-Rothermel, Andrew; Bennett, Morgane; Gao, Hong; Carlos, Heather; Scheuermann, Taneisha S; Reitzel, Lorraine R; Ahluwalia, Jasjit S
2017-01-01
Investigate whether non-daily smokers' (NDS) cigarette price and purchase preferences, recent cessation attempts, and current intentions to quit are associated with the density of the retail cigarette product landscape surrounding their residential address. Cross-sectional assessment of N=904 converted NDS (CNDS). who previously smoked every day, and N=297 native NDS (NNDS) who only smoked non-daily, drawn from a national panel. Kernel density estimation was used to generate a nationwide probability surface of tobacco outlets linked to participants' residential ZIP code. Hierarchically nested log-linear models were compared to evaluate associations between outlet density, non-daily use patterns, price sensitivity and quit intentions. Overall, NDS in ZIP codes with greater outlet density were less likely than NDS in ZIP codes with lower outlet density to hold 6-month quit intentions when they also reported that price affected use patterns (G 2 =66.1, p<0.001) and purchase locations (G 2 =85.2, p<0.001). CNDS were more likely than NNDS to reside in ZIP codes with higher outlet density (G 2 =322.0, p<0.001). Compared with CNDS in ZIP codes with lower outlet density, CNDS in high-density ZIP codes were more likely to report that price influenced the amount they smoke (G 2 =43.9, p<0.001), and were more likely to look for better prices (G 2 =59.3, p<0.001). NDS residing in high-density ZIP codes were not more likely to report that price affected their cigarette brand choice compared with those in ZIP codes with lower density. This paper provides initial evidence that the point-of-sale cigarette environment may be differentially associated with the maintenance of CNDS versus NNDS patterns. Future research should investigate how tobacco control efforts can be optimised to both promote cessation and curb the rising tide of non-daily smoking in the USA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Critical Habitat :: NOAA Fisheries
82 FR 51186 (comments close 1/02/18) Beluga Whale Cook Inlet 2011 76 FR 20180 Go to Data Hawaiian Monk Seal 1988, 1986, 2015 53 FR 18988, 51 FR 16047, 80 FR 50925 Go to Data [zip] (excluded areas Revise (Feb 2015) 2006 71 FR 69054 Go To Data [zip] North Atlantic Right Whale Northeast Southeast 1994
Reliability and validity of ten consumer activity trackers.
Kooiman, Thea J M; Dontje, Manon L; Sprenger, Siska R; Krijnen, Wim P; van der Schans, Cees P; de Groot, Martijn
2015-01-01
Activity trackers can potentially stimulate users to increase their physical activity behavior. The aim of this study was to examine the reliability and validity of ten consumer activity trackers for measuring step count in both laboratory and free-living conditions. Healthy adult volunteers (n = 33) walked twice on a treadmill (4.8 km/h) for 30 min while wearing ten different activity trackers (i.e. Lumoback, Fitbit Flex, Jawbone Up, Nike+ Fuelband SE, Misfit Shine, Withings Pulse, Fitbit Zip, Omron HJ-203, Yamax Digiwalker SW-200 and Moves mobile application). In free-living conditions, 56 volunteers wore the same activity trackers for one working day. Test-retest reliability was analyzed with the Intraclass Correlation Coefficient (ICC). Validity was evaluated by comparing each tracker with the gold standard (Optogait system for laboratory and ActivPAL for free-living conditions), using paired samples t-tests, mean absolute percentage errors, correlations and Bland-Altman plots. Test-retest analysis revealed high reliability for most trackers except for the Omron (ICC .14), Moves app (ICC .37) and Nike+ Fuelband (ICC .53). The mean absolute percentage errors of the trackers in laboratory and free-living conditions respectively, were: Lumoback (-0.2, -0.4), Fibit Flex (-5.7, 3.7), Jawbone Up (-1.0, 1.4), Nike+ Fuelband (-18, -24), Misfit Shine (0.2, 1.1), Withings Pulse (-0.5, -7.9), Fitbit Zip (-0.3, 1.2), Omron (2.5, -0.4), Digiwalker (-1.2, -5.9), and Moves app (9.6, -37.6). Bland-Altman plots demonstrated that the limits of agreement varied from 46 steps (Fitbit Zip) to 2422 steps (Nike+ Fuelband) in the laboratory condition, and 866 steps (Fitbit Zip) to 5150 steps (Moves app) in the free-living condition. The reliability and validity of most trackers for measuring step count is good. The Fitbit Zip is the most valid whereas the reliability and validity of the Nike+ Fuelband is low.
Tu, Mingxing; Wang, Xianhang; Feng, Tongying; Sun, Xiaomeng; Wang, Yaqiong; Huang, Li; Gao, Min; Wang, Yuejin; Wang, Xiping
2016-11-01
Drought is one of the most serious factors that limit agricultural productivity and there is considerable interest in understanding the molecular bases of drought responses and their regulation. While numbers of basic leucine zipper (bZIP) transcription factors (TFs) are known to play key roles in response of plants to various abiotic stresses, only a few group K bZIP TFs have been functionally characterized in the context of stress signaling. In this study, we characterized the expression of the grape (Vitis vinifera) group K bZIP gene, VlbZIP36, and found evidence for its involvement in response to drought and the stress-associated phytohormone abscisic acid (ABA). Transgenic Arabidopsis thaliana lines over-expressing VlbZIP36 under the control of a constitutive promoter showed enhanced dehydration tolerance during the seed germination stage, as well as in the seedling and mature plant stages. The results indicated that VlbZIP36 plays a role in drought tolerance by improving the water status, through limiting water loss, and mitigating cellular damage. The latter was evidenced by reduced cell death, lower electrolyte leakage in the transgenic plants, as well as by increased activities of antioxidant enzymes. We concluded that VlbZIP36 enhances drought tolerance through the transcriptional regulation of ABA-/stress-related genes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Blake, Sarah Brown
2014-01-01
Access to clean and affordable water is a significant public health issue globally, in the United States, and in California where land is heavily used for agriculture and dairy operations. The purpose of this study was to explore the geographic relationships among dairy farms, nitrate levels in drinking water, low birth weight, and socioeconomic data at the ZIP code level in the San Joaquin Valley. This ecological study used a Geographic Information System (GIS) to explore and analyze secondary data. A total of 211 ZIP codes were analyzed using spatial autocorrelation and regression analysis methods in ArcGIS version 10.1. ZIP codes with dairies had a higher percentage of Hispanic births (p = .001). Spatial statistics revealed that ZIP codes with more dairy farms and a higher dairy cow density had higher levels of nitrate contamination. No correlation was detected between LBW and unsafe nitrate levels at the ZIP code level. Further research examining communities that use private and small community wells in the San Joaquin Valley should be conducted. Birth data from smaller geographic areas should be used to continue exploring the relationship between birth outcomes and nitrate contamination in drinking water. © 2014 Wiley Periodicals, Inc.
Berkowitz, Seth A; Traore, Carine Y; Singer, Daniel E; Atlas, Steven J
2015-04-01
To determine which area-based socioeconomic status (SES) indicator is best suited to monitor health care disparities from a delivery system perspective. 142,659 adults seen in a primary care network from January 1, 2009 to December 31, 2011. Cross-sectional, comparing associations between area-based SES indicators and patient outcomes. Address data were geocoded to construct area-based SES indicators at block group (BG), census tract (CT), and ZIP code (ZIP) levels. Data on health outcomes were abstracted from electronic records. Relative indices of inequality (RIIs) were calculated to quantify disparities detected by area-based SES indicators and compared to RIIs from self-reported educational attainment. ZIP indicators had less missing data than BG or CT indicators (p < .0001). Area-based SES indicators were strongly associated with self-report educational attainment (p < .0001). ZIP, BG, and CT indicators all detected expected SES gradients in health outcomes similarly. Single-item, cut point defined indicators performed as well as multidimensional indices and quantile indicators. Area-based SES indicators detected health outcome differences well and may be useful for monitoring disparities within health care systems. Our preferred indicator was ZIP-level median household income or percent poverty, using cut points. © Health Research and Educational Trust.
Lalwani, A K; Attaie, A; Randolph, F T; Deshmukh, D; Wang, C; Mhatre, A; Wilcox, E
1998-12-04
Waardenburg syndrome (WS) is an autosomal-dominant neural crest cell disorder phenotypically characterized by hearing impairment and disturbance of pigmentation. A presence of dystopia canthorum is indicative of WS type 1, caused by loss of function mutation in the PAX3 gene. In contrast, type 2 WS (WS2) is characterized by normally placed medial canthi and is genetically heterogeneous; mutations in MITF (microphthalmia associated transcription factor) associated with WS2 have been identified in some but not all affected families. Here, we report on a three-generation Indian family with a point mutation in the MITF gene causing WS2. This mutation, initially reported in a Northern European family, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking the HLH-Zip or Zip structure necessary for normal interaction with its target DNA motif. Comparison of the phenotype between the two families demonstrates a significant difference in pigmentary disturbance of the eye. This family, with the first documented case of two unrelated WS2 families harboring identical mutations, provides additional evidence for the importance of genetic background on the clinical phenotype.
Residential Segregation and the Availability of Primary Care Physicians
Gaskin, Darrell J; Dinwiddie, Gniesha Y; Chan, Kitty S; McCleary, Rachael R
2012-01-01
Objective To examine the association between residential segregation and geographic access to primary care physicians (PCPs) in metropolitan statistical areas (MSAs). Data Sources We combined zip code level data on primary care physicians from the 2006 American Medical Association master file with demographic, socioeconomic, and segregation measures from the 2000 U.S. Census. Our sample consisted of 15,465 zip codes located completely or partially in an MSA. Methods We defined PCP shortage areas as those zip codes with no PCP or a population to PCP ratio of >3,500. Using logistic regressions, we estimated the association between a zip code's odds of being a PCP shortage area and its minority composition and degree of segregation in its MSA. Principal Findings We found that odds of being a PCP shortage area were 67 percent higher for majority African American zip codes but 27 percent lower for majority Hispanic zip codes. The association varied with the degree of segregation. As the degree of segregation increased, the odds of being a PCP shortage area increased for majority African American zip codes; however, the converse was true for majority Hispanic and Asian zip codes. Conclusions Efforts to address PCP shortages should target African American communities especially in segregated MSAs. PMID:22524264
López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio
2010-12-01
Virulence in plant pathogenic fungi is controlled through a variety of cellular pathways in response to the host environment. Nitrogen limitation has been proposed to act as a key signal to trigger the in planta expression of virulence genes. Moreover, a conserved Pathogenicity mitogen activated protein kinase (MAPK) cascade is strictly required for plant infection in a wide range of pathogens. We investigated the relationship between nitrogen signaling and the Pathogenicity MAPK cascade in controlling infectious growth of the vascular wilt fungus Fusarium oxysporum. Several MAPK-activated virulence functions such as invasive growth, vegetative hyphal fusion and host adhesion were strongly repressed in the presence of the preferred nitrogen source ammonium. Repression of these functions by ammonium was abolished by L-Methionine sulfoximine (MSX) or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR (Target Of Rapamycin), respectively, and was dependent on the bZIP protein MeaB. Supplying tomato plants with ammonium rather than nitrate resulted in a significant delay of vascular wilt symptoms caused by the F. oxysporum wild type strain, but not by the ΔmeaB mutant. Ammonium also repressed invasive growth in two other pathogens, the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. Our results suggest the presence of a conserved nitrogen-responsive pathway that operates via TOR and MeaB to control infectious growth in plant pathogenic fungi.
European Science Notes. Volume 40, Number 4.
1986-04-01
OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (if applicable) 8c. ADDRESS (City, State, and ZIP Code ) 10. SOURCE OF...Office, London ONRL 6c. ADDRESS (City, State, and ZIP Code ) 7b. ADDRESS (City, State, and ZIPCode) Box 39 FPO, NY 09510 Ba. NAME OF FUNDING/SPONSORING 8b...13..TYPj9 REPORT13bTIECVRD1.DTOFRPT(YaMnhDy)1.AGCUNMonthly FROM TO _ April 1986 32 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS
Méndez, Rosa O.; Santiago, Alejandra; Yepiz-Plascencia, Gloria; Peregrino-Uriarte, Alma B.; de la Barca, Ana M. Calderón; García, Hugo S.
2014-01-01
Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall), absorption, plasma zinc (by absorption spectrophotometry) and the expression levels (by quantitative PCR), of the transporters ZIP1 (zinc importer) and ZnT1 (zinc exporter) in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001) from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05) near 150 µg/dL, but increased by 31 µg/dL (p < 0.05) for 6/24 adolescents (group A) and decreased by 25 µg/dL (p < 0.05) for other 6/24 adolescents (group B). Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006) in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39). An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05) the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1. PMID:24922175
Akagi, Takashi; Katayama-Ikegami, Ayako; Kobayashi, Shozo; Sato, Akihiko; Kono, Atsushi; Yonemori, Keizo
2012-01-01
Proanthocyanidins (PAs) are secondary metabolites that contribute to plant protection and crop quality. Persimmon (Diospyros kaki) has a unique characteristic of accumulating large amounts of PAs, particularly in its fruit. Normal astringent-type and mutant nonastringent-type fruits show different PA accumulation patterns depending on the seasonal expression patterns of DkMyb4, which is a Myb transcription factor (TF) regulating many PA pathway genes in persimmon. In this study, attempts were made to identify the factors involved in DkMyb4 expression and the resultant PA accumulation in persimmon fruit. Treatment with abscisic acid (ABA) and an ABA biosynthesis inhibitor resulted in differential changes in the expression patterns of DkMyb4 and PA biosynthesis in astringent-type and nonastringent-type fruits depending on the development stage. To obtain an ABA-signaling TF, we isolated a full-length basic leucine zipper (bZIP) TF, DkbZIP5, which is highly expressed in persimmon fruit. We also showed that ectopic DkbZIP5 overexpression in persimmon calluses induced the up-regulation of DkMyb4 and the resultant PA biosynthesis. In addition, a detailed molecular characterization using the electrophoretic mobility shift assay and transient reporter assay indicated that DkbZIP5 recognized ABA-responsive elements in the promoter region of DkMyb4 and acted as a direct regulator of DkMyb4 in an ABA-dependent manner. These results suggest that ABA signals may be involved in PA biosynthesis in persimmon fruit via DkMyb4 activation by DkbZIP5. PMID:22190340
Tjahjono, Elissa; Kirienko, Natalia V
2017-06-01
All living organisms exist in a precarious state of homeostasis that requires constant maintenance. A wide variety of stresses, including hypoxia, heat, and infection by pathogens perpetually threaten to imbalance this state. Organisms use a battery of defenses to mitigate damage and restore normal function. Previously, we described a Caenorhabditis elegans-Pseudomonas aeruginosa assay (Liquid Killing) in which toxicity to the host is dependent upon the secreted bacterial siderophore pyoverdine. Although pyoverdine is also indispensable for virulence in mammals, its cytological effects are unclear. We used genetics, transcriptomics, and a variety of pathogen and chemical exposure assays to study the interactions between P. aeruginosa and C. elegans. Although P. aeruginosa can kill C. elegans through at least 5 different mechanisms, the defense responses activated by Liquid Killing are specific and selective and have little in common with innate defense mechanisms against intestinal colonization. Intriguingly, the defense response utilizes the phylogenetically-conserved ESRE (Ethanol and Stress Response Element) network, which we and others have previously shown to mitigate damage from a variety of abiotic stresses. This is the first report of this networks involvement in innate immunity, and indicates that host innate immune responses overlap with responses to abiotic stresses. The upregulation of the ESRE network in C. elegans is mediated in part by a family of bZIP proteins (including ZIP-2, ZIP-4, CEBP-1, and CEBP-2) that have overlapping and unique functions. Our data convincingly show that, following exposure to P. aeruginosa, the ESRE defense network is activated by mitochondrial damage, and that mitochondrial damage also leads to ESRE activation in mammals. This establishes a role for ESRE in a phylogenetically-conserved mitochondrial surveillance system important for stress response and innate immunity.
Increased Rate of Hospitalization for Diabetes and Residential Proximity of Hazardous Waste Sites
Kouznetsova, Maria; Huang, Xiaoyu; Ma, Jing; Lessner, Lawrence; Carpenter, David O.
2007-01-01
Background Epidemiologic studies suggest that there may be an association between environmental exposure to persistent organic pollutants (POPs) and diabetes. Objective The aim of this study was to test the hypothesis that residential proximity to POP-contaminated waste sites result in increased rates of hospitalization for diabetes. Methods We determined the number of hospitalized patients 25–74 years of age diagnosed with diabetes in New York State exclusive of New York City for the years 1993–2000. Descriptive statistics and negative binomial regression were used to compare diabetes hospitalization rates in individuals who resided in ZIP codes containing or abutting hazardous waste sites containing POPs (“POP” sites); ZIP codes containing hazardous waste sites but with wastes other than POPs (“other” sites); and ZIP codes without any identified hazardous waste sites (“clean” sites). Results Compared with the hospitalization rates for diabetes in clean sites, the rate ratios for diabetes discharges for people residing in POP sites and “other” sites, after adjustment for potential confounders were 1.23 [95% confidence interval (CI), 1.15–1.32] and 1.25 (95% CI, 1.16–1.34), respectively. In a subset of POP sites along the Hudson River, where there is higher income, less smoking, better diet, and more exercise, the rate ratio was 1.36 (95% CI, 1.26–1.47) compared to clean sites. Conclusions After controlling for major confounders, we found a statistically significant increase in the rate of hospitalization for diabetes among the population residing in the ZIP codes containing toxic waste sites. PMID:17366823
Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †
Murdani, Muhammad Harist; Hong, Bonghee
2018-01-01
In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes (Ad-Hoc) and neighborhood proximity (Top-K). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space. PMID:29587366
ZIP4 silencing improves bone loss in pancreatic cancer
Yang, Jingxuan; Ding, Hao; LeBrun, Drake; Ding, Kai; Houchen, Courtney W.; Postier, Russell G.; Ambrose, Catherine G.; Li, Zhaoshen; Bi, Xiaohong; Li, Min
2015-01-01
Metabolic bone disorders are associated with several types of human cancers. Pancreatic cancer patients usually suffer from severe nutrition deficiency, muscle wasting, and loss of bone mass. We have previously found that silencing of a zinc transporter ZIP4 prolongs the survival and reduces the severity of the cachexia in vivo. However, the role of ZIP4 in the pancreatic cancer related bone loss remains unknown. In this study we investigated the effect of ZIP4 knockdown on the bone structure, composition and mechanical properties of femurs in an orthotopic xenograft mouse model. Our data showed that silencing of ZIP4 resulted in increased bone tissue mineral density, decreased bone crystallinity and restoration of bone strength through the RANK/RANKL pathway. The results further support the impact of ZIP4 on the progression of pancreatic cancer, and suggest its potential significance as a therapeutic target for treating patients with such devastating disease and cancer related disorders. PMID:26305676
Efficient Proximity Computation Techniques Using ZIP Code Data for Smart Cities †.
Murdani, Muhammad Harist; Kwon, Joonho; Choi, Yoon-Ho; Hong, Bonghee
2018-03-24
In this paper, we are interested in computing ZIP code proximity from two perspectives, proximity between two ZIP codes ( Ad-Hoc ) and neighborhood proximity ( Top-K ). Such a computation can be used for ZIP code-based target marketing as one of the smart city applications. A naïve approach to this computation is the usage of the distance between ZIP codes. We redefine a distance metric combining the centroid distance with the intersecting road network between ZIP codes by using a weighted sum method. Furthermore, we prove that the results of our combined approach conform to the characteristics of distance measurement. We have proposed a general and heuristic approach for computing Ad-Hoc proximity, while for computing Top-K proximity, we have proposed a general approach only. Our experimental results indicate that our approaches are verifiable and effective in reducing the execution time and search space.
Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information
2017-01-01
Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5′- and 3′-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell’s epigenome. PMID:28937658
USDA-ARS?s Scientific Manuscript database
Anthers and ovules are the sex organs that produce male and female spores, respectively. The SPOROCYTELESS (SPL)/NOZZLE (NZZ) encodes a nuclear protein controlling the sporogenesis in sex organs. However, the function of SPL in unisexual plants has never been explored, and the upstream regulators of...
VoPham, Trang; Brooks, Maria M; Yuan, Jian-Min; Talbott, Evelyn O; Ruddell, Darren; Hart, Jaime E; Chang, Chung-Chou H; Weissfeld, Joel L
2015-11-01
Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is associated with low survival. U.S. studies examining self-reported pesticide exposure in relation to HCC have demonstrated inconclusive results. We aimed to clarify the association between pesticide exposure and HCC by implementing a novel data linkage between Surveillance, Epidemiology, and End Results (SEER)-Medicare and California Pesticide Use Report (PUR) data using a geographic information system (GIS). Controls were frequency-matched to HCC cases diagnosed between 2000 and 2009 in California by year, age, race, sex, and duration of residence in California. Potential confounders were extracted from Medicare claims. From 1974 to 2008, pounds (1 pound represents 0.45 kg) of applied organophosphate, organochlorine, and carbamate pesticides provided in PURs were aggregated to the ZIP Code level using area weighting in a GIS. ZIP Code exposure estimates were linked to subjects using Medicare-provided ZIP Codes to calculate pesticide exposure. Agricultural residents were defined as living in ZIP Codes with a majority area intersecting agricultural land cover according to the 1992, 2001, and 2006 National Land Cover Database (NLCD) rasters. Multivariable conditional logistic regression was used to estimate the association between pesticide exposure and HCC. Among California residents of agriculturally intensive areas, previous annual ZIP Code-level exposure to over 14.53 kg/km(2) of organochlorine pesticides (75(th) percentile among controls) was associated with an increased risk of HCC after adjusting for liver disease and diabetes (adjusted odds ratio [OR] 1.87, 95% confidence interval [CI] 1.17, 2.99; p=0.0085). ZIP Code-level organochlorines were significantly associated with an increased risk of HCC among males (adjusted OR 2.76, 95% CI 1.58, 4.82; p=0.0004), but not associated with HCC among females (adjusted OR 0.83, 95% CI 0.35, 1.93; p=0.6600) (interaction p=0.0075). This is the first epidemiologic study to use GIS-based exposure estimates to study pesticide exposure and HCC. Our results suggest that organochlorine pesticides are associated with an increase in HCC risk among males but not females. Copyright © 2015 Elsevier Inc. All rights reserved.
VoPham, Trang; Brooks, Maria M.; Yuan, Jian-Min; Talbott, Evelyn O.; Ruddell, Darren; Hart, Jaime E.; Chang, Chung-Chou H.; Weissfeld, Joel L.
2015-01-01
Background Hepatocellular carcinoma (HCC), the most common type of primary liver cancer, is associated with low survival. U.S. studies examining self-reported pesticide exposure in relation to HCC have demonstrated inconclusive results. We aimed to clarify the association between pesticide exposure and HCC by implementing a novel data linkage between Surveillance, Epidemiology, and End Results (SEER)-Medicare and California Pesticide Use Report (PUR) data using a geographic information system (GIS). Methods Controls were frequency-matched to HCC cases diagnosed between 2000 and 2009 in California by year, age, race, sex, and duration of residence in California. Potential confounders were extracted from Medicare claims. From 1974 to 2008, pounds (1 pound represents 0.45 kg) of applied organophosphate, organochlorine, and carbamate pesticides provided in PURs were aggregated to the ZIP Code level using area weighting in a GIS. ZIP Code exposure estimates were linked to subjects using Medicare-provided ZIP Codes to calculate pesticide exposure. Agricultural residents were defined as living in ZIP Codes with a majority area intersecting agricultural land cover according to the 1992, 2001, and 2006 National Land Cover Database (NLCD) rasters. Multivariable conditional logistic regression was used to estimate the association between pesticide exposure and HCC. Results Among California residents of agriculturally intensive areas, previous annual ZIP Code-level exposure to over 14.53 kg/km2 of organochlorine pesticides (75th percentile among controls) was associated with an increased risk of HCC after adjusting for liver disease and diabetes (adjusted odds ratio [OR] 1.87, 95% confidence interval [CI] 1.17, 2.99; p=0.0085). ZIP Code-level organochlorines were significantly associated with an increased risk of HCC among males (adjusted OR 2.76, 95% CI 1.58, 4.82; p=0.0004), but not associated with HCC among females (adjusted OR 0.83, 95% CI 0.35, 1.93; p=0.6600) (interaction p=0.0075). Conclusions This is the first epidemiologic study to use GIS-based exposure estimates to study pesticide exposure and HCC. Our results suggest that organochlorine pesticides are associated with an increase in HCC risk among males but not females. PMID:26451881
Bettenhausen, Jessica L; Colvin, Jeffrey D; Berry, Jay G; Puls, Henry T; Markham, Jessica L; Plencner, Laura M; Krager, Molly K; Johnson, Matthew B; Queen, Mary Ann; Walker, Jacqueline M; Latta, Grant M; Riss, Robert R; Hall, Matt
2017-06-05
The level of income inequality (ie, the variation in median household income among households within a geographic area), in addition to family-level income, is associated with worsened health outcomes in children. To determine the influence of income inequality on pediatric hospitalization rates for ambulatory care-sensitive conditions (ACSCs) and whether income inequality affects use of resources per hospitalization for ACSCs. This retrospective, cross-sectional analysis used the 2014 State Inpatient Databases of the Healthcare Cost and Utilization Project of 14 states to evaluate all hospital discharges for patients aged 0 to 17 years (hereafter referred to as children) from January 1 through December 31, 2014. Using the 2014 American Community Survey (US Census), income inequality (Gini index; range, 0 [perfect equality] to 1.00 [perfect inequality]), median household income, and total population of children aged 0 to 17 years for each zip code in the 14 states were measured. The Gini index for zip codes was divided into quartiles for low, low-middle, high-middle, and high income inequality. Rate, length of stay, and charges for pediatric hospitalizations for ACSCs. A total of 79 275 hospitalizations for ACSCs occurred among the 21 737 661 children living in the 8375 zip codes in the 14 included states. After adjustment for median household income and state of residence, ACSC hospitalization rates per 10 000 children increased significantly as income inequality increased from low (27.2; 95% CI, 26.5-27.9) to low-middle (27.9; 95% CI, 27.4-28.5), high-middle (29.2; 95% CI, 28.6-29.7), and high (31.8; 95% CI, 31.2-32.3) categories (P < .001). A significant, clinically unimportant longer length of stay was found for high inequality (2.5 days; 95% CI, 2.4-2.5 days) compared with low inequality (2.4 days; 95% CI, 2.4-2.5 days; P < .001) zip codes and between charges ($765 difference among groups; P < .001). Children living in areas of high income inequality have higher rates of hospitalizations for ACSCs. Consideration of income inequality, in addition to income level, may provide a better understanding of the complex relationship between socioeconomic status and pediatric health outcomes for ACSCs. Efforts aimed at reducing rates of hospitalizations for ACSCs should consider focusing on areas with high income inequality.
Basic leucine zipper domain transcription factors: the vanguards in plant immunity.
Noman, Ali; Liu, Zhiqin; Aqeel, Muhammad; Zainab, Madiha; Khan, Muhammad Ifnan; Hussain, Ansar; Ashraf, Muhammad Furqan; Li, Xia; Weng, Yahong; He, Shuilin
2017-12-01
Regulation of spatio-temporal expression patterns of stress tolerance associated plant genes is an essential component of the stress responses. Eukaryotes assign a large amount of their genome to transcription with multiple transcription factors (TFs). Often, these transcription factors fit into outsized gene groups which, in several cases, exclusively belong to plants. Basic leucine zipper domain (bZIP) transcription factors regulate vital processes in plants and animals. In plants, bZIPs are implicated in numerous fundamental processes like seed development, energy balance, and responses to abiotic or biotic stresses. Systematic analysis of the information obtained over the last two decades disclosed a constitutive role of bZIPs against biotic stress. bZIP TFs are vital players in plant innate immunity due to their ability to regulate genes associated with PAMP-triggered immunity, effector-triggered immunity, and hormonal signaling networks. Expression analysis of studied bZIP genes suggests that exploration and functional characterization of novel bZIP TFs in planta is helpful in improving crop resistance against pathogens and environmental stresses. Our review focuses on major advancements in bZIP TFs and plant responses against different pathogens. The integration of genomics information with the functional studies provides new insights into the regulation of plant defense mechanisms and engineering crops with improved resistance to invading pathogens. Conclusively, succinct functions of bZIPs as positive or negative regulator mediate resistance to the plant pathogens and lay a foundation for understanding associated genes and TFs regulating different pathways. Moreover, bZIP TFs may offer a comprehensive transgenic gizmo for engineering disease resistance in plant breeding programs.
Kim, Jun Hyeok; Hyun, Woo Young; Nguyen, Hoai Nguyen; Jeong, Chan Young; Xiong, Liming; Hong, Suk-Whan; Lee, Hojoung
2015-03-01
Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that Arabidopsis AtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.
Ciaccio, Natalie A; Reynolds, T Steele; Middaugh, C Russell; Laurence, Jennifer S
2012-11-05
Protein aggregation is a major problem for biopharmaceuticals. While the control of aggregation is critically important for the future of protein pharmaceuticals, mechanisms of aggregate assembly, particularly the role that structure plays, are still poorly understood. Increasing evidence indicates that partially folded intermediates critically influence the aggregation pathway. We have previously reported the use of the basic leucine zipper (bZIP) domain of activating transcription factor 5 (ATF5) as a partially folded model system to investigate protein aggregation. This domain contains three regions with differing structural propensity: a N-terminal polybasic region, a central helical leucine zipper region, and a C-terminal extended valine zipper region. Additionally, a centrally positioned cysteine residue readily forms an intermolecular disulfide bond that reduces aggregation. Computational analysis of ATF5 predicts that the valine zipper region facilitates self-association. Here we test this hypothesis using a truncated mutant lacking the C-terminal valine zipper region. We compare the structure and aggregation of this mutant to the wild-type (WT) form under both reducing and nonreducing conditions. Our data indicate that removal of this region results in a loss of α-helical structure in the leucine zipper and a change in the mechanism of self-association. The mutant form displays increased association at low temperature but improved resistance to thermally induced aggregation.
Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway
Matsunaga, Mayu; Takeda, Taka-aki
2017-01-01
More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review. PMID:29048339
Understanding the Contribution of Zinc Transporters in the Function of the Early Secretory Pathway.
Kambe, Taiho; Matsunaga, Mayu; Takeda, Taka-Aki
2017-10-19
More than one-third of newly synthesized proteins are targeted to the early secretory pathway, which is comprised of the endoplasmic reticulum (ER), Golgi apparatus, and other intermediate compartments. The early secretory pathway plays a key role in controlling the folding, assembly, maturation, modification, trafficking, and degradation of such proteins. A considerable proportion of the secretome requires zinc as an essential factor for its structural and catalytic functions, and recent findings reveal that zinc plays a pivotal role in the function of the early secretory pathway. Hence, a disruption of zinc homeostasis and metabolism involving the early secretory pathway will lead to pathway dysregulation, resulting in various defects, including an exacerbation of homeostatic ER stress. The accumulated evidence indicates that specific members of the family of Zn transporters (ZNTs) and Zrt- and Irt-like proteins (ZIPs), which operate in the early secretory pathway, play indispensable roles in maintaining zinc homeostasis by regulating the influx and efflux of zinc. In this review, the biological functions of these transporters are discussed, focusing on recent aspects of their roles. In particular, we discuss in depth how specific ZNT transporters are employed in the activation of zinc-requiring ectoenzymes. The means by which early secretory pathway functions are controlled by zinc, mediated by specific ZNT and ZIP transporters, are also subjects of this review.
Hu, Jing; Zhou, Jiangbo; Peng, Xinxin; Xu, Henghao; Liu, Caixiang; Du, Bo; Yuan, Hongyu; Zhu, Lili; He, Guangcun
2011-01-01
We examined ways in which the Brown planthopper induced008a (Bphi008a; AY256682) gene of rice (Oryza sativa) enhances the plant’s resistance to a specialist herbivore, the brown planthopper (BPH; Nilaparvata lugens). Measurement of the expression levels of ethylene synthases and of ethylene emissions showed that BPH feeding rapidly initiated the ethylene signaling pathway and up-regulated Bphi008a transcript levels after 6 to 96 h of feeding. In contrast, blocking ethylene transduction (using 1-methylcyclopropene) reduced Bphi008a transcript levels in wild-type plants fed upon by BPH. In vitro kinase assays showed that Bphi008a can be phosphorylated by rice Mitogen-activated Protein Kinase5 (OsMPK5), and yeast two-hybrid assays demonstrated that the carboxyl-terminal proline-rich region of Bphi008a interacts directly with this kinase. Furthermore, bimolecular fluorescence complementation assays showed that this interaction occurs in the nucleus. Subsequently, we found that Bphi008a up-regulation and down-regulation were accompanied by different changes in transcription levels of OsMPK5, OsMPK12, OsMPK13, and OsMPK17 in transgenic plants. Immunoblot analysis also showed that the OsMPK5 protein level increased in overexpressing plants and decreased in RNA interference plants after BPH feeding. In transgenic lines, changes in the expression levels of several enzymes that are important components of the defenses against the BPH were also observed. Finally, yeast two-hybrid screening results showed that Bphi008a is able to interact with a b-ZIP transcription factor (OsbZIP60) and a RNA polymerase polypeptide (SDRP). PMID:21487048
When to Pull the Trigger for the Counterattack: Simplicity versus Sophistication.
1985-12-02
ADA1I67 705 WHNEN TO PULL THE TRIGGER FOR THE CO$JNTERRTTRCK: vi1 SIMPLICITY VERSUS SOPHISTICATION(U) ARMY COMMAND AND, GENERAL STAFF COLL FORT...Adv’affied Military Studie SU.S. Army Command and General Staff College Fort Leavenworth, Kansas 2 December 1985 Approved ror Public Release: Distribution...OF MONITORING ORGANIZAl ION O~US ARMY CMD1AN’D AND GENERAL If JT -10ab 6C. ADD)RESS (City. State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP
Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine.
Tang, Y; Ghirlanda, G; Vaidehi, N; Kua, J; Mainz, D T; Goddard III, W A; DeGrado, W F; Tirrell, D A
2001-03-06
Substitution of leucine residues by 5,5,5-trifluoroleucine at the d-positions of the leucine zipper peptide GCN4-p1d increases the thermal stability of the coiled-coil structure. The midpoint thermal unfolding temperature of the fluorinated peptide is elevated by 13 degrees C at 30 microM peptide concentration. The modified peptide is more resistant to chaotropic denaturants, and the free energy of folding of the fluorinated peptide is 0.5-1.2 kcal/mol larger than that of the hydrogenated form. A similarly fluorinated form of the DNA-binding peptide GCN4-bZip binds to target DNA sequences with affinity and specificity identical to those of the hydrogenated form, while demonstrating enhanced thermal stability. Molecular dynamics simulation on the fluorinated GCN4-p1d peptide using the Surface Generalized Born implicit solvation model revealed that the coiled-coil binding energy is 55% more favorable upon fluorination. These results suggest that fluorination of hydrophobic substructures in peptides and proteins may provide new means of increasing protein stability, enhancing protein assembly, and strengthening receptor-ligand interactions.
Erickson, Steven R; Workman, Paul
2014-01-01
To document the availability of selected pharmacy services and out-of-pocket cost of medication throughout a diverse county in Michigan and to assess possible associations between availability of services and price of medication and characteristics of residents of the ZIP codes in which the pharmacies were located. Cross-sectional telephone survey of pharmacies coupled with ZIP code-level census data. 503 pharmacies throughout the 63 ZIP codes of Wayne County, MI. The out-of-pocket cost for a 30 days' supply of levothyroxine 50 mcg and brand-name atorvastatin (Lipitor-Pfizer) 20 mg, availability of discount generic drug programs, home delivery of medications, hours of pharmacy operation, and availability of pharmacy-based immunization services. Census data aggregated at the ZIP code level included race, annual household income, age, and number of residents per pharmacy. The overall results per ZIP code showed that the average cost for levothyroxine was $10.01 ± $2.29 and $140.45 + $14.70 for Lipitor. Per ZIP code, the mean (± SD) percentages of pharmacies offering discount generic drug programs was 66.9% ± 15.0%; home delivery of medications was 44.5% ± 22.7%; and immunization for influenza was 46.7% ± 24.3% of pharmacies. The mean (± SD) hours of operation per pharmacy per ZIP code was 67.0 ± 25.2. ZIP codes with higher household income as well as higher percentage of residents being white had lower levothyroxine price, greater percentage of pharmacies offering discount generic drug programs, more hours of operation per week, and more pharmacy-based immunization services. The cost of Lipitor was not associated with any ZIP code characteristic. Disparities in the cost of generic levothyroxine, the availability of services such as discount generic drug programs, hours of operation, and pharmacy-based immunization services are evident based on race and household income within this diverse metropolitan county.
Beaubois, Elisabeth; Girard, Sebastien; Lallechere, Sebastien; Davies, Eric; Paladian, Françoise; Bonnet, Pierre; Ledoigt, Gerard; Vian, Alain
2007-07-01
Exposing all of a wild-type tomato plant to electromagnetic radiation evoked rapid and substantial accumulation of basic leucine-zipper transcription factor (bZIP) mRNA in the terminal leaf (#4) with kinetics very similar to that seen in response to wounding, while in the abscisic acid (ABA) mutant (Sitiens), the response was more rapid, but transient. Submitting just the oldest leaf (#1) of a wild-type plant to irradiation evoked bZIP mRNA accumulation both locally in the exposed leaf and systemically in the unexposed (distant) leaf #4, although systemic accumulation was delayed somewhat. Accumulation of Pin2 mRNA was less than bZIP in both the exposed and distant leaves in wild type, but there was no delay in the systemic response. In Sitiens, bZIP mRNA accumulation was far less than in wild type in both local and distant leaves, while Pin2 mRNA accumulation was stronger in the exposed leaf, but totally prevented in the systemic leaf. In the jasmonic acid (JA) mutant (JL-5) and in wild-type plants treated with the ABA biosynthesis inhibitor, naproxen, responses were similar to those in the ABA mutant, while treatment of the exposed leaf with calcium antagonists totally abolished both local and systemic increases in bZIP transcript accumulation.
Berkowitz, Seth A; Traore, Carine Y; Singer, Daniel E; Atlas, Steven J
2015-01-01
Objective To determine which area-based socioeconomic status (SES) indicator is best suited to monitor health care disparities from a delivery system perspective. Data Sources/Study Setting 142,659 adults seen in a primary care network from January 1, 2009 to December 31, 2011. Study Design Cross-sectional, comparing associations between area-based SES indicators and patient outcomes. Data Collection Address data were geocoded to construct area-based SES indicators at block group (BG), census tract (CT), and ZIP code (ZIP) levels. Data on health outcomes were abstracted from electronic records. Relative indices of inequality (RIIs) were calculated to quantify disparities detected by area-based SES indicators and compared to RIIs from self-reported educational attainment. Principal Findings ZIP indicators had less missing data than BG or CT indicators (p < .0001). Area-based SES indicators were strongly associated with self-report educational attainment (p < .0001). ZIP, BG, and CT indicators all detected expected SES gradients in health outcomes similarly. Single-item, cut point defined indicators performed as well as multidimensional indices and quantile indicators. Conclusions Area-based SES indicators detected health outcome differences well and may be useful for monitoring disparities within health care systems. Our preferred indicator was ZIP-level median household income or percent poverty, using cut points. PMID:25219917
Mechanisms of Temporal Pattern Discrimination by Human Observers
1994-02-15
Research Center Department of Psychology University of Florida Gainesville, Florida 32611 15 February 1994 Final Technical Report for Period 1 October 1990...Center tfpdCbE Department of Psychology ________ AFOSR/NL Gr. &OORESS (City. Stteco and ZIP Code) 7b. ADDRESS (City’. State and ZIP Code) University of...contrasting novice and experienced performance. Journal of Experimental Psychology : Human Perception and Performance, 18, 50-71. Berg, B. G. (1989). Analysis
... Carolina South Dakota Tennessee Texas Utah Vermont Virgin Islands Virginia Washington West Virginia Wisconsin Wyoming Yukon Territory Zip / Postal Code: The closest podiatrist may not be in your zip code. Please use the mile radius search OR enter just the first 3 digits of your zip code to find the ...
Poverty, Transportation Access, and Medication Nonadherence.
Hensley, Caroline; Heaton, Pamela C; Kahn, Robert S; Luder, Heidi R; Frede, Stacey M; Beck, Andrew F
2018-04-01
Variability in primary medication nonadherence (PMN), or failure to fill a new prescription, influences disparities and widens equity gaps. This study sought to evaluate PMN across 1 metropolitan area and assess relationships with underlying zip code-level measures. This was a retrospective observational study using data extracted from 1 regional community pharmacy market-share leader (October 2016-April 2017). Data included patient age, sex, payer, medication type, and home zip code. This zip code was connected to US census measures enumerating poverty and vehicle access, which were treated as continuous variables and within quintiles. The prescription-level outcome was whether prescriptions were not filled within 30 days of reaching the pharmacy. The ecological-level outcome was PMN calculated for each zip code (numerator, unfilled prescriptions; denominator, received prescriptions). There were 213 719 prescriptions received by 54 included pharmacies; 12.2% were unfilled. Older children, boys, and those with public insurance were more likely to have prescriptions not filled. Prescriptions originating from the highest poverty quintile were significantly more likely to not be filled than those from the lowest poverty quintile (adjusted odds ratio 1.60; 95% confidence interval 1.52-1.69); a similar pattern was noted for vehicle access (adjusted odds ratio 1.77; 95% confidence interval 1.68-1.87). At the ecological level, there were significant, graded relationships between PMN rates and poverty and vehicle access (both P < .0001); these gradients extended across all medication classes. Poverty and vehicle access are related to significant differences in prescription- and ecological-level PMN across 1 metropolitan area. Pharmacists and pharmacies can be key partners in population health efforts. Copyright © 2018 by the American Academy of Pediatrics.
Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim
2016-07-01
The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.
Manifestations of poverty and birthrates among young teenagers in California zip code areas.
Kirby, D; Coyle, K; Gould, J B
2001-01-01
Given that many communities are implementing community-wide initiatives to reduce teenage pregnancy or childbearing, it is important to understand the effects of a community's characteristics on adolescent birthrates. Data from the 1990 census and from California birth certificates were obtained for zip codes in California. Regression analyses were conducted on data from zip code areas with at least 200 females aged 15-17 between 1991 and 1996, to predict the effects of race and ethnicity marital status, education, employment, income and poverty, and housing on birthrates among young teenagers. In bivariate analyses, the proportion of families living below poverty level within a zip code was highly related to the birthrate among young teenagers in that zip code (r=.80, p<.001). In multivariate analyses, which controlled for some of the correlates of family poverty level, the proportion of families living below poverty level remained by far the most important predictor of the birthrate among young teenagers (b=1.54), followed by the proportion of adults aged 25 or older who have a college education (b=-0.80). Race and ethnicity were only weakly related to birthrate. In all three racial and ethnic groups, poverty and education were significantly related to birthrate, but the effect of college education was greater among Hispanics (b=-2.98) than among either non-Hispanic whites (b=-0.53) or blacks (b=-1.12). Male employment and unemployment and female unemployment were highly related to the birthrate among young teenagers in some racial or ethnic groups, but not in others. Multiple manifestations of poverty, including poverty itself, low levels of education and employment, and high levels of unemployment, may have a large impact upon birthrates among young teenagers. Addressing some of these issues could substantially reduce childbearing among young adolescents.
Nika, Heinz; Hawke, David H.; Angeletti, Ruth Hogue
2014-01-01
A sample preparation method for protein C-terminal peptide isolation from cyanogen bromide (CNBr) digests has been developed. In this strategy, the analyte was reduced and carboxyamidomethylated, followed by CNBr cleavage in a one-pot reaction scheme. The digest was then adsorbed on ZipTipC18 pipette tips for conjugation of the homoserine lactone-terminated peptides with 2,2′-dithiobis (ethylamine) dihydrochloride, followed by reductive release of 2-aminoethanethiol from the derivatives. The thiol-functionalized internal and N-terminal peptides were scavenged on activated thiol sepharose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were replaced directly on the support, allowing the reactions to proceed at minimal sample loss. By this sequence of solid-phase reactions, the C-terminal peptide could be recognized uniquely in mass spectra of unfractionated digests by its unaltered mass signature. The use of the sample preparation method was demonstrated with low-level amounts of a whole, intact model protein. The C-terminal fragments were retrieved selectively and efficiently from the affinity support. The use of covalent chromatography for C-terminal peptide purification enabled recovery of the depleted material for further chemical and/or enzymatic manipulation. The sample preparation method provides for robustness and simplicity of operation and is anticipated to be expanded to gel-separated proteins and in a scaled-up format to high-throughput protein profiling in complex biological mixtures. PMID:24688319
Variation in Drug Prices at Pharmacies: Are Prices Higher in Poorer Areas?
Gellad, Walid F; Choudhry, Niteesh K; Friedberg, Mark W; Brookhart, M Alan; Haas, Jennifer S; Shrank, William H
2009-01-01
Objective To determine whether retail prices for prescription drugs are higher in poorer areas. Data Sources The MyFloridarx.com website, which provides retail prescription prices at Florida pharmacies, and median ZIP code income from the 2000 Census. Study Design We compared mean pharmacy prices for each of the four study drugs across ZIP code income groups. Pharmacies were classified as either chain pharmacies or independent pharmacies. Data Collection Prices were downloaded in November 2006. Principal Findings Across the four study drugs, mean prices were highest in the poorest ZIP codes: 9 percent above the statewide average. Independent pharmacies in the poorest ZIP codes charged the highest mean prices. Conclusions Retail prescription prices appear to be higher in poorer ZIP codes of Florida. PMID:19178584
Hahn, Mark E.; Timme-Laragy, Alicia R.; Karchner, Sibel I.; Stegeman, John J.
2015-01-01
Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. PMID:26130508
Vertical Windshear Below 5.5 Kilometers in the Vicinity of Berlin, Germany.
1986-08-01
DIRECTORATE- L LEVITT ET AL . UNCL~ASSFE UG 66 AMSMI/TR-RD-RE-96-9 SBIAD-E951 031 F/G 4/2 N smmmmhhhhhm moommhmhhhuo im -~ L L0 MICROCOPY RESOLUTION TEST...AD-RI82 432 VERTICAL NINDSHEAR BELOW 55 KILOMETERS IN THE VICINITY 1/1 OF BERLIN GERMANY..(U) ARMY MISSILE COMMAND REDSTONE ARSENAL AL RESEARCH...ADDRESS (City, State, an ZIP Code) 7b ADDRESS (City, State, and ZIP Code) Comunder US Army Missile Coeypini ATTN4: AISMI-RO-RE Redstone Arsenal,* AL 35898
2008-08-21
Yuma Proving Ground Open Field ............................................................................... 76 B.3.1 Response Stage... Yuma Proving Ground ZIP (250) Iomega ZIP disk (250 MB version) xv ACKNOWLEDGEMENTS Glenn Harbaugh and Daniel Steinhurst (P.I.) of Nova Research...sites at Aberdeen Proving Ground and Yuma Proving Ground in 2003 and 2004 [6]. At each of the sites, the Calibration Lanes, the Blind Test Grid
Solar Data | Geospatial Data Science | NREL
System Name: WGS_1984 Coverage File Last Updated Metadata KMZ File Lower 48 and Hawaii DNI 10-km Resolution 1998-2009 Zip 9.6 MB 09/12/2012 Direct Normal.xml Direct Normal.kmz Lower 48 and Hawaii GHI 10-km : GCS_North_American_1983 Coverage File Last Updated Metadata KMZ File Lower 48 DNI 10-km Resolution 1998-2005 Zip 9.1 MB 12
ERIC Educational Resources Information Center
Shirazi, Annmarie
These two reports analyze enrollments at Oklahoma City Community College (OCCC) by zip code between fall 1982 and fall 1984, by student major between spring 1981 and spring 1985, and by student educational goals for spring 1985. Highlighted findings include the following: (1) the enrollment from Oklahoma City showed a steady decline in terms of…
ARES: A System for Real-Time Operational and Tactical Decision Support
1986-12-01
In B]LE LCLGf. 9 NAVAL POSTGRADUATE SCHOOL Monterey, California Vi,-. %*.. THESIS - ’ A RE S A SYSTEM -OR REAL- 1I I .-.. --- OPERATIONAL AND...able) aval Postgraduate School 54 Naval Postgraduate School NN DRESS (City,. State,. and ZIP Code) 7b ADDRESS (City,. State,. and ZIP Code...SUBJECT TERMS (Continue on reverse if necessaty and identify by block number) LD GROUP SUB-GROUP Decision Support System, Logistics Model, Operational
NASA Astrophysics Data System (ADS)
Choi, Sam B.; Lombard-Banek, Camille; Muñoz-LLancao, Pablo; Manzini, M. Chiara; Nemes, Peter
2018-05-01
The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An 1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates 274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to 57%. From 1 ng of protein digest (<5 neurons), CE with RP fractionation identified 737 protein groups (1,753 peptides), or 480 protein groups ( 1,650 peptides) on average per analysis. The approach was scalable to 500 pg of protein digest ( a single neuron), identifying 225 protein groups (623 peptides) in technical triplicates, or 141 protein groups on average per analysis. Among identified proteins, 101 proteins were products of genes that are known to be transcriptionally active in single neurons during early development of the brain, including those involved in synaptic transmission and plasticity and cytoskeletal organization. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Choi, Sam B.; Lombard-Banek, Camille; Muñoz-LLancao, Pablo; Manzini, M. Chiara; Nemes, Peter
2017-11-01
The ability to detect peptides and proteins in single cells is vital for understanding cell heterogeneity in the nervous system. Capillary electrophoresis (CE) nanoelectrospray ionization (nanoESI) provides high-resolution mass spectrometry (HRMS) with trace-level sensitivity, but compressed separation during CE challenges protein identification by tandem HRMS with limited MS/MS duty cycle. Here, we supplemented ultrasensitive CE-nanoESI-HRMS with reversed-phase (RP) fractionation to enhance identifications from protein digest amounts that approximate to a few mammalian neurons. An 1 to 20 μg neuronal protein digest was fractionated on a RP column (ZipTip), and 1 ng to 500 pg of peptides were analyzed by a custom-built CE-HRMS system. Compared with the control (no fractionation), RP fractionation improved CE separation (theoretical plates 274,000 versus 412,000 maximum, resp.), which enhanced detection sensitivity (2.5-fold higher signal-to-noise ratio), minimized co-isolation spectral interferences during MS/MS, and increased the temporal rate of peptide identification by up to 57%. From 1 ng of protein digest (<5 neurons), CE with RP fractionation identified 737 protein groups (1,753 peptides), or 480 protein groups ( 1,650 peptides) on average per analysis. The approach was scalable to 500 pg of protein digest ( a single neuron), identifying 225 protein groups (623 peptides) in technical triplicates, or 141 protein groups on average per analysis. Among identified proteins, 101 proteins were products of genes that are known to be transcriptionally active in single neurons during early development of the brain, including those involved in synaptic transmission and plasticity and cytoskeletal organization. [Figure not available: see fulltext.
Zipping dielectric elastomer actuators: characterization, design and modeling
NASA Astrophysics Data System (ADS)
Maffli, L.; Rosset, S.; Shea, H. R.
2013-10-01
We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.
Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles
NASA Astrophysics Data System (ADS)
Mini, C.; Hogue, T. S.; Pincetl, S.
2012-04-01
Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A genetic algorithm based model (Shuffled Complex Evolution-UA; SCE-UA) is also being developed to provide estimates of the predictions and parameters uncertainties and to compare against the linear regression models. Ultimately, models will be selected to undertake predictions for a range of climate change and landscape scenarios. Finally, project results will contribute to a better understanding of water demand to help predict future water use and implement targeted landscaping conservation programs to maintain sustainable water needs for a growing population under uncertain climate variability.
Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii.
Wakao, Setsuko; Chin, Brian L; Ledford, Heidi K; Dent, Rachel M; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Niyogi, Krishna K
2014-05-23
Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.DOI: http://dx.doi.org/10.7554/eLife.02286.001. Copyright © 2014, Wakao et al.
Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.
Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P
1998-01-01
The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery. PMID:9811800
Cooperative DNA binding and sequence discrimination by the Opaque2 bZIP factor.
Yunes, J A; Vettore, A L; da Silva, M J; Leite, A; Arruda, P
1998-11-01
The maize Opaque2 (O2) protein is a basic leucine zipper transcription factor that controls the expression of distinct classes of endosperm genes through the recognition of different cis-acting elements in their promoters. The O2 target region in the promoter of the alpha-coixin gene was analyzed in detail and shown to comprise two closely adjacent binding sites, named O2u and O2d, which are related in sequence to the GCN4 binding site. Quantitative DNase footprint analysis indicated that O2 binding to alpha-coixin target sites is best described by a cooperative model. Transient expression assays showed that the two adjacent sites act synergistically. This synergy is mediated in part by cooperative DNA binding. In tobacco protoplasts, O2 binding at the O2u site is more important for enhancer activity than is binding at the O2d site, suggesting that the architecture of the O2-DNA complex is important for interaction with the transcriptional machinery.
Determination of SPEAR-1 Rocket Body Potential during High-Voltage Experiments
1990-06-01
California at San Diego La Jolla, CA 92093 10 . Dr. C. E. McIlwain Center for Astrophysics and Space Science University of California at San Diego La Jolla...Postgraduate School 39 Naval Postgraduate School 6c. ADDRESS (City, S:are, and ZIP Code) 7b. ADDRESS (Ciy, State, and ZIP Code) Monterey. CA 93943-5000...Monterey. CA 93943-5000 8a. NAME OF FUNDING.SPONSORING 80. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable
Itoh, Jun-Ichi; Hibara, Ken-Ichiro; Sato, Yutaka; Nagato, Yasuo
2008-01-01
Members of the Class III homeodomain leucine zipper (Class III HD-Zip) gene family are central regulators of crucial aspects of plant development. To better understand the roles of five Class III HD-Zip genes in rice (Oryza sativa) development, we investigated their expression patterns, ectopic expression phenotypes, and auxin responsiveness. Four genes, OSHB1 to OSHB4, were expressed in a localized domain of the shoot apical meristem (SAM), the adaxial cells of leaf primordia, the leaf margins, and the xylem tissue of vascular bundles. In contrast, expression of OSHB5 was observed only in phloem tissue. Plants ectopically expressing microRNA166-resistant versions of the OSHB3 gene exhibited severe defects, including the ectopic production of leaf margins, shoots, and radialized leaves. The treatment of seedlings with auxin quickly induced ectopic OSHB3 expression in the entire region of the SAM, but not in other tissues. Furthermore, this ectopic expression of OSHB3 was correlated with leaf initiation defects. Our findings suggest that rice Class III HD-Zip genes have conserved functions with their homologs in Arabidopsis (Arabidopsis thaliana), but have also acquired specific developmental roles in grasses or monocots. In addition, some Class III HD-Zip genes may regulate the leaf initiation process in the SAM in an auxin-dependent manner. PMID:18567825
USDA-ARS?s Scientific Manuscript database
The homeodomain leucine zipper (HD-Zip) transcription factor family is one of the largest plant specific superfamilies, and includes genes with roles in modulation of plant growth and response to environmental stresses. Many HD-Zip genes are well characterized in Arabidopsis (Arabidopsis thaliana), ...
USDA-ARS?s Scientific Manuscript database
Basic leucine zipper (bZIP) genes are known to play dominant roles in plant response to development signals, as well as abiotic or biotic stress stimuli. Fifty bZIP genes across the woodland strawberry (Fragaria vesca) genome were identified and analyzed. They can be divided into 10 clades according...
Uno, Yuichi; Furihata, Takashi; Abe, Hiroshi; Yoshida, Riichiro; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2000-01-01
The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins. PMID:11005831
Uno, Y; Furihata, T; Abe, H; Yoshida, R; Shinozaki, K; Yamaguchi-Shinozaki, K
2000-10-10
The induction of the dehydration-responsive Arabidopsis gene, rd29B, is mediated mainly by abscisic acid (ABA). Promoter analysis of rd29B indicated that two ABA-responsive elements (ABREs) are required for the dehydration-responsive expression of rd29B as cis-acting elements. Three cDNAs encoding basic leucine zipper (bZIP)-type ABRE-binding proteins were isolated by using the yeast one-hybrid system and were designated AREB1, AREB2, and AREB3 (ABA-responsive element binding protein). Transcription of the AREB1 and AREB2 genes is up-regulated by drought, NaCl, and ABA treatment in vegetative tissues. In a transient transactivation experiment using Arabidopsis leaf protoplasts, both the AREB1 and AREB2 proteins activated transcription of a reporter gene driven by ABRE. AREB1 and AREB2 required ABA for their activation, because their transactivation activities were repressed in aba2 and abi1 mutants and enhanced in an era1 mutant. Activation of AREBs by ABA was suppressed by protein kinase inhibitors. These results suggest that both AREB1 and AREB2 function as transcriptional activators in the ABA-inducible expression of rd29B, and further that ABA-dependent posttranscriptional activation of AREB1 and AREB2, probably by phosphorylation, is necessary for their maximum activation by ABA. Using cultured Arabidopsis cells, we demonstrated that a specific ABA-activated protein kinase of 42-kDa phosphorylated conserved N-terminal regions in the AREB proteins.
Moe, Christine L.; Klein, Mitchel; Flanders, W. Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E.
2013-01-01
We examined whether the average water residence time, the time it takes water to travel from the treatment plant to the user, for a zip code was related to the proportion of emergency department (ED) visits for gastrointestinal (GI) illness among residents of that zip code. Individual-level ED data were collected from all hospitals located in the five-county metro Atlanta area from 1993 to 2004. Two of the largest water utilities in the area, together serving 1.7 million people, were considered. People served by these utilities had almost three million total ED visits, 164,937 of them for GI illness. The relationship between water residence time and risk for GI illness was assessed using logistic regression, controlling for potential confounding factors, including patient age and markers of socioeconomic status (SES). We observed a modestly increased risk for GI illness for residents of zip codes with the longest water residence times compared to intermediate residence times (odds ratio (OR) for Utility 1 = 1.07, 95% confidence interval (CI) = 1.03, 1.10; OR for Utility 2 = 1.05, 95% CI = 1.02, 1.08). The results suggest that drinking water contamination in the distribution system may contribute to the burden of endemic GI illness. PMID:19240359
Tinker, Sarah C; Moe, Christine L; Klein, Mitchel; Flanders, W Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E
2009-06-01
We examined whether the average water residence time, the time it takes water to travel from the treatment plant to the user, for a zip code was related to the proportion of emergency department (ED) visits for gastrointestinal (GI) illness among residents of that zip code. Individual-level ED data were collected from all hospitals located in the five-county metro Atlanta area from 1993 to 2004. Two of the largest water utilities in the area, together serving 1.7 million people, were considered. People served by these utilities had almost 3 million total ED visits, 164,937 of them for GI illness. The relationship between water residence time and risk for GI illness was assessed using logistic regression, controlling for potential confounding factors, including patient age and markers of socioeconomic status (SES). We observed a modestly increased risk for GI illness for residents of zip codes with the longest water residence times compared with intermediate residence times (odds ratio (OR) for Utility 1 = 1.07, 95% confidence interval (CI) = 1.03, 1.10; OR for Utility 2 = 1.05, 95% CI = 1.02, 1.08). The results suggest that drinking water contamination in the distribution system may contribute to the burden of endemic GI illness.
Des Jarlais, D C; Cooper, H L F; Arasteh, K; Feelemyer, J; McKnight, C; Ross, Z
2018-01-01
We identified potential geographic "hotspots" for drug-injecting transmission of HIV and hepatitis C virus (HCV) among persons who inject drugs (PWID) in New York City. The HIV epidemic among PWID is currently in an "end of the epidemic" stage, while HCV is in a continuing, high prevalence (> 50%) stage. We recruited 910 PWID entering Mount Sinai Beth Israel substance use treatment programs from 2011-2015. Structured interviews and HIV/ HCV testing were conducted. Residential ZIP codes were used as geographic units of analysis. Potential "hotspots" for HIV and HCV transmission were defined as 1) having relatively large numbers of PWID 2) having 2 or more HIV (or HCV) seropositive PWID reporting transmission risk-passing on used syringes to others, and 3) having 2 or more HIV (or HCV) seronegative PWID reporting acquisition risk-injecting with previously used needles/syringes. Hotspots for injecting drug use initiation were defined as ZIP codes with 5 or more persons who began injecting within the previous 6 years. Among PWID, 96% injected heroin, 81% male, 34% White, 15% African-American, 47% Latinx, mean age 40 (SD = 10), 7% HIV seropositive, 62% HCV seropositive. Participants resided in 234 ZIP codes. No ZIP codes were identified as potential hotspots due to small numbers of HIV seropositive PWID reporting transmission risk. Four ZIP codes were identified as potential hotspots for HCV transmission. 12 ZIP codes identified as hotspots for injecting drug use initiation. For HIV, the lack of potential hotspots is further validation of widespread effectiveness of efforts to reduce injecting-related HIV transmission. Injecting-related HIV transmission is likely to be a rare, random event. HCV prevention efforts should include focus on potential hotspots for transmission and on hotspots for initiation into injecting drug use. We consider application of methods for the current opioid epidemic in the US.
Octanol-assisted liposome assembly on chip
Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees
2016-01-01
Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5–20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells. PMID:26794442
Octanol-assisted liposome assembly on chip.
Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E C; Dekker, Cees
2016-01-22
Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.
Octanol-assisted liposome assembly on chip
NASA Astrophysics Data System (ADS)
Deshpande, Siddharth; Caspi, Yaron; Meijering, Anna E. C.; Dekker, Cees
2016-01-01
Liposomes are versatile supramolecular assemblies widely used in basic and applied sciences. Here we present a novel microfluidics-based method, octanol-assisted liposome assembly (OLA), to form monodisperse, cell-sized (5-20 μm), unilamellar liposomes with excellent encapsulation efficiency. Akin to bubble blowing, an inner aqueous phase and a surrounding lipid-carrying 1-octanol phase is pinched off by outer fluid streams. Such hydrodynamic flow focusing results in double-emulsion droplets that spontaneously develop a side-connected 1-octanol pocket. Owing to interfacial energy minimization, the pocket splits off to yield fully assembled solvent-free liposomes within minutes. This solves the long-standing fundamental problem of prolonged presence of residual oil in the liposome bilayer. We demonstrate the unilamellarity of liposomes with functional α-haemolysin protein pores in the membrane and validate the biocompatibility by inner leaflet localization of bacterial divisome proteins (FtsZ and ZipA). OLA offers a versatile platform for future analytical tools, delivery systems, nanoreactors and synthetic cells.
Juan Du; Eriko Miura; Marcel Robischon; Ciera Martinez; Andrew Groover
2011-01-01
The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, ...
Nam, Yoonjae; Kwon, Kyonghee H; Lee, Sungjoon
2010-04-01
In an IDTV environment, which facilitates self-scheduling, skipping advertisements by zipping is an emerging ad-avoidance behavior. This study explores whether an alternative ad format, called simultaneous presentation advertising (SPA), may overcome the limitations of classical sequential advertising (CSA) in controlling zipping behavior and increasing the effectiveness of ads. The experiment revealed that SPA is more effective than CSA in reducing zipping and increasing recall, but SPA was more intrusive and produced a negative product image. There was no difference regarding cognitive avoidance. This work discusses the implications of these findings in the interactive media environment.
Applications of Functional Analytic and Martingale Methods to Problems in Queueing Network Theory.
1983-05-14
8217’") Air Force Office of Scientific Research Sf. ADDRESS (Cllty. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code) Directorate of Mathematical... Scientific Report on Air Force Grant #82-0167 Principal Investigator: Professor Walter A. Rosenkrantz I. Publications (1) Calculation of the LaPlace transform...whether or not a protocol for accessing a comunications channel is stable. In AFOSR 82-0167, Report No. 3 we showed that the SLOTTED ALOHA Multi access
Preparation and Use of Liposomes in Immunological Studies
1993-01-01
SYMBOL MFI RO W 0 E FANIZATION Division of Bioctmnistry El O9V09W399 6c. ADDRESS (City, State, and ZIP Code). DRESS(Ci State, and ZIP Code) "Walter Reed...Anuv Institute of Research 1 A Washington. DC 20307-5100 oC" 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION...12a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL OD Form 1473, JUN 86 Previous editions are obsolete
Problem-Solving Under Time Constraints: Alternatives for the Commander’s Estimate
1990-03-26
CHOOL OF ADVANCED MILITAR (If applicable) STUDIES, USAC&GSC IATZL-SWV 6. ADDRESS (City, State, and ZIP Code ) 7b. ADDRESS (City, State, and ZIP Code ...NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP DECISIONJ*MAKING...OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code ) 122c. OFFICE SYMBOL MAJ TIMOTHY D. LYNCH 9 684-3437 1 AT71-.qWV DO Form 1473, JUN 86
Fiber Optic Microsensor for Receptor-Based Assays
1988-09-01
MONITORING ORGANIZATION ORDInc.(if applicable ) 6c. ADDRESS (CWty Sta~te, and ZIP code) 7b. ADDRESS (City, State, an~d ZIP=Cd) Nahant, MA 019081 Sa, NAME OF...yield B-PE B-phycoerythrin 545 575 2,410,000 0.98 R-PE R-phycoerythrin 565 578 11960,000 0.68 CPC C- phycocyanine 620 650 1,690,000 0.51 A-PC...efficient transfer occurred for unit magnification. Figure 3 shows the optical design. Evaluation of the instrument was done with both A- phycocyanine
1989-03-01
VENEZUELAN EQUINE ENCEPHALOMYELITIS: NATURAL INFECTION AND IMMUNIZATION PRINCIPAL INVESTIGATOR: Renata J. Engler CONTRACTING ORGANIZATION: Uniformed Services...University of Health Sciences 4301 Jones Bridges Road Bethesda, MD 20814-4799 DTIC REPORT DATE: March 1, 1989 E T E MAR0 6 1990 TYPE OF REPORT...University (if applicable) of Health Sciences I 6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 4301 Jones Bridges Road
HTLV-1 HBZ Viral Protein: A Key Player in HTLV-1 Mediated Diseases.
Baratella, Marco; Forlani, Greta; Accolla, Roberto S
2017-01-01
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus that has infected 10-15 million people worldwide. After a long latency, 3-5% of infected individuals will develop either a severe malignancy of CD4+ T cells, known as Adult T-cell Leukemia (ATL) or a chronic and progressive inflammatory disease of the nervous system designated Tropical Spastic Paraparesis/HTLV-1-Associated Myelopathy (HAM/TSP). The precise mechanism behind HTLV-1 pathogenesis still remains elusive. Two viral regulatory proteins, Tax-1 and HTLV-1 bZIP factor (HBZ) are thought to play a critical role in HTLV-1-associated diseases. Tax-1 is mainly involved in the onset of neoplastic transformation and in elicitation of the host's inflammatory responses; its expression may be lost during cell clonal proliferation and oncogenesis. Conversely, HBZ remains constantly expressed in all patients with ATL, playing a role in the proliferation and maintenance of leukemic cells. Recent studies have shown that the subcellular distribution of HBZ protein differs in the two pathologies: it is nuclear with a speckled-like pattern in leukemic cells and is cytoplasmic in cells from HAM/TSP patients. Thus, HBZ expression and distribution could be critical in the progression of HTLV-1 infection versus the leukemic state or the inflammatory disease. Here, we reviewed recent findings on the role of HBZ in HTLV-1 related diseases, highlighting the new perspectives open by the possibility of studying the physiologic expression of endogenous protein in primary infected cells.
Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning.
Ursache, Robertas; Miyashima, Shunsuke; Chen, Qingguo; Vatén, Anne; Nakajima, Keiji; Carlsbecker, Annelie; Zhao, Yunde; Helariutta, Ykä; Dettmer, Jan
2014-03-01
The development and growth of higher plants is highly dependent on the conduction of water and minerals throughout the plant by xylem vessels. In Arabidopsis roots the xylem is organized as an axis of cell files with two distinct cell fates: the central metaxylem and the peripheral protoxylem. During vascular development, high and low expression levels of the class III HD-ZIP transcription factors promote metaxylem and protoxylem identities, respectively. Protoxylem specification is determined by both mobile, ground tissue-emanating miRNA165/6 species, which downregulate, and auxin concentrated by polar transport, which promotes HD-ZIP III expression. However, the factors promoting high HD-ZIP III expression for metaxylem identity have remained elusive. We show here that auxin biosynthesis promotes HD-ZIP III expression and metaxylem specification. Several auxin biosynthesis genes are expressed in the outer layers surrounding the vascular tissue in Arabidopsis root and downregulation of HD-ZIP III expression accompanied by specific defects in metaxylem development is seen in auxin biosynthesis mutants, such as trp2-12, wei8 tar2 or a quintuple yucca mutant, and in plants treated with L-kynurenine, a pharmacological inhibitor of auxin biosynthesis. Some of the patterning defects can be suppressed by synthetically elevated HD-ZIP III expression. Taken together, our results indicate that polar auxin transport, which was earlier shown to be required for protoxylem formation, is not sufficient to establish a proper xylem axis but that root-based auxin biosynthesis is additionally required.
Hu, Jing; Zhou, Jiangbo; Peng, Xinxin; Xu, Henghao; Liu, Caixiang; Du, Bo; Yuan, Hongyu; Zhu, Lili; He, Guangcun
2011-06-01
We examined ways in which the Brown planthopper induced008a (Bphi008a; AY256682) gene of rice (Oryza sativa) enhances the plant's resistance to a specialist herbivore, the brown planthopper (BPH; Nilaparvata lugens). Measurement of the expression levels of ethylene synthases and of ethylene emissions showed that BPH feeding rapidly initiated the ethylene signaling pathway and up-regulated Bphi008a transcript levels after 6 to 96 h of feeding. In contrast, blocking ethylene transduction (using 1-methylcyclopropene) reduced Bphi008a transcript levels in wild-type plants fed upon by BPH. In vitro kinase assays showed that Bphi008a can be phosphorylated by rice Mitogen-activated Protein Kinase5 (OsMPK5), and yeast two-hybrid assays demonstrated that the carboxyl-terminal proline-rich region of Bphi008a interacts directly with this kinase. Furthermore, bimolecular fluorescence complementation assays showed that this interaction occurs in the nucleus. Subsequently, we found that Bphi008a up-regulation and down-regulation were accompanied by different changes in transcription levels of OsMPK5, OsMPK12, OsMPK13, and OsMPK17 in transgenic plants. Immunoblot analysis also showed that the OsMPK5 protein level increased in overexpressing plants and decreased in RNA interference plants after BPH feeding. In transgenic lines, changes in the expression levels of several enzymes that are important components of the defenses against the BPH were also observed. Finally, yeast two-hybrid screening results showed that Bphi008a is able to interact with a b-ZIP transcription factor (OsbZIP60) and a RNA polymerase polypeptide (SDRP).
Neighborhood walkability and active travel (walking and cycling) in New York City.
Freeman, Lance; Neckerman, Kathryn; Schwartz-Soicher, Ofira; Quinn, James; Richards, Catherine; Bader, Michael D M; Lovasi, Gina; Jack, Darby; Weiss, Christopher; Konty, Kevin; Arno, Peter; Viola, Deborah; Kerker, Bonnie; Rundle, Andrew G
2013-08-01
Urban planners have suggested that built environment characteristics can support active travel (walking and cycling) and reduce sedentary behavior. This study assessed whether engagement in active travel is associated with neighborhood walkability measured for zip codes in New York City. Data were analyzed on engagement in active travel and the frequency of walking or biking ten blocks or more in the past month, from 8,064 respondents to the New York City 2003 Community Health Survey (CHS). A neighborhood walkability scale that measures: residential, intersection, and subway stop density; land use mix; and the ratio of retail building floor area to retail land area was calculated for each zip code. Data were analyzed using zero-inflated negative binomial regression incorporating survey sample weights and adjusting for respondents' sociodemographic characteristics. Overall, 44 % of respondents reported no episodes of active travel and among those who reported any episode, the mean number was 43.2 episodes per month. Comparing the 75th to the 25th percentile of zip code walkability, the odds ratio for reporting zero episodes of active travel was 0.71 (95 % CI 0.61, 0.83) and the exponentiated beta coefficient for the count of episodes of active travel was 1.13 (95 % CI 1.06, 1.21). Associations between lower walkability and reporting zero episodes of active travel were significantly stronger for non-Hispanic Whites as compared to non-Hispanic Blacks and to Hispanics and for those living in higher income zip codes. The results suggest that neighborhood walkability is associated with higher engagement in active travel.
Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia
2015-01-01
Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal transduction pathways. Our data provide more direct information for future study on the interaction between key genes involved in various metabolic pathways under drought stress in potato.
Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia
2015-01-01
Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon’s response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal transduction pathways. Our data provide more direct information for future study on the interaction between key genes involved in various metabolic pathways under drought stress in potato. PMID:26010543
Liu, Xiaolong; Li, Xia; Dai, Chuanchao; Zhou, Jiayu; Yan, Ting; Zhang, Jinfei
2017-11-01
To understand the link between long-term drought tolerance and short-term drought responses in plants, transgenic rice (Oryza sativa L.) plants over-expressing the maize C 4- pepc gene encoding phosphoenolpyruvate carboxylase (PC) and wild-type (WT) rice plants were subjected to PEG 6000 treatments to simulate drought stress. Compared with WT, PC had the higher survival rate and net photosynthetic rate after 16days of drought treatment, and had higher relative water content in leaves after 2h of drought treatment as well, conferring drought tolerance. WT accumulated higher amounts of malondialdehyde, superoxide radicals, and H 2 O 2 than PC under the 2-h PEG 6000 treatment, indicating greater damages in WT. Results from pretreatments with a Ca 2+ chelator and/or antagonist showed that the regulation of the early drought response in PC was Ca 2+ -dependent. The NO and H 2 O 2 levels in PC lines were also up-regulated via Ca 2+ signals, indicating that Ca 2+ in PC lines also reacted upstream of NO and H 2 O 2 . 2-h drought treatment increased the transcripts of CPK9 and CPK4 in PC via positive up-regulation of Ca 2+ . The transcripts of NAC6 [NACs (NAM, ATAF1, ATAF2, and CUC2)] and bZIP60 (basic leucine zipper, bZIP) were up-regulated, but those of DREB2B (dehydration-responsive element-binding protein, DREB) were down-regulated, both via Ca 2+ signals in PC. PEPC activity, expressions of C 4 -pepc, and the antioxidant enzyme activities in PC lines were up-regulated via Ca 2+ . These results indicated that Ca 2+ signals in PC lines can up-regulate the NAC6 and bZIP60 and the downstream targets for early drought responses, conferring drought tolerance for the long term. Copyright © 2017 Elsevier GmbH. All rights reserved.
Schat, Henk; Aarts, Mark G. M.
2016-01-01
Prompt regulation of transition metal transporters is crucial for plant zinc homeostasis. NcZNT1 is one of such transporters, found in the metal hyperaccumulator Brassicaceae species Noccaea caerulescens. It is orthologous to AtZIP4 from Arabidopsis thaliana, an important actor in Zn homeostasis. We examined if the NcZNT1 function contributes to the metal hyperaccumulation of N. caerulescens. NcZNT1 was found to be a plasma-membrane located metal transporter. Constitutive overexpression of NcZNT1 in A. thaliana conferred enhanced tolerance to exposure to excess Zn and Cd supply, as well as increased accumulation of Zn and Cd and induction of the Fe deficiency response, when compared to non-transformed wild-type plants. Promoters of both genes were induced by Zn deficiency in roots and shoots of A. thaliana. In A. thaliana, the AtZIP4 and NcZNT1 promoters were mainly active in cortex, endodermis and pericycle cells under Zn deficient conditions. In N. caerulescens, the promoters were active in the same tissues, though the activity of the NcZNT1 promoter was higher and not limited to Zn deficient conditions. Common cis elements were identified in both promoters by 5’ deletion analysis. These correspond to the previously determined Zinc Deficiency Responsive Elements found in A. thaliana to interact with two redundantly acting transcription factors, bZIP19 and bZIP23, controlling the Zn deficiency response. In conclusion, these results suggest that NcZNT1 is an important factor in contributing to Zn and Cd hyperaccumulation in N. caerulescens. Differences in cis- and trans-regulators are likely to account for the differences in expression between A. thaliana and N. caerulescens. The high, constitutive NcZNT1 expression in the stele of N. caerulescens roots implicates its involvement in long distance root-to-shoot metal transport by maintaining a Zn/Cd influx into cells responsible for xylem loading. PMID:26930473
Geographic variation and effect of area-level poverty rate on colorectal cancer screening.
Lian, Min; Schootman, Mario; Yun, Shumei
2008-10-16
With a secular trend of increasing colorectal cancer (CRC) screening, concerns about disparities in CRC screening also have been rising. It is unclear if CRC screening varies geographically, if area-level poverty rate affects CRC screening, and if individual-level characteristics mediate the area-level effects on CRC screening. Using 2006 Missouri Behavioral Risk Factor Surveillance System (BRFSS) data, a multilevel study was conducted to examine geographic variation and the effect of area-level poverty rate on CRC screening use among persons age 50 or older. Individuals were nested within ZIP codes (ZIP5 areas), which in turn, were nested within aggregations of ZIP codes (ZIP3 areas). Six groups of individual-level covariates were considered as potential mediators. An estimated 51.8% of Missourians aged 50 or older adhered to CRC screening recommendations. Nearly 15% of the total variation in CRC screening lay between ZIP5 areas. Persons residing in ZIP5 areas with > or = 10% of poverty rate had lower odds of CRC screening use than those residing in ZIP5 areas with <10% poverty rate (unadjusted odds ratio [OR], 0.69; 95% confidence interval [95% CI], 0.58-0.81; adjusted OR, 0.81; 95% CI, 0.67-0.98). Persons who resided in ZIP3 areas with > or = 20% poverty rate also had lower odds of following CRC screening guidelines than those residing in ZIP3 areas with <20% poverty rate (unadjusted OR, 0.66; 95% CI, 0.52-0.83; adjusted OR, 0.64; 95% CI, 0.50-0.83). Obesity, history of depression/anxiety and access to care were associated with CRC screening, but did not mediate the effect of area-level poverty on CRC screening. Large geographic variation of CRC screening exists in Missouri. Area-level poverty rate, independent of individual-level characteristics, is a significant predictor of CRC screening, but it only explains a small portion of the geographic heterogeneity of CRC screening. Individual-level factors we examined do not mediate the effect of the area-level poverty rate on CRC screening. Future studies should identify other area- and individual-level characteristics associated with CRC screening in Missouri.
Wiewel, Ellen W; Bocour, Angelica; Kersanske, Laura S; Bodach, Sara D; Xia, Qiang; Braunstein, Sarah L
2016-01-01
We assessed the association of neighborhood poverty with HIV diagnosis rates for males and females in New York City. We calculated annual HIV diagnosis rates by ZIP Code, sex, and neighborhood poverty level using 2010-2011 New York City (NYC) HIV surveillance data and data from the U.S. Census 2010 and American Community Survey 2007-2011. Neighborhood poverty levels were percentage of residents in a ZIP Code with incomes below the federal poverty threshold, categorized as 0%-<10% (low poverty), 10%-<20% (medium poverty), 20%-<30% (high poverty), and 30%-100% (very high poverty). We used sex-stratified negative binomial regression models to measure the association between neighborhood-level poverty and HIV diagnosis rates, controlling for neighborhood-level education, race/ethnicity, age, and percentage of men who have sex with men. In 2010-2011, 6,184 people were newly diagnosed with HIV. Median diagnosis rates per 100,000 population increased by neighborhood poverty level overall (13.7, 34.3, 50.6, and 75.6 for low-, medium-, high-, and very high-poverty ZIP Codes, respectively), for males, and for females. In regression models, higher neighborhood poverty remained associated with higher diagnosis rates among males (adjusted rate ratio [ARR] = 1.63, 95% confidence interval [CI] 1.34, 1.97) and females (ARR=2.14, 95% CI 1.46, 3.14) for very high- vs. low-poverty ZIP Codes. Living in very high- vs. low-poverty urban neighborhoods was associated with increased HIV diagnosis rates. After controlling for other factors, the association between poverty and diagnosis rates was stronger among females than among males. Alleviating poverty may help decrease HIV-related disparities.
NASA Astrophysics Data System (ADS)
Sutherland, Lin; Graham, Ian; Yaxley, Gregory; Armstrong, Richard; Giuliani, Gaston; Hoskin, Paul; Nechaev, Victor; Woodhead, Jon
2016-04-01
Zircon megacrysts (± gem corundum) appear in basalt fields of Indo-Pacific origin over a 12,000 km zone (ZIP) along West Pacific continental margins. Age-dating, trace element, oxygen and hafnium isotope studies on representative zircons (East Australia-Asia) indicate diverse magmatic sources. The U-Pb (249 to 1 Ma) and zircon fission track (ZFT) ages (65 to 1 Ma) suggest thermal annealing during later basalt transport, with < 1 to 203 Ma gaps between the U-Pb and ZFT ages. Magmatic growth zonation and Zr/Hf ratios (0.01-0.02) suggest alkaline magmatic sources, while Ti—in—zircon thermometry suggests that most zircons crystallized within ranges between 550 and 830 °C. Chondrite-normalised multi-element plots show variable enrichment patterns, mostly without marked Eu depletion, indicating little plagioclase fractionation in source melts. Key elements and ratios matched against zircons from magmatic rocks suggest a range of ultramafic to felsic source melts. Zircon O-isotope ratios (δ18O in the range 4 to 11‰) and initial Hf isotope ratios (ɛHf in the range +2 to +14) encompass ranges for both mantle and crustal melts. Calculated Depleted Mantle (TDM 0.03-0.56 Ga) and Crustal Residence (0.20-1.02 Ga) model ages suggest several mantle events, continental break-ups (Rodinia and Gondwana) and convergent margin collisions left imprints in the zircon source melts. East Australian ZIP sites reflect prolonged intraplate magmatism (~85 Ma), often during times of fast-migrating lithosphere. In contrast, East Asian-Russian ZIP sites reflect later basaltic magmatism (<40 Ma), often linked to episodes of back-arc rifting and spreading, slow-migrating lithosphere and slab subduction.
Bocour, Angelica; Kersanske, Laura S.; Bodach, Sara D.; Xia, Qiang; Braunstein, Sarah L.
2016-01-01
Objective We assessed the association of neighborhood poverty with HIV diagnosis rates for males and females in New York City. Methods We calculated annual HIV diagnosis rates by ZIP Code, sex, and neighborhood poverty level using 2010–2011 New York City (NYC) HIV surveillance data and data from the U.S. Census 2010 and American Community Survey 2007–2011. Neighborhood poverty levels were percentage of residents in a ZIP Code with incomes below the federal poverty threshold, categorized as 0%–<10% (low poverty), 10%–<20% (medium poverty), 20%–<30% (high poverty), and 30%–100% (very high poverty). We used sex-stratified negative binomial regression models to measure the association between neighborhood-level poverty and HIV diagnosis rates, controlling for neighborhood-level education, race/ethnicity, age, and percentage of men who have sex with men. Results In 2010–2011, 6,184 people were newly diagnosed with HIV. Median diagnosis rates per 100,000 population increased by neighborhood poverty level overall (13.7, 34.3, 50.6, and 75.6 for low-, medium-, high-, and very high-poverty ZIP Codes, respectively), for males, and for females. In regression models, higher neighborhood poverty remained associated with higher diagnosis rates among males (adjusted rate ratio [ARR] = 1.63, 95% confidence interval [CI] 1.34, 1.97) and females (ARR=2.14, 95% CI 1.46, 3.14) for very high- vs. low-poverty ZIP Codes. Conclusion Living in very high- vs. low-poverty urban neighborhoods was associated with increased HIV diagnosis rates. After controlling for other factors, the association between poverty and diagnosis rates was stronger among females than among males. Alleviating poverty may help decrease HIV-related disparities. PMID:26957664
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindner, I.; Ehlers, B.; Noack, S.
The porcine lymphotropic herpesviruses (PLHV) are discussed as possible risk factors in xenotransplantation because of the high prevalence of PLHV-1, PLHV-2 and PLHV-3 in pig populations world-wide and the fact that PLHV-1 has been found to be associated with porcine post-transplant lymphoproliferative disease. To provide structural and functional knowledge on the PLHV immediate-early (IE) transactivator genes, the central regions of the PLHV genomes were characterized by genome walking, sequence and splicing analysis. Three spliced genes were identified (ORF50, ORFA6/BZLF1{sub h}, ORF57) encoding putative IE transactivators, homologous to (i) ORF50 and BRLF1/Rta (ii) K8/K-bZIP and BZLF1/Zta and (iii) ORF57 and BMLF1more » of HHV-8 and EBV, respectively. Expressed as myc-tag or HA-tag fusion proteins, they were located to the cellular nucleus. In reporter gene assays, several PLHV-promoters were mainly activated by PLHV-1 ORF50, to a lower level by PLHV-1 ORFA6/BZLF1{sub h} and not by PLHV-1 ORF57. However, the ORF57-encoded protein acted synergistically on ORF50-mediated activation.« less
Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1
Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike
2015-01-01
Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347
Molecular evolution of the HD-ZIP I gene family in legume genomes.
Li, Zhen; Jiang, Haiyang; Zhou, Lingyan; Deng, Lin; Lin, Yongxiang; Peng, Xiaojian; Yan, Hanwei; Cheng, Beijiu
2014-01-01
Homeodomain leucine zipper I (HD-ZIP I) genes were used to increase the plasticity of plants by mediating external signals and regulating growth in response to environmental conditions. The way genomic histories drove the evolution of the HD-ZIP I family in legume species was described; HD-ZIP I genes were searched in Lotus japonicus, Medicago truncatula, Cajanus cajan and Phaseolus vulgaris, and then divided into five clades through phylogenetic analysis. Microsynteny analysis was made based on genomic segments containing the HD-ZIP I genes. Some pairs turned out to conform with syntenic genome regions, while others corresponded to those that were inverted, expanded, or contracted after the divergence of legumes. Besides, we dated their duplications by Ks analysis and demonstrated that all the blocks were formed after the monocot-dicot split; we observed Ka/Ks ratios representing strong purifying selections in the four legume species which might have been followed by gene loss and rearrangement. © 2014 Elsevier B.V. All rights reserved.
Employment and residential characteristics in relation to automated external defibrillator locations
Griffis, Heather M.; Band, Roger A; Ruther, Matthew; Harhay, Michael; Asch, David A.; Hershey, John C.; Hill, Shawndra; Nadkarni, Lindsay; Kilaru, Austin; Branas, Charles C.; Shofer, Frances; Nichol, Graham; Becker, Lance B.; Merchant, Raina M.
2015-01-01
Background Survival from out-of-hospital cardiac arrest (OHCA) is generally poor and varies by geography. Variability in automated external defibrillator (AED) locations may be a contributing factor. To inform optimal placement of AEDs, we investigated AED access in a major US city relative to demographic and employment characteristics. Methods and Results This was a retrospective analysis of a Philadelphia AED registry (2,559 total AEDs). The 2010 US Census and the Local Employment Dynamics (LED) database by ZIP code was used. AED access was calculated as the weighted areal percentage of each ZIP code covered by a 400 meter radius around each AED. Of 47 ZIP codes, only 9%(4) were high AED service areas. In 26%(12) of ZIP codes, less than 35% of the area was covered by AED service areas. Higher AED access ZIP codes were more likely to have a moderately populated residential area (p=0.032), higher median household income (p=0.006), and higher paying jobs (p=008). Conclusions The locations of AEDs vary across specific ZIP codes; select residential and employment characteristics explain some variation. Further work on evaluating OHCA locations, AED use and availability, and OHCA outcomes could inform AED placement policies. Optimizing the placement of AEDs through this work may help to increase survival. PMID:26856232
1988-09-01
CIT C 15 Name of local city. InCSrATE C 2 Name of local state as tw letter abbreviatiom. SIC ZIP C 10 Loa ZIP code. Five or nine digits . InC_ PHKtE C 15...record: 10 Database Dictimary for C: \\ BASE\\PAS1E.MF Field Nane Type Width Decimal Coments PMSCODE C 2 Third and fourth digits of PAS code. ON C 3...Version: 3.01 Date: 09/01/88 Time: 21:34 Report Libary : C: ASE\\GPO.RP1 Date: 08/28/88 Time: 11:32 PRMNT OFTICNS CflRL-PRINrM Nmber of copies: 1 Starting
Role of ATF4 in skeletal muscle atrophy.
Adams, Christopher M; Ebert, Scott M; Dyle, Michael C
2017-05-01
Here, we discuss recent work focused on the role of activating transcription factor 4 (ATF4) in skeletal muscle atrophy. Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression; however, the transcriptional regulatory proteins responsible for those changes are not yet well defined. Recent work indicates that some forms of muscle atrophy require ATF4, a stress-inducible bZIP transcription factor subunit that helps to mediate a broad range of stress responses in mammalian cells. ATF4 expression in skeletal muscle fibers is sufficient to induce muscle fiber atrophy and required for muscle atrophy during several stress conditions, including aging, fasting, and limb immobilization. By helping to activate specific genes in muscle fibers, ATF4 contributes to the expression of numerous mRNAs, including at least two mRNAs (Gadd45a and p21) that encode mediators of muscle fiber atrophy. Gadd45a promotes muscle fiber atrophy by activating the protein kinase MEKK4. p21 promotes atrophy by reducing expression of spermine oxidase, a metabolic enzyme that helps to maintain muscle fiber size under nonstressed conditions. In skeletal muscle fibers, ATF4 is critical component of a complex and incompletely understood molecular signaling network that causes muscle atrophy during aging, fasting, and immobilization.
Hahn, Mark E; Timme-Laragy, Alicia R; Karchner, Sibel I; Stegeman, John J
2015-11-01
Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. Copyright © 2015. Published by Elsevier Inc.
Huang, Danqiong; Dai, Wenhao
2015-08-15
Two iron-regulated transporter (IRT) genes were cloned from the iron chlorosis resistant (PtG) and susceptible (PtY) Populus tremula 'Erecta' lines. Nucleotide sequence analysis showed no significant difference between PtG and PtY. The predicted proteins contain a conserved ZIP domain with 8 transmembrane (TM) regions. A ZIP signature sequence was found in the fourth TM domain. Phylogenetic analysis revealed that PtIRT1 was clustered with tomato and tobacco IRT genes that are highly responsible to iron deficiency. The PtIRT3 gene was clustered with the AtIRT3 gene that was related to zinc and iron transport in plants. Tissue specific expression indicated that PtIRT1 only expressed in the root, while PtIRT3 constitutively expressed in all tested tissues. Under iron deficiency, the expression of PtIRT1 was dramatically increased and a significantly higher transcript level was detected in PtG than in PtY. Iron deficiency also enhanced the expression of PtIRT3 in PtG. On the other hand, zinc deficiency down-regulated the expression of PtIRT1 and PtIRT3 in both PtG and PtY. Zinc accumulated significantly under iron-deficient conditions, whereas the zinc deficiency showed no significant effect on iron accumulation. A yeast complementation test revealed that the PtIRT1 and PtIRT3 genes could restore the iron uptake ability under the iron uptake-deficiency condition. The results will help understand the mechanisms of iron deficiency response in poplar trees and other woody species. Copyright © 2015 Elsevier GmbH. All rights reserved.
Malasarn, Davin; Kropat, Janette; Hsieh, Scott I.; Finazzi, Giovanni; Casero, David; Loo, Joseph A.; Pellegrini, Matteo; Wollman, Francis-André; Merchant, Sabeeha S.
2013-01-01
Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites. PMID:23439652
GPFA-AB_Phase1ReservoirTask2DataUpload
Teresa E. Jordan
2015-10-22
This submission to the Geothermal Data Repository (GDR) node of the National Geothermal Data System (NGDS) in support of Phase 1 Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. The files included in this zip file contain all data pertinent to the methods and results of this task’s output, which is a cohesive multi-state map of all known potential geothermal reservoirs in our region, ranked by their potential favorability. Favorability is quantified using a new metric, Reservoir Productivity Index, as explained in the Reservoirs Methodology Memo (included in zip file). Shapefile and images of the Reservoir Productivity and Reservoir Uncertainty are included as well.
Beyond Molecular Codes: Simple Rules to Wire Complex Brains
Hassan, Bassem A.; Hiesinger, P. Robin
2015-01-01
Summary Molecular codes, like postal zip codes, are generally considered a robust way to ensure the specificity of neuronal target selection. However, a code capable of unambiguously generating complex neural circuits is difficult to conceive. Here, we re-examine the notion of molecular codes in the light of developmental algorithms. We explore how molecules and mechanisms that have been considered part of a code may alternatively implement simple pattern formation rules sufficient to ensure wiring specificity in neural circuits. This analysis delineates a pattern-based framework for circuit construction that may contribute to our understanding of brain wiring. PMID:26451480
Loboda, Agnieszka; Damulewicz, Milena; Pyza, Elzbieta; Jozkowicz, Alicja; Dulak, Jozef
2016-09-01
The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap 'n' Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Khachane, Amit; Kumar, Ranjit; Jain, Sanyam; Jain, Samta; Banumathy, Gowrishankar; Singh, Varsha; Nagpal, Saurabh; Tatu, Utpal
2005-01-01
Bioinformatics tools to aid gene and protein sequence analysis have become an integral part of biology in the post-genomic era. Release of the Plasmodium falciparum genome sequence has allowed biologists to define the gene and the predicted protein content as well as their sequences in the parasite. Using pI and molecular weight as characteristics unique to each protein, we have developed a bioinformatics tool to aid identification of proteins from Plasmodium falciparum. The tool makes use of a Virtual 2-DE generated by plotting all of the proteins from the Plasmodium database on a pI versus molecular weight scale. Proteins are identified by comparing the position of migration of desired protein spots from an experimental 2-DE and that on a virtual 2-DE. The procedure has been automated in the form of user-friendly software called "Plasmo2D". The tool can be downloaded from http://144.16.89.25/Plasmo2D.zip.
1988-08-01
OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION U.S. Army Construction (if applicable) Engr Research Laboratory CECER-EN 6c. ADDRESS (City, State...and ZIP Code) 7b ADDRESS (City, State, and ZIP Code) P.O. Box 4005 Champaign, IL 61821 8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT...NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL Jane Andrew 1(217) 352-6511, x388 CECER-IMT DD FORM 1473. 84 MAR 83
Differential Equations, Related Problems of Pade Approximations and Computer Applications
1988-01-01
x e X : d(x,A) Unfortunately. for moderate primes (p < 10,000) 1). Expanders have the property that every A c none of these Ramanujan graphs have a...and for every A c X, Card(A) :< n/2, the graphs of relataively small diameter can be boundary aA has at least c • Card(A) elements. Ramanujan graphs...State, and ZIP,ode) 7b. ADDRESS (City, State, and ZIP Code) - _ - - " Building 410 - C x ,, -Boiling, AFB DC 20332-6448 11a. NAME OF FUNDING
Light Infantry in the Defense of Urban Europe.
1986-12-14
if applicable) 6c. ADDRESS (City, State, and ZIP Code ) 7b. ADDRESS (City, State, and ZIP Code ) Fort Leavenworth, Kansas 66027-6900 Ba. NAME OF FUNDING...SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) Sc. ADDRESS (City, State, and ZIP Code ) 10...PAGE COUNT wo - EFROM TO144 16. SUPPLEMENTARY NOTATION 17. COSATI CODES A*SUBJECT TERMS (Continue on reverse if necessary and identify by block
Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J
2016-12-01
The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Ben Daniel, Bat-Hen; Cattan, Esther; Wachtel, Chaim; Avrahami, Dorit; Glick, Yair; Malichy, Asaf; Gerber, Doron; Miller, Gad
2016-08-01
To appropriately acclimate to environmental stresses, plants have to rapidly activate a specific transcriptional program. Yet, the identity and function of many of the transcriptional regulators that mediate early responses to abiotic stress stimuli is still unknown. In this work we employed the promoter of the multi-stress-responsive zinc-finger protein Zat12 in yeast one-hybrid (Y1H) screens to identify early abiotic stress-responsive transcriptional regulators. Analysis of Zat12 promoter fragments fused to luciferase underlined an approximately 200 bp fragment responsive to NaCl and to reactive oxygen species (ROS). Using these segments and others as baits against Y1H control or stress Arabidopsis prey libraries, we identified 15 potential Zat12 transcriptional regulators. Among the prominent proteins identified were known transcription factors including bZIP29 and ANAC91 as well as unknown function proteins such as a homolog of the human USB1, a U6 small nuclear RNA (snRNA) processing protein, and dormancy/auxin-associated family protein 2 (DRM2). Altered expression of Zat12 during high light stress in the knockout mutants further indicated the involvement of these proteins in the regulation of Zat12. Using a state of the art microfluidic approach we showed that AtUSB1 and DRM2 can specifically bind dsDNA and were able to identify the preferred DNA-binding motif of all four proteins. Overall, the proteins identified in this work provide an important start point for charting the earliest signaling network of Zat12 and of other genes required for acclimation to abiotic stresses. © 2016 Scandinavian Plant Physiology Society.
Karweina, Diana; Kreuzer-Redmer, Susanne; Müller, Uwe; Franken, Tobias; Pieper, Robert; Baron, Udo; Olek, Sven; Zentek, Jürgen; Brockmann, Gudrun A.
2015-01-01
High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn), 164 (NZn) or 2,425 (HZn) mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035); the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007). In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017). The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099). The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors. PMID:26599865
Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven; Dominici, Francesca
2013-10-08
To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥ 65 years) residing near airports. Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. 2218 zip codes surrounding 89 airports in the contiguous states. 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥ 65 years) residing near airports in 2009. Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports.
Transcription Factors Responding to Pb Stress in Maize
Zhang, Yanling; Ge, Fei; Hou, Fengxia; Sun, Wenting; Zheng, Qi; Zhang, Xiaoxiang; Ma, Langlang; Fu, Jun; He, Xiujing; Peng, Huanwei; Pan, Guangtang; Shen, Yaou
2017-01-01
Pb can damage the physiological function of human organs by entering the human body via food-chain enrichment. Revealing the mechanisms of maize tolerance to Pb is critical for preventing this. In this study, a Pb-tolerant maize inbred line, 178, was used to analyse transcription factors (TFs) expressed under Pb stress based on RNA sequencing data. A total of 464 genes expressed in control check (CK) or Pb treatment samples were annotated as TFs. Among them, 262 differentially expressed transcription factors (DETs) were identified that responded to Pb treatment. Furthermore, the DETs were classified into 4 classes according to their expression patterns, and 17, 12 and 2 DETs were significantly annotated to plant hormone signal transduction, basal transcription factors and base excision repair, respectively. Seventeen DETs were found to participate in the plant hormone signal transduction pathway, where basic leucine zippers (bZIPs) were the most significantly enriched TFs, with 12 members involved. We further obtained 5 Arabidopsis transfer DNA (T-DNA) mutants for 6 of the maize bZIPs, among which the mutants atbzip20 and atbzip47, representing ZmbZIP54 and ZmbZIP107, showed obviously inhibited growth of roots and above-ground parts, compared with wild type. Five highly Pb-tolerant and 5 highly Pb-sensitive in maize lines were subjected to DNA polymorphism and expression level analysis of ZmbZIP54 and ZmbZIP107. The results suggested that differences in bZIPs expression partially accounted for the differences in Pb-tolerance among the maize lines. Our results contribute to the understanding of the molecular regulation mechanisms of TFs in maize under Pb stress. PMID:28927013
NASA Technical Reports Server (NTRS)
Deng, Xiaomin; Newman, James C., Jr.
1997-01-01
ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.
Correia, Andrew W; Peters, Junenette L; Levy, Jonathan I; Melly, Steven
2013-01-01
Objective To investigate whether exposure to aircraft noise increases the risk of hospitalization for cardiovascular diseases in older people (≥65 years) residing near airports. Design Multi-airport retrospective study of approximately 6 million older people residing near airports in the United States. We superimposed contours of aircraft noise levels (in decibels, dB) for 89 airports for 2009 provided by the US Federal Aviation Administration on census block resolution population data to construct two exposure metrics applicable to zip code resolution health insurance data: population weighted noise within each zip code, and 90th centile of noise among populated census blocks within each zip code. Setting 2218 zip codes surrounding 89 airports in the contiguous states. Participants 6 027 363 people eligible to participate in the national medical insurance (Medicare) program (aged ≥65 years) residing near airports in 2009. Main outcome measures Percentage increase in the hospitalization admission rate for cardiovascular disease associated with a 10 dB increase in aircraft noise, for each airport and on average across airports adjusted by individual level characteristics (age, sex, race), zip code level socioeconomic status and demographics, zip code level air pollution (fine particulate matter and ozone), and roadway density. Results Averaged across all airports and using the 90th centile noise exposure metric, a zip code with 10 dB higher noise exposure had a 3.5% higher (95% confidence interval 0.2% to 7.0%) cardiovascular hospital admission rate, after controlling for covariates. Conclusions Despite limitations related to potential misclassification of exposure, we found a statistically significant association between exposure to aircraft noise and risk of hospitalization for cardiovascular diseases among older people living near airports. PMID:24103538
Wartime Tracking of Class I Surface Shipments from Production or Procurement to Destination
1992-04-01
Armed Forces I ICAF-FAP National Defense University 6c. ADDRESS (City, State, ard ZIP Code ) 7b. ADDRESS (City, State, and ZIP Code ) Fort Lesley J...INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) 9c. ADDRESS (City, State, and ZIP Code ) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK...COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse
Tully, Mark A; McBride, Cairmeal; Heron, Leonnie; Hunter, Ruth F
2014-12-23
The new generation of activity monitors allow users to upload their data to the internet and review progress. The aim of this study is to validate the Fitbit Zip as a measure of free-living physical activity. Participants wore a Fitbit Zip, ActiGraph GT3X accelerometer and a Yamax CW700 pedometer for seven days. Participants were asked their opinion on the utility of the Fitbit Zip. Validity was assessed by comparing the output using Spearman's rank correlation coefficients, Wilcoxon signed rank tests and Bland-Altman plots. 59.5% (25/47) of the cohort were female. There was a high correlation in steps/day between the Fitbit Zip and the two reference devices (r = 0.91, p < 0.001). No statistically significant difference between the Fitbit and Yamax steps/day was observed (Median (IQR) 7477 (3597) vs 6774 (3851); p = 0.11). The Fitbit measured significantly more steps/day than the Actigraph (7477 (3597) vs 6774 (3851); p < 0.001). Bland-Altman plots revealed no systematic differences between the devices. Given the high level of correlation and no apparent systematic biases in the Bland Altman plots, the use of Fitbit Zip as a measure of physical activity. However the Fitbit Zip recorded a significantly higher number of steps per day than the Actigraph.
Community Alcohol Outlet Density and Underage Drinking
Chen, Meng-Jinn; Grube, Joel W.; Gruenewald, Paul J.
2009-01-01
Aim This study examined how community alcohol outlet density may be associated with drinking among youths. Methods Longitudinal data were collected from 1091 adolescents (aged 14–16 at baseline) recruited from 50 zip codes in California with varying levels of alcohol outlet density and median household income. Hierarchical linear models were used to examine the associations between zip code alcohol outlet density and frequency rates of general alcohol use and excessive drinking, taking into account zip code median household income and individual-level variables (age, gender, race/ethnicity, personal income, mobility, and perceived drinking by parents and peers). Findings When all other factors were controlled, higher initial levels of drinking and excessive drinking were observed among youths residing in zip codes with higher alcohol outlet densities. Growth in drinking and excessive drinking was on average more rapid in zip codes with lower alcohol outlet densities. The relation of zip code alcohol outlet density with drinking appeared to be mitigated by having friends with access to a car. Conclusion Alcohol outlet density may play a significant role in initiation of underage drinking during early teen ages, especially when youths have limited mobility. Youth who reside in areas with low alcohol outlet density may overcome geographic constraints through social networks that increase their mobility and the ability to seek alcohol and drinking opportunities beyond the local community. PMID:20078485
Cooper, H. L. F.; Arasteh, K.; Feelemyer, J.; McKnight, C.; Ross, Z.
2018-01-01
Objective We identified potential geographic “hotspots” for drug-injecting transmission of HIV and hepatitis C virus (HCV) among persons who inject drugs (PWID) in New York City. The HIV epidemic among PWID is currently in an “end of the epidemic” stage, while HCV is in a continuing, high prevalence (> 50%) stage. Methods We recruited 910 PWID entering Mount Sinai Beth Israel substance use treatment programs from 2011–2015. Structured interviews and HIV/ HCV testing were conducted. Residential ZIP codes were used as geographic units of analysis. Potential “hotspots” for HIV and HCV transmission were defined as 1) having relatively large numbers of PWID 2) having 2 or more HIV (or HCV) seropositive PWID reporting transmission risk—passing on used syringes to others, and 3) having 2 or more HIV (or HCV) seronegative PWID reporting acquisition risk—injecting with previously used needles/syringes. Hotspots for injecting drug use initiation were defined as ZIP codes with 5 or more persons who began injecting within the previous 6 years. Results Among PWID, 96% injected heroin, 81% male, 34% White, 15% African-American, 47% Latinx, mean age 40 (SD = 10), 7% HIV seropositive, 62% HCV seropositive. Participants resided in 234 ZIP codes. No ZIP codes were identified as potential hotspots due to small numbers of HIV seropositive PWID reporting transmission risk. Four ZIP codes were identified as potential hotspots for HCV transmission. 12 ZIP codes identified as hotspots for injecting drug use initiation. Discussion For HIV, the lack of potential hotspots is further validation of widespread effectiveness of efforts to reduce injecting-related HIV transmission. Injecting-related HIV transmission is likely to be a rare, random event. HCV prevention efforts should include focus on potential hotspots for transmission and on hotspots for initiation into injecting drug use. We consider application of methods for the current opioid epidemic in the US. PMID:29596464
Akinyemiju, Tomi F.; Soliman, Amr S.; Copeland, Glenn; Banerjee, Mousumi; Schwartz, Kendra; Merajver, Sofia D.
2013-01-01
The long-term effect of socioeconomic status (SES) and healthcare resources availability (HCA) on breast cancer stage of presentation and mortality rates among patients in Michigan is unclear. Using data from the Michigan Department of Community Health (MDCH) between 1992 and 2009, we calculated annual proportions of late-stage diagnosis and age-adjusted breast cancer mortality rates by race and zip code in Michigan. SES and HCA were defined at the zip-code level. Joinpoint regression was used to compare the Average Annual Percent Change (AAPC) in the median zip-code level percent late stage diagnosis and mortality rate for blacks and whites and for each level of SES and HCA. Between 1992 and 2009, the proportion of late stage diagnosis increased among white women [AAPC = 1.0 (0.4, 1.6)], but was statistically unchanged among black women [AAPC = −0.5 (−1.9, 0.8)]. The breast cancer mortality rate declined among whites [AAPC = −1.3% (−1.8,−0.8)], but remained statistically unchanged among blacks [AAPC = −0.3% (−0.3, 1.0)]. In all SES and HCA area types, disparities in percent late stage between blacks and whites appeared to narrow over time, while the differences in breast cancer mortality rates between blacks and whites appeared to increase over time. PMID:23637921
Mair, Christina; Freisthler, Bridget; Ponicki, William R.; Gaidus, Andrew
2015-01-01
Background As an increasing number of states liberalize cannabis use and develop laws and local policies, it is essential to better understand the impacts of neighborhood ecology and marijuana dispensary density on marijuana use, abuse, and dependence. We investigated associations between marijuana abuse/dependence hospitalizations and community demographic and environmental conditions from 2001–2012 in California, as well as cross-sectional associations between local and adjacent marijuana dispensary densities and marijuana hospitalizations. Methods We analyzed panel population data relating hospitalizations coded for marijuana abuse or dependence and assigned to residential ZIP codes in California from 2001 through 2012 (20,219 space-time units) to ZIP code demographic and ecological characteristics. Bayesian space-time misalignment models were used to account for spatial variations in geographic unit definitions over time, while also accounting for spatial autocorrelation using conditional autoregressive priors. We also analyzed cross-sectional associations between marijuana abuse/dependence and the density of dispensaries in local and spatially adjacent ZIP codes in 2012. Results An additional one dispensary per square mile in a ZIP code was cross-sectionally associated with a 6.8% increase in the number of marijuana hospitalizations (95% credible interval 1.033, 1.105) with a marijuana abuse/dependence code. Other local characteristics, such as the median household income and age and racial/ethnic distributions, were associated with marijuana hospitalizations in cross-sectional and panel analyses. Conclusions Prevention and intervention programs for marijuana abuse and dependence may be particularly essential in areas of concentrated disadvantage. Policy makers may want to consider regulations that limit the density of dispensaries. PMID:26154479
Kircher, Stefan; Wellmer, Frank; Nick, Peter; Rügner, Alexander; Schäfer, Eberhard; Harter, Klaus
1999-01-01
In plants, light perception by photoreceptors leads to differential expression of an enormous number of genes. An important step for differential gene expression is the regulation of transcription factor activities. To understand these processes in light signal transduction we analyzed the three well-known members of the common plant regulatory factor (CPRF) family from parsley (Petroselinum crispum). Here, we demonstrate that these CPRFs, which belong to the basic- region leucine-zipper (bZIP) domain-containing transcription factors, are differentially distributed within parsley cells, indicating different regulatory functions within the regulatory networks of the plant cell. In particular, we show by cell fractionation and immunolocalization approaches that CPRF2 is transported from the cytosol into the nucleus upon irradiation due to action of phytochrome photoreceptors. Two NH2-terminal domains responsible for cytoplasmic localization of CPRF2 in the dark were characterized by deletion analysis using a set of CPRF2-green fluorescent protein (GFP) gene fusion constructs transiently expressed in parsley protoplasts. We suggest that light-induced nuclear import of CPRF2 is an essential step in phytochrome signal transduction. PMID:9922448
Does PKM(zeta) maintain memory?
Kwapis, Janine L; Helmstetter, Fred J
2014-06-01
Work on the long-term stability of memory has identified a potentially critical role for protein kinase Mzeta (PKMζ) in maintaining established memory. PKMζ, an autonomously active isoform of PKC, is hypothesized to sustain those changes that occurred during memory formation in order to preserve the memory engram over time. Initial studies investigating the role of PKMζ were largely successful in demonstrating a role for the kinase in memory maintenance; disrupting PKMζ activity with ζ-inhibitory peptide (ZIP) was successful in disrupting a variety of established associations in a number of key brain regions. More recent work, however, has questioned both the role of PKMζ in memory maintenance and the effectiveness of ZIP as a specific inhibitor of PKMζ activity. Here, we outline the research both for and against the idea that PKMζ is a memory maintenance mechanism and discuss how these two lines of research can be reconciled. We conclude by proposing a number of studies that would help to clarify the role of PKMζ in memory and define other mechanisms the brain may use to maintain memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Geospatial Analysis of Food Environment Demonstrates Associations with Gestational Diabetes
KAHR, Maike K.; SUTER, Melissa A.; BALLAS, Jerasimos; RAMIN, Susan M.; MONGA, Manju; LEE, Wesley; HU, Min; SHOPE, Cindy D.; CHESNOKOVA, Arina; KRANNICH, Laura; GRIFFIN, Emily N.; MASTROBATTISTA, Joan; DILDY, Gary A.; STREHLOW, Stacy L.; RAMPHUL, Ryan; HAMILTON, Winifred J; AAGAARD, Kjersti M.
2015-01-01
Background Gestational diabetes mellitus (GDM) is one of most common complications of pregnancy, with incidence rates varying by maternal age, race/ethnicity, obesity, parity, and family history. Given its increasing prevalence in recent decades, co-variant environmental and sociodemographic factors may be additional determinants of GDM occurrence. Objectives We hypothesized that environmental risk factors, in particular measures of the food environment, may be a diabetes contributor. We employed geospatial modeling in a populous U.S. county to characterize the association of the relative availability of fast food restaurants and supermarkets to GDM. Study Design Utilizing a perinatal database with over 4900 encoded antenatal and outcome variables inclusive of zip code data, 8912 consecutive pregnancies were analyzed for correlations between GDM and food environment based on county-wide food permit registration data. Linkage between pregnancies and food environment was achieved on the basis of validated 5 digit zip code data. The prevalence of supermarkets and fast food restaurants per 100,000 inhabitants for each zip code were gathered from publicly available food permit sources. In order to independently authenticate our findings with objective data, we measured hemoglobin A1c (HbA1c) levels as a function of geospatial distribution of food environment in a matched subset (n=80). Results Residence in neighborhoods with a high prevalence of fast food restaurants (fourth quartile) was significantly associated with an increased risk of developing GDM (relative to first quartile, aOR: 1.63 [95% CI 1.21–2.19]). In multivariate analysis, this association held true after controlling for potential confounders (p=0.002). Measurement of HbA1c levels in a matched subset were significantly increased in association with residence in a zip code with a higher fast food/supermarket ratio (n=80, r=0.251 p<0.05). Conclusions As demonstrated by geospatial analysis, a relationship of food environment and risk for gestational diabetes was identified. PMID:26319053
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lev, Sophie; hadar, Ruthi; Amedeo, Paolo
Redox sensing is a ubiquitous mechanism regulating cellular activity. Fungal pathogens face reactive oxygen species produced by the host plant's oxidative burst in addition to endogenous reactive oxygen species produced during aerobic metabolism. An array of preformed and induced detoxifying enzymes, including superoxide dismutase, catalases, and peroxidases, could allow fungi to infect plants despite the oxidative burst. We isolated a gene (CHAP1) encoding a redox-regulated transcription factor in Cochliobolus heterostrophus, a fungal pathogen of maize. CHAP1 is a bZIP protein that possesses two cysteine-rich domains structurally and functionally related to Saccharomyces cerevisiae YAP1. Deletion of CHAP1 in C. heterostrophus resultedmore » in decreased resistance to oxidative stress caused by hydrogen peroxide and menadione, but the virulence of chap1 mutants was unaffected. Upon activation by oxidizing agents or plant signals, a green fluorescent protein (GFP)-CHAP1 fusion protein became localized in the nucleus. Expression of genes encoding antioxidant proteins was induced in the wild type but not in chap1 mutants. Activation of CHAP1 occurred from the earliest stage of plant infection, in conidial germ tubes on the leaf surface, and persisted during infection. Late in the course of infection, after extensive necrotic lesions were formed, GFP-CHAP1 redistributed to the cytosol in hyphae growing on the leaf surface. Localization of CHAP1 to the nucleus may, through changes in the redox state of the cell, provide a mechanism linking extracellular cues to transcriptional regulation during the plant-pathogen interaction.« less
Decryption-decompression of AES protected ZIP files on GPUs
NASA Astrophysics Data System (ADS)
Duong, Tan Nhat; Pham, Phong Hong; Nguyen, Duc Huu; Nguyen, Thuy Thanh; Le, Hung Duc
2011-10-01
AES is a strong encryption system, so decryption-decompression of AES encrypted ZIP files requires very large computing power and techniques of reducing the password space. This makes implementations of techniques on common computing system not practical. In [1], we reduced the original very large password search space to a much smaller one which surely containing the correct password. Based on reduced set of passwords, in this paper, we parallel decryption, decompression and plain text recognition for encrypted ZIP files by using CUDA computing technology on graphics cards GeForce GTX295 of NVIDIA, to find out the correct password. The experimental results have shown that the speed of decrypting, decompressing, recognizing plain text and finding out the original password increases about from 45 to 180 times (depends on the number of GPUs) compared to sequential execution on the Intel Core 2 Quad Q8400 2.66 GHz. These results have demonstrated the potential applicability of GPUs in this cryptanalysis field.
Olgar, Yusuf; Ozdemir, Semir; Turan, Belma
2018-03-01
Clinical and experimental studies have shown an association between intracellular free Zn 2+ ([Zn 2+ ] i )-dyshomeostasis and cardiac dysfunction besides [Ca 2+ ] i -dyshomeostasis. Since [Zn 2+ ] i -homeostasis is regulated through Zn 2+ -transporters depending on their subcellular distributions, one can hypothesize that any imbalance in Zn 2+ -homeostasis via alteration in Zn 2+ -transporters may be associated with the induction of ER stress and apoptosis in hypertrophic heart. We used a transverse aortic constriction (TAC) model to induce hypertrophy in young male rat heart. We confirmed the development of hypertrophy with a high ratio of heart to body weight and cardiomyocyte capacitance. The expression levels of ER stress markers GRP78, CHOP/Gadd153, and calnexin are significantly high in TAC-group in comparison to those of controls (SHAM-group). Additionally, we detected high expression levels of apoptotic status marker proteins such as the serine kinase GSK-3β, Bax-to-Bcl-2 ratio, and PUMA in TAC-group in comparison to SHAM-group. The ratios of phospho-Akt to Akt and phospho-NFκB to the NFκB are significantly higher in TAC-group than in SHAM-group. Furthermore, we observed markedly increased phospho-PKCα and PKCα levels in TAC-group. We, also for the first time, determined significantly increased ZIP7, ZIP14, and ZnT8 expressions along with decreased ZIP8 and ZnT7 levels in the heart tissue from TAC-group in comparison to SHAM-group. Furthermore, a roughly calculated total expression level of ZIPs responsible for Zn 2+ -influx into the cytosol (increased about twofold) can be also responsible for the markedly increased [Zn 2+ ] i detected in hypertrophic cardiomyocytes. Taking into consideration the role of increased [Zn 2+ ] i via decreased ER-[Zn 2+ ] in the induction of ER stress in cardiomyocytes, our present data suggest that differential changes in the expression levels of Zn 2+ -transporters can underlie mechanical dysfunction, in part due to the induction of ER stress and apoptosis in hypertrophic heart via increased [Zn 2+ ] i - besides [Ca 2+ ] i -dyshomeostasis.
Ramakrishna, Chopperla; Singh, Sonam; Raghavendrarao, Sangala; Padaria, Jasdeep C; Mohanty, Sasmita; Sharma, Tilak Raj; Solanke, Amolkumar U
2018-02-01
The occurrence of various stresses, as the outcome of global climate change, results in the yield losses of crop plants. Prospecting of genes in stress tolerant plant species may help to protect and improve their agronomic performance. Finger millet (Eleusine coracana L.) is a valuable source of superior genes and alleles for stress tolerance. In this study, we isolated a novel endoplasmic reticulum (ER) membrane tethered bZIP transcription factor from finger millet, EcbZIP17. Transgenic tobacco plants overexpressing this gene showed better vegetative growth and seed yield compared with wild type (WT) plants under optimal growth conditions and confirmed upregulation of brassinosteroid signalling genes. Under various abiotic stresses, such as 250 mM NaCl, 10% PEG6000, 400 mM mannitol, water withdrawal, and heat stress, the transgenic plants showed higher germination rate, biomass, primary and secondary root formation, and recovery rate, compared with WT plants. The transgenic plants exposed to an ER stress inducer resulted in greater leaf diameter and plant height as well as higher expression of the ER stress-responsive genes BiP, PDIL, and CRT1. Overall, our results indicated that EcbZIP17 improves plant growth at optimal conditions through brassinosteroid signalling and provide tolerance to various environmental stresses via ER signalling pathways.
... Public Home » Hepatitis C » Hepatitis C Treatment Viral Hepatitis Menu Menu Viral Hepatitis Viral Hepatitis Home For ... Enter ZIP code here Enter ZIP code here Hepatitis C Treatment for Veterans and the Public Treatment ...
He, Ying-Ying; Xue, Yan-Xue; Wang, Ji-shi; Fang, Qin; Liu, Jian-Feng; Xue, Li-Fen; Lu, Lin
2011-01-01
The intense associative memories that develop between drug-paired contextual cues and rewarding stimuli or the drug withdrawal-associated aversive feeling have been suggested to contribute to the high rate of relapse. Various studies have elucidated the mechanisms underlying the formation and expression of drug-related cue memories, but how this mechanism is maintained is unknown. Protein kinase M ζ (PKMζ) was recently shown to be necessary and sufficient for long-term potentiation maintenance and memory storage. In the present study, we used conditioned place preference (CPP) and aversion (CPA) to examine whether PKMζ maintains both morphine-associated reward memory and morphine withdrawal-associated aversive memory in the basolateral amygdala (BLA). We also investigate the role of PKMζ in the infralimbic cortex in the extinction memory of morphine reward-related cues and morphine withdrawal-related aversive cues. We found that intra-BLA but not central nucleus of the amygdala injection of the selective PKMζ inhibitor ZIP 1 day after CPP and CPA training impaired the expression of CPP and CPA 1 day later, and the effect of ZIP on memory lasted at least 2 weeks. Inhibiting PKMζ activity in the infralimbic cortex, but not prelimbic cortex, disrupted the expression of the extinction memory of CPP and CPA. These results indicate that PKMζ in the BLA is required for the maintenance of associative morphine reward memory and morphine withdrawal-associated aversion memory, and PKMζ in the infralimbic cortex is required for the maintenance of extinction memory of morphine reward-related cues and morphine withdrawal-related aversive cues. PMID:21633338
Possible etiologies of increased incidence of gastroschisis.
Souther, Christina; Puapong, Devin P; Woo, Russell; Johnson, Sidney M
2017-11-01
Gastroschisis incidence has increased over the past decade nationally and in Hawaii. Pesticides have been implicated as potential causative factors for gastroschisis, and use of restricted use pesticides (RUPs) is widespread in Hawaii. This study was conducted to characterize gastroschisis cases in Hawaii and determine whether RUP application correlates with gastroschisis incidence. Gastroschisis patients treated in Hawaii between September, 2008 and August, 2015 were mapped by zip code along with RUP use. Spatial analysis software was used to identify patients' homes located within the pesticide application zone and agricultural land use areas. 71 gastroschisis cases were identified. 2.8% of patients were from Kauai, 64.8% from Oahu, 16.9% from Hawaii, 14.1% from Maui, and 1.4% from Molokai. RUPs have been used on all of these islands. 78.9% of patients lived in zip codes overlapping agricultural land use areas. 85.9% of patients shared zip codes with RUP-use areas. The majority of gastroschisis patients were from RUP-use areas, supporting the idea that pesticides may contribute to the development of gastroschisis, although limited data on specific releases make it difficult to apply these findings. As more RUP-use data become available to the public, these important research questions can be investigated further.
Ludwig, Linda B; Ambrus, Julian L; Krawczyk, Kristie A; Sharma, Sanjay; Brooks, Stephen; Hsiao, Chiu-Bin; Schwartz, Stanley A
2006-01-01
Background While viruses have long been shown to capitalize on their limited genomic size by utilizing both strands of DNA or complementary DNA/RNA intermediates to code for viral proteins, it has been assumed that human retroviruses have all their major proteins translated only from the plus or sense strand of RNA, despite their requirement for a dsDNA proviral intermediate. Several studies, however, have suggested the presence of antisense transcription for both HIV-1 and HTLV-1. More recently an antisense transcript responsible for the HTLV-1 bZIP factor (HBZ) protein has been described. In this study we investigated the possibility of an antisense gene contained within the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR). Results Inspection of published sequences revealed a potential transcription initiator element (INR) situated downstream of, and in reverse orientation to, the usual HIV-1 promoter and transcription start site. This antisense initiator (HIVaINR) suggested the possibility of an antisense gene responsible for RNA and protein production. We show that antisense transcripts are generated, in vitro and in vivo, originating from the TAR DNA of the HIV-1 LTR. To test the possibility that protein(s) could be translated from this novel HIV-1 antisense RNA, recombinant HIV antisense gene-FLAG vectors were designed. Recombinant protein(s) were produced and isolated utilizing carboxy-terminal FLAG epitope (DYKDDDDK) sequences. In addition, affinity-purified antisera to an internal peptide derived from the HIV antisense protein (HAP) sequences identified HAPs from HIV+ human peripheral blood lymphocytes. Conclusion HIV-1 contains an antisense gene in the U3-R regions of the LTR responsible for both an antisense RNA transcript and proteins. This antisense transcript has tremendous potential for intrinsic RNA regulation because of its overlap with the beginning of all HIV-1 sense RNA transcripts by 25 nucleotides. The novel HAPs are encoded in a region of the LTR that has already been shown to be deleted in some HIV-infected long-term survivors and represent new potential targets for vaccine development. PMID:17090330
Find a Diabetes Prevention Program Near You
... throughout the country. Find an In-person Class Select From List Find a class near you by ... some locations. Search by ZIP ZIP Code: Distance: Select Location Location: Find an Online Program Online programs ...
Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells.
Quesada, Isabel M; Bustos, Mario; Blay, Mayte; Pujadas, Gerard; Ardèvol, Anna; Salvadó, M Josepa; Bladé, Cinta; Arola, Lluís; Fernández-Larrea, Juan
2011-02-01
Catechins and their polymers procyanidins are health-promoting flavonoids found in edible vegetables and fruits. They act as antioxidants by scavenging reactive oxygen species and by chelating the redox-active metals iron and copper. They also behave as signaling molecules, modulating multiple cell signalling pathways and gene expression, including that of antioxidant enzymes. This study aimed at determining whether catechins and procyanidins interact with the redox-inactive metal zinc and at assessing their effect on cellular zinc homeostasis. We found that a grape-seed procyanidin extract (GSPE) and the green tea flavonoid (-)-epigallocatechin-3-gallate (EGCG) bind zinc cations in solution with higher affinity than the zinc-specific chelator Zinquin, and dose-dependently prevent zinc-induced toxicity in the human hepatocarcinoma cell line HepG2, evaluated by the lactate dehydrogenase test. GSPE and EGCG hinder intracellular accumulation of total zinc, measured by atomic flame absorption spectrometry, concomitantly increasing the level of cytoplasmic labile zinc detectable by Zinquin fluorescence. Concurrently, GSPE and EGCG inhibit the expression, evaluated at the mRNA level by quantitative reverse transcriptase-polymerase chain reaction, of zinc-binding metallothioneins and of plasma membrane zinc exporter ZnT1 (SLC30A1), while enhancing the expression of cellular zinc importers ZIP1 (SLC39A1) and ZIP4 (SLC39A4). GSPE and EGCG also produce all these effects when HepG2 cells are stimulated to import zinc by treatment with supplemental zinc or the proinflammatory cytokine interleukin-6. We suggest that extracellular complexation of zinc cations and the elevation of cytoplasmic labile zinc may be relevant mechanisms underlying the modulation of diverse cell signaling and metabolic pathways by catechins and procyanidins. Copyright © 2011 Elsevier Inc. All rights reserved.
Graham, Garth N
2016-10-01
Health equity has long been the dominant theme in the work of the Aetna Foundation. Recent data have focused on disparities through another lens, particularly the correlation between where people live (i.e., ZIP code) and their quality-and length-of life. In various cities across America, average life expectancies in certain communities are 20-30 years shorter than those mere miles away. In general, health disparities are founded on a complex interplay of racial, economic, educational, and other social factors. For example, breastfeeding rates in the United States differ significantly depending upon the race and income of the mother. Government policy makers are acutely aware of these disparities, but recent health system reforms have focused predominately on the processes used to administer, finance, and deliver care. What is needed is an approach that considers the health and wellness of all people in a geographic area, beyond established patients, and that measures more than clinical factors-such as genetics, environmental health, social circumstances, and individual behaviors. Solutions also must extend beyond the traditional healthcare arena. In particular, novel technological innovations show promise to bridge gaps between our healthcare capabilities and the needs of underserved populations. Digital tools are poised to revolutionize measurement, diagnostics, treatment, and global aspect of our healthcare system. The Aetna Foundation views technology as a core strategy in reducing health inequities through an approach that addresses both clinical and social factors in populations to dismantle the persistent paradigm of ZIP code as personal health destiny.
Snoberger, Aaron; Brettrager, Evan J; Smith, David M
2018-06-18
Protein degradation in all domains of life requires ATPases that unfold and inject proteins into compartmentalized proteolytic chambers. Proteasomal ATPases in eukaryotes and archaea contain poorly understood N-terminally conserved coiled-coil domains. In this study, we engineer disulfide crosslinks in the coiled-coils of the archaeal proteasomal ATPase (PAN) and report that its three identical coiled-coil domains can adopt three different conformations: (1) in-register and zipped, (2) in-register and partially unzipped, and (3) out-of-register. This conformational heterogeneity conflicts with PAN's symmetrical OB-coiled-coil crystal structure but resembles the conformational heterogeneity of the 26S proteasomal ATPases' coiled-coils. Furthermore, we find that one coiled-coil can be conformationally constrained even while unfolding substrates, and conformational changes in two of the coiled-coils regulate PAN switching between resting and active states. This switching functionally mimics similar states proposed for the 26S proteasome from cryo-EM. These findings thus build a mechanistic framework to understand regulation of proteasome activity.
2012-01-01
Background The aim of this study is to explore whether availability of sports facilities, parks, and neighbourhood social capital (NSC) and their interaction are associated with leisure time sports participation among Dutch adolescents. Methods Cross-sectional analyses were conducted on complete data from the last wave of the YouRAction evaluation trial. Adolescents (n = 852) completed a questionnaire asking for sports participation, perceived NSC and demographics. Ecometric methods were used to aggregate perceived NSC to zip code level. Availability of sports facilities and parks was assessed by means of geographic information systems within the zip-code area and within a 1600 meter buffer. Multilevel logistic regression analyses, with neighborhood and individual as levels, were conducted to examine associations between physical and social environmental factors and leisure time sports participation. Simple slopes analysis was conducted to decompose interaction effects. Results NSC was significantly associated with sports participation (OR: 3.51 (95%CI: 1.18;10.41)) after adjustment for potential confounders. Availability of sports facilities and availability of parks were not associated with sports participation. A significant interaction between NSC and density of parks within the neighbourhood area (OR: 1.22 (90%CI: 1.01;1.34)) was found. Decomposition of the interaction term showed that adolescents were most likely to engage in leisure time sports when both availability of parks and NSC were highest. Conclusions The results of this study indicate that leisure time sports participation is associated with levels of NSC, but not with availability of parks or sports facilities. In addition, NSC and availability of parks in the zip code area interacted in such a way that leisure time sports participation is most likely among adolescents living in zip code areas with higher levels of NSC, and higher availability of parks. Hence, availability of parks appears only to be important for leisure time sports participation when NSC is high. PMID:22849512
Geospatial analysis of food environment demonstrates associations with gestational diabetes.
Kahr, Maike K; Suter, Melissa A; Ballas, Jerasimos; Ramin, Susan M; Monga, Manju; Lee, Wesley; Hu, Min; Shope, Cindy D; Chesnokova, Arina; Krannich, Laura; Griffin, Emily N; Mastrobattista, Joan; Dildy, Gary A; Strehlow, Stacy L; Ramphul, Ryan; Hamilton, Winifred J; Aagaard, Kjersti M
2016-01-01
Gestational diabetes mellitus (GDM) is one of most common complications of pregnancy, with incidence rates varying by maternal age, race/ethnicity, obesity, parity, and family history. Given its increasing prevalence in recent decades, covariant environmental and sociodemographic factors may be additional determinants of GDM occurrence. We hypothesized that environmental risk factors, in particular measures of the food environment, may be a diabetes contributor. We employed geospatial modeling in a populous US county to characterize the association of the relative availability of fast food restaurants and supermarkets to GDM. Utilizing a perinatal database with >4900 encoded antenatal and outcome variables inclusive of ZIP code data, 8912 consecutive pregnancies were analyzed for correlations between GDM and food environment based on countywide food permit registration data. Linkage between pregnancies and food environment was achieved on the basis of validated 5-digit ZIP code data. The prevalence of supermarkets and fast food restaurants per 100,000 inhabitants for each ZIP code were gathered from publicly available food permit sources. To independently authenticate our findings with objective data, we measured hemoglobin A1c levels as a function of geospatial distribution of food environment in a matched subset (n = 80). Residence in neighborhoods with a high prevalence of fast food restaurants (fourth quartile) was significantly associated with an increased risk of developing GDM (relative to first quartile: adjusted odds ratio, 1.63; 95% confidence interval, 1.21-2.19). In multivariate analysis, this association held true after controlling for potential confounders (P = .002). Measurement of hemoglobin A1c levels in a matched subset were significantly increased in association with residence in a ZIP code with a higher fast food/supermarket ratio (n = 80, r = 0.251 P < .05). As demonstrated by geospatial analysis, a relationship of food environment and risk for gestational diabetes was identified. Copyright © 2016 Elsevier Inc. All rights reserved.
The Nrf1 CNC-bZIP protein is regulated by the proteasome and activated by hypoxia.
Chepelev, Nikolai L; Bennitz, Joshua D; Huang, Ting; McBride, Skye; Willmore, William G
2011-01-01
Nrf1 (nuclear factor-erythroid 2 p45 subunit-related factor 1) is a transcription factor mediating cellular responses to xenobiotic and pro-oxidant stress. Nrf1 regulates the transcription of many stress-related genes through the electrophile response elements (EpREs) located in their promoter regions. Despite its potential importance in human health, the mechanisms controlling Nrf1 have not been addressed fully. We found that proteasomal inhibitors MG-132 and clasto-lactacystin-β-lactone stabilized the protein expression of full-length Nrf1 in both COS7 and WFF2002 cells. Concomitantly, proteasomal inhibition decreased the expression of a smaller, N-terminal Nrf1 fragment, with an approximate molecular weight of 23 kDa. The EpRE-luciferase reporter assays revealed that proteasomal inhibition markedly inhibited the Nrf1 transactivational activity. These results support earlier hypotheses that the 26 S proteasome processes Nrf1 into its active form by removing its inhibitory N-terminal domain anchoring Nrf1 to the endoplasmic reticulum. Immunoprecipitation demonstrated that Nrf1 is ubiquitinated and that proteasomal inhibition increased the degree of Nrf1 ubiquitination. Furthermore, Nrf1 protein had a half-life of approximately 5 hours in COS7 cells. In contrast, hypoxia (1% O(2)) significantly increased the luciferase reporter activity of exogenous Nrf1 protein, while decreasing the protein expression of p65, a shorter form of Nrf1, known to act as a repressor of EpRE-controlled gene expression. Finally, the protein phosphatase inhibitor okadaic acid activated Nrf1 reporter activity, while the latter was repressed by the PKC inhibitor staurosporine. Collectively, our data suggests that Nrf1 is controlled by several post-translational mechanisms, including ubiquitination, proteolytic processing and proteasomal-mediated degradation as well as by its phosphorylation status. © 2011 Chepelev et al.
A MEMS sensor for AC electric current
NASA Astrophysics Data System (ADS)
Leland, Eli Sidney
This manuscript describes the development of a new MEMS sensor for the measurement of AC electric current. The sensor is comprised of a MEMS piezoelectric cantilever with a microscale permanent magnet mounted to the cantilever's free end. When placed near a wire carrying AC current, the magnet couples to the oscillating magnetic field surrounding the wire, causing the cantilever to deflect, and piezoelectric coupling produces a sinusoidal voltage proportional to the current in the wire. The sensor is itself passive, requiring no power supply to operate. It also operates on proximity and need only be placed near a current carrier in order to function. The sensor does not need to encircle the current carrier and it therefore can measure current in two-wire zip-cords without necessitating the separation of the two conductors. Applications for tins sensor include measuring residential and commercial electricity use and monitoring electric power distribution networks. An analytical model describing the behavior of the current sensor was developed. This model was also adapted to describe the power output of an energy scavenger coupled to a wire carrying AC current. A mesoscale sensor exhibited a sensitivity of 75 mV/A when measuring AC electric current in a zip-cord. A mesoscale energy scavenger produced 345 muW when coupled to a zip-cord carrying 13 A. MEMS current sensors were fabricated from aluminum nitride piezoelectric cantilevers and composite permanent magnets. The cantilevers were fabricated using a four-mask process. Microscale permanent magnets were dispenser-printed using NdFeB magnetic powder with an epoxy binder. The MEMS AC current sensor was interfaced with amplification circuitry and packaged inside an almninum enclosure. The sensor was also integrated with a mesoscale energy scavenger and power conditioning circuitry to create a fully self-powered current sensor. Unamplified sensitivity of the sensor was 0.1-1.1 mV/A when measuring currents in single wires and zip-cords. The self-powered current sensor operated at a 0.6% duty cycle when coupled to the zip-cord of a 1500 W space heater drawing 13 A. The self-powered sensor's energy scavenger transferred energy to a 10 mF storage capacitor at a rate of 69 muJ/s.
Impact of Medicaid disenrollment in Tennessee on breast cancer stage at diagnosis and treatment.
Tarazi, Wafa W; Bradley, Cathy J; Bear, Harry D; Harless, David W; Sabik, Lindsay M
2017-09-01
States routinely may consider rollbacks of Medicaid expansions to address statewide economic conditions. To the authors' knowledge, little is known regarding the effects of public insurance contractions on health outcomes. The current study examined the effects of the 2005 Medicaid disenrollment in Tennessee on breast cancer stage at the time of diagnosis and delays in treatment among nonelderly women. The authors used Tennessee Cancer Registry data from 2002 through 2008 and estimated a difference-in-difference model comparing women diagnosed with breast cancer who lived in low-income zip codes (and therefore were more likely to be subject to disenrollment) with a similar group of women who lived in high-income zip codes before and after the 2005 Medicaid disenrollment. The study outcomes were changes in stage of disease at the time of diagnosis and delays in treatment of >60 days and >90 days. Overall, nonelderly women in Tennessee were diagnosed at later stages of disease and experienced more delays in treatment in the period after disenrollment. Disenrollment was found to be associated with a 3.3-percentage point increase in late stage of disease at the time of diagnosis (P = .024), a 1.9-percentage point decrease in having a delay of >60 days in surgery (P = .024), and a 1.4-percentage point decrease in having a delay of >90 days in treatment (P = .054) for women living in low-income zip codes compared with women residing in high-income zip codes. The results of the current study indicate that Medicaid disenrollment is associated with a later stage of disease at the time of breast cancer diagnosis, thereby providing evidence of the potential negative health impacts of Medicaid contractions. Cancer 2017;123:3312-9. © 2017 American Cancer Society. © 2017 American Cancer Society.
Mair, Christina; Freisthler, Bridget; Ponicki, William R; Gaidus, Andrew
2015-09-01
As an increasing number of states liberalize cannabis use and develop laws and local policies, it is essential to better understand the impacts of neighborhood ecology and marijuana dispensary density on marijuana use, abuse, and dependence. We investigated associations between marijuana abuse/dependence hospitalizations and community demographic and environmental conditions from 2001 to 2012 in California, as well as cross-sectional associations between local and adjacent marijuana dispensary densities and marijuana hospitalizations. We analyzed panel population data relating hospitalizations coded for marijuana abuse or dependence and assigned to residential ZIP codes in California from 2001 through 2012 (20,219 space-time units) to ZIP code demographic and ecological characteristics. Bayesian space-time misalignment models were used to account for spatial variations in geographic unit definitions over time, while also accounting for spatial autocorrelation using conditional autoregressive priors. We also analyzed cross-sectional associations between marijuana abuse/dependence and the density of dispensaries in local and spatially adjacent ZIP codes in 2012. An additional one dispensary per square mile in a ZIP code was cross-sectionally associated with a 6.8% increase in the number of marijuana hospitalizations (95% credible interval 1.033, 1.105) with a marijuana abuse/dependence code. Other local characteristics, such as the median household income and age and racial/ethnic distributions, were associated with marijuana hospitalizations in cross-sectional and panel analyses. Prevention and intervention programs for marijuana abuse and dependence may be particularly essential in areas of concentrated disadvantage. Policy makers may want to consider regulations that limit the density of dispensaries. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ling, Shi-Cheng; Luo, Zhi; Chen, Guang-Hui; Zhang, Dian-Guang; Liu, Xu
2018-02-01
The present study explored the influence of Zn addition in the water on Zn transport and lipid metabolism of two intestinal regions in goby Synechogobius hasta. Zn contents in water were 0.004 (control), 0.181 and 0.361mg Zn L -1 , respectively. The experiment lasted for 28 days. TG and Zn contents, mRNA contents of genes of Zn transport and lipid metabolism, and enzyme activity from anterior and mid-intestine tissues were analyzed. In anterior intestine, Zn addition in the water increased Zn contents, and mRNA concentrations of ZIP4, ZIP5, ATGL, PPARα, ZNF202 and KLF7, decreased TG contents, 6PGD and G6PD activities, and mRNA contents of 6PGD, G6PD, FAS, PPARγ, ICDH and KLF4. In mid-intestine tissue, the highest Zn and TG contents were observed for 0.18mg Zn/l group, in parallel with the highest expressions of ZnT1, ZIP4, ZIP5, 6PGD, FAS, ICDH, PPARγ, PPARα, ZNF202, KLF4 and KLF7, and with the highest FAS, 6PGD and G6PD activities. Thus, in the anterior intestine, Zn addition increased lipolysis and decreased lipogenesis, and accordingly reduced TG content. However, the highest mid-intestinal TG content in 0.18mg Zn/l group was due to the up-regulated lipogenesis. Although lipolysis was also increased, the incremental lipid synthesis was enough to compensate for lipid degradation, which led TG accumulation. Our results, for the first time, show an anterior/mid functional regionalization of the intestine in lipid metabolism and Zn transport of S. hasta following Zn exposure. Copyright © 2017 Elsevier Inc. All rights reserved.
Shi, Hui; Lyu, Mohan; Luo, Yiwen; Liu, Shoucheng; Li, Yue; He, Hang; Wei, Ning; Deng, Xing Wang; Zhong, Shangwei
2018-06-19
Three families of transcription factors have been reported to play key roles in light control of Arabidopsis seedling morphogenesis. Among them, bHLH protein PIFs and plant-specific protein EIN3/EIN3-LIKE 1 (EIN3/EIL1) accumulate in the dark to maintain skotomorphogenesis. On the other hand, HY5 and HY5 HOMOLOG (HYH), two related bZIP proteins, are stabilized in light and promote photomorphogenic development. To systemically investigate the transcriptional regulation of light-controlled seedling morphogenesis, we generated HY5 ox/ pifQein3eil1 , which contained mutations of EIN3/EIL1 and four PIF genes ( pifQein3eil1 ) and overexpression of HY5 Our results show that dark-grown HY5 ox/ pifQein3eil1 seedlings display a photomorphogenesis highly similar to that of wild-type seedlings grown in continuous light, with remarkably enhanced photomorphogenic phenotypes compared with the pifQ mutants. Consistent with the genetic evidence, transcriptome analysis indicated that PIFs, EIN3/EIL1, and HY5 are dominant transcription factors in collectively mediating a wide range of light-caused genome-wide transcriptional changes. Moreover, PIFs and EIN3/EIL1 independently control the expression of light-regulated genes such as HLS1 to cooperatively regulate apical hook formation, hypocotyl elongation, and cotyledon opening and expansion. This study illustrates a comprehensive regulatory network of transcription activities that correspond to specific morphological aspects in seedling skotomorphogenesis and photomorphogenesis.
Assaf, S; Hazard, D; Pitel, F; Morisson, M; Alizadeh, M; Gondret, F; Diot, C; Vignal, A; Douaire, M; Lagarrigue, S
2003-01-01
Sterol regulatory element binding protein-1 and -2 (SREBP-1 and -2) are key transcription factors involved in the biosynthesis of cholesterol and fatty adds. The SREBP have mainly been studied in rodents in which lipogenesis is regulated in both liver and adipose tissue. There is, however, a paucity of information on birds, in which lipogenesis occurs essentially in the liver as in humans. As a prelude to the investigation of the role of SREBP in lipid metabolism regulation in chicken, we sequenced the cDNA, encoding the mature nuclear form of chicken SREBP-2 protein, mapped SREBP-1 and -2 genes and studied their tissue expressions. The predicted chicken SREBP-2 amino acid sequence shows a 77 to 79% identity with human, mouse, and hamster homologues, with a nearly perfect conservation in all the important functional motifs, basic, helix-loop-helix, and leucine zipper (bHLH-Zip) region as well as cleavage sites. As in the human genome, SREBP-1 and SREBP-2 chicken genes are located on two separate chromosomes, respectively microchromosome 14 and macrochromosome 1. Tissue expression data show that SREBP-1 and SREBP-2 are expressed in a wide variety of tissues in chicken. However, unlike SREBP-2, SREBP-1 is expressed preferentially in the liver and uropygial gland, suggesting an important role of SREBP-1 in the regulation of lipogenesis in avian species.
Xu, Zheng-Yi; Kim, Soo Youn; Hyeon, Do Young; Kim, Dae Heon; Dong, Ting; Park, Youngmin; Jin, Jing Bo; Joo, Se-Hwan; Kim, Seong-Ki; Hong, Jong Chan; Hwang, Daehee; Hwang, Inhwan
2013-01-01
Multiple transcription factors (TFs) play essential roles in plants under abiotic stress, but how these multiple TFs cooperate in abiotic stress responses remains largely unknown. In this study, we provide evidence that the NAC (for NAM, ATAF1/2, and CUC2) TF ANAC096 cooperates with the bZIP-type TFs ABRE binding factor and ABRE binding protein (ABF/AREB) to help plants survive under dehydration and osmotic stress conditions. ANAC096 directly interacts with ABF2 and ABF4, but not with ABF3, both in vitro and in vivo. ANAC096 and ABF2 synergistically activate RD29A transcription. Our genome-wide gene expression analysis revealed that a major proportion of abscisic acid (ABA)–responsive genes are under the transcriptional regulation of ANAC096. We found that the Arabidopsis thaliana anac096 mutant is hyposensitive to exogenous ABA and shows impaired ABA-induced stomatal closure and increased water loss under dehydration stress conditions. Furthermore, we found the anac096 abf2 abf4 triple mutant is much more sensitive to dehydration and osmotic stresses than the anac096 single mutant or the abf2 abf4 double mutant. Based on these results, we propose that ANAC096 is involved in a synergistic relationship with a subset of ABFs for the transcriptional activation of ABA-inducible genes in response to dehydration and osmotic stresses. PMID:24285786
Li, Shui-gen; Li, Wan-feng; Han, Su-ying; Yang, Wen-hua; Qi, Li-wang
2013-06-15
Polar auxin transport provides a developmental signal for cell fate specification during somatic embryogenesis. Some members of the HD-ZIP III transcription factors participate in regulation of auxin transport, but little is known about this regulation in somatic embryogenesis. Here, four HD-ZIP III homologues from Larix leptolepis were identified and designated LaHDZ31, 32, 33 and 34. The occurrence of a miR165/166 target sequence in all four cDNA sequences indicated that they might be targets of miR165/166. Identification of the cleavage products of LaHDZ31 and LaHDZ32 in vivo confirmed that they were regulated by miRNA. Their mRNA accumulation patterns during somatic embryogenesis and the effects of 1-N-naphthylphthalamic acid (NPA) on their transcript levels and somatic embryo maturation were investigated. The results showed that the four genes had higher transcript levels at mature stages than at the proliferation stage, and that NPA treatment down-regulated the mRNA abundance of LaHDZ31, 32 and 33 at cotyledonary embryo stages, but had no effect on the mRNA abundance of LaHDZ34. We concluded that these four members of Larix HD-ZIP III family might participate in polar auxin transport and the development of somatic embryos, providing new insights into the regulatory mechanisms of somatic embryogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.
Downey, Anne Marie; Hales, Barbara F.; Robaire, Bernard
2016-01-01
Adequate zinc levels are required for proper cellular functions and for male germ cell development. Zinc transport is accomplished by two families of zinc transporters, the ZIPs and the ZnTs, that increase and decrease cytosolic zinc levels, respectively. However, very little is known about zinc transport in the testis. Furthermore, whether cytotoxic agents such as cyclophosphamide (CPA), a known male germ cell toxicant, can affect zinc transport and homeostasis is unknown. We examined zinc transporter expression and zinc transport in pachytene spermatocytes (PS) and round spermatids (RS) in a normal state and after exposure to CPA. We observed differences in the expression of members of the ZnT and ZIP families in purified populations of PS and RS. We also observed that RS accumulate more zinc over time than PS. The expression of many zinc binding genes was altered after CPA treatment. Interestingly, we found that the expression levels of ZIP5 and ZIP14 were increased in PS from animals treated daily with 6 mg/kg CPA for 4 wk but not in RS. This up-regulation led to an increase in zinc uptake in PS but not in RS from treated animals compared to controls. These data suggest that CPA treatment may alter zinc homeostasis in male germ cells leading to an increased need for zinc. Altered zinc homeostasis may disrupt proper germ cell development and contribute to infertility and effects on progeny. PMID:27281708
Yang, Wan-Shan; Hsu, Hung-Wei; Campbell, Mel; Cheng, Chia-Yang; Chang, Pei-Ching
2015-01-01
SUMOylation is associated with epigenetic regulation of chromatin structure and transcription. Epigenetic modifications of herpesviral genomes accompany the transcriptional switch of latent and lytic genes during the virus life cycle. Here, we report a genome-wide comparison of SUMO paralog modification on the KSHV genome. Using chromatin immunoprecipitation in conjunction with high-throughput sequencing, our study revealed highly distinct landscape changes of SUMO paralog genomic modifications associated with KSHV reactivation. A rapid and widespread deposition of SUMO-2/3, compared with SUMO-1, modification across the KSHV genome upon reactivation was observed. Interestingly, SUMO-2/3 enrichment was inversely correlated with H3K9me3 mark after reactivation, indicating that SUMO-2/3 may be responsible for regulating the expression of viral genes located in low heterochromatin regions during viral reactivation. RNA-sequencing analysis showed that the SUMO-2/3 enrichment pattern positively correlated with KSHV gene expression profiles. Activation of KSHV lytic genes located in regions with high SUMO-2/3 enrichment was enhanced by SUMO-2/3 knockdown. These findings suggest that SUMO-2/3 viral chromatin modification contributes to the diminution of viral gene expression during reactivation. Our previous study identified a SUMO-2/3-specific viral E3 ligase, K-bZIP, suggesting a potential role of this enzyme in regulating SUMO-2/3 enrichment and viral gene repression. Consistent with this prediction, higher K-bZIP binding on SUMO-2/3 enrichment region during reactivation was observed. Moreover, a K-bZIP SUMO E3 ligase dead mutant, K-bZIP-L75A, in the viral context, showed no SUMO-2/3 enrichment on viral chromatin and higher expression of viral genes located in SUMO-2/3 enriched regions during reactivation. Importantly, virus production significantly increased in both SUMO-2/3 knockdown and KSHV K-bZIP-L75A mutant cells. These results indicate that SUMO-2/3 modification of viral chromatin may function to counteract KSHV reactivation. As induction of herpesvirus reactivation may activate cellular antiviral regimes, our results suggest that development of viral SUMO E3 ligase specific inhibitors may be an avenue for anti-virus therapy. PMID:26197391
Regulation of Cell Cycle and Stress Responses to Hydrostatic Pressure in Fission Yeast
George, Vinoj T.; Brooks, Gavin
2007-01-01
We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress. PMID:17699598
Biomass Data | Geospatial Data Science | NREL
Biomass Data Biomass Data These datasets detail the biomass resources available in the United Coverage File Last Updated Metadata Biomethane Zip 72.2 MB 10/30/2014 Biomethane.xml Solid Biomass Zip 69.5
Robischon, Marcel; Du, Juan; Miura, Eriko; Groover, Andrew
2011-03-01
The secondary growth of a woody stem requires the formation of a vascular cambium at an appropriate position and proper patterning of the vascular tissues derived from the cambium. Class III homeodomain-leucine zipper (HD ZIP) transcription factors have been implicated in polarity determination and patterning in lateral organs and primary vascular tissues and in the initiation and function of shoot apical meristems. We report here the functional characterization of a Populus class III HD ZIP gene, popREVOLUTA (PRE), that demonstrates another role for class III HD ZIPs in regulating the development of cambia and secondary vascular tissues. PRE is orthologous to Arabidopsis (Arabidopsis thaliana) REVOLUTA and is expressed in both the shoot apical meristem and in the cambial zone and secondary vascular tissues. Transgenic Populus expressing a microRNA-resistant form of PRE presents unstable phenotypic abnormalities affecting both primary and secondary growth. Surprisingly, phenotypic changes include abnormal formation of cambia within cortical parenchyma that can produce secondary vascular tissues in reverse polarity. Genes misexpressed in PRE mutants include transcription factors and auxin-related genes previously implicated in class III HD ZIP functions during primary growth. Together, these results suggest that PRE plays a fundamental role in the initiation of the cambium and in regulating the patterning of secondary vascular tissues.
Heterogeneous Compression of Large Collections of Evolutionary Trees.
Matthews, Suzanne J
2015-01-01
Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
Blind test of physics-based prediction of protein structures.
Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A
2009-02-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.
Blind Test of Physics-Based Prediction of Protein Structures
Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.
2009-01-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130
Xia, Shengjun; Chen, Yu; Jiang, Jiafu; Chen, Sumei; Guan, Zhiyong; Fang, Weimin; Chen, Fadi
2013-01-01
The molecular mechanisms underlying gravitropic bending of shoots are poorly understood and how genes related with this growing progress is still unclear. To identify genes related to asymmetric growth in the creeping shoots of chrysanthemum, suppression subtractive hybridization was used to visualize differential gene expression in the upper and lower halves of creeping shoots of ground-cover chrysanthemum under gravistimulation. Sequencing of 43 selected clones produced 41 unigenes (40 singletons and 1 unigenes), which were classifiable into 9 functional categories. A notable frequency of genes involve in cell wall biosynthesis up-regulated during gravistimulation in the upper side or lower side were found, such as beta tubulin (TUB), subtilisin-like protease (SBT), Glutathione S-transferase (GST), and expensing-like protein (EXP), lipid transfer proteins (LTPs), glycine-rich protein (GRP) and membrane proteins. Our findings also highlighted the function of some metal transporter during asymmetric growth, including the boron transporter (BT) and ZIP transporter (ZT), which were thought primarily for maintaining the integrity of cell walls and played important roles in cellulose biosynthesis. CmTUB (beta tubulin) was cloned, and the expression profile and phylogeny was examined, because the cytoskeleton of plant cells involved in the plant gravitropic bending growth is well known.
Expression of human argininosuccinate synthetase after retroviral-mediated gene transfer.
Wood, P A; Partridge, C A; O'Brien, W E; Beaudet, A L
1986-09-01
The cDNA sequence for human argininosuccinate synthetase (AS) was introduced into plasmid expression vectors with an SV40 promoter or Rous sarcoma virus promoter to construct pSV2-AS and pRSV-AS, respectively, and human enzyme was synthesized after gene transfer into Chinese hamster cells. The functional cDNA was inserted into the retroviral vectors pZIP-NeoSV(X) and pZIP-NeoSV(B). Ecotropic AS retrovirus was produced after calcium-phosphate-mediated gene transfer of these constructions into the packaging cell line psi-2, and viral titers up to 10(5) CFU/ml were obtained. Recombinant AS retrovirus was evaluated by detecting G-418-resistant colonies after infection of the rodent cells, XC, NRK, and 3T3. Colonies were also obtained when infected XC cells were selected in citrulline medium for expression of AS activity. Southern blot analysis of infected cells demonstrated that the recombinant retroviral genome was not altered grossly after infecting some rodent cells, while other cells showed evidence of rearrangement. A rapid assay for detecting AS retrovirus was developed based on the incorporation of [14C]citrulline into protein by intact 3T3 cells or XC cells.
The dairy_wa.zip file is a zip file containing an Arc/Info export file and a text document. Note the DISCLAIM.TXT file as these data are not verified. Map extent: statewide. Input Source: Address database obtained from Wa Dept of Agriculture. Data was originally developed und...
Sussmilch, Frances C.; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K.; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L.
2015-01-01
As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. PMID:25804541
Socha, Amanda L.; Guerinot, Mary Lou
2014-01-01
Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis. PMID:24744764
Draft reference grid cells for emergency response reconnaissance developed for use by the US Environmental Protection Agency. Grid cells are based on densification of the USGS Quarterquad (1:12,000 scale or 12K) grids for the continental United States, Alaska, Hawaii and Puerto Rico and are roughly equivalent to 1:6000 scale (6K) quadrangles approximately 2 miles long on each side. Note: This file is >80MB in size. Regional subsets have been created from this national file that include a 20 mile buffer of tiles around each EPA Region. To access the regional subsets, go to http://geodata.epa.gov/OSWER/6kquads_epa.zip and select the name of the file that corresponds to your region of interest (e.g. 6kquadr1.zip is the name of the file created for EPA Region 1).
Abscisic-acid-dependent basic leucine zipper (bZIP) transcription factors in plant abiotic stress.
Banerjee, Aditya; Roychoudhury, Aryadeep
2017-01-01
One of the major causes of significant crop loss throughout the world is the myriad of environmental stresses including drought, salinity, cold, heavy metal toxicity, and ultraviolet-B (UV-B) rays. Plants as sessile organisms have evolved various effective mechanism which enable them to withstand this plethora of stresses. Most of such regulatory mechanisms usually follow the abscisic-acid (ABA)-dependent pathway. In this review, we have primarily focussed on the basic leucine zipper (bZIP) transcription factors (TFs) activated by the ABA-mediated signalosome. Upon perception of ABA by specialized receptors, the signal is transduced via various groups of Ser/Thr kinases, which phosphorylate the bZIP TFs. Following such post-translational modification of TFs, they are activated so that they bind to specific cis-acting sequences called abscisic-acid-responsive elements (ABREs) or GC-rich coupling elements (CE), thereby influencing the expression of their target downstream genes. Several in silico techniques have been adopted so far to predict the structural features, recognize the regulatory modification sites, undergo phylogenetic analyses, and facilitate genome-wide survey of TF under multiple stresses. Current investigations on the epigenetic regulation that controls greater accessibility of the inducible regions of DNA of the target gene to the bZIP TFs exclusively under stress situations, along with the evolved stress memory responses via genomic imprinting mechanism, have been highlighted. The potentiality of overexpression of bZIP TFs, either in a homologous or in a heterologous background, in generating transgenic plants tolerant to various abiotic stressors have also been addressed by various groups. The present review will provide a coherent documentation on the functional characterization and regulation of bZIP TFs under multiple environmental stresses, with the major goal of generating multiple-stress-tolerant plant cultivars in near future.
Yancey, Antronette K; Cole, Brian L; Brown, Rochelle; Williams, Jerome D; Hillier, Amy; Kline, Randolph S; Ashe, Marice; Grier, Sonya A; Backman, Desiree; McCarthy, William J
2009-03-01
Commercial marketing is a critical but understudied element of the sociocultural environment influencing Americans' food and beverage preferences and purchases. This marketing also likely influences the utilization of goods and services related to physical activity and sedentary behavior. A growing literature documents the targeting of racial/ethnic and income groups in commercial advertisements in magazines, on billboards, and on television that may contribute to sociodemographic disparities in obesity and chronic disease risk and protective behaviors. This article examines whether African Americans, Latinos, and people living in low-income neighborhoods are disproportionately exposed to advertisements for high-calorie, low nutrient-dense foods and beverages and for sedentary entertainment and transportation and are relatively underexposed to advertising for nutritious foods and beverages and goods and services promoting physical activities. Outdoor advertising density and content were compared in zip code areas selected to offer contrasts by area income and ethnicity in four cities: Los Angeles, Austin, New York City, and Philadelphia. Large variations were observed in the amount, type, and value of advertising in the selected zip code areas. Living in an upper-income neighborhood, regardless of its residents' predominant ethnicity, is generally protective against exposure to most types of obesity-promoting outdoor advertising (food, fast food, sugary beverages, sedentary entertainment, and transportation). The density of advertising varied by zip code area race/ethnicity, with African American zip code areas having the highest advertising densities, Latino zip code areas having slightly lower densities, and white zip code areas having the lowest densities. The potential health and economic implications of differential exposure to obesity-related advertising are substantial. Although substantive legal questions remain about the government's ability to regulate advertising, the success of limiting tobacco advertising offers lessons for reducing the marketing contribution to the obesigenicity of urban environments.
1988-01-01
City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) Arlington, VA 22202-4302 8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9 ...to u 0 300- I cInr 1- IL71 O0 0 1= I v V- EU 10001- I 0 M fa V CE0 1 CI o 100 3(- 9 -4 3-. 3t-4 -4 CA4 4 -4 W-4 - .. 4’.-I-4 00.f.4 4-I 0-I I...I 00003’ 44-.4.44 r4 r0) 1- 00 U44a ( 9 WLAC’) o .,’r-r-- r-3=-.-r 00 r- i-. I’- 1-’o- 411Wa0(1 I M ( t1nC n S 0M U n . (n(C’In (1n n ( 0nL C) 0 M1 M
Time trends in the association of ESRD incidence with area-level poverty in the US population.
Garrity, Bridget H; Kramer, Holly; Vellanki, Kavitha; Leehey, David; Brown, Julia; Shoham, David A
2016-01-01
The objective of this study was to examine the temporal trends of the association between area-level poverty status and end-stage renal disease (ESRD) incidence. We hypothesized that the association between area-level poverty status and ESRD incidence has increased significantly over time. Patient data from the United States Renal Data System were linked with data from the 2000 and 2010 US census. Area-level poverty was defined as living in a zip code-defined area with ≥20% of households living below the federal poverty line. Negative binomial regression models were created to examine the association between area-level poverty status and ESRD incidence by time period in the US adult population while simultaneously adjusting for the distribution of age, sex, and race/ethnicity within a zip code. Time was categorized as January 1, 1995 through December 31, 2004 (Period 1) and January 1, 2005 through December 31, 2010 (Period 2). The percentage of adults initiating dialysis with area-level poverty increased from 27.4% during Period 1 to 34.0% in Period 2. After accounting for the distribution of age, sex, and race/ethnicity within a zip code, area-level poverty status was associated with a 1.24 (95% confidence interval [CI] 1.22, 1.25)-fold higher ESRD incidence. However, this association differed by time period with 1.04-fold (95% CI 1.02, 1.05) higher ESRD incidence associated with poverty status for Period 2 compared with the association between ESRD and poverty status in Period 1. Area-level poverty and its association with ESRD incidence is not static over time. © 2015 International Society for Hemodialysis.
Malairaman, Udayabanu; Dandapani, Kumaran; Katyal, Anju
2014-01-01
Background Calcium overload has been implicated as a critical event in glutamate excitotoxicity associated neurodegeneration. Recently, zinc accumulation and its neurotoxic role similar to calcium has been proposed. Earlier, we reported that free chelatable zinc released during hypobaric hypoxia mediates neuronal damage and memory impairment. The molecular mechanism behind hypobaric hypoxia mediated neuronal damage is obscure. The role of free zinc in such neuropathological condition has not been elucidated. In the present study, we investigated the underlying role of free chelatable zinc in hypobaric hypoxia-induced neuronal inflammation and apoptosis resulting in hippocampal damage. Methods Adult male Balb/c mice were exposed to hypobaric hypoxia and treated with saline or Ca2EDTA (1.25 mM/kg i.p) daily for four days. The effects of Ca2EDTA on apoptosis (caspases activity and DNA fragmentation), pro-inflammatory markers (iNOS, TNF-α and COX-2), NADPH oxidase activity, poly(ADP ribose) polymerase (PARP) activity and expressions of Bax, Bcl-2, HIF-1α, metallothionein-3, ZnT-1 and ZIP-6 were examined in the hippocampal region of brain. Results Hypobaric hypoxia resulted in increased expression of metallothionein-3 and zinc transporters (ZnT-1 and ZIP-6). Hypobaric hypoxia elicited an oxidative stress and inflammatory response characterized by elevated NADPH oxidase activity and up-regulation of iNOS, COX-2 and TNF-α. Furthermore, hypobaric hypoxia induced HIF-1α protein expression, PARP activation and apoptosis in the hippocampus. Administration of Ca2EDTA significantly attenuated the hypobaric hypoxia induced oxidative stress, inflammation and apoptosis in the hippocampus. Conclusion We propose that hypobaric hypoxia/reperfusion instigates free chelatable zinc imbalance in brain associated with neuroinflammation and neuronal apoptosis. Therefore, zinc chelating strategies which block zinc mediated neuronal damage linked with cerebral hypoxia and other neurodegenerative conditions can be designed in future. PMID:25340757
Malairaman, Udayabanu; Dandapani, Kumaran; Katyal, Anju
2014-01-01
Calcium overload has been implicated as a critical event in glutamate excitotoxicity associated neurodegeneration. Recently, zinc accumulation and its neurotoxic role similar to calcium has been proposed. Earlier, we reported that free chelatable zinc released during hypobaric hypoxia mediates neuronal damage and memory impairment. The molecular mechanism behind hypobaric hypoxia mediated neuronal damage is obscure. The role of free zinc in such neuropathological condition has not been elucidated. In the present study, we investigated the underlying role of free chelatable zinc in hypobaric hypoxia-induced neuronal inflammation and apoptosis resulting in hippocampal damage. Adult male Balb/c mice were exposed to hypobaric hypoxia and treated with saline or Ca2EDTA (1.25 mM/kg i.p) daily for four days. The effects of Ca2EDTA on apoptosis (caspases activity and DNA fragmentation), pro-inflammatory markers (iNOS, TNF-α and COX-2), NADPH oxidase activity, poly(ADP ribose) polymerase (PARP) activity and expressions of Bax, Bcl-2, HIF-1α, metallothionein-3, ZnT-1 and ZIP-6 were examined in the hippocampal region of brain. Hypobaric hypoxia resulted in increased expression of metallothionein-3 and zinc transporters (ZnT-1 and ZIP-6). Hypobaric hypoxia elicited an oxidative stress and inflammatory response characterized by elevated NADPH oxidase activity and up-regulation of iNOS, COX-2 and TNF-α. Furthermore, hypobaric hypoxia induced HIF-1α protein expression, PARP activation and apoptosis in the hippocampus. Administration of Ca2EDTA significantly attenuated the hypobaric hypoxia induced oxidative stress, inflammation and apoptosis in the hippocampus. We propose that hypobaric hypoxia/reperfusion instigates free chelatable zinc imbalance in brain associated with neuroinflammation and neuronal apoptosis. Therefore, zinc chelating strategies which block zinc mediated neuronal damage linked with cerebral hypoxia and other neurodegenerative conditions can be designed in future.
77 FR 12764 - POSTNET Barcode Discontinuation
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
... routing code appears in the lower right corner. * * * * * [Delete current 5.6, DPBC Numeric Equivalent, in... correct ZIP Code, ZIP+4 code, or numeric equivalent to the delivery point routing code and which meets... equivalent to the delivery point routing code is formed by [[Page 12766
Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C
2014-01-01
The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090
Kobayashi, Yuhko; Murata, Michiharu; Minami, Hideyuki; Yamamoto, Shuhei; Kagaya, Yasuaki; Hobo, Tokunori; Yamamoto, Akiko; Hattori, Tsukaho
2005-12-01
The plant hormone abscisic acid (ABA) induces gene expression via the ABA-response element (ABRE) present in the promoters of ABA-regulated genes. A group of bZIP proteins have been identified as ABRE-binding factors (ABFs) that activate transcription through this cis element. A rice ABF, TRAB1, has been shown to be activated via ABA-dependent phosphorylation. While a large number of signalling factors have been identified that are involved in stomatal regulation by ABA, relatively less is known about the ABA-signalling pathway that leads to gene expression. We have shown recently that three members of the rice SnRK2 protein kinase family, SAPK8, SAPK9 and SAPK10, are activated by ABA signal as well as by hyperosmotic stress. Here we show that transient overexpression in cultured cell protoplasts of these ABA-activated SnRK2 protein kinases leads to the activation of an ABRE-regulated promoter, suggesting that these kinases are involved in the gene-regulation pathway of ABA signalling. We further show several lines of evidence that these ABA-activated SnRK2 protein kinases directly phosphorylate TRAB1 in response to ABA. Kinetic analysis of SAPK10 activation and TRAB1 phosphorylation indicated that the latter immediately followed the former. TRAB1 was found to be phosphorylated not only in response to ABA, but also in response to hyperosmotic stress, which was interpreted as the consequence of phosphorylation of TRAB1 by hyperosmotically activated SAPKs. Physical interaction between TRAB1 and SAPK10 in vivo was demonstrated by a co-immunoprecipitation experiment. Finally, TRAB1 was phosphorylated in vitro by the ABA-activated SnRK2 protein kinases at Ser102, which is phosphorylated in vivo in response to ABA and is critical for the activation function.
Protein kinase M ζ and the maintenance of long-term memory.
Zhang, Yang; Zong, Wei; Zhang, Lei; Ma, Yuanye; Wang, Jianhong
2016-10-01
Although various molecules have been found to mediate the processes of memory acquisition and consolidation, the molecular mechanism to maintain memory still remains elusive. In recent years, a molecular pathway focusing on protein kinase Mζ (PKMζ) has become of interest to researchers because of its potential role in long-term memory maintenance. PKMζ is an isoform of protein kinase C (PKC) and has a related structure that influences its function in maintaining memory. Considerable evidence has been gathered on PKMζ activity, including loss of function studies using PKMζ inhibitors, such as PKMζ inhibitory peptide (ZIP), suggesting PKMζ plays an important role in long-term memory maintenance. This review provides an overview of the role of PKMζ in long-term memory and outlines the molecular structure of PKMζ, the molecular mechanism of PKMζ in long-term memory maintenance and future directions of PKMζ research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lossless compression techniques for maskless lithography data
NASA Astrophysics Data System (ADS)
Dai, Vito; Zakhor, Avideh
2002-07-01
Future lithography systems must produce more dense chips with smaller feature sizes, while maintaining the throughput of one wafer per sixty seconds per layer achieved by today's optical lithography systems. To achieve this throughput with a direct-write maskless lithography system, using 25 nm pixels for 50 nm feature sizes, requires data rates of about 10 Tb/s. In a previous paper, we presented an architecture which achieves this data rate contingent on consistent 25 to 1 compression of lithography data, and on implementation of a decoder-writer chip with a real-time decompressor fabricated on the same chip as the massively parallel array of lithography writers. In this paper, we examine the compression efficiency of a spectrum of techniques suitable for lithography data, including two industry standards JBIG and JPEG-LS, a wavelet based technique SPIHT, general file compression techniques ZIP and BZIP2, our own 2D-LZ technique, and a simple list-of-rectangles representation RECT. Layouts rasterized both to black-and-white pixels, and to 32 level gray pixels are considered. Based on compression efficiency, JBIG, ZIP, 2D-LZ, and BZIP2 are found to be strong candidates for application to maskless lithography data, in many cases far exceeding the required compression ratio of 25. To demonstrate the feasibility of implementing the decoder-writer chip, we consider the design of a hardware decoder based on ZIP, the simplest of the four candidate techniques. The basic algorithm behind ZIP compression is Lempel-Ziv 1977 (LZ77), and the design parameters of LZ77 decompression are optimized to minimize circuit usage while maintaining compression efficiency.
Need for and Access to Supportive Services in the Child Welfare System
Freisthler, Bridget
2011-01-01
Objective The purpose of this paper is to examine how geographical availability of social services is related to foster care entry rates and referrals for child maltreatment investigations. The primary concerns are to (1) determine locations across Los Angeles County where the availability of social services is low but display a high need for those services and (2) begin to examine how the geographic distribution of social services is related to rates of referrals and foster care entries in child maltreatment. Methods Archival data for all 288 zip codes within Los Angeles County were collected on rates of referrals, foster care entries, location and types of social service agencies, and zip code demographics. Data were analyzed using point process models and spatial regressions. Results Higher densities of child welfare services in local areas (for referrals) and lagged areas (for referrals and foster care entries) were related to lower rates of child maltreatment. The density of housing and housing-related services was negatively related to referrals in local areas and foster care entry rates in lagged areas. Areas with higher densities of substance abuse and domestic violence service agencies had significantly higher rates of both Child Protective Services (CPS) referrals and entries into foster care in local areas. Conclusions While the total density of child welfare services within and surrounding zip code areas is related to lower rates of referrals and foster care entries, the findings are less clear about what those specific services are. Living in and around “resource rich” zip codes may reduce rates of child maltreatment. PMID:23788827
Practice Location Characteristics of Non-Traditional Dental Practices.
Solomon, Eric S; Jones, Daniel L
2016-04-01
Current and future dental school graduates are increasingly likely to choose a non-traditional dental practice-a group practice managed by a dental service organization or a corporate practice with employed dentists-for their initial practice experience. In addition, the growth of non-traditional practices, which are located primarily in major urban areas, could accelerate the movement of dentists to those areas and contribute to geographic disparities in the distribution of dental services. To help the profession understand the implications of these developments, the aim of this study was to compare the location characteristics of non-traditional practices and traditional dental practices. After identifying non-traditional practices across the United States, the authors located those practices and traditional dental practices geographically by zip code. Non-traditional dental practices were found to represent about 3.1% of all dental practices, but they had a greater impact on the marketplace with almost twice the average number of staff and annual revenue. Virtually all non-traditional dental practices were located in zip codes that also had a traditional dental practice. Zip codes with non-traditional practices had significant differences from zip codes with only a traditional dental practice: the populations in areas with non-traditional practices had higher income levels and higher education and were slightly younger and proportionally more Hispanic; those practices also had a much higher likelihood of being located in a major metropolitan area. Dental educators and leaders need to understand the impact of these trends in the practice environment in order to both prepare graduates for practice and make decisions about planning for the workforce of the future.
Garlich, Joshua; Strecker, Valentina; Wittig, Ilka; Stuart, Rosemary A.
2017-01-01
The yeast Rcf1 protein is a member of the conserved family of proteins termed the hypoxia-induced gene (domain) 1 (Hig1 or HIGD1) family. Rcf1 interacts with components of the mitochondrial oxidative phosphorylation system, in particular the cytochrome bc1 (complex III)-cytochrome c oxidase (complex IV) supercomplex (termed III-IV) and the ADP/ATP carrier proteins. Rcf1 plays a role in the assembly and modulation of the activity of complex IV; however, the molecular basis for how Rcf1 influences the activity of complex IV is currently unknown. Hig1 type 2 isoforms, which include the Rcf1 protein, are characterized in part by the presence of a conserved motif, (Q/I)X3(R/H)XRX3Q, termed here the QRRQ motif. We show that mutation of conserved residues within the Rcf1 QRRQ motif alters the interactions between Rcf1 and partner proteins and results in the destabilization of complex IV and alteration of its enzymatic properties. Our findings indicate that Rcf1 does not serve as a stoichiometric component, i.e. as a subunit of complex IV, to support its activity. Rather, we propose that Rcf1 serves to dynamically interact with complex IV during its assembly process and, in doing so, regulates a late maturation step of complex IV. We speculate that the Rcf1/Hig1 proteins play a role in the incorporation and/or remodeling of lipids, in particular cardiolipin, into complex IV and. possibly, other mitochondrial proteins such as ADP/ATP carrier proteins. PMID:28167530
Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.
Sorusch, Nasrin; Bauß, Katharina; Plutniok, Janet; Samanta, Ananya; Knapp, Barbara; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe
2017-03-15
The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
48 CFR 52.204-7 - System for Award Management.
Code of Federal Regulations, 2013 CFR
2013-10-01
... for Award Manangement (JUL 2013) (a) Definitions. As used in this provision— Data Universal Numbering... information, including the DUNS number or the DUNS+4 number, the Contractor and Government Entity (CAGE) code... Zip Code. (iv) Company Mailing Address, City, State and Zip Code (if separate from physical). (v...
48 CFR 52.204-7 - System for Award Management.
Code of Federal Regulations, 2014 CFR
2014-10-01
... for Award Manangement (JUL 2013) (a) Definitions. As used in this provision— Data Universal Numbering... information, including the DUNS number or the DUNS+4 number, the Contractor and Government Entity (CAGE) code... Zip Code. (iv) Company Mailing Address, City, State and Zip Code (if separate from physical). (v...
Fundamental Studies in the Molecular Basis of Laser Induced Retinal Damage
1988-01-01
Cornell University .LECT l School of Applied & Engineering PhysicsIthaca, NY 14853 0 JAN 198D DOD DISTRIBUTION STATEMENT Approved for public release...State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) School of Applied & Engineering Physics Ithaca, NY 14853 Ba. NAME OF FUNDING/ SPONSORING
77 FR 18716 - Transportation Security Administration Postal Zip Code Change; Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-28
... organizational changes and it has no substantive effect on the public. DATES: Effective March 28, 2012. FOR... No. 1572-9] Transportation Security Administration Postal Zip Code Change; Technical Amendment AGENCY: Transportation Security Administration, DHS. ACTION: Final rule. SUMMARY: This rule is a technical change to...
Replication-Independent Histone Deposition by the HIR Complex and Asf1
Green, Erin M.; Antczak, Andrew J.; Bailey, Aaron O.; Franco, Alexa A.; Wu, Kevin J.; Yates, John R.; Kaufman, Paul D.
2010-01-01
Summary The orderly deposition of histones onto DNA is mediated by conserved assembly complexes, including Chromatin Assembly Factor-1 (CAF-1) and the Hir proteins [1–4]. CAF-1 and the Hir proteins operate in distinct but functionally overlapping histone deposition pathways in vivo [5, 6]. The Hir proteins and CAF-1 share a common partner, the highly conserved histone H3/H4-binding protein Asf1, which binds the middle subunit of CAF-1 as well as to Hir proteins [7–11]. Asf1 binds to newly synthesized histones H3/H4 [12] and this complex stimulates histone deposition by CAF-1 [7, 12, 13]. In yeast, Asf1 is required for the contribution of the Hir proteins to gene silencing [7, 14]. Here, we demonstrate that Hir1, Hir2, Hir3 and Hpc2 comprise the HIR complex, which co-purifies with histone deposition protein Asf1. Together, the HIR complex and Asf1 deposit histones onto DNA in a replication-independent manner. Histone deposition by the HIR complex and Asf1 is impaired by a mutation in Asf1 that inhibits HIR binding. These data indicate that the HIR complex and Asf1 proteins function together as a conserved eukaryotic pathway for histone replacement throughout the cell cycle. PMID:16303565
Florea, Daniela; Molina-López, Jorge; Hogstrand, Christer; Lengyel, Imre; de la Cruz, Antonio Pérez; Rodríguez-Elvira, Manuel; Planells, Elena
2018-09-01
Critically ill patients develop severe stress, inflammation and a clinical state that may raise the utilization and metabolic replacement of many nutrients and especially zinc, depleting their body reserves. This study was designed to assess the zinc status in critical care patients with systemic inflammatory response syndrome (SIRS), comparing them with a group of healthy people, and studying the association with expression of zinc transporters. This investigation was a prospective, multicentre, comparative, observational and analytic study. Twelve critically ill patients from different hospitals and 12 healthy subjects from Granada, Spain, all with informed consent were recruited. Data on daily nutritional assessment, ICU severity scores, inflammation, clinical and nutritional parameters, plasma and blood cell zinc concentrations, and levels of transcripts for zinc transporters in whole blood were taken at admission and at the seventh day of the ICU stay. Zinc levels on critical ill patient are diminish comparing with the healthy control (HS: 0.94 ± 0.19; CIPF: 0.67 ± 0.16 mg/dL). The 58% of critical ill patients showed zinc plasma deficiency at beginning of study while 50.0% of critical ill after 7 days of ICU stay. ZnT7, ZIP4 and ZIP9 were the zinc transporters with highest expression in whole blood. In general, all zinc transporters were significantly down-regulated (P < 0.05) in the critical ill population at admission in comparison with healthy subjects. Severity scores and inflammation were significantly associated (P < 0.05) with zinc plasma levels, and zinc transporters ZIP3, ZIP4, ZIP8, ZnT6, ZnT7. Expression of 11 out of 24 zinc transporters was analysed, and ZnT1, ZnT4, ZnT5 and ZIP4, which were downregulated by more than 3-fold in whole blood of patients. In summary, in our study an alteration of zinc status was related with the severity-of-illness scores and inflammation in critical ill patients since admission in ICU stay. SIRS caused a general shut-down of expression of zinc transporters in whole blood. That behavior was associated with severity and inflammation of patients at ICU admission regardless zinc status. We conclude that zinc transporters in blood might be useful indicators of severity of systemic inflammation and outcome for critically ill patients. Copyright © 2017 Elsevier GmbH. All rights reserved.
Stotz, Henrik U; Findling, Simone; Nukarinen, Ella; Weckwerth, Wolfram; Mueller, Martin J; Berger, Susanne
2014-01-01
Tandem affinity purification (TAP) tagging provides a powerful tool for isolating interacting proteins in vivo. TAP-tag purification offers particular advantages for the identification of stimulus-induced protein interactions. Type II bZIP transcription factors (TGA2, TGA5 and TGA6) play key roles in pathways that control salicylic acid, ethylene, xenobiotic and reactive oxylipin signaling. Although proteins interacting with these transcription factors have been identified through genetic and yeast 2-hybrid screening, others are still elusive. We have therefore generated a C-terminal TAP-tag of TGA2 to isolate additional proteins that interact with this transcription factor. Three lines most highly expressing TAP-tagged TGA2 were functional in that they partially complemented reactive oxylipin-responsive gene expression in a tga2 tga5 tga6 triple mutant. TAP-tagged TGA2 in the most strongly overexpressing line was proteolytically less stable than in the other 2 lines. Only this overexpressing line could be used in a 2-step purification process, resulting in isolation of co-purifying bands of larger molecular weight than TGA2. TAP-tagged TGA2 was used to pull down NPR1, a protein known to interact with this transcription factor. Mass spectrometry was used to identify peptides that co-purified with TAP-tagged TGA2. Having generated this TGA2 TAP-tag line will therefore be an asset to researchers interested in stimulus-induced signal transduction processes. PMID:25482810
Genomic structure of the human D-site binding protein (DBP) gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutler, G.; Glassco, T.; Kang, Xiaolin
1996-06-15
The human gene for the D-Site Binding Protein (DBP) has been sequenced and characterized. This gene is a member of the b/ZIP family of transcription factors and is one of three genes forming the PAR sub-family. DBP has been implicated in the diurnal regulation of a variety of liver-specific genes. Examination of the genomic structure of DBP reveals that the gene is divided into four exons and is contained within a relatively compact region of approximately 6 kb. These exons appear to correspond to functional divisions the DBP protein. Exon 1 contains a long 5{prime} UTR, and conservation between themore » rat and the human genes of the presence of small open reading frames within this region suggests that is may play a role in translational control. Exon 2 contains a limited region of similarity to the other PAR domain genes, which may be part of a potential activation domain. Exon 3 contains the PAR domain and differs by only 1 of 71 amino acids between rat and human. Exon 4, containing both the basic and the leucine zipper domains, is likewise highly conserved. The overall degree of homology between the rat and the human cDNA sequences is 82% for the nucleic acid sequence and 92% for the protein sequence. comparison of the rat and human proximal promoters reveals extensive sequence conservation, with two previously characterized DNA binding sites being conserved at the functional and sequence levels. 31 refs., 4 figs.« less
Local variations in the timing of RSV epidemics.
Noveroske, Douglas B; Warren, Joshua L; Pitzer, Virginia E; Weinberger, Daniel M
2016-11-11
Respiratory syncytial virus (RSV) is a primary cause of hospitalizations in children worldwide. The timing of seasonal RSV epidemics needs to be known in order to administer prophylaxis to high-risk infants at the appropriate time. We used data from the Connecticut State Inpatient Database to identify RSV hospitalizations based on ICD-9 diagnostic codes. Harmonic regression analyses were used to evaluate RSV epidemic timing at the county level and ZIP code levels. Linear regression was used to investigate associations between the socioeconomic status of a locality and RSV epidemic timing. 9,740 hospitalizations coded as RSV occurred among children less than 2 years old between July 1, 1997 and June 30, 2013. The earliest ZIP code had a seasonal RSV epidemic that peaked, on average, 4.64 weeks earlier than the latest ZIP code. Earlier epidemic timing was significantly associated with demographic characteristics (higher population density and larger fraction of the population that was black). Seasonal RSV epidemics in Connecticut occurred earlier in areas that were more urban (higher population density and larger fraction of the population that was). These findings could be used to better time the administration of prophylaxis to high-risk infants.
Programmable optical microshutter arrays for large aspect ratio microslits
NASA Astrophysics Data System (ADS)
Ilias, S.; Picard, F.; Larouche, C.; Kruzelecky, R.; Jamroz, W.; Le Noc, L.; Topart, P.
2008-06-01
Design, fabrication and characterization of a 16x1 programmable microshutter array are described. Each shutter controls the light transmitted through a microslit defined on the transparent substrate supporting the array. Two approaches were considered for the shutter array implementation: sweeping blades and zipping actuators. Simulation results and fabrication constraints led to the selection of the zipping actuators. The device was fabricated using a surface micromachining process. Each microshutter is basically an electrostatic zipping actuator having a curved shape induced by a stress gradient throughout the actuator thickness. When a sufficient voltage is applied between the microshutter and an actuation electrode surrounding the microslit area, the generated electrostatic force pulls the actuator down to the substrate which closes the microslit. Opening the slit relies on the restoring force due to the actuator deformation. Microshutter arrays were fabricated successfully. High light transmission through the slit area is obtained with the actuator in the open position and excellent light blocking is observed when the shutter is closed. Static and dynamic responses of the device were determined. A pull-in voltage of about 110 V closes the microslit and the response times to close and open the microslit are about 2 and 7 ms, respectively.
Peter, Emanuel K; Shea, Joan-Emma; Pivkin, Igor V
2016-05-14
In this paper, we present a coarse replica exchange molecular dynamics (REMD) approach, based on kinetic Monte Carlo (kMC). The new development significantly can reduce the amount of replicas and the computational cost needed to enhance sampling in protein simulations. We introduce 2 different methods which primarily differ in the exchange scheme between the parallel ensembles. We apply this approach on folding of 2 different β-stranded peptides: the C-terminal β-hairpin fragment of GB1 and TrpZip4. Additionally, we use the new simulation technique to study the folding of TrpCage, a small fast folding α-helical peptide. Subsequently, we apply the new methodology on conformation changes in signaling of the light-oxygen voltage (LOV) sensitive domain from Avena sativa (AsLOV2). Our results agree well with data reported in the literature. In simulations of dialanine, we compare the statistical sampling of the 2 techniques with conventional REMD and analyze their performance. The new techniques can reduce the computational cost of REMD significantly and can be used in enhanced sampling simulations of biomolecules.
Bicarbonate transport in health and disease.
Alka, Kumari; Casey, Joseph R
2014-09-01
Bicarbonate (HCO3(-)) has a central place in human physiology as the waste product of mitochondrial energy production and for its role in pH buffering throughout the body. Because bicarbonate is impermeable to membranes, bicarbonate transport proteins are necessary to enable control of bicarbonate levels across membranes. In humans, 14 bicarbonate transport proteins, members of the SLC4 and SLC26 families, function by differing transport mechanisms. In addition, some anion channels and ZIP metal transporters contribute to bicarbonate movement across membranes. Defective bicarbonate transport leads to diseases, including systemic acidosis, brain dysfunction, kidney stones, and hypertension. Altered expression levels of bicarbonate transporters in patients with breast, colon, and lung cancer suggest an important role of these transporters in cancer. © 2014 International Union of Biochemistry and Molecular Biology.
Nam, Hyeyoung; Wang, Chia-Yu; Zhang, Lin; Zhang, Wei; Hojyo, Shintaro; Fukada, Toshiyuki; Knutson, Mitchell D.
2013-01-01
The liver, pancreas, and heart are particularly susceptible to iron-related disorders. These tissues take up plasma iron from transferrin or non-transferrin-bound iron, which appears during iron overload. Here, we assessed the effect of iron status on the levels of the transmembrane transporters, ZRT/IRT-like protein 14 and divalent metal-ion transporter-1, which have both been implicated in transferrin- and non-transferrin-bound iron uptake. Weanling male rats (n=6/group) were fed an iron-deficient, iron-adequate, or iron-overloaded diet for 3 weeks. ZRT/IRT-like protein 14, divalent metal-ion transporter-1 protein and mRNA levels in liver, pancreas, and heart were determined by using immunoblotting and quantitative reverse transcriptase polymerase chain reaction analysis. Confocal immunofluorescence microscopy was used to localize ZRT/IRT-like protein 14 in the liver and pancreas. ZRT/IRT-like protein 14 and divalent metal-ion transporter-1 protein levels were also determined in hypotransferrinemic mice with genetic iron overload. Hepatic ZRT/IRT-like protein 14 levels were found to be 100% higher in iron-loaded rats than in iron-adequate controls. By contrast, hepatic divalent metal-ion transporter-1 protein levels were 70% lower in iron-overloaded animals and nearly 3-fold higher in iron-deficient ones. In the pancreas, ZRT/IRT-like protein 14 levels were 50% higher in iron-overloaded rats, and in the heart, divalent metal-ion transporter-1 protein levels were 4-fold higher in iron-deficient animals. At the mRNA level, ZRT/IRT-like protein 14 expression did not vary with iron status, whereas divalent metal-ion transporter-1 expression was found to be elevated in iron-deficient livers. Immunofluorescence staining localized ZRT/IRT-like protein 14 to the basolateral membrane of hepatocytes and to acinar cells of the pancreas. Hepatic ZRT/IRT-like protein 14, but not divalent metal-ion transporter-1, protein levels were elevated in iron-loaded hypotransferrinemic mice. In conclusion, ZRT/IRT-like protein 14 protein levels are up-regulated in iron-loaded rat liver and pancreas and in hypotransferrinemic mouse liver. Divalent metal-ion transporter-1 protein levels are down-regulated in iron-loaded rat liver, and up-regulated in iron-deficient liver and heart. Our results provide insight into the potential contributions of these transporters to tissue iron uptake during iron deficiency and overload. PMID:23349308
Community measures of low-fat milk consumption: comparing store shelves with households.
Fisher, B D; Strogatz, D S
1999-02-01
This study examined the relationship between the proportion of milk in food stores that is low-fat and consumption of low-fat milk in the community. Data were gathered from 503 stores across 53 New York State zip codes. In 19 zip codes, a telephone survey measured household low-fat milk use. Census data were obtained to examine sociodemographic predictors of the percentage of low-fat milk in stores. The proportion of low-fat milk in stores was directly related to low-fat milk consumption in households and to the median income and urban level of the zip code. These results support using food store shelf-space observations to estimate low-fat milk consumption.
Zinc and its transporters, pancreatic beta cells, and insulin metabolism
USDA-ARS?s Scientific Manuscript database
Zinc is an essential trace metal for life. Two families of zinc transporters, SLC30A (ZnT) and SLC39A (ZIP) are required for maintaining cellular zinc homeostasis. ZnTs function to decrease cytoplasmic zinc concentrations whereas ZIPs do the opposite. Expression of zinc transporters can be tissue/ce...
Dermal Sensitization Potential of DIGL-RP Solid Propellant in Guinea Pigs
1989-10-01
y ’,c. ADM$$S (ft, SWOt , &Wd ZIP Cod 7b. ADDRESS (City, State, arid ZIP Code) Letterman Army Institute of Research Fort Detrick Presidio of San...for contact sensitization. Toxicol Appl Pharmacol 1969; Suppl 3:90-102. 7. Buehler EV, Griffith JF. Experimental skin sensitization in the guinea pig
IRT-ZIP Modeling for Multivariate Zero-Inflated Count Data
ERIC Educational Resources Information Center
Wang, Lijuan
2010-01-01
This study introduces an item response theory-zero-inflated Poisson (IRT-ZIP) model to investigate psychometric properties of multiple items and predict individuals' latent trait scores for multivariate zero-inflated count data. In the model, two link functions are used to capture two processes of the zero-inflated count data. Item parameters are…
2012-01-01
Background Wire closure still remains the preferred technique despite reasonable disadvantages. Associated complications, such as infection and sternal instability, cause time- and cost-consuming therapies. We present a new tool for sternal closure with its first clinical experience and results. Methods The sternal ZipFixTM System is based on the cable-tie principle. It primarily consists of biocompatible Poly-Ether-Ether-Ketone implants and is predominantly used peristernally through the intercostal space. The system provides a large implant-to-bone contact for better force distribution and for avoiding bone cut through. Results 50 patients were closed with the ZipFixTM system. No sternal instability was observed at 30 days. Two patients developed a mediastinitis that necessitated the removal of the device; however, the ZipFixTM were intact and the sternum remained stable. Conclusions In our initial evaluation, the short-term results have shown that the sternal ZipFixTM can be used safely and effectively. It is fast, easy to use and serves as a potential alternative for traditional wire closure. PMID:22731778
Kozjak-Pavlovic, Vera; Prell, Florian; Thiede, Bernd; Götz, Monika; Wosiek, Dominik; Ott, Christine; Rudel, Thomas
2014-02-20
Oxidative phosphorylation (OXPHOS) in mitochondria takes place at the inner membrane, which folds into numerous cristae. The stability of cristae depends, among other things, on the mitochondrial intermembrane space bridging complex. Its components include inner mitochondrial membrane protein mitofilin and outer membrane protein Sam50. We identified a conserved, uncharacterized protein, C1orf163 [SEL1 repeat containing 1 protein (SELRC1)], as one of the proteins significantly reduced after the knockdown of Sam50 and mitofilin. We show that C1orf163 is a mitochondrial soluble intermembrane space protein. Sam50 depletion affects moderately the import and assembly of C1orf163 into two protein complexes of approximately 60kDa and 150kDa. We observe that the knockdown of C1orf163 leads to reduction of levels of proteins belonging to the OXPHOS complexes. The activity of complexes I and IV is reduced in C1orf163-depleted cells, and we observe the strongest defects in the assembly of complex IV. Therefore, we propose C1orf163 to be a novel factor important for the assembly of respiratory chain complexes in human mitochondria and suggest to name it RESA1 (for RESpiratory chain Assembly 1). Copyright © 2013 Elsevier Ltd. All rights reserved.
Neighborhood Contributions to Racial and Ethnic Disparities in Obesity Among New York City Adults.
Lim, Sungwoo; Harris, Tiffany G
2015-01-01
Objectives. We assessed neighborhood confounding on racial/ethnic obesity disparities among adults in New York City after accounting for complex sampling, and how much neighborhood factors (walkability, percentage Black or Hispanic, poverty) contributed to this effect. Methods. We combined New York City Community Health Survey 2002-2004 data with Census 2000 zip code-level data. We estimated odds ratios (ORs) for obesity with 2 sets of regression analyses. First, we used the method incorporating the conditional pseudolikelihood into complex sample adjustment. Second, we compared ORs for race/ethnicity from a conventional multilevel model for each neighborhood factor with those from a hybrid fixed-effect model. Results. The weighted estimate for obesity for Blacks versus Whites (OR = 1.8; 95% confidence interval = 1.6, 2.0) was attenuated when we controlled neighborhood confounding (OR = 1.4; 95% confidence interval = 1.2, 1.6; first analysis). Percentage of Blacks in the neighborhood made a large contribution whereas the walkability contribution was minimal (second analysis). Conclusions. Percentage of Blacks in New York City neighborhoods explained a large portion of the disparity in obesity between Blacks and Whites. The study highlights the importance of estimating valid neighborhood effects for public health surveillance and intervention.
Xenobiotic metabolism in the fourth dimension: PARtners in time.
Green, Carla B; Takahashi, Joseph S
2006-07-01
A significant portion of the transcriptome in mammals, including the PAR bZIP transcription factors DBP, HLF, and TEF, is under circadian clock control. In this issue of Cell Metabolism, Gachon and colleagues (Gachon et al., 2006) show that disruption of these three genes in mice alters gene expression patterns of many proteins involved in drug metabolism and in liver and kidney responses to xenobiotic agents. Triple mutant mice have severe physiological deficits, including increased hypersensitivity to xenobiotic agents and premature aging, highlighting the profound effect the circadian clock has on this important response system.
Geographic Variation in the Use of Low-Acuity Pediatric Emergency Medical Services.
Gregory, Emily F; Chamberlain, James M; Teach, Stephen J; Engstrom, Ryan; Mathison, David J
2017-02-01
The aim of this study was to examine geographic variation in pediatric low-acuity emergency medical services (EMS) use in Washington, DC. This cross-sectional analysis of low-acuity EMS transports evaluated arrivals at 2 emergency departments and included 93% of pediatric transports in Washington, DC, during the study period. Low-acuity classification was defined as a triage emergency severity index of 4 or 5 not resulting in transfer, admission, or death. Logistic regression compared low-acuity visits arriving via EMS with all other low-acuity visits. Home zip code represented geographic location. Covariates included patient age, sex, race/ethnicity, hour of emergency department arrival, and insurance status. There were 45,454 low-acuity visits among children aged 0 to 17 years. Of these, 3304 (7.3%) arrived via EMS. The mean age was 5.6 (±5.0) years. Most were African American (84.3%) and had Medicaid insurance (87.3%). Geographic variation predicted EMS use. Adjusted odds ratios (ORs) of using EMS varied from 1.11 to 2.54 when compared with the lowest EMS use zip code. Odds of EMS use were higher among those with public insurance (adjusted OR [adj OR], 1.71; 95% confidence interval [CI], 1.46-2.00) and those with evening and overnight arrivals (evening arrival, adj OR of 1.65 and 95% CI of 1.47-1.86; overnight arrival, adj OR of 2.98 and 95% CI of 2.43-3.65). After adjusting for known covariates, residential zip code was associated with low-acuity EMS activation, stressing the importance of geographic variation in EMS use. Providing alternate means of transportation, or targeted education to certain residential areas, may decrease unnecessary EMS activation.
Herrick, Cynthia J.; Yount, Byron W.; Eyler, Amy A.
2016-01-01
Objective Diabetes is a growing public health problem, and the environment in which people live and work may affect diabetes risk. The goal of this study was to examine the association between multiple aspects of environment and diabetes risk in an employee population. Design This was a retrospective cross-sectional analysis. Home environment variables were derived using employee zip code. Descriptive statistics were run on all individual and zip code level variables, stratified by diabetes risk and worksite. A multivariable logistic regression analysis was then conducted to determine the strongest associations with diabetes risk. Setting Data was collected from employee health fairs in a Midwestern health system 2009–2012. Subjects The dataset contains 25,227 unique individuals across four years of data. From this group, using an individual’s first entry into the database, 15,522 individuals had complete data for analysis. Results The prevalence of high diabetes risk in this population was 2.3%. There was significant variability in individual and zip code level variables across worksites. From the multivariable analysis, living in a zip code with higher percent poverty and higher walk score was positively associated with high diabetes risk, while living in a zip code with higher supermarket density was associated with a reduction in high diabetes risk. Conclusions Our study underscores the important relationship between poverty, home neighborhood environment, and diabetes risk, even in a relatively healthy employed population, and suggests a role for the employer in promoting health. PMID:26638995
Herrick, Cynthia J; Yount, Byron W; Eyler, Amy A
2016-08-01
Diabetes is a growing public health problem, and the environment in which people live and work may affect diabetes risk. The goal of the present study was to examine the association between multiple aspects of environment and diabetes risk in an employee population. This was a retrospective cross-sectional analysis. Home environment variables were derived using employees' zip code. Descriptive statistics were run on all individual- and zip-code-level variables, stratified by diabetes risk and worksite. A multivariable logistic regression analysis was then conducted to determine the strongest associations with diabetes risk. Data were collected from employee health fairs in a Midwestern health system, 2009-2012. The data set contains 25 227 unique individuals across four years of data. From this group, using an individual's first entry into the database, 15 522 individuals had complete data for analysis. The prevalence of high diabetes risk in this population was 2·3 %. There was significant variability in individual- and zip-code-level variables across worksites. From the multivariable analysis, living in a zip code with higher percentage of poverty and higher walk score was positively associated with high diabetes risk, while living in a zip code with higher supermarket density was associated with a reduction in high diabetes risk. Our study underscores the important relationship between poverty, home neighbourhood environment and diabetes risk, even in a relatively healthy employed population, and suggests a role for the employer in promoting health.
MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice.
Ding, Yanfei; Gong, Shaohua; Wang, Yi; Wang, Feijuan; Bao, Hexigeduleng; Sun, Junwei; Cai, Chong; Yi, Keke; Chen, Zhixiang; Zhu, Cheng
2018-06-20
MicroRNAs (miRNAs) are 20- to 24-nucleotide small non-coding RNAs that regulate gene expression in eukaryotic organisms. Several plant miRNAs, such as miR166, have vital roles in plant growth, development and responses to environmental stresses. One such environmental stress encountered by crop plants is exposure to cadmium (Cd), an element highly toxic to most organisms, including humans and plants. In this study, we analyzed the role of miR166 in Cd accumulation and tolerance in rice (Oryza sativa). The expression levels of miR166 in both root and leaf tissues were significantly higher in the reproductive stage than in the seedling stage in rice. The expression of miR166 in the roots of rice seedlings was reduced after Cd treatment. Overexpression of miR166 in rice improved Cd tolerance, a result associated with the reduction of Cd-induced oxidative stress in transgenic rice plants. Furthermore, overexpression of miR166 reduced both Cd translocation from roots to shoots and Cd accumulation in the grains. miR166 targets genes encoding the class-III homeodomain-leucine zipper (HD-Zip) family proteins in plants. In rice, HOMEODOMAIN CONTAINING PROTEIN 4 (OsHB4) gene (Os03g43930), which encodes an HD-Zip protein, was up-regulated by Cd treatment but down-regulated by overexpression of miR166 in transgenic rice plants. Overexpression of OsHB4 increased Cd sensitivity and Cd accumulation in the leaves and grains of transgenic rice plants. By contrast, silencing OsHB4 by RNA interference enhanced Cd tolerance in transgenic rice plants. These results indicate a critical role for miR166 in Cd accumulation and tolerance through regulation of its target gene, OsHB4, in rice. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Mutai, Hideki; Miya, Fuyuki; Fujii, Masato; Tsunoda, Tatsuhiko; Matsunaga, Tatsuo
2015-01-01
Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents:
Yancey, Antronette K; Cole, Brian L; Brown, Rochelle; Williams, Jerome D; Hillier, Amy; Kline, Randolph S; Ashe, Marice; Grier, Sonya A; Backman, Desiree; McCarthy, William J
2009-01-01
Context: Commercial marketing is a critical but understudied element of the sociocultural environment influencing Americans' food and beverage preferences and purchases. This marketing also likely influences the utilization of goods and services related to physical activity and sedentary behavior. A growing literature documents the targeting of racial/ethnic and income groups in commercial advertisements in magazines, on billboards, and on television that may contribute to sociodemographic disparities in obesity and chronic disease risk and protective behaviors. This article examines whether African Americans, Latinos, and people living in low-income neighborhoods are disproportionately exposed to advertisements for high-calorie, low nutrient–dense foods and beverages and for sedentary entertainment and transportation and are relatively underexposed to advertising for nutritious foods and beverages and goods and services promoting physical activities. Methods: Outdoor advertising density and content were compared in zip code areas selected to offer contrasts by area income and ethnicity in four cities: Los Angeles, Austin, New York City, and Philadelphia. Findings: Large variations were observed in the amount, type, and value of advertising in the selected zip code areas. Living in an upper-income neighborhood, regardless of its residents' predominant ethnicity, is generally protective against exposure to most types of obesity-promoting outdoor advertising (food, fast food, sugary beverages, sedentary entertainment, and transportation). The density of advertising varied by zip code area race/ethnicity, with African American zip code areas having the highest advertising densities, Latino zip code areas having slightly lower densities, and white zip code areas having the lowest densities. Conclusions: The potential health and economic implications of differential exposure to obesity-related advertising are substantial. Although substantive legal questions remain about the government's ability to regulate advertising, the success of limiting tobacco advertising offers lessons for reducing the marketing contribution to the obesigenicity of urban environments. PMID:19298419
Radar - 449MHz - Forks, WA (FKS) - Raw Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - North Bend, OR (OTH) - Raw Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - North Bend, OR (OTH) - Reviewed Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - Forks, WA (FKS) - Reviewed Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - Astoria, OR (AST) - Reviewed Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Radar - 449MHz - Astoria, OR (AST) - Raw Data
Gottas, Daniel
2018-06-25
**Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.
Green, Carmen R; Ndao-Brumblay, S Khady; West, Brady; Washington, Tamika
2005-10-01
Little is known about physical barriers to adequate pain treatment for minorities. This investigation explored sociodemographic determinants of pain medication availability in Michigan pharmacies. A cross-sectional survey-based study with census data and data provided by Michigan community retail pharmacists was designed. Sufficient opioid analgesic supplies was defined as stocking at least one long-acting, short-acting, and combination opioid analgesic. Pharmacies located in minority (
Lakshminarasimhan, Mahadevan; Boanca, Gina; Banks, Charles A. S.; Hattem, Gaye L.; Gabriel, Ana E.; Groppe, Brad D.; Smoyer, Christine; Malanowski, Kate E.; Peak, Allison; Florens, Laurence; Washburn, Michael P.
2016-01-01
The highly conserved yeast R2TP complex, consisting of Rvb1, Rvb2, Pih1, and Tah1, participates in diverse cellular processes ranging from assembly of protein complexes to apoptosis. Rvb1 and Rvb2 are closely related proteins belonging to the AAA+ superfamily and are essential for cell survival. Although Rvbs have been shown to be associated with various protein complexes including the Ino80 and Swr1chromatin remodeling complexes, we performed a systematic quantitative proteomic analysis of their associated proteins and identified two additional complexes that associate with Rvb1 and Rvb2: the chaperonin-containing T-complex and the 19S regulatory particle of the proteasome complex. We also analyzed Rvb1 and Rvb2 purified from yeast strains devoid of PIH1 and TAH1. These analyses revealed that both Rvb1 and Rvb2 still associated with Hsp90 and were highly enriched with RNA polymerase II complex components. Our analyses also revealed that both Rvb1 and Rvb2 were recruited to the Ino80 and Swr1 chromatin remodeling complexes even in the absence of Pih1 and Tah1 proteins. Using further biochemical analysis, we showed that Rvb1 and Rvb2 directly interacted with Hsp90 as well as with the RNA polymerase II complex. RNA-Seq analysis of the deletion strains compared with the wild-type strains revealed an up-regulation of ribosome biogenesis and ribonucleoprotein complex biogenesis genes, down-regulation of response to abiotic stimulus genes, and down-regulation of response to temperature stimulus genes. A Gene Ontology analysis of the 80 proteins whose protein associations were altered in the PIH1 or TAH1 deletion strains found ribonucleoprotein complex proteins to be the most enriched category. This suggests an important function of the R2TP complex in ribonucleoprotein complex biogenesis at both the proteomic and genomic levels. Finally, these results demonstrate that deletion network analyses can provide novel insights into cellular systems. PMID:26831523
Effect of chain structure on hydrogen bonding in vinyl acetate - vinyl alcohol copolymers
NASA Astrophysics Data System (ADS)
Merekalova, Nadezhda D.; Bondarenko, Galina N.; Denisova, Yuliya I.; Krentsel, Liya B.; Litmanovich, Arkadiy D.; Kudryavtsev, Yaroslav V.
2017-04-01
FTIR spectroscopy and semi-empirical AM1 method are used to study hydrogen bonding in multiblock and random equimolar copolymers of vinyl acetate and vinyl alcohol. An energetically beneficial zip-holder complex, built on multiple inter- and intrachain hydroxyl-hydroxyl bonds and an intrachain hydroxyl-acetyloxy bond, can be formed between two vinyl alcohol sequences. As a result, multiblock copolymers reveal stronger degree of association that affects crystallinity, as well as various rheological and relaxation properties discussed in the literature. Macromolecular complexes in random copolymers are weak and tend to be destroyed in the presence of residual DMF solvent and adsorbed water. Nevertheless, a rather stable interchain quaternary complex can be formed that includes vinyl alcohol and vinyl acetate units and DMF and water molecules. For a single chain it is shown that an H-bond between neighboring vinyl alcohol and vinyl acetate monomer units mostly engages a carbonyl oxygen atom of the vinyl acetate, if the vinyl alcohol belongs to a short (<5 units) sequence, and an ether oxygen atom in the other case. On the whole, the quantum chemistry calculations shed much light on the origin of distinctions in the copolymer FTIR spectra, which may seem subtle when considered standalone.
Mapping DICOM to OpenDocument format
NASA Astrophysics Data System (ADS)
Yu, Cong; Yao, Zhihong
2009-02-01
In order to enhance the readability, extensibility and sharing of DICOM files, we have introduced XML into DICOM file system (SPIE Volume 5748)[1] and the multilayer tree structure into DICOM (SPIE Volume 6145)[2]. In this paper, we proposed mapping DICOM to ODF(OpenDocument Format), for it is also based on XML. As a result, the new format realizes the separation of content(including text content and image) and display style. Meanwhile, since OpenDocument files take the format of a ZIP compressed archive, the new kind of DICOM files can benefit from ZIP's lossless compression to reduce file size. Moreover, this open format can also guarantee long-term access to data without legal or technical barriers, making medical images accessible to various fields.
Characteristics of clinical trials that require participants to be fluent in English
Egleston, Brian L; Pedraza, Omar; Wong, Yu-Ning; Dunbrack, Roland L; Griffin, Candace L; Ross, Eric A; Beck, J Robert
2015-01-01
Background/Aims Diverse samples in clinical trials can make findings more generalizable. We sought to characterize the prevalence of clinical trials in the United States that required English fluency for participants to enroll in the trial. Methods We randomly chose over 10,000 clinical trial protocols registered with ClinicalTrials.gov and examined the inclusion and exclusion criteria of the trials. We compared the relationship of clinical trial characteristics with English fluency inclusion requirements. We merged the ClinicalTrials.gov data with U.S. Census and American Community Survey data to investigate the association of English language restrictions with ZIP-code level demographic characteristics of participating institutions. We used Chi-squared tests, t-tests, and logistic regression models for analyses. Results English fluency requirements have been increasing over time, from 1.7% of trials having such requirements before 2000 to 9.0% after 2010 (p<0.001 from Chi-squared test). Industry sponsored trials had low rates of English fluency requirements (1.8%) while behavioral trials had high rates (28.4%). Trials opening in the Northeast of the U.S. had the highest regional English requirement rates (10.7%) while trials opening in more than one region had the lowest (3.3%, p<0.001). Since 1995, trials opening in ZIP-codes with larger Hispanic populations were less likely to have English fluency requirements (OR=0.92 for each 10 percent increase in proportion of Hispanics, 95% CI 0.86–0.98, p=0.013). Trials opening in ZIP-codes with more residents self-identifying as Black/African American (OR=1.87, 95% CI 1.36–2.58, p<0.001 for restricted cubic spline term) or Asian (OR=1.16 for linear term, 95% CI 1.07–1.25, p<0.001) were more likely to have English fluency requirements. ZIP-codes with higher poverty rates had trials with more English language restrictions (OR=1.06 for a 10 percent poverty rate increase, 95% CI 1.001–1.11, p=0.045). There was a statistically significant interaction between year and intervention type, such that the increase in English fluency requirements was more common for some interventions than for others. Conclusions The proportion of clinical trials registered with ClinicalTrials.gov that have English fluency requirements for study inclusion has been increasing over time. English language restrictions are associated with a number of characteristics, including the demographic characteristics of communities in which the sponsoring institutions are located. PMID:26152834
Characteristics of clinical trials that require participants to be fluent in English.
Egleston, Brian L; Pedraza, Omar; Wong, Yu-Ning; Dunbrack, Roland L; Griffin, Candace L; Ross, Eric A; Beck, J Robert
2015-12-01
Diverse samples in clinical trials can make findings more generalizable. We sought to characterize the prevalence of clinical trials in the United States that required English fluency for participants to enroll in the trial. We randomly chose over 10,000 clinical trial protocols registered with ClinicalTrials.gov and examined the inclusion and exclusion criteria of the trials. We compared the relationship of clinical trial characteristics with English fluency inclusion requirements. We merged the ClinicalTrials.gov data with US Census and American Community Survey data to investigate the association of English-language restrictions with ZIP-code-level demographic characteristics of participating institutions. We used Chi-squared tests, t-tests, and logistic regression models for analyses. English fluency requirements have been increasing over time, from 1.7% of trials having such requirements before 2000 to 9.0% after 2010 (p < 0.001 from Chi-squared test). Industry-sponsored trials had low rates of English fluency requirements (1.8%), while behavioral trials had high rates (28.4%). Trials opening in the Northeast of the United States had the highest regional English requirement rates (10.7%), while trials opening in more than one region had the lowest (3.3%, p<0.001). Since 1995, trials opening in ZIP codes with larger Hispanic populations were less likely to have English fluency requirements (odds ratio=0.92 for each 10% increase in proportion of Hispanics, 95% confidence interval=0.86-0.98, p=0.013). Trials opening in ZIP codes with more residents self-identifying as Black/African American (odds ratio=1.87, 95% confidence interval=1.36-2.58, p<0.001 for restricted cubic spline term) or Asian (odds ratio=1.16 for linear term, 95% confidence interval=1.07-1.25, p<0.001) were more likely to have English fluency requirements. ZIP codes with higher poverty rates had trials with more English-language restrictions (odds ratio=1.06 for a 10% poverty rate increase, 95% confidence interval=1.001-1.11, p=0.045). There was a statistically significant interaction between year and intervention type, such that the increase in English fluency requirements was more common for some interventions than for others. The proportion of clinical trials registered with ClinicalTrials.gov that have English fluency requirements for study inclusion has been increasing over time. English-language restrictions are associated with a number of characteristics, including the demographic characteristics of communities in which the sponsoring institutions are located. © The Author(s) 2015.